WO2012049924A1 - Yarn processing device - Google Patents

Yarn processing device Download PDF

Info

Publication number
WO2012049924A1
WO2012049924A1 PCT/JP2011/070376 JP2011070376W WO2012049924A1 WO 2012049924 A1 WO2012049924 A1 WO 2012049924A1 JP 2011070376 W JP2011070376 W JP 2011070376W WO 2012049924 A1 WO2012049924 A1 WO 2012049924A1
Authority
WO
WIPO (PCT)
Prior art keywords
yarn
nozzle
collision body
discharge
processing apparatus
Prior art date
Application number
PCT/JP2011/070376
Other languages
French (fr)
Japanese (ja)
Inventor
實 國永
昭夫 溝俣
Original Assignee
有限会社Jtc
株式会社Aikiリオテック
Priority date (The priority date is an assumption and is not a legal conclusion. Google has not performed a legal analysis and makes no representation as to the accuracy of the date listed.)
Filing date
Publication date
Application filed by 有限会社Jtc, 株式会社Aikiリオテック filed Critical 有限会社Jtc
Priority to EP11832363.3A priority Critical patent/EP2628830B1/en
Priority to KR1020137012256A priority patent/KR101606376B1/en
Priority to JP2012538606A priority patent/JP5754817B2/en
Publication of WO2012049924A1 publication Critical patent/WO2012049924A1/en

Links

Images

Classifications

    • DTEXTILES; PAPER
    • D02YARNS; MECHANICAL FINISHING OF YARNS OR ROPES; WARPING OR BEAMING
    • D02JFINISHING OR DRESSING OF FILAMENTS, YARNS, THREADS, CORDS, ROPES OR THE LIKE
    • D02J1/00Modifying the structure or properties resulting from a particular structure; Modifying, retaining, or restoring the physical form or cross-sectional shape, e.g. by use of dies or squeeze rollers
    • D02J1/08Interlacing constituent filaments without breakage thereof, e.g. by use of turbulent air streams
    • DTEXTILES; PAPER
    • D02YARNS; MECHANICAL FINISHING OF YARNS OR ROPES; WARPING OR BEAMING
    • D02GCRIMPING OR CURLING FIBRES, FILAMENTS, THREADS, OR YARNS; YARNS OR THREADS
    • D02G1/00Producing crimped or curled fibres, filaments, yarns, or threads, giving them latent characteristics
    • D02G1/16Producing crimped or curled fibres, filaments, yarns, or threads, giving them latent characteristics using jets or streams of turbulent gases, e.g. air, steam

