WO2012043626A1 - Method for manufacturing solar cells - Google Patents

Method for manufacturing solar cells Download PDF

Info

Publication number
WO2012043626A1
WO2012043626A1 PCT/JP2011/072178 JP2011072178W WO2012043626A1 WO 2012043626 A1 WO2012043626 A1 WO 2012043626A1 JP 2011072178 W JP2011072178 W JP 2011072178W WO 2012043626 A1 WO2012043626 A1 WO 2012043626A1
Authority
WO
WIPO (PCT)
Prior art keywords
plating
electrode
solar cell
plating film
substrates
Prior art date
Application number
PCT/JP2011/072178
Other languages
French (fr)
Japanese (ja)
Inventor
井手 大輔
村上 洋平
森上 光章
良 後藤
Original Assignee
三洋電機株式会社
Priority date (The priority date is an assumption and is not a legal conclusion. Google has not performed a legal analysis and makes no representation as to the accuracy of the date listed.)
Filing date
Publication date
Application filed by 三洋電機株式会社 filed Critical 三洋電機株式会社
Publication of WO2012043626A1 publication Critical patent/WO2012043626A1/en

Links

Images

Classifications

    • H01L31/022425
    • CCHEMISTRY; METALLURGY
    • C25ELECTROLYTIC OR ELECTROPHORETIC PROCESSES; APPARATUS THEREFOR
    • C25DPROCESSES FOR THE ELECTROLYTIC OR ELECTROPHORETIC PRODUCTION OF COATINGS; ELECTROFORMING; APPARATUS THEREFOR
    • C25D17/00Constructional parts, or assemblies thereof, of cells for electrolytic coating
    • C25D17/06Suspending or supporting devices for articles to be coated
    • CCHEMISTRY; METALLURGY
    • C25ELECTROLYTIC OR ELECTROPHORETIC PROCESSES; APPARATUS THEREFOR
    • C25DPROCESSES FOR THE ELECTROLYTIC OR ELECTROPHORETIC PRODUCTION OF COATINGS; ELECTROFORMING; APPARATUS THEREFOR
    • C25D5/00Electroplating characterised by the process; Pretreatment or after-treatment of workpieces
    • C25D5/02Electroplating of selected surface areas
    • C25D5/022Electroplating of selected surface areas using masking means
    • H01L31/022441
    • YGENERAL TAGGING OF NEW TECHNOLOGICAL DEVELOPMENTS; GENERAL TAGGING OF CROSS-SECTIONAL TECHNOLOGIES SPANNING OVER SEVERAL SECTIONS OF THE IPC; TECHNICAL SUBJECTS COVERED BY FORMER USPC CROSS-REFERENCE ART COLLECTIONS [XRACs] AND DIGESTS
    • Y02TECHNOLOGIES OR APPLICATIONS FOR MITIGATION OR ADAPTATION AGAINST CLIMATE CHANGE
    • Y02EREDUCTION OF GREENHOUSE GAS [GHG] EMISSIONS, RELATED TO ENERGY GENERATION, TRANSMISSION OR DISTRIBUTION
    • Y02E10/00Energy generation through renewable energy sources
    • Y02E10/50Photovoltaic [PV] energy

