WO2012049993A1 - Solid electrolytic capacitor and method for manufacturing same - Google Patents
Solid electrolytic capacitor and method for manufacturing same Download PDFInfo
- Publication number
- WO2012049993A1 WO2012049993A1 PCT/JP2011/072727 JP2011072727W WO2012049993A1 WO 2012049993 A1 WO2012049993 A1 WO 2012049993A1 JP 2011072727 W JP2011072727 W JP 2011072727W WO 2012049993 A1 WO2012049993 A1 WO 2012049993A1
- Authority
- WO
- WIPO (PCT)
- Prior art keywords
- electrolytic capacitor
- anode
- solid electrolytic
- wound body
- cathode
- Prior art date
Links
- 239000003990 capacitor Substances 0.000 title claims abstract description 91
- 239000007787 solid Substances 0.000 title claims abstract description 80
- 238000004519 manufacturing process Methods 0.000 title abstract description 17
- 238000000034 method Methods 0.000 title description 27
- 239000011888 foil Substances 0.000 claims abstract description 105
- 238000004804 winding Methods 0.000 claims abstract description 38
- 239000000126 substance Substances 0.000 claims abstract description 24
- 238000006243 chemical reaction Methods 0.000 claims abstract description 17
- 239000007784 solid electrolyte Substances 0.000 claims abstract description 15
- 239000011248 coating agent Substances 0.000 claims abstract description 12
- 238000000576 coating method Methods 0.000 claims abstract description 12
- 229910052751 metal Inorganic materials 0.000 claims description 43
- 239000002184 metal Substances 0.000 claims description 43
- 229910052755 nonmetal Inorganic materials 0.000 claims description 2
- 230000002093 peripheral effect Effects 0.000 description 12
- 238000007789 sealing Methods 0.000 description 11
- 239000007788 liquid Substances 0.000 description 9
- 238000012986 modification Methods 0.000 description 9
- 230000004048 modification Effects 0.000 description 9
- 238000006116 polymerization reaction Methods 0.000 description 6
- 238000012545 processing Methods 0.000 description 6
- OKTJSMMVPCPJKN-UHFFFAOYSA-N Carbon Chemical compound [C] OKTJSMMVPCPJKN-UHFFFAOYSA-N 0.000 description 5
- 229910052799 carbon Inorganic materials 0.000 description 5
- 239000008151 electrolyte solution Substances 0.000 description 5
- 238000005260 corrosion Methods 0.000 description 4
- 230000007797 corrosion Effects 0.000 description 4
- 238000002474 experimental method Methods 0.000 description 4
- BQCADISMDOOEFD-UHFFFAOYSA-N Silver Chemical compound [Ag] BQCADISMDOOEFD-UHFFFAOYSA-N 0.000 description 3
- 239000000853 adhesive Substances 0.000 description 3
- 230000001070 adhesive effect Effects 0.000 description 3
- 229910052782 aluminium Inorganic materials 0.000 description 3
- XAGFODPZIPBFFR-UHFFFAOYSA-N aluminium Chemical compound [Al] XAGFODPZIPBFFR-UHFFFAOYSA-N 0.000 description 3
- 230000015572 biosynthetic process Effects 0.000 description 3
- 229910052709 silver Inorganic materials 0.000 description 3
- 239000004332 silver Substances 0.000 description 3
- 239000000243 solution Substances 0.000 description 3
- XEEYBQQBJWHFJM-UHFFFAOYSA-N Iron Chemical compound [Fe] XEEYBQQBJWHFJM-UHFFFAOYSA-N 0.000 description 2
- KDLHZDBZIXYQEI-UHFFFAOYSA-N Palladium Chemical compound [Pd] KDLHZDBZIXYQEI-UHFFFAOYSA-N 0.000 description 2
- WNLRTRBMVRJNCN-UHFFFAOYSA-N adipic acid Chemical compound OC(=O)CCCCC(O)=O WNLRTRBMVRJNCN-UHFFFAOYSA-N 0.000 description 2
- 229920001940 conductive polymer Polymers 0.000 description 2
- 230000002950 deficient Effects 0.000 description 2
- 238000010586 diagram Methods 0.000 description 2
- 239000003792 electrolyte Substances 0.000 description 2
- PCHJSUWPFVWCPO-UHFFFAOYSA-N gold Chemical compound [Au] PCHJSUWPFVWCPO-UHFFFAOYSA-N 0.000 description 2
- 229910052737 gold Inorganic materials 0.000 description 2
- 239000010931 gold Substances 0.000 description 2
- 239000000463 material Substances 0.000 description 2
- 238000005259 measurement Methods 0.000 description 2
- BASFCYQUMIYNBI-UHFFFAOYSA-N platinum Chemical compound [Pt] BASFCYQUMIYNBI-UHFFFAOYSA-N 0.000 description 2
- RYGMFSIKBFXOCR-UHFFFAOYSA-N Copper Chemical compound [Cu] RYGMFSIKBFXOCR-UHFFFAOYSA-N 0.000 description 1
- 235000011037 adipic acid Nutrition 0.000 description 1
- 239000001361 adipic acid Substances 0.000 description 1
- 230000002411 adverse Effects 0.000 description 1
- 239000007864 aqueous solution Substances 0.000 description 1
- 239000004020 conductor Substances 0.000 description 1
- 229910052802 copper Inorganic materials 0.000 description 1
- 239000010949 copper Substances 0.000 description 1
- 238000005520 cutting process Methods 0.000 description 1
- 239000012777 electrically insulating material Substances 0.000 description 1
- 238000000804 electron spin resonance spectroscopy Methods 0.000 description 1
- 238000005530 etching Methods 0.000 description 1
- 229910052742 iron Inorganic materials 0.000 description 1
- 229910052758 niobium Inorganic materials 0.000 description 1
- 239000010955 niobium Substances 0.000 description 1
- GUCVJGMIXFAOAE-UHFFFAOYSA-N niobium atom Chemical compound [Nb] GUCVJGMIXFAOAE-UHFFFAOYSA-N 0.000 description 1
- 231100000989 no adverse effect Toxicity 0.000 description 1
- 229910000510 noble metal Inorganic materials 0.000 description 1
- 229910052763 palladium Inorganic materials 0.000 description 1
- 230000000149 penetrating effect Effects 0.000 description 1
- 238000007747 plating Methods 0.000 description 1
- 229910052697 platinum Inorganic materials 0.000 description 1
- 229920000767 polyaniline Polymers 0.000 description 1
- 229920000642 polymer Polymers 0.000 description 1
- 230000000379 polymerizing effect Effects 0.000 description 1
- 229920000128 polypyrrole Polymers 0.000 description 1
- 229920000123 polythiophene Polymers 0.000 description 1
- 238000002360 preparation method Methods 0.000 description 1
- 239000011347 resin Substances 0.000 description 1
- 229920005989 resin Polymers 0.000 description 1
- 239000003566 sealing material Substances 0.000 description 1
- 229910052715 tantalum Inorganic materials 0.000 description 1
- GUVRBAGPIYLISA-UHFFFAOYSA-N tantalum atom Chemical compound [Ta] GUVRBAGPIYLISA-UHFFFAOYSA-N 0.000 description 1
Images
Classifications
-
- H—ELECTRICITY
- H01—ELECTRIC ELEMENTS
- H01G—CAPACITORS; CAPACITORS, RECTIFIERS, DETECTORS, SWITCHING DEVICES, LIGHT-SENSITIVE OR TEMPERATURE-SENSITIVE DEVICES OF THE ELECTROLYTIC TYPE
- H01G9/00—Electrolytic capacitors, rectifiers, detectors, switching devices, light-sensitive or temperature-sensitive devices; Processes of their manufacture
- H01G9/15—Solid electrolytic capacitors
- H01G9/151—Solid electrolytic capacitors with wound foil electrodes
-
- H—ELECTRICITY
- H01—ELECTRIC ELEMENTS
- H01G—CAPACITORS; CAPACITORS, RECTIFIERS, DETECTORS, SWITCHING DEVICES, LIGHT-SENSITIVE OR TEMPERATURE-SENSITIVE DEVICES OF THE ELECTROLYTIC TYPE
- H01G11/00—Hybrid capacitors, i.e. capacitors having different positive and negative electrodes; Electric double-layer [EDL] capacitors; Processes for the manufacture thereof or of parts thereof
- H01G11/22—Electrodes
- H01G11/26—Electrodes characterised by their structure, e.g. multi-layered, porosity or surface features
- H01G11/28—Electrodes characterised by their structure, e.g. multi-layered, porosity or surface features arranged or disposed on a current collector; Layers or phases between electrodes and current collectors, e.g. adhesives
-
- H—ELECTRICITY
- H01—ELECTRIC ELEMENTS
- H01G—CAPACITORS; CAPACITORS, RECTIFIERS, DETECTORS, SWITCHING DEVICES, LIGHT-SENSITIVE OR TEMPERATURE-SENSITIVE DEVICES OF THE ELECTROLYTIC TYPE
- H01G11/00—Hybrid capacitors, i.e. capacitors having different positive and negative electrodes; Electric double-layer [EDL] capacitors; Processes for the manufacture thereof or of parts thereof
- H01G11/52—Separators
-
- H—ELECTRICITY
- H01—ELECTRIC ELEMENTS
- H01G—CAPACITORS; CAPACITORS, RECTIFIERS, DETECTORS, SWITCHING DEVICES, LIGHT-SENSITIVE OR TEMPERATURE-SENSITIVE DEVICES OF THE ELECTROLYTIC TYPE
- H01G4/00—Fixed capacitors; Processes of their manufacture
- H01G4/32—Wound capacitors
-
- H—ELECTRICITY
- H01—ELECTRIC ELEMENTS
- H01G—CAPACITORS; CAPACITORS, RECTIFIERS, DETECTORS, SWITCHING DEVICES, LIGHT-SENSITIVE OR TEMPERATURE-SENSITIVE DEVICES OF THE ELECTROLYTIC TYPE
- H01G9/00—Electrolytic capacitors, rectifiers, detectors, switching devices, light-sensitive or temperature-sensitive devices; Processes of their manufacture
- H01G9/004—Details
- H01G9/008—Terminals
- H01G9/012—Terminals specially adapted for solid capacitors
-
- H—ELECTRICITY
- H01—ELECTRIC ELEMENTS
- H01G—CAPACITORS; CAPACITORS, RECTIFIERS, DETECTORS, SWITCHING DEVICES, LIGHT-SENSITIVE OR TEMPERATURE-SENSITIVE DEVICES OF THE ELECTROLYTIC TYPE
- H01G9/00—Electrolytic capacitors, rectifiers, detectors, switching devices, light-sensitive or temperature-sensitive devices; Processes of their manufacture
- H01G9/004—Details
- H01G9/02—Diaphragms; Separators
Definitions
- the present invention relates to a winding type solid electrolytic capacitor and a method for manufacturing the same.
- a capacitor element is formed by winding an anode foil and a cathode foil with a non-conductive separator interposed therebetween (see, for example, Patent Document 1).
- a wound body (a winding body (801) and a cathode foil (802)) is formed by winding both foils with a separator (803) interposed therebetween. 80), an anode lead (81) electrically connected to the anode foil (801) and drawn from the winding body (80), and a winding body (80) electrically connected to the cathode foil (802). ) And a cathode lead (82) drawn out from.
