WO2012050073A1 - Esd protection device - Google Patents

Esd protection device Download PDF

Info

Publication number
WO2012050073A1
WO2012050073A1 PCT/JP2011/073296 JP2011073296W WO2012050073A1 WO 2012050073 A1 WO2012050073 A1 WO 2012050073A1 JP 2011073296 W JP2011073296 W JP 2011073296W WO 2012050073 A1 WO2012050073 A1 WO 2012050073A1
Authority
WO
WIPO (PCT)
Prior art keywords
counter electrode
esd protection
protection device
discharge
base material
Prior art date
Application number
PCT/JP2011/073296
Other languages
French (fr)
Japanese (ja)
Inventor
鷲見高弘
北田恵理子
足立淳
築澤孝之
Original Assignee
株式会社村田製作所
Priority date (The priority date is an assumption and is not a legal conclusion. Google has not performed a legal analysis and makes no representation as to the accuracy of the date listed.)
Filing date
Publication date
Application filed by 株式会社村田製作所 filed Critical 株式会社村田製作所
Priority to CN201190000796.0U priority Critical patent/CN203481621U/en
Publication of WO2012050073A1 publication Critical patent/WO2012050073A1/en

Links

Images

Classifications

    • HELECTRICITY
    • H01ELECTRIC ELEMENTS
    • H01TSPARK GAPS; OVERVOLTAGE ARRESTERS USING SPARK GAPS; SPARKING PLUGS; CORONA DEVICES; GENERATING IONS TO BE INTRODUCED INTO NON-ENCLOSED GASES
    • H01T4/00Overvoltage arresters using spark gaps
    • H01T4/10Overvoltage arresters using spark gaps having a single gap or a plurality of gaps in parallel
    • HELECTRICITY
    • H01ELECTRIC ELEMENTS
    • H01TSPARK GAPS; OVERVOLTAGE ARRESTERS USING SPARK GAPS; SPARKING PLUGS; CORONA DEVICES; GENERATING IONS TO BE INTRODUCED INTO NON-ENCLOSED GASES
    • H01T4/00Overvoltage arresters using spark gaps
    • H01T4/08Overvoltage arresters using spark gaps structurally associated with protected apparatus
    • HELECTRICITY
    • H01ELECTRIC ELEMENTS
    • H01TSPARK GAPS; OVERVOLTAGE ARRESTERS USING SPARK GAPS; SPARKING PLUGS; CORONA DEVICES; GENERATING IONS TO BE INTRODUCED INTO NON-ENCLOSED GASES
    • H01T4/00Overvoltage arresters using spark gaps
    • H01T4/10Overvoltage arresters using spark gaps having a single gap or a plurality of gaps in parallel
    • H01T4/12Overvoltage arresters using spark gaps having a single gap or a plurality of gaps in parallel hermetically sealed

