WO2012051848A1 - 多径信道下的信号检测方法及装置 - Google Patents

多径信道下的信号检测方法及装置 Download PDF

Info

Publication number
WO2012051848A1
WO2012051848A1 PCT/CN2011/073920 CN2011073920W WO2012051848A1 WO 2012051848 A1 WO2012051848 A1 WO 2012051848A1 CN 2011073920 W CN2011073920 W CN 2011073920W WO 2012051848 A1 WO2012051848 A1 WO 2012051848A1
Authority
WO
WIPO (PCT)
Prior art keywords
channel
received signal
bit
multipath
soft information
Prior art date
Application number
PCT/CN2011/073920
Other languages
English (en)
French (fr)
Inventor
严妙奇
张玉杰
Original Assignee
中兴通讯股份有限公司
Priority date (The priority date is an assumption and is not a legal conclusion. Google has not performed a legal analysis and makes no representation as to the accuracy of the date listed.)
Filing date
Publication date
Application filed by 中兴通讯股份有限公司 filed Critical 中兴通讯股份有限公司
Publication of WO2012051848A1 publication Critical patent/WO2012051848A1/zh

Links

Classifications

    • HELECTRICITY
    • H04ELECTRIC COMMUNICATION TECHNIQUE
    • H04LTRANSMISSION OF DIGITAL INFORMATION, e.g. TELEGRAPHIC COMMUNICATION
    • H04L1/00Arrangements for detecting or preventing errors in the information received
    • H04L1/004Arrangements for detecting or preventing errors in the information received by using forward error control
    • H04L1/0045Arrangements at the receiver end
    • HELECTRICITY
    • H04ELECTRIC COMMUNICATION TECHNIQUE
    • H04LTRANSMISSION OF DIGITAL INFORMATION, e.g. TELEGRAPHIC COMMUNICATION
    • H04L25/00Baseband systems
    • H04L25/02Details ; arrangements for supplying electrical power along data transmission lines
    • H04L25/03Shaping networks in transmitter or receiver, e.g. adaptive shaping networks
    • H04L25/03006Arrangements for removing intersymbol interference
    • H04L25/03171Arrangements involving maximum a posteriori probability [MAP] detection