- a dielectric coating is formed on the surface of the anode foil (801), and the anode foil (801) is produced as follows. First, a metal foil (for example, an aluminum foil) to be an anode foil (801) is prepared, and etching processing is performed on the surface of the metal foil. Next, a chemical film is applied to the surface of the metal foil to form a dielectric film on the surface. Thereafter, the metal foil is cut to cut the metal foil into a long predetermined shape. As a result, an anode foil (801) whose surface is covered with a dielectric coating is produced. A solid electrolyte layer is formed in the gap between the anode foil (801) and the cathode foil (802) by impregnating the gap with an electrolytic polymerization solution and polymerizing the gap.
- a metal foil for example, an aluminum foil
- etching processing is performed on the surface of the metal foil.
- a chemical film is applied to the surface of the metal foil to form a dielectric film on the
- the solid electrolytic capacitor can function as a noise filter that removes high-frequency noise generated from a processing device such as a CPU (Central Processing Unit).
- a processing device such as a CPU (Central Processing Unit).
- the anode foil (801) is manufactured by cutting the metal foil as described above, the surface of the anode foil (801) is exposed at the cut surface (end surface). It will be. Further, the dielectric coating is damaged by the stress generated by the attachment of the anode lead (81) to the anode foil (801) and the winding of the anode foil (801). For this reason, in the process of manufacturing the solid electrolytic capacitor, an oxide film (dielectric film) is formed on the exposed surface of the anode foil (801) by subjecting the wound body (80) to re-chemical conversion. It was necessary to repair the damaged part of the dielectric coating.
- an electrolytic solution type electrolytic capacitor the electrolytic solution has a high repairability to repair the dielectric coating when the dielectric coating is damaged. For this reason, in an electrolytic solution type electrolytic capacitor, it is not necessary to carry out a re-chemical conversion treatment in the manufacturing process, and therefore, problems such as corrosion of the cathode foil hardly occur even when a conductive separator is used. Therefore, it has been proposed to use a conductive separator in an electrolytic solution type electrolytic capacitor in order to reduce its ESR (see, for example, Patent Document 2).
- an object of the present invention is to provide a solid electrolytic capacitor having a large capacity, a low ESR, and a capacitance which does not decrease due to a chemical conversion treatment performed in the manufacturing process, and a manufacturing method thereof.
- a solid electrolytic capacitor according to the present invention includes a wound body in which a plurality of anode foils each having a dielectric film formed on a surface and an end surface thereof are wound through a conductive separator, and an inside of the wound body.
- the method for manufacturing a solid electrolytic capacitor according to the present invention includes a step of connecting anode leads to a plurality of anode foils having a dielectric film formed on the surface, and winding the plurality of anode foils via a conductive separator.
- the solid electrolytic capacitor according to the present invention has a large capacity and a small ESR, and the capacitance is not lowered by a chemical conversion treatment performed in the manufacturing process. Moreover, according to the manufacturing method which concerns on this invention, such a solid electrolytic capacitor can be produced.
- FIG. 1 is a perspective view showing a solid electrolytic capacitor according to an embodiment of the present invention.
- FIG. 2 is a bottom view of the solid electrolytic capacitor.
- FIG. 3 is a cross-sectional view taken along line AA shown in FIG. 4 is a cross-sectional view taken along the line BB shown in FIG.
- FIG. 5 is a perspective view showing a wound body constituting the solid electrolytic capacitor.
- FIG. 6 is a diagram used for explaining the re-chemical conversion treatment step in the method for producing the solid electrolytic capacitor.
- FIG. 7 is a perspective view used for explaining an assembly process in the method for manufacturing the solid electrolytic capacitor.
- FIG. 8 is a cross-sectional view showing a first modification of the solid electrolytic capacitor.
- FIG. 9 is a bottom view of the solid electrolytic capacitor shown in FIG.
- FIG. 10 is a perspective view showing a wound body included in the solid electrolytic capacitor in a second modification of the solid electrolytic capacitor.
- FIG. 11 is a perspective view showing a conventional solid electrolytic capacitor.
- FIG. 1 is a perspective view showing a solid electrolytic capacitor according to an embodiment of the present invention.
- FIG. 2 is a bottom view of the solid electrolytic capacitor.
- the solid electrolytic capacitor includes a capacitor body (1), a seat plate (2) on which the capacitor body (1) is mounted, two anode terminals (3) and (3), And a cathode terminal (4).
- the capacitor main body (1) includes a wound body (11) having a cylindrical shape, and a bottomed cylindrical metal case (5) for housing the wound body (11). And a sealing member (52) for sealing the opening (5b) of the metal case (5).
- FIG. 5 is a perspective view showing the wound body (11).
- the wound body (11) is formed by winding two anode foils (111) and (111) with each anode foil (111) overlapped with a conductive separator (112). It is comprised by doing.
- each anode foil (111) is made of a valve metal such as aluminum, tantalum, or niobium.
- a dielectric coating (not shown) is formed on the surface and end face of each anode foil (111).
- a metal mesh or a metal or non-metal mesh having a metal layer formed on the surface thereof can be used as the separator (112).
- the corrosion resistance of the separator (112) can be improved by employing a noble metal such as gold or platinum as the metal constituting the mesh.
- a metal layer made of metal such as gold or palladium by plating on the surface of a mesh made of metal such as copper or iron, the corrosion resistance of the separator (112) is improved. Can be improved.
- conductive separator (112) various known separators can be used as the conductive separator (112.
- a solid electrolyte layer (not shown) is formed on the wound body (11).
- the solid electrolyte layer is formed on the outer peripheral surface of the wound body (11), and a gap (specifically, two anode foils (111)) existing inside the wound body (11). (Gap existing between (111)) is filled in the gap.
- a cathode layer (15) is formed on the solid electrolyte layer on the outer peripheral surface of the wound body (11), and the cathode layer (15) is located above the outer peripheral surface of the wound body (11).
- a carbon layer (not shown) formed on the solid electrolyte layer and a silver paste layer (not shown) formed on the carbon layer.
- the solid electrolyte layer and the cathode layer (15) are electrically connected to each other.
- the metal case (5) is made of a conductive material such as aluminum. As shown in FIG. 4, the metal case (5) is integrally formed with a cathode lead (40) extending from the opening edge (50). Has been.
- the sealing member (52) is made of an electrically insulating material such as a resin material or a rubber material, and is fixed to the metal case (5) with the opening (5b) of the metal case (5) sealed. ing. Specifically, the sealing member (52) is fixed to the metal case (5) by caulking the opening edge of the metal case (5).
- the open end of the metal case (5) is provided between the inner peripheral surface (5a) of the metal case (5) and the outer peripheral surface (15a) of the cathode layer (15).
- a conductive adhesive (51) for electrically connecting the metal case (5) and the cathode layer (15) to each other is interposed in a region near the edge (50). Therefore, the cathode layer (15) and the cathode lead (40) are electrically connected to each other via the metal case (5) and the conductive adhesive (51).
- Two anode leads (30) and (30) are electrically connected to each of the two anode foils (111) and (111) one by one. As shown in FIG. ) Is drawn from a winding end surface (11a) (lower end surface in FIG. 3) which is substantially orthogonal to the winding shaft (110) in the outer peripheral surface of the wound body (11).
- the sealing member (52) is formed with a small through hole (520) into which each anode lead (30) is inserted, and the through hole (520) has a lead-out portion (31) of each anode lead (30). ) Is inserted without gaps. Thereby, each anode lead (30) is supported by the sealing member (52), and thereby the wound body (11) is fixed in the metal case (5).
- the seat plate (2) has a plurality of through holes (20) to (20) penetrating the seat plate (2) from the upper surface (2a) to the lower surface (2b). Are provided corresponding to the positions P1 and P1 (see FIG. 3) of the anode lead (30) from the lead and the position P2 (see FIG. 4) of the cathode lead (40). Further, as shown in FIG. 2, the lower surface (2b) of the seat plate (2) has a substantially rectangular shape formed of four edges (21) to (24).
- the lead portion (31) of one anode lead (30) (the right anode lead in FIG. 3) of the two anode leads (30) and (30) is After passing through the through hole (20) of the corresponding seat plate (2), it is bent near the outlet of the through hole (20), and then along the lower surface (2b) of the seat plate (2), It extends to the first edge (21) located in the vicinity of the through hole (20).
- the lead-out portion (31) of the other anode lead (30) (the anode lead on the left side in FIG. 3) is formed on the corresponding seat plate (2).
- each anode lead (30) extending along the lower surface (2b) of the seat plate (2) has a flat shape, and the anode terminal (3) of the solid electrolytic capacitor is constituted by the portion. Yes.
- the cathode lead (40) passes through the corresponding through hole (20) of the seat plate (2) and then close to the outlet of the through hole (20). It bends and then is located in the vicinity of the through hole (20) along the lower surface (2b) of the seat plate (2) and is different from both edges of the first edge (21) and the third edge (23). It extends to the second edge (22).
- a portion of the cathode lead (40) extending along the lower surface (2b) of the seat plate (2) has a flat shape, and the cathode terminal (4) of the solid electrolytic capacitor is constituted by the portion. .
- a foil production process a winding process, a re-chemical conversion treatment process, an electrolyte layer formation process, a cathode layer formation process, an assembly process, and a terminal formation process are sequentially performed.
- a metal foil to be the anode foil (111) is prepared, and the surface of the metal foil is etched to form a plurality of fine irregularities, thereby forming the surface area of the metal foil. Increase.
- a chemical film is applied to the surface of the metal foil to form a dielectric film on the surface.
- the metal foil is cut to cut the metal foil into a long predetermined shape.
- a plurality of anode foils (111) to (111) whose surfaces are covered with the dielectric coating are produced.
- a part of the anode foil (111) is exposed on the cut surface (end surface).
- the two anode foils (111) and (111) are attached. Between these layers, a conductive separator (112) is interposed and stacked, and from one side of the anode foil (111) opposite to the other anode foil (111), another conductive layer is separated. The separators (112) are overlaid. Thereafter, two anode foils (111) and (111) are wound with the one anode foil (111) inside, whereby a wound body (11) is produced.
- the end portion (111a) of the anode foil (111) is fixed to the outer peripheral surface of the wound body (11) by a winding tape (113) in order to prevent the wound body (11) from being deformed.
- stress is applied to the dielectric film by attaching the anode lead (30) to the anode foil (111) or winding of the anode foil (111) (111), thereby damaging the dielectric film. There is a fear.
- FIG. 6 is a diagram used for explaining the re-chemical conversion treatment process.
- a carrier bar (6) having conductivity is prepared.
- the two anode leads (30), (30) of the wound body (11) are joined to the carrier bar (6), whereby the wound body (11) is attached to the carrier bar (6).
- the extending direction (91) of each anode lead (30) is fixed in a posture that is substantially perpendicular to the extending direction (92) of the carrier bar (6).
- a treatment tank (71) filled with the chemical conversion liquid (701) is prepared.
- a cathode plate (710) is installed in the chemical conversion liquid (701).
- an aqueous solution of adipic acid can be used as the chemical conversion solution (701).
- the carrier bar (6) is operated to immerse the wound body (11) in the chemical conversion liquid (701). Then, a voltage V is applied between the carrier bar (6) and the cathode plate (710) in a state where the wound body (11) is immersed in the chemical conversion liquid (701). As a result, a re-forming process is performed on the wound body (11). As a result, an oxide film (dielectric film) is formed on the exposed surface (that is, the cut surface (end surface)) of the anode foil (111). Also, the damaged part of the dielectric film is repaired, so that the entire surface of each anode foil (111) is covered with the dielectric film.