Definitions

  • the present invention relates to an ESD protection device for protecting a semiconductor device or the like from electrostatic breakdown.
  • ESD protection devices for protecting semiconductor devices such as LSIs from electrostatic discharge (ESD) (Electron-Statics Discharge) have been widely used.
  • ESD electrostatic discharge
  • an internal electrode and a discharge space are provided in a ceramic substrate (insulating ceramic layer) having a pair of external electrodes, and the discharge gas is confined in the discharge space.
  • An ESD protection device (surge absorbing element) has been proposed (see Patent Document 1).
  • a magnetic material such as ferrite
  • Patent Document 1 when a magnetic material such as ferrite is used as the ceramic substrate, there is a problem that the magnetic material becomes a conductor due to electric discharge and short-circuit failure occurs.
  • a ceramic multilayer substrate As another ESD protection device, a ceramic multilayer substrate, at least a pair of discharge electrodes formed on the ceramic multilayer substrate and facing each other at a predetermined interval, and formed on the surface of the ceramic multilayer substrate,
  • an ESD protection comprising an auxiliary electrode in which a conductive material coated with an inorganic material having no conductivity is dispersed in a region connecting a pair of discharge electrodes
  • Patent Document 2 A device has been proposed (see Patent Document 2).
  • Patent Document 2 shows that even with an ESD protection device equipped with such an auxiliary electrode, when a magnetic material such as ferrite is used as the base material of the ceramic multilayer substrate, the magnetic material becomes a conductor due to electric discharge, leading to the occurrence of short-circuit defects. There's a problem.
  • JP 2001-43954 A Japanese Patent No. 4434314
  • the present invention has been made in view of the above circumstances, and is capable of suppressing short-circuit defects, and has excellent repetitive characteristics with no deterioration in characteristics even when ESD is repeatedly applied.
  • the purpose is to provide.
  • the ESD protection device of the present invention is A magnetic substrate; A counter electrode composed of one side counter electrode and the other side counter electrode formed on the surface or inside of the magnetic base material so as to be opposed to each other at an interval, the one side counter electrode and the other side counter A counter electrode configured to be a discharge gap portion that generates a discharge when ESD is applied between the electrodes; A protective insulating layer that is disposed at least in a region facing the discharge gap portion on or in the surface of the magnetic base material and prevents the insulating properties of the magnetic base material from being deteriorated by discharge. Yes.
  • the protective insulating layer is also disposed between the one side counter electrode and the other side counter electrode and the magnetic base material.
  • Another ESD protection device of the present invention is A magnetic substrate; A counter electrode composed of one side counter electrode and the other side counter electrode formed on the surface or inside of the magnetic base material so as to be opposed to each other at an interval, the one side counter electrode and the other side counter A counter electrode configured to be a discharge gap portion that generates a discharge when ESD is applied between the electrodes; A discharge auxiliary electrode connected to each of the one side counter electrode and the other side counter electrode constituting the counter electrode, and disposed so as to extend from the one side counter electrode to the other side counter electrode; And a protective insulating layer disposed between the auxiliary discharge electrode and the magnetic base material and preventing the insulating property of the magnetic base material from being deteriorated by discharge.
  • the protective insulating layer is disposed to a region surrounding the region where the auxiliary discharge electrode is formed.
  • the protective insulating layer contains a crystalline inorganic oxide.
  • the protective insulating layer contains a glass component.
  • the magnetic base material preferably contains a glass component.
  • the protective insulating layer is disposed in a region exposed to the cavity of the magnetic base material.
  • the ESD protection device of the present invention is formed by discharging the magnetic substrate on the surface or inside of the magnetic substrate facing the discharge gap, which is a region between the one side counter electrode and the other side counter electrode constituting the counter electrode. Since it has a protective insulation layer that prevents the insulation from deteriorating, it is possible to suppress and prevent the occurrence of short-circuit defects due to the magnetic base material becoming a conductor even when ESD is repeatedly applied. Therefore, a highly reliable ESD protection device can be provided.
  • the ESD protection device of the present invention since a magnetic base material is used as the base material on which the counter electrode is formed, it is possible to provide a composite part of the filter function and the ESD function.
  • the magnetic base material becomes a conductor by discharge. Further, it can be surely prevented, and the present invention can be made more effective.
  • another ESD protection device of the present invention is connected to each of the one-side counter electrode and the other-side counter electrode constituting the counter electrode, and is a discharge assist disposed so as to extend from the one-side counter electrode to the other-side counter electrode. Because it has an electrode, it has excellent discharge characteristics, and it has a protective insulating layer between the discharge auxiliary electrode and the magnetic base material that prevents deterioration of the insulating properties of the magnetic base material during discharge. It is possible to suppress and prevent the occurrence of short circuit due to the magnetic base material being a conductor, and it is possible to provide an ESD protection device with good characteristics and high reliability.
  • the present invention can be more effectively realized.
  • the protective insulating layer contains a crystalline inorganic oxide, it becomes possible to more reliably prevent the magnetic base material from being made conductive by electric discharge.
  • the crystalline inorganic oxide include Al 2 O 3 , BaO, CaO, TiO 2 , CeO, MgO, and ZnO.
  • the protective insulating layer contains a glass component, it is possible to improve the adhesion between the protective insulating layer and the magnetic substrate.
  • the magnetic substrate contains a glass component, it is possible to improve the adhesion between the insulating layer and the magnetic substrate.
  • the discharge part when the discharge part is inside the magnetic base material (cavity part), the inner peripheral surface of the cavity part tends to be easily deteriorated by insulation, but a protective insulating layer is provided in the region exposed to the cavity part of the magnetic base material. By disposing, it is possible to suppress insulation deterioration and maintain good characteristics.
  • FIG. 1 is a sectional view schematically showing the structure of an ESD protection device A1 according to an embodiment of the present invention
  • FIG. 2 is a plan view thereof. is there.
  • the ESD protection device A1 is formed on the surface of the magnetic base material 1 made of ferrite so that the front ends thereof are opposed to each other with a space therebetween.
  • the counter electrode 2 including the one-side counter electrode 2a and the other-side counter electrode 2b that form the discharge gap 10 that causes discharge when ESD is applied, and the tip of the one-side counter electrode 2a that forms the counter electrode 2 Is provided on the magnetic substrate 1 facing the discharge gap 10 which is a region between the first electrode and the tip of the other counter electrode 2b, and prevents the insulation of the magnetic substrate 1 from being deteriorated by discharge.
  • An insulating layer 4 is provided.
  • the protective insulating layer 4 is disposed between the discharge gap 10 and the tip of the one-side counter electrode 2a and the tip of the other-side counter electrode 2b and the magnetic substrate 1. It arrange
  • the ESD protection device A1 is electrically connected to the outside at both ends of the magnetic substrate 1 so as to be electrically connected to the one-side counter electrode 2a and the other-side counter electrode 2b constituting the counter electrode 2. External electrodes 5a and 5b for easy connection are provided.
  • FIG. 3 is a cross-sectional view schematically showing the structure of the second ESD protection device A2 according to the embodiment of the present invention, and FIG. It is a top view.
  • the ESD protection device A2 is formed such that the magnetic base 1 made of ferrite and the tips of the surfaces of the magnetic base 1 are opposed to each other with a space therebetween.
  • Counter electrode 2 comprising a one-side counter electrode 2a and another-side counter electrode 2b constituting a discharge gap portion 10 that generates discharge when ESD is applied, and one-side counter electrode 2a constituting the counter electrode and the other-side counter A discharge auxiliary electrode 3 connected to each of the electrodes 2b and arranged so as to extend from the one side counter electrode 2a to the other side counter electrode 2b, and between the discharge auxiliary electrode 3 and the magnetic substrate 1,
  • a protective insulating layer 4 for preventing the insulating property of the magnetic base material from deteriorating.
  • the protective insulating layer 4 is disposed so as to protrude beyond the region where the discharge auxiliary electrode 3 is formed to the surrounding region. Is configured to be surely protected.
  • the ESD protection device A2 is electrically connected to the outside at both ends of the magnetic base 1 so as to be electrically connected to the one side counter electrode 2a and the other side counter electrode 2b constituting the counter electrode 2. External electrodes 5a and 5b for easy connection are provided.
  • FIG. 5 is a diagram showing the configuration of the third ESD protection device A3 according to the embodiment of the present invention.
  • This ESD protection device A3 is provided at the tip of the one-side counter electrode 2a and the tip of the other-side counter electrode 2b constituting the counter electrode 2 so as to face the cavity 12 provided inside the magnetic substrate 1.
  • a discharge gap portion 10, which is a sandwiched region, is disposed, and a protective insulating layer 4 is disposed on the surface of the magnetic substrate 1 exposed in the cavity portion 12.
  • the protective insulating layer 4 is formed so as to be interposed between the tip portions of the one-side counter electrode 2a and the other-side counter electrode 2b and the magnetic base material 1.
  • Electrodes 5a and 5b are provided.
  • FIG. 6 is a diagram showing a configuration of a fourth ESD protection device A4 according to the embodiment of the present invention.
  • the ESD protection device A4 includes a counter electrode 2 composed of a one-side counter electrode 2a and a counter electrode 2b that constitutes a discharge gap 10 that causes discharge at the tips of the electrodes when ESD is applied, and one side that constitutes the counter electrode.
  • a discharge auxiliary electrode 3 is provided which is connected to each of the counter electrode 2a and the other counter electrode 2b and is disposed so as to extend from the one counter electrode 2a to the other counter electrode 2b.
  • the discharge gap part 10 is arrange
  • FIG. It is arranged.
  • the protective insulating layer 4 is also formed so as to be interposed between the tip of the one side counter electrode 2a and the other side counter electrode 2b and the connecting portion between the discharge auxiliary electrode 3 and the magnetic substrate 1. Yes.
  • Electrodes 5a and 5b are provided.
  • the magnetic base material 1 when a ferrite material containing a glass component is used as the magnetic base material 1, it becomes possible to sinter at a low temperature and to provide protective insulation. Adhesion between the layer 4 and the magnetic substrate 1 can be improved.
  • the protective insulating layer 4 is a layer formed of a material containing a crystalline inorganic oxide and a glass component.
  • a material containing a crystalline inorganic oxide and a glass component for example, Al 2 O 3 , BaO, CaO, TiO 2 , CeO, MgO Insulating paste containing oxide such as ZnO and glass frit is formed by heat treatment.
  • the first to fourth ESD protection devices A1 to A4 have been described above, but various configurations can be made within the scope of the present invention.
  • the magnetic base material 1 is not directly exposed to the discharge gap portion 10 and is protected by the protective insulating layer 4, and therefore ESD is repeatedly applied. Also in this case, it is possible to suppress and prevent the occurrence of short circuit due to the magnetic base material being a conductor, and it is possible to provide a highly reliable ESD protection device.
  • the present invention can be more effectively realized. Can do.
  • the protective insulating layer 4 contains a crystalline inorganic oxide, even when ESD is repeatedly applied, the magnetic base material can be well prevented from becoming a conductor. Furthermore, since the magnetic base material 1 and the protective insulating layer 4 contain a glass component, the adhesion between the protective insulating layer 4 and the magnetic base material 1 can be improved. In addition, if a glass component exists in at least one of the magnetic base material 1 and the protective insulating layer 4, said effect can be acquired.
  • the protective insulating layer 4 includes a connection portion between the distal end portions of the one-side counter electrode 2a and the other-side counter electrode 2b and the discharge auxiliary electrode 3, and a magnetic substrate. Since the magnetic base material 1 is formed so as to intervene between the magnetic base material 1 and the magnetic base material 1, the magnetic base material 1 can be more reliably prevented from becoming a conductor, and the present invention can be more effectively realized.
  • the cavity 12 is provided inside the magnetic substrate 1 and the discharge gap 10 faces the cavity 12. It becomes possible to discharge inside the material 1, and the reliability can be improved.
  • the discharge gap part 10 is arrange
  • the protective insulating layer 4 is disposed in the region exposed to the cavity 12 of the magnetic base material 1, it is possible to suppress the deterioration of the insulation and maintain good characteristics.
  • Example 1 the magnetic base 1, the counter electrode 2, the discharge auxiliary electrode 3, and the discharge auxiliary electrode 3 and the magnetic base 1 were disposed as shown in FIGS.
  • An explanation will be given by taking an ESD protection device (the above-mentioned second ESD protection device) including the protective insulating layer 4 and the external electrodes 5a and 5b as an example.
  • Magnetic base material A Ni, Cu, Zn Fe 2 O 4 magnetic base material (ferrite substrate) having a thickness of about 500 ⁇ m is prepared as a magnetic base material. And this magnetic base material was cut
  • the average particle size of the above Cu powder, borosilicate alkali glass frit, the following Ag powder, silicon carbide powder, and other various raw material powders used in this example was determined from the particle size distribution measurement using Microtrac. Mean particle size (D50).
  • a discharge auxiliary electrode paste for forming discharge auxiliary electrode 3 50% by weight of Ag powder having an average particle size of about 3 ⁇ m and an alumina coating amount of about 5% by weight, an average particle size
  • a discharge auxiliary electrode paste was prepared by blending 5 wt% of silicon carbide powder having a thickness of about 0.5 ⁇ m and 45 wt% of an organic vehicle prepared by dissolving ethyl cellulose in terpineol and mixing them with three rolls.
  • the constituent material of the protective insulating layer needs to be “a material whose insulation resistance does not decrease even when it comes into contact with discharge ( ⁇ 10 6 ⁇ )”. If the above requirements are satisfied, the constituent material of the protective insulating layer is not particularly limited.
  • this protective insulating layer for example, known crystalline inorganic oxides such as alumina and silica, and known glass frit such as borosilicate and borosilicate alumina may be used alone or in combination. it can. From the viewpoint of ensuring the adhesion between the protective insulating layer and the magnetic substrate, it is preferable to use a mixture of a crystalline inorganic oxide and glass frit.
  • composition, particle size, and softening point of the glass frit used in the present invention are not particularly limited, but it is usually preferable to use a softening point in the range of 500 ° C to 800 ° C.
  • a softening point in the range of 500 ° C to 800 ° C.
  • a material having a softening point of 500 ° C. or higher it is possible to reliably prevent the glass frit from diffusing into the magnetic base material during firing and deteriorating the magnetic properties of the magnetic base material.
  • the one having a point of 800 ° C. or lower it is possible to reliably prevent the adhesion between the protective insulating layer after firing and the magnetic base material from being deteriorated.
  • Example 1 in order to evaluate the characteristics, the insulating layer pastes P1 to P15 shown in Table 3 were used as the insulating layer layer paste, and the ESD protection device having the structure shown in FIGS. 3 and 4 ( Samples Nos. 1 to 14 in Table 4) were prepared. For comparison, an ESD protection device (sample No. 15 in Table 4) that does not include a protective insulating layer was manufactured.
  • Vpeak and Vclamp Based on the IEC standard, IEC61000-4-2, the peak voltage value: Vpeak and the voltage value after 30 ns from the wavefront value: Vclamp were measured by 8 kV contact discharge. The number of times of application was 20 times for each sample.
  • a sample having a maximum value of Vpeak of less than 500 V was determined to be particularly good ( ⁇ )
  • a sample having 500 to 900 V was determined to be good ( ⁇ )
  • a sample exceeding 900 V was determined to be defective ( ⁇ ).
  • a sample having a maximum value of Vclamp of less than 50V was determined to be particularly good ( ⁇ )
  • a sample having 50 to 100V was determined to be good ( ⁇ )
  • a sample exceeding 100V was determined to be defective (x).
  • the ESD protection devices of sample numbers 3 to 6 using a protective insulating layer containing a glass component had better repeatability than other samples. This is presumably because the adhesion between the magnetic base material and the protective insulating layer is high, and the protective insulating layer hardly peels off or scatters from the magnetic base material even when ESD application is repeated.
  • the ESD protection device of Sample No. 15 that does not have a protective insulating layer has poor repeatability and a comprehensive evaluation of “defective ( ⁇ )”, which cannot be put to practical use. This is presumed to be due to the discharge due to repeated application of ESD and the magnetic base material becoming a conductor.
  • Example 2 As shown in FIG. 6, the magnetic base 1, the counter electrode 2, the discharge auxiliary electrode 3, and the protective insulating layer 4 disposed between the discharge auxiliary electrode 3 and the magnetic base 1. And an external electrode 5a, 5b, and an ESD protection device (the above-mentioned fourth ESD protection device) in which the discharge gap portion 10 is disposed so as to face the cavity portion 12 of the magnetic substrate 1 as an example. I will explain to you.
  • each raw material to be a magnetic base material (Ni, Cu, Zn) Fe 2 O 4 type magnetic base material) is prepared and mixed so as to have a predetermined composition. Calcination powder was obtained by baking. Then, this calcined powder was pulverized with a zirconia ball mill for 12 hours to obtain a ceramic powder (ferrite powder).
  • an organic solvent such as toluene and echinene was added and mixed. Further, a butyral resin and a plasticizer were added and mixed to obtain a slurry. The slurry thus obtained was molded by a doctor blade method to obtain a magnetic green sheet having a thickness of 50 ⁇ m.
  • Example 1 Preparation of various pastes As a paste for forming the counter electrode, the protective insulating layer, the discharge auxiliary electrode, and the external electrode, as the counter electrode paste, the insulating layer paste, the discharge auxiliary electrode paste, and the external electrode paste, Example 1 The same paste was prepared.
  • a resin paste 22 for forming a cavity is applied to the area where the cavity 12 (see FIG. 6) is to be formed from above the unfired counter electrode 2 and the discharge auxiliary electrode 3. Further, an unfired protective insulating layer 4 is formed by applying an insulating layer paste so as to cover the resin paste 22 for forming the cavity from above.
  • an ESD protection device having a structure as shown in FIG. 6 was obtained by firing the chip coated with the external electrode paste in an N 2 atmosphere.
  • the width of the one-side counter electrode 2a and the other-side counter electrode 2b constituting the counter electrode 2 was set to 120 ⁇ m and the discharge gap 10 was set to 20 ⁇ m at the stage after firing.
  • Example 2 in order to evaluate the characteristics, the insulating layer pastes P1 to P15 shown in Table 3 were used as the insulating layer paste, and an ESD protection device having a structure with a cavity as shown in FIG. Sample Nos. 16 to 29 in Table 6) were prepared. For comparison, an ESD protection device (sample No. 30 in Table 6) that does not include a protective insulating layer was manufactured.
  • the ESD protection devices of Sample Nos. 18 to 21 using a protective insulating layer containing a glass component had better repeatability than other samples. This is presumably because the adhesion between the magnetic base material and the protective insulating layer is high, and the protective insulating layer hardly peels off or scatters from the magnetic base material even when ESD application is repeated.
  • the ESD protection device (Example 1) having the structure shown in FIGS. 3 and 4 provided with the discharge auxiliary electrode, and the structure shown in FIG.
  • the ESD protection device having the discharge protection electrode is described as an example, the ESD protection device having a structure not including the discharge auxiliary electrode and the ESD protection device having a structure not including the discharge auxiliary electrode and the cavity include the protective insulating layer. From these facts, it has been confirmed that good characteristics similar to those of the ESD protection devices of Examples 1 and 2 can be obtained.
  • the effects obtained from the ESD protection device of the present invention are summarized as follows.
  • (a) By adopting a configuration provided with a protective insulating layer, it is possible to prevent the magnetic base material from becoming a conductor due to a discharge caused by repeated application of ESD, thereby suppressing the occurrence of a short circuit defect.
  • (b) By using a protective insulating layer containing a crystalline inorganic oxide as a main component, it is possible to more reliably suppress and prevent the magnetic base material from becoming a conductor due to discharge caused by repeated application of ESD, and to have high reliability. Can be realized.
  • (c) By including a glass component in the protective insulating layer, it is possible to improve the adhesion between the magnetic base material and the insulating layer and realize high repeatability.
  • this invention is not limited to the said Example,
  • the kind and composition of the material which comprises a magnetic base material, the constituent material of a protective insulating layer, its specific shape, the structure of a counter electrode or a discharge auxiliary electrode Various applications and modifications can be made within the scope of the invention with respect to materials, specific shapes, and the shape of the cavity.