Definitions

  • the present invention relates to a yarn processing apparatus that imparts bulkiness to a yarn by injecting a fluid onto the yarn to cause entanglement or a loop.
  • a yarn processing apparatus that imparts bulkiness to a yarn by injecting a fluid onto a yarn made of a filament such as a synthetic resin to cause entanglement or a loop in the filament is known.
  • Patent Documents 1 and 2 a yarn passage having a yarn introduction portion and a yarn discharge portion, a nozzle having an air injection hole for injecting compressed air into the yarn passage, and a yarn discharge portion of the nozzle are opposed to each other.
  • a yarn processing device is disclosed, each of which includes a spherical impactor disposed on the surface.
  • the yarn introduced from the yarn introduction portion passes through the yarn passage through which air is injected and is discharged from the yarn discharge portion.
  • the air discharged from the yarn discharge section collides with the spherical collision body and flows along the surface thereof, and rides on the air flow, and the yarn passes through the gap between the yarn discharge section and the collision body. Discharged. At that time, a loop or entanglement occurs in the filament due to the air flow generated in the yarn discharge portion, thereby imparting bulkiness to the yarn.
  • JP 2000-514509 A (particularly FIGS. 5, 6, and 8) JP 2000-303280 A
  • An object of the present invention is to provide a yarn processing apparatus having high yarn processing performance.
  • a yarn processing apparatus includes a nozzle having a yarn passage having a yarn introduction portion and a yarn discharge portion, a fluid injection hole for injecting a fluid into the yarn passage, and a discharge port of the yarn discharge portion.
  • a collision body having a surface opposed to the front end surface with a gap, and a portion of the collision body that faces the front end surface of the yarn discharge portion is opposed to the discharge port. It is characterized by being formed.
  • the facing portion of the collision body that faces the discharge port of the nozzle is formed in a concave shape, a large space is secured between the yarn discharge section of the nozzle and the collision body, The fluid flow is likely to be disturbed. Therefore, loops and entanglement are likely to occur in the filament discharged from the yarn discharge section due to the intense fluid flow in the space, and the processing performance of the yarn is improved.
  • the improvement in yarn processing performance means that even if the yarn is processed at a higher yarn speed than before, it is possible to realize the same or higher processing quality, and it can be said that the productivity is improved.
  • a yarn processing apparatus is characterized in that, in the first invention, the concave inner surface of the collision body is formed with a curved surface.
  • the fluid discharged together with the yarn from the yarn discharging portion flows along the inner surface in the inner space of the facing portion, so that it is difficult for the fluid to stay locally. Further, loops and entanglement are more likely to occur in the filament, and the processing performance of the yarn is improved.
  • the yarn processing apparatus is the yarn processing apparatus according to the first or second aspect, wherein the facing portion of the collision body is formed in a most recessed shape at a central portion thereof. .
  • the yarn discharged from the yarn discharging part is converged and collides with the innermost part of the concave opposing part.
  • the yarn is concentrated and collided at one location of the collision body, so that the subsequent yarn processing (loop formation or entanglement) is stabilized, and the processing performance of the yarn is improved.
  • a yarn processing apparatus is characterized in that, in the first invention, a cross-sectional shape of the facing portion of the collision body is an arc shape or an elliptic arc shape.
  • the inner surface of the facing portion is a curved surface and the most concave shape is in the center of the facing portion. Therefore, as described in the second and third inventions, the fluid is less likely to stay locally and the loop or entanglement is likely to occur, and the formation and entanglement of the loop is performed stably. Processing performance is further improved.
  • the yarn processing apparatus is the material processing apparatus according to any one of the first to fourth aspects of the invention, wherein the opposing portion of the collision body has a recess and a front end surface of the yarn discharge portion including the discharge port. And the flat part surrounding the said recessed part is formed, It is characterized by the above-mentioned.
  • the end of the collider will have a sharp shape.
  • variations in the shape of the end portion may occur in the collision body, or a minute chip may occur in the end portion, which greatly affects the processing of the yarn. Specifically, it causes thread tension variation and fluff generation.
  • the concave portion and the flat portion are provided so as to surround the concave portion in the facing portion of the collision body, the variation in the end portion shape of the facing portion is small, and chipping is not easily generated. , Yarn processing is stable.
  • the yarn processing apparatus according to any one of the first to fifth aspects, further comprising a nozzle holder for holding the nozzle, wherein the collision body is attached to the nozzle holder, and the nozzle holder Is provided with a yarn guide that guides the yarn that has passed through between the yarn discharge portion of the nozzle and the collision body.
  • the facing portion of the collision body that faces the discharge port of the nozzle is formed in a concave shape, a large space is secured between the yarn discharge section of the nozzle and the collision body, The fluid flow is likely to be disturbed. Therefore, loops and entanglement are likely to occur in the filament discharged from the yarn discharge section due to the intense fluid flow in the space, and the processing performance of the yarn is improved.
  • the improvement in yarn processing performance means that even if the yarn is processed at a higher yarn speed than before, it is possible to realize the same or higher processing quality, and it can be said that the productivity is improved.
  • FIG. 3 It is a front view of the yarn processing apparatus which concerns on embodiment of this invention. It is a left view of the yarn processing apparatus of FIG. It is the figure which showed a part of thread
  • (A) is an enlarged view of the nozzle and the collision body shown in FIG. 3, and
  • (b) is a right side view of the collision body of (a). It is sectional drawing of the collision body of a change form. It is sectional drawing of the nozzle and collision body of another modified form. It is a figure which shows the nozzle and collision body which were used by the Example and the comparative example.
  • FIG. 1 is a front view of the yarn processing apparatus of the present embodiment
  • FIG. 2 is a left side view of the yarn processing apparatus
  • FIG. 3 is a cross-sectional view of a part of the yarn processing apparatus of FIG. 4A is an enlarged view of the nozzle and the collision body shown in FIG. 3,
  • FIG. 4B is a right side view of the collision body of FIG.
  • the vertical and horizontal directions in FIGS. 1 and 3 are defined as vertical and horizontal directions.
  • the yarn processing apparatus 1 includes a nozzle 2, a nozzle holder 3 that holds the nozzle 2, and a collision body 4 provided on the nozzle holder 3.
  • the nozzle 2 will be described. As shown in FIGS. 3 and 4A, the nozzle 2 is formed in a cylindrical shape from a hard material such as metal or ceramics, and a flange portion 2a projecting in the radial direction is provided at one end portion of the nozzle 2. Yes. Further, a thread passage 10 extending in the cylinder axis direction of the nozzle 2 is formed inside the nozzle 2.
  • the yarn passage 10 includes a yarn introduction portion 11 formed on the flange portion 2a side (right side portion) of the nozzle 2, a yarn discharge portion 12 formed on the opposite side (left portion) of the flange portion 2a of the nozzle 2, and a yarn An air introduction portion 13 that connects the introduction portion 11 and the yarn discharge portion 12 is provided.
  • An introduction port 11a through which the yarn 31 is introduced is opened at the end surface of the flange portion 2a located at the right end portion of the nozzle 2, and the yarn introduction portion 11 is directed from the introduction port 11a to the tip side (left side in the figure). It is formed in a tapered shape whose inner diameter decreases.
  • a discharge port 12a through which the yarn 31 introduced into the yarn passage 10 is discharged is opened on the left end surface of the nozzle 2 on the side opposite to the flange portion 2a, and the yarn discharge unit 12 is connected to the discharge port 12a. It is formed in a divergent shape whose inner diameter increases as it goes.
  • the shape of the tapered yarn introduction portion 11 or the end-widening yarn discharge portion 12 for example, a tapered shape or a trumpet shape having a larger extent (curvature) at the opening end than the tapered shape can be adopted.
  • the yarn introduction portion 11 has a trumpet shape
  • the yarn discharge portion 12 has a taper shape.
  • the air injection hole 14 (fluid injection hole) opened to the air introduction part 13 of the yarn passage 10 is provided in the central part of the nozzle 2 in the cylinder axis direction.
  • FIG. 4A only one air injection hole 14 is shown, but in reality, a plurality (for example, three) of air injection holes 14 are arranged at equal intervals in the circumferential direction of the nozzle 2, respectively. Yes.
  • the air injection hole 14 extends obliquely toward the distal end side (left side) of the yarn passage 10 with respect to the radial direction of the nozzle 2 (the direction orthogonal to the yarn passage 10), and injects air into the yarn passage 10. When this happens, a strong air flow toward the left can be generated.
  • the nozzle holder 3 As shown in FIGS. 1 to 3, the nozzle holder 3 is formed in a rectangular parallelepiped shape that is slightly longer in the vertical direction. A mounting hole 20 that horizontally penetrates the nozzle holder 3 is formed in the upper portion of the nozzle holder 3.
  • the nozzle 2 described above is inserted into the mounting hole 20, but the diameter of the mounting hole 20 is smaller than the outer diameter of the flange portion 2 a of the nozzle 2. Therefore, the left end portion of the nozzle 2 is inserted into and attached to the mounting hole 20 from the right opening, while the flange portion 2 a provided at the right end portion of the nozzle 2 is not inserted into the mounting hole 20 and the right side surface of the nozzle holder 3.
  • the nozzle 2 is positioned with respect to the nozzle holder 3.
  • a restriction member 22 that prevents the nozzle 2 inserted into the mounting hole 20 from popping out to the right is attached to the nozzle holder 3.
  • An air supply hole 21 extending in the vertical direction is formed inside the nozzle holder 3, and the air supply hole 21 is connected to an air supply source (not shown).
  • the air injection hole 14 formed in the nozzle 2 communicates with the air supply hole 21, and the air supplied from the air supply hole 21 is air injection. It is injected from the hole 14 into the yarn passage 10.
  • the collision body 4 is a member having a substantially disk-like outer shape, and is formed of a hard material such as metal or ceramics.
  • the collision body 4 faces the left end surface of the nozzle 2 attached to the nozzle holder 3 (the front end surface where the discharge port 12a of the yarn discharge unit 12 is formed) with a slight gap.
  • a concave portion 4a is formed in the central portion of the colliding body 4 facing the discharge port 12a on the right surface facing the left end surface of the nozzle 2.
  • the inner surface of the recess 4 a has a circular arc-shaped cross section in a plane including the central axis of the nozzle 2. Further, the concave portion 4 a is surrounded by a flat portion 4 b having a flat surface parallel to the tip surface of the yarn discharge portion 12.
  • a mounting base member 23 is fixed to the lower left side surface of the nozzle holder 3 with a bolt or the like, and the lower portion of the block-shaped holder 24 is rotatable on the mounting base member 23 in a vertical plane. It is connected. Further, one end of a connecting rod 25 is fixed to the holder 24, and the collision body 4 is fixed to the other end of the connecting rod 25. In this configuration, as shown by a two-dot chain line in FIG.
  • the collision body 4 when the holder 24 rotates with respect to the mounting base member 23, the collision body 4 also rotates integrally. It can move over a position facing the discharge port 12a (a position indicated by a solid line) and a retreat position (a position indicated by a two-dot chain line) away from the discharge port 12a. Then, by moving the collision body 4 to the retracted position, threading into the nozzle 2 can be easily performed.
  • a thread guide 26 that guides the thread discharged from the nozzle 2 is attached to the mounting base member 23 fixed to the nozzle holder 3 via the mounting member 27.
  • the yarn holder 26 is further provided in the nozzle holder 3 in which the nozzle 2 and the collision body 4 are provided, and the nozzle 2 or the collision body 4 and the yarn guide 26 are integrated.
  • the yarn passed through the nozzle 2 from the right side in FIG. 1 and discharged from the yarn discharge portion 12 is guided upward via a yarn guide located on the front side (right side in FIG. 2) in FIG.
  • the position of the yarn guide 26 is automatically determined only by installing the yarn processing apparatus 1 at a predetermined position. There is no need to adjust the position relative to 2.
  • a yarn 31 made of a filament such as synthetic resin is introduced from an introduction port 11 a of a yarn introduction portion 11 provided in the nozzle 2 and guided to the air introduction portion 13.
  • air supplied from an air supply source (not shown) is injected into the air introduction portion 13 from the air injection hole 14.
  • the air injected into the air introduction unit 13 is discharged from the yarn discharge unit 12, and further collides with the collision body 4 disposed to face the discharge port 12a. Is discharged from the gap between the collision body 4 and the yarn discharge portion 12. At this time, the filament 31 constituting the yarn 31 is loosened by the intense air flow in the yarn discharge section 12, and further, the yarn 31 is bulky due to the occurrence of loops, entanglement, and the like due to intense movement of the individual filaments. Is granted.
  • the concave portion 4a is formed on the surface of the collision body 4 facing the discharge port 12a. Therefore, a large space is ensured between the yarn discharge portion 12 of the nozzle 2 and the collision body 4, and the air flow is easily disturbed in this space. Accordingly, loops and entanglement are likely to occur in the filament discharged from the yarn discharge section 12 by vigorous air flow, so that the yarn processing performance is improved. Further, the improvement in the processing performance of the yarn processing apparatus 1 means that even if processing is performed at a higher yarn speed than before, processing quality equivalent to the conventional one can be obtained, and productivity is improved. This reduces the amount of air consumed to process a unit length of yarn.
  • the concave portion 4a of the collision body 4 is formed by a continuous curved surface having an arc cross section.
  • the air discharged together with the yarn from the yarn discharging portion 12 flows along the inner surface in the space in the concave portion 4a, so that the air is less likely to locally stay in the filament. Loops and confounding are more likely to occur.
  • the concave portion 4a having an arc-shaped cross section has the most concave shape in the central portion (position where the central axis of the nozzle 2 passes), and the yarn discharged from the yarn discharge portion 12 is in the innermost portion of the concave portion 4a. It converges and collides. As described above, the yarn concentrates and collides with one place of the collision body 4, so that subsequent yarn processing (loop formation or entanglement) is stably performed, and the processing performance of the yarn is improved.
  • a concave portion 4a and a flat portion 4b are provided so as to surround the concave portion at a portion facing the discharge port 12a of the collision body 4.
  • the outer diameter of the collision body 4 is D
  • the diameter of the recess 4a is d
  • the width of the flat portion 4b is t
  • D d + 2t.
  • the width t of the flat portion 4b is 0 ⁇ t ⁇ 5. It is preferable to be determined in the range of (mm).
  • the concave shape of the collision body 4 facing the discharge port 12a of the nozzle 2 is not limited to the circular arc shape in the above embodiment.
  • (a) an elliptical arc shape, (b) a pan bottom shape, (c) a trapezoidal shape, (d) a conical shape, or the like may be employed as the cross-sectional shape of the recess 4 a.
  • the elliptical arc-shaped recess 4a in FIG. 5A has an inner surface formed in a curved surface, like the arc-shaped recess (see FIG. 4) of the above embodiment. For this reason, the air flows along the inner surface and is not likely to stay locally, and loops and entanglements are likely to occur in the yarn.
  • the elliptical arc shape of (a) and the conical shape of (d) since the most concave portion is in the center, the yarn is concentrated and collides with the innermost part of the collision body, so that subsequent yarn processing is stable. Done.
  • the recess 4a is not necessarily provided on a part of the surface of the collision body 4 on the discharge port 12a side, and the periphery of the recess 4a is not necessarily surrounded by the flat portion 4b.
  • the entire surface of the collision body 4 on the discharge port 12a side may be a recess 4a.
  • the nozzle 2 is not limited to the shape shown in FIG.
  • the yarn introduction portion 11 may be tapered and the yarn discharge portion 12 may be a trumpet shape.
  • the yarn introduction portion 11 may be a straight shape whose diameter does not change.
  • the collision body 4 is configured to be movable (rotated) with respect to the nozzle holder 3 in the embodiment, the collision body 4 may be fixed to the nozzle holder 3.
  • Nozzle and collision body specifications Table 1 shows the specifications of the four types of nozzles used in the examples and comparative examples, and Table 2 shows the specifications of the six kinds of collision bodies. Moreover, the combination of these nozzles and a collision body is shown in FIG.
  • the collision body is compared with the three types of collision bodies (Cup), which are the embodiments to which the present invention is applied, in which the portion facing the discharge port of the nozzle is formed in a concave shape.
  • a total of six types of two types of spherical impact bodies (Ball) and one type of flat impact body (Plate) are used.
  • (a) and (e) are 13 mm spherical collision bodies
  • (b) and (f) are 6 mm spherical collision bodies
  • (c) and (g) are flat plate collision bodies
  • (d) and (h) Is the concave collision body of the present invention.
  • all the six types of collision bodies are made of ceramics.
  • the core yarn and the effect yarn were processed by supplying them to the nozzles at different supply speeds, and the processing was performed by core & effect processing.
  • the yarn speed (discharge side yarn speed) on the downstream side of the nozzle is changed in four stages, and the overfeed amount (the amount of yarn supplied to the nozzle (supply side yarn speed)) for each of the core yarn and the effect yarn is discharged.
  • Tables 3 to 6 show the thread tension measurement results on the discharge side for polyester yarn (PET) having a yarn thickness of 150 denier, 300 denier, 600 denier, and 750 denier, respectively.
  • Table 7 shows the thread tension measurement result on the discharge side when the thread thickness is 140d with nylon thread (PA6).
  • PA6 nylon thread
  • a nozzle corresponding to the thickness of the thread is appropriately selected from the four types of nozzles in Table 1 and used.
  • the spherical collision body (Ball) and the flat plate collision body (Plate) have a tension of 11 grams only at a low speed of 350 m / min, whereas the concave collision body (Cup).
  • the tension is more than 11 grams, and a quality equivalent to or higher than the processing at a low speed of the spherical impact member or the flat impact member can be obtained.