Definitions

  • the present invention relates to the field of communications, and in particular to a signal detection method and apparatus in a multipath channel.
  • Modulation and demodulation techniques are classified into analog modulation and demodulation and digital modulation and demodulation.
  • the analog modulation technique is a frequency domain shift of the signal, and the modulated signal can be restored by phase demodulation and non-phase demodulation.
  • Digital modulation is the principle of application signal detection.
  • the transmission signal is designed to facilitate the detection of the receiving end.
  • the digital modulation signal can detect and restore the signal with a certain principle of signal detection.
  • the digital demodulation technology is divided into two methods: hard demodulation and soft demodulation.
  • Hard demodulation is a method of direct decision on the transmitted constellation with the received signal and the maximum a posteriori probability criterion.
  • the soft decision is to extract the posterior probability ratio of the constellation according to the received signal and the maximum posterior probability criterion, that is, the likelihood ratio.
  • the process of calculating the likelihood ratio is more complicated.
  • the exponential part of the likelihood ratio is generally taken as the approximation of the likelihood ratio, that is, the likelihood distance.
  • the likelihood distance may be further approximated, as long as the approximate mapping relationship is guaranteed to be monotonic.
  • the system model can be expressed as:
  • the output of the digital soft demodulator is the likelihood ratio of a certain bit, which can be expressed as:
  • W represents the possible value of the received signal
  • P represents the conditional probability
  • Equation (1) Any modulation scheme, for a Bit, can be divided into a set of constellations whose Bit is 0, expressed as a set A, and a set of constellations in which the bit takes 1 is represented as a set B.
  • the two constellations closest to the received signal in Set A and Set B are taken as possible transmit symbols, and the system can be approximated by the above system model.
  • the constellation in the box indicates the constellation set in which the bit is 0, and the constellation set indicating the bit is 1 outside the box represents the actual received signal, and two are selected.
  • the closest constellation in the set ie, the two constellation points with padding in the figure) is used to find the likelihood distance.
  • the amplitude response can be regarded as a constant, that is, the phase response is also approximated as a constant, that is, ⁇ », because jt ⁇ :
  • a frequency morphological model of flat fading is obtained on each subcarrier by dividing the channel into subchannels. The above method solves the problem of frequency selective fading of the subchannel itself, but for a uniformly coded modulation coded block, it may contain multiple subcarriers, and each subcarrier may be distributed at any position in the frequency domain, and the fading of these subcarriers Different, the signal to noise ratio is not the same.
  • a primary object of the present invention is to provide a signal detection method and apparatus for a multipath channel to at least solve the problem that the error rate of the above system cannot be reduced by following the improvement of the signal to noise ratio.
  • a signal detection method in a multipath channel including: acquiring a likelihood distance of the received signal according to a maximum a posteriori probability criterion by using a channel estimation value and a received signal in a baseband frequency domain; Taking the quotient of the result of the likelihood distance and the root number of the modular square of the channel estimation as soft information; performing uniform shift calibration on the soft information in units of one modulation coding block, and intercepting high
  • the n bits are input to a given bitwise bit decoder, where n is the number of bits of the input parameter of the bit decoder containing the sign bit.
  • Acquiring the likelihood distance according to the maximum a posteriori probability criterion by using the channel estimation value and the received signal includes: estimating, by using a priori information, a channel response of a carrier used by the received signal, to obtain the channel estimation value; The channel estimate and the calculated
  • the likelihood distance SI of each bit of the received signal Where r is the received signal and is the channel gain. For noise power.
  • the method further includes: performing channel feature estimation on the channel according to the channel estimation value of the modulation coding block, Determining that the channel experienced by the modulation coded block is a multipath channel.
  • the method further includes: after performing a uniform shift calibration on the likelihood distance in units of one modulation coding block, intercepting a high ⁇ bit, A given bit decoder is input, where n is the number of bits of the bit decoder modulation coded.
  • the ⁇ 8.
  • a signal detecting apparatus for a multipath channel comprising: an obtaining module configured to acquire a channel according to a maximum a posteriori probability criterion by using a channel estimation value and a baseband received signal in a frequency domain; a likelihood ratio of the received signal; a calculation module configured to take the quotient of the result of the likelihood distance and the root squared number of the channel estimate as soft information; the calibration module is set to use a modulation coding block as Unit, performing uniform shift calibration on the soft information; the output module is configured to intercept the high ⁇ bit of the soft information after the shift calibration by the calibration module, and output a given bit decoder Where ⁇ is the number of bits of the bit decoder that includes input parameters that conform to the number bits.
  • the obtaining module includes: an estimation submodule, configured to estimate a channel response of a carrier used by the received signal by using a priori information, to obtain the channel estimation value; and a calculation submodule, configured to use the channel estimation value and the calculated value Similar to each bit of the received signal
  • the apparatus further includes: a determining module configured to perform channel feature estimation on a channel according to a channel estimation value of a modulation coding block, determine whether a channel experienced by the modulation coding block is a multipath channel, and if yes, trigger the calculation The module, if not, triggers the scaling module.
  • n 8.
  • FIG. 1 is a schematic diagram of a constellation set in 16QAM according to the related art
  • FIG. 2 is a schematic diagram of a multipath response generated by a shock pulse in the related art
  • FIG. 3 is a schematic diagram of a multipath response causing frequency selective fading in the related art 4 is a schematic diagram of frequency selective fading in a multi-carrier technique;
  • FIG. 5 is a schematic diagram of a frequency domain response on a single carrier in a multi-carrier technique;
  • FIG. 6 is a signal detection method in a multipath channel according to an embodiment of the present invention;
  • Figure 7 is a flow chart of signal detection according to a preferred embodiment of the present invention;
  • Figure 8 is a block diagram showing the structure of a signal detecting apparatus in a multipath channel according to an embodiment of the present invention; and
  • Figure 9 is a preferred embodiment of the present invention.
  • FIG. 10 is a schematic structural diagram of a signal detecting apparatus in a multipath channel according to a preferred embodiment of the present invention.
  • BEST MODE FOR CARRYING OUT THE INVENTION Hereinafter, the present invention will be described in detail with reference to the accompanying drawings. It should be noted that the embodiments in the present application and the features in the embodiments may be combined with each other without conflict.
  • the technical solutions of the embodiments of the present invention are first described. Under the condition of high SNR, a certain modulation coding block is included to include the frequency of the dish and ⁇ , and the two frequency points are represented as AO, Al. Then the likelihood distance of these two frequencies can be expressed as: with
  • the normalized soft information can be expressed as:
  • the normalized soft information can be expressed as:
  • FIG. 6 is a flowchart of a method for detecting a signal in a multipath channel according to an embodiment of the present invention. The method is applied to a fixed-point soft modulator. As shown in FIG.
  • Step S602 Acquire a likelihood distance of the received signal according to a maximum a posteriori probability criterion by using a channel estimation value and a received signal in a baseband frequency domain.