Landscapes

  • Thermistors And Varistors (AREA)

Abstract

Provided is an ESD protection device wherein short-circuit defects can be inhibited, and which exhibits excellent repeatability without any deterioration in the properties thereof even when an ESD is applied repeatedly thereto. The ESD protection device is configured to be provided with: a magnetic base-material (1); opposing electrodes (2) that are formed on the magnetic base-material (1) so as to be opposed to each other, and that comprise a first opposing electrode (2a) and a second opposing electrode (2b) that constitute a discharging gap section (10), which makes discharging happen when an ESD is applied thereto; a discharge assisting electrode (3) that is connected to both the first opposing electrode and the second opposing electrode, and that is arranged so as to go across from the first opposing electrode to the second opposing electrode; and a protection insulation layer (4) that is arranged between the discharge assisting electrode and the magnetic base-material, and that is for preventing deterioration in the insulation property of the magnetic base-material upon discharging.

Description

ESD保護デバイスESD protection device
 本発明は半導体装置などを静電気破壊から保護するESD保護デバイスに関する。 The present invention relates to an ESD protection device for protecting a semiconductor device or the like from electrostatic breakdown.
 近年、民生機器を使用するにあたって、入出力インターフェースであるケーブルの抜差し回数が増える傾向にあり、入出力コネクタ部に静電気が印加されやすい状況にある。また、信号周波数の高周波化に伴って、設計ルールの微細化でパスが作り込みにくくなり、LSI自体が静電気に対して脆弱になっている。 In recent years, when using consumer devices, the number of insertion / removal of cables as input / output interfaces tends to increase, and static electricity is likely to be applied to the input / output connectors. Further, along with the increase in signal frequency, it becomes difficult to create a path due to miniaturization of design rules, and the LSI itself is vulnerable to static electricity.
 そのため、静電気放電(ESD)(Electron-Statics Discharge)から、LSIなどの半導体装置を保護するESD保護デバイスが広く用いられるに至っている。 For this reason, ESD protection devices for protecting semiconductor devices such as LSIs from electrostatic discharge (ESD) (Electron-Statics Discharge) have been widely used.
 このようなESD保護デバイスとして、一対の外部電極を有するセラミック基材(絶縁性セラミックス層)の内部に、外部電極と導通する内部電極および放電空間を設けるとともに、放電空間に放電ガスを閉じ込めるようにしたESD保護デバイス(サージ吸収素子)が提案されている(特許文献1参照)。
しかしながら、この特許文献1のESD保護デバイスにおいて、セラミック基材としてフェライトなどの磁性材料を用いた場合、放電によって磁性材料が導体化し、ショート不良が発生するという問題がある。
As such an ESD protection device, an internal electrode and a discharge space are provided in a ceramic substrate (insulating ceramic layer) having a pair of external electrodes, and the discharge gas is confined in the discharge space. An ESD protection device (surge absorbing element) has been proposed (see Patent Document 1).
However, in the ESD protection device of Patent Document 1, when a magnetic material such as ferrite is used as the ceramic substrate, there is a problem that the magnetic material becomes a conductor due to electric discharge and short-circuit failure occurs.
 また、他のESD保護デバイスとして、セラミック多層基板と、セラミック多層基板に形成され、所定の間隔を設けて互いに対向する、少なくとも一対の放電電極と、セラミック多層基板の表面に形成され、放電電極と接続される外部電極とを有するESD保護デバイスにおいて、一対の放電電極間を接続する領域に、導電性を有さない無機材料によりコートされた導電材料を分散させてなる補助電極を備えたESD保護デバイスが提案されている(特許文献2参照)。
 しかしながら、このような補助電極を備えたESD保護デバイスであっても、セラミック多層基板の基材としてフェライトなどの磁性材料を用いた場合、放電によって磁性材料が導体化し、ショート不良の発生を招くという問題がある。
As another ESD protection device, a ceramic multilayer substrate, at least a pair of discharge electrodes formed on the ceramic multilayer substrate and facing each other at a predetermined interval, and formed on the surface of the ceramic multilayer substrate, In an ESD protection device having an external electrode to be connected, an ESD protection comprising an auxiliary electrode in which a conductive material coated with an inorganic material having no conductivity is dispersed in a region connecting a pair of discharge electrodes A device has been proposed (see Patent Document 2).
However, even with an ESD protection device equipped with such an auxiliary electrode, when a magnetic material such as ferrite is used as the base material of the ceramic multilayer substrate, the magnetic material becomes a conductor due to electric discharge, leading to the occurrence of short-circuit defects. There's a problem.
特開2001-43954号公報JP 2001-43954 A 特許第4434314号公報Japanese Patent No. 4434314
 本発明は、上記実情に鑑みてなされたものであり、ショート不良を抑制することが可能で、かつ、ESDが繰り返し印加された場合にも特性の劣化のない、繰り返し特性に優れたESD保護デバイスを提供することを目的とする。 The present invention has been made in view of the above circumstances, and is capable of suppressing short-circuit defects, and has excellent repetitive characteristics with no deterioration in characteristics even when ESD is repeatedly applied. The purpose is to provide.
 上記課題を解決するために、本発明のESD保護デバイスは、
 磁性基材と、
 前記磁性基材の表面または内部に、間隔をおいて互いに対向するように形成された一方側対向電極と他方側対向電極とからなる対向電極であって、前記一方側対向電極と前記他方側対向電極の間が、ESD印加時に放電を生じさせる放電ギャップ部となるように構成された対向電極と、
 前記磁性基材の表面または内部の、少なくとも前記放電ギャップ部に臨む領域に配設され、放電により前記磁性基材の絶縁性が劣化することを防止する保護絶縁層と
 を具備することを特徴としている。
In order to solve the above problems, the ESD protection device of the present invention is
A magnetic substrate;
A counter electrode composed of one side counter electrode and the other side counter electrode formed on the surface or inside of the magnetic base material so as to be opposed to each other at an interval, the one side counter electrode and the other side counter A counter electrode configured to be a discharge gap portion that generates a discharge when ESD is applied between the electrodes;
A protective insulating layer that is disposed at least in a region facing the discharge gap portion on or in the surface of the magnetic base material and prevents the insulating properties of the magnetic base material from being deteriorated by discharge. Yes.
 また、本発明のESD保護デバイスにおいては、前記一方側対向電極および前記他方側対向電極と、前記磁性基材との間にも前記保護絶縁層が配設されていることが好ましい。 In the ESD protection device of the present invention, it is preferable that the protective insulating layer is also disposed between the one side counter electrode and the other side counter electrode and the magnetic base material.
 また、本発明の他のESD保護デバイスは、
 磁性基材と、
 前記磁性基材の表面または内部に、間隔をおいて互いに対向するように形成された一方側対向電極と他方側対向電極とからなる対向電極であって、前記一方側対向電極と前記他方側対向電極の間が、ESD印加時に放電を生じさせる放電ギャップ部となるように構成された対向電極と、
 前記対向電極を構成する前記一方側対向電極と前記他方側対向電極のそれぞれと接続し、前記一方側対向電極から前記他方側対向電極にわたるように配設された放電補助電極と、
 前記放電補助電極と前記磁性基材の間に配設され、放電により前記磁性基材の絶縁性が劣化することを防止する保護絶縁層と
 を具備することを特徴としている。
Another ESD protection device of the present invention is
A magnetic substrate;
A counter electrode composed of one side counter electrode and the other side counter electrode formed on the surface or inside of the magnetic base material so as to be opposed to each other at an interval, the one side counter electrode and the other side counter A counter electrode configured to be a discharge gap portion that generates a discharge when ESD is applied between the electrodes;
A discharge auxiliary electrode connected to each of the one side counter electrode and the other side counter electrode constituting the counter electrode, and disposed so as to extend from the one side counter electrode to the other side counter electrode;
And a protective insulating layer disposed between the auxiliary discharge electrode and the magnetic base material and preventing the insulating property of the magnetic base material from being deteriorated by discharge.
 また、前記保護絶縁層は、前記放電補助電極が形成されている領域を超えてその周囲の領域にまで配設されていることが好ましい。 In addition, it is preferable that the protective insulating layer is disposed to a region surrounding the region where the auxiliary discharge electrode is formed.
 また、前記保護絶縁層が結晶性無機酸化物を含有していることが好ましい。 Further, it is preferable that the protective insulating layer contains a crystalline inorganic oxide.
 前記保護絶縁層がガラス成分を含有していることが好ましい。 It is preferable that the protective insulating layer contains a glass component.
 また、前記磁性基材がガラス成分を含有していることが好ましい。 The magnetic base material preferably contains a glass component.
 また、前記磁性基材の内部に空洞部が設けられ、前記放電ギャップ部が前記空洞部に臨んでいる構成とすることも可能である。 Further, it is also possible to adopt a configuration in which a hollow portion is provided inside the magnetic base and the discharge gap portion faces the hollow portion.
 また、前記磁性基材の前記空洞部に露出する領域には、前記保護絶縁層が配設されていることが好ましい。 Further, it is preferable that the protective insulating layer is disposed in a region exposed to the cavity of the magnetic base material.
 本発明のESD保護デバイスは、対向電極を構成する一方側対向電極と他方側対向電極との間の領域である放電ギャップ部に臨む磁性基材の表面または内部に、放電により前記磁性基材の絶縁性が劣化することを防止する保護絶縁層を備えているので、ESDが繰返し印加された場合にも、磁性基材が導体化してショート不良が発生することを抑制、防止することが可能になり、信頼性の高いESD保護デバイスを提供することができる。 The ESD protection device of the present invention is formed by discharging the magnetic substrate on the surface or inside of the magnetic substrate facing the discharge gap, which is a region between the one side counter electrode and the other side counter electrode constituting the counter electrode. Since it has a protective insulation layer that prevents the insulation from deteriorating, it is possible to suppress and prevent the occurrence of short-circuit defects due to the magnetic base material becoming a conductor even when ESD is repeatedly applied. Therefore, a highly reliable ESD protection device can be provided.
 また、本発明のESD保護デバイスにおいては、対向電極が形成される基材として、磁性基材を用いるようにしているので、フィルター機能とESD機能との複合部品を提供することが可能になる。 In the ESD protection device of the present invention, since a magnetic base material is used as the base material on which the counter electrode is formed, it is possible to provide a composite part of the filter function and the ESD function.
 また、本発明のESD保護デバイスにおいて、一方側対向電極および他方側対向電極と、磁性基材との間にも保護絶縁層を配設することにより、放電により磁性基材が導体化することをさらに確実に防止することが可能になり、本発明をより実効あらしめることができる。 Further, in the ESD protection device of the present invention, by disposing a protective insulating layer between the one-side counter electrode and the other-side counter electrode and the magnetic base material, the magnetic base material becomes a conductor by discharge. Further, it can be surely prevented, and the present invention can be made more effective.
 また、本発明の他のESD保護デバイスは、対向電極を構成する一方側対向電極と他方側対向電極のそれぞれと接続し、一方側対向電極から他方側対向電極にわたるように配設された放電補助電極を備えているので、優れた放電特性を得ることができるとともに、放電補助電極と磁性基材の間に、放電時に磁性基材の絶縁性の劣化を防止する保護絶縁層を備えているので、磁性基材が導体化してショート不良が発生することを抑制、防止することが可能になり、特性が良好で、信頼性の高いESD保護デバイスを提供することができる。 Further, another ESD protection device of the present invention is connected to each of the one-side counter electrode and the other-side counter electrode constituting the counter electrode, and is a discharge assist disposed so as to extend from the one-side counter electrode to the other-side counter electrode. Because it has an electrode, it has excellent discharge characteristics, and it has a protective insulating layer between the discharge auxiliary electrode and the magnetic base material that prevents deterioration of the insulating properties of the magnetic base material during discharge. It is possible to suppress and prevent the occurrence of short circuit due to the magnetic base material being a conductor, and it is possible to provide an ESD protection device with good characteristics and high reliability.
 保護絶縁層を、放電補助電極が形成されている領域を超えてその周囲の領域にまで配設することにより、放電により磁性基材が導体化することをさらに確実に防止することが可能になり、本発明をより実効あらしめることができる。 By disposing the protective insulating layer beyond the region where the discharge auxiliary electrode is formed to the surrounding region, it becomes possible to more reliably prevent the magnetic base material from becoming a conductor due to discharge. Thus, the present invention can be more effectively realized.
 また、保護絶縁層に結晶性無機酸化物を含有させるようにした場合、放電による磁性基材の導体化をさらに確実に防止することが可能になる。
 なお、結晶性無機酸化物としては、Al23、BaO、CaO、TiO2、CeO、MgO、ZnOなどが挙げられる。
In addition, when the protective insulating layer contains a crystalline inorganic oxide, it becomes possible to more reliably prevent the magnetic base material from being made conductive by electric discharge.
Examples of the crystalline inorganic oxide include Al 2 O 3 , BaO, CaO, TiO 2 , CeO, MgO, and ZnO.
 また、保護絶縁層がガラス成分を含有している場合、保護絶縁層と磁性基材との密着性を向上させることが可能になる。 In addition, when the protective insulating layer contains a glass component, it is possible to improve the adhesion between the protective insulating layer and the magnetic substrate.
 また、磁性基材がガラス成分を含有している場合、絶縁層と磁性基材との密着性を向上させることが可能になる。 Also, when the magnetic substrate contains a glass component, it is possible to improve the adhesion between the insulating layer and the magnetic substrate.
 また、磁性基材の内部に空洞部を設け、放電ギャップ部が空洞部に臨むような構成とした場合、磁性基材内部で放電を行わせることが可能になり、信頼性を向上させることができる。 In addition, when a cavity is provided inside the magnetic substrate and the discharge gap portion faces the cavity, discharge can be performed inside the magnetic substrate, which can improve reliability. it can.
 なお、放電部が磁性基材の内部(空洞部)にある場合、空洞部の内周面が絶縁劣化しやすくなる傾向があるが、磁性基材の空洞部に露出する領域に保護絶縁層を配設することにより、絶縁劣化を抑制して、良好な特性を維持することが可能になる。 In addition, when the discharge part is inside the magnetic base material (cavity part), the inner peripheral surface of the cavity part tends to be easily deteriorated by insulation, but a protective insulating layer is provided in the region exposed to the cavity part of the magnetic base material. By disposing, it is possible to suppress insulation deterioration and maintain good characteristics.