- a voltage V is applied between the carrier bar (6) and the cathode plate (710) in a state where the wound body (11) is immersed in the chemical conversion liquid (701).
- a re-forming process is performed on the wound body (11).
- an oxide film dielectric film
- the damaged part of the dielectric film is repaired, so that the entire surface of each
- a chemical polymerization liquid for forming a solid electrolyte layer specifically, a chemical polymerization liquid such as a conductive polymer is prepared, and the wound body (11) is immersed in the chemical polymerization liquid.
- a chemically polymerized film is formed on the outer peripheral surface of the wound body (11), and further, the separator (112) (112) is impregnated with the polymerization solution and polymerized, whereby the wound body (11)
- a chemical polymerization film is formed in a state in which the gap is filled in the gap (specifically, the gap between the two anode foils (111) and (111)).
- the conductive polymer for example, a polythiophene-based, polypyrrole-based, or polyaniline-based polymer can be used.
- the wound body (11) is immersed in a carbon paste to form a carbon layer on the solid electrolyte layer above the outer peripheral surface of the wound body (11). Thereafter, the wound body (11) is immersed in a silver paste to form a silver paste layer on the carbon layer.
- FIG. 7 is a perspective view used for explaining the assembly process.
- the lead-out portion (31) of the anode lead (30) corresponding to this is inserted into each through hole (520) of the sealing member (52).
- each anode lead (30) is supported by the sealing member (52), and thereby the wound body (11) is fixed to the sealing member (52).
- the wound body (11) is accommodated in the metal case (5), and the opening (5b) of the metal case (5) is closed by the sealing member (52), and then the opening end of the metal case (5) is closed.
- the sealing member (52) is fixed to the metal case (5) by caulking the part. Thereby, the wound body (11) is fixed in the metal case (5), and the capacitor body (1) (see FIG. 1) is completed.
- the capacitor body (1) is mounted on the seat plate (2).
- the lead portion (31) of each anode lead (30) is inserted into the corresponding through hole (20) of the seat plate (2).
- the cathode lead (40) is inserted into the corresponding through hole (20) of the seat plate (2).
- each anode lead (30) protruding from the lower surface (2b) of the seat plate (2) is pressed, thereby deforming the portion into a flat shape.
- the lead portion (31) of each anode lead (30) is bent in the vicinity of the outlet of the through hole (20) of the seat plate (2), so that the flat portion is formed on the lower surface (2b) of the seat plate (2). (See Fig. 3). Thereby, the anode terminal (3) of the solid electrolytic capacitor is formed.
- the cathode lead (40) that protrudes from the lower surface (2b) of the seat plate (2) is subjected to press working, thereby deforming the portion into a flat shape. Then, the cathode lead (40) is bent in the vicinity of the outlet of the through hole (20) of the seat plate (2) so that the flat portion is along the lower surface (2b) of the seat plate (2) (see FIG. 4). . Thereby, the cathode terminal (4) of the solid electrolytic capacitor is formed.
- the cathode foil is not wound on the wound body (11). For this reason, even if the dielectric film is damaged by the stress caused by the attachment of the anode lead (30) to the anode foil (111) and the winding of the anode foil (111), the anode foils (111) (111) It only conducts through the separator (112) having conductivity, and therefore, when performing the re-forming process, there is no adverse effect on the cathode side of the solid electrolytic capacitor. Therefore, even when the re-chemical conversion treatment step is executed, the capacitance of the solid electrolytic capacitor is not reduced.
- the solid electrolytic capacitor it is not necessary to wind the cathode foil in the process of producing it. Therefore, the amount of winding of the anode foil (111) can be increased by replacing the portion without the cathode foil with the anode foil (111). Therefore, according to the solid electrolytic capacitor, it is possible to realize a large capacity of the solid electrolytic capacitor.
- a voltage V is applied between all anode leads (30) (30) and cathode plates (710) in the re-forming process. Therefore, the voltage V is applied almost evenly to the two anode foils (111) (111) constituting the wound body (11), and as a result, the re-forming process is performed on each anode foil (111). It will be executed reliably. Therefore, in all the anode foils (111) and (111), an oxide film (dielectric film) is formed on the exposed surface (that is, the cut surface (end surface)), and the damaged portion of the dielectric film is repaired. As a result, an electrical short circuit between each anode foil (111) and the solid electrolyte layer or separator (112) is prevented.
- the inventor of the present application is conducting an experiment comparing the solid electrolytic capacitor of the present embodiment with a conventional solid electrolytic capacitor in terms of ESR, capacitance, and yield rate. Table 1 below shows the results of the experiment.
- the solid electrolytic capacitor shown in FIG. 11 using a conductive separator as the separator (803) (conventional example 1) and the solid electrolytic capacitor shown in FIG. ) Using a non-conductive separator (conventional example 2) was used.
- one anode foil and one cathode foil are wound with a conductive separator interposed therebetween, and the anode foil
- One anode lead is connected to the cathode foil
- one cathode lead is connected to the cathode foil.
- two anode foils are wound with a paper separator interposed therebetween, and one anode lead is connected to each of the two anode foils. ing.
- the rated voltage was 6 V
- the capacitance measurement frequency was 120 Hz
- the ESR measurement frequency was 100 kHz.
- the outer dimensions of the wound body (11) of the solid electrolytic capacitor (example) of this embodiment and the outer dimensions of the wound bodies of the solid electrolytic capacitors of the conventional examples 1 and 2 are both 6.3 mm in diameter, The height dimension was 6.0 mm.
- the capacitance of Example and Conventional Example 2 is significantly larger than that of Conventional Example 1. This is because the capacitance of the solid electrolytic capacitor is increased by the amount of winding of the anode foil (111). Further, the ESR of the example is significantly smaller than the ESRs of the conventional examples 1 and 2. This is because the cathode-side electrons in the wound body (11) can easily move to the cathode terminal (4) by using the conductive separator (112).
- the non-defective product rate of the example and the conventional example 2 is significantly larger than the non-defective product rate of the conventional example 1. This is because the cathode foil is not wound around the wound body in the solid electrolytic capacitor of the example and the conventional example 2, and therefore, the negative side of the solid electrolytic capacitor is not adversely affected when the re-forming process is performed. It is.
- FIG. 8 is a cross-sectional view showing a first modification of the solid electrolytic capacitor.
- FIG. 9 is a bottom view of the solid electrolytic capacitor according to this modification.
- the metal case (5) is not provided with the cathode lead (40), but another cathode lead (44) is attached to the wound body (11). Good.
- the cathode lead (44) is electrically connected directly to the separator (112).
- the cathode lead (44) is a winding end face of the winding shaft (110). It is drawn from (11a).
- the winding Another through hole (201) is formed so as to correspond to the drawing position P3 of the cathode lead (44) from the body (11).
- the lead portion (441) of the cathode lead (44) passes through the corresponding through hole (201) of the seat plate (2) and then bends in the vicinity of the outlet of the through hole (201). It extends long to the second end edge (22) along the lower surface (2b) of the seat plate (2).
- a portion of the cathode lead (44) extending along the lower surface (2b) of the seat plate (2) has a flat shape, and the cathode terminal (4) of the solid electrolytic capacitor is constituted by the portion. .
- the cathode lead (44) is electrically connected directly to the separator (112). Therefore, when a voltage is applied between the anode terminal (3) and the cathode terminal (4), electrons on the cathode side in the wound body (11) pass through the separator (112) having conductivity to the cathode terminal ( 4) Easy to move to. Therefore, according to the solid electrolytic capacitor, the ESR of the solid electrolytic capacitor is further reduced. Further, according to the solid electrolytic capacitor according to the present modification, the cathode layer (15) required in the solid electrolytic capacitor shown in FIG. 3 may not be provided.
- FIG. 10 is a perspective view showing a wound body (11) provided in the solid electrolytic capacitor in a second modification of the solid electrolytic capacitor.
- the outer peripheral surface is constituted by the anode foil (111).
- the outer peripheral surface of the wound body (11) is the separator (112 ).
- the wound body (11) may be configured by winding one anode foil (111), or a plurality of anode foils (111 not limited to two sheets) ) To (111) may be wound.
- a plurality of anode leads (30) to (30), not limited to two, may be drawn from the wound body (11).
- the present invention is not limited to these configurations, and the above-described solid electrolytic capacitor can be variously modified within the technical scope described in the claims.
- a winding tape (113) having conductivity may be adopted. Thereby, an increase in ESR due to the provision of the anti-winding tape (113) can be suppressed.
- Capacitor body (11) Winding body (11a) Winding end face (111) Anode foil (112) Separator (113) Winding tape (15) Cathode layer (2) Seat plate (20) Through hole (201) Through hole (3) Anode terminal (30) Anode lead (31) Drawer (4) Cathode terminal (40) Cathode lead (44) Cathode lead (441) Drawer (5) Metal case (5a) Inner peripheral surface (5b) Opening (50) Open edge (51) Conductive adhesive (52) Sealing material (6) career bar (701) Chemical liquid (71) Treatment tank (710) Cathode plate
Landscapes
- Engineering & Computer Science (AREA)
- Power Engineering (AREA)
- Microelectronics & Electronic Packaging (AREA)
- Manufacturing & Machinery (AREA)
- Fixed Capacitors And Capacitor Manufacturing Machines (AREA)
- Electric Double-Layer Capacitors Or The Like (AREA)
Abstract
[Problem] To provide a solid electrolytic capacitor having a large capacity and small ESR, and in which the electrostatic capacity is not reduced by chemical conversion treatment carried out in manufacturing processes.
[Solution] This solid electrolytic capacitor comprises: a winding member (11) such that a plurality of positive electrode foils (111, 111), in which a dielectric coating is formed on the surfaces and end surfaces, are wound with conductive separators (112) therebetween; a solid electrolyte layer formed inside the winding member (11); a plurality of positive electrode leads connected to the plurality of positive electrode foils (111, 111) and led out from the winding edge (11a)of the winding member (11); and a negative electrode lead electrically connected to the separators (112).
Description
本発明は、巻回型の固体電解コンデンサ及びその製造方法に関する。
The present invention relates to a winding type solid electrolytic capacitor and a method for manufacturing the same.
従来、この種の固体電解コンデンサにおいては、陽極箔と陰極箔をその間に非導電性のセパレータを介在させて巻回することにより、コンデンサ素子を構成している(例えば特許文献1参照)。
Conventionally, in this type of solid electrolytic capacitor, a capacitor element is formed by winding an anode foil and a cathode foil with a non-conductive separator interposed therebetween (see, for example, Patent Document 1).
例えば図11に示す固体電解コンデンサは、陽極箔(801)と陰極箔(802)の両箔を、これらの間にセパレータ(803)を介在させて巻回することにより構成された巻回体(80)と、陽極箔(801)に電気的に接続されて巻回体(80)から引き出された陽極リード(81)と、陰極箔(802)に電気的に接続されて巻回体(80)から引き出された陰極リード(82)とを具えている。
For example, in the solid electrolytic capacitor shown in FIG. 11, a wound body (a winding body (801) and a cathode foil (802)) is formed by winding both foils with a separator (803) interposed therebetween. 80), an anode lead (81) electrically connected to the anode foil (801) and drawn from the winding body (80), and a winding body (80) electrically connected to the cathode foil (802). ) And a cathode lead (82) drawn out from.