Definitions

  • the present invention relates to a method for manufacturing a solar cell.
  • a solar cell is a power generation mechanism that generates electric energy by collecting electrons and holes generated by irradiating a substrate with light using an electrode.
  • Patent Document 1 As a method for forming an electrode of a solar cell, for example, as described in Patent Document 1 below, a method for forming an electrode by a plating method is known. Specifically, in Patent Document 1, as a method for forming an electrode of a solar cell, a plurality of wafers arranged in a matrix with a support frame in which a plurality of openings are formed in a matrix and an auxiliary frame are provided. A method is described in which electrodes are formed on a plurality of wafers by dipping in a plating bath in a sandwiched state and supplying power from an auxiliary frame.
  • the thickness of the electrode to be formed may vary greatly between a plurality of wafers held between the support frame and the auxiliary frame. Specifically, among the plurality of wafers, the electrode formed on the wafer located on the center side is relatively thin, and the electrode formed on the wafer located on the peripheral portion. May be relatively thick.
  • a holder in which a plurality of substrates are supported in a matrix shape is disposed to face a plating electrode in a plating bath, and the holder, the plating electrode, A shielding member is disposed so as to cover at least a region outside the region where the plurality of substrates are disposed, and a plating film is formed on the plurality of substrates.
  • FIG. 1 is a schematic plan view of a solar cell manufactured in an embodiment according to the present invention.
  • FIG. 2 is a schematic cross-sectional view taken along line II-II in FIG. It is a typical side view for demonstrating the process of forming a plating film in one Embodiment which implemented this invention.
  • It is a schematic diagram of the holder and shielding member seen from arrow IV of FIG. In FIG. 4, the area
  • 6 is a graph showing the relationship between L5 and T 1 / T 2 in each of Examples 1 to 3 and Comparative Example.
  • the solar cell 1 includes a plate-like substrate 10.
  • the substrate 10 is not particularly limited as long as it includes a portion that generates carriers such as electrons and holes by receiving light.
  • the substrate 10 may have a crystalline semiconductor substrate having one conductivity type, for example.
  • the base 10 is formed on the crystalline semiconductor substrate having one conductivity type, the first amorphous semiconductor layer having the other conductivity type, and the crystalline semiconductor substrate. And a second amorphous semiconductor layer having one conductivity type.
  • substrate 10 may have a semiconductor substrate in which the n-type dopant diffusion region and the p-type dopant diffusion region are exposed on the surface.
  • the substrate 10 has a light receiving surface 10a and a back surface 10b.
  • the back surface 10b includes a p-type surface 10bp and an n-type surface 10bn.
  • the p-type surface 10 bp is constituted by the surface of a p-type region that is constituted by a p-type dopant diffusion region, a p-type amorphous semiconductor layer, or the like.
  • the n-type surface 10bn is constituted by the surface of an n-type region that is constituted by an n-type dopant diffusion region, an n-type amorphous semiconductor layer, or the like.
  • the solar cell 1 has a p-side electrode 11p provided on the p-type surface 10bp and an n-side electrode 11n provided on the n-type surface 10bn.
  • Each of the p-side electrode 11p and the n-side electrode 11n has a shape electrically separated from each other, for example, a comb-tooth shape.
  • Each of the p-side electrode 11p and the n-side electrode 11n includes a seed layer 13 and a plating film 14.
  • the seed layer 13 is provided on the back surface 10b.
  • the seed layer 13 is a layer that functions as a seed when the plating film 14 is formed.
  • the seed layer 13 can be formed of, for example, a metal such as Cu, Al, Ag, Au, Pt, Ti, or Ni, or an alloy containing at least one of these metals.
  • the thickness of the seed layer 13 is not particularly limited, but can be, for example, about 20 nm to 500 nm.
  • the plating film 14 is formed on the seed layer 13.
  • the plating film 14 can be formed of, for example, a metal such as Cu, Al, Ag, Au, Pt, Sn, or Ni, or an alloy containing at least one of these metals.
  • the thickness of the plating film 14 is not particularly limited, but can be, for example, about 2 ⁇ m to 50 ⁇ m.
  • a plurality of bases 10 having a p-type surface 10 bp and an n-type surface 10 bn are prepared on the back surface 10 b.
  • the substrate 10 may be formed by providing the seed layer 13 on the p-type surface 10 bp and the n-type surface 10 bn.
  • the seed layer 13 can be formed by, for example, a vacuum deposition method or a sputtering method.
  • the method for manufacturing the base 10 is not particularly limited, but the base 10 is preferably manufactured using a crystalline semiconductor substrate such as a single crystal silicon substrate or a polycrystalline silicon substrate.
  • the substrate 10 can be formed by a known method, for example.
  • a plating film 14 is formed on the p-type surface 10 bp and the n-type surface 10 bn.
  • the plating film 14 is simultaneously formed on the plurality of substrates 10 in the same process.
  • a holder 20 is used that can fix a plurality of substrates 10 in a matrix with the back surface 10b on which the seed layer 13 is formed exposed.
  • matrix means an array having at least one column and at least one row.
  • the columns and the rows may be vertical or may be inclined. That is, in the present invention, the matrix includes a square matrix and an oblique matrix. In the matrix, the number of rows and the number of columns may be the same or different.
  • the plurality of bases 10 are fixed to the holder 20 in a matrix with the back surface 10b on which the seed layer 13 is formed exposed. At this time, the plurality of bases 10 are fixed so that the distances L5 and L8 (see FIG. 4) between the adjacent bases 10 are 30 mm or less.
  • the distance L5 and the distance L8 may be different but are preferably equal to each other.
  • the number of substrates to be fixed to the holder is not particularly limited.
  • the width L4 of the outer edge portion of the shielding member 22 is not particularly limited, but can be, for example, about 30 mm to 100 mm.
  • a plating electrode 21 is arranged in front of the holder 20 so as to face the seed layers 13 formed on the plurality of bases 10 fixed to the holder 20.
  • a frame-shaped shielding member 22 is disposed between the plating electrode 21 and the holder 20 in parallel with the plating electrode 21 and the holder 20.