放電ギャップ部が磁性基材の表面に配設された、本発明の実施例の第1のESD保護デバイスの構成を示す正面断面図である。It is front sectional drawing which shows the structure of the 1st ESD protection device of the Example of this invention by which the discharge gap part was arrange | positioned on the surface of the magnetic base material. 放電ギャップ部が磁性基材の表面に配設された、本発明の実施例の第1のESD保護デバイスの構成を示す平面図である。It is a top view which shows the structure of the 1st ESD protection device of the Example of this invention by which the discharge gap part was arrange | positioned on the surface of the magnetic base material. 放電ギャップ部が磁性基材の表面に配設された、本発明の実施例の第2のESD保護デバイスの構成を示す正面断面図である。It is front sectional drawing which shows the structure of the 2nd ESD protection device of the Example of this invention by which the discharge gap part was arrange | positioned on the surface of the magnetic base material. 放電ギャップ部が磁性基材の表面に配設された、本発明の実施例の第2のESD保護デバイスの構成を示す平面図である。It is a top view which shows the structure of the 2nd ESD protection device of the Example of this invention by which the discharge gap part was arrange | positioned on the surface of the magnetic base material. 放電ギャップ部が磁性基材の空洞部に配設された、本発明の実施例の第3のESD保護デバイスの構成を示す正面断面図である。It is front sectional drawing which shows the structure of the 3rd ESD protection device of the Example of this invention by which the discharge gap part was arrange | positioned by the cavity part of the magnetic base material. 放電ギャップ部が磁性基材の空洞部に配設された、本発明の実施例の第4のESD保護デバイスの構成を示す正面断面図である。It is front sectional drawing which shows the structure of the 4th ESD protection device of the Example of this invention by which the discharge gap part was arrange | positioned by the cavity part of the magnetic base material. (a)~(c)は、本発明の実施例の第2のESD保護デバイスの製造方法を説明する図である。(a)-(c) is a figure explaining the manufacturing method of the 2nd ESD protection device of the Example of this invention. 本発明の実施例の第4のESD保護デバイスの製造方法の一工程を示す図である。It is a figure which shows 1 process of the manufacturing method of the 4th ESD protection device of the Example of this invention. 本発明の実施例の第4のESD保護デバイスの製造方法の他の一工程を示す図である。It is a figure which shows another 1 process of the manufacturing method of the 4th ESD protection device of the Example of this invention. 本発明の実施例の第4のESD保護デバイスの製造方法のさらに他の一工程を示す図である。It is a figure which shows another 1 process of the manufacturing method of the 4th ESD protection device of the Example of this invention.
[実施例にかかるESD保護デバイスの形態]
 (1)本発明の実施例にかかる第1のESD保護デバイス
 図1は、本発明の実施例にかかるESD保護デバイスA1の構造を模式的に示す断面図であり、図2はその平面図である。
[Configuration of ESD Protection Device According to Embodiment]
(1) First ESD Protection Device According to Embodiment of the Present Invention FIG. 1 is a sectional view schematically showing the structure of an ESD protection device A1 according to an embodiment of the present invention, and FIG. 2 is a plan view thereof. is there.
 このESD保護デバイスA1は、図1および2に示すように、フェライトからなる磁性基材1と、磁性基材1の表面に、先端部が間隔をおいて互いに対向するように形成され、先端部どうしがESD印加時に放電を生じさせる放電ギャップ部10を構成する一方側対向電極2aと他方側対向電極2bとを備えてなる対向電極2と、対向電極2を構成する一方側対向電極2aの先端部と他方側対向電極2bの先端部との間の領域である放電ギャップ部10に臨む磁性基材1上に配設され、放電により磁性基材1の絶縁性が劣化することを防止する保護絶縁層4を備えている。なお、この第1のESD保護デバイスA1において、保護絶縁層4は、放電ギャップ部10から、一方側対向電極2aの先端部および他方側対向電極2bの先端部と、磁性基材1との間の領域にまで至るように配設され、磁性基材1が確実に保護されるように構成されている。なお、一方側対向電極2aと他方側対向電極2bとは、必ずしも先端部が対向している必要はなく、両者の間に放電ギャップが存在すればよい。 As shown in FIGS. 1 and 2, the ESD protection device A1 is formed on the surface of the magnetic base material 1 made of ferrite so that the front ends thereof are opposed to each other with a space therebetween. The counter electrode 2 including the one-side counter electrode 2a and the other-side counter electrode 2b that form the discharge gap 10 that causes discharge when ESD is applied, and the tip of the one-side counter electrode 2a that forms the counter electrode 2 Is provided on the magnetic substrate 1 facing the discharge gap 10 which is a region between the first electrode and the tip of the other counter electrode 2b, and prevents the insulation of the magnetic substrate 1 from being deteriorated by discharge. An insulating layer 4 is provided. In the first ESD protection device A1, the protective insulating layer 4 is disposed between the discharge gap 10 and the tip of the one-side counter electrode 2a and the tip of the other-side counter electrode 2b and the magnetic substrate 1. It arrange | positions so that it may reach to the area | region, and it is comprised so that the magnetic base material 1 may be protected reliably. It should be noted that the one-side counter electrode 2a and the other-side counter electrode 2b do not necessarily have to face each other, and it is sufficient that a discharge gap exists between them.
 また、このESD保護デバイスA1は、磁性基材1の両端部に、対向電極2を構成する一方側対向電極2aおよび他方側対向電極2bと導通するように配設された、外部との電気的な接続のための外部電極5a,5bを備えている。 The ESD protection device A1 is electrically connected to the outside at both ends of the magnetic substrate 1 so as to be electrically connected to the one-side counter electrode 2a and the other-side counter electrode 2b constituting the counter electrode 2. External electrodes 5a and 5b for easy connection are provided.
 (2)本発明の実施例にかかる第2のESD保護デバイス
 図3は、本発明の実施例にかかる第2のESD保護デバイスA2の構造を模式的に示す断面図であり、図4はその平面図である。
(2) Second ESD Protection Device According to the Embodiment of the Present Invention FIG. 3 is a cross-sectional view schematically showing the structure of the second ESD protection device A2 according to the embodiment of the present invention, and FIG. It is a top view.
 このESD保護デバイスA2は、図3および4に示すように、フェライトからなる磁性基材1と、磁性基材1の表面に先端部が間隔をおいて互いに対向するように形成され、先端部どうしがESD印加時に放電を生じさせる放電ギャップ部10を構成する一方側対向電極2aと他方側対向電極2bとを備えてなる対向電極2と、対向電極を構成する一方側対向電極2aと他方側対向電極2bのそれぞれと接続し、一方側対向電極2aから他方側対向電極2bにわたるように配設された放電補助電極3と、放電補助電極3と磁性基材1の間に配設され、放電により前記磁性基材の絶縁性が劣化することを防止する保護絶縁層4とを備えている。なお、この第2のESD保護デバイスA2において、保護絶縁層4は、放電補助電極3が形成されている領域を超えてその周囲の領域にまではみ出すように配設されており、磁性基材1が確実に保護されるように構成されている。 As shown in FIGS. 3 and 4, the ESD protection device A2 is formed such that the magnetic base 1 made of ferrite and the tips of the surfaces of the magnetic base 1 are opposed to each other with a space therebetween. Counter electrode 2 comprising a one-side counter electrode 2a and another-side counter electrode 2b constituting a discharge gap portion 10 that generates discharge when ESD is applied, and one-side counter electrode 2a constituting the counter electrode and the other-side counter A discharge auxiliary electrode 3 connected to each of the electrodes 2b and arranged so as to extend from the one side counter electrode 2a to the other side counter electrode 2b, and between the discharge auxiliary electrode 3 and the magnetic substrate 1, And a protective insulating layer 4 for preventing the insulating property of the magnetic base material from deteriorating. In the second ESD protection device A2, the protective insulating layer 4 is disposed so as to protrude beyond the region where the discharge auxiliary electrode 3 is formed to the surrounding region. Is configured to be surely protected.
 また、このESD保護デバイスA2は、磁性基材1の両端部に、対向電極2を構成する一方側対向電極2aおよび他方側対向電極2bと導通するように配設された、外部との電気的な接続のための外部電極5a,5bを備えている。 In addition, the ESD protection device A2 is electrically connected to the outside at both ends of the magnetic base 1 so as to be electrically connected to the one side counter electrode 2a and the other side counter electrode 2b constituting the counter electrode 2. External electrodes 5a and 5b for easy connection are provided.
 (3)本発明の実施例にかかる第3のESD保護デバイス
 図5は、本発明の実施例にかかる第3のESD保護デバイスA3の構成を示す図である。
 このESD保護デバイスA3は、磁性基材1の内部に設けられた空洞部12に臨むように、対向電極2を構成する一方側対向電極2aの先端部と他方側対向電極2bの先端部とに挟まれた領域である放電ギャップ部10が配設されており、空洞部12に露出する磁性基材1の表面は保護絶縁層4が配設されている。なお、保護絶縁層4は、一方側対向電極2aおよび他方側対向電極2bの先端部と磁性基材1との間にも介在するように形成されている。
(3) Third ESD Protection Device According to the Embodiment of the Present Invention FIG. 5 is a diagram showing the configuration of the third ESD protection device A3 according to the embodiment of the present invention.
This ESD protection device A3 is provided at the tip of the one-side counter electrode 2a and the tip of the other-side counter electrode 2b constituting the counter electrode 2 so as to face the cavity 12 provided inside the magnetic substrate 1. A discharge gap portion 10, which is a sandwiched region, is disposed, and a protective insulating layer 4 is disposed on the surface of the magnetic substrate 1 exposed in the cavity portion 12. The protective insulating layer 4 is formed so as to be interposed between the tip portions of the one-side counter electrode 2a and the other-side counter electrode 2b and the magnetic base material 1.
 また、磁性基材1の両端部には、対向電極2を構成する一方側対向電極2aおよび他方側対向電極2bと導通するように配設された、外部との電気的な接続のための外部電極5a,5bを備えている。 In addition, external ends for electrical connection to the outside, which are disposed at both ends of the magnetic base 1 so as to be electrically connected to the one side counter electrode 2a and the other side counter electrode 2b constituting the counter electrode 2. Electrodes 5a and 5b are provided.
 (4)本発明の実施例にかかる第4のESD保護デバイス
 また、図6は、本発明の実施例にかかる第4のESD保護デバイスA4の構成を示す図である。
 このESD保護デバイスA4は、先端部どうしがESD印加時に放電を生じさせる放電ギャップ部10を構成する一方側対向電極2aと他方側対向電極2bからなる対向電極2と、対向電極を構成する一方側対向電極2aと他方側対向電極2bのそれぞれと接続し、一方側対向電極2aから他方側対向電極2bにわたるように配設された放電補助電極3を備えている。
(4) Fourth ESD Protection Device According to Embodiment of the Present Invention FIG. 6 is a diagram showing a configuration of a fourth ESD protection device A4 according to the embodiment of the present invention.
The ESD protection device A4 includes a counter electrode 2 composed of a one-side counter electrode 2a and a counter electrode 2b that constitutes a discharge gap 10 that causes discharge at the tips of the electrodes when ESD is applied, and one side that constitutes the counter electrode. A discharge auxiliary electrode 3 is provided which is connected to each of the counter electrode 2a and the other counter electrode 2b and is disposed so as to extend from the one counter electrode 2a to the other counter electrode 2b.
 そして、磁性基材1の内部に設けられた空洞部12に臨むように、放電ギャップ部10が配設されており、磁性基材1の空洞部12に露出する領域には保護絶縁層4が配設されている。なお、保護絶縁層4は、一方側対向電極2aおよび他方側対向電極2bの先端部と上記放電補助電極3との接続部と、磁性基材1との間にも介在するように形成されている。 And the discharge gap part 10 is arrange | positioned so that the cavity part 12 provided in the inside of the magnetic base material 1 may be faced, and the protective insulating layer 4 is exposed to the area | region exposed to the cavity part 12 of the magnetic base material 1. FIG. It is arranged. The protective insulating layer 4 is also formed so as to be interposed between the tip of the one side counter electrode 2a and the other side counter electrode 2b and the connecting portion between the discharge auxiliary electrode 3 and the magnetic substrate 1. Yes.
 また、磁性基材1の両端部には、対向電極2を構成する一方側対向電極2aおよび他方側対向電極2bと導通するように配設された、外部との電気的な接続のための外部電極5a,5bを備えている。 In addition, external ends for electrical connection to the outside, which are disposed at both ends of the magnetic base 1 so as to be electrically connected to the one side counter electrode 2a and the other side counter electrode 2b constituting the counter electrode 2. Electrodes 5a and 5b are provided.
 なお、第1~第4のESD保護デバイスA1~A4において、磁性基材1として、ガラス成分を含有するフェライト材料を用いた場合には、低温で焼結させることが可能になるとともに、保護絶縁層4と磁性基材1との密着性を向上させることができる。 In the first to fourth ESD protection devices A1 to A4, when a ferrite material containing a glass component is used as the magnetic base material 1, it becomes possible to sinter at a low temperature and to provide protective insulation. Adhesion between the layer 4 and the magnetic substrate 1 can be improved.
 また、保護絶縁層4は、結晶性無機酸化物とガラス成分を含有する材料から形成された層であり、この実施例では、例えば、Al23、BaO、CaO、TiO2、CeO,MgO、ZnOなどの酸化物とガラスフリットを含む絶縁ペーストを熱処理することにより形成されている。 The protective insulating layer 4 is a layer formed of a material containing a crystalline inorganic oxide and a glass component. In this embodiment, for example, Al 2 O 3 , BaO, CaO, TiO 2 , CeO, MgO Insulating paste containing oxide such as ZnO and glass frit is formed by heat treatment.
 以上、第1~第4のESD保護デバイスA1~A4を示したが、本発明の範囲内において、さらに種々の構成とすることも可能である。 The first to fourth ESD protection devices A1 to A4 have been described above, but various configurations can be made within the scope of the present invention.
 上記の第1~第4のESD保護デバイスA1~A4においては、放電ギャップ部10に直接に磁性基材1が露出せず、保護絶縁層4により保護されているため、ESDが繰返し印加された場合にも、磁性基材が導体化してショート不良が発生することを抑制、防止することが可能になり、信頼性の高いESD保護デバイスを提供することができる。 In the first to fourth ESD protection devices A1 to A4, the magnetic base material 1 is not directly exposed to the discharge gap portion 10 and is protected by the protective insulating layer 4, and therefore ESD is repeatedly applied. Also in this case, it is possible to suppress and prevent the occurrence of short circuit due to the magnetic base material being a conductor, and it is possible to provide a highly reliable ESD protection device.
 また、上記第1および第3のESD保護デバイスにおいては、放電ギャップ部10はもちろん、該放電ギャップ部10を超えて、一方側対向電極2aおよび他方側対向電極2bの先端部と磁性基材1との間の領域にまで保護絶縁層4が配設されていることから、より確実に、磁性基材1が導体化することを防止することが可能になり、本発明をより実効あらしめることができる。 Further, in the first and third ESD protection devices, not only the discharge gap portion 10 but also the discharge gap portion 10 and the tip portions of the one-side counter electrode 2a and the other-side counter electrode 2b and the magnetic substrate 1 Since the protective insulating layer 4 is disposed up to the region between the magnetic base material 1 and the magnetic base material 1 can be more reliably prevented from becoming a conductor, the present invention can be more effectively realized. Can do.
 また、保護絶縁層4が結晶性無機酸化物を含有しているので、ESDが繰返し印加された場合にも、磁性基材が導体化することをよく確実に防止することができる。