ここで、陽極箔(801)の表面には誘電体被膜が形成されており、該陽極箔(801)は次の如く作製される。先ず、陽極箔(801)となる金属箔(例えば、アルミニウム箔)を用意し、該金属箔の表面にエッチング加工を施す。次に、金属箔の表面に対して化成処理を施すことにより、該表面に誘電体被膜を形成する。その後、金属箔に切断加工を施して該金属箔を長尺状の所定形状に裁断する。これにより、表面が誘電体被膜によって覆われた陽極箔(801)が作製される。又、陽極箔(801)と陰極箔(802)との隙間には、該隙間に電解重合液を含浸させて重合させることにより、固体電解質層が形成されている。
Here, a dielectric coating is formed on the surface of the anode foil (801), and the anode foil (801) is produced as follows. First, a metal foil (for example, an aluminum foil) to be an anode foil (801) is prepared, and etching processing is performed on the surface of the metal foil. Next, a chemical film is applied to the surface of the metal foil to form a dielectric film on the surface. Thereafter, the metal foil is cut to cut the metal foil into a long predetermined shape. As a result, an anode foil (801) whose surface is covered with a dielectric coating is produced. A solid electrolyte layer is formed in the gap between the anode foil (801) and the cathode foil (802) by impregnating the gap with an electrolytic polymerization solution and polymerizing the gap.
上記固体電解コンデンサは、CPU(Central Processing Unit)等の処理装置から生じる高周波ノイズを除去するノイズフィルタとして機能させることが出来る。
The solid electrolytic capacitor can function as a noise filter that removes high-frequency noise generated from a processing device such as a CPU (Central Processing Unit).
尚、電解液型の電解コンデンサにおいては、陽極箔と陰極箔の間に導電性のセパレータを介在させたものが知られている(特許文献2参照)。
In addition, as the electrolytic solution type electrolytic capacitor, one having a conductive separator interposed between the anode foil and the cathode foil is known (see Patent Document 2).
近年、電子機器の小型化に伴い、固体電解コンデンサにおいて、それが小型であるにも拘わらず大容量であるものが求められている。又、CPU等の処理装置は、その動作速度が高速化しており、このため、処理装置に供給される電流量が増大し、又、ノイズの帯域が高周波側へシフトする傾向にある。従って、固体電解コンデンサにおいて、その低ESR(等価直列抵抗)化が求められている。
In recent years, with the miniaturization of electronic equipment, solid electrolytic capacitors are required to have a large capacity despite their small size. In addition, the processing speed of a processing unit such as a CPU is increased, and therefore, the amount of current supplied to the processing unit increases, and the noise band tends to shift to the high frequency side. Accordingly, there is a demand for a low ESR (equivalent series resistance) in a solid electrolytic capacitor.
しかしながら、従来の固体電解コンデンサにおいて大容量化を実現しようとすると、陽極箔(801)と陰極箔(802)の巻回量を増やしてこれらの対向面積を増大させる必要があり、これに伴って固体電解コンデンサが大型化することになる。
However, in order to realize a large capacity in the conventional solid electrolytic capacitor, it is necessary to increase the amount of winding of the anode foil (801) and the cathode foil (802) to increase the facing area thereof. The size of the solid electrolytic capacitor will increase.
上記固体電解コンデンサを作製する過程では、上述の如く金属箔に切断加工を施して陽極箔(801)が作製されるため、切断面(端面)には、陽極箔(801)の表面が露出することになる。又、陽極箔(801)への陽極リード(81)の取付けや陽極箔(801)の巻回によって生じるストレスにより、誘電体被膜が損傷することになる。このため、固体電解コンデンサを作製する過程において、巻回体(80)に対して再化成処理を施すことによって、陽極箔(801)の露出面に酸化被膜(誘電体被膜)を形成し、又、誘電体被膜の損傷した部分を修復する必要があった。
In the process of manufacturing the solid electrolytic capacitor, since the anode foil (801) is manufactured by cutting the metal foil as described above, the surface of the anode foil (801) is exposed at the cut surface (end surface). It will be. Further, the dielectric coating is damaged by the stress generated by the attachment of the anode lead (81) to the anode foil (801) and the winding of the anode foil (801). For this reason, in the process of manufacturing the solid electrolytic capacitor, an oxide film (dielectric film) is formed on the exposed surface of the anode foil (801) by subjecting the wound body (80) to re-chemical conversion. It was necessary to repair the damaged part of the dielectric coating.
これに対し、電解液タイプの電解コンデンサにおいては、電解液は、誘電体被膜が損傷したときに該誘電体被膜を修復する高い修復性を有している。このため、電解液タイプの電解コンデンサにおいては、その製造過程において再化成処理を実行する必要がなく、従って、導電性を有するセパレータを用いた場合でも陰極箔の腐食等の問題が生じ難い。よって、電解液タイプの電解コンデンサにおいて、そのESRを低減するべく、導電性を有するセパレータを用いることが提案されている(例えば、特許文献2参照)。
On the other hand, in an electrolytic solution type electrolytic capacitor, the electrolytic solution has a high repairability to repair the dielectric coating when the dielectric coating is damaged. For this reason, in an electrolytic solution type electrolytic capacitor, it is not necessary to carry out a re-chemical conversion treatment in the manufacturing process, and therefore, problems such as corrosion of the cathode foil hardly occur even when a conductive separator is used. Therefore, it has been proposed to use a conductive separator in an electrolytic solution type electrolytic capacitor in order to reduce its ESR (see, for example, Patent Document 2).
しかしながら、固体電解コンデンサにおいては再化成処理を実行する必要があるので、従来の固体電解コンデンサに対しては、導電性を有するセパレータを適用することが困難であった。なぜなら、再化成処理の実行に伴って陰極箔(802)の腐食等の問題が発生し、これによって固体電解コンデンサの静電容量の低下を招く虞があるからである。
However, since it is necessary to perform a re-forming process in a solid electrolytic capacitor, it is difficult to apply a conductive separator to a conventional solid electrolytic capacitor. This is because problems such as corrosion of the cathode foil (802) occur with the execution of the re-forming process, which may lead to a decrease in the capacitance of the solid electrolytic capacitor.
そこで本発明の目的は、大容量であってESRが小さく、且つ、製造過程で実行される化成処理によって静電容量が低下することがない固体電解コンデンサ及びその製造方法を提供することである。
Accordingly, an object of the present invention is to provide a solid electrolytic capacitor having a large capacity, a low ESR, and a capacitance which does not decrease due to a chemical conversion treatment performed in the manufacturing process, and a manufacturing method thereof.
本発明に係る固体電解コンデンサは、表面及び端面に誘電体被膜が形成された複数の陽極箔が、導電性を有するセパレータを介して巻回された巻回体と、前記巻回体の内部に形成された固体電解質層と、前記複数の陽極箔に接続されると共に前記巻回体の巻回端面から引き出された複数の陽極リードと、前記セパレータと電気的に接続された陰極リードとを具えている。
A solid electrolytic capacitor according to the present invention includes a wound body in which a plurality of anode foils each having a dielectric film formed on a surface and an end surface thereof are wound through a conductive separator, and an inside of the wound body. A solid electrolyte layer formed; a plurality of anode leads connected to the plurality of anode foils and drawn from a winding end surface of the winding body; and a cathode lead electrically connected to the separator. It is.
本発明に係る固体電解コンデンサの製造方法は、表面に誘電体被膜が形成された複数の陽極箔に、陽極リードを接続する工程と、導電性を有するセパレータを介して前記複数の陽極箔を巻回することで巻回体を形成する工程と、前記巻回体を化成液に浸漬し、前記複数の陽極箔に電圧を印加することによって該陽極箔の端面に誘電体被膜を形成する工程と、陰極リードを前記セパレータと電気的に接続する工程と、固体電解質層を前記巻回体の内部に形成する工程とを有している。
The method for manufacturing a solid electrolytic capacitor according to the present invention includes a step of connecting anode leads to a plurality of anode foils having a dielectric film formed on the surface, and winding the plurality of anode foils via a conductive separator. A step of forming a wound body by rotating, a step of immersing the wound body in a chemical conversion liquid, and applying a voltage to the plurality of anode foils to form a dielectric film on an end face of the anode foil; And a step of electrically connecting the cathode lead to the separator, and a step of forming a solid electrolyte layer inside the wound body.
本発明に係る固体電解コンデンサは、大容量であってESRが小さく、且つ、製造過程で実行される化成処理によって静電容量が低下することがない。又、本発明に係る製造方法によれば、その様な固体電解コンデンサを作製することが出来る。
The solid electrolytic capacitor according to the present invention has a large capacity and a small ESR, and the capacitance is not lowered by a chemical conversion treatment performed in the manufacturing process. Moreover, according to the manufacturing method which concerns on this invention, such a solid electrolytic capacitor can be produced.
以下、本発明の実施の形態につき、図面に沿って具体的に説明する。
Hereinafter, embodiments of the present invention will be specifically described with reference to the drawings.
図1は、本発明の一実施形態に係る固体電解コンデンサを示した斜視図である。又、図2は、該固体電解コンデンサの下面図である。図1及び図2に示す様に、該固体電解コンデンサは、コンデンサ本体(1)と、該コンデンサ本体(1)を搭載する座板(2)と、2つの陽極端子(3)(3)と、陰極端子(4)とを具えている。
FIG. 1 is a perspective view showing a solid electrolytic capacitor according to an embodiment of the present invention. FIG. 2 is a bottom view of the solid electrolytic capacitor. As shown in FIGS. 1 and 2, the solid electrolytic capacitor includes a capacitor body (1), a seat plate (2) on which the capacitor body (1) is mounted, two anode terminals (3) and (3), And a cathode terminal (4).
図3及び図4はそれぞれ、図2に示されるA-A線及びB-B線に沿う断面図である。図3及び図4に示す様に、コンデンサ本体(1)は、円柱形状を有する巻回体(11)と、該巻回体(11)を収容する有底筒状の金属ケース(5)と、該金属ケース(5)の開口(5b)を封止する封口部材(52)とから構成されている。
3 and 4 are sectional views taken along lines AA and BB shown in FIG. 2, respectively. As shown in FIGS. 3 and 4, the capacitor main body (1) includes a wound body (11) having a cylindrical shape, and a bottomed cylindrical metal case (5) for housing the wound body (11). And a sealing member (52) for sealing the opening (5b) of the metal case (5).
図5は、巻回体(11)を示した斜視図である。図5に示す様に、巻回体(11)は、2枚の陽極箔(111)(111)を、各陽極箔(111)に、導電性を有するセパレータ(112)を重ね合わせて巻回することにより構成されている。ここで、各陽極箔(111)は、アルミニウム、タンタル、ニオブ等の弁作用金属から構成されている。又、各陽極箔(111)の表面及び端面には、誘電体被膜(図示せず)が形成されている。
FIG. 5 is a perspective view showing the wound body (11). As shown in FIG. 5, the wound body (11) is formed by winding two anode foils (111) and (111) with each anode foil (111) overlapped with a conductive separator (112). It is comprised by doing. Here, each anode foil (111) is made of a valve metal such as aluminum, tantalum, or niobium. A dielectric coating (not shown) is formed on the surface and end face of each anode foil (111).