  • the shielding member 22 is viewed from the z1 side in the direction z toward the z2 side, the shielding member 22 is disposed so as to cover at least an area outside the area where the plurality of base bodies 10 are provided.
  • the shielding member 22 when viewed from the z1 side toward the z2 side, the shielding member 22 is disposed so as to cover the outer edge portion 23 of the region where the plurality of base bodies 10 are disposed. A part of the base body 10 arranged on the outermost periphery is shielded by the shielding member 22. For this reason, in the present embodiment, the width L3 of the outer edge portion 23 is larger than zero.
  • the shielding member 22 may be arranged so as not to cover the region where the plurality of bases are provided, or the shielding member 22 may be arranged so that the width L3 becomes zero.
  • the shielding member 22 is disposed so that the entire outer edge of the holder 20 is covered. Note that the width L6 of the portion of the shielding member 22 located outside the holder 20 is not particularly limited.
  • the distance L2 between the shielding member 22 and the back surface 10b of the base 10 in the direction z (specifically, the distance between the shielding member 22 and the surface of the seed layer 13 formed on the back surface 10b) L2 is not particularly limited. For example, it can be about 10 mm to 80 mm.
  • the distance L1 between the plating electrode 21 and the back surface 10b of the substrate 10 in the direction z (specifically, the distance between the plating electrode 21 and the surface of the seed layer 13 formed on the back surface 10b) L1 is not particularly limited. However, for example, it can be about 30 mm to 100 mm.
  • the ratio of the distances L5 and L8 to the distance L1 (L5 / L1, L8 / L1) is preferably 0.4 or less, more preferably 0.38 or less, and further preferably 0.375 or less. preferable.
  • the material of the shielding member 22 is not particularly limited, but the shielding member 22 is preferably an insulating member made of an insulating material. Specific examples of the insulating material include resin and ceramics.
  • the type of the plating bath 24 can be appropriately selected according to the type of the plating film 14 to be formed.
  • the distance L7 between the side surface of the plating film 14 and the substrate 10 is not particularly limited, but can be, for example, about 50 mm to 150 mm. If this distance L7 is too small, the supply of the plating solution may be insufficient, and the uneven thickness of the formed plating film 14 may increase. Even if the distance L7 is too large, the plating solution may not be sufficiently stirred, and the thickness unevenness of the formed plating film 14 may increase.
  • the plating film 14 can be formed with a small film thickness variation.
  • the number of lines of electric force passing through the substrate 10 arranged outside is as follows. This is larger than the number of lines of electric force passing through the substrate 10 disposed on the center side. Therefore, the plating film formed on the substrate 10 disposed on the outer side is relatively thick, and the plating film formed on the substrate 10 disposed on the center side is relatively thin. Therefore, the thickness of the plating film to be formed varies among the plurality of solar cells.
  • the plating film 14 is formed in a state where the shielding member 22 is disposed so as to cover the outside of the region where at least the plurality of bases 10 are provided. For this reason, in the formation process of the plating film 14, the number of lines of electric force passing through the base body 10A disposed on the outside can be reduced. Therefore, the difference in the number of passing lines of electric force between the base body 10A disposed on the outer side and the base body 10B disposed on the center side is reduced. For this reason, the thickness unevenness of the plating film 14 to be formed can be reduced between the bases 10A and 10B. Therefore, the solar cell 1 can be manufactured with the thickness variation of the small electrodes 11p and 11n.
  • the shielding member 22 when viewed from the z1 side toward the z2 side, the shielding member 22 is arranged so as to cover the outer edge portion 23 of the region where the plurality of base bodies 10 are arranged. For this reason, the number of lines of electric force passing through the base body 10A can be reduced. Therefore, the difference in the number of passing lines of electric force between the base body 10A arranged on the outside and the base body 10B arranged on the center side becomes smaller. For this reason, the thickness unevenness of the plating film 14 formed between the bases 10A and 10B can be further reduced. Therefore, the solar cell 1 can be manufactured with the thickness variation of the smaller electrodes 11p and 11n.
  • the distance L3 is preferably 0 or more, more preferably greater than 0, further preferably greater than 10 mm, and greater than 20 mm. Is still preferred.
  • the distances L5 and L8 between the adjacent base bodies 10 are 30 mm or less.
  • the ratio of the distances L5 and L8 to the distance L1 (L5 / L1, L8 / L1) is 0.4 or less.
  • the distances L5 and L8 are reduced.
  • the thickness unevenness of the plating film 14 formed between the bases 10A and 10B can be further reduced. Therefore, the solar cell 1 can be manufactured with smaller thickness variations of the electrodes 11p and 11n.
  • the reason why the thickness unevenness of the plating film 14 formed by reducing the distances L5 and L8 can be reduced is that the density of the electric lines of force passing through the edge portions of the bases 10A and 10B can be reduced. It is done.
  • Examples 1 to 3 By the method according to the above embodiment, a plated film made of Cu was formed under the conditions shown in Table 1 below. L7 was 70 mm. L1 was 80 mm.
  • FIG. 5 shows the relationship between the distance L5 and T 1 / T 2 in each of Examples 1 to 3.
  • Comparative Example A plating film was formed under the conditions shown in Table 1 below, and T 1 / T 2 was calculated in the same manner as in Examples 1 to 3 except that the shielding member was not used. The results are shown in Table 1 below. Also, the relationship between the distance L5 and T 1 / T 2 in the comparative example shown in FIG.
  • the plating film is formed by forming the plating film in a state where the shielding member is disposed so as to cover the outside of the region where at least the plurality of bases 10 are provided. It can be seen that the thickness variation can be reduced.
  • the variation in the formed plating film is further reduced. I understand that I can do it.