Landscapes

  • Engineering & Computer Science (AREA)
  • Physics & Mathematics (AREA)
  • Fluid Mechanics (AREA)
  • Textile Engineering (AREA)
  • Mechanical Engineering (AREA)
  • Yarns And Mechanical Finishing Of Yarns Or Ropes (AREA)

Abstract

A yarn processing device having high yarn processing performance is provided. The yarn processing device (1) is provided with a yarn passage (10) provided with a yarn introduction section (11) and a yarn ejection section (12); a nozzle (2) having an air injection hole (14) that injects air into the yarn passage (10); and a collision body (4) facing an outlet (12a) positioned at the leading edge of the yarn ejection section (12). The part of the collision body facing the outlet (12a) is formed in a concave shape.

Description

糸処理装置Yarn processing device
 本発明は、糸に流体を噴射して交絡やループ等を生じさせて、糸に嵩高性を付与する糸処理装置に関する。 The present invention relates to a yarn processing apparatus that imparts bulkiness to a yarn by injecting a fluid onto the yarn to cause entanglement or a loop.
 従来から、合成樹脂等のフィラメントからなる糸に流体を噴射し、フィラメントに交絡やループ等を生じさせることにより、糸に嵩高性を付与する糸処理装置が知られている。 Conventionally, a yarn processing apparatus that imparts bulkiness to a yarn by injecting a fluid onto a yarn made of a filament such as a synthetic resin to cause entanglement or a loop in the filament is known.
 特許文献1,2には、糸導入部及び糸排出部を有する糸通路と、この糸通路内に圧縮空気を噴射するエア噴射孔を備えたノズルと、このノズルの糸排出部と対向するように配置された球状の衝突体とを備えた、糸処理装置がそれぞれ開示されている。 In Patent Documents 1 and 2, a yarn passage having a yarn introduction portion and a yarn discharge portion, a nozzle having an air injection hole for injecting compressed air into the yarn passage, and a yarn discharge portion of the nozzle are opposed to each other. A yarn processing device is disclosed, each of which includes a spherical impactor disposed on the surface.
 前記特許文献1,2の糸処理装置において、糸導入部から導入された糸は、エアが噴射される糸通路内を通過して糸排出部から排出される。ここで、糸排出部から出たエアは球状の衝突体に衝突してその表面に沿って流れ、このエアの流れに乗って、糸は糸排出部と衝突体との間の隙間を通って排出される。その際に、糸排出部内に生じるエアの流れによってフィラメントにループや交絡等が発生し、糸に嵩高性が付与される。 In the yarn processing apparatuses disclosed in Patent Documents 1 and 2, the yarn introduced from the yarn introduction portion passes through the yarn passage through which air is injected and is discharged from the yarn discharge portion. Here, the air discharged from the yarn discharge section collides with the spherical collision body and flows along the surface thereof, and rides on the air flow, and the yarn passes through the gap between the yarn discharge section and the collision body. Discharged. At that time, a loop or entanglement occurs in the filament due to the air flow generated in the yarn discharge portion, thereby imparting bulkiness to the yarn.
特表2000-514509号公報(特に、図5、図6、及び、図8)JP 2000-514509 A (particularly FIGS. 5, 6, and 8) 特開2000-303280号公報JP 2000-303280 A
 しかし、球状の衝突体を用いた従来の糸処理装置においては、嵩高加工が不十分になることもあり、さらなる改善の余地があった。そこで、本願発明者は、上記原因を解明すべく鋭意検討を行った結果、衝突体の形状が糸処理装置の加工性能に大きく影響を及ぼしており、衝突体の形状を工夫することによって加工性能が向上することを知見した。 However, in the conventional yarn processing apparatus using a spherical collision body, the bulky processing may be insufficient, and there is room for further improvement. Therefore, as a result of intensive studies to elucidate the above cause, the inventors of the present application have greatly affected the processing performance of the yarn processing apparatus, and the processing performance is devised by devising the shape of the collision body. Has been found to improve.
 本発明の目的は、糸の加工性能が高い糸処理装置を提供することである。 An object of the present invention is to provide a yarn processing apparatus having high yarn processing performance.
 第1の発明の糸処理装置は、糸導入部及び糸排出部を備えた糸通路と、前記糸通路に流体を噴射する流体噴射孔とを有するノズルと、前記糸排出部の排出口が形成された先端面と隙間を空けて対向する面を有する衝突体を備え、前記衝突体の、前記糸排出部の前記先端面と対向する面のうちの、前記排出口との対向部分が、凹状に形成されていることを特徴とするものである。 A yarn processing apparatus according to a first aspect of the present invention includes a nozzle having a yarn passage having a yarn introduction portion and a yarn discharge portion, a fluid injection hole for injecting a fluid into the yarn passage, and a discharge port of the yarn discharge portion. A collision body having a surface opposed to the front end surface with a gap, and a portion of the collision body that faces the front end surface of the yarn discharge portion is opposed to the discharge port. It is characterized by being formed.
 本発明によれば、ノズルの排出口と対向する衝突体の対向部分が、凹状に形成されていることから、ノズルの糸排出部と衝突体との間に大きな空間が確保され、この空間内で流体の流れが乱れやすくなる。従って、前記空間内の激しい流体の流れによって糸排出部から排出されるフィラメントにループや交絡が生じやすくなり、糸の加工性能が向上する。また、糸の加工性能が向上するということは、従来よりも速い糸速で加工しても同等以上の加工品質を実現できるということでもあり、生産性が向上するとも言える。 According to the present invention, since the facing portion of the collision body that faces the discharge port of the nozzle is formed in a concave shape, a large space is secured between the yarn discharge section of the nozzle and the collision body, The fluid flow is likely to be disturbed. Therefore, loops and entanglement are likely to occur in the filament discharged from the yarn discharge section due to the intense fluid flow in the space, and the processing performance of the yarn is improved. In addition, the improvement in yarn processing performance means that even if the yarn is processed at a higher yarn speed than before, it is possible to realize the same or higher processing quality, and it can be said that the productivity is improved.
 第2の発明の糸処理装置は、前記第1の発明において、前記衝突体の凹状の前記対向部分の内面が、曲面で形成されていることを特徴とするものである。 A yarn processing apparatus according to a second invention is characterized in that, in the first invention, the concave inner surface of the collision body is formed with a curved surface.
 衝突体の凹状の対向部分の内面が曲面であると、糸排出部から糸とともに排出された流体が、対向部分の内側空間においてその内面に沿って流れるため、流体が局所的に滞留しにくくなり、フィラメントにループや交絡がさらに生じやすくなって、糸の加工性能が向上する。 When the inner surface of the concave facing portion of the collision body is a curved surface, the fluid discharged together with the yarn from the yarn discharging portion flows along the inner surface in the inner space of the facing portion, so that it is difficult for the fluid to stay locally. Further, loops and entanglement are more likely to occur in the filament, and the processing performance of the yarn is improved.
 第3の発明の糸処理装置は、前記第1又は第2の発明において、前記衝突体の前記対向部分は、その中央部において最も凹んだ形状に形成されていることを特徴とするものである。 The yarn processing apparatus according to a third aspect of the present invention is the yarn processing apparatus according to the first or second aspect, wherein the facing portion of the collision body is formed in a most recessed shape at a central portion thereof. .
 衝突体の対向部分が、その中央部において最も凹んだ形状になっていると、糸排出部から排出されてきた糸が、凹状の対向部分の最奥部に収束されて衝突する。このように、糸が衝突体の一箇所に集中して衝突することで、その後の糸加工(ループ形成あるいは交絡)が安定し、糸の加工性能が向上する。 If the opposing part of the colliding body has the most concave shape at the center, the yarn discharged from the yarn discharging part is converged and collides with the innermost part of the concave opposing part. As described above, the yarn is concentrated and collided at one location of the collision body, so that the subsequent yarn processing (loop formation or entanglement) is stabilized, and the processing performance of the yarn is improved.
 第4の発明の糸処理装置は、前記第1の発明において、前記衝突体の前記対向部分の断面形状が、円弧状又は楕円弧状であることを特徴とするものである。 A yarn processing apparatus according to a fourth invention is characterized in that, in the first invention, a cross-sectional shape of the facing portion of the collision body is an arc shape or an elliptic arc shape.
 衝突体の対向部分の断面形状が円弧又は楕円弧である場合、対向部分の内面が曲面となり、且つ、対向部分の中央部において最も凹んだ形状になる。従って、前記第2及び第3の発明で説明したように、流体が局所的に滞留しにくくなってループあるいは交絡が生じやすくなるととともに、ループの形成や交絡が安定して行われるため、糸の加工性能が一層向上する。 When the cross-sectional shape of the facing portion of the colliding body is an arc or an elliptical arc, the inner surface of the facing portion is a curved surface and the most concave shape is in the center of the facing portion. Therefore, as described in the second and third inventions, the fluid is less likely to stay locally and the loop or entanglement is likely to occur, and the formation and entanglement of the loop is performed stably. Processing performance is further improved.
 第5の発明の糸処理装置は、前記第1~第4の何れかの発明において、前記衝突体の前記対向部分に、凹部と、前記排出口を含む前記糸排出部の先端面に平行で、且つ、前記凹部を取り囲む平坦部とが形成されていることを特徴とするものである。 The yarn processing apparatus according to a fifth aspect of the present invention is the material processing apparatus according to any one of the first to fourth aspects of the invention, wherein the opposing portion of the collision body has a recess and a front end surface of the yarn discharge portion including the discharge port. And the flat part surrounding the said recessed part is formed, It is characterized by the above-mentioned.
 衝突体の排出口との対向部分の全体が凹状になっていると、その端部が尖った形状となる。この場合、衝突体に端部形状のばらつきが生じる、あるいは、端部に微細な欠けが生じることがあり、糸の加工に多大な影響が及ぼす。具体的には、糸の張力ばらつきや毛羽発生等の原因となる。しかしながら、本発明では、衝突体の対向部分に、凹部と、この凹部を取り囲むように平坦部が設けられていることから、対向部分の端部形状のばらつきが小さく、また、欠けも生じにくいから、糸の加工が安定する。 If the entire portion of the colliding body facing the discharge port is concave, the end of the collider will have a sharp shape. In this case, variations in the shape of the end portion may occur in the collision body, or a minute chip may occur in the end portion, which greatly affects the processing of the yarn. Specifically, it causes thread tension variation and fluff generation. However, in the present invention, since the concave portion and the flat portion are provided so as to surround the concave portion in the facing portion of the collision body, the variation in the end portion shape of the facing portion is small, and chipping is not easily generated. , Yarn processing is stable.
 第6の発明の糸処理装置は、前記第1~第5の何れかの発明において、前記ノズルを保持するノズルホルダを有し、前記衝突体は前記ノズルホルダに取り付けられ、さらに、前記ノズルホルダには、前記ノズルの糸排出部と前記衝突体との間を通過して出てきた糸をガイドする糸ガイドが設けられていることを特徴とするものである。 According to a sixth aspect of the present invention, there is provided the yarn processing apparatus according to any one of the first to fifth aspects, further comprising a nozzle holder for holding the nozzle, wherein the collision body is attached to the nozzle holder, and the nozzle holder Is provided with a yarn guide that guides the yarn that has passed through between the yarn discharge portion of the nozzle and the collision body.