セパレータ(112)には、金属製のメッシュ、又は、金属製若しくは非金属製のメッシュの表面に金属層が形成されたものを用いることが出来る。ここで、メッシュを構成する金属として、金や白金等の貴金属を採用することにより、セパレータ(112)の耐食性を向上させることが出来る。又、セパレータ(112)として、銅や鉄等の金属からなるメッシュの表面に、メッキによって金やパラジウム等の金属からなる金属層が形成されたものを用いることにより、セパレータ(112)の耐食性を向上させることが出来る。
As the separator (112), a metal mesh or a metal or non-metal mesh having a metal layer formed on the surface thereof can be used. Here, the corrosion resistance of the separator (112) can be improved by employing a noble metal such as gold or platinum as the metal constituting the mesh. Further, as the separator (112), by using a metal layer made of metal such as gold or palladium by plating on the surface of a mesh made of metal such as copper or iron, the corrosion resistance of the separator (112) is improved. Can be improved.
尚、導電性を有するセパレータ(112)としては、公知の種々のものを使用することができる。
Incidentally, various known separators can be used as the conductive separator (112).
巻回体(11)には固体電解質層(図示せず)が形成されている。ここで、固体電解質層は、巻回体(11)の外周面上に形成されると共に、巻回体(11)の内部に存在する隙間(具体的には、2枚の陽極箔(111)(111)間に存在する隙間)に、該隙間を埋めた状態で形成されている。又、巻回体(11)の外周面上には、固体電解質層上に陰極層(15)が形成されており、陰極層(15)は、巻回体(11)の外周面の上方にて固体電解質層上に形成されたカーボン層(図示せず)と、該カーボン層上に形成された銀ペースト層(図示せず)とによって構成されている。そして、固体電解質層と陰極層(15)とは互いに電気的に接続されている。
A solid electrolyte layer (not shown) is formed on the wound body (11). Here, the solid electrolyte layer is formed on the outer peripheral surface of the wound body (11), and a gap (specifically, two anode foils (111)) existing inside the wound body (11). (Gap existing between (111)) is filled in the gap. Further, a cathode layer (15) is formed on the solid electrolyte layer on the outer peripheral surface of the wound body (11), and the cathode layer (15) is located above the outer peripheral surface of the wound body (11). And a carbon layer (not shown) formed on the solid electrolyte layer and a silver paste layer (not shown) formed on the carbon layer. The solid electrolyte layer and the cathode layer (15) are electrically connected to each other.
金属ケース(5)は、アルミニウム等の導電材料から形成されており、図4に示す様に、金属ケース(5)には、開口端縁(50)から延びる陰極リード(40)が一体に形成されている。又、封口部材(52)は、樹脂材やゴム材等の電気絶縁材料から形成されており、金属ケース(5)の開口(5b)を封止した状態で該金属ケース(5)に固定されている。具体的には、金属ケース(5)の開口縁部をかしめることにより、金属ケース(5)に封口部材(52)が固定されている。
The metal case (5) is made of a conductive material such as aluminum. As shown in FIG. 4, the metal case (5) is integrally formed with a cathode lead (40) extending from the opening edge (50). Has been. The sealing member (52) is made of an electrically insulating material such as a resin material or a rubber material, and is fixed to the metal case (5) with the opening (5b) of the metal case (5) sealed. ing. Specifically, the sealing member (52) is fixed to the metal case (5) by caulking the opening edge of the metal case (5).
又、図3及び図4に示す様に、金属ケース(5)の内周面(5a)と陰極層(15)の外周面(15a)との間には、金属ケース(5)の開口端縁(50)近傍の領域に、金属ケース(5)と陰極層(15)とを互いに電気的に接続する導電性接着剤(51)が介在している。従って、陰極層(15)と陰極リード(40)とは、金属ケース(5)と導電性接着剤(51)とを介して互いに電気的に接続されている。
Further, as shown in FIGS. 3 and 4, the open end of the metal case (5) is provided between the inner peripheral surface (5a) of the metal case (5) and the outer peripheral surface (15a) of the cathode layer (15). A conductive adhesive (51) for electrically connecting the metal case (5) and the cathode layer (15) to each other is interposed in a region near the edge (50). Therefore, the cathode layer (15) and the cathode lead (40) are electrically connected to each other via the metal case (5) and the conductive adhesive (51).
上記2枚の陽極箔(111)(111)にはそれぞれ、2本の陽極リード(30)(30)が1つずつ電気的に接続されており、図3に示す如く、各陽極リード(30)は、巻回体(11)の外周面の内、巻回軸(110)に略直交する巻回端面(11a)(図3において下端面)から引き出されている。
Two anode leads (30) and (30) are electrically connected to each of the two anode foils (111) and (111) one by one. As shown in FIG. ) Is drawn from a winding end surface (11a) (lower end surface in FIG. 3) which is substantially orthogonal to the winding shaft (110) in the outer peripheral surface of the wound body (11).
封口部材(52)には、各陽極リード(30)が貫挿される小さな貫通孔(520)が形成されており、該貫通孔(520)には、各陽極リード(30)の引出し部(31)が隙間なく貫挿されている。これにより、各陽極リード(30)は封口部材(52)に支持され、これによって巻回体(11)が金属ケース(5)内で固定されている。
The sealing member (52) is formed with a small through hole (520) into which each anode lead (30) is inserted, and the through hole (520) has a lead-out portion (31) of each anode lead (30). ) Is inserted without gaps. Thereby, each anode lead (30) is supported by the sealing member (52), and thereby the wound body (11) is fixed in the metal case (5).
一方、座板(2)には、該座板(2)をその上面(2a)から下面(2b)に貫通する複数の貫通孔(20)~(20)がそれぞれ、巻回体(11)からの陽極リード(30)の引き出し位置P1,P1(図3参照)と、陰極リード(40)の形成位置P2(図4参照)とに対応して設けられている。又、座板(2)の下面(2b)は、図2に示す様に、4つ縁(21)~(24)から形成された略四角形を呈している。
On the other hand, the seat plate (2) has a plurality of through holes (20) to (20) penetrating the seat plate (2) from the upper surface (2a) to the lower surface (2b). Are provided corresponding to the positions P1 and P1 (see FIG. 3) of the anode lead (30) from the lead and the position P2 (see FIG. 4) of the cathode lead (40). Further, as shown in FIG. 2, the lower surface (2b) of the seat plate (2) has a substantially rectangular shape formed of four edges (21) to (24).
図3に示す様に(図2も参照)、2本の陽極リード(30)(30)の内、一方の陽極リード(30)(図3において右側の陽極リード)の引出し部(31)は、これに対応する座板(2)の貫通孔(20)を通過した後、該貫通孔(20)の出口近傍で屈曲し、その後、座板(2)の下面(2b)に沿って、該貫通孔(20)近傍に位置する第1縁(21)まで延びている。又、2本の陽極リード(30)(30)の内、他方の陽極リード(30)(図3において左側の陽極リード)の引出し部(31)は、これに対応する座板(2)の貫通孔(20)を通過した後、該貫通孔(20)の出口近傍で屈曲し、その後、座板(2)の下面(2b)に沿って、該貫通孔(20)近傍に位置していて第1縁(21)とは反対側の第3縁(23)まで延びている。各陽極リード(30)の内、座板(2)の下面(2b)に沿って延びた部分は平坦形状を有しており、該部分によって固体電解コンデンサの陽極端子(3)が構成されている。
As shown in FIG. 3 (see also FIG. 2), the lead portion (31) of one anode lead (30) (the right anode lead in FIG. 3) of the two anode leads (30) and (30) is After passing through the through hole (20) of the corresponding seat plate (2), it is bent near the outlet of the through hole (20), and then along the lower surface (2b) of the seat plate (2), It extends to the first edge (21) located in the vicinity of the through hole (20). Of the two anode leads (30) and (30), the lead-out portion (31) of the other anode lead (30) (the anode lead on the left side in FIG. 3) is formed on the corresponding seat plate (2). After passing through the through-hole (20), it bends in the vicinity of the outlet of the through-hole (20), and then is positioned in the vicinity of the through-hole (20) along the lower surface (2b) of the seat plate (2). Extending to the third edge (23) opposite to the first edge (21). A portion of each anode lead (30) extending along the lower surface (2b) of the seat plate (2) has a flat shape, and the anode terminal (3) of the solid electrolytic capacitor is constituted by the portion. Yes.
図4に示す様に(図2も参照)、陰極リード(40)は、これに対応する座板(2)の貫通孔(20)を通過した後、該貫通孔(20)の出口近傍で屈曲し、その後、座板(2)の下面(2b)に沿って、該貫通孔(20)近傍に位置していて第1縁(21)及び第3縁(23)の両縁とは異なる第2縁(22)まで延びている。陰極リード(40)の内、座板(2)の下面(2b)に沿って延びた部分は平坦形状を有しており、該部分によって固体電解コンデンサの陰極端子(4)が構成されている。
As shown in FIG. 4 (see also FIG. 2), the cathode lead (40) passes through the corresponding through hole (20) of the seat plate (2) and then close to the outlet of the through hole (20). It bends and then is located in the vicinity of the through hole (20) along the lower surface (2b) of the seat plate (2) and is different from both edges of the first edge (21) and the third edge (23). It extends to the second edge (22). A portion of the cathode lead (40) extending along the lower surface (2b) of the seat plate (2) has a flat shape, and the cathode terminal (4) of the solid electrolytic capacitor is constituted by the portion. .
次に、上記固体電解コンデンサの製造方法について、具体的に説明する。該製造方法では、箔作製工程、巻回工程、再化成処理工程、電解質層形成工程、陰極層形成工程、組み立て工程、及び端子形成工程が順に実行される。
Next, the method for producing the solid electrolytic capacitor will be specifically described. In the manufacturing method, a foil production process, a winding process, a re-chemical conversion treatment process, an electrolyte layer formation process, a cathode layer formation process, an assembly process, and a terminal formation process are sequentially performed.
箔作製工程(図示せず)では先ず、陽極箔(111)となる金属箔を用意し、該金属箔の表面にエッチング加工を施して複数の微細な凹凸を形成し、これによって金属箔の表面積を増大させる。次に、金属箔の表面に対して化成処理を施すことにより、該表面に誘電体被膜を形成する。その後、金属箔に切断加工を施して該金属箔を長尺状の所定形状に裁断する。これにより、表面が誘電体被膜によって覆われた複数の陽極箔(111)~(111)が作製される。尚、作製された陽極箔(111)においては、その切断面(端面)に陽極箔(111)の一部が露出することになる。
In the foil preparation process (not shown), first, a metal foil to be the anode foil (111) is prepared, and the surface of the metal foil is etched to form a plurality of fine irregularities, thereby forming the surface area of the metal foil. Increase. Next, a chemical film is applied to the surface of the metal foil to form a dielectric film on the surface. Thereafter, the metal foil is cut to cut the metal foil into a long predetermined shape. As a result, a plurality of anode foils (111) to (111) whose surfaces are covered with the dielectric coating are produced. In the produced anode foil (111), a part of the anode foil (111) is exposed on the cut surface (end surface).