  • the channel information of each current carrier may be first estimated by using a priori information to obtain a channel. Estimating the value, and then calculating the likelihood distance SI of each bit of the fixed-point soft modulator output according to the channel estimation value and the received signal of each carrier using the above formula (3): r -H ⁇ ⁇ r - ⁇ -H
  • Step 1 Polling all the Bits of the constellation, dividing all the constellation points into two sets, and the set A indicates the constellation set of the Bit taking 0,
  • the set B represents the set of constellations in which the bit takes 1; in step 2, according to the constellation structure, the distance of the received signal to each constellation point is obtained according to the following formula, and the distances can be divided into two sets according to the set to which the constellation belongs. , and have
  • Step 3 Find the minimum distances min Z ⁇ ) and min(D s ) in the set /) ⁇ and D s ; Step 4, subtract the above two minimum distances minOD and minO3 ⁇ 4) to obtain the likelihood distance.
  • Step S604 taking the quotient of the result of the likelihood distance obtained in step S602 and the rooting number of the modular square of the channel estimation as soft information; preferably, in the embodiment of the present invention, the step is performed only for the multipath channel.
  • the method may further include: performing channel feature estimation on the channel according to the channel estimation value of the modulation coding block (ie, the channel estimation value in step S602), determining the modulation coding block
  • Avg f , / 1, 2, ., N denotes the carrier number, ⁇ is the current total number of carriers; Step 3, averaging ⁇ 2 ( ) to obtain multipath characteristic parameters, and judging the multipath characteristics Whether the parameter exceeds a preset multipath threshold, and if so, it is determined that the channel experienced by the modulation coded block is a multipath channel. If it is judged that the channel experienced by the modulation coding block is not a multipath channel, the calculated likelihood distance is directly taken as soft information.
  • the above method provided by the embodiment of the present invention can ensure the full utilization of the Bit bits of the soft information, that is, in a modulation coding block, at least one of the highest bits of the data is a valid bit, thereby ensuring the output of the fixed-point soft modulator. The accuracy of soft information reduces the bit error rate.
  • Step S701 using a priori
  • the information estimates the channel response of each carrier, which is called channel estimation.
  • Step S702 according to the channel estimation, the received signal, and the formula (3), the likelihood of each bit of the received signal is obtained; for example, the following steps can be used to gather
  • the carrier gathers the likelihood of each bit of the big bit: Step 1, polling all the bits of the constellation, dividing all the constellation points into two sets, the set A represents the constellation set in which the bit takes 0, and the set B represents The bit takes a constellation set of 1; step 2, according to the constellation structure, finds the distance of the received signal to each constellation point, and the distances according to the set to which his constellation belongs may also be divided into two sets, respectively, / ⁇ and D B indicates; Step 3: Find the minimum distances min Z ⁇ ) and min(D s ) in the set /) ⁇ and D s ; Step 4, subtract the above two minimum distances minOD and minO3 ⁇ 4) to obtain a likelihood distance; Step S703, performing channel feature estimation on the channel according to channel estimation of a modulation coding block, determining whether the channel experienced by the modulation coding block
  • N denotes the carrier number
  • Step 3 for ⁇ 7 ) Accumulating and averaging, as a multipath characteristic parameter, when the multipath characteristic parameter is greater than the preset multipath threshold, output 1 indicates that the experienced channel is a multipath channel, and when the multipath characteristic parameter is not greater than the preset multipath At the threshold, 0 is output.
  • Channel is not shown experienced a multipath channel, in practical applications, it can, according to the test results provided above Gen predetermined multipath threshold. It should be noted that, although the foregoing describes a method for determining whether a channel experienced by a modulation coding block is a multipath channel, it is not limited thereto. In practical applications, other methods may also be used for determining, for example, Make relevant calculation judgments for each channel.
  • Step S704 dividing the likelihood distance by the opening square number of the channel estimation of the channel estimation ⁇ I II; in step S705, performing uniform calibration on the soft information in units of one modulation coding block to ensure sufficient bit position of the soft information.
  • the modulation code block at least one of the highest bits of the data is a valid bit, and then the high 8Bit is intercepted. After the soft information of a modulation coded block is calculated, the result is sent to the decoder for decoding.
  • FIG. 8 is a schematic structural diagram of a signal detecting apparatus in a multipath channel according to an embodiment of the present invention.
  • the apparatus is located in a fixed-point soft modulator. As shown in FIG. 8, the apparatus includes an acquiring module 10, a calculating module 20, and calibration.
  • the obtaining module 10 is configured to acquire a likelihood distance of the received signal according to a maximum a posteriori probability criterion by using a channel estimation value and a baseband received signal in a frequency domain; and the calculating module 20 is configured to take the likelihood distance and the The quotient of the result of the modulus squared opening number of the channel estimation is used as soft information; the scaling module 30 is configured to perform uniform shift calibration on the soft information in units of one modulation coding block; the output module 40, setting Outputting a given bitwise bit decoder for intercepting the high n bits of the soft information after the scaling of the scaling module, wherein n is the number of bits of the input parameter of the bit decoder including the sign bit .
  • the obtaining module 10 may include an estimating submodule 100, and a calculating submodule 102, wherein the estimating submodule 100 is configured to estimate the autonomous information by using the a priori information.
  • the apparatus may further include a determining module 50, wherein the determining module 50 is configured to perform channel characteristics on the channel according to channel estimation values of one modulation coding block. Estimating, determining whether the channel experienced by the modulation coded block is a multipath channel, and if so, triggering the calculation module, if not, triggering the calibration module. For example, the decision module 50 may first determine the average value of the channel estimates for the entire modulation coded block.
  • the embodiment of the present invention for the characteristics of the multipath channel and the fixed point soft demodulator, by measuring the multipath characteristic of the channel, selecting appropriate soft information according to the measurement result.
  • the approximation algorithm improves the output performance of the soft demodulator and achieves the purpose of improving the detection performance of the system.
  • the embodiment of the present invention takes both the multipath channel and the flat channel into consideration, and reduces the dependence of the system on the channel.
  • the detection performance of the time-increasing system in the depth-frequency selective fading channel is simple, flexible, and practical.
  • modules or steps of the present invention can be implemented by a general-purpose computing device, which can be concentrated on a single computing device or distributed over a network composed of multiple computing devices. Alternatively, they may be implemented by program code executable by the computing device, such that they may be stored in the storage device by the computing device and, in some cases, may be different from the order herein.
  • the steps shown or described are performed, or they are separately fabricated into individual integrated circuit modules, or a plurality of modules or steps are fabricated as a single integrated circuit module.
  • the invention is not limited to any specific combination of hardware and software.
  • the above is only the preferred embodiment of the present invention, and is not intended to limit the present invention, and various modifications and changes can be made to the present invention. Any modifications, equivalent substitutions, improvements, etc. made within the scope of the present invention are intended to be included within the scope of the present invention.