 ノズルの糸排出部から排出された糸の走行を安定させるためには、ノズルよりも下流側に糸ガイドを設けることが好ましい。しかし、糸ガイドのノズルに対する位置によって糸の張力が変わることから、糸処理装置とは別に糸ガイドを設ける場合には、糸の張力を適切に設定するために、糸処理装置を設置した後に、さらに、糸ガイドの糸処理装置(ノズル)に対する位置を調整するという面倒な作業が必要となる。本発明においては、ノズル及び衝突体が設けられたノズルホルダに、さらに糸ガイドが設けられて、ノズルや衝突体と糸ガイドが一体となっていることから、糸処理装置を所定の位置に設置するだけで糸ガイドの位置も自動的に定まり、糸ガイドの位置を調整する必要がない。 In order to stabilize the running of the yarn discharged from the yarn discharge portion of the nozzle, it is preferable to provide a yarn guide on the downstream side of the nozzle. However, since the tension of the thread changes depending on the position of the thread guide with respect to the nozzle, when the thread guide is provided separately from the thread processing apparatus, in order to appropriately set the thread tension, after installing the thread processing apparatus, Furthermore, the troublesome work of adjusting the position of the yarn guide relative to the yarn processing device (nozzle) is required. In the present invention, since the nozzle holder provided with the nozzle and the collision body is further provided with a thread guide, and the nozzle and the collision body are integrated with the thread guide, the thread processing device is installed at a predetermined position. By simply doing this, the position of the thread guide is automatically determined, and there is no need to adjust the position of the thread guide.
 本発明によれば、ノズルの排出口と対向する衝突体の対向部分が、凹状に形成されていることから、ノズルの糸排出部と衝突体との間に大きな空間が確保され、この空間内で流体の流れが乱れやすくなる。従って、前記空間内の激しい流体の流れによって糸排出部から排出されるフィラメントにループや交絡が生じやすくなり、糸の加工性能が向上する。また、糸の加工性能が向上するということは、従来よりも速い糸速で加工しても同等以上の加工品質を実現できるということでもあり、生産性が向上するとも言える。 According to the present invention, since the facing portion of the collision body that faces the discharge port of the nozzle is formed in a concave shape, a large space is secured between the yarn discharge section of the nozzle and the collision body, The fluid flow is likely to be disturbed. Therefore, loops and entanglement are likely to occur in the filament discharged from the yarn discharge section due to the intense fluid flow in the space, and the processing performance of the yarn is improved. In addition, the improvement in yarn processing performance means that even if the yarn is processed at a higher yarn speed than before, it is possible to realize the same or higher processing quality, and it can be said that the productivity is improved.
本発明の実施形態に係る糸処理装置の正面図である。It is a front view of the yarn processing apparatus which concerns on embodiment of this invention. 図1の糸処理装置の左側面図である。It is a left view of the yarn processing apparatus of FIG. 図1の糸処理装置の一部を断面で示した図である。It is the figure which showed a part of thread | yarn processing apparatus of FIG. 1 in the cross section. (a)は図3に示されるノズル及び衝突体の拡大図、(b)は(a)の衝突体の右側面図である。(A) is an enlarged view of the nozzle and the collision body shown in FIG. 3, and (b) is a right side view of the collision body of (a). 変更形態の衝突体の断面図である。It is sectional drawing of the collision body of a change form. 別の変更形態のノズル及び衝突体の断面図である。It is sectional drawing of the nozzle and collision body of another modified form. 実施例及び比較例で使用したノズル及び衝突体を示す図である。It is a figure which shows the nozzle and collision body which were used by the Example and the comparative example.
 次に、本発明の実施の形態について説明する。図1は、本実施形態の糸処理装置の正面図、図2は糸処理装置の左側面図、図3は、図1の糸処理装置の一部を断面で示した図である。また、図4(a)は図3に示されるノズル及び衝突体の拡大図、(b)は(a)の衝突体の右側面図である。尚、以下では、図1、図3における上下左右の方向を上下左右と定義して説明する。図1~図3に示すように、糸処理装置1は、ノズル2と、このノズル2を保持するノズルホルダ3と、ノズルホルダ3に設けられた衝突体4とを備えている。 Next, an embodiment of the present invention will be described. FIG. 1 is a front view of the yarn processing apparatus of the present embodiment, FIG. 2 is a left side view of the yarn processing apparatus, and FIG. 3 is a cross-sectional view of a part of the yarn processing apparatus of FIG. 4A is an enlarged view of the nozzle and the collision body shown in FIG. 3, and FIG. 4B is a right side view of the collision body of FIG. In the following description, the vertical and horizontal directions in FIGS. 1 and 3 are defined as vertical and horizontal directions. As shown in FIGS. 1 to 3, the yarn processing apparatus 1 includes a nozzle 2, a nozzle holder 3 that holds the nozzle 2, and a collision body 4 provided on the nozzle holder 3.
 まず、ノズル2について説明する。図3、図4(a)に示すように、ノズル2は金属やセラミックス等の硬質材料により筒状に形成され、このノズル2の一端部には径方向に張り出したフランジ部2aが設けられている。また、ノズル2の内部にはノズル2の筒軸方向に延びる糸通路10が形成されている。糸通路10は、ノズル2のフランジ部2a側(右側部分)に形成された糸導入部11と、ノズル2のフランジ部2aと反対側(左側部分)に形成された糸排出部12と、糸導入部11と糸排出部12を繋ぐエア導入部13とを有する。 First, the nozzle 2 will be described. As shown in FIGS. 3 and 4A, the nozzle 2 is formed in a cylindrical shape from a hard material such as metal or ceramics, and a flange portion 2a projecting in the radial direction is provided at one end portion of the nozzle 2. Yes. Further, a thread passage 10 extending in the cylinder axis direction of the nozzle 2 is formed inside the nozzle 2. The yarn passage 10 includes a yarn introduction portion 11 formed on the flange portion 2a side (right side portion) of the nozzle 2, a yarn discharge portion 12 formed on the opposite side (left portion) of the flange portion 2a of the nozzle 2, and a yarn An air introduction portion 13 that connects the introduction portion 11 and the yarn discharge portion 12 is provided.
 ノズル2の右端部に位置するフランジ部2aの端面には糸31が導入される導入口11aが開口しており、糸導入部11は、前記導入口11aから先端側(図中左側)に向かうほど内径が縮小する先細り状に形成されている。一方、フランジ部2aと反対側の、ノズル2の左端面には糸通路10内に導入された糸31が排出される排出口12aが開口しており、糸排出部12は、排出口12aに向かうほど内径が拡大する末広がり形状に形成されている。先細りの糸導入部11や末広がりの糸排出部12の形状としては、例えば、テーパー状や、テーパー状よりも開口端における広がりの程度(曲率)が大きいラッパ状などを採用することができる。一例として、本実施形態では、糸導入部11がラッパ状、糸排出部12がテーパー状となっている。 An introduction port 11a through which the yarn 31 is introduced is opened at the end surface of the flange portion 2a located at the right end portion of the nozzle 2, and the yarn introduction portion 11 is directed from the introduction port 11a to the tip side (left side in the figure). It is formed in a tapered shape whose inner diameter decreases. On the other hand, a discharge port 12a through which the yarn 31 introduced into the yarn passage 10 is discharged is opened on the left end surface of the nozzle 2 on the side opposite to the flange portion 2a, and the yarn discharge unit 12 is connected to the discharge port 12a. It is formed in a divergent shape whose inner diameter increases as it goes. As the shape of the tapered yarn introduction portion 11 or the end-widening yarn discharge portion 12, for example, a tapered shape or a trumpet shape having a larger extent (curvature) at the opening end than the tapered shape can be adopted. As an example, in the present embodiment, the yarn introduction portion 11 has a trumpet shape, and the yarn discharge portion 12 has a taper shape.
 ノズル2の筒軸方向中央部には、糸通路10のエア導入部13へ開口したエア噴射孔14(流体噴射孔)が設けられている。尚、図4(a)ではエア噴射孔14が1つしか示されていないが、実際は、複数(例えば、3つ)のエア噴射孔14がノズル2の周方向等間隔位置にそれぞれ配置されている。また、エア噴射孔14は、ノズル2の半径方向(糸通路10と直交する方向)に対して、糸通路10の先端側(左側)へ傾斜して延びており、糸通路10へエアを噴射したときに左方へ向かう強いエア流を発生させることができるようになっている。 The air injection hole 14 (fluid injection hole) opened to the air introduction part 13 of the yarn passage 10 is provided in the central part of the nozzle 2 in the cylinder axis direction. In FIG. 4A, only one air injection hole 14 is shown, but in reality, a plurality (for example, three) of air injection holes 14 are arranged at equal intervals in the circumferential direction of the nozzle 2, respectively. Yes. The air injection hole 14 extends obliquely toward the distal end side (left side) of the yarn passage 10 with respect to the radial direction of the nozzle 2 (the direction orthogonal to the yarn passage 10), and injects air into the yarn passage 10. When this happens, a strong air flow toward the left can be generated.
 次に、ノズルホルダ3について説明する。図1~図3に示すように、ノズルホルダ3は、やや上下に長い直方体形状に形成されている。このノズルホルダ3の上側部分には、ノズルホルダ3を水平に貫通する装着孔20が形成されている。尚、この装着孔20には上述したノズル2が挿入されるが、装着孔20の径はノズル2のフランジ部2aの外径よりは小さくなっている。そのため、装着孔20にノズル2の左端部が右側の開口から挿入装着される一方で、ノズル2の右端部に設けられたフランジ部2aは装着孔20に挿入されずにノズルホルダ3の右側面に当接し、これにより、ノズル2はノズルホルダ3に対して位置決めされる。また、図1に示すように、ノズルホルダ3には、装着孔20に挿入されたノズル2が右方へ飛び出るのを防止する規制部材22が取り付けられる。 Next, the nozzle holder 3 will be described. As shown in FIGS. 1 to 3, the nozzle holder 3 is formed in a rectangular parallelepiped shape that is slightly longer in the vertical direction. A mounting hole 20 that horizontally penetrates the nozzle holder 3 is formed in the upper portion of the nozzle holder 3. The nozzle 2 described above is inserted into the mounting hole 20, but the diameter of the mounting hole 20 is smaller than the outer diameter of the flange portion 2 a of the nozzle 2. Therefore, the left end portion of the nozzle 2 is inserted into and attached to the mounting hole 20 from the right opening, while the flange portion 2 a provided at the right end portion of the nozzle 2 is not inserted into the mounting hole 20 and the right side surface of the nozzle holder 3. Thus, the nozzle 2 is positioned with respect to the nozzle holder 3. As shown in FIG. 1, a restriction member 22 that prevents the nozzle 2 inserted into the mounting hole 20 from popping out to the right is attached to the nozzle holder 3.
 ノズルホルダ3の内部には上下に延びるエア供給孔21が形成されており、このエア供給孔21は図示しないエア供給源に接続される。また、ノズル2がノズルホルダ3の装着孔20に装着されたときには、ノズル2に形成されたエア噴射孔14がエア供給孔21と連通し、エア供給孔21から供給されたエアが、エア噴射孔14から糸通路10へ噴射されることになる。 An air supply hole 21 extending in the vertical direction is formed inside the nozzle holder 3, and the air supply hole 21 is connected to an air supply source (not shown). When the nozzle 2 is mounted in the mounting hole 20 of the nozzle holder 3, the air injection hole 14 formed in the nozzle 2 communicates with the air supply hole 21, and the air supplied from the air supply hole 21 is air injection. It is injected from the hole 14 into the yarn passage 10.
 次に、衝突体4について説明する。図3、図4に示すように、衝突体4はほぼ円板状の外形を有する部材であり、金属やセラミックス等の硬質材料で形成されている。この衝突体4は、ノズルホルダ3に装着されたノズル2の左端面(糸排出部12の排出口12aが形成された先端面)と、わずかな隙間を空けて対向している。 Next, the collision body 4 will be described. As shown in FIGS. 3 and 4, the collision body 4 is a member having a substantially disk-like outer shape, and is formed of a hard material such as metal or ceramics. The collision body 4 faces the left end surface of the nozzle 2 attached to the nozzle holder 3 (the front end surface where the discharge port 12a of the yarn discharge unit 12 is formed) with a slight gap.
 衝突体4の、ノズル2の左端面と対向する右面のうちの、排出口12aに対向する中央部には凹部4aが形成されている。この凹部4aの内面は、ノズル2の中心軸を含む平面における断面が、円弧状の曲面となっている。また、凹部4aは、糸排出部12の先端面と平行な平坦面を有する平坦部4bによって取り囲まれている。 A concave portion 4a is formed in the central portion of the colliding body 4 facing the discharge port 12a on the right surface facing the left end surface of the nozzle 2. The inner surface of the recess 4 a has a circular arc-shaped cross section in a plane including the central axis of the nozzle 2. Further, the concave portion 4 a is surrounded by a flat portion 4 b having a flat surface parallel to the tip surface of the yarn discharge portion 12.
