WO2012048644A1 - 一种中继节点的公共搜索空间的检测方法及系统 - Google Patents

一种中继节点的公共搜索空间的检测方法及系统 Download PDF

Info

Publication number
WO2012048644A1
WO2012048644A1 PCT/CN2011/080703 CN2011080703W WO2012048644A1 WO 2012048644 A1 WO2012048644 A1 WO 2012048644A1 CN 2011080703 W CN2011080703 W CN 2011080703W WO 2012048644 A1 WO2012048644 A1 WO 2012048644A1
Authority
WO
WIPO (PCT)
Prior art keywords
prb
search space
cce
common search
starting position
Prior art date
Application number
PCT/CN2011/080703
Other languages
English (en)
French (fr)
Inventor
袁明
毕峰
杨瑾
梁枫
吴栓栓
Original Assignee
中兴通讯股份有限公司
Priority date (The priority date is an assumption and is not a legal conclusion. Google has not performed a legal analysis and makes no representation as to the accuracy of the date listed.)
Filing date
Publication date
Application filed by 中兴通讯股份有限公司 filed Critical 中兴通讯股份有限公司
Publication of WO2012048644A1 publication Critical patent/WO2012048644A1/zh

Links

Classifications

    • HELECTRICITY
    • H04ELECTRIC COMMUNICATION TECHNIQUE
    • H04WWIRELESS COMMUNICATION NETWORKS
    • H04W74/00Wireless channel access
    • HELECTRICITY
    • H04ELECTRIC COMMUNICATION TECHNIQUE
    • H04WWIRELESS COMMUNICATION NETWORKS
    • H04W84/00Network topologies
    • H04W84/02Hierarchically pre-organised networks, e.g. paging networks, cellular networks, WLAN [Wireless Local Area Network] or WLL [Wireless Local Loop]
    • H04W84/04Large scale networks; Deep hierarchical networks
    • H04W84/042Public Land Mobile systems, e.g. cellular systems
    • H04W84/047Public Land Mobile systems, e.g. cellular systems using dedicated repeater stations