Landscapes

  • Engineering & Computer Science (AREA)
  • Computer Networks & Wireless Communication (AREA)
  • Signal Processing (AREA)
  • Physics & Mathematics (AREA)
  • Probability & Statistics with Applications (AREA)
  • Power Engineering (AREA)
  • Mobile Radio Communication Systems (AREA)
  • Error Detection And Correction (AREA)

Abstract

本发明公开了一种多径信道下的信号检测方法及装置。其中,该方法包括:利用信道估计值和基带频域的接收信号,根据最大后验概率准则获取所述接收信号的似然距离;取所述似然距离与所述信道估计的模平方的开根号的结果之商作为软信息;以一个调制编码块为单位,对所述软信息进行统一的移位定标后,截取高n位,输入给定点化的比特译码器,其中,n为所述比特译码器包含符号位的输入参数的比特数。通过本发明,可以降低定点化软解调器输出的软信息的误码率。

Description

多径信道下的信号检测方法及装置 技术领域 本发明涉及通信领域, 具体而言, 涉及一种多径信道下的信号检测方法及 装置。 背景技术 调制解调技术分为模拟调制解调和数字调制解调。 模拟调制技术为信号的 频域搬移, 可以用相千解调和非相千解调的方法对调制信号进行信号还原。 数 字调制为应用信号检测的原理, 对发射信号进行便于接收端检测的设计, 数字 调制信号可以用一定的信号检测的原则对信号做检测还原。 其中, 数字解调技术分为硬解调和软解调两种方法。 硬解调就是 居接收 信号和最大后验概率准则对发射星座实施直接判决的方法。 软判决是根据接收 信号和最大后验概率准则提取星座的后验概率比, 即似然比。 在很多情况下, 计算似然比的过程比较复杂, 在不影响精度的条件下, 一般取似然比的指数部 分作为似然比的近似, 即似然距离。 在实际应用中, 对似然距离还可故进一步 的近似, 只要保证近似的映射关系是单调的。 原理上, 系统模型可表示为:
Figure imgf000003_0001
"服从(0, N。2)的高斯分布, s表示该 Bit的信源( 1代表 1 , - 1代表 0 ), 表一次实际的接收信号的釆样, H代表信道增益, P代表 s取该值的概率。 数字软解调器的输出为某一个 Bit的似然比, 可以表示为:
LLR
Figure imgf000003_0002
W代表接收信号可能的值, P代表的是条件概率。 由于似然比是接收信号 的单调函数, 所以, 实际上, 解调 -的输出是取 似然比的近似值, 即似然距离, 由 S/来表示, 则:
\r - H r - (- )
SI = ln(JJR) = ^ LLR ( 3 )
2N 将式 ( 1 ) 代入式 (3 ) 得:
Figure imgf000004_0001
Figure imgf000004_0002
任何调制方案, 对于一个 Bit来说, 都可以将其分为该 Bit取 0的星座的 集合, 表示为集合 A, 和该 Bit取 1的星座的集合, 表示为集合 B。 分别取集 合 A和集合 B中距离接收信号 最近的两个星座, 作为可能的发射符号, 那系 统就又可以用上述的系统模型近似了。 以图 1所示的 16Qam为例,其中方框内的星座表示该 Bit为 0的星座集合, 方框外的表示该 Bit为 1 的星座集合, 代表一次实际的接收信号的釆样, 选 取两个集合中距离 最近的星座 (即图中的带填充的两个星座点) 来求取似然 距离。 考虑一个带宽为 B的无线信道, 假定带宽很大, 那么在信号经过这个信道 进行传输的时候, 将会因为多径效应导致衰落, 此时, 在时域上一个作为源激 励的冲击脉冲通过这个信道, 将会产生一个具有 q个多径响应的时域响应, 如 图 2所示。 这个多径响应将会导致在信道的频域谱上出现严重的频率选择性衰 落, 如图 3所示。 由此可知, 在一个宽频带上通信, 可能会由于多径效应出现严重的频率选 择性衰落, 导致信噪比在整个频段上不均勾, 为了对抗这种频率选择性衰落, 相关技术中釆用多载波技术。 在发送端对原有的高速串行数据利用多个载波进 行并行的低速发送, 以期增加每一个载波上的传输符号的时域长度, 相应的降 低了每个符号作需要的带宽, 从而, 使得在整个频段上显得非常严重的频率选 择性衰落响应在单个子载波上变得不是很严重了, 如图 4所示。 当载波数目分 割的足够多时, 载波的宽度将会很小, 此时, 可以将单个载波上的频域响应看 成是一个复常量, 如图 5所示。 其中, 图 5中的频域衰落可以表为:
Η(ω) = α(ω)β-]θ(ω) 在上述公式中, 可以将幅度响应看成是常量, 即 而将相位响应 也近似看成是常量, 即 ^» , 因 jt匕有:
Figure imgf000005_0001
通过将信道划为各个子信道的方法, 在每一个子载波上得到了一个平坦衰 落的频域模型。 上述方法解决了子信道自身的频率选择性衰落的问题, 但是对于一个统一 编码的调制编码块可能包含有多个子载波, 每一个子载波可能分布在频域任何 一个位置, 这些子载波经过的衰落各不一样, 其信噪比也不一样。 由于定点化 的软解调器输出的有效位是有限的 (跟定点化译码器一致, 为 η ), 对于一个调 制编码块中衰落较小的子载波的软信息 (这些软信息包含大量的冗余信息)将 占用过多的有效比特位, 对于衰落较大的子载波的软信息, 由于没有足够的有 效位来表示而被损失, 从而使系统的误码率不能跟随信噪比的提升而降低。 发明内容 本发明的主要目的在于提供一种多径信道下的信号检测方法及装置, 以至 少解决上述系统的误码率不能跟随信噪比的提升而降低的问题。 根据本发明的一个方面, 提供了一种多径信道下的信号检测方法, 包括: 利用信道估计值和基带频域的接收信号, 根据最大后验概率准则获取所述接收 信号的似然距离; 取所述似然距离与所述信道估计的模平方的开根号的结果之 商作为软信息; 以一个调制编码块为单位, 对所述软信息进行统一的移位定标 后, 截取高 η位, 输入给定点化的比特译码器, 其中, η为所述比特译码器包 含符号位的输入参数的比特数。 利用所述信道估计值和所述接收信号, 根据最大后验概率准则获取所述似 然距离包括: 利用先验信息估计所述接收信号使用的载波的信道响应, 得到所 述信道估计值; 根据所述信道估计值和所 算得到
所述接收信号的每个比特的似然距离 SI:
Figure imgf000005_0002
其中 r为所述接收信号, 为信道增益, 。为噪声功率。 在取所述似然距离与所述信道估计的模平方的开根号的结果之商作为软 信息之前, 所述方法还包括: 根据一个调制编码块的信道估计值对信道进行信 道特征估计, 确定所述调制编码块所经历的信道为多径信道。 确定所述调制编码块所经历的信道为多径信道包括: 获取所述调制编码块 在各个载波的信道估计 ; 获取每一个载波的信道估计与所述平均 值的差的模平方^7 '),