 尚、衝突体4をノズル2の排出口12aと対向する位置に保持する構成は特に限定されるものではないが、本実施形態では一例として以下のような構成を採用している。まず、図1に示すように、ノズルホルダ3の下部左側面に取付ベース部材23がボルト等により固定され、この取付ベース部材23にブロック状のホルダ24の下部が鉛直面内において回動自在に連結されている。また、ホルダ24には連結棒25の一端が固定され、連結棒25の他端には衝突体4が固定されている。この構成では、図3に二点鎖線で示されるように、ホルダ24が取付ベース部材23に対して回動したときに、衝突体4も一体に回動し、衝突体4は、ノズルホルダの排出口12aと対向する位置(実線で示される位置)と、排出口12aから離れた退避位置(二点鎖線で示される位置)にわたって移動可能である。そして、衝突体4を退避位置に移動させることにより、ノズル2内への糸通しを容易に行うことができるようになっている。 In addition, although the structure which hold | maintains the collision body 4 in the position facing the discharge port 12a of the nozzle 2 is not specifically limited, In this embodiment, the following structures are employ | adopted as an example. First, as shown in FIG. 1, a mounting base member 23 is fixed to the lower left side surface of the nozzle holder 3 with a bolt or the like, and the lower portion of the block-shaped holder 24 is rotatable on the mounting base member 23 in a vertical plane. It is connected. Further, one end of a connecting rod 25 is fixed to the holder 24, and the collision body 4 is fixed to the other end of the connecting rod 25. In this configuration, as shown by a two-dot chain line in FIG. 3, when the holder 24 rotates with respect to the mounting base member 23, the collision body 4 also rotates integrally. It can move over a position facing the discharge port 12a (a position indicated by a solid line) and a retreat position (a position indicated by a two-dot chain line) away from the discharge port 12a. Then, by moving the collision body 4 to the retracted position, threading into the nozzle 2 can be easily performed.
 尚、ノズル2の糸排出部12から排出された後の糸31の走行を安定させるために、ノズル2よりも下流側に糸ガイドを設けることが好ましい。しかし、糸ガイドのノズル2に対する位置によってノズル下流側の糸の張力が変わる。そのため、糸処理装置1とは別に糸ガイドを設ける場合には、糸の張力を適切に設定するために、糸処理装置を設置した後に、さらに、糸ガイドの糸処理装置1(ノズル2)に対する位置を調整するという面倒な作業が必要となる。 In addition, in order to stabilize the running of the yarn 31 after being discharged from the yarn discharging portion 12 of the nozzle 2, it is preferable to provide a yarn guide on the downstream side of the nozzle 2. However, the tension of the yarn downstream of the nozzle changes depending on the position of the yarn guide with respect to the nozzle 2. Therefore, when a yarn guide is provided separately from the yarn processing device 1, in order to appropriately set the yarn tension, after the yarn processing device is installed, the yarn guide with respect to the yarn processing device 1 (nozzle 2) is further provided. The troublesome work of adjusting the position is required.
 そこで、図1、図2に示すように、本実施形態では、ノズルホルダ3に固定された取付ベース部材23に、ノズル2から排出された糸をガイドする糸ガイド26が取付部材27を介して設けられている。即ち、ノズル2及び衝突体4が設けられたノズルホルダ3に、さらに糸ガイド26が設けられて、ノズル2や衝突体4と糸ガイド26が一体となっている。そして、図1の右方からノズル2内に通されて糸排出部12から排出される糸が、図1の手前側(図2では右側)に位置する糸ガイドを経由して上方へ案内される。上記のように、糸ガイド26がノズルホルダ3と一体となっていることで、糸処理装置1を所定の位置に設置するだけで糸ガイド26の位置も自動的に定まり、糸ガイド26のノズル2に対する位置を調整する必要がない。 Therefore, as shown in FIGS. 1 and 2, in this embodiment, a thread guide 26 that guides the thread discharged from the nozzle 2 is attached to the mounting base member 23 fixed to the nozzle holder 3 via the mounting member 27. Is provided. That is, the yarn holder 26 is further provided in the nozzle holder 3 in which the nozzle 2 and the collision body 4 are provided, and the nozzle 2 or the collision body 4 and the yarn guide 26 are integrated. Then, the yarn passed through the nozzle 2 from the right side in FIG. 1 and discharged from the yarn discharge portion 12 is guided upward via a yarn guide located on the front side (right side in FIG. 2) in FIG. The As described above, since the yarn guide 26 is integrated with the nozzle holder 3, the position of the yarn guide 26 is automatically determined only by installing the yarn processing apparatus 1 at a predetermined position. There is no need to adjust the position relative to 2.
 次に、本実施形態の糸処理装置1の、嵩高加工時における作用について説明する。まず、図1~図3に示すように、ノズル2に設けられた糸導入部11の導入口11aから、合成樹脂等のフィラメントからなる糸31が導入され、エア導入部13へ導かれる。また、エア導入部13には、図示しないエア供給源から供給されたエアがエア噴射孔14から噴射される。 Next, the operation of the yarn processing apparatus 1 of the present embodiment at the time of bulky processing will be described. First, as shown in FIGS. 1 to 3, a yarn 31 made of a filament such as synthetic resin is introduced from an introduction port 11 a of a yarn introduction portion 11 provided in the nozzle 2 and guided to the air introduction portion 13. In addition, air supplied from an air supply source (not shown) is injected into the air introduction portion 13 from the air injection hole 14.
 エア導入部13に噴射されたエアは糸排出部12から排出され、さらに、排出口12aに対向して配置されている衝突体4に衝突し、このときのエアの流れに乗って、糸31は衝突体4と糸排出部12との間の隙間から排出される。このとき、糸排出部12内の激しいエアの流れによって糸31の構成フィラメントがほぐされ、さらに、個々のフィラメントが激しく運動することによってループや交絡等が発生することで、糸31に嵩高性が付与される。 The air injected into the air introduction unit 13 is discharged from the yarn discharge unit 12, and further collides with the collision body 4 disposed to face the discharge port 12a. Is discharged from the gap between the collision body 4 and the yarn discharge portion 12. At this time, the filament 31 constituting the yarn 31 is loosened by the intense air flow in the yarn discharge section 12, and further, the yarn 31 is bulky due to the occurrence of loops, entanglement, and the like due to intense movement of the individual filaments. Is granted.
 ここで、前述したように、本実施形態の糸処理装置1においては、衝突体4の排出口12aと対向する面には凹部4aが形成されている。そのため、ノズル2の糸排出部12と衝突体4との間に大きな空間が確保され、この空間内でエアの流れが乱れやすくなる。従って、激しいエアの流れによって糸排出部12から排出されたフィラメントにループや交絡が生じやすくなることから、糸の加工性能が向上する。また、糸処理装置1の加工性能が向上するということは、従来よりも速い糸速で加工を行っても、従来と同等の加工品質が得られるということでもあり、生産性が向上し、また、ある単位長さの糸を加工するのに必要なエアの消費量が少なくなる。 Here, as described above, in the yarn processing apparatus 1 of the present embodiment, the concave portion 4a is formed on the surface of the collision body 4 facing the discharge port 12a. Therefore, a large space is ensured between the yarn discharge portion 12 of the nozzle 2 and the collision body 4, and the air flow is easily disturbed in this space. Accordingly, loops and entanglement are likely to occur in the filament discharged from the yarn discharge section 12 by vigorous air flow, so that the yarn processing performance is improved. Further, the improvement in the processing performance of the yarn processing apparatus 1 means that even if processing is performed at a higher yarn speed than before, processing quality equivalent to the conventional one can be obtained, and productivity is improved. This reduces the amount of air consumed to process a unit length of yarn.
 また、本実施形態では、衝突体4の凹部4aが断面円弧状の連続的な曲面で形成されている。凹部4aが曲面で形成されていると、糸排出部12から糸とともに排出されたエアが、凹部4a内の空間においてその内面に沿って流れるため、エアが局所的に滞留しにくくなり、フィラメントにループや交絡がさらに生じやすくなる。また、断面円弧状の凹部4aは、その中央部(ノズル2の中心軸が通る位置)において最も凹んだ形状になり、糸排出部12から排出されてきた糸は、凹部4aの最奥部に収束されて衝突する。このように、糸が衝突体4の一箇所に集中して衝突することで、その後の糸加工(ループ形成あるいは交絡)が安定して行われ、糸の加工性能が向上する。 Further, in the present embodiment, the concave portion 4a of the collision body 4 is formed by a continuous curved surface having an arc cross section. When the concave portion 4a is formed in a curved surface, the air discharged together with the yarn from the yarn discharging portion 12 flows along the inner surface in the space in the concave portion 4a, so that the air is less likely to locally stay in the filament. Loops and confounding are more likely to occur. Further, the concave portion 4a having an arc-shaped cross section has the most concave shape in the central portion (position where the central axis of the nozzle 2 passes), and the yarn discharged from the yarn discharge portion 12 is in the innermost portion of the concave portion 4a. It converges and collides. As described above, the yarn concentrates and collides with one place of the collision body 4, so that subsequent yarn processing (loop formation or entanglement) is stably performed, and the processing performance of the yarn is improved.
 また、本実施形態では、衝突体4の排出口12aとの対向部分には、凹部4aと、この凹部を取り囲むように平坦部4bが設けられている。この場合、衝突体4の対向部分の全体が凹状に形成されて、端部(外周部)が尖っている場合(後で挙げる変更形態の図5(e))と比べて、衝突体4の前記対向部分の端部(外周部)形状のばらつきが小さくなり、また、欠けも生じにくいから、糸の加工が安定する。尚、衝突体4の外径をD、凹部4aの径をd、平坦部4bの幅をtとしたとき、D=d+2tとなるが、この平坦部4bの幅tは、0≦t≦5(mm)の範囲で決定されることが好ましい。 Further, in the present embodiment, a concave portion 4a and a flat portion 4b are provided so as to surround the concave portion at a portion facing the discharge port 12a of the collision body 4. In this case, as compared with the case where the entire facing portion of the collision body 4 is formed in a concave shape and the end portion (outer peripheral portion) is pointed (FIG. 5 (e) of a modified form to be described later), Variations in the shape of the end (outer peripheral portion) of the facing portion are reduced, and chipping is less likely to occur, so that yarn processing is stable. When the outer diameter of the collision body 4 is D, the diameter of the recess 4a is d, and the width of the flat portion 4b is t, D = d + 2t. The width t of the flat portion 4b is 0 ≦ t ≦ 5. It is preferable to be determined in the range of (mm).
 尚、本発明は前述の実施形態に限られるものではなく、下記に例示するように、本発明の趣旨を逸脱しない範囲内で適宜変更を加えることができる。 Note that the present invention is not limited to the above-described embodiment, and can be appropriately modified without departing from the spirit of the present invention, as exemplified below.
1]衝突体4の、ノズル2の排出口12aとの対向部分の凹形状は、前記実施形態の断面円弧状に限られるものではない。例えば、図5に示すように、凹部4aの断面形状として、(a)楕円弧状、(b)鍋底状、(c)台形状、(d)円錐状等を採用することもできる。 1] The concave shape of the collision body 4 facing the discharge port 12a of the nozzle 2 is not limited to the circular arc shape in the above embodiment. For example, as shown in FIG. 5, (a) an elliptical arc shape, (b) a pan bottom shape, (c) a trapezoidal shape, (d) a conical shape, or the like may be employed as the cross-sectional shape of the recess 4 a.
 尚、図5(a)~(d)のうち、(a)の楕円弧状の凹部4aは、前記実施形態の円弧状の凹部(図4参照)と同様に、その内面が曲面で形成されているため、エアがその内面に沿って流れて局所的に滞留しにくく、糸にループや交絡が生じやすい。また、(a)の楕円弧状と(d)の円錐状では、その中央部において最も凹んでいるため、糸が衝突体の最奥部に集中して衝突することで、その後の糸加工が安定して行われる。 5A to 5D, the elliptical arc-shaped recess 4a in FIG. 5A has an inner surface formed in a curved surface, like the arc-shaped recess (see FIG. 4) of the above embodiment. For this reason, the air flows along the inner surface and is not likely to stay locally, and loops and entanglements are likely to occur in the yarn. In addition, in the elliptical arc shape of (a) and the conical shape of (d), since the most concave portion is in the center, the yarn is concentrated and collides with the innermost part of the collision body, so that subsequent yarn processing is stable. Done.
 また、前記実施形態の図4のように、凹部4aが衝突体4の排出口12a側の面の一部にのみ設けられ、凹部4aの周囲が平坦部4bで取り囲まれている必要は必ずしもなく、図5(e)のように、衝突体4の排出口12a側の面全体が凹部4aとなっていてもよい。 Further, as shown in FIG. 4 of the above embodiment, the recess 4a is not necessarily provided on a part of the surface of the collision body 4 on the discharge port 12a side, and the periphery of the recess 4a is not necessarily surrounded by the flat portion 4b. As shown in FIG. 5E, the entire surface of the collision body 4 on the discharge port 12a side may be a recess 4a.