Definitions

  • the present invention relates to the field of mobile communication technologies, and in particular, to a method and system for detecting a common search space of a relay node (RN).
  • RN relay node
  • LTE Long Term Evolution
  • LTE-Advanced Advanced Long Term Evolution
  • IMT-Advanced International Mobile Telecommunication Advanced
  • a subframe consists of 2 slots.
  • a subframe consists of 2 slots.
  • CP Cyclic Prefix
  • each slot consists of 7 OFDM symbols.
  • the Physical Downlink Control Channel (PDCCH) is located on the first 1 or 2 or 3 or 4 OFDM symbols of each subframe.
  • PDCCH Physical Downlink Control Channel
  • the design of the PDCCH consists of several different components, each of which has its specific function. For convenience of description, several terms and conventions are described below:
  • Resource Element The smallest time-frequency resource block occupying 1 subcarrier on 1 OFDM symbol.
  • Resource Element Group According to the position of the reference symbol on each OFDM symbol, one REG may be composed of 4 or 6 REs; specifically, when the OFDM symbol contains a reference symbol, In the case of a pilot, at this time, one REG is composed of 6 REs, and two of the REs are occupied by reference symbols; when the OFDM symbol does not contain a reference symbol, one REG is composed of 4 REs at this time.
  • Physical Resource Block PRB: One consecutive time slot in the time domain and 12 consecutive subcarriers in the frequency domain.
  • Physical resource block pair One consecutive subframe in the time domain and 12 consecutive subcarriers in the frequency domain.
  • Control Channel Element consists of 36 REs, 9
  • the REG component the information contained in the CCE includes: a user's downlink scheduling grant information (DL grant), an uplink scheduling grant information (UL grant), and a system information (SI), random access (Random Access, RA) Response message, paging (Paging) message related information 6.
  • Aggregation level L CCE combination form, that is, the PDCCH can only be composed of L CCEs, where ⁇ 1, 2, 4, 8 ⁇ , that is, PDCCH only Can include the following combinations: 1 CCE combination (1-CCE), 2 CCE combinations (2-CCE), 4 CCE combinations (4-CCE) and 8 CCE combinations (8CCE) Composition. And the above four different combinations respectively correspond to four different coding rate: 1-CCE coding rate is 2/3, 2-CCE coding rate is 1/3, 4-CCE coding rate The code rate of 1/6, 8-CCE is 1/12.
  • Search space The search space is composed of several groups of candidate control channels.
  • the user equipment User Equipment, UE
  • Downlink control channel Downlink control channel.
  • the size of the common search space is CCE 0 ⁇ CCE 15, that is, a total of 16 CCEs, and CCEs that are not used in the common search space can be used for the UE-specific search space.
  • Different CCE aggregation levels have their corresponding number of candidate control channels. This is the maximum number of blind detections.
  • the common search space consists of only 4-CCEs and 8-CCEs, and the number of candidate control channels corresponding to 4-CCEs is four, that is, the number of blind detections by four CCEs is not more than four times; -
  • the number of candidate control channels corresponding to the CCE is two, that is, the number of blind detections by 8 CCEs is not more than 2 times.
  • Step 1 Perform channel coding on each UE's PDCCH separately;
  • Step 2 The PDCCHs of all the encoded UEs are connected in series, and the cell-specific sequence is used for power interference;
  • Step 3 Perform Quadrature Phase Shift Keying (QPSK) modulation.
  • QPSK Quadrature Phase Shift Keying
  • Step 4 The above-mentioned series of CCEs are interleaved in units of REGs and mapped to the time-frequency resources where the PDCCH is located.
  • the frequency domain occupies the entire system bandwidth, and the time domain specifically occupies several symbols and is indicated by the physical control format.
  • the Physical Control Format Indicate Channel (PCFICH) is specified in detail.
  • Step 5 Perform an Inverse Fast Fourier Transform (IFFT) and transmit it.
  • IFFT Inverse Fast Fourier Transform
  • Step 1 The receiving end receives the PDCCH over the entire bandwidth, performs fast Fourier transform (FFT), and deinterleaves to obtain a series of CCEs having the same number as the eNB end;
  • FFT fast Fourier transform
  • Step 2 The starting position of the common search space is always CCE 0, and the common search space is determined according to the number of candidate control channels.
  • the UE performs blind detection starting from the combination of 4-CCE. Since the starting position of the common search space is 0, the search space corresponding to 4-CCE is ⁇ [CCE 0, CCE 1, CCE 2, CCE 3], [CCE 4. CCE 5, CCE 6, CCE 7], [CCE 8, CCE 9, CCE 10, CCE 11], [CCE 12, CCE 13, CCE 14, CCE 15] ⁇ , that is, the UE needs to detect 4 times. .
  • Step 3 If the UE does not hear the temporary network ID with system information (System
  • the information-Radio Network Temporary Identifier (SI-RNTI) or the random access RNTI (Raining Access RNTI, RA-RNTI) or the paging RNTI (Paging RNTI, P-RNTI) matches the common control information.
  • 8-CCE starts blind detection, and the search space corresponding to 8-CCE is ⁇ [CCE 0, CCE 1, CCE 2, CCE 3, CCE 4, CCE 5, CCE 6, CCE 7], [CCE 8, CCE 9, CCE 10, CCE 11, CCE 12, CCE 13, CCE 14, CCE 15] ⁇ , that is, the UE needs to detect 2 times.
  • Step 4 If the UE does not listen to the public control information matching the SI-RNTI or the RA-RNTI or the P-RNTI during the entire blind detection process, it indicates that no public control signal is issued at this time.
  • relay technology is introduced in the wireless communication system. Therefore, relay technology is regarded as a key technology of 4G.
  • FIG. 1 is a structural diagram of a mobile communication system in which an RN is introduced.
  • a link between a base station (eNB) and an RN is called a backhaul link (also referred to as Un Link), and the RN and its coverage are
  • the link between the UEs is called the access link (Access Link, also known as Uu Link)
  • the link between the eNB and the UE under its coverage is called Direct Link.
  • the RN is equivalent to one UE; for the UE, the RN is equivalent to the eNB.
  • the inband relay that is, the Un Link and the Uu Link use the same frequency band.
  • the RN cannot simultaneously perform transmission and reception operations on the same frequency resource. Therefore, on the downlink relay link subframe (backhaul subframe) (that is, the subframe in which the eNB transmits data to the RN), reference is made to FIG. 2, which shows the frame structure of the downlink backhaul subframe, specifically, for the purpose of distinguishing Figure 2 shows two subframes, the left subframe is a normal subframe, and the right subframe is a downlink backhaul subframe.
  • RN first in the first 1 or 2 OFDM symbols
  • the PDCCH is sent to the UE of the subordinate, and then the handover from the transmission to the reception is performed within a period of time (the interval gap shown in the figure).
  • the data from the eNB is received on the following OFDM symbol, where downlink control channel comprises a relay node (relay physical downlink Control channel, R -PDCCH) and a relay physical downlink shared channel node (relay physical downlink shared channel, R -PDSCH) 0
  • the eNB On the downlink backhaul subframe, the eNB semi-statically reserves a number of PRB pairs for the R-PDCCH transmission, that is, the R-PDCCH sent by the eNB to the RN is carried on the PRB pair, including the uplink/downlink scheduling authorization of the RN.
  • the PDCCH of the UE is transmitted on the first n (n ⁇ 3 ⁇ 4 OFDM symbols of the 1st slot, and the DL grant is transmitted on the remaining OFDM symbols except the PDCCH occupation of the 1st slot, and the UL grant is in the 2nd slot.
  • the R-PDCCH of the RN may be carried on other OFDM symbols removed for transmission of the PDCCH.
  • the main object of the present invention is to provide a method and system for detecting a common search space of an RN, which reduces the complexity of blind detection of the common search space by the RN.
  • a method for detecting a common search space of a relay node RN comprising the following steps:
  • the common search space is blindly detected in different combinations.
  • the determining a starting location for detecting the common search space is specifically: when the common search space is composed of a set of physical resource blocks (PRBs) or physical resource block pairs (PRB pairs), determining the start The location is any one of the PRB or PRB pair of the set of PRBs or PRB pairs;
  • PRBs physical resource blocks
  • PRB pairs physical resource block pairs
  • the public search space is blindly detected according to different combinations according to the starting position: starting from the starting position, the PRB or the PRB or PRB pair combination is respectively performed.
  • the PRB pair performs blind detection, where the PRB or PRB pair combination is one or more of ⁇ 1 , 2, 3, 4, 6, 8 ⁇ .
  • the PRB or the PRB pair is blindly detected according to the combination of the PRB or the PRB pair, respectively: the PRB or PRB pair combination is 1-PRB, 2-PRB, 3-PRB, 4-PRB, 6-PRB or 8-PRB performs the same number or different times of blind detection on the PRB or PRB pair.
  • blind detection of the common search space is: blind detection of the common search space on the first time slot (slot), or the second slot of the PRB or PRB pair, or on two slots at the same time.
  • the determining the starting location for detecting the common search space is specifically: When the common search space is composed of a control channel unit R-CCE of a group of relay nodes, determining that the starting position is any one of the set of R-CCEs;
  • the public search space is blindly detected according to different combinations according to the starting position: starting from the starting position, the R-CCE is respectively performed according to the R-CCE combination form Blind detection is performed, wherein the R-CCE combination form is one or more of ⁇ 1, 2, 4, 8 ⁇ .
  • the R-CCE is blindly detected according to the R-CCE combination form: respectively, according to the R-CCE combination form, 1-R-CCE, 2-R-CCE, 4-R-CCE, 8 - R-CCE pair further, the blind detection of the common search space is: performing a common search on the first slot, or the second slot of the subframe in which the R-CCE is located, or on two slots at the same time Space for blind detection.
  • the method further includes: when detecting scheduling information that matches the system message temporary network identifier, or the random access response message temporary network identifier, or the paging message temporary network identifier, according to the matched scheduling information Instructing to obtain the common control information itself on the corresponding time-frequency resource, where the common control information includes at least one of a system message, a random access response message, and a paging message;