巻回工程(図5参照)では、2枚の陽極箔(111)(111)にそれぞれ陽極リード(30)を1つずつ取り付けた後、該2枚の陽極箔(111)(111)を、これらの間に、導電性を有するセパレータ(112)を介在させて重ね合わせると共に、一方の陽極箔(111)に対して、他方の陽極箔(111)とは反対側から、導電性を有する別のセパレータ(112)を重ね合わせる。その後、2枚の陽極箔(111)(111)を、前記一方の陽極箔(111)を内側して巻回し、これにより、巻回体(11)を作製する。このとき、巻回体(11)の型崩れを防止するべく、巻き止めテープ(113)によって陽極箔(111)の終端部(111a)を巻回体(11)の外周面に固定する。尚、巻回工程では、陽極箔(111)への陽極リード(30)の取付けや陽極箔(111)(111)の巻回によって誘電体被膜にストレスが生じ、これにより誘電体被膜が損傷する虞がある。
In the winding step (see FIG. 5), after attaching one anode lead (30) to each of the two anode foils (111) and (111), the two anode foils (111) and (111) are attached. Between these layers, a conductive separator (112) is interposed and stacked, and from one side of the anode foil (111) opposite to the other anode foil (111), another conductive layer is separated. The separators (112) are overlaid. Thereafter, two anode foils (111) and (111) are wound with the one anode foil (111) inside, whereby a wound body (11) is produced. At this time, the end portion (111a) of the anode foil (111) is fixed to the outer peripheral surface of the wound body (11) by a winding tape (113) in order to prevent the wound body (11) from being deformed. In the winding process, stress is applied to the dielectric film by attaching the anode lead (30) to the anode foil (111) or winding of the anode foil (111) (111), thereby damaging the dielectric film. There is a fear.
図6は、再化成処理工程の説明に用いられる図である。図6に示す様に、再化成処理工程では先ず、導電性を有するキャリアバー(6)を用意する。そして、該キャリアバー(6)に、巻回体(11)の2本の陽極リード(30)(30)を接合し、これにより、キャリアバー(6)に対して巻回体(11)を、その各陽極リード(30)の延在方向(91)がキャリアバー(6)の延在方向(92)に対して略垂直となる姿勢で固定する。又、化成液(701)で充たされた処理槽(71)を用意する。ここで、化成液(701)中には陰極板(710)が設置されている。尚、化成液(701)には、例えば、アジピン酸水溶液を用いることが出来る。
FIG. 6 is a diagram used for explaining the re-chemical conversion treatment process. As shown in FIG. 6, in the re-chemical conversion treatment step, first, a carrier bar (6) having conductivity is prepared. Then, the two anode leads (30), (30) of the wound body (11) are joined to the carrier bar (6), whereby the wound body (11) is attached to the carrier bar (6). The extending direction (91) of each anode lead (30) is fixed in a posture that is substantially perpendicular to the extending direction (92) of the carrier bar (6). A treatment tank (71) filled with the chemical conversion liquid (701) is prepared. Here, a cathode plate (710) is installed in the chemical conversion liquid (701). For example, an aqueous solution of adipic acid can be used as the chemical conversion solution (701).
その後、キャリアバー(6)を操作して、巻回体(11)を化成液(701)に浸漬させる。そして、化成液(701)に巻回体(11)を浸漬させた状態で、キャリアバー(6)と陰極板(710)との間に電圧Vを印加する。これにより、巻回体(11)に対して再化成処理が施され、その結果、陽極箔(111)の露出面(即ち、切断面(端面))に酸化被膜(誘電体被膜)が形成され、又、誘電体被膜の損傷した部分が修復され、これによって、各陽極箔(111)の表面全体が誘電体被膜によって覆われる。
Thereafter, the carrier bar (6) is operated to immerse the wound body (11) in the chemical conversion liquid (701). Then, a voltage V is applied between the carrier bar (6) and the cathode plate (710) in a state where the wound body (11) is immersed in the chemical conversion liquid (701). As a result, a re-forming process is performed on the wound body (11). As a result, an oxide film (dielectric film) is formed on the exposed surface (that is, the cut surface (end surface)) of the anode foil (111). Also, the damaged part of the dielectric film is repaired, so that the entire surface of each anode foil (111) is covered with the dielectric film.
電解質層形成工程では、固体電解質層を形成するための化学重合液、具体的には導電性高分子等の化学重合液を用意し、該化学重合液に巻回体(11)を浸漬させる。これにより、巻回体(11)の外周面上に化学重合膜が形成され、更には、セパレータ(112)(112)に化学重合液が含浸して重合することにより、巻回体(11)の内部に存在する隙間(具体的には、2枚の陽極箔(111)(111)間に存在する隙間)に、該隙間を埋めた状態で化学重合膜が形成され、これらの化学重合膜によって固体電解質層が構成される。尚、導電性高分子には、例えば、ポリチオフェン系、ポリピロール系、又はポリアニリン系の高分子を用いることが出来る。
In the electrolyte layer forming step, a chemical polymerization liquid for forming a solid electrolyte layer, specifically, a chemical polymerization liquid such as a conductive polymer is prepared, and the wound body (11) is immersed in the chemical polymerization liquid. As a result, a chemically polymerized film is formed on the outer peripheral surface of the wound body (11), and further, the separator (112) (112) is impregnated with the polymerization solution and polymerized, whereby the wound body (11) A chemical polymerization film is formed in a state in which the gap is filled in the gap (specifically, the gap between the two anode foils (111) and (111)). Thus, a solid electrolyte layer is formed. As the conductive polymer, for example, a polythiophene-based, polypyrrole-based, or polyaniline-based polymer can be used.
陰極層形成工程では、巻回体(11)をカーボンペーストに浸漬させて、巻回体(11)の外周面の上方にて固体電解質層上にカーボン層を形成する。その後、巻回体(11)を銀ペーストに浸漬させて、カーボン層上に銀ペースト層を形成する。
In the cathode layer forming step, the wound body (11) is immersed in a carbon paste to form a carbon layer on the solid electrolyte layer above the outer peripheral surface of the wound body (11). Thereafter, the wound body (11) is immersed in a silver paste to form a silver paste layer on the carbon layer.
図7は、組み立て工程の説明に用いられる斜視図である。図7に示す様に、組み立て工程では先ず、封口部材(52)の各貫通孔(520)に、これに対応する陽極リード(30)の引出し部(31)を挿入する。これにより、各陽極リード(30)が封口部材(52)に支持され、これによって巻回体(11)が封口部材(52)に固定される。
FIG. 7 is a perspective view used for explaining the assembly process. As shown in FIG. 7, in the assembling process, first, the lead-out portion (31) of the anode lead (30) corresponding to this is inserted into each through hole (520) of the sealing member (52). Thereby, each anode lead (30) is supported by the sealing member (52), and thereby the wound body (11) is fixed to the sealing member (52).
次に、金属ケース(5)内に巻回体(11)を収容すると共に、封口部材(52)によって金属ケース(5)の開口(5b)を塞ぎ、その後、金属ケース(5)の開口端部をかしめることにより、金属ケース(5)に封口部材(52)を固定する。これにより、巻回体(11)が金属ケース(5)内で固定されて、コンデンサ本体(1)(図1参照)が完成する。
Next, the wound body (11) is accommodated in the metal case (5), and the opening (5b) of the metal case (5) is closed by the sealing member (52), and then the opening end of the metal case (5) is closed. The sealing member (52) is fixed to the metal case (5) by caulking the part. Thereby, the wound body (11) is fixed in the metal case (5), and the capacitor body (1) (see FIG. 1) is completed.
次に、座板(2)上にコンデンサ本体(1)を搭載する。このとき、各陽極リード(30)の引出し部(31)を、これに対応する座板(2)の貫通孔(20)に挿入する。又、陰極リード(40)を、これに対応する座板(2)の貫通孔(20)に挿入する。
Next, the capacitor body (1) is mounted on the seat plate (2). At this time, the lead portion (31) of each anode lead (30) is inserted into the corresponding through hole (20) of the seat plate (2). The cathode lead (40) is inserted into the corresponding through hole (20) of the seat plate (2).
その後、各陽極リード(30)の引出し部(31)の内、座板(2)の下面(2b)から突出した部分に対してプレス加工を施し、これによって該部分を平坦形状に変形させる。そして、各陽極リード(30)の引出し部(31)を、座板(2)の貫通孔(20)の出口近傍にて折り曲げることにより、平坦部分を座板(2)の下面(2b)に沿わせる(図3参照)。これにより、固体電解コンデンサの陽極端子(3)が形成される。
Thereafter, a portion of the lead portion (31) of each anode lead (30) protruding from the lower surface (2b) of the seat plate (2) is pressed, thereby deforming the portion into a flat shape. Then, the lead portion (31) of each anode lead (30) is bent in the vicinity of the outlet of the through hole (20) of the seat plate (2), so that the flat portion is formed on the lower surface (2b) of the seat plate (2). (See Fig. 3). Thereby, the anode terminal (3) of the solid electrolytic capacitor is formed.
又、陰極リード(40)の内、座板(2)の下面(2b)から突出した部分に対してプレス加工を施し、これによって該部分を平坦形状に変形させる。そして、陰極リード(40)を、座板(2)の貫通孔(20)の出口近傍にて折り曲げることにより、平坦部分を座板(2)の下面(2b)に沿わせる(図4参照)。これにより、固体電解コンデンサの陰極端子(4)が形成される。
Also, a portion of the cathode lead (40) that protrudes from the lower surface (2b) of the seat plate (2) is subjected to press working, thereby deforming the portion into a flat shape. Then, the cathode lead (40) is bent in the vicinity of the outlet of the through hole (20) of the seat plate (2) so that the flat portion is along the lower surface (2b) of the seat plate (2) (see FIG. 4). . Thereby, the cathode terminal (4) of the solid electrolytic capacitor is formed.
斯くして、本実施形態の固体電解コンデンサが完成することになる。
Thus, the solid electrolytic capacitor of this embodiment is completed.
上記固体電解コンデンサにおいては、陽極端子(3)と陰極端子(4)との間に電圧が印加されたとき、巻回体(11)内の陰極側の電子が、導電性を有するセパレータ(112)を通じて陰極端子(4)まで移動することになる。従って、巻回体(11)内の陰極側の電子は陰極端子(4)まで移動し易い。よって、上記固体電解コンデンサによれば、該固体電解コンデンサのESRが低減されることになる。
In the solid electrolytic capacitor, when a voltage is applied between the anode terminal (3) and the cathode terminal (4), electrons on the cathode side in the wound body (11) become conductive separators (112 ) To the cathode terminal (4). Therefore, the electrons on the cathode side in the wound body (11) easily move to the cathode terminal (4). Therefore, according to the solid electrolytic capacitor, ESR of the solid electrolytic capacitor is reduced.
上記固体電解コンデンサにおいては、巻回体(11)に陰極箔が巻回されていない。このため、陽極箔(111)への陽極リード(30)の取付けや陽極箔(111)の巻回によって生じるストレスにより誘電体被膜が損傷したとしても、陽極箔(111)(111)どうしが、導電性を有するセパレータ(112)を介して導通するに過ぎず、従って、再化成処理工程の実行時には、固体電解コンデンサの陰極側に悪影響が及ぶことがない。よって、再化成処理工程を実行した場合でも、固体電解コンデンサの静電容量の低下を招くことがない。
In the solid electrolytic capacitor, the cathode foil is not wound on the wound body (11). For this reason, even if the dielectric film is damaged by the stress caused by the attachment of the anode lead (30) to the anode foil (111) and the winding of the anode foil (111), the anode foils (111) (111) It only conducts through the separator (112) having conductivity, and therefore, when performing the re-forming process, there is no adverse effect on the cathode side of the solid electrolytic capacitor. Therefore, even when the re-chemical conversion treatment step is executed, the capacitance of the solid electrolytic capacitor is not reduced.