2]ノズル2は、前記実施形態の図4(a)のような形状のものには限られない。例えば、図6(a)に示すように、糸導入部11がテーパー状、糸排出部12がラッパ状のものであってもよい。あるいは、図6(b)に示すように、糸導入部11が径の変化しないストレート状のものであってもよい。 2] The nozzle 2 is not limited to the shape shown in FIG. For example, as shown in FIG. 6A, the yarn introduction portion 11 may be tapered and the yarn discharge portion 12 may be a trumpet shape. Alternatively, as shown in FIG. 6B, the yarn introduction portion 11 may be a straight shape whose diameter does not change.
3]前記実施形態では衝突体4がノズルホルダ3に対して移動(回動)可能に構成されていたが、衝突体4がノズルホルダ3に対して固定されていてもよい。 3] Although the collision body 4 is configured to be movable (rotated) with respect to the nozzle holder 3 in the embodiment, the collision body 4 may be fixed to the nozzle holder 3.
 次に、本発明の具体的な実施例について、比較例と比較して説明する。 Next, specific examples of the present invention will be described in comparison with comparative examples.
(1)ノズル及び衝突体の仕様
 実施例及び比較例で使用した、4種類のノズルの仕様を表1に、6種類の衝突体の仕様を表2に示す。また、これらのノズルと衝突体の組み合わせを図7に示す。
(1) Nozzle and collision body specifications Table 1 shows the specifications of the four types of nozzles used in the examples and comparative examples, and Table 2 shows the specifications of the six kinds of collision bodies. Moreover, the combination of these nozzles and a collision body is shown in FIG.
Figure JPOXMLDOC01-appb-T000001
Figure JPOXMLDOC01-appb-T000001
Figure JPOXMLDOC01-appb-T000002
Figure JPOXMLDOC01-appb-T000002
 表1のNo.1ノズルとNo.2ノズルは、図7左側の(1)に示されるノズルである。また、表2のNo.3ノズルとNo.4ノズルは、図7右側の(2)に示されるノズルである。但し、表1に示すように、No.1ノズルとNo.2ノズルではエア噴射孔の径が異なっており、適用される糸の太さ範囲が若干ずれている(No.1ノズルは細い糸用、No.2ノズルは太い糸用)。また、No.3ノズルとNo.4ノズルについても同様である。 No. in Table 1. 1 nozzle and no. The two nozzles are nozzles shown in (1) on the left side of FIG. In Table 2, No. 3 nozzles and no. The four nozzles are nozzles shown in (2) on the right side of FIG. However, as shown in Table 1, no. 1 nozzle and no. In the two nozzles, the diameters of the air injection holes are different, and the thickness range of the applied yarn is slightly shifted (No. 1 nozzle is for a thin yarn and No. 2 nozzle is for a thick yarn). No. 3 nozzles and no. The same applies to the four nozzles.
 また、表2に示されるように、衝突体については、ノズルの排出口との対向部分が凹状に形成された、本発明を適用した実施例である3種類の衝突体(Cup)と、比較例としての2種類の球状の衝突体(Ball)と1種類の平板状の衝突体(Plate)の、計6種類を使用している。図7では(a),(e)が13mmの球状衝突体、(b)、(f)が6mmの球状衝突体、(c)、(g)が平板衝突体、(d)、(h)が本発明の凹状衝突体である。また、6種類の衝突体は全てセラミックス製となっている。 Further, as shown in Table 2, the collision body is compared with the three types of collision bodies (Cup), which are the embodiments to which the present invention is applied, in which the portion facing the discharge port of the nozzle is formed in a concave shape. For example, a total of six types of two types of spherical impact bodies (Ball) and one type of flat impact body (Plate) are used. In FIG. 7, (a) and (e) are 13 mm spherical collision bodies, (b) and (f) are 6 mm spherical collision bodies, (c) and (g) are flat plate collision bodies, and (d) and (h). Is the concave collision body of the present invention. Moreover, all the six types of collision bodies are made of ceramics.
(2)衝突体形状の違いによる加工性能の比較検討
 衝突体形状の違いにより、糸処理装置の加工性能がどのように変わるかについて検討した。即ち、表1のノズルと表2の衝突体を組み合わせ、糸の材質、及び、糸の太さを変えてそれぞれ実験を行い、それぞれのケースについてノズル下流側(排出側)の糸張力を測定した。
(2) Comparison of processing performance due to the difference in the shape of the impacting body We examined how the processing performance of the yarn processing device changes due to the difference in the shape of the impacting body. That is, the nozzle of Table 1 and the collision body of Table 2 were combined, and the experiment was performed by changing the thread material and the thread thickness, and the thread tension on the nozzle downstream side (discharge side) was measured for each case. .
 尚、ここでは、コア糸とエフェクト糸を異なる供給速度でそれぞれノズルに供給して加工を行う、コア&エフェクト加工によって行った。また、ノズル下流側の糸速(排出側糸速)を4段階で変化させるとともに、コア糸とエフェクト糸のそれぞれについてのオーバーフィード量(ノズルへの供給糸量(供給側糸速)の、排出糸量(排出側糸速)に対する過剰率)を一定にしたときの、排出側の糸張力(単位:gr)を測定した。ポリエステル糸(PET)で、糸太さが150デニール、300デニール、600デニール、及び、750デニールのそれぞれにおける、排出側の糸張力測定結果を表3~表6に示す。また、ナイロン糸(PA6)で糸太さが140dの場合の、排出側の糸張力測定結果を表7に示す。尚、表3~表7においては、表1の4種類のノズルの中から、糸の太さに対応したノズルを適宜選択して使用している。 In addition, here, the core yarn and the effect yarn were processed by supplying them to the nozzles at different supply speeds, and the processing was performed by core & effect processing. In addition, the yarn speed (discharge side yarn speed) on the downstream side of the nozzle is changed in four stages, and the overfeed amount (the amount of yarn supplied to the nozzle (supply side yarn speed)) for each of the core yarn and the effect yarn is discharged. The yarn tension (unit: gr) on the discharge side when the yarn amount (excess rate with respect to the yarn amount (discharge side yarn speed)) was made constant was measured. Tables 3 to 6 show the thread tension measurement results on the discharge side for polyester yarn (PET) having a yarn thickness of 150 denier, 300 denier, 600 denier, and 750 denier, respectively. Table 7 shows the thread tension measurement result on the discharge side when the thread thickness is 140d with nylon thread (PA6). In Tables 3 to 7, a nozzle corresponding to the thickness of the thread is appropriately selected from the four types of nozzles in Table 1 and used.
Figure JPOXMLDOC01-appb-T000003
Figure JPOXMLDOC01-appb-T000003
Figure JPOXMLDOC01-appb-T000004
Figure JPOXMLDOC01-appb-T000004
Figure JPOXMLDOC01-appb-T000005
Figure JPOXMLDOC01-appb-T000005
Figure JPOXMLDOC01-appb-T000006
Figure JPOXMLDOC01-appb-T000006
Figure JPOXMLDOC01-appb-T000007
Figure JPOXMLDOC01-appb-T000007
 一般に、排出側の糸張力が高くなるほど糸の交絡が強くなることが知られている。つまり、排出側の糸張力が高いほど、良好な加工が得られていると判断することができる。この点、表3~表7に示されるように、糸の材質、糸の太さ、及び、ノズルの種類にかかわらず、本発明の凹状の衝突体(Cup)を用いたケース(実施例)では、球状衝突体(Ball)や平板状の衝突体(Plate)を用いたケース(比較例)と比較して、排出側の糸張力が高くなっている。つまり、凹状の衝突体を使用することで、糸処理装置の糸の加工性能がかなり向上していることがわかる。 Generally, it is known that the higher the yarn tension on the discharge side, the stronger the entanglement of the yarn. That is, it can be determined that the higher the yarn tension on the discharge side, the better the processing. In this regard, as shown in Tables 3 to 7, the case using the concave collision body (Cup) of the present invention regardless of the thread material, thread thickness, and nozzle type (Example) Then, compared with the case (comparative example) using a spherical impact body (Ball) or a flat impact body (Plate), the yarn tension on the discharge side is higher. That is, it can be seen that the yarn processing performance of the yarn processing apparatus is considerably improved by using the concave collision body.
 また、表3~表7からも分かるように、一般的に、糸速が低いほうが、排出側の糸張力が高くなり、糸の加工が良好になる傾向にある。この点について、球状衝突体や平板状の衝突体を用いた場合には、ある一定以上の加工品質(一定以上の糸張力)を実現しようとすると、糸速を低くせざるを得ないが、本発明の凹状の衝突体を用いることによって、球状や平板状と同等以上の品質の糸をより速い糸速で生産することができ、生産性が大きく向上する。 As can be seen from Tables 3 to 7, generally, the lower the yarn speed, the higher the yarn tension on the discharge side and the better the yarn processing. In this regard, when using a spherical collision body or a flat collision body, when trying to achieve a certain level of processing quality (thread tension above a certain level), the yarn speed has to be lowered. By using the concave collision body of the present invention, a yarn having a quality equal to or better than that of a spherical or flat plate can be produced at a faster yarn speed, and the productivity is greatly improved.
 例えば、表5において、球状衝突体(Ball)や平板衝突体(Plate)では350m/minの低速まで糸速を落としてようやく11グラムの張力となっているのに対し、凹状衝突体(Cup)では500m/minまで糸速を上げても11グラム超の張力となり、球状衝突体や平板衝突体の低速での加工と同等以上の品質が得られることがわかる。 For example, in Table 5, the spherical collision body (Ball) and the flat plate collision body (Plate) have a tension of 11 grams only at a low speed of 350 m / min, whereas the concave collision body (Cup). Thus, it can be seen that even if the yarn speed is increased to 500 m / min, the tension is more than 11 grams, and a quality equivalent to or higher than the processing at a low speed of the spherical impact member or the flat impact member can be obtained.
(3)凹状衝突体の凹部径について
 次に、凹状衝突体の凹部径(図7に示される寸法d)を変えたときの糸の加工性能について検討した。ここでは、表2に示されている、凹部の径が11mm、20mm、及び、24mmの3種類の衝突体と、比較例としての平板状の衝突体を使用し、また、糸の太さを変えて実験を行った。糸の材質がPETで、糸太さが150デニール、300デニール、及び、600デニールのそれぞれについての、排出側の糸張力測定結果を表8~表10に示す。
(3) Concave diameter of concave impactor Next, the processing performance of the yarn when the concave diameter (dimension d shown in FIG. 7) of the concave impactor was changed was examined. Here, three types of impact bodies shown in Table 2 having a recess diameter of 11 mm, 20 mm, and 24 mm and a flat impact body as a comparative example are used. The experiment was carried out by changing. Tables 8 to 10 show the thread tension measurement results on the discharge side when the yarn material is PET and the yarn thickness is 150 denier, 300 denier, and 600 denier, respectively.
Figure JPOXMLDOC01-appb-T000008
Figure JPOXMLDOC01-appb-T000008
Figure JPOXMLDOC01-appb-T000009
Figure JPOXMLDOC01-appb-T000009
Figure JPOXMLDOC01-appb-T000010
Figure JPOXMLDOC01-appb-T000010
 表8~表10に示すように、糸太さ及びノズルの種類にかかわらず、凹部の径が11mm~24mmの範囲で、平板状の衝突体を使用した場合と比べて糸張力が高くなっており、加工性能が向上している。 As shown in Table 8 to Table 10, regardless of the thread thickness and the type of nozzle, the thread tension is higher in the range of the recess diameter of 11 mm to 24 mm than in the case of using a flat collision body. The processing performance is improved.
 尚、衝突体の凹部を、対向する排出口の径に対して極端に小さくする、あるいは、極端に大きくした場合には、加工性能向上の効果は小さいと考えられる。これに関して、表8~表10には、ノズルの排出口径(K)と衝突体の凹部径(d)との比率(ε=K/d)という無次元化したパラメータが記載されており、少なくとも、εが0.25~1.18の範囲内で、加工性能が良好となることがわかる。 It should be noted that if the concave portion of the collision body is made extremely small or extremely large with respect to the diameter of the opposing discharge port, it is considered that the effect of improving the machining performance is small. In this regard, Tables 8 to 10 describe a dimensionless parameter, which is a ratio (ε = K / d) of the nozzle outlet diameter (K) and the concave diameter (d) of the collision body, at least. , Ε is in the range of 0.25 to 1.18, it can be seen that the processing performance is good.
1 糸処理装置
2 ノズル
3 ノズルホルダ
4 衝突体
4a 凹部
4b 平坦部
10 糸通路
11a 導入口
12 糸排出部
12a 排出口
14 エア噴射孔
26 糸ガイド
31 糸
DESCRIPTION OF SYMBOLS 1 Yarn processing apparatus 2 Nozzle 3 Nozzle holder 4 Colliding body 4a Recessed part 4b Flat part 10 Yarn passage 11a Inlet 12 Yarn discharge part 12a Drain 14 Air injection hole 26 Yarn guide 31 Yarn