  • the information carried by the common search space is common control information or scheduling information; when the common search space is composed of a group of R-CCEs, the common search space carries The information is the scheduling information.
  • a detection system for a common search space of a relay node comprising: a start position determining unit and a blind detecting unit; wherein the starting position determining unit is configured to determine a starting position for detecting the common search space
  • the blind detection unit is configured to blindly detect the public search according to different combinations according to a starting position determined by the starting position determining unit.
  • the starting location determining unit is specifically configured to be used when the common search space is When a set of PRBs or PRB pairs is formed, determining that the starting position is any one of the PRB or PRB pairs of the set of PRBs or PRB pairs;
  • the blind detection unit is specifically configured to perform blind detection on the PRB or PRB pair according to a PRB or PRB pair combination, respectively, starting from a starting position determined by the starting position determining unit, where the PRB or the PRB or The PRB pair is combined in the form of one or more of ⁇ 1 , 2, 3, 4, 6, 8 ⁇ .
  • the starting position determining unit is further configured to: when the common search space is composed of a group of R-CCEs, determine that the starting position is any one of the group of R-CCEs ;
  • the blind detecting unit is further configured to perform blind detection on the R-CCE according to an R-CCE combination form, respectively, starting from a starting position determined by the starting position determining unit, where the R-CCE combination
  • the form is one or more of ⁇ 1 , 2, 4, 8 ⁇ .
  • the method and system for detecting a common search space provided by the present invention can be well applied to an RN, which not only ensures low complexity of the RN in blind detection of a common search space, but also can quickly detect common control information or scheduling.
  • the information with less blind detection delay, improves the working efficiency of the mobile communication system and makes full use of the relay link resources.
  • FIG. 1 is a structural diagram of a mobile communication system incorporating an RN
  • FIG. 2 is a schematic structural diagram of a downlink backhaul subframe frame
  • FIG. 3 is a schematic diagram of a positional relationship between an R-PDCCH and a PDCCH in a PRB pair;
  • FIG. 4 is a schematic flowchart of a method for detecting a common search space of an RN according to the present invention;
  • FIG. 5 is a schematic structural diagram of a detection system of a common search space of an RN according to the present invention; .
  • the basic idea of the invention is: determining the starting position for detecting the common search space; Starting from the starting position, the common search space is blindly detected according to different combinations.
  • FIG. 4 shows the flow of a method for detecting a common search space of an RN. As shown in FIG. 4, the method includes the following steps:
  • Step 101 Determine a starting location for detecting a common search space
  • the eNB and the RN interact with the LTE to determine the starting position of the RN to detect the common search space.
  • the starting position of the RN to detect is any PRB or PRB pair of the set of PRBs or PRB pairs; preferably, usually Determining the first PRB or PRB pair in a set of PRBs or PRB pairs as the starting position;
  • the starting position is determined to be any one of the set of R-CCEs; preferably, the first of the set of R-CCEs is An R-CCE is determined as the starting position.
  • the R-CCE is a CCE that the RN can use.
  • the information carried by the common search space is common control information or scheduling information; when the common search space is composed of a group of R-CCEs, public The information carried by the search space is scheduling information; wherein the common control information includes at least one of a system message, a random access response message, and a paging message.
  • Step 102 The RN starts blind detection of the common search space according to different combinations according to the starting position.
  • the RN starts blind detection of the PRB or PRB pair according to the PRB or PRB pair combination, where the PRB or the PRB or The PRB pair combination form is one or more of ⁇ 1 , 2, 3, 4, 6, 8 ⁇ ; preferably, a combination of 2-PRB and 4-PRB is usually used; and, When the RN is blindly detecting the PRB or the PRB pair according to the combination of the PRB or the PRB pair, the PRB or the PRB pair, the 3-PRB, the 4-PRB, the 6-PRB, or the 8-PRB, Or the first slot of the PRB pair, or the second slot, or blind detection of the common search space on two slots, and the number of detections, that is, the candidate control channels corresponding to each combination may be the same or different;
  • the RN starts blind detection of the R-CCEs according to the R-CCE combination form, wherein the R-CCE combination form is ⁇ 1 One or more of 2, 4, 8 ⁇ ; preferably, a combination of 2-R-CCE and 4-R-CCE is generally used; and, RN is 1-R- according to the R-CCE combination, respectively.
  • the R-CCE is blindly detected by the CCE, the 2-R-CCE, the 4-R-CCE, and the 8-R-CCE, specifically, the first slot or the second of the subframe in which the R-CCE is located may be used.
  • the common search space is blindly detected on two slots, or at the same time, and the number of detections, that is, the candidate control channels corresponding to each combination may be the same or different.
  • the common control information itself is obtained on the time-frequency resource, and the common control information includes at least one of a system message, a random access response message, and a paging message.
  • mapping method will be further described below in a specific embodiment.
  • the common search space of the RN is composed of a group of PRBs or PRB pairs, wherein the eNB reserves 15 PRBs or PRB pairs for the R-PDCCH semi-static, and the eNB is 15 PRBs reserved semi-statically for the R-PDCCH.
  • the PRB pair is determined by the upper layer of the eNB according to the traffic volume.
  • the eNB and the RN determine, by the interaction of the high-layer signaling, that the starting position of the RN is the first PRB or PRB pair of the 15 PRBs or PRB pairs, that is, PRB0, where the information carried by the common search space
  • the common control information includes a system At least one of a message, a random access response message, and a paging message.
  • the eNB Since the public search space carries the common control information itself, the eNB first informs the RN through the high layer signaling whether the common control information is specifically one or which of the system message, the random access response message, and the paging message;
  • the combination form for blind detection of the common search space may be 2-PRB, 4-PRB, and 6-PRB, and the number of detections corresponding to each combination is 1.
  • the RN performs blind detection on the common search space according to the mapping time slot of the predetermined common control information:
  • the mapping time slot of the predetermined common control information is the first slot of the PRB or PRB pair, firstly according to 2 -
  • the combination of PRB starts from PRB0, and the first slot of ⁇ PRB0, PRB1 ⁇ is tested once, for a total of 1 time;
  • the first slot of ⁇ PRBO, PRB1, PRB2, PRB3, PRB4, PRB5 ⁇ is detected once from PRB0 according to the combination of 6-PRB. , a total of 1 detection, if the corresponding public control information is still not detected, it is considered that the eNB does not release the public control information;
  • the RN stops detecting.
  • the common search space of the RN is composed of a group of PRBs or PRB pairs, wherein the eNB reserves 10 PRBs or PRB pairs for the R-PDCCH semi-statically, and the eNB is 10 PRBs reserved semi-statically for the R-PDCCH.
  • the PRB pair is determined by the upper layer of the eNB according to the traffic volume.
  • the eNB and the RN determine, by the interaction of the high-layer signaling, that the starting position of the RN is the third PRB or PRB pair in the 10 PRB or PRB pair, that is, the PRB2, where the public
  • the information carried by the common search space is the common control information itself, and the common control information includes at least one of a system message, a random access response message, and a paging message.
  • the eNB Since the public search space carries the common control information itself, the eNB first informs the RN through the high layer signaling whether the common control information is specifically one or which of the system message, the random access response message, and the paging message;
  • the combination form for blind detection of the common search space may be 2-PRB, 4-PRB, and 6-PRB, wherein the number of detections corresponding to the 2-PRB combination form is 2; 4-PRB combination form The corresponding number of detections is 1; the number of detections corresponding to the 6-PRB combination is 1.
  • the RN performs blind detection on the common search space according to the mapping time slot of the predetermined common control information:
  • the mapping time slot of the predetermined common control information is the second slot of the PRB or PRB pair, firstly according to 2
  • the combination of -PRB starts from PRB2, and the second slot of ⁇ PRB2, PRB3 ⁇ and ⁇ PRB4, PRB5 ⁇ is tested once for 2 times; when the detection is completed, the corresponding common control information is not detected.
  • the mapping time slot of the predetermined common control information is the second slot of the PRB or PRB pair, firstly according to 2
  • the combination of -PRB starts from PRB2, and the second slot of ⁇ PRB2, PRB3 ⁇ and ⁇ PRB4, PRB5 ⁇ is tested once for 2 times; when the detection is completed, the corresponding common control information is not detected.
  • the second slot of ⁇ PRB2, PRB3, PRB4, PRB5 ⁇ is tested once, for a total of 1 time;
  • the second slot of ⁇ PRB2, PRB3, PRB4, PRB5, PRB6, PRB7 ⁇ is detected once from PRB2 according to the combination of 6-PRB. , a total of 1 detection, if the corresponding public control information is still not detected, it is considered that the eNB does not release the public control information;
  • the RN stops detecting.
  • the common search space of the RN is composed of a group of PRBs or PRB pairs, wherein the eNB reserves 20 PRBs or PRB pairs for the R-PDCCH semi-statically, and the eNB is 20 PRBs reserved semi-statically for the R-PDCCH.
  • the PRB pair is determined by the upper layer of the eNB according to the traffic volume.
  • the eNB and the RN determine, by the interaction of the high-layer signaling, that the starting position of the RN is the sixth PRB or the PRB pair of the 20 PRBs or the PRB pair, that is, the PRB5, where the information carried by the common search space For scheduling information.