 さらに、磁性基材1および保護絶縁層4がガラス成分を含有しているので、保護絶縁層4と磁性基材1との密着性を向上させることができる。なお、ガラス成分は磁性基材1および保護絶縁層4の少なくとも一方にあれば上記の効果を得ることができる。
Moreover, since the protective insulating layer 4 contains a crystalline inorganic oxide, even when ESD is repeatedly applied, the magnetic base material can be well prevented from becoming a conductor.
Furthermore, since the magnetic base material 1 and the protective insulating layer 4 contain a glass component, the adhesion between the protective insulating layer 4 and the magnetic base material 1 can be improved. In addition, if a glass component exists in at least one of the magnetic base material 1 and the protective insulating layer 4, said effect can be acquired.
 また、上記第2および第4のESD保護デバイスにおいては、保護絶縁層4が、一方側対向電極2aおよび他方側対向電極2bの先端部と上記放電補助電極3との接続部と、磁性基材1との間にも介在するように形成されていることから、より確実に、磁性基材1が導体化することを防止することが可能になり、本発明をより実効あらしめることができる。 Further, in the second and fourth ESD protection devices, the protective insulating layer 4 includes a connection portion between the distal end portions of the one-side counter electrode 2a and the other-side counter electrode 2b and the discharge auxiliary electrode 3, and a magnetic substrate. Since the magnetic base material 1 is formed so as to intervene between the magnetic base material 1 and the magnetic base material 1, the magnetic base material 1 can be more reliably prevented from becoming a conductor, and the present invention can be more effectively realized.
 また、上記の第3および第4のESD保護デバイスの場合、磁性基材1の内部に空洞部12が設けられ、放電ギャップ部10が空洞部12に臨むように構成されているため、磁性基材1の内部で放電を行わせることが可能になり、信頼性を向上させることができる。 In the case of the above third and fourth ESD protection devices, the cavity 12 is provided inside the magnetic substrate 1 and the discharge gap 10 faces the cavity 12. It becomes possible to discharge inside the material 1, and the reliability can be improved.
 なお、この第3および第4のESD保護デバイスの場合のように、放電ギャップ部10が磁性基材の空洞部12に配設されている場合、空洞部の内周面が絶縁劣化しやすくなる傾向があるが、磁性基材1の空洞部12に露出する領域に保護絶縁層4が配設されているため、絶縁劣化を抑制して、良好な特性を保持することができる。 In addition, when the discharge gap part 10 is arrange | positioned in the cavity part 12 of a magnetic base material like the case of this 3rd and 4th ESD protection device, the internal peripheral surface of a cavity part becomes easy to carry out insulation degradation. Although there is a tendency, since the protective insulating layer 4 is disposed in the region exposed to the cavity 12 of the magnetic base material 1, it is possible to suppress the deterioration of the insulation and maintain good characteristics.
 以下、本発明のESD保護デバイスの製造方法を示すとともに、具体的な実施例を示して、本発明の特徴とするところをさらに詳しく説明する。 Hereinafter, the manufacturing method of the ESD protection device of the present invention will be shown, and specific features will be shown to explain the features of the present invention in more detail.
 なお、この実施例1では、図3および4に示すような、磁性基材1と、対向電極2と、放電補助電極3と、放電補助電極3と磁性基材1の間に配設された保護絶縁層4と、外部電極5a,5bとを備えるESD保護デバイス(上記の第2のESD保護デバイス)を例にとって説明する。 In Example 1, the magnetic base 1, the counter electrode 2, the discharge auxiliary electrode 3, and the discharge auxiliary electrode 3 and the magnetic base 1 were disposed as shown in FIGS. An explanation will be given by taking an ESD protection device (the above-mentioned second ESD protection device) including the protective insulating layer 4 and the external electrodes 5a and 5b as an example.
[ESD保護デバイスの製造]
 (1)磁性基材の作製
 磁性基材として、厚みが約500μmの(Ni,Cu,Zn)Fe24系磁性基材(フェライト基板)を用意する。そして、この磁性基材を、幅500μm、長さ1000μmに切断して、磁性基材1(図3,4参照)とした。
[Manufacture of ESD protection devices]
(1) Production of magnetic base material A (Ni, Cu, Zn) Fe 2 O 4 magnetic base material (ferrite substrate) having a thickness of about 500 μm is prepared as a magnetic base material. And this magnetic base material was cut | disconnected to width 500micrometer and length 1000micrometer, and it was set as the magnetic base material 1 (refer FIG.3, 4).
 (2)対向電極ペーストの作製
 また、一対の対向電極2a,2bを形成するための対向電極ペーストとして、平均粒径が約1μmのAg粉末を75重量%と、転移点620℃、軟化点720℃で平均粒径が約1μmのホウケイ酸アルカリ系ガラスフリットを5重量%と、エチルセルロースをターピネオールに溶解して作製した有機ビヒクルを20重量%とを調合し、3本ロールで混合することにより対向電極ペーストを作製した。 
(2) Preparation of counter electrode paste As a counter electrode paste for forming the pair of counter electrodes 2a and 2b, 75% by weight of Ag powder having an average particle diameter of about 1 μm, a transition point of 620 ° C., and a softening point of 720 Opposite by blending 5% by weight of an alkali borosilicate glass frit having an average particle diameter of about 1 μm at 20 ° C. and 20% by weight of an organic vehicle prepared by dissolving ethyl cellulose in terpineol, and mixing them with three rolls. An electrode paste was prepared.
 なお、この実施例で用いた、上記のCu粉、ホウケイ酸アルカリ系ガラスフリット、下記のAg粉末、炭化ケイ素粉末、その他の種々の原料粉末の平均粒径は、マイクロトラックによる粒度分布測定から求めた中心粒径(D50)をいう。 The average particle size of the above Cu powder, borosilicate alkali glass frit, the following Ag powder, silicon carbide powder, and other various raw material powders used in this example was determined from the particle size distribution measurement using Microtrac. Mean particle size (D50).
 (3)放電補助電極ペーストの作製
 放電補助電極3を形成するための放電補助電極ペーストとして、平均粒径が約3μm、アルミナコート量が約5重量%であるAg粉末50重量%、平均粒径が約0.5μmである炭化ケイ素粉末5重量%、エチルセルロースをターピネオールに溶解して作製した有機ビヒクルを45重量%とを調合し、3本ロールで混合することにより放電補助電極ペーストを作製した。
(3) Preparation of Discharge Auxiliary Electrode Paste As a discharge auxiliary electrode paste for forming discharge auxiliary electrode 3, 50% by weight of Ag powder having an average particle size of about 3 μm and an alumina coating amount of about 5% by weight, an average particle size A discharge auxiliary electrode paste was prepared by blending 5 wt% of silicon carbide powder having a thickness of about 0.5 μm and 45 wt% of an organic vehicle prepared by dissolving ethyl cellulose in terpineol and mixing them with three rolls.
 (4)保護絶縁層の形成に用いられる絶縁層ペーストの作製
 表1に記載の酸化物と、軟化点が800℃で平均粒径が約1μmのホウケイ酸系ガラスフリット(表3のGF-1)と、表2に記載の有機ビヒクルとを調合し、3本ロールで混合することにより、表3に記載の絶縁層ペーストを作製した。
(4) Preparation of insulating layer paste used for forming protective insulating layer Oxide listed in Table 1 and borosilicate glass frit having a softening point of 800 ° C. and an average particle size of about 1 μm (GF-1 in Table 3) ) And the organic vehicle described in Table 2 were mixed and mixed with three rolls to prepare an insulating layer paste described in Table 3.
Figure JPOXMLDOC01-appb-T000001
Figure JPOXMLDOC01-appb-T000001
Figure JPOXMLDOC01-appb-T000002
Figure JPOXMLDOC01-appb-T000002
Figure JPOXMLDOC01-appb-T000003
Figure JPOXMLDOC01-appb-T000003
 なお、保護絶縁層の役割は、ESD印加時に発生する放電が磁性基材に接触することを抑制し、放電による磁性基材の絶縁抵抗劣化を抑制することにある。したがって、保護絶縁層の構成材料は、「放電に接触しても絶縁抵抗が低下しない材料(≧106Ω)」であることが必要である。上記要件を満たせば、保護絶縁層の構成材料は特に限定されるものではない。 Note that the role of the protective insulating layer is to suppress discharge generated during ESD application from coming into contact with the magnetic base material and to suppress insulation resistance deterioration of the magnetic base material due to discharge. Therefore, the constituent material of the protective insulating layer needs to be “a material whose insulation resistance does not decrease even when it comes into contact with discharge (≧ 10 6 Ω)”. If the above requirements are satisfied, the constituent material of the protective insulating layer is not particularly limited.
 この保護絶縁層を構成する材料としては、例えば、アルミナ、シリカなどの既知の結晶性無機酸化物、ホウケイ酸系やホウケイ酸アルミナ系などの既知のガラスフリットを単独または混合して使用することができる。なお、保護絶縁層と磁性基材との密着性を確保する見地から、結晶性無機酸化物とガラスフリットとを混合して用いることが好ましい。 As a material constituting this protective insulating layer, for example, known crystalline inorganic oxides such as alumina and silica, and known glass frit such as borosilicate and borosilicate alumina may be used alone or in combination. it can. From the viewpoint of ensuring the adhesion between the protective insulating layer and the magnetic substrate, it is preferable to use a mixture of a crystalline inorganic oxide and glass frit.
 また、本発明で使用されるガラスフリットの組成、粒径、軟化点は特に限定されるものではないが、通常は、軟化点は500℃~800℃の範囲のものを用いることが好ましい。軟化点が500℃以上のものを用いることにより、焼成時にガラスフリットが磁性基材中に拡散して磁性基材の磁気特性を劣化させることを確実に防止することが可能になり、また、軟化点が800℃以下のものを用いることにより、焼成後の保護絶縁層と磁性基材との密着性が劣化することを確実に防止することができる。 The composition, particle size, and softening point of the glass frit used in the present invention are not particularly limited, but it is usually preferable to use a softening point in the range of 500 ° C to 800 ° C. By using a material having a softening point of 500 ° C. or higher, it is possible to reliably prevent the glass frit from diffusing into the magnetic base material during firing and deteriorating the magnetic properties of the magnetic base material. By using the one having a point of 800 ° C. or lower, it is possible to reliably prevent the adhesion between the protective insulating layer after firing and the magnetic base material from being deteriorated.
 (5)外部電極ペーストの作製
 平均粒径が約1μmのAg粉末を80重量%と、転移点620℃、軟化点720℃で平均粒径が約1μmのホウケイ酸アルカリ系ガラスフリットを5重量%と、エチルセルロースをターピネオールに溶解して作製した有機ビヒクルを15重量%とを調合し、3本ロールにより混合することにより外部電極ペーストを作製した。
(5) Preparation of external electrode paste 80% by weight of Ag powder having an average particle size of about 1 μm and 5% by weight of alkali borosilicate glass frit having a transition point of 620 ° C., a softening point of 720 ° C. and an average particle size of about 1 μm Then, 15% by weight of an organic vehicle prepared by dissolving ethyl cellulose in terpineol was prepared and mixed with three rolls to prepare an external electrode paste.
 (6)各ペーストの印刷、生のESD保護デバイスの作製
 各種磁性基材の一方主面に、図7(a)に示すように、絶縁層ペースト、放電補助電極ペーストの順で塗布(印刷)することにより、磁性基材1の上に、未焼成の保護絶縁層4、未焼成の放電補助電極3を形成する。
 それから、図7(b)に示すように、対向電極ペーストを塗布して、未焼成の対向電極2を形成した。
 次いで、積層体の表層に、対向電極と接続するように外部電極ペーストを塗布し、図7(c)に示すように未焼成の外部電極5a,5bを形成し、生のESD保護デバイスA2を得た。
(6) Printing of each paste, production of raw ESD protection device As shown in FIG. 7 (a), an insulating layer paste and a discharge auxiliary electrode paste are applied (printed) in this order on one main surface of various magnetic substrates. By doing so, the unfired protective insulating layer 4 and the unfired discharge auxiliary electrode 3 are formed on the magnetic substrate 1.
Then, as shown in FIG. 7B, a counter electrode paste was applied to form an unfired counter electrode 2.
Next, an external electrode paste is applied to the surface layer of the laminate so as to be connected to the counter electrode, and unfired external electrodes 5a and 5b are formed as shown in FIG. 7C, and the raw ESD protection device A2 is formed. Obtained.
 (7)焼成
 上述のようにして作製した、生のESD保護デバイスA2を大気雰囲気下にて焼成し、図3および図4に示すような構造を有するESD保護デバイスA2を得た。
 この実施例1では、焼成後の段階で、対向電極2を構成する一方側対向電極2a,他方側対向電極2bの幅Wが120μm、放電ギャップ10の寸法Gが20μmのESD保護デバイスが得られるようにした。
(7) Firing The raw ESD protection device A2 produced as described above was fired in an air atmosphere to obtain an ESD protection device A2 having a structure as shown in FIGS.
In the first embodiment, an ESD protection device in which the width W of the one-side counter electrode 2a and the other-side counter electrode 2b constituting the counter electrode 2 is 120 μm and the dimension G of the discharge gap 10 is 20 μm is obtained after firing. I did it.
 なお、この実施例1では、特性を評価するため、絶縁層層ペーストとして、表3に示す絶縁層ペーストP1~P15を用いて、図3および図4に示すような構造を有するESD保護デバイス(表4の試料番号1~14の試料)を作製した。
 また、比較のため、保護絶縁層を備えていないESD保護デバイス(表4の試料番号15の試料)を作製した。
In Example 1, in order to evaluate the characteristics, the insulating layer pastes P1 to P15 shown in Table 3 were used as the insulating layer layer paste, and the ESD protection device having the structure shown in FIGS. 3 and 4 ( Samples Nos. 1 to 14 in Table 4) were prepared.
For comparison, an ESD protection device (sample No. 15 in Table 4) that does not include a protective insulating layer was manufactured.
Figure JPOXMLDOC01-appb-T000004
Figure JPOXMLDOC01-appb-T000004
[特性の評価]
 次に、上述のようにして作製した各ESD保護デバイス(試料)について、以下の方法で特性を調べた。
[Characteristic evaluation]
Next, the characteristics of each ESD protection device (sample) produced as described above were examined by the following method.
 (1)放電特性VpeakおよびVclamp
 IECの規格、IEC61000-4-2に基づき、8kVの接触放電にて、ピーク電圧値:Vpeak、および波頭値から30ns後の電圧値:Vclampを測定した。印加回数は、各試料20回とした。
 そして、Vpeakの最大値が、500V未満である試料を特に良好(◎)、500~900Vである試料を良好(○)、900Vを超える試料を不良(×)と判定した。
 また、Vclampの最大値が、50V未満である試料を特に良好(◎)、50~100Vである試料を良好(○)、100Vを超える試料を不良(×)と判定した。
(1) Discharge characteristics Vpeak and Vclamp
Based on the IEC standard, IEC61000-4-2, the peak voltage value: Vpeak and the voltage value after 30 ns from the wavefront value: Vclamp were measured by 8 kV contact discharge. The number of times of application was 20 times for each sample.
A sample having a maximum value of Vpeak of less than 500 V was determined to be particularly good (◎), a sample having 500 to 900 V was determined to be good (◯), and a sample exceeding 900 V was determined to be defective (×).
In addition, a sample having a maximum value of Vclamp of less than 50V was determined to be particularly good (、), a sample having 50 to 100V was determined to be good (◯), and a sample exceeding 100V was determined to be defective (x).
 (2)繰り返し特性
 8kVの接触放電を1000ショット繰返し、1000ショット後におけるESD保護デバイスの抵抗値を測定した。
 そして、抵抗値(LogIR値)が、6を超える試料を特に良好(◎)、3~6である試料を良好(○)、3未満である試料を不良(×)と判定した。
(2) Repetitive characteristics The contact discharge of 8 kV was repeated 1000 shots, and the resistance value of the ESD protection device after 1000 shots was measured.
A sample having a resistance value (LogIR value) exceeding 6 was determined to be particularly good (◎), a sample having 3 to 6 was good (◯), and a sample having a resistance value less than 3 was determined to be defective (×).