Landscapes

  • Engineering & Computer Science (AREA)
  • Chemical & Material Sciences (AREA)
  • Life Sciences & Earth Sciences (AREA)
  • Sustainable Development (AREA)
  • Sustainable Energy (AREA)
  • Chemical Kinetics & Catalysis (AREA)
  • Electrochemistry (AREA)
  • Materials Engineering (AREA)
  • Metallurgy (AREA)
  • Organic Chemistry (AREA)
  • Photovoltaic Devices (AREA)

Abstract

[Problem] To provide a method for manufacturing solar cells, said method being capable of minimizing inter-solar-cell variability in electrode thickness. [Solution] A holder (20), to which a plurality of substrates (10) are affixed in a matrix pattern, and a plating electrode (21) are arranged in a plating bath (24) such that one principal surface (10b) of each substrate (10) faces the plating electrode (21). Then, with a masking member (22) arranged so as to cover at least a region outside the region where the substrates (10) are arranged, as seen from the plating-electrode (21) side in the direction in which the holder (20) and the plating electrode (21) face each other, a plating film (14) is formed between the holder (20) and the plating electrode (21).

Description

太陽電池の製造方法Manufacturing method of solar cell
 本発明は、太陽電池の製造方法に関する。 The present invention relates to a method for manufacturing a solar cell.
 近年、環境負荷の低いエネルギー源として太陽電池が注目されている。太陽電池は、基体に光が照射されることにより生じた電子及び正孔を電極により収集することにより、電気エネルギーを発生させる発電機構である。 In recent years, solar cells have attracted attention as an energy source with low environmental impact. A solar cell is a power generation mechanism that generates electric energy by collecting electrons and holes generated by irradiating a substrate with light using an electrode.
 太陽電池の電極の形成方法としては、例えば下記の特許文献1に記載されているように、めっき法による電極の形成方法が知られている。具体的には、特許文献1には、太陽電池の電極の形成方法として、それぞれ、複数の開口がマトリクス状に形成されている支持フレームと補助フレームとでマトリクス状に配列された複数のウェーハを挟持した状態でめっき浴に浸漬し、補助フレームから給電することにより複数のウェーハ上に電極を形成する方法が記載されている。 As a method for forming an electrode of a solar cell, for example, as described in Patent Document 1 below, a method for forming an electrode by a plating method is known. Specifically, in Patent Document 1, as a method for forming an electrode of a solar cell, a plurality of wafers arranged in a matrix with a support frame in which a plurality of openings are formed in a matrix and an auxiliary frame are provided. A method is described in which electrodes are formed on a plurality of wafers by dipping in a plating bath in a sandwiched state and supplying power from an auxiliary frame.
米国特許第7172184号公報U.S. Pat. No. 7,172,184
 しかしながら、特許文献1に記載の電極の形成方法では、支持フレームと補助フレームとに狭持された複数のウェーハ間で、形成される電極の厚みが大きくばらつくおそれがある。具体的には、複数のウェーハのうち、中央側に位置していたウェーハの上に形成された電極の厚みが相対的に薄くなり、周辺部に位置していたウェーハの上に形成された電極の厚みが相対的に厚くなる可能性がある。 However, in the electrode forming method described in Patent Document 1, the thickness of the electrode to be formed may vary greatly between a plurality of wafers held between the support frame and the auxiliary frame. Specifically, among the plurality of wafers, the electrode formed on the wafer located on the center side is relatively thin, and the electrode formed on the wafer located on the peripheral portion. May be relatively thick.
 本発明の一態様に係る太陽電池の製造方法は、めっき浴中において、複数の基体がマトリクス状に支持されたホルダーをめっき用電極に対向させて配置すると共に、前記ホルダーと前記めっき用電極との間に少なくとも前記複数の基体が配置されている領域の外側の領域を覆うように遮蔽部材を配置し、前記複数の基体上にめっき膜を形成する工程を備える。 In the method for manufacturing a solar cell according to one aspect of the present invention, a holder in which a plurality of substrates are supported in a matrix shape is disposed to face a plating electrode in a plating bath, and the holder, the plating electrode, A shielding member is disposed so as to cover at least a region outside the region where the plurality of substrates are disposed, and a plating film is formed on the plurality of substrates.
 本発明によれば、太陽電池間での電極の厚みばらつきを抑制することができる太陽電池の製造方法を提供することができる。 According to the present invention, it is possible to provide a method for manufacturing a solar cell that can suppress variations in electrode thickness between solar cells.