  • the eNB Since the public search space carries the scheduling information, the eNB does not need to notify the RN through the high-level signaling whether the common control information is specifically one or more of the system message, the random access response message, and the paging message;
  • the combined form of blind detection of the common search space may be 1-PRB, 2-PRB, 4-PRB, wherein the number of detections corresponding to the 1-PRB combination form is 4; 2-PRB combination form The corresponding number of detections is 2; the number of detections corresponding to the 4-PRB combination form is 1.
  • the RN performs blind detection on the common search space according to the mapping time slot of the predetermined common control information:
  • the mapping time slot of the predetermined common control information is 2 slots of the PRB or PRB pair, firstly according to 1-
  • the combination form of PRB starts from PRB5, and the two slots of ⁇ PRB5 ⁇ , ⁇ PRB6 ⁇ , ⁇ PRB7 ⁇ , and ⁇ PRB8 ⁇ are tested once for 4 times.
  • the detection is completed, no system message is detected.
  • the combination of 2-PRB starts from PRB5, and ⁇ PRB5, PRB6 ⁇ and ⁇ ?1
  • the two slots of ⁇ 7, PRB8 ⁇ were tested once for 2 times;
  • the scheduling information matching the system message temporary network identifier, or the random access response message temporary network identifier, or the paging message temporary network identifier is still not detected, and the combination of 4-PRB is started from PRB5. , 1 time detection of 2 slots of ⁇ PRB5, PRB6, PRB7, PRB8 ⁇ , 1 time in total, if no temporary network identifier with system message, or random network response message temporary network identifier, or paging is detected When the message temporary network identifier matches the scheduling information, it is considered that the eNB does not release the scheduling information;
  • the RN stops detecting, and obtains the common control information itself according to the scheduling information to the corresponding time-frequency resource, where the public control information includes a system message, a random access response message, and a seek At least one of the messages.
  • the common search space of the RN is composed of a part of the R-CCEs of all the R-CCEs that carry the DL grant, and the number of R-CCEs carrying the DL grant of all the RNs covered by the eNB is the upper layer of the eNB. Determined based on business volume.
  • the eNB and the RN determine, by the interaction of the high-layer signaling, that the starting position of the RN to detect is the first R-CCE in the group of R-CCEs, that is, the R-CCE0, where the information carried by the common search space For scheduling information.
  • the eNB Since the public search space carries the scheduling information, the eNB does not need to notify the RN through the high-level signaling whether the common control information is specifically one or more of the system message, the random access response message, and the paging message;
  • the combined form of blind detection of the common search space is 2-R-CCE, 4-R-CCE, 8-R-CCE, and the number of detections corresponding to the 2-R-CCE combination form.
  • the number of detections corresponding to 4; 4-R-CCE combination form is 2; the number of detections corresponding to the 8-R-CCE combination form is 1.
  • the DL grant is usually carried on the first slot of one subframe, so the RN performs blind detection on the common search space as follows: First, according to the combination of 2-R-CCE, from R- Starting with CCE0, for ⁇ R-CCEO, R-CCE1 ⁇ , ⁇ R-CCE2, R-CCE3 ⁇ , ⁇ R-CCE4, R-CCE5 ⁇ and ⁇ R-CCE6, R-CCE7 ⁇ on the first slot respectively Perform 1 test and test 4 times in total;
  • the 4-R-CCE combination form is adopted. Starting from R-CCE0, for ⁇ R-CCEO, R-CCE1, R-CCE2, R-CCE3 ⁇ and ⁇ R-CCE4, R-CCE5, R-CCE6, R-CCE7 ⁇ on the first slot Perform 1 test separately and test 2 times in total;
  • the combination of 8-R-CCE is followed.
  • the form starts from R-CCE0 and is performed once for ⁇ R-CCEO, R-CCE1, R-CCE2, R-CCE3, R-CCE4, R-CCE5, R-CCE6, R-CCE7 ⁇ on the 1st slot.
  • Detecting detecting a total of 1 time; if the scheduling information matching the system message temporary network identifier, or the random access response message temporary network identifier, or the paging message temporary network identifier is still not detected, the eNB is considered not to perform scheduling information. Release
  • the RN stops detecting, and obtains the common control information itself on the corresponding time-frequency resource according to the indication of the matched scheduling information, where the common control information includes at least one of a system message, a random access response message, and a paging message.
  • the common search space of the RN is composed of a part of the R-CCEs of all the R-CCEs that carry the UL grant, and the number of R-CCEs carrying the UL grant of all the RNs covered by the eNB is the upper layer of the eNB. Determined based on business volume.
  • the eNB and the RN determine, by the interaction of the high-layer signaling, that the starting position of the RN to detect is the sixth R-CCE in the group of R-CCEs, that is, the R-CCE5, where the information carried by the common search space For scheduling information.
  • the eNB Since the public search space carries the scheduling information, the eNB does not need to notify the RN through the high-level signaling whether the common control information is specifically one or more of the system message, the random access response message, and the paging message;
  • the combined form of blind detection of the common search space is 2-R-CCE, 4-R-CCE, wherein the number of detections corresponding to the 2-R-CCE combination form is 2; 4-R The number of detections corresponding to the -CCE combination form is 1.
  • the UL grant is usually carried on the second slot of one subframe, so the RN performs blind detection on the common search space as follows: First, according to the combination of 2-R-CCE, from R- Starting from CCE5, the ⁇ R-CCE5, R-CCE6 ⁇ and ⁇ R-CCE7, R-CCE8 ⁇ on the second slot are tested once, for a total of 2 times;
  • the 4-R-CCE combination form is adopted. Starting from R-CCE5, perform 1 detection on ⁇ R-CCE5, R-CCE6, R-CCE7, R-CCE8 ⁇ on the second slot, and test 1 time together; if the system message temporary network is still not detected When the identifier, or the random access response message temporary network identifier, or the paging message temporary network identifier matches the scheduling information, it is considered that the eNB does not release the scheduling information;
  • the RN stops detecting, and obtains the common control information itself on the corresponding time-frequency resource according to the indication of the matched scheduling information, where the common control information includes at least one of a system message, a random access response message, and a paging message.
  • the common search space of the RN is composed of all R-CCEs in a group of R-CCEs carrying DL grants and UL grants, where R-CCEs carrying DL grants and UL grants of all RNs covered by the eNB
  • the number of high-level eNBs is determined according to the amount of traffic.
  • the eNB and the RN determine, by the interaction of the high-layer signaling, that the starting position of the RN to detect is the first R-CCE in the R-CCE carrying the DL grant, that is, the R-CCE0 and the R-bearing carrying the UL grant.
  • the first R-CCE in the CCE that is, R-CCE0, where the information carried by the common search space is scheduling information.
  • the eNB Since the public search space carries scheduling information, the eNB does not need to pass the high-level letter. Instructing the RN whether the common control information is specifically one or more of a system message, a random access response message, and a paging message;
  • the combined form of blind detection of the common search space is 2-R-CCE, 4-R-CCE, wherein the number of detections corresponding to the 2-R-CCE combination form is 2; 4-R The number of detections corresponding to the -CCE combination form is 1.
  • the DL grant is usually carried on the first slot of one subframe, and the UL grant is usually carried on the second slot of one subframe, so the RN performs a blind detection process on the common search space.
  • the RN performs a blind detection process on the common search space.
  • R-CCE0 starting from R-CCE0 according to the combination of 2-R-CCE, ⁇ R-CCEO, R-CCE1 ⁇ on the 1st slot and ⁇ R-CCEO, R-CCE1 on the 2nd slot Performing one test in combination, if no scheduling information matching the system message temporary network identifier, or the random access response message temporary network identifier, or the paging message temporary network identifier is detected, then on the first slot ⁇ R-CCE2, R-CCE3 ⁇ and ⁇ R-CCE2, R-CCE3 ⁇ on the second slot perform one test together, and a total of two tests;
  • the 4-R-CCE combination is followed.
  • the form starts from R-CCE0, ⁇ R-CCEO, R-CCE1, R-CCE2, R-CCE3 ⁇ on the 1st slot and ⁇ R-CCEO, R-CCE1, R-CCE2 on the 2nd slot , R-CCE3 ⁇ jointly tested once;
  • the eNB does not release the scheduling information
  • the RN stops detecting, and obtains the common control information itself on the corresponding time-frequency resource according to the indication of the matched scheduling information, where the public control information includes At least one of a system message, a random access response message, and a paging message.
  • FIG. 5 is a schematic diagram showing the structure of a detection system of a common search space of an RN.
  • the detection system includes: a start position determining unit 10 and a blind detecting unit 20; wherein the starting position determining unit 10 is used for Determining a starting position for detecting the common search space; the blind detecting unit 20 is configured to blindly detect the common search according to different combinations from the starting position determined by the starting position determining unit 10.
  • the starting location determining unit 10 is specifically configured to: when the common search space is composed of a set of PRBs or PRB pairs, determine that the starting location is any one of the set of PRBs or PRB pairs. Or PRB pair;
  • the blind detection unit 20 is specifically configured to perform blind detection on the PRB or PRB pair according to a combination of PRB or PRB pair, respectively, starting from a starting position determined by the starting position determining unit 10, where the PRB Or the PRB pair combination is one or more of ⁇ 1 , 2, 3, 4, 6, 8 ⁇ .
  • the starting position determining unit 10 is further configured to: when the common search space is composed of a group of R-CCEs, determine that the starting position is any one of the group of R-CCEs ;
  • the blind detecting unit is further configured to perform blind detection on the R-CCE according to an R-CCE combination form, respectively, starting from a starting position determined by the starting position determining unit 10, wherein the R-CCE combination
  • the form is one or more of ⁇ 1 , 2, 4, 8 ⁇ .