 (3)総合評価
 放電特性および繰返し特性において、一項目でも「特に良好(◎)」がある試料を「特に良好(◎)」と判定し、一項目でも「不良(×)」がある試料を「不良(×)」と判定し、それ以外の試料を「良好(○)」と判定した。
 上述のようにして特性を評価した結果を表5に示す。
(3) Comprehensive evaluation In discharge characteristics and repetitive characteristics, a sample with “particularly good (◎)” in one item is judged as “particularly good (◎)” and a sample with “bad (×)” in one item It was determined as “bad” (x), and the other samples were determined as “good” (◯).
Table 5 shows the results of evaluating the characteristics as described above.
Figure JPOXMLDOC01-appb-T000005
Figure JPOXMLDOC01-appb-T000005
 表5に示すように、本発明の要件を満たす、保護絶縁層を備えた試料番号1~14のESD保護デバイスにおいては、放電特性および繰返し特性ともに良好以上の特性が得られることが確認された。 As shown in Table 5, it was confirmed that in the ESD protection devices of Sample Nos. 1 to 14 having the protective insulating layer satisfying the requirements of the present invention, the discharge characteristics and the repetitive characteristics can be improved or better. .
 特に、ガラス成分を含有する保護絶縁層を用いた試料番号3~6のESD保護デバイスは、繰返し特性が他の試料よりも良好であった。これは、磁性基材と保護絶縁層との密着性が高く、ESD印加を繰り返しても保護絶縁層が磁性基材から剥離または飛散しにくいことによるものと考えられる。 In particular, the ESD protection devices of sample numbers 3 to 6 using a protective insulating layer containing a glass component had better repeatability than other samples. This is presumably because the adhesion between the magnetic base material and the protective insulating layer is high, and the protective insulating layer hardly peels off or scatters from the magnetic base material even when ESD application is repeated.
 一方、保護絶縁層を備えていない試料番号15のESD保護デバイスは、繰返し特性が不良で、総合評価は「不良(×)」となり、実用に供し得ないものであった。これは、ESD印加の繰り返しによる放電で、磁性基材が導体化することによるものと推察される。 On the other hand, the ESD protection device of Sample No. 15 that does not have a protective insulating layer has poor repeatability and a comprehensive evaluation of “defective (×)”, which cannot be put to practical use. This is presumed to be due to the discharge due to repeated application of ESD and the magnetic base material becoming a conductor.
 この実施例2では、図6に示すような、磁性基材1と、対向電極2と、放電補助電極3と、放電補助電極3と磁性基材1の間に配設された保護絶縁層4と、外部電極5a,5bとを備え、かつ、放電ギャップ部10が、磁性基材1の空洞部12に臨むように配設されたESD保護デバイス(上記の第4のESD保護デバイス)を例にとって説明する。 In Example 2, as shown in FIG. 6, the magnetic base 1, the counter electrode 2, the discharge auxiliary electrode 3, and the protective insulating layer 4 disposed between the discharge auxiliary electrode 3 and the magnetic base 1. And an external electrode 5a, 5b, and an ESD protection device (the above-mentioned fourth ESD protection device) in which the discharge gap portion 10 is disposed so as to face the cavity portion 12 of the magnetic substrate 1 as an example. I will explain to you.
 (1)磁性体グリーンシートの作製
 焼成後に、磁性基材((Ni,Cu,Zn)Fe24系磁性基材)となる各原料を、所定の組成になるよう調合、混合し、仮焼することにより仮焼粉末を得た。
 それから、この仮焼粉末をジルコニアボールミルで12時間粉砕し、セラミック粉末(フェライト粉末)を得た。
(1) Production of magnetic body green sheet After firing, each raw material to be a magnetic base material ((Ni, Cu, Zn) Fe 2 O 4 type magnetic base material) is prepared and mixed so as to have a predetermined composition. Calcination powder was obtained by baking.
Then, this calcined powder was pulverized with a zirconia ball mill for 12 hours to obtain a ceramic powder (ferrite powder).
 このセラミック粉末に、トルエン・エキネンなどの有機溶媒を加え混合した。さらに、ブチラール樹脂、可塑剤を加え混合し、スラリーを得た。
 このようにして得たスラリーを、ドクターブレード法により成形し、厚さ50μmの磁性体グリーンシートを得た。
To this ceramic powder, an organic solvent such as toluene and echinene was added and mixed. Further, a butyral resin and a plasticizer were added and mixed to obtain a slurry.
The slurry thus obtained was molded by a doctor blade method to obtain a magnetic green sheet having a thickness of 50 μm.
 (2)各種ペーストの準備
 対向電極、保護絶縁層、放電補助電極、および外部電極を形成するためのペーストとして、対向電極ペースト、絶縁層ペースト、放電補助電極ペースト、外部電極ペーストとして、実施例1と同一のペーストを用意した。
(2) Preparation of various pastes As a paste for forming the counter electrode, the protective insulating layer, the discharge auxiliary electrode, and the external electrode, as the counter electrode paste, the insulating layer paste, the discharge auxiliary electrode paste, and the external electrode paste, Example 1 The same paste was prepared.
 また、空洞部を形成するためのペーストとして、平均粒径が約1μmの架橋アクリル樹脂ビーズを38重量%と、エチルセルロースをジヒドロターピニルアセテートに溶解して作製した有機ビヒクルを62重量%とを調合し、3本ロールで混合することにより、焼成工程で分解、燃焼して消失する空洞部形成用ペーストを作製した。 As a paste for forming the cavity, 38 wt% of crosslinked acrylic resin beads having an average particle diameter of about 1 μm and 62 wt% of an organic vehicle prepared by dissolving ethyl cellulose in dihydroterpinyl acetate By mixing and mixing with three rolls, a cavity forming paste was produced which decomposed and burned in the firing step and disappeared.
 (3)各ペーストの印刷
 上述のようにして作製した、磁性体グリーンシート1aの一方主面に、図8に示すように、絶縁層ペースト、放電補助電極ペースト、対向電極ペーストを塗布して、未焼成の保護絶縁層4、未焼成の放電補助電極3、未焼成の対向電極2を形成した。
(3) Printing of each paste As shown in FIG. 8, an insulating layer paste, a discharge auxiliary electrode paste, and a counter electrode paste are applied to one main surface of the magnetic green sheet 1a produced as described above. An unfired protective insulating layer 4, an unfired auxiliary discharge electrode 3, and an unfired counter electrode 2 were formed.
 それから、図9に示すように、未焼成の対向電極2および放電補助電極3の上から、空洞部12(図6参照)を形成すべき領域に、空洞部形成用の樹脂ペースト22を塗布し、さらに、その上から空洞部形成用の樹脂ペースト22を覆うように、絶縁層ペーストを塗布して未焼成の保護絶縁層4を形成する。 Then, as shown in FIG. 9, a resin paste 22 for forming a cavity is applied to the area where the cavity 12 (see FIG. 6) is to be formed from above the unfired counter electrode 2 and the discharge auxiliary electrode 3. Further, an unfired protective insulating layer 4 is formed by applying an insulating layer paste so as to cover the resin paste 22 for forming the cavity from above.
 (4)積層、圧着
 上述のようにして、絶縁層ペースト、放電補助電極ペースト、対向電極ペースト、樹脂ペースト、絶縁層ペーストの順で各ペーストを塗布した磁性体グリーンシート(第1の磁性体グリーンシート)上に、図10に示すように、ペーストの塗布されていない第2の磁性体グリーンシート1bを積層し、圧着することにより未焼成の積層体(外部電極を備えていない未焼成のESD保護デバイス)を形成する。ここでは焼成後に厚みが500μmとなる積層体が形成されるようにした。
(4) Lamination, pressure bonding As described above, a magnetic green sheet (first magnetic green) coated with each paste in the order of insulating layer paste, discharge auxiliary electrode paste, counter electrode paste, resin paste, and insulating layer paste. As shown in FIG. 10, the second magnetic green sheet 1b to which the paste is not applied is laminated on the sheet) and pressed to form an unsintered laminate (unsintered ESD without external electrodes). Protective device). Here, a laminate having a thickness of 500 μm after firing was formed.
 (5)カット、外部電極ペーストの塗布
 積層体をマイクロカッターでカットして、各チップに分割する。ここでは、焼成後に、長さ1.0mm、幅0.5mmになるようにカットした。その後、端面に外部電極ペーストを塗布して未焼成の外部電極を形成した。
(5) Cut, application of external electrode paste The laminate is cut with a microcutter and divided into chips. Here, it cut | disconnected so that it might become length 1.0mm and width 0.5mm after baking. Thereafter, an external electrode paste was applied to the end face to form an unfired external electrode.
 (6)焼成
 次いで、外部電極ペーストを塗布したチップをN2雰囲気中で焼成することにより、図6に示すような構造を有するESD保護デバイスを得た。
 なお、この実施例2でも、焼成後の段階で、対向電極2を構成する一方側対向電極2a、他方側対向電極2bの幅が120μm、放電ギャップ10の寸法が20μmとなるようにした。
(6) Firing Next, an ESD protection device having a structure as shown in FIG. 6 was obtained by firing the chip coated with the external electrode paste in an N 2 atmosphere.
In Example 2, the width of the one-side counter electrode 2a and the other-side counter electrode 2b constituting the counter electrode 2 was set to 120 μm and the discharge gap 10 was set to 20 μm at the stage after firing.
 この実施例2では、特性を評価するため、絶縁層ペーストとして、表3に示す絶縁層ペーストP1~P15を用いて、図6に示すような、空洞部を備えた構造を有するESD保護デバイス(表6の試料番号16~29の試料)を作製した。
 また、比較のため、保護絶縁層を備えていないESD保護デバイス(表6の試料番号30の試料)を作製した。
In this Example 2, in order to evaluate the characteristics, the insulating layer pastes P1 to P15 shown in Table 3 were used as the insulating layer paste, and an ESD protection device having a structure with a cavity as shown in FIG. Sample Nos. 16 to 29 in Table 6) were prepared.
For comparison, an ESD protection device (sample No. 30 in Table 6) that does not include a protective insulating layer was manufactured.
[特性の評価]
 次に、上述のようにして作製した各ESD保護デバイス(試料)について、上記実施例1の場合と同じ方法、および同じ基準で、以下の方法で各特性を測定し、評価した。その結果を表6に示す。
[Characteristic evaluation]
Next, for each ESD protection device (sample) produced as described above, each characteristic was measured and evaluated by the following method using the same method and the same standard as in Example 1 described above. The results are shown in Table 6.
Figure JPOXMLDOC01-appb-T000006
Figure JPOXMLDOC01-appb-T000006
 本発明の要件を満たす、保護絶縁層を備えた試料番号1~14のESD保護デバイスにおいては、放電特性および繰返し特性ともに良好以上の特性が得られることが確認された。 It was confirmed that in the ESD protection devices of Sample Nos. 1 to 14 having the protective insulating layer that satisfy the requirements of the present invention, the discharge characteristics and the repetitive characteristics can be improved.
 特に、ガラス成分を含有する保護絶縁層を用いた試料番号18~21のESD保護デバイスは、繰返し特性が他の試料よりも良好であった。これは、磁性基材と保護絶縁層との密着性が高く、ESD印加を繰り返しても保護絶縁層が磁性基材から剥離または飛散しにくいことによるものと考えられる。 In particular, the ESD protection devices of Sample Nos. 18 to 21 using a protective insulating layer containing a glass component had better repeatability than other samples. This is presumably because the adhesion between the magnetic base material and the protective insulating layer is high, and the protective insulating layer hardly peels off or scatters from the magnetic base material even when ESD application is repeated.
 一方、保護絶縁層を備えていない試料番号15のESD保護デバイスは、繰返し特性が不良で、実用に供し得ないものであった。これは、ESD印加の繰り返しによる放電で、磁性基材が導体化したことによるものと推察される。 On the other hand, the ESD protection device of Sample No. 15 that did not have a protective insulating layer had poor repeatability and was not practically usable. This is presumably due to the discharge caused by the repeated application of ESD and the magnetic base material becoming a conductor.
 なお、上記実施例1および2では、放電補助電極を備えた図3,4に示すような構造を有するESD保護デバイス(実施例1)、さらに空洞部を備えた図6に示すような構造を有するESD保護デバイスを例にとって説明したが、放電補助電極を備えていない構造のESD保護デバイスや、放電補助電極および空洞部を備えていない構造のESD保護デバイスにおいても、保護絶縁層を備えていることから、上記実施例1および2のESD保護デバイスに準じるような、良好な特性が得られることが確認されている。 In Examples 1 and 2, the ESD protection device (Example 1) having the structure shown in FIGS. 3 and 4 provided with the discharge auxiliary electrode, and the structure shown in FIG. Although the ESD protection device having the discharge protection electrode is described as an example, the ESD protection device having a structure not including the discharge auxiliary electrode and the ESD protection device having a structure not including the discharge auxiliary electrode and the cavity include the protective insulating layer. From these facts, it has been confirmed that good characteristics similar to those of the ESD protection devices of Examples 1 and 2 can be obtained.
 上記実施例1および2より、本発明のESD保護デバイスにから得られる作用効果をまとめると、おおよそ以下のようになる。
 (a)保護絶縁層を備えた構成とすることにより、ESD印加の繰り返しによる放電で磁性基材が導体化することを防止して、ショート不良の発生を抑制することができる。
 (b)保護絶縁層として、結晶性無機酸化物を主たる成分とするものを用いることにより、ESD印加の繰り返しによる放電で磁性基材が導体化することをより確実に抑制防止して、高い信頼性を実現することができる。
 (c)保護絶縁層にガラス成分を含ませることにより、磁性基材と絶縁層との密着性を向上させて、高い繰り返し特性を実現することが可能になる。
From the first and second embodiments, the effects obtained from the ESD protection device of the present invention are summarized as follows.
(a) By adopting a configuration provided with a protective insulating layer, it is possible to prevent the magnetic base material from becoming a conductor due to a discharge caused by repeated application of ESD, thereby suppressing the occurrence of a short circuit defect.
(b) By using a protective insulating layer containing a crystalline inorganic oxide as a main component, it is possible to more reliably suppress and prevent the magnetic base material from becoming a conductor due to discharge caused by repeated application of ESD, and to have high reliability. Can be realized.
(c) By including a glass component in the protective insulating layer, it is possible to improve the adhesion between the magnetic base material and the insulating layer and realize high repeatability.
 なお、本発明は、上記実施例に限定されるものではなく、磁性基材を構成する材料の種類や組成、保護絶縁層の構成材料、その具体的な形状、対向電極や放電補助電極の構成材料や具体的な形状、空洞部の形状などに関し、発明の範囲内において、種々の応用、変形を加えることが可能である。 In addition, this invention is not limited to the said Example, The kind and composition of the material which comprises a magnetic base material, the constituent material of a protective insulating layer, its specific shape, the structure of a counter electrode or a discharge auxiliary electrode Various applications and modifications can be made within the scope of the invention with respect to materials, specific shapes, and the shape of the cavity.
 1       磁性基材
 1a      第1の磁性体グリーンシート
 1b      第2の磁性体グリーンシート
 2       対向電極
 2a      対向電極を構成する一方側対向電極
 2b      対向電極を構成する他方側対向電極
 3       放電補助電極
 4       保護絶縁層
 5a,5b   外部電極
 10      放電ギャップ部
 12      空洞部
 A1,A2,A3,A4  ESD保護デバイス
 W       対向電極の幅
 G       放電ギャップ部の寸法
DESCRIPTION OF SYMBOLS 1 Magnetic base material 1a 1st magnetic body green sheet 1b 2nd magnetic body green sheet 2 Counter electrode 2a One side counter electrode which comprises a counter electrode 2b The other side counter electrode which comprises a counter electrode 3 Discharge auxiliary electrode 4 Protective insulation Layer 5a, 5b External electrode 10 Discharge gap portion 12 Cavity portion A1, A2, A3, A4 ESD protection device W Width of counter electrode G Dimension of discharge gap portion