Figure imgf000006_0001
, = ι,2,―., N表示载波序号, N为 当前的载波总数; 对^7 ')累加求平均, 得到多径特征参数, 判断所述多径特征 参数是否超过预设的多径门限, 如果是, 则确定所述调制编码块所经历的信道 为多径信道。 如果确定所述调制编码块所经历的信道不是多径信道, 所述方法还包括: 以一个调制编码块为单位, 对所述似然距离进行统一的移位定标后, 截取高 η 位, 输入给定点化的比特译码器, 其中, η为所述比特译码器调制编码的比特 数。 所述 η = 8。 根据本发明的另一方面, 提供了一种多径信道下的信号检测装置, 包括: 获取模块, 设置为利用信道估计值和基带在频域的接收信号, 根据最大后验概 率准则获取所述接收信号的似然距离; 计算模块, 设置为取所述似然距离与所 述信道估计的模平方的开根号的结果之商作为软信息; 定标模块, 设置为以一 个调制编码块为单位, 对所述软信息进行统一的移位定标; 输出模块, 设置为 截取经所述定标模块移位定标后的软信息的高 η位, 输出给定点化的比特译码 器, 其中, η为所述比特译码器包含符合号位的输入参数的比特数。 所述获取模块包括: 估计子模块, 设置为利用先验信息估计所述接收信号 使用的载波的信道响应, 得到所述信道估计值; 计算子模块, 设置为所述信道 估计值和所 算得到所述接收信号的每个比特的似
然距离
Figure imgf000006_0002
其中, 为所述接收信号, 为信道 增益, V。为噪声功率。 所述装置还包括: 判断模块, 设置为根据一个调制编码块的信道估计值对 信道进行信道特征估计, 确定所述调制编码块所经历的信道是否为多径信道, 如果是, 触发所述计算模块, 如果不是, 触发所述定标模块。 n = 8。 通过本发明, 在检测信号时, 取似然距离与信道估计的模平方的开根号的 结果之商作为软信息, 从而解决了现有技术中系统的误码率不能跟随信噪比的 提升而降低的问题, 进而降低了定点化软解调器输出的软信息的误码率。 附图说明 此处所说明的附图用来提供对本发明的进一步理解, 构成本申请的一部 分, 本发明的示意性实施例及其说明用于解释本发明, 并不构成对本发明的不 当限定。 在附图中: 图 1是根据相关技术的 16QAM中的星座集合示意图; 图 2是相关技术中冲击脉冲产生多径响应的示意图; 图 3是相关技术中多径响应导致频率选择性衰落的示意图; 图 4是多载波技术中的频率选择性衰落的示意图; 图 5是多载波技术中单个载波上的频域响应的示意图; 图 6是根据本发明实施例的多径信道下的信号检测方法的流程图; 图 7是根据本发明优选实施例的信号检测的流程图; 图 8是 居本发明实施例的多径信道下的信号检测装置的结构示意图; 图 9是 居本发明优选实施例中获取模块的结构示意图; 图 10 是才艮据本发明优选实施例的多径信道下的信号检测装置的结构示意 图。 具体实施方式 下文中将参考附图并结合实施例来详细说明本发明。 需要说明的是, 在不 冲突的情况下, 本申请中的实施例及实施例中的特征可以相互组合。 在对本发明实施例提供的技术方案进行说明之前, 先对本发明实施例的技 术方案的提出进行说明。 在高信噪比条件下, 支设某个调制编码块刚好包括了 皿和 ^ 的频点, 将这两个频点表示为 AO, Al。 那么这两个频点的似然距离可表示为:
Figure imgf000008_0001
Figure imgf000008_0002
H„
lOlog >2Qdb
2Nn 2
再假设信噪比足够大 那么归一化后的软信息可表示 为:
SI— = 1
(8)
Figure imgf000008_0003
(9) 在频率选择性衰落信道中, 提高发射端的发射功率, 可以同时提高 ^皿和
'= κ
但是不能改变 ll^ 。 由此可见, 当信噪比足够大时, 软解调器的 输出软信息的质量由 夬定, 提高发射端的发射功率, 也不能改变输出软信息 的质量。 支定有另一个信道, =11^皿|| , 它也有两个频点, 一个频点受到
"。(G,N。2)的噪声千扰, 另一个频点收到" !dN!2), 将这两个频点表示为 B0, B1
N2
K
并且有 则这两个频点的软信息可表示为
Figure imgf000009_0001
Figure imgf000009_0004
Figure imgf000009_0002
H„ H„
lOlog >20db 10 log >2Qdb
2N 2N2
再^ _设信噪比足够大 则归一 化后的软信息可表示为:
SI 1
(13)
Figure imgf000009_0003
(14) 由此可见, Al和 B0有相同的信道增益, 且受到相同的噪声千扰, 但是各 自的软信息却相差很大; 相反 A1和 B1具相同的信道增益,但是受到不同的噪 声千扰, 但各自的软信息却一致。 这时, 信道 A的软信息跟信道 B的软信息是 一样的, 也就是说信道 A的高信号功率, 没有带来软信息的质量的提升。 图 6是根据本发明实施例的多径信道下的信号检测方法的流程图, 该方法 应用在定点化软调制器中, 如图 6所示, 该方法主要包括以下步骤: 步骤 S602, 利用信道估计值和基带频域的接收信号, 根据最大后验概率准 则获取所述接收信号的似然距离; 例如, 可以首先利用先验信息估计当前的各个载波的信道响应, 得到信道 估计值, 然后根据各个载波的信道估计值和接收信号, 利用上述公式 (3 ), 计 算定点化软调制器输出的各个比特的似然距离 SI: r -H\\ \\r - {-H
SI =
2No 2 其中, 为所述接收信号, 为信道增益, N。为噪声功率。 可以通过以下步骤得到接收信号的各个 Bit的上述似然距离: 步骤 1 , 对星座的所有的 Bit进行轮询, 将所有的星座点分成两个集合, 集合 A表示该 Bit取 0的星座集合, 集合 B表示该 Bit取 1的星座集合; 步骤 2, 根据星座结构, 按照下述公式求取接收信号 到每一个星座点的 距离, 将这些距离按照他的星座所属的集合也可以分成两个集合, 分别有 和
DB表示;