Landscapes

  • Engineering & Computer Science (AREA)
  • Computer Networks & Wireless Communication (AREA)
  • Signal Processing (AREA)
  • Mobile Radio Communication Systems (AREA)

Abstract

本发明提供了一种中继节点的公共搜索空间的检测方法及系统,所述方法包括:确定对公共搜索空间进行检测的起始位置;从所述起始位置开始,按照不同的组合形式对所述公共搜索空间进行盲检测。本发明提供的公共搜索空间的检测方法及系统,可以很好地适用于RN,不仅保证了RN在进行盲检测时较低的复杂度,而且能够快速检测到公共控制信息或调度信息,具有较少的盲检测时延,提高了移动通信系统的工作效率,充分利用了中继链路资源。

Description

一种中继节点的公共搜索空间的检测方法及系统 技术领域
本发明涉及移动通信技术领域, 尤其涉及一种中继节点 (Relay Node, RN ) 的公共搜索空间的检测方法及系统。 背景技术
长期演进 ( Long Term Evolution , LTE ) 系统、 高级长期演进 ( LTE- Advanced, LTE-A ) 系统和高级国际移动通信 ( International Mobile Telecommunication Advanced , IMT- Advanced ) 系统都是以正交频分复用 ( Orthogonal Frequency Division Multiplexing, OFDM )技术为基础, OFDM 系统为时频两维的数据形式。 1个子帧 (subframe ) 由 2个时隙 (slot )组 成, 正常循环前缀 ( Cyclic Prefix, CP )时, 每个 slot由 7个 OFDM符号组 成; 扩展 CP时, 每个 slot由 6个 OFDM符号组成。 其中, 下行控制信道 ( Physical Downlink Control Channel, PDCCH )位于每个子帧的前 1或 2 或 3或 4个 OFDM符号上。
在 LTE系统中, PDCCH的设计由几个不同的组成部分构成,每个部分 都有其特定的功能。 为了方便描述, 下面说明几个术语及约定:
1. 资源单元( Resource Element, RE ): 最小的时频资源块, 占据 1个 OFDM符号上的 1个子载波。
2. 资源单元组 ( Resource Element Group, REG ): 根据每个 OFDM符 号上参考符号位置的不同, 1个 REG可以由 4个或 6个 RE组成; 具体地, 当 OFDM符号上含有参考符号, 也就是导频时, 此时 1个 REG由 6个 RE 组成, 并且其中有 2个 RE被参考符号占用; 当 OFDM符号上不含有参考 符号时, 此时 1个 REG由 4个 RE组成。 3. 物理资源块(Physical Resource Block, PRB ): 时间域上为连续 1个 时隙, 频率域上为连续 12个子载波。
4. 物理资源块对(PRB pair ): 时间域上为连续 1个子帧, 频率域上为 连续 12个子载波。
5.控制信道单元(Control Channel Element, CCE ): 由 36个 RE、 9个
REG组成, CCE中包含的信息有: 用户的下行调度授权信息(DL grant ), 上行调度授权信息(UL grant ), 以及和系统消息( System Information, SI )、 随机接入(Random Access, RA )响应消息、 寻呼(Paging ) 消息相关的信 6. Aggregation level L: CCE的组合形式, 即 PDCCH只能由 L个 CCE 构成, 其中 {1, 2, 4, 8} , 也就是说, PDCCH 只能包括如下的组合形式: 1 个 CCE的组合( 1-CCE )、 2个 CCE的组合( 2-CCE )、 4个 CCE的组合( 4-CCE ) 和 8个 CCE的组合 ( 8-CCE )构成。 并且上述 4种不同的组合又分别对应 了 4种不同的编码码率: 1-CCE的编码码率为 2/3、2-CCE的编码码率为 1/3、 4-CCE的编码码率为 1/6、 8-CCE的编码码率为 1/12。
7. 搜索空间 (Search Space, SS ): 搜索空间由若干组候选控制信道构 成, 用户终端(User Equipment, UE )对搜索空间进行监听, 并在搜索空间 内进行盲检测, 以便检测出与自己相关的下行控制信道。
8. 两种类型的搜索空间: 一种是公共搜索空间 (Common Search Space ), 即所有 UE都要监听的搜索空间, 其中承载的是与 SI、 RA响应消 息以及 Paging消息相关的公共信息;另一种是 UE专用搜索空间( UE-specific Search Space ), 其中承载的是 UE专用的 DL grant和 UL grant。
9.公共搜索空间的大小为 CCE 0~CCE 15, 即共 16个 CCE, 其中未用 于公共搜索空间的 CCE可以用于 UE专用搜索空间。
10. 不同的 CCE aggregation level都有其对应的候选控制信道的个数, 即为盲检测的最大次数。 例如, 公共搜索空间仅有 4-CCE和 8-CCE组成, 且 4-CCE对应的候选控制信道个数为 4个,即按 4个 CCE为一组进行盲检 测的次数不超过 4次; 8-CCE对应的候选控制信道个数为 2个, 即按 8个 CCE为一组进行盲检测的次数不超过 2次
LTE系统中 UE对公共搜索空间进行盲检测的详细过程如下:
在 eNB端:
第 1步: 对每个 UE的 PDCCH分别进行信道编码;
第 2步: 将编码后的所有 UE的 PDCCH串联起来, 用小区专用的序列 进行力口扰;
第 3步: 进行正交相移键控 ( Quadrature Phase Shift Keying, QPSK ) 调制, 此时得到的是所有 PDCCH所对应的一串 CCE, 并将它们从 0开始 进行编号; ^^设此时的下行控制信道总共由 32个 CCE构成, 即它们的编 号为 CCE 0、 CCE 1 CCE 31。其中公共搜索空间最多占用前 16个 CCE, 即 CCE 0-CCE 15 , 剩下未被公共搜索空间使用的 CCE 可以继续用于 UE- specific Search Space。
第 4步:将上述一串 CCE以 REG为单元进行交织后映射到 PDCCH所 在的时频资源上, 其中, 频域上占据整个系统带宽, 时域上具体占用了几 个符号由物理控制格式指示信道( Physical Control Format Indicate Channel, PCFICH )详细指明。
第 5步: 进行快速傅里叶反变换(IFFT )后发射出去。
在 UE端:
第 1步:接收端接收整个带宽上的 PDCCH,进行快速傅里叶变换( FFT ) 后, 并经过解交织, 得到与 eNB端具有相同编号的一串 CCE;
第 2步: 公共搜索空间的起始位置始终为 CCE 0, 并根据候选控制信 道的个数确定公共搜索空间。 UE从组合为 4-CCE开始进行盲检测,由于公共搜索空间的起始位置为 0, 因此, 4-CCE对应的搜索空间为 { [CCE 0、 CCE 1、 CCE 2, CCE 3] , [CCE 4、 CCE 5、 CCE 6、 CCE 7] , [ CCE 8、 CCE 9、 CCE 10、 CCE 11] , [CCE 12、 CCE 13、 CCE 14、 CCE 15] }, 也就是说, UE需要检测 4次。
第 3 步: 如果 UE 没有监听到与系统信息的临时网络标识 (System
Information-Radio Network Temporary Identifier, SI-RNTI )或者随机接入的 RNTI ( Random Access RNTI, RA-RNTI )或者寻呼的 RNTI ( Paging RNTI, P-RNTI )相匹配的公共控制信息, 则从组合为 8-CCE开始进行盲检测, 8-CCE对应的搜索空间为 { [CCE 0、 CCE 1、 CCE 2、 CCE 3、 CCE 4、 CCE 5、 CCE 6、 CCE 7] , [ CCE 8、 CCE 9、 CCE 10、 CCE 11 , CCE 12、 CCE 13、 CCE 14、 CCE 15] }, 也就是说, UE需要检测 2次。
第 4步: 如果在整个盲检测过程中, UE都没有监听到与 SI-RNTI或者 RA-RNTI或者 P-RNTI相匹配的公共控制信息, 说明此时没有公共控制信 令下达。
由于未来无线通信系统或蜂窝系统要求增加覆盖范围, 支持更高速率 传输, 这对无线通信技术提出了新的挑战; 同时, 系统建造和维护的费用 问题更加突出。 随着传输速率及通信距离的增加, 电池的耗能问题也变得 突出, 而且未来的无线通信将会采用更高的频率, 由此造成的路径损耗衰 减更加严重。 为了增加高数据速率、 组移动性、 临时网络部署的覆盖范围, 提高小区边缘的吞吐量, 以及为蜂窝系统的覆盖漏洞内的用户提供服务, 无线通信系统中引入了中继 (Relay )技术, 因此中继技术被视为 4G的一 项关键技术。
图 1 为引入 RN 的移动通信系统架构图, 在该移动通信系统中基站 ( eNB )与 RN之间的链路称为中继链路 ( Backhaul Link,也称为 Un Link ), RN与其覆盖范围下的 UE之间的链路称为接入链路 ( Access Link, 也称为 Uu Link ), eNB与其覆盖范围下的 UE之间的链路称之为直传链路 ( Direct Link )。对 eNB来说, RN就相当于一个 UE;对 UE来说, RN就相当于 eNB。
目前, 在采用带内中继 ( inband relay )方式时, 即 Un Link和 Uu Link 使用相同的频带, 为了避免 RN自身的收发干扰, RN不能在同一频率资源 上同时进行发送和接收的操作。因此,在下行中继链路子帧( backhaul子帧 ) (即 eNB给 RN传输数据所在的子帧)上, 参考图 2, 其示出下行 backhaul 子帧的帧结构, 具体地, 为了便于区分, 图 2示出了 2个子帧, 左边的子 帧为一正常的子帧, 右边的子帧为一下行 backhaul子帧, 其具体的收发数 据的过程: RN首先在前 1或 2个 OFDM符号上给其下属的 UE发送 PDCCH, 然后在一段时间范围内(如图中所示的间隔 gap )进行从发射到接收的切换, 切换完成后, 在后面的 OFDM符号上接收来自 eNB的数据, 其中包括中继 节点下行控制信道( Relay Physical Downlink Control Channel, R-PDCCH ) 和中继节点物理下行共享信道(Relay Physical Downlink Shared Channel, R-PDSCH )0
在下行 backhaul 子帧上, eNB 半静态地预留若干 PRB pair 用于 R-PDCCH的传输, 即 eNB给 RN发送的 R-PDCCH承载在 PRB pair上, 包 括 RN的上 /下行调度授权等信息。 如图 3所示, UE的 PDCCH在 1st slot 的前 n (n≤ ¾个 OFDM符号上传输, DL grant在 1 st slot的除 PDCCH占用以 外剩余的 OFDM符号上传输, UL grant在 2nd slot的全部 OFDM符号上传 输, RN的 R-PDCCH可以承载在除去用于传输 PDCCH的其他 OFDM符号 上。
3GPP会议上关于 R-PDCCH的公共搜索空间一直是讨论的焦点。目前, 只是认为 RN的公共搜索空间有必要存在,但是还没有任何关于其盲检测的 具体方案。 发明内容
有鉴于此,本发明的主要目的在于提供一种 RN的公共搜索空间的检测 方法及系统, 减少了 RN对公共搜索空间进行盲检测的复杂度。
为达到上述目的, 本发明的技术方案是这样实现的:
一种中继节点 RN 的公共搜索空间的检测方法, 所述方法包括下述步 驟:
确定对公共搜索空间进行检测的起始位置;
从所述起始位置开始, 按照不同的组合形式对所述公共搜索空间进行 盲检测。
其中, 所述确定对公共搜索空间进行检测的起始位置具体为: 当所述 公共搜索空间由一组物理资源块(PRB )或物理资源块对(PRB pair )组成 时,确定所述起始位置为所述一组 PRB或 PRB pair中的任一个 PRB或 PRB pair;