Claims (9)

  1.  磁性基材と、
     前記磁性基材の表面または内部に、間隔をおいて互いに対向するように形成された一方側対向電極と他方側対向電極とからなる対向電極であって、前記一方側対向電極と前記他方側対向電極の間が、ESD印加時に放電を生じさせる放電ギャップ部となるように構成された対向電極と、
     前記磁性基材の表面または内部の、少なくとも前記放電ギャップ部に臨む領域に配設され、放電により前記磁性基材の絶縁性が劣化することを防止する保護絶縁層と
     を具備することを特徴とするESD保護デバイス。
    A magnetic substrate;
    A counter electrode composed of one side counter electrode and the other side counter electrode formed on the surface or inside of the magnetic base material so as to be opposed to each other at an interval, the one side counter electrode and the other side counter A counter electrode configured to be a discharge gap portion that generates a discharge when ESD is applied between the electrodes;
    A protective insulating layer that is disposed in at least a region facing the discharge gap portion on the surface or inside of the magnetic base material and prevents the insulating property of the magnetic base material from being deteriorated by discharge. ESD protection device.
  2.  前記一方側対向電極および前記他方側対向電極と、前記磁性基材との間にも前記保護絶縁層が配設されていることを特徴とする請求項1記載のESD保護デバイス。 The ESD protection device according to claim 1, wherein the protective insulating layer is also disposed between the one-side counter electrode and the other-side counter electrode and the magnetic base material.
  3.  磁性基材と、
     前記磁性基材の表面または内部に、間隔をおいて互いに対向するように形成された一方側対向電極と他方側対向電極とからなる対向電極であって、前記一方側対向電極と前記他方側対向電極の間が、ESD印加時に放電を生じさせる放電ギャップ部となるように構成された対向電極と、
     前記対向電極を構成する前記一方側対向電極と前記他方側対向電極のそれぞれと接続し、前記一方側対向電極から前記他方側対向電極にわたるように配設された放電補助電極と、
     前記放電補助電極と前記磁性基材の間に配設され、放電により前記磁性基材の絶縁性が劣化することを防止する保護絶縁層と
     を具備することを特徴とするESD保護デバイス。
    A magnetic substrate;
    A counter electrode composed of one side counter electrode and the other side counter electrode formed on the surface or inside of the magnetic base material so as to be opposed to each other at an interval, the one side counter electrode and the other side counter A counter electrode configured such that a gap between the electrodes serves as a discharge gap that generates a discharge when ESD is applied;
    A discharge auxiliary electrode connected to each of the one side counter electrode and the other side counter electrode constituting the counter electrode, and disposed so as to extend from the one side counter electrode to the other side counter electrode;
    An ESD protection device comprising: a protective insulating layer that is disposed between the discharge auxiliary electrode and the magnetic base material and prevents the insulating property of the magnetic base material from being deteriorated by discharge.
  4.  前記保護絶縁層は、前記放電補助電極が形成されている領域を超えてその周囲の領域にまで配設されていることを特徴とする請求項3記載のESD保護デバイス。 4. The ESD protection device according to claim 3, wherein the protective insulating layer is disposed in a region beyond the region where the discharge auxiliary electrode is formed.
  5.  前記保護絶縁層が結晶性無機酸化物を含有していることを特徴とする請求項1または1~4のいずれかに記載のESD保護デバイス 5. The ESD protection device according to claim 1, wherein the protective insulating layer contains a crystalline inorganic oxide.
  6.  前記保護絶縁層がガラス成分を含有していることを特徴とする請求項1~5のいずれかに記載のESD保護デバイス。 The ESD protection device according to any one of claims 1 to 5, wherein the protective insulating layer contains a glass component.
  7.  前記磁性基材がガラス成分を含有していることを特徴とする請求項1~6のいずれかに記載のESD保護デバイス。 The ESD protection device according to any one of claims 1 to 6, wherein the magnetic substrate contains a glass component.
  8.  前記磁性基材の内部に空洞部が設けられ、前記放電ギャップ部が前記空洞部に臨んでいることを特徴とする請求項1~7のいずれかに記載のESD保護デバイス。 The ESD protection device according to any one of claims 1 to 7, wherein a cavity portion is provided inside the magnetic base material, and the discharge gap portion faces the cavity portion.
  9.  前記磁性基材の前記空洞部に露出する領域には前記保護絶縁層が配設されていることを特徴とする請求項8記載のESD保護デバイス。 9. The ESD protection device according to claim 8, wherein the protective insulating layer is disposed in a region exposed to the hollow portion of the magnetic base material.
PCT/JP2011/073296 2010-10-15 2011-10-11 Esd protection device WO2012050073A1 (en)