又、上記固体電解コンデンサにおいては、これを作製する過程で陰極箔を巻回する必要がない。従って、陰極箔がない分を陽極箔(111)に置き換えて陽極箔(111)の巻回量を増やすことが出来る。よって、上記固体電解コンデンサよれば、該固体電解コンデンサの大容量化を実現することが可能である。
Moreover, in the above solid electrolytic capacitor, it is not necessary to wind the cathode foil in the process of producing it. Therefore, the amount of winding of the anode foil (111) can be increased by replacing the portion without the cathode foil with the anode foil (111). Therefore, according to the solid electrolytic capacitor, it is possible to realize a large capacity of the solid electrolytic capacitor.
上記固体電解コンデンサの製造方法においては、再化成処理工程にて全ての陽極リード(30)(30)と陰極板(710)との間に電圧Vが印加されている。従って、巻回体(11)を構成する2枚の陽極箔(111)(111)に対してほぼ均等に電圧Vが印加され、その結果、再化成処理が各陽極箔(111)に対して確実に実行されることになる。よって、全ての陽極箔(111)(111)において、露出面(即ち、切断面(端面))に酸化被膜(誘電体被膜)が形成され、又、誘電体被膜の損傷した部分が修復され、その結果、各陽極箔(111)と、固体電解質層又はセパレータ(112)との電気的な短絡が防止されることになる。
In the method for manufacturing a solid electrolytic capacitor, a voltage V is applied between all anode leads (30) (30) and cathode plates (710) in the re-forming process. Therefore, the voltage V is applied almost evenly to the two anode foils (111) (111) constituting the wound body (11), and as a result, the re-forming process is performed on each anode foil (111). It will be executed reliably. Therefore, in all the anode foils (111) and (111), an oxide film (dielectric film) is formed on the exposed surface (that is, the cut surface (end surface)), and the damaged portion of the dielectric film is repaired. As a result, an electrical short circuit between each anode foil (111) and the solid electrolyte layer or separator (112) is prevented.
本願発明者は、ESR、静電容量、及び良品率について、本実施形態の固体電解コンデンサと従来の固体電解コンデンサとを比較する実験を行っている。下掲の表1に、その実験の結果が示されている。
The inventor of the present application is conducting an experiment comparing the solid electrolytic capacitor of the present embodiment with a conventional solid electrolytic capacitor in terms of ESR, capacitance, and yield rate. Table 1 below shows the results of the experiment.
ここで、従来の固体電解コンデンサとして、図11に示される固体電解コンデンサにおいてセパレータ(803)として導電性セパレータを用いたもの(従来例1)と、図5に示される固体電解コンデンサにおいてセパレータ(112)として導電性がないセパレータを用いたもの(従来例2)とを採用した。具体的には、従来例1の固体電解コンデンサにおいては、1枚の陽極箔と1枚の陰極箔とが、これらの間に導電性のセパレータを介在させて巻回されており、該陽極箔に1本の陽極リードが接続され、該陰極箔に1本の陰極リードが接続されている。従来例2の固体電解コンデンサにおいては、2枚の陽極箔が、これらの間に紙製のセパレータを介在させて巻回されており、該2枚の陽極箔に陽極リードが1本ずつ接続されている。
Here, as the conventional solid electrolytic capacitor, the solid electrolytic capacitor shown in FIG. 11 using a conductive separator as the separator (803) (conventional example 1) and the solid electrolytic capacitor shown in FIG. ) Using a non-conductive separator (conventional example 2) was used. Specifically, in the solid electrolytic capacitor of Conventional Example 1, one anode foil and one cathode foil are wound with a conductive separator interposed therebetween, and the anode foil One anode lead is connected to the cathode foil, and one cathode lead is connected to the cathode foil. In the solid electrolytic capacitor of Conventional Example 2, two anode foils are wound with a paper separator interposed therebetween, and one anode lead is connected to each of the two anode foils. ing.
更に、本実験においては、定格電圧を6V、静電容量の測定周波数を120Hz、ESRの測定周波数を100kHzとした。又、本実施形態の固体電解コンデンサ(実施例)の巻回体(11)の外形寸法、及び従来例1及び2の固体電解コンデンサの巻回体の外形寸法を何れも、直径6.3mm、高さ寸法6.0mmとした。
Further, in this experiment, the rated voltage was 6 V, the capacitance measurement frequency was 120 Hz, and the ESR measurement frequency was 100 kHz. Further, the outer dimensions of the wound body (11) of the solid electrolytic capacitor (example) of this embodiment and the outer dimensions of the wound bodies of the solid electrolytic capacitors of the conventional examples 1 and 2 are both 6.3 mm in diameter, The height dimension was 6.0 mm.
実験の結果(表1参照)、実施例及び従来例2の静電容量が従来例1の静電容量に比べて著しく大きくなっている。これは、陽極箔(111)の巻回量が増えた分、固体電解コンデンサの静電容量が増大したからである。又、実施例のESRが従来例1及び2のESRに比べて著しく小さくなっている。これは、導電性を有するセパレータ(112)を用いることにより、巻回体(11)内の陰極側の電子が陰極端子(4)まで移動し易くなったからである。
As a result of the experiment (see Table 1), the capacitance of Example and Conventional Example 2 is significantly larger than that of Conventional Example 1. This is because the capacitance of the solid electrolytic capacitor is increased by the amount of winding of the anode foil (111). Further, the ESR of the example is significantly smaller than the ESRs of the conventional examples 1 and 2. This is because the cathode-side electrons in the wound body (11) can easily move to the cathode terminal (4) by using the conductive separator (112).
更に、実施例及び従来例2の良品率が従来例1の良品率に比べて著しく大きくなっている。これは、実施例及び従来例2の固体電解コンデンサでは巻回体に陰極箔が巻回されていないので、再化成処理工程の実行時に、固体電解コンデンサの陰極側に悪影響が及ぶことがないからである。
Furthermore, the non-defective product rate of the example and the conventional example 2 is significantly larger than the non-defective product rate of the conventional example 1. This is because the cathode foil is not wound around the wound body in the solid electrolytic capacitor of the example and the conventional example 2, and therefore, the negative side of the solid electrolytic capacitor is not adversely affected when the re-forming process is performed. It is.
図8は、上記固体電解コンデンサの第1変形例を示した断面図である。又、図9は、本変形例に係る固体電解コンデンサの下面図である。図8に示す様に、上記固体電解コンデンサにおいて、金属ケース(5)には陰極リード(40)を設けずに、巻回体(11)に別の陰極リード(44)が取り付けられていてもよい。具体的には、セパレータ(112)に直接、陰極リード(44)が電気的に接続されており、図8に示す如く、該陰極リード(44)は、巻回軸(110)の巻回端面(11a)から引き出されている。
FIG. 8 is a cross-sectional view showing a first modification of the solid electrolytic capacitor. FIG. 9 is a bottom view of the solid electrolytic capacitor according to this modification. As shown in FIG. 8, in the solid electrolytic capacitor, the metal case (5) is not provided with the cathode lead (40), but another cathode lead (44) is attached to the wound body (11). Good. Specifically, the cathode lead (44) is electrically connected directly to the separator (112). As shown in FIG. 8, the cathode lead (44) is a winding end face of the winding shaft (110). It is drawn from (11a).
又、座板(2)には、巻回体(11)からの陽極リード(30)の引き出し位置P1,P1に対応して設けられた貫通孔(20)(20)の他に、巻回体(11)からの陰極リード(44)の引き出し位置P3に対応させて別の貫通孔(201)が形成されている。そして、陰極リード(44)の引出し部(441)は、これに対応する座板(2)の貫通孔(201)を通過した後、該貫通孔(201)の出口近傍で屈曲し、その後、座板(2)の下面(2b)に沿って、第2端縁(22)まで長く延びている。陰極リード(44)の内、座板(2)の下面(2b)に沿って延びた部分は平坦形状を有しており、該部分によって固体電解コンデンサの陰極端子(4)が構成されている。
In addition to the through holes (20) and (20) provided in the seat plate (2) corresponding to the lead positions P1 and P1 of the anode lead (30) from the wound body (11), the winding Another through hole (201) is formed so as to correspond to the drawing position P3 of the cathode lead (44) from the body (11). The lead portion (441) of the cathode lead (44) passes through the corresponding through hole (201) of the seat plate (2) and then bends in the vicinity of the outlet of the through hole (201). It extends long to the second end edge (22) along the lower surface (2b) of the seat plate (2). A portion of the cathode lead (44) extending along the lower surface (2b) of the seat plate (2) has a flat shape, and the cathode terminal (4) of the solid electrolytic capacitor is constituted by the portion. .
本変形例に係る固体電解コンデンサにおいては、セパレータ(112)に直接、陰極リード(44)が電気的に接続されている。従って、陽極端子(3)と陰極端子(4)との間に電圧が印加されたとき、巻回体(11)内の陰極側の電子は、導電性を有するセパレータ(112)を通じて陰極端子(4)まで移動し易い。よって、上記固体電解コンデンサによれば、該固体電解コンデンサのESRが更に低減されることになる。又、本変形例に係る固体電解コンデンサによれば、図3に示す固体電解コンデンサにおいて必要であった陰極層(15)を設けなくてもよい。
In the solid electrolytic capacitor according to this modification, the cathode lead (44) is electrically connected directly to the separator (112). Therefore, when a voltage is applied between the anode terminal (3) and the cathode terminal (4), electrons on the cathode side in the wound body (11) pass through the separator (112) having conductivity to the cathode terminal ( 4) Easy to move to. Therefore, according to the solid electrolytic capacitor, the ESR of the solid electrolytic capacitor is further reduced. Further, according to the solid electrolytic capacitor according to the present modification, the cathode layer (15) required in the solid electrolytic capacitor shown in FIG. 3 may not be provided.
図10は、上記固体電解コンデンサの第2変形例について、該固体電解コンデンサが具える巻回体(11)を示した斜視図である。図5に示した巻回体(11)では、その外周面が陽極箔(111)によって構成されているが、図10に示す様に、巻回体(11)の外周面は、セパレータ(112)によって構成されていてもよい。
FIG. 10 is a perspective view showing a wound body (11) provided in the solid electrolytic capacitor in a second modification of the solid electrolytic capacitor. In the wound body (11) shown in FIG. 5, the outer peripheral surface is constituted by the anode foil (111). However, as shown in FIG. 10, the outer peripheral surface of the wound body (11) is the separator (112 ).
本変形例に係る固体電解コンデンサを作製する場合、巻回工程では、2枚の陽極箔(111)(111)にそれぞれ陽極リード(30)を1つずつ取り付けた後、該2枚の陽極箔(111)(111)を、これらの間にセパレータ(112)を介在させて重ね合わせると共に、一方の陽極箔(111)に対して、他方の陽極箔(111)とは反対側から別のセパレータ(112)を重ね合わせる。その後、2枚の陽極箔(111)(111)を、前記他方の陽極箔(111)を内側して巻回し、これによって、巻回体(11)を作製する。
When producing a solid electrolytic capacitor according to this modification, in the winding process, after attaching anode leads (30) one by one to two anode foils (111) and (111), the two anode foils are attached. (111) and (111) are overlapped with a separator (112) interposed therebetween, and another separator from one anode foil (111) opposite to the other anode foil (111). Overlay (112). Thereafter, the two anode foils (111) and (111) are wound inside the other anode foil (111), thereby producing a wound body (11).