相应地, 所述从所述起始位置开始, 按照不同的组合形式对所述公共 搜索空间进行盲检测为: 从所述起始位置开始, 分别按照 PRB或 PRB pair 组合形式对所述 PRB或 PRB pair进行盲检测 , 其中所述 PRB或 PRB pair 组合形式为 { 1 , 2, 3, 4, 6, 8}中的 1个或多个。
进一步地,所述分别按照 PRB或 PRB pair组合形式对所述 PRB或 PRB pair进行盲检测为: 分别按照 PRB或 PRB pair组合形式为 1-PRB、 2-PRB、 3-PRB、 4-PRB、 6-PRB或 8-PRB对所述 PRB或 PRB pair进行相同次数或 不同次数的盲检测。
进一步地, 对公共搜索空间进行盲检测为: 在所述 PRB或 PRB pair的 第 1个时隙( slot )、 或第 2个 slot、 或同时在 2个 slot上对公共搜索空间进 行盲检测。
进一步地, 所述确定对所述公共搜索空间进行检测的起始位置具体为: 当所述公共搜索空间由一组中继节点的控制信道单元 R-CCE组成时, 确定 所述起始位置为所述一组 R-CCE中的任一个 R-CCE;
相应地, 所述从所述起始位置开始, 按照不同的组合形式对所述公共 搜索空间进行盲检测为: 从所述起始位置开始, 分别按照 R-CCE组合形式 对所述 R-CCE进行盲检测, 其中所述 R-CCE组合形式为为 { 1 , 2, 4, 8} 中的 1个或多个。
进一步地,所述分别按照 R-CCE组合形式对所述 R-CCE进行盲检测为: 分别按照 R-CCE组合形式为 1-R-CCE、 2-R-CCE, 4-R-CCE、 8-R-CCE对 进一步地, 所述对公共搜索空间进行盲检测为: 在所述 R-CCE所在子 帧的第 1个 slot、 或第 2个 slot、 或同时在 2个 slot上对公共搜索空间进行 盲检测。
进一步地, 所述方法还包括: 当检测到与系统消息临时网络标识、 或 随机接入响应消息临时网络标识、 或寻呼消息临时网络标识相匹配的调度 信息时, 根据相匹配的调度信息的指示, 在相应的时频资源上获取公共控 制信息本身, 所述公共控制信息包括系统消息、 随机接入响应消息和寻呼 消息中的至少一种;
其中当所述公共搜索空间由一组 PRB或 PRB pair组成时,公共搜索空 间承载的信息为公共控制信息或调度信息; 当所述公共搜索空间由一组 R-CCE组成时, 公共搜索空间承载的信息为调度信息。
一种中继节点的公共搜索空间的检测系统, 所述系统包括: 起始位置 确定单元和盲检测单元; 其中, 起始位置确定单元用于确定对所述公共搜 索空间进行检测的起始位置; 盲检测单元用于从所述起始位置确定单元所 确定的起始位置开始, 按照不同的组合形式对所述公共搜索进行盲检测。
进一步地, 所述起始位置确定单元, 具体用于当所述公共搜索空间由 一组 PRB或 PRB pair组成时, 确定所述起始位置为所述一组 PRB或 PRB pair中的任一个 PRB或 PRB pair;
相应地, 所述盲检测单元, 具体用于从所述起始位置确定单元所确定 的起始位置开始, 分别按照 PRB或 PRB pair组合形式对所述 PRB或 PRB pair进行盲检测, 其中 PRB或 PRB pair组合形式为 { 1 , 2, 3, 4, 6, 8}中 的 1个或多个。
进一步地, 所述起始位置确定单元, 还用于当所述公共搜索空间由一 组 R-CCE 组成时, 确定所述起始位置为所述一组 R-CCE 中的任一个 R-CCE;
相应地, 所述盲检测单元, 还用于从所述起始位置确定单元所确定的 起始位置开始,分别按照 R-CCE组合形式对所述 R-CCE进行盲检测,其中 R-CCE组合形式为为 { 1 , 2, 4, 8}中的 1个或多个。
本发明提供的公共搜索空间的检测方法及系统, 可以很好地适用于 RN, 不仅保证了 RN在对公共搜索空间进行盲检测时较低的复杂度, 而且 能够快速检测到公共控制信息或调度信息, 具有较少的盲检测时延, 提高 了移动通信系统的工作效率, 充分利用了中继链路资源。 附图说明
图 1为引入 RN的移动通信系统架构图;
图 2为下行 backhaul子帧帧结构示意图;
图 3为 R-PDCCH和 PDCCH在 PRB pair中的位置关系示意图; 图 4为本发明 RN的公共搜索空间的检测方法的流程示意图; 图 5为本发明 RN的公共搜索空间的检测系统的结构示意图。 具体实施方式
本发明的基本思想为: 确定对公共搜索空间进行检测的起始位置; 从 所述起始位置开始, 按照不同的组合形式对公共搜索空间进行盲检测。 为使本发明的目的、 技术方案和优点更加清楚明白, 以下举实施例并 参照附图, 对本发明进一步详细说明。
图 4示出了 RN的公共搜索空间的检测方法的流程,如图 4所示,所述 方法包括下述步驟:
步驟 101 , 确定对公共搜索空间进行检测的起始位置;
本步驟中, eNB与 RN通过高层信令的交互,确定 RN对公共搜索空间 进行检测的起始位置。
具体地 , 当所述公共搜索空间由一组 PRB或 PRB pair组成时 , 可以确 定 RN进行检测的起始位置为所述一组 PRB或 PRB pair中的任一个 PRB 或 PRB pair;优选地,通常将一组 PRB或 PRB pair中的第一个 PRB或 PRB pair确定为起始位置;
当所述公共搜索空间由一组 R-CCE组成时, 确定所述起始位置为所述 一组 R-CCE中的任一个 R-CCE; 优选地, 通常将一组 R-CCE中的第一个 R-CCE确定为起始位置。 所述 R-CCE为 RN能够使用的 CCE。
另夕卜, 当所述公共搜索空间由一组 PRB或 PRB pair组成时, 公共搜索 空间承载的信息为公共控制信息或调度信息; 当所述公共搜索空间由一组 R-CCE组成时, 公共搜索空间承载的信息为调度信息; 其中所述公共控制 信息包括系统消息、 随机接入响应消息和寻呼消息中的至少一种。
步驟 102, RN从所述起始位置开始, 按照不同的组合形式对公共搜索 空间进行盲检测;
具体地, 当所述公共搜索空间由一组 PRB或 PRB pair组成时, RN从 所述起始位置开始,分别按照 PRB或 PRB pair组合形式对所述 PRB或 PRB pair进行盲检测, 其中 PRB或 PRB pair组合形式为 { 1 , 2, 3, 4, 6, 8}中 的 1个或多个; 优选地, 通常使用 2-PRB和 4-PRB的组合形式; 并且, 在 RN分别按照 PRB或 PRB pair组合形式为 1-PRB、 2-PRB、 3-PRB、 4-PRB、 6-PRB或 8-PRB对所述 PRB或 PRB pair盲检测时, 具体可以在所述 PRB 或 PRB pair的第 1个 slot、 或第 2个 slot、 或同时在 2个 slot上对公共搜索 空间进行盲检测, 而且其检测的次数, 即每种组合形式所对应的候选控制 信道可以相同或不同;
当所述公共搜索空间由一组 R-CCE组成时, RN从所述起始位置开始, 分别按照 R-CCE组合形式对所述 R-CCE进行盲检测, 其中 R-CCE组合形 式为 { 1 , 2, 4, 8}中的 1个或多个; 优选地, 通常使用 2-R-CCE和 4-R-CCE 的组合形式; 并且, RN分别按照 R-CCE组合形式为 1-R-CCE、 2-R-CCE, 4-R-CCE、 8-R-CCE对所述 R-CCE进行盲检测时, 具体可以在所述 R-CCE 所在子帧的第 1个 slot、 或第 2个 slot、 或同时在 2个 slot上对公共搜索空 间进行盲检测, 而且其检测的次数, 即每种组合形式所对应的候选控制信 道可以相同或不同。
本步驟中, 当检测到与系统消息临时网络标识、 或随机接入响应消息 临时网络标识、 或寻呼消息临时网络标识相匹配的调度信息时, 根据相匹 配的调度信息的指示, 在相应的时频资源上获取公共控制信息本身, 所述 公共控制信息包括系统消息、 随机接入响应消息和寻呼消息中的至少一种。
下面以具体的实施例对上述映射方法进行进一步地说明。
实施例 1
本实施例中, RN的公共搜索空间由一组 PRB或 PRB pair组成, 其中 eNB为 R-PDCCH半静态预留了 15个 PRB或 PRB pair, eNB为 R-PDCCH 半静态预留的 15个 PRB或 PRB pair为 eNB的高层根据业务量进行确定的。 eNB和 RN通过高层信令的交互, 确定 RN进行检测的起始位置为所述 15 个 PRB或 PRB pair中的第一个 PRB或 PRB pair, 即 PRB0, 其中, 所述公 共搜索空间承载的信息为公共控制信息本身, 所述公共控制信息包括系统 消息、 随机接入响应消息和寻呼消息中的至少一种。
由于公共搜索空间承载的是公共控制信息本身, 因此, eNB 首先会通 过高层信令告知 RN该公共控制信息具体为系统消息、随机接入响应消息和 寻呼消息中的哪一个或哪几个;
本实施例中, 可以确定对公共搜索空间进行盲检测的组合形式依次为 2-PRB、 4-PRB、 6-PRB, 每种组合形式所对应的检测次数为 1。
具体地, RN根据预先确定的公共控制信息的映射时隙, 对公共搜索空 间进行盲检测: 当预先确定的公共控制信息的映射时隙为 PRB或 PRB pair 的第 1个 slot时, 首先按照 2-PRB的组合形式从 PRB0开始, 对 {PRB0, PRB1 }的第 1个 slot进行 1次检测, 共检测 1次;
当检测完毕后, 没有检测出相应的公共控制信息时, 则按照 4-PRB的 组合形式从 PRB0开始, 对 {PRBO, PRB1 , PRB2, PRB3}的第 1个 slot进 行 1次检测, 共检测 1次;
当检测完毕, 仍没有检测出相应的公共控制信息时, 则按照 6-PRB的 组合形式从 PRB0开始, 对 {PRBO, PRB1 , PRB2, PRB3 , PRB4, PRB5} 的第 1个 slot进行 1次检测, 共检测 1次, 若仍没有检测出相应的公共控 制信息时, 则认为 eNB没有进行公共控制信息的下达;
若在上述任何一种 PRB或 PRB pair组合形式的检测过程中,检测出相 应的公共控制信息时, 则 RN停止检测。
实施例 2
本实施例中, RN的公共搜索空间由一组 PRB或 PRB pair组成, 其中 eNB为 R-PDCCH半静态预留了 10个 PRB或 PRB pair, eNB为 R-PDCCH 半静态预留的 10个 PRB或 PRB pair为 eNB的高层根据业务量进行确定的。 eNB和 RN通过高层信令的交互, 确定 RN进行检测的起始位置为所述 10 个 PRB或 PRB pair中的第三个 PRB或 PRB pair, 即 PRB2, 其中, 所述公 共搜索空间承载的信息为公共控制信息本身, 所述公共控制信息包括系统 消息、 随机接入响应消息和寻呼消息中的至少一种。
由于公共搜索空间承载的是公共控制信息本身, 因此, eNB 首先会通 过高层信令告知 RN该公共控制信息具体为系统消息、随机接入响应消息和 寻呼消息中的哪一个或哪几个;
本实施例中, 可以确定对公共搜索空间进行盲检测的组合形式依次为 2-PRB, 4-PRB、 6-PRB ,其中 2-PRB组合形式所对应的检测次数为 2; 4-PRB 组合形式所对应的检测次数为 1; 6-PRB组合形式所对应的检测次数为 1。
具体地, RN根据预先确定的公共控制信息的映射时隙, 对公共搜索空 间进行盲检测: 当预先确定的公共控制信息的映射时隙为 PRB或 PRB pair 的第 2个 slot时, 首先按照 2-PRB的组合形式从 PRB2开始, 对 {PRB2, PRB3 }以及 { PRB4 , PRB5 }的第 2个 slot分别进行 1次检测, 共检测 2次; 当检测完毕后, 没有检测出相应的公共控制信息时, 则按照 4-PRB的 组合形式从 PRB2开始, 对 {PRB2, PRB3 , PRB4, PRB5}的第 2个 slot进 行 1次检测, 共检测 1次;
当检测完毕, 仍没有检测出相应的公共控制信息时, 则按照 6-PRB的 组合形式从 PRB2开始, 对 {PRB2, PRB3, PRB4, PRB5 , PRB6, PRB7} 的第 2个 slot进行 1次检测, 共检测 1次, 若仍没有检测出相应的公共控 制信息时, 则认为 eNB没有进行公共控制信息的下达;