||r -Hs||2 , 其中, r表示接收信号, ^表示信道估计, s表示星座点, 星座 的可能值由调制方式和协议规定。 步骤 3 , 找出集合/) ^和 Ds中的最小距离 min Z^ )和 min(Ds ); 步骤 4, 将上述的两个最小距离 minOD 和 minO¾)相减, 即得到似然距离。 步骤 S604, 取步骤 S602中获得的似然距离与所述信道估计的模平方的开 根号的结果之商作为软信息; 优选地, 在本发明实施例中, 只有对多径信道才执行步骤 S604 的操作, 因此, 在步骤 S604之前, 该方法还可以包括: 根据一个调制编码块的信道估 计值 (即步骤 S602 中的信道估计值)对信道进行信道特征估计, 确定所述调 制编码块所经历的信道为多径信道。 例如, 可以通过以下步骤判断所述调制编码块所经历的信道是否为多径信 道: 步骤 1 , 获取该调制编码块在各个载波的信道估计的平均值^ 步骤 2 , 获取每一个载波的信道估计与上述平均值的差的模平方 σ2( ), a2(i) = - Havgf , / = 1, 2, ....., N表示载波序号, Ν为当前的载波总数; 步骤 3 , 对 σ2( )累加求平均, 得到多径特征参数, 判断该多径特征参数是 否超过预设的多径门限, 如果是, 则确定该调制编码块所经历的信道为多径信 道。 如果判断调制编码块所经历的信道不是多径信道, 则直接取计算得到的似 然距离作为软信息。 步 4聚 S606 , 以一个调制编码块为单位, 对软信息进行统一的移位定标后, 截取高 η位, 作为输出的软信息, 输入给定点化的比特译码器, 其中, η为所 述比特译码器包含符号位的输入参数的比特数。 优选地, η = 8。 在实际应用中, η与软解调器输出的有效位相同。 通过本发明实施例提供的上述方法,可以保证软信息的 Bit位的充分利用, 即在一个调制编码块中, 至少有一个数据的最高位是有效位, 从而保证了定点 化软调制器输出的软信息的准确性, 降低了误码率。 图 7是根据本发明优选实施例的信号检测的流程图, 如图 7所示, 在该优 选实施例中, 定点化软解调器对信号进行检测主要包括以下步骤: 步骤 S701 , 利用先验信息估计各个载波的信道响应, 称为信道估计; 步骤 S702 , 根据信道估计、 接收信号和公式 (3 ) 求取接收信号的每一个 Bit的似、然 巨离; 例如, 可以通过以下步 4聚载波聚每个 Bit的似然 3巨离: 步骤 1 , 对该星座的所有的 Bit进行轮询, 将所有的星座点分成两个集合, 集合 A表示该 Bit取 0的星座集合, 集合 B表示该 Bit取 1的星座集合; 步骤 2 , 根据星座结构, 求取接收信号 到每一个星座点的距离, 将这些 距离按照他的星座所属的集合也可以分成两个集合, 分别有 /^和 DB表示; 步骤 3 , 找出集合/) ^和 Ds中的最小距离 min Z^ )和 min(Ds ); 步骤 4, 将上述的两个最小距离 minOD 和 minO¾)相减, 即得到似然距离; 步骤 S703 ,根据一个调制编码块的信道估计对信道进行信道特征估计, 判 断该调制编码块所经历的信道是否为多径信道, 若是, 则进入步骤 S704, 若不 是, 取各个 Bit的似然距离作为软信息, 进入步骤 S705; 例如, 可以通过以下步骤判断该调制编码块所经历的信道是否为多径信 道: 步骤 1 , 求取整个调制编码块的信道估计的平均值 II ; 步骤 2 , 求取每一个载波的信道估计跟平均信道估计的差的模平方, cr2( ) = |H( ) _HflVg『, = 1,2, ..... N表示载波序号; 步骤 3 , 对^7 )累加求平均, 作为多径特征参数, 当多径特征参数大于预 设的多径门限时, 输出 1 , 指示经历的信道为多径信道, 当多径特征参数不大 于预设的多径门限时, 输出 0, 指示经历的信道不是多径信道, 在实际应用中, 可以才艮据测试结果设置上述预设的多径门限。 需要说明的是, 虽然上述例举了一种判断调制编码块所经历的信道是否为 多径信道方法, 但并不限于此, 在实际应用中, 也可以釆用其它方法进行判断, 例如, 通过对各个信道做相关计算判断。 步骤 S704, 对似然距离除以信道估计的模平方的开根号 ^I II ; 步骤 S705 , 对软信息以一个调制编码块为单位, 进行统一定标, 以保证软 信息的 Bit位的充分利用, 即一个调制编码块中, 至少有一个数据的最高位是 有效位, 然后截取高 8Bit, 完成一个调制编码块的软信息计算后, 将结果送给 译码器译码。 图 8是 居本发明实施例的多径信道下的信号检测装置的结构示意图, 该 装置位于定点化软调制器中, 如图 8所示, 该装置包括获取模块 10, 计算模块 20 , 定标模块 30 , 输出模块 40。 下面对其进行说明。 获取模块 10 , 设置为利用信道估计值和基带在频域的接收信号, 根据最大 后验概率准则获取所述接收信号的似然距离; 计算模块 20, 设置为取所述似然 距离与所述信道估计的模平方的开根号的结果之商作为软信息; 定标模块 30 , 设置为以一个调制编码块为单位, 对所述软信息进行统一的移位定标; 输出模 块 40 , 设置为截取经所述定标模块移位定标后的软信息的高 n位, 输出给定点 化的比特译码器, 其中, n为所述比特译码器包含符号位的输入参数的比特数。 在本发明实施例的一个优选实施方式中, n = 8。 如图 9所示, 在本发明实施例的另一个优选实施方式中, 获取模块 10可 以包括估计子模块 100, 计算子模块 102 , 其中, 估计子模块 100, 设置为利用 先验信息估计所述接收信号使用的载波的信道响应, 得到所述信道估计值; 计 算子模块 102 , 设置为所述信道估计值和所述接收信号, 按照下面公式计算得 到所述接收信号的每个比特的似然距离 SI: r - H\\ \\r - {-H
SI =
2No 2 其中, 为所述接收信号, 为信道增益, N。为噪声功率。 在本发明实施例的又一个优选实施方式中, 如图 10 所示, 该装置还可以 包括判断模块 50, 其中, 判断模块 50, 设置为根据一个调制编码块的信道估 计值对信道进行信道特征估计, 确定所述调制编码块所经历的信道是否为多径 信道, 如果是, 触发所述计算模块, 如果不是, 触发所述定标模块。 例如, 判断模块 50可以先求取整个调制编码块的信道估计的平均值^。 w; 然后求取每一个载波的信道估计跟平均信道估计的差的模平方, a2(i) = - Havg , = 1,2, ..... N表示载波序号; 再对 σ2(ζ')累加求平均, 作为多 径特征参数, 当多径特征参数大于预设的多径门限时, 输出 1 , 指示经历的信 道为多径信道, 当多径特征参数不大于预设的多径门限时, 输出 0 , 指示经历 的信道不是多径信道。 从以上的描述中, 可以看出, 在本发明实施例中, 针对多径信道和定点化 软解调器的特点, 通过对信道的多径特性进行测量, 根据测量的结果选择合适 的软信息近似算法,提高软解调器的输出性能,达到提升系统检测性能的目的。 并且, 本发明实施例兼顾多径信道和平坦信道, 减少系统对信道的依赖性, 同 时提升系统在深度频率选择性衰落信道中的检测性能, 方法简单、 灵活, 实用 性强。 显然, 本领域的技术人员应该明白, 上述的本发明的各模块或各步骤可以 用通用的计算装置来实现, 它们可以集中在单个的计算装置上, 或者分布在多 个计算装置所组成的网络上, 可选地, 它们可以用计算装置可执行的程序代码 来实现, 从而, 可以将它们存储在存储装置中由计算装置来执行, 并且在某些 情况下, 可以以不同于此处的顺序执行所示出或描述的步骤, 或者将它们分别 制作成各个集成电路模块, 或者将它们中的多个模块或步骤制作成单个集成电 路模块来实现。 这样, 本发明不限制于任何特定的硬件和软件结合。 以上所述仅为本发明的优选实施例而已, 并不用于限制本发明, 对于本领 域的技术人员来说, 本发明可以有各种更改和变化。 凡在本发明的 ^"神和原则 之内, 所作的任何修改、 等同替换、 改进等, 均应包含在本发明的保护范围之 内。