本発明に係る一実施形態において製造する太陽電池の略図的平面図である。1 is a schematic plan view of a solar cell manufactured in an embodiment according to the present invention. 図1の線II-IIにおける略図的断面図である。FIG. 2 is a schematic cross-sectional view taken along line II-II in FIG. 本発明を実施した一実施形態においてめっき膜を形成する工程を説明するための模式的側面図である。It is a typical side view for demonstrating the process of forming a plating film in one Embodiment which implemented this invention. 図3の矢印IVから視たホルダー及び遮蔽部材の模式図である。図4においては、遮蔽部材が設けられている領域にハッチングを附している。It is a schematic diagram of the holder and shielding member seen from arrow IV of FIG. In FIG. 4, the area | region where the shielding member is provided is hatched. 実施例1~3及び比較例のそれぞれにおけるL5と、T/Tとの関係を表すグラフである。6 is a graph showing the relationship between L5 and T 1 / T 2 in each of Examples 1 to 3 and Comparative Example.
 以下、本発明を実施した好ましい形態の一例について説明する。但し、以下の実施形態は単なる例示である。本発明は、以下の実施形態に何ら限定されない。 Hereinafter, an example of a preferable embodiment in which the present invention is implemented will be described. However, the following embodiments are merely examples. The present invention is not limited to the following embodiments.
 また、実施形態等において参照する各図面において、実質的に同一の機能を有する部材は同一の符号で参照することとする。また、実施形態等において参照する図面は、模式的に記載されたものである。図面に描画された物体の寸法の比率などは、現実の物体の寸法の比率などとは異なる場合がある。図面相互間においても、物体の寸法比率等が異なる場合がある。具体的な物体の寸法比率等は、以下の説明を参酌して判断されるべきである。 In each drawing referred to in the embodiment and the like, members having substantially the same function are referred to by the same reference numerals. The drawings referred to in the embodiments and the like are schematically described. A ratio of dimensions of an object drawn in a drawing may be different from a ratio of dimensions of an actual object. The dimensional ratio of the object may be different between the drawings. The specific dimensional ratio of the object should be determined in consideration of the following description.
 まず、図1及び図2を参照しながら本実施形態において製造する太陽電池1の構成について説明する。 First, the configuration of the solar cell 1 manufactured in the present embodiment will be described with reference to FIGS. 1 and 2.
 太陽電池1は、板状の基体10を備えている。基体10は、受光することによって電子や正孔などのキャリアを生成する部分を含むものである限りにおいて特に限定されない。基体10は、例えば、一の導電型を有する結晶性半導体基板を有するものであってもよい。また、基体10は、一の導電型を有する結晶性半導体基板と、結晶性半導体基板の上に形成されており、他の導電型を有する第1の非晶質半導体層と、結晶性半導体基板の上に形成されており、一の導電型を有する第2の非晶質半導体層とを有するものであってもよい。また、基体10は、n型ドーパント拡散領域とp型ドーパント拡散領域とが表面に露出している半導体基板を有するものであってもよい。 The solar cell 1 includes a plate-like substrate 10. The substrate 10 is not particularly limited as long as it includes a portion that generates carriers such as electrons and holes by receiving light. The substrate 10 may have a crystalline semiconductor substrate having one conductivity type, for example. The base 10 is formed on the crystalline semiconductor substrate having one conductivity type, the first amorphous semiconductor layer having the other conductivity type, and the crystalline semiconductor substrate. And a second amorphous semiconductor layer having one conductivity type. Moreover, the base | substrate 10 may have a semiconductor substrate in which the n-type dopant diffusion region and the p-type dopant diffusion region are exposed on the surface.
 基体10は、受光面10aと、裏面10bとを有する。裏面10bには、p型表面10bpと、n型表面10bnとが含まれている。p型表面10bpは、p型ドーパント拡散領域やp型の非晶質半導体層などにより構成されているp型領域の表面により構成されている。n型表面10bnは、n型ドーパント拡散領域やn型の非晶質半導体層などにより構成されているn型領域の表面により構成されている。 The substrate 10 has a light receiving surface 10a and a back surface 10b. The back surface 10b includes a p-type surface 10bp and an n-type surface 10bn. The p-type surface 10 bp is constituted by the surface of a p-type region that is constituted by a p-type dopant diffusion region, a p-type amorphous semiconductor layer, or the like. The n-type surface 10bn is constituted by the surface of an n-type region that is constituted by an n-type dopant diffusion region, an n-type amorphous semiconductor layer, or the like.
 太陽電池1は、p型表面10bpの上に設けられたp側電極11pと、n型表面10bnの上に設けられたn側電極11nとを有する。p側電極11p及びn側電極11nのそれぞれは、互いに電気的に分離された形状、例えばくし歯状にされている。 The solar cell 1 has a p-side electrode 11p provided on the p-type surface 10bp and an n-side electrode 11n provided on the n-type surface 10bn. Each of the p-side electrode 11p and the n-side electrode 11n has a shape electrically separated from each other, for example, a comb-tooth shape.