Claims (6)

  1.  糸導入部及び糸排出部を備えた糸通路と、前記糸通路に流体を噴射する流体噴射孔とを有するノズルと、
     前記糸排出部の排出口が形成された先端面と隙間を空けて対向する面を有する衝突体を備え、
     前記衝突体の、前記糸排出部の前記先端面と対向する面のうちの、前記排出口との対向部分が、凹状に形成されていることを特徴とする糸処理装置。
    A nozzle having a yarn passage having a yarn introduction portion and a yarn discharge portion, and a fluid injection hole for injecting a fluid into the yarn passage;
    A collision body having a surface facing the front end surface where the discharge port of the yarn discharge portion is formed with a gap;
    Of the surface of the collision body that faces the tip end surface of the yarn discharge portion, a portion facing the discharge port is formed in a concave shape.
  2.  前記衝突体の凹状の前記対向部分の内面が、曲面で形成されていることを特徴とする請求項1に記載の糸処理装置。 The yarn processing apparatus according to claim 1, wherein an inner surface of the concave facing portion of the collision body is formed as a curved surface.
  3.  前記衝突体の前記対向部分は、その中央部において最も凹んだ形状に形成されていることを特徴とする請求項1又は2に記載の糸処理装置。 The yarn processing apparatus according to claim 1 or 2, wherein the facing portion of the colliding body is formed in a most recessed shape at a central portion thereof.
  4.  前記衝突体の前記対向部分の断面形状が、円弧状又は楕円弧状であることを特徴とする請求項1に記載の糸処理装置。 The yarn processing apparatus according to claim 1, wherein a cross-sectional shape of the facing portion of the collision body is an arc shape or an elliptical arc shape.
  5.  前記衝突体の前記対向部分に、凹部と、前記排出口を含む前記糸排出部の先端面に平行で、且つ、前記凹部を取り囲む平坦部とが形成されていることを特徴とする請求項1~4の何れかに記載の糸処理装置。 The concave portion and a flat portion that is parallel to the front end surface of the yarn discharge portion including the discharge port and that surrounds the concave portion are formed in the facing portion of the collision body. The yarn processing apparatus according to any one of 1 to 4.
  6.  前記ノズルを保持するノズルホルダを有し、
     前記衝突体は前記ノズルホルダに取り付けられ、
     さらに、前記ノズルホルダには、前記ノズルの糸排出部と前記衝突体との間を通過して出てきた糸をガイドする糸ガイドが設けられていることを特徴とする請求項1~5の何れかに記載の糸処理装置。
    A nozzle holder for holding the nozzle;
    The collision body is attached to the nozzle holder,
    Further, the nozzle holder is provided with a yarn guide for guiding the yarn that has passed through between the yarn discharge portion of the nozzle and the collision body. The yarn processing apparatus according to any one of the above.
PCT/JP2011/070376 2010-10-15 2011-09-07 Yarn processing device WO2012049924A1 (en)