Claims

权 利 要 求 书
1. 一种多径信道下的信号检测方法, 包括:
利用信道估计值和基带频域的接收信号, 根据最大后验概率准则获 取所述接收信号的似然距离;
取所述似然距离与所述信道估计的模平方的开根号的结果之商作为 软信息;
以一个调制编码块为单位, 对所述软信息进行统一的移位定标后, 截取高 n位, 输入给定点化的比特译码器, 其中, n为所述比特译码器 包含符号位的输入参数的比特数。
2. 根据权利要求 1所述的方法, 其中, 利用所述信道估计值和所述接收信 号, 根据最大后验概率准则获取所述似然距离包括:
利用先验信息估计所述接收信号使用的载波的信道响应, 得到所述 信道估计值;
根据所述信道估计值和所述接收信号, 按照下面公式计算得到所述 接收信号的每个比特的似然距离 SI r - H\\ \\r - {-H
SI =
2No 2 其中, 为所述接收信号, 为信道增益, N。为噪声功率。
3. 才艮据权利要求 1所述的方法, 其中, 在取所述似然距离与所述信道估计 的模平方的开根号的结果之商作为软信息之前, 所述方法还包括: 根据一个调制编码块的信道估计值对信道进行信道特征估计, 确定 所述调制编码块所经历的信道为多径信道。
4. 根据权利要求 3所述的方法, 其中, 确定所述调制编码块所经历的信道 为多径信道包括:
获取所述调制编码块在各个载波的信道估计的平均值 H 获取每一个载波的信道估计与所述平均值的差的模平方 σ2(ί) , c 2(/) = ||H(/) - HflVg||2 , / = 1, 2, ....., N表示载波序号, Ν为当前的载波总数; 对 σ2( )累加求平均, 得到多径特征参数, 判断所述多径特征参数是 否超过预设的多径门限, 如果是, 则确定所述调制编码块所经历的信道 为多径信道。
5. 根据权利要求 3或 4所述的方法, 其中, 如果确定所述调制编码块所经 历的信道不是多径信道, 所述方法还包括:
以一个调制编码块为单位,对所述似然距离进行统一的移位定标后, 截取高 η位, 输入给定点化的比特译码器, 其中, η为所述比特译码器 调制编码的比特数。
6. 根据权利要求 1至 4中任一项所述的方法, 其中, 所述 η = 8。
7. 一种多径信道下的信号检测装置, 包括:
获取模块, 设置为利用信道估计值和基带在频域的接收信号, 根据 最大后验概率准则获取所述接收信号的似然距离;
计算模块, 设置为取所述似然距离与所述信道估计的模平方的开根 号的结果之商作为软信息;
定标模块, 设置为以一个调制编码块为单位, 对所述软信息进行统 一的移位定标;
输出模块, 设置为截取经所述定标模块移位定标后的软信息的高 η 位, 输出给定点化的比特译码器, 其中, η 为所述比特译码器包含符合 号位的输入参数的比特数。
8. 根据权利要求 7所述的装置, 其中, 所述获取模块包括:
估计子模块, 设置为利用先验信息估计所述接收信号使用的载波的 信道响应, 得到所述信道估计值;
计算子模块, 设置为所述信道估计值和所述接收信号, 按照下面公 式计算得到所述接收信号的每个比特的似然距离 SI:
Figure imgf000016_0001
其中, 为所述接收信号, 为信道增益, N。为噪声功率。
9. 根据权利要求 7或 8所述的装置, 其中, 所述装置还包括:
判断模块, 设置为根据一个调制编码块的信道估计值对信道进行信 道特征估计, 确定所述调制编码块所经历的信道是否为多径信道, 如果 是, 触发所述计算模块, 如果不是, 触发所述定标模块。
10. 根据权利要求 7或 8所述的装置, 其中, 所述 n = 8。
PCT/CN2011/073920 2010-10-21 2011-05-11 多径信道下的信号检测方法及装置 WO2012051848A1 (zh)