Priority Applications (1)

Application Number Priority Date Filing Date Title
CN201190000796.0U CN203481621U (en) 2010-10-15 2011-10-11 ESD protection device

Applications Claiming Priority (2)

Application Number Priority Date Filing Date Title
JP2010232209 2010-10-15
JP2010-232209 2010-10-15

Publications (1)

Publication Number Publication Date
WO2012050073A1 true WO2012050073A1 (en) 2012-04-19

Family

ID=45938302

Family Applications (1)

Application Number Title Priority Date Filing Date
PCT/JP2011/073296 WO2012050073A1 (en) 2010-10-15 2011-10-11 Esd protection device

Country Status (3)

Country Link
CN (1) CN203481621U (en)
TW (1) TWI506900B (en)
WO (1) WO2012050073A1 (en)

Cited By (1)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
JP2015138932A (en) * 2014-01-24 2015-07-30 Tdk株式会社 Static electricity protection component

Citations (2)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
JP2010109313A (en) * 2008-09-30 2010-05-13 Tdk Corp Composite electronic component
WO2010061550A1 (en) * 2008-11-26 2010-06-03 株式会社 村田製作所 Esd protection device and manufacturing method thereof

Family Cites Families (1)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
KR100693119B1 (en) * 2006-03-10 2007-03-12 조인셋 주식회사 Ceramic component element and ceramic component and method for the same

Patent Citations (2)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
JP2010109313A (en) * 2008-09-30 2010-05-13 Tdk Corp Composite electronic component
WO2010061550A1 (en) * 2008-11-26 2010-06-03 株式会社 村田製作所 Esd protection device and manufacturing method thereof

Cited By (1)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
JP2015138932A (en) * 2014-01-24 2015-07-30 Tdk株式会社 Static electricity protection component

Also Published As

Publication number Publication date
TWI506900B (en) 2015-11-01
CN203481621U (en) 2014-03-12
TW201230569A (en) 2012-07-16

Similar Documents

Publication Publication Date Title
KR101392455B1 (en) Esd protection device and method for manufacturing same
JP4434314B2 (en) ESD protection device
JP4984011B2 (en) ESD protection device and manufacturing method thereof
WO2011024780A1 (en) Esd protection device and manufacturing method thereof
WO2011145598A1 (en) Esd protection device
TWI427880B (en) Electrostatic countermeasure components
WO2010067503A1 (en) Esd protection device
US8711537B2 (en) ESD protection device and method for producing the same
TWI487226B (en) Esd protection device and manufacturing method therefor
JP4571164B2 (en) Ceramic materials used for protection against electrical overstress and low capacitance multilayer chip varistors using the same
WO2012043534A1 (en) Esd protection device and method of manufacturing thereof
WO2012050073A1 (en) Esd protection device
WO2013115054A1 (en) Electrostatic discharge protection device
JP6036989B2 (en) ESD protection device
KR101775921B1 (en) Surge protection device, manufacturing method therefor, and electronic component including same
CN108701969B (en) ESD protection device
US20140022687A1 (en) Antistatic device
US20140368963A1 (en) Electro static discharge protection device
JP5614563B2 (en) Manufacturing method of ESD protection device
JP2009212037A (en) Anti-static component and method of manufacturing the same

Legal Events

Date Code Title Description
WWE Wipo information: entry into national phase

Ref document number: 201190000796.0

Country of ref document: CN

121 Ep: the epo has been informed by wipo that ep was designated in this application

Ref document number: 11832508

Country of ref document: EP

Kind code of ref document: A1

NENP Non-entry into the national phase

Ref country code: DE

122 Ep: pct application non-entry in european phase

Ref document number: 11832508

Country of ref document: EP

Kind code of ref document: A1

NENP Non-entry into the national phase

Ref country code: JP