若在上述任何一种 PRB或 PRB pair组合形式的检测过程中,检测出相 应的公共控制信息时, 则 RN停止检测。
实施例 3
本实施例中, RN的公共搜索空间由一组 PRB或 PRB pair组成, 其中 eNB为 R-PDCCH半静态预留了 20个 PRB或 PRB pair, eNB为 R-PDCCH 半静态预留的 20个 PRB或 PRB pair为 eNB的高层根据业务量进行确定的。 eNB和 RN通过高层信令的交互, 确定 RN进行检测的起始位置为所述 20 个 PRB或 PRB pair中的第六个 PRB或 PRB pair, 即 PRB5, 其中, 所述公 共搜索空间承载的信息为调度信息。
由于公共搜索空间承载的是调度信息, 因此, eNB 不需要通过高层信 令告知 RN该公共控制信息具体为系统消息、随机接入响应消息和寻呼消息 中的哪一个或哪几个;
本实施例中, 可以确定对公共搜索空间进行盲检测的组合形式依次为 1-PRB、 2-PRB、 4-PRB ,其中 1-PRB组合形式所对应的检测次数为 4; 2-PRB 组合形式所对应的检测次数为 2; 4-PRB组合形式所对应的检测次数为 1。
具体地, RN根据预先确定的公共控制信息的映射时隙, 对公共搜索空 间进行盲检测: 当预先确定的公共控制信息的映射时隙为 PRB或 PRB pair 的 2个 slot时, 首先按照 1-PRB的组合形式从 PRB5开始, 对 {PRB5 }、 {PRB6 }、 {PRB7 }以及 {PRB8 }的 2个 slot分别进行 1次检测, 共检测 4次; 当检测完毕后, 没有检测出与系统消息临时网络标识、 或随机接入响 应消息临时网络标识、 或寻呼消息临时网络标识相匹配的调度信息时, 则 按照 2-PRB的组合形式从 PRB5开始,对 {PRB5, PRB6 }以及{?1^7, PRB8 } 的 2个 slot分别进行 1次检测, 共检测 2次;
当检测完毕, 仍没有检测出与系统消息临时网络标识、 或随机接入响 应消息临时网络标识、 或寻呼消息临时网络标识相匹配的调度信息时, 则 按照 4-PRB的组合形式从 PRB5开始, 对 {PRB5, PRB6, PRB7, PRB8 } 的 2个 slot进行 1次检测, 共检测 1次, 若仍没有检测出与系统消息临时 网络标识、 或随机接入响应消息临时网络标识、 或寻呼消息临时网络标识 相匹配的调度信息时, 则认为 eNB没有进行调度信息的下达;
若在上述任何一种 PRB或 PRB pair组合形式的检测过程中,检测出与 系统消息临时网络标识、 或随机接入响应消息临时网络标识、 或寻呼消息 临时网络标识相匹配的调度信息时,则 RN停止检测,并根据所述调度信息 到相应的时频资源上获取公共控制信息本身, 所述公共控制信息包括系统 消息、 随机接入响应消息和寻呼消息中的至少一种。
实施例 4
本实施例中, RN的公共搜索空间由所有承载 DL grant的一组 R-CCE 中的部分 R-CCE组成,其中 eNB覆盖下的所有 RN的承载 DL grant的 R-CCE 个数为 eNB的高层根据业务量进行确定的。 eNB和 RN通过高层信令的交 互, 确定 RN进行检测的起始位置为所述一组 R-CCE中的第一个 R-CCE, 即 R-CCE0, 其中, 所述公共搜索空间承载的信息为调度信息。
由于公共搜索空间承载的是调度信息, 因此, eNB 不需要通过高层信 令告知 RN该公共控制信息具体为系统消息、随机接入响应消息和寻呼消息 中的哪一个或哪几个;
本实施例中, 可以确定对公共搜索空间进行盲检测的组合形式依次为 2-R-CCE, 4-R-CCE, 8-R-CCE, 其中 2-R-CCE组合形式所对应的检测次数 为 4; 4-R-CCE组合形式所对应的检测次数为 2; 8-R-CCE组合形式所对应 的检测次数为 1。
具体地, 由图 3可以看出, DL grant通常承载在一个子帧的第 1个 slot 上, 因此 RN对公共搜索空间进行盲检测过程如下: 首先按照 2-R-CCE的 组合形式从 R-CCE0开始,对第 1个 slot上的 {R-CCEO, R-CCE1 }、 {R-CCE2, R-CCE3}、 {R-CCE4, R-CCE5}以及 {R-CCE6, R-CCE7}分别进行 1次检测, 共检测 4次;
当检测完毕后, 如果没有检测到与系统消息临时网络标识、 或随机接 入响应消息临时网络标识、 或寻呼消息临时网络标识相匹配的调度信息时 , 则按照 4-R-CCE的组合形式从 R-CCE0开始,对第 1个 slot上的 {R-CCEO, R-CCE1 , R-CCE2, R-CCE3 }以及 {R-CCE4, R-CCE5, R-CCE6, R-CCE7} 分别进行 1次检测, 共检测 2次;
当检测完毕后, 如果仍没有检测到与系统消息临时网络标识、 或随机 接入响应消息临时网络标识、 或寻呼消息临时网络标识相匹配的调度信息 时, 则按照 8-R-CCE 的组合形式从 R-CCE0 开始, 对第 1 个 slot上的 {R-CCEO, R-CCE1 , R-CCE2, R-CCE3 , R-CCE4, R-CCE5 , R-CCE6, R-CCE7 }进行 1次检测, 共检测 1次; 若仍没有检测出与系统消息临时网 络标识、 或随机接入响应消息临时网络标识、 或寻呼消息临时网络标识相 匹配的调度信息时, 则认为 eNB没有进行调度信息的下达;
若在上述任何一种 R-CCE组合形式的检测过程中, 检测出与系统消息 临时网络标识、 或随机接入响应消息临时网络标识、 或寻呼消息临时网络 标识相匹配的调度信息时,则 RN停止检测,并根据相匹配的调度信息的指 示, 在相应的时频资源上获取公共控制信息本身, 所述公共控制信息包括 系统消息、 随机接入响应消息和寻呼消息中的至少一种。
实施例 5
本实施例中, RN的公共搜索空间由所有承载 UL grant的一组 R-CCE 中的部分 R-CCE组成,其中 eNB覆盖下的所有 RN的承载 UL grant的 R-CCE 个数为 eNB的高层根据业务量进行确定的。 eNB和 RN通过高层信令的交 互, 确定 RN进行检测的起始位置为所述一组 R-CCE中的第 6个 R-CCE, 即 R-CCE5, 其中, 所述公共搜索空间承载的信息为调度信息。
由于公共搜索空间承载的是调度信息, 因此, eNB 不需要通过高层信 令告知 RN该公共控制信息具体为系统消息、随机接入响应消息和寻呼消息 中的哪一个或哪几个;
本实施例中, 可以确定对公共搜索空间进行盲检测的组合形式依次为 2-R-CCE, 4-R-CCE, 其中 2-R-CCE 组合形式所对应的检测次数为 2; 4-R-CCE组合形式所对应的检测次数为 1。 具体地, 由图 3可以看出, UL grant通常承载在一个子帧的第 2个 slot 上, 因此 RN对公共搜索空间进行盲检测过程如下: 首先按照 2-R-CCE的 组合形式从 R-CCE5 开始, 对第 2个 slot上的 {R-CCE5 , R-CCE6}以及 {R-CCE7, R-CCE8}分别进行 1次检测, 共检测 2次;
当检测完毕后, 如果没有检测到与系统消息临时网络标识、 或随机接 入响应消息临时网络标识、 或寻呼消息临时网络标识相匹配的调度信息时 , 则按照 4-R-CCE的组合形式从 R-CCE5开始,对第 2个 slot上的 {R-CCE5, R-CCE6, R-CCE7, R-CCE8}进行 1次检测, 共检测 1次; 若仍没有检测出 与系统消息临时网络标识、 或随机接入响应消息临时网络标识、 或寻呼消 息临时网络标识相匹配的调度信息时, 则认为 eNB没有进行调度信息的下 达;
若在上述任何一种 R-CCE组合形式的检测过程中, 检测出与系统消息 临时网络标识、 或随机接入响应消息临时网络标识、 或寻呼消息临时网络 标识相匹配的调度信息时,则 RN停止检测,并根据相匹配的调度信息的指 示, 在相应的时频资源上获取公共控制信息本身, 所述公共控制信息包括 系统消息、 随机接入响应消息和寻呼消息中的至少一种。
实施例 6
本实施例中, RN的公共搜索空间由所有承载 DL grant和 UL grant的一 组 R-CCE中的部分 R-CCE组成,其中 eNB覆盖下的所有 RN的承载 DL grant 和 UL grant的 R-CCE个数为 eNB的高层根据业务量进行确定的。 eNB和 RN通过高层信令的交互,确定 RN进行检测的起始位置为所述承载 DL grant 的 R-CCE中的第 1个 R-CCE, 即 R-CCE0和所述承载 UL grant的 R-CCE 中的第 1个 R-CCE, 即 R-CCE0, 其中, 所述公共搜索空间承载的信息为调 度信息。
由于公共搜索空间承载的是调度信息, 因此, eNB 不需要通过高层信 令告知 RN该公共控制信息具体为系统消息、随机接入响应消息和寻呼消息 中的哪一个或哪几个;
本实施例中, 可以确定对公共搜索空间进行盲检测的组合形式依次为 2-R-CCE, 4-R-CCE, 其中 2-R-CCE 组合形式所对应的检测次数为 2; 4-R-CCE组合形式所对应的检测次数为 1。
具体地, 由图 3可以看出, DL grant通常承载在一个子帧的第 1个 slot 上, UL grant通常承载在一个子帧的第 2个 slot上, 因此 RN对公共搜索空 间进行盲检测过程如下: 首先按照 2-R-CCE的组合形式从 R-CCE0开始, 对第 1个 slot上的 {R-CCEO, R-CCE1 }和第 2个 slot上的 {R-CCEO, R-CCE1 } 共同进行 1 次检测, 如果没有检测到与系统消息临时网络标识、 或随机接 入响应消息临时网络标识、 或寻呼消息临时网络标识相匹配的调度信息时 , 则再对第 1个 slot上的 {R-CCE2, R-CCE3 }和第 2个 slot上的 {R-CCE2, R-CCE3 }共同进行 1次检测, 共检测 2次;
当检测完毕后, 如果仍没有检测到与系统消息临时网络标识、 或随机 接入响应消息临时网络标识、 或寻呼消息临时网络标识相匹配的调度信息 时, 则按照 4-R-CCE 的组合形式从 R-CCE0 开始, 对第 1 个 slot上的 {R-CCEO, R-CCE1 , R-CCE2, R-CCE3 }和第 2个 slot上的 {R-CCEO, R-CCE1 , R-CCE2 , R-CCE3 }共同进行 1次检测;
若还没有检测出与系统消息临时网络标识、 或随机接入响应消息临时 网络标识、 或寻呼消息临时网络标识相匹配的调度信息时, 则认为 eNB没 有进行调度信息的下达;
若在上述任何一种 R-CCE组合形式的检测过程中, 检测出与系统消息 临时网络标识、 或随机接入响应消息临时网络标识、 或寻呼消息临时网络 标识相匹配的调度信息时,则 RN停止检测,并根据相匹配的调度信息的指 示, 在相应的时频资源上获取公共控制信息本身, 所述公共控制信息包括 系统消息、 随机接入响应消息和寻呼消息中的至少一种。
图 5示出了 RN的公共搜索空间的检测系统的结构示意, 如图 5所示, 所述检测系统包括: 起始位置确定单元 10和盲检测单元 20; 其中起始位置 确定单元 10用于确定对所述公共搜索空间进行检测的起始位置; 盲检测单 元 20用于从所述起始位置确定单元 10所确定的起始位置开始, 按照不同 的组合形式对公共搜索进行盲检测。
进一步地, 所述起始位置确定单元 10具体用于当所述公共搜索空间由 一组 PRB或 PRB pair组成时, 确定所述起始位置为所述一组 PRB或 PRB pair中的任一个 PRB或 PRB pair;
相应地, 所述盲检测单元 20具体用于从所述起始位置确定单元 10所 确定的起始位置开始, 分别按照 PRB或 PRB pair组合形式对所述 PRB或 PRB pair进行盲检测, 其中 PRB或 PRB pair组合形式为 { 1 , 2, 3, 4, 6, 8}中的 1个或多个。
进一步地, 所述起始位置确定单元 10还用于当所述公共搜索空间由一 组 R-CCE 组成时, 确定所述起始位置为所述一组 R-CCE 中的任一个 R-CCE;
相应地, 所述盲检测单元还用于从所述起始位置确定单元 10所确定的 起始位置开始,分别按照 R-CCE组合形式对所述 R-CCE进行盲检测,其中 R-CCE组合形式为为 { 1 , 2, 4, 8}中的 1个或多个。
以上所述, 仅为本发明的较佳实施例而已, 并非用于限定本发明的保 护范围。