Applications Claiming Priority (2)

Application Number Priority Date Filing Date Title
CN201010515491.5A CN102457453B (zh) 2010-10-21 2010-10-21 多径信道下的信号检测方法及装置
CN201010515491.5 2010-10-21

Publications (1)

Publication Number Publication Date
WO2012051848A1 true WO2012051848A1 (zh) 2012-04-26

Family

ID=45974652

Family Applications (1)

Application Number Title Priority Date Filing Date
PCT/CN2011/073920 WO2012051848A1 (zh) 2010-10-21 2011-05-11 多径信道下的信号检测方法及装置

Country Status (2)

Country Link
CN (1) CN102457453B (zh)
WO (1) WO2012051848A1 (zh)

Families Citing this family (2)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
CN107204954B (zh) * 2016-03-16 2019-12-03 中国科学院上海高等研究院 一种定点化软信息的优化方法及系统
CN112202698B (zh) * 2020-09-08 2021-10-19 浙江大学 心跳控制包非相干解调与检测的方法、装置及电子设备

Citations (4)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
CN1773867A (zh) * 2004-11-08 2006-05-17 华为技术有限公司 Turbo码译码方法
KR20070046331A (ko) * 2005-10-31 2007-05-03 삼성전자주식회사 다중 안테나 로그 우도 율 생성 장치 및 방법
CN101471749A (zh) * 2007-12-28 2009-07-01 三星电子株式会社 为qam-ofdm调制信号产生对数似然比的方法
US20100067597A1 (en) * 2008-09-17 2010-03-18 Qualcomm Incorporated Methods and systems for maximum-likelihood detection using post-squaring compensation

Patent Citations (4)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
CN1773867A (zh) * 2004-11-08 2006-05-17 华为技术有限公司 Turbo码译码方法
KR20070046331A (ko) * 2005-10-31 2007-05-03 삼성전자주식회사 다중 안테나 로그 우도 율 생성 장치 및 방법
CN101471749A (zh) * 2007-12-28 2009-07-01 三星电子株式会社 为qam-ofdm调制信号产生对数似然比的方法
US20100067597A1 (en) * 2008-09-17 2010-03-18 Qualcomm Incorporated Methods and systems for maximum-likelihood detection using post-squaring compensation

Also Published As

Publication number Publication date
CN102457453B (zh) 2015-08-12
CN102457453A (zh) 2012-05-16

Similar Documents

Publication Publication Date Title
US9124399B2 (en) Highly-spectrally-efficient reception using orthogonal frequency division multiplexing
JP4982586B2 (ja) 多重アクセスネットワークにおける通信方法およびシステム
EP1726137B1 (en) Iterative channel and interference estimation and decoding
JP4399466B2 (ja) 階層符号化データ送信のためのデータ検出
KR100932320B1 (ko) 수신기 장치 및 전송 시스템
JP4539539B2 (ja) 軟判定値補正方法,受信装置,プログラム
KR100712606B1 (ko) 채널 디코딩의 성능을 개선하기 위하여 가변적인 양자화스텝 사이즈를 결정하는 방법, 가변적인 양자화 스텝사이즈를 기초로 채널 디코딩을 수행하는 방법 및 장치
KR20150046003A (ko) 고 스펙트럼 효율 통신을 위한 적응 비선형 모델
JP5782366B2 (ja) 受信装置、信号処理装置、信号処理方法
US8737536B2 (en) Recovery of data from a multi carrier signal
WO2012034400A1 (zh) 一种mimo-ofdm系统中的窄带干扰检测方法及装置
US20040203465A1 (en) Mode adaptation in wireless systems
US7471745B2 (en) Method and apparatus for channel quality metric generation within a packet-based multicarrier modulation communication system
KR20090115232A (ko) 다중캐리어 변조 시스템들의 간섭을 완화하기 위한 방법 및 장치
JP5347203B2 (ja) マルチパスチャネルの遅延スプレッドを推定する方法及び装置
CN112350965A (zh) 无线光通信系统中一种自适应最小二乘信道估计方法及接收机
US9954657B2 (en) Method and apparatus for estimating channel information
JP3594828B2 (ja) マルチキャリア変調信号復調器
CN101521548B (zh) 噪声功率推定装置以及方法
EP2507957A1 (en) Bit soft value normalization
WO2012051848A1 (zh) 多径信道下的信号检测方法及装置
US7313180B2 (en) Receiving device, receiving method, and program
KR20100117344A (ko) 단일 반송파 주파수 분할 다중 접속 시스템을 위한 수신 장치 및 방법
TWI540858B (zh) 無線接收裝置及其訊號處理方法
JP5478327B2 (ja) モジュロ演算で生成された信号を送受信する無線通信システム、受信機、及び、復調方法

Legal Events

Date Code Title Description
121 Ep: the epo has been informed by wipo that ep was designated in this application

Ref document number: 11833754

Country of ref document: EP

Kind code of ref document: A1

NENP Non-entry into the national phase

Ref country code: DE

122 Ep: pct application non-entry in european phase

Ref document number: 11833754

Country of ref document: EP

Kind code of ref document: A1