尚、本発明の各部構成は上記実施の形態に限らず、特許請求の範囲に記載の技術的範囲内で種々の変形が可能である。例えば、上記固体電解コンデンサにおいて、巻回体(11)は、1枚の陽極箔(111)を巻回して構成されたものであってもよいし、2枚に限らない複数の陽極箔(111)~(111)を巻回して構成されたものであってもよい。又、上記固体電解コンデンサにおいて、巻回体(11)からは、2本に限らない複数の陽極リード(30)~(30)が引き出されていてもよい。更には、これらの構成に限らず、上記固体電解コンデンサについて、特許請求の範囲に記載の技術的範囲内で種々の変形が可能である。
The configuration of each part of the present invention is not limited to the above-described embodiment, and various modifications can be made within the technical scope described in the claims. For example, in the solid electrolytic capacitor, the wound body (11) may be configured by winding one anode foil (111), or a plurality of anode foils (111 not limited to two sheets) ) To (111) may be wound. In the solid electrolytic capacitor, a plurality of anode leads (30) to (30), not limited to two, may be drawn from the wound body (11). Furthermore, the present invention is not limited to these configurations, and the above-described solid electrolytic capacitor can be variously modified within the technical scope described in the claims.
又、上記固体電解コンデンサにおいて、巻き止めテープ(113)に、導電性を有するものを採用してもよい。これにより、巻き止めテープ(113)を設けたことによるESRの増加を抑制することが出来る。
Further, in the solid electrolytic capacitor, a winding tape (113) having conductivity may be adopted. Thereby, an increase in ESR due to the provision of the anti-winding tape (113) can be suppressed.
(1) コンデンサ本体
(11) 巻回体
(11a) 巻回端面
(111) 陽極箔
(112) セパレータ
(113) 巻き止めテープ
(15) 陰極層
(2) 座板
(20) 貫通孔
(201) 貫通孔
(3) 陽極端子
(30) 陽極リード
(31) 引出し部
(4) 陰極端子
(40) 陰極リード
(44) 陰極リード
(441) 引出し部
(5) 金属ケース
(5a) 内周面
(5b) 開口
(50) 開口端縁
(51) 導電性接着剤
(52) 封口部材
(6) キャリアバー
(701) 化成液
(71) 処理槽
(710) 陰極板 (1) Capacitor body
(11) Winding body
(11a) Winding end face
(111) Anode foil
(112) Separator
(113) Winding tape
(15) Cathode layer
(2) Seat plate
(20) Through hole
(201) Through hole
(3) Anode terminal
(30) Anode lead
(31) Drawer
(4) Cathode terminal
(40) Cathode lead
(44) Cathode lead
(441) Drawer
(5) Metal case
(5a) Inner peripheral surface
(5b) Opening
(50) Open edge
(51) Conductive adhesive
(52) Sealing material
(6) Career bar
(701) Chemical liquid
(71) Treatment tank
(710) Cathode plate
(11) 巻回体
(11a) 巻回端面
(111) 陽極箔
(112) セパレータ
(113) 巻き止めテープ
(15) 陰極層
(2) 座板
(20) 貫通孔
(201) 貫通孔
(3) 陽極端子
(30) 陽極リード
(31) 引出し部
(4) 陰極端子
(40) 陰極リード
(44) 陰極リード
(441) 引出し部
(5) 金属ケース
(5a) 内周面
(5b) 開口
(50) 開口端縁
(51) 導電性接着剤
(52) 封口部材
(6) キャリアバー
(701) 化成液
(71) 処理槽
(710) 陰極板 (1) Capacitor body
(11) Winding body
(11a) Winding end face
(111) Anode foil
(112) Separator
(113) Winding tape
(15) Cathode layer
(2) Seat plate
(20) Through hole
(201) Through hole
(3) Anode terminal
(30) Anode lead
(31) Drawer
(4) Cathode terminal
(40) Cathode lead
(44) Cathode lead
(441) Drawer
(5) Metal case
(5a) Inner peripheral surface
(5b) Opening
(50) Open edge
(51) Conductive adhesive
(52) Sealing material
(6) Career bar
(701) Chemical liquid
(71) Treatment tank
(710) Cathode plate
Claims (3)
- 表面及び端面に誘電体被膜が形成された複数の陽極箔が、導電性を有するセパレータを介して巻回された巻回体と、
前記巻回体の内部に形成された固体電解質層と、
前記複数の陽極箔に接続されると共に前記巻回体の巻回端面から引き出された複数の陽極リードと、
前記セパレータと電気的に接続された陰極リード
とを具える固体電解コンデンサ。 A wound body in which a plurality of anode foils each having a dielectric coating formed on a surface and an end face are wound through a conductive separator;
A solid electrolyte layer formed inside the wound body;
A plurality of anode leads connected to the plurality of anode foils and drawn from a winding end surface of the wound body;
A solid electrolytic capacitor comprising a cathode lead electrically connected to the separator. - 前記セパレータは、金属製のメッシュ、又は、金属製若しくは非金属製のメッシュの表面に金属層が形成されたものから構成されている請求項1に記載の固体電解コンデンサ。 The solid electrolytic capacitor according to claim 1, wherein the separator is made of a metal mesh or a metal or non-metal mesh having a metal layer formed on the surface thereof.
- 表面に誘電体被膜が形成された複数の陽極箔に、陽極リードを接続する工程と、
導電性を有するセパレータを介して前記複数の陽極箔を巻回することで巻回体を形成する工程と、
前記巻回体を化成液に浸漬し、前記複数の陽極箔に電圧を印加することによって該陽極箔の端面に誘電体被膜を形成する工程と、
陰極リードを前記セパレータと電気的に接続する工程と、
固体電解質層を前記巻回体の内部に形成する工程
とを有する、固体電解コンデンサの製造方法。 Connecting anode leads to a plurality of anode foils having a dielectric coating formed on the surface;
Forming a wound body by winding the plurality of anode foils via a separator having conductivity; and
Immersing the wound body in a chemical conversion solution and applying a voltage to the plurality of anode foils to form a dielectric coating on the end faces of the anode foils;
Electrically connecting a cathode lead to the separator;
And a step of forming a solid electrolyte layer inside the wound body.
Priority Applications (1)
Application Number | Priority Date | Filing Date | Title |
---|---|---|---|
JP2012538635A JPWO2012049993A1 (en) | 2010-10-12 | 2011-10-03 | Solid electrolytic capacitor and manufacturing method thereof |
Applications Claiming Priority (2)
Application Number | Priority Date | Filing Date | Title |
---|---|---|---|
JP2010-229582 | 2010-10-12 | ||
JP2010229582 | 2010-10-12 |
Publications (1)
Publication Number | Publication Date |
---|---|
WO2012049993A1 true WO2012049993A1 (en) | 2012-04-19 |
Family
ID=45938222
Family Applications (1)
Application Number | Title | Priority Date | Filing Date |
---|---|---|---|
PCT/JP2011/072727 WO2012049993A1 (en) | 2010-10-12 | 2011-10-03 | Solid electrolytic capacitor and method for manufacturing same |
Country Status (2)
Country | Link |
---|---|
JP (1) | JPWO2012049993A1 (en) |
WO (1) | WO2012049993A1 (en) |
Citations (4)
Publication number | Priority date | Publication date | Assignee | Title |
---|---|---|---|---|
JPH11149825A (en) * | 1997-09-10 | 1999-06-02 | Tdk Corp | Slid polymer electrolyte and electrochemical device using the same |
JP2003197478A (en) * | 2001-12-28 | 2003-07-11 | Nippon Chemicon Corp | Solid electrolytic capacitor and manufacturing method therefor |
JP2005294499A (en) * | 2004-03-31 | 2005-10-20 | Nippon Chemicon Corp | Process for manufacturing solid electrolytic capacitor |
JP2007173773A (en) * | 2005-11-22 | 2007-07-05 | Saga Sanyo Industries Co Ltd | Electrolytic capacitor |
-
2011
- 2011-10-03 WO PCT/JP2011/072727 patent/WO2012049993A1/en active Application Filing
- 2011-10-03 JP JP2012538635A patent/JPWO2012049993A1/en active Pending
Patent Citations (4)
Publication number | Priority date | Publication date | Assignee | Title |
---|---|---|---|---|
JPH11149825A (en) * | 1997-09-10 | 1999-06-02 | Tdk Corp | Slid polymer electrolyte and electrochemical device using the same |
JP2003197478A (en) * | 2001-12-28 | 2003-07-11 | Nippon Chemicon Corp | Solid electrolytic capacitor and manufacturing method therefor |
JP2005294499A (en) * | 2004-03-31 | 2005-10-20 | Nippon Chemicon Corp | Process for manufacturing solid electrolytic capacitor |
JP2007173773A (en) * | 2005-11-22 | 2007-07-05 | Saga Sanyo Industries Co Ltd | Electrolytic capacitor |
Also Published As
Publication number | Publication date |
---|---|
JPWO2012049993A1 (en) | 2014-02-24 |
Similar Documents
Publication | Publication Date | Title |
---|---|---|
EP3226270B1 (en) | Solid electrolytic capacitor | |
US8540783B2 (en) | Solid electrolytic capacitor | |
US20100110615A1 (en) | Solid electrolytic capacitor and method of manufacturing same | |
US8179664B2 (en) | Solid electrolytic capacitor | |
WO2011040352A1 (en) | Electrolytic capacitor | |
JP5445673B2 (en) | Solid electrolytic capacitor and manufacturing method thereof | |
TW201409508A (en) | Solid electrolytic capacitor | |
JP2008078312A (en) | Solid electrolytic capacitor | |
JP2017022222A (en) | Solid electrolytic capacitor and manufacturing method of the same | |
WO2012049993A1 (en) | Solid electrolytic capacitor and method for manufacturing same | |
JP5945727B2 (en) | Solid electrolytic capacitor | |
JP2007012797A (en) | Laminated solid electrolytic capacitor | |
JP2012134389A (en) | Solid electrolytic capacitor | |
JP5653707B2 (en) | Solid electrolytic capacitor | |
KR20120006996A (en) | Capacitor and manufacturing method therefor | |
US8174819B2 (en) | Solid electrolytic capacitor | |
JP2012084689A (en) | Solid electrolytic capacitor | |
JP5903611B2 (en) | Solid electrolytic capacitor | |
WO2012086407A1 (en) | Solid electrolytic capacitor and method for manufacturing same | |
JP2007235101A (en) | Solid electrolytic capacitor | |
JP2007227716A (en) | Laminated solid electrolytic capacitor and manufacturing method therefor | |
JP5642508B2 (en) | Surface mount thin capacitors | |
KR101475367B1 (en) | Solid electrolytic capacitor | |
JP5770444B2 (en) | Solid electrolytic capacitor | |
JP2012069631A (en) | Electrolytic capacitor |
Legal Events
Date | Code | Title | Description |
---|---|---|---|
121 | Ep: the epo has been informed by wipo that ep was designated in this application |
Ref document number: 11832429 Country of ref document: EP Kind code of ref document: A1 |
|
ENP | Entry into the national phase |
Ref document number: 2012538635 Country of ref document: JP Kind code of ref document: A |
|
NENP | Non-entry into the national phase |
Ref country code: DE |
|
122 | Ep: pct application non-entry in european phase |
Ref document number: 11832429 Country of ref document: EP Kind code of ref document: A1 |