 p側電極11p及びn側電極11nのそれぞれは、シード層13と、めっき膜14とを有する。シード層13は、裏面10bの上に設けられている。このシード層13は、めっき膜14を形成する際のシードとして機能する層である。シード層13は、例えば、Cu,Al,Ag,Au,Pt,Ti,Niなどの金属や、これらの金属のうちの少なくとも一種を含む合金により形成することができる。シード層13の厚みは、特に限定されないが、例えば、20nm~500nm程度とすることができる。 Each of the p-side electrode 11p and the n-side electrode 11n includes a seed layer 13 and a plating film 14. The seed layer 13 is provided on the back surface 10b. The seed layer 13 is a layer that functions as a seed when the plating film 14 is formed. The seed layer 13 can be formed of, for example, a metal such as Cu, Al, Ag, Au, Pt, Ti, or Ni, or an alloy containing at least one of these metals. The thickness of the seed layer 13 is not particularly limited, but can be, for example, about 20 nm to 500 nm.
 めっき膜14は、シード層13の上に形成されている。めっき膜14は、例えば、例えば、Cu,Al,Ag,Au,Pt,Sn,Niなどの金属や、これらの金属のうちの少なくとも一種を含む合金により形成することができる。めっき膜14の厚みは、特に限定されないが、例えば、2μm~50μm程度とすることができる。 The plating film 14 is formed on the seed layer 13. The plating film 14 can be formed of, for example, a metal such as Cu, Al, Ag, Au, Pt, Sn, or Ni, or an alloy containing at least one of these metals. The thickness of the plating film 14 is not particularly limited, but can be, for example, about 2 μm to 50 μm.
 次に太陽電池1の製造方法について、図3及び図4を参照して説明する。 Next, a method for manufacturing the solar cell 1 will be described with reference to FIGS.
 まず、裏面10bに、p型表面10bp及びn型表面10bnを有する基体10を複数用意する。なお、p型表面10bp及びn型表面10bnの上にシード層13を設けたものを基体10としてもよい。シード層13の形成は、例えば、真空蒸着法やスパッタリング法などにより行うことができる。基体10の作製方法は特に限定されないが、基体10は、単結晶シリコン基板や多結晶シリコン基板等の結晶性半導体基板を用いて作製したものであることが好ましい。基体10は、例えば、公知の方法により形成することができる。 First, a plurality of bases 10 having a p-type surface 10 bp and an n-type surface 10 bn are prepared on the back surface 10 b. Note that the substrate 10 may be formed by providing the seed layer 13 on the p-type surface 10 bp and the n-type surface 10 bn. The seed layer 13 can be formed by, for example, a vacuum deposition method or a sputtering method. The method for manufacturing the base 10 is not particularly limited, but the base 10 is preferably manufactured using a crystalline semiconductor substrate such as a single crystal silicon substrate or a polycrystalline silicon substrate. The substrate 10 can be formed by a known method, for example.
 次に、p型表面10bp及びn型表面10bn上にめっき膜14を形成する。本実施形態においては、複数の基体10に対して同一の工程で同時にめっき膜14を形成する。具体的には、複数の基体10を、シード層13が形成された裏面10bを露出させた状態でマトリクス状に固定可能なホルダー20を用いる。 Next, a plating film 14 is formed on the p-type surface 10 bp and the n-type surface 10 bn. In the present embodiment, the plating film 14 is simultaneously formed on the plurality of substrates 10 in the same process. Specifically, a holder 20 is used that can fix a plurality of substrates 10 in a matrix with the back surface 10b on which the seed layer 13 is formed exposed.
 ここで、「マトリクス」とは、少なくともひとつの列と少なくともひとつの行とを有する配列を意味する。列と、行とは、垂直であってもよいし、傾斜していてもよい。すなわち、本発明において、マトリクスには、正方行列と斜方行列とが含まれる。また、マトリクスにおいて、行数と列数とは同じであってもよいし、異なっていてもよい。 Here, “matrix” means an array having at least one column and at least one row. The columns and the rows may be vertical or may be inclined. That is, in the present invention, the matrix includes a square matrix and an oblique matrix. In the matrix, the number of rows and the number of columns may be the same or different.
 次に、ホルダー20に、複数の基体10を、シード層13が形成された裏面10bを露出させた状態でマトリクス状に固定する。この際に、隣り合う基体10間の距離L5,L8(図4参照)が30mm以下となるように複数の基体10を固定する。なお、距離L5と距離L8とは、異なっていてもよいが、互いに等しいことが好ましい。 Next, the plurality of bases 10 are fixed to the holder 20 in a matrix with the back surface 10b on which the seed layer 13 is formed exposed. At this time, the plurality of bases 10 are fixed so that the distances L5 and L8 (see FIG. 4) between the adjacent bases 10 are 30 mm or less. The distance L5 and the distance L8 may be different but are preferably equal to each other.
 なお、本実施形態では、4行×4列の合計16個の基体10を固定する例について説明するが、本発明において、ホルダーに固定する基体の数量は特に限定されない。 In this embodiment, an example in which a total of 16 substrates 10 in 4 rows × 4 columns is fixed will be described. However, in the present invention, the number of substrates to be fixed to the holder is not particularly limited.
 遮蔽部材22の外縁部の幅L4は、特に限定されないが、例えば、30mm~100mm程度とすることができる。 The width L4 of the outer edge portion of the shielding member 22 is not particularly limited, but can be, for example, about 30 mm to 100 mm.