Claims

权利要求书
1、 一种中继节点 RN的公共搜索空间的检测方法, 其特征在于, 所述 方法包括:
确定对公共搜索空间进行检测的起始位置;
从所述起始位置开始, 按照不同的组合形式对所述公共搜索空间进行 盲检测。
2、 根据权利要求 1所述的检测方法, 其特征在于, 所述确定对所述公 共搜索空间进行检测的起始位置为:
当所述公共搜索空间由一组物理资源块 PRB或物理资源块对 PRB pair 组成时, 确定所述起始位置为所述一组 PRB或 PRB pair中的任一个 PRB 或 PRB pair;
相应地, 所述从所述起始位置开始, 按照不同的组合形式对所述公共 搜索空间进行盲检测为:
从所述起始位置开始,分别按照 PRB或 PRB pair组合形式对所述 PRB 或 PRB pair进行盲检测, 其中所述 PRB或 PRB pair组合形式为 { 1 , 2, 3, 4, 6, 8}中的 1个或多个。
3、 根据权利要求 2所述的检测方法, 其特征在于, 所述分别按照 PRB 或 PRB pair组合形式对所述 PRB或 PRB pair进行盲检测为:分别按照 PRB 或 PRB pair组合形式为 1-PRB、 2-PRB、 3-PRB、 4-PRB、 6-PRB或 8-PRB 对所述 PRB或 PRB pair进行相同次数或不同次数的盲检测。
4、 根据权利要求 2或 3所述的检测方法, 其特征在于, 所述对公共搜 索空间进行盲检测为: 在所述 PRB或 PRB pair的第 1个时隙 slot、 或第 2 个 slot、 或同时在 2个 slot上对公共搜索空间进行盲检测。
5、 根据权利要求 1所述的检测方法, 其特征在于, 所述确定对所述公 共搜索空间进行检测的起始位置为: 当所述公共搜索空间由一组中继节点的控制信道单元 R-CCE组成时 , 确定所述起始位置为所述一组 R-CCE中的任一个 R-CCE;
相应地, 所述从所述起始位置开始, 按照不同的组合形式对所述公共 搜索空间进行盲检测为:
从所述起始位置开始,分别按照 R-CCE组合形式对所述 R-CCE进行盲 检测, 其中所述 R-CCE组合形式为为 { 1 , 2, 4, 8}中的 1个或多个。
6、根据权利要求 5所述的检测方法,其特征在于,所述分别按照 R-CCE 组合形式对所述 R-CCE 进行盲检测为: 分别按照 R-CCE 组合形式为 1-R-CCE, 2-R-CCE, 4-R-CCE, 8-R-CCE对所述 R-CCE进行相同次数或不 同次数的盲检测。
7、 根据权利要求 5或 6所述的检测方法, 其特征在于, 所述对公共搜 索空间进行盲检测为:在所述 R-CCE所在子帧的第 1个 slot、或第 2个 slot、 或同时在 2个 slot上对公共搜索空间进行盲检测。
8、 根据权利要求 2或 5所述的检测方法, 其特征在于, 所述方法还包 括:
当检测到与系统消息临时网络标识、 或随机接入响应消息临时网络标 识、 或寻呼消息临时网络标识相匹配的调度信息时, 根据相匹配的调度信 息的指示, 在相应的时频资源上获取公共控制信息本身, 所述公共控制信 息包括系统消息、 随机接入响应消息和寻呼消息中的至少一种;
其中当所述公共搜索空间由一组 PRB或 PRB pair组成时,公共搜索空 间承载的信息为公共控制信息或调度信息; 当所述公共搜索空间由一组 R-CCE组成时, 公共搜索空间承载的信息为调度信息。
9、 一种中继节点的公共搜索空间的检测系统, 其特征在于, 所述系统 包括: 起始位置确定单元和盲检测单元; 其中,
起始位置确定单元, 用于确定对所述公共搜索空间进行检测的起始位 置;
盲检测单元, 用于从所述起始位置确定单元所确定的起始位置开始, 按照不同的组合形式对所述公共搜索进行盲检测。
10、 根据权利要求 9所述的检测系统, 其特征在于, 所述起始位置确 定单元, 具体用于当所述公共搜索空间由一组 PRB或 PRB pair组成时, 确 定所述起始位置为所述一组 PRB或 PRB pair中的任一个 PRB或 PRB pair; 相应地, 所述盲检测单元, 具体用于从所述起始位置确定单元所确定 的起始位置开始, 分别按照 PRB或 PRB pair组合形式对所述 PRB或 PRB pair进行盲检测, 其中 PRB或 PRB pair组合形式为 { 1 , 2, 3, 4, 6, 8}中 的 1个或多个。
11、 根据权利要求 9所述的检测系统, 其特征在于, 所述起始位置确 定单元, 还用于当所述公共搜索空间由一组 R-CCE组成时, 确定所述起始 位置为所述一组 R-CCE中的任一个 R-CCE;
相应地, 所述盲检测单元, 还用于从所述起始位置确定单元所确定的 起始位置开始,分别按照 R-CCE组合形式对所述 R-CCE进行盲检测,其中 R-CCE组合形式为为 { 1 , 2, 4, 8}中的 1个或多个。
PCT/CN2011/080703 2010-10-12 2011-10-12 一种中继节点的公共搜索空间的检测方法及系统 WO2012048644A1 (zh)

Applications Claiming Priority (2)

Application Number Priority Date Filing Date Title
CN201010508880.5 2010-10-12
CN201010508880.5A CN102448082B (zh) 2010-10-12 2010-10-12 一种中继节点的公共搜索空间的检测方法及系统

Publications (1)

Publication Number Publication Date
WO2012048644A1 true WO2012048644A1 (zh) 2012-04-19

Family

ID=45937899

Family Applications (1)

Application Number Title Priority Date Filing Date
PCT/CN2011/080703 WO2012048644A1 (zh) 2010-10-12 2011-10-12 一种中继节点的公共搜索空间的检测方法及系统

Country Status (2)

Country Link
CN (1) CN102448082B (zh)
WO (1) WO2012048644A1 (zh)

Families Citing this family (1)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
US10674485B2 (en) * 2016-12-22 2020-06-02 Qualcomm Incorporated Common control resource set with user equipment-specific resources

Citations (2)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
CN101809898A (zh) * 2007-09-28 2010-08-18 Lg电子株式会社 用于监视物理下行链路控制信道的无线通信系统
US20100246721A1 (en) * 2009-03-25 2010-09-30 Qualcomm Incorporated Method and apparatus for efficient control decoding for transparent relaying operation in a wireless communication system

Family Cites Families (1)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
CN101478808B (zh) * 2009-01-21 2014-03-19 中兴通讯股份有限公司 一种下行控制信息的发送及检测方法

Patent Citations (2)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
CN101809898A (zh) * 2007-09-28 2010-08-18 Lg电子株式会社 用于监视物理下行链路控制信道的无线通信系统
US20100246721A1 (en) * 2009-03-25 2010-09-30 Qualcomm Incorporated Method and apparatus for efficient control decoding for transparent relaying operation in a wireless communication system

Non-Patent Citations (2)

* Cited by examiner, † Cited by third party
Title
"R-PDCCH search space", 3GPP TSG-RAN WG1#62, RL-104814, 27 August 2010 (2010-08-27), MADRID, SPAIN *
"Search Space for R-PDCCH", 3GPP TSG-RAN WG1#62, RL-104511, 23 August 2010 (2010-08-23) - 27 August 2010 (2010-08-27), MADRID, SPAIN *

Also Published As

Publication number Publication date
CN102448082B (zh) 2014-04-30
CN102448082A (zh) 2012-05-09

Similar Documents

Publication Publication Date Title
JP6674589B1 (ja) 狭帯域通信のための狭帯域時分割複信フレーム構造
JP6260880B2 (ja) 送信装置及び送信方法
US8804641B2 (en) Method and device for detecting downlink control information
JP6173585B2 (ja) アップダウンリンク設定情報通知、取得方法、基地局及びユーザー装置
US9344245B2 (en) Apparatus and method for allocating channel state information-reference signal in wireless communication system
JP5292589B2 (ja) 無線通信システム内の中継動作におけるリソース共有
US20110310829A1 (en) Method and apparatus for grouping control channel resource in mobile communication system
CN107615854A (zh) 终端装置、基站装置及通信方法
WO2014047927A1 (zh) 控制信息发送方法、接收方法和设备
WO2012062178A1 (zh) 用于确定中继链路资源单元组的方法及装置
KR101887064B1 (ko) 하향링크 신호 수신 방법 및 전송 방법과, 사용자기기 및 기지국
CN107534968A (zh) 终端装置、基站装置及通信方法
WO2011137696A1 (zh) 中继节点下行控制信道的传输方法及系统
KR101973465B1 (ko) 이동통신 시스템에서 백홀 링크 서브프레임 구조 및 그 정보 전송 방법
WO2011120375A1 (zh) 下行控制信道的检测方法和系统
WO2012174913A1 (zh) 一种确定搜索空间的方法及装置
US9526100B2 (en) Method for more efficiently utilizing radio resources in a wireless communication system including a plurality of small cells
US9509482B2 (en) Receiving method for interference cancellation, and terminal
WO2012051911A1 (zh) 一种中继节点的公共搜索空间的映射方法及装置
WO2011134387A1 (zh) 回程链路上的控制信令发送及检测方法、系统和设备
WO2012048644A1 (zh) 一种中继节点的公共搜索空间的检测方法及系统
JP2018011209A (ja) 通信システム、基地局装置、通信端末装置および通信方法
WO2012022195A1 (zh) 一种检测中继物理下行控制信道的方法及系统
WO2012062179A1 (zh) 一种中继节点rn下行控制信道的检测方法和装置
WO2012167639A1 (zh) 下行控制信道格式的配置方法及装置

Legal Events

Date Code Title Description
121 Ep: the epo has been informed by wipo that ep was designated in this application

Ref document number: 11832041

Country of ref document: EP

Kind code of ref document: A1

NENP Non-entry into the national phase

Ref country code: DE

122 Ep: pct application non-entry in european phase

Ref document number: 11832041

Country of ref document: EP

Kind code of ref document: A1