Priority Applications (3)

Application Number Priority Date Filing Date Title
EP11832363.3A EP2628830B1 (en) 2010-10-15 2011-09-07 Yarn processing device
KR1020137012256A KR101606376B1 (en) 2010-10-15 2011-09-07 Yarn processing device
JP2012538606A JP5754817B2 (en) 2010-10-15 2011-09-07 Yarn processing device

Applications Claiming Priority (2)

Application Number Priority Date Filing Date Title
JP2010232624 2010-10-15
JP2010-232624 2010-10-15

Publications (1)

Publication Number Publication Date
WO2012049924A1 true WO2012049924A1 (en) 2012-04-19

Family

ID=45938158

Family Applications (1)

Application Number Title Priority Date Filing Date
PCT/JP2011/070376 WO2012049924A1 (en) 2010-10-15 2011-09-07 Yarn processing device

Country Status (5)

Country Link
EP (1) EP2628830B1 (en)
JP (1) JP5754817B2 (en)
KR (1) KR101606376B1 (en)
TW (1) TWI586859B (en)
WO (1) WO2012049924A1 (en)

Cited By (1)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
TWI815821B (en) * 2017-10-16 2023-09-21 瑞士商希伯萊因股份有限公司 Nozzle and device for processing yarn

Citations (2)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
JP2000514509A (en) * 1996-02-15 2000-10-31 ヘーバーライン・ファーザーテヒノロギー・アクチェンゲゼルシャフト Aerodynamic texturing method, textured nozzle, nozzle head and use thereof
JP2001140137A (en) * 1999-11-12 2001-05-22 Unitika Ltd Fluid jetting device having yarn collision unit

Family Cites Families (3)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
DE2634460C2 (en) * 1976-07-29 1982-07-01 Heberlein Maschinenfabrik AG, 9630 Wattwil Apparatus for texturing yarns consisting of endless synthetic filaments
KR200296972Y1 (en) * 2002-08-26 2002-12-05 이화공업주식회사 A yarn protecting guide tension device of the interlacer nozzle
CN2591054Y (en) * 2002-12-19 2003-12-10 陈家寿 Air deformation spray nozzle

Patent Citations (2)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
JP2000514509A (en) * 1996-02-15 2000-10-31 ヘーバーライン・ファーザーテヒノロギー・アクチェンゲゼルシャフト Aerodynamic texturing method, textured nozzle, nozzle head and use thereof
JP2001140137A (en) * 1999-11-12 2001-05-22 Unitika Ltd Fluid jetting device having yarn collision unit

Cited By (1)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
TWI815821B (en) * 2017-10-16 2023-09-21 瑞士商希伯萊因股份有限公司 Nozzle and device for processing yarn

Also Published As

Publication number Publication date
TWI586859B (en) 2017-06-11
KR101606376B1 (en) 2016-03-25
EP2628830B1 (en) 2015-07-01
KR20140010365A (en) 2014-01-24
JP5754817B2 (en) 2015-07-29
TW201229342A (en) 2012-07-16
EP2628830A1 (en) 2013-08-21
EP2628830A4 (en) 2014-04-02
JPWO2012049924A1 (en) 2014-02-24

Similar Documents

Publication Publication Date Title
KR100296216B1 (en) The method of processing the filament yarn by the aerodynamic principle, the yarn processing nozzle, the nozzle head and its use
US7353575B2 (en) Method and device for producing a fancy knotted yarn
US8726474B2 (en) Texturing device and method for texturing continuous yarns
US11247217B2 (en) Double-flow nozzle
JP2008516099A5 (en)
JP5754817B2 (en) Yarn processing device
US4535516A (en) Apparatus for the production of fixed point multifilament yarns
EP0947619B1 (en) Apparatus for fluid treatment of yarn and a yarn composed of entangled multifilament
JPS6022093B2 (en) Jet for texturing
JPH05222640A (en) Yarn interlacer
US7500296B2 (en) Texturing nozzle and method for the texturing of endless yarn
JP2645473B2 (en) Yarn processing nozzle
JP2011157653A (en) Yarn-treating device
JP2000239938A (en) Nozzle for jetting liquid
JP2010281019A (en) Interlacing device and interlacing method for multifilament yarn
TWI718091B (en) Nozzle and method for manufacturing knotted yarn
JP3866088B2 (en) Weft insertion nozzle of water jet loom
JPS6023326Y2 (en) Yarn processing nozzle
KR200361417Y1 (en) Texturing nozzle for the texturing of endless yarn
EP1207226B1 (en) Apparatus for fluid treatment of yarn and a yarn composed of entangled multifilament
TWI612187B (en) Yarn processing device
JP2016172938A (en) Interlacing device for yarn and manufacturing method for synthetic fiber using the same
JP2000273735A (en) Fluid treating apparatus
JP5920988B2 (en) Thread processing nozzle
JPS5928056Y2 (en) Nozzle for textured processing

Legal Events

Date Code Title Description
121 Ep: the epo has been informed by wipo that ep was designated in this application

Ref document number: 11832363

Country of ref document: EP

Kind code of ref document: A1

ENP Entry into the national phase

Ref document number: 2012538606

Country of ref document: JP

Kind code of ref document: A

NENP Non-entry into the national phase

Ref country code: DE

ENP Entry into the national phase

Ref document number: 20137012256

Country of ref document: KR

Kind code of ref document: A

WWE Wipo information: entry into national phase

Ref document number: 2011832363

Country of ref document: EP