 次に、ホルダー20の前方に、ホルダー20に固定された複数の基体10に形成されたシード層13と対向するように、めっき用電極21を配置する。また、めっき用電極21とホルダー20との間に、めっき用電極21及びホルダー20と平行に額縁状の遮蔽部材22を配置する。遮蔽部材22を、方向zのz1側からz2側に向かって視た際に、少なくとも複数の基体10が設けられている領域の外側の領域を覆うように配置する。具体的には、本実施形態では、z1側からz2側に向かって視た際に、複数の基体10が配置されている領域の外縁部23を覆うように、遮蔽部材22を配置する。最外周に配置されている基体10の一部は、遮蔽部材22によって遮蔽される。このため、本実施形態においては、外縁部23の幅L3は、0より大きい。但し、本発明は、この構成に限定されない。本発明においては、複数の基体が設けられている領域を覆わないように遮蔽部材22を配置してもよいし、幅L3が0となるように遮蔽部材22を配置してもよい。 Next, a plating electrode 21 is arranged in front of the holder 20 so as to face the seed layers 13 formed on the plurality of bases 10 fixed to the holder 20. In addition, a frame-shaped shielding member 22 is disposed between the plating electrode 21 and the holder 20 in parallel with the plating electrode 21 and the holder 20. When the shielding member 22 is viewed from the z1 side in the direction z toward the z2 side, the shielding member 22 is disposed so as to cover at least an area outside the area where the plurality of base bodies 10 are provided. Specifically, in this embodiment, when viewed from the z1 side toward the z2 side, the shielding member 22 is disposed so as to cover the outer edge portion 23 of the region where the plurality of base bodies 10 are disposed. A part of the base body 10 arranged on the outermost periphery is shielded by the shielding member 22. For this reason, in the present embodiment, the width L3 of the outer edge portion 23 is larger than zero. However, the present invention is not limited to this configuration. In the present invention, the shielding member 22 may be arranged so as not to cover the region where the plurality of bases are provided, or the shielding member 22 may be arranged so that the width L3 becomes zero.
 また、本実施形態では、遮蔽部材22を、ホルダー20の外縁部の全体が覆われるように配置する。なお、遮蔽部材22のホルダー20の外側に位置している部分の幅L6は、特に限定されない。 In this embodiment, the shielding member 22 is disposed so that the entire outer edge of the holder 20 is covered. Note that the width L6 of the portion of the shielding member 22 located outside the holder 20 is not particularly limited.
 方向zにおける遮蔽部材22と基体10の裏面10bまでの距離(詳細には、遮蔽部材22と裏面10bの上に形成されているシード層13の表面までの距離)L2は、特に限定されないが、例えば、10mm~80mm程度とすることができる。 The distance L2 between the shielding member 22 and the back surface 10b of the base 10 in the direction z (specifically, the distance between the shielding member 22 and the surface of the seed layer 13 formed on the back surface 10b) L2 is not particularly limited. For example, it can be about 10 mm to 80 mm.
 方向zにおけるめっき用電極21と基体10の裏面10bまでの距離(詳細には、めっき用電極21と裏面10bの上に形成されているシード層13の表面までの距離)L1は、特に限定されないが、例えば、30mm~100mm程度とすることができる。距離L1に対する距離L5,L8の比(L5/L1,L8/L1)は、0.4以下であることが好ましく、0.38以下であることがより好ましく、0.375以下であることがさらに好ましい。 The distance L1 between the plating electrode 21 and the back surface 10b of the substrate 10 in the direction z (specifically, the distance between the plating electrode 21 and the surface of the seed layer 13 formed on the back surface 10b) L1 is not particularly limited. However, for example, it can be about 30 mm to 100 mm. The ratio of the distances L5 and L8 to the distance L1 (L5 / L1, L8 / L1) is preferably 0.4 or less, more preferably 0.38 or less, and further preferably 0.375 or less. preferable.
 遮蔽部材22の材質は、特に限定されないが、遮蔽部材22は、絶縁材料からなる絶縁部材であることが好ましい。絶縁材料の具体例としては、樹脂やセラミックスなどが挙げられる。 The material of the shielding member 22 is not particularly limited, but the shielding member 22 is preferably an insulating member made of an insulating material. Specific examples of the insulating material include resin and ceramics.
 次に、複数の基体10が固定されたホルダー20、遮蔽部材22及びめっき用電極21を、上記位置関係を保持したまま、めっき浴24に浸漬する。めっき浴24の種類は、形成しようとするめっき膜14の種類に応じて適宜選択することができる。めっき膜14の側面と基体10との間の距離L7は、特に限定されないが、例えば、50mm~150mm程度とすることができる。この距離L7が小さすぎると、めっき液の供給が不足し、形成されるめっき膜14の膜厚むらが大きくなる場合がある。また、距離L7が大きすぎても、めっき液が十分に攪拌されず、形成されるめっき膜14の膜厚むらが大きくなる場合がある。 Next, the holder 20, the shielding member 22 and the plating electrode 21 to which the plurality of substrates 10 are fixed are immersed in the plating bath 24 while maintaining the above positional relationship. The type of the plating bath 24 can be appropriately selected according to the type of the plating film 14 to be formed. The distance L7 between the side surface of the plating film 14 and the substrate 10 is not particularly limited, but can be, for example, about 50 mm to 150 mm. If this distance L7 is too small, the supply of the plating solution may be insufficient, and the uneven thickness of the formed plating film 14 may increase. Even if the distance L7 is too large, the plating solution may not be sufficiently stirred, and the thickness unevenness of the formed plating film 14 may increase.
 次に、めっき用電極21と基体10の上に形成されているシード層13との間に電圧を印加することにより、電解めっきを行い、めっき膜14を形成する。このめっき工程においては、ホルダー20を揺動させておくことが好ましい。また、めっき浴24を攪拌しておくことが好ましい。そうすることによって、めっき液の供給ばらつきを抑制できる。従って、小さな膜厚ばらつきでめっき膜14を形成することができる。 Next, by applying a voltage between the plating electrode 21 and the seed layer 13 formed on the substrate 10, electrolytic plating is performed to form a plating film 14. In this plating step, it is preferable that the holder 20 is swung. Moreover, it is preferable to stir the plating bath 24. By doing so, supply variation of the plating solution can be suppressed. Therefore, the plating film 14 can be formed with a small film thickness variation.
 ところで、遮蔽部材を配置せずにめっき膜の形成を行った場合は、マトリクス状に配置された複数の基体10のうち、外側に配置されている基体10を通過する電気力線の本数が、中央側に配置されている基体10を通過する電気力線の本数よりも多くなる。よって、外側に配置されている基体10の上に形成されるめっき膜が相対的に厚くなり、中央側に配置されている基体10の上に形成されるめっき膜が相対的に薄くなる。従って、形成されるめっき膜の厚みが、複数の太陽電池間でばらつく。 By the way, when the plating film is formed without arranging the shielding member, among the plurality of substrates 10 arranged in a matrix, the number of lines of electric force passing through the substrate 10 arranged outside is as follows. This is larger than the number of lines of electric force passing through the substrate 10 disposed on the center side. Therefore, the plating film formed on the substrate 10 disposed on the outer side is relatively thick, and the plating film formed on the substrate 10 disposed on the center side is relatively thin. Therefore, the thickness of the plating film to be formed varies among the plurality of solar cells.
 それに対して、本実施形態では、少なくとも複数の基体10が設けられている領域の外側を覆うように遮蔽部材22を配置した状態でめっき膜14を形成する。このため、めっき膜14の形成工程において、外側に配置されている基体10Aを通過する電気力線の本数を少なくすることができる。よって、外側に配置されている基体10Aと、中央側に配置されている基体10Bとで、通過する電気力線の本数の差を小さくなる。このため、基体10A、10B間で、形成されるめっき膜14の厚みむらを小さくすることができる。従って、太陽電池1を、小さな電極11p、11nの厚みばらつきで製造することができる。 In contrast, in the present embodiment, the plating film 14 is formed in a state where the shielding member 22 is disposed so as to cover the outside of the region where at least the plurality of bases 10 are provided. For this reason, in the formation process of the plating film 14, the number of lines of electric force passing through the base body 10A disposed on the outside can be reduced. Therefore, the difference in the number of passing lines of electric force between the base body 10A disposed on the outer side and the base body 10B disposed on the center side is reduced. For this reason, the thickness unevenness of the plating film 14 to be formed can be reduced between the bases 10A and 10B. Therefore, the solar cell 1 can be manufactured with the thickness variation of the small electrodes 11p and 11n.
 本実施形態では、z1側からz2側に向かって視た際に、複数の基体10が配置されている領域の外縁部23を覆うように、遮蔽部材22を配置する。このため、基体10Aを通過する電気力線の本数をより少なくすることができる。よって、外側に配置されている基体10Aと、中央側に配置されている基体10Bとの間の、通過する電気力線の本数の差をより小さくなる。このため、基体10A、10B間で、形成されるめっき膜14の厚みむらをより小さくすることができる。従って、太陽電池1を、より小さな電極11p、11nの厚みばらつきで製造することができる。 In this embodiment, when viewed from the z1 side toward the z2 side, the shielding member 22 is arranged so as to cover the outer edge portion 23 of the region where the plurality of base bodies 10 are arranged. For this reason, the number of lines of electric force passing through the base body 10A can be reduced. Therefore, the difference in the number of passing lines of electric force between the base body 10A arranged on the outside and the base body 10B arranged on the center side becomes smaller. For this reason, the thickness unevenness of the plating film 14 formed between the bases 10A and 10B can be further reduced. Therefore, the solar cell 1 can be manufactured with the thickness variation of the smaller electrodes 11p and 11n.
 なお、形成されるめっき膜14の厚みむらをより小さくする観点からは、距離L3が0以上であることが好ましく、0より大きいことがより好ましく、10mmより大きいことがさらに好ましく、20mmより大きいことがなお好ましい。 From the viewpoint of reducing the thickness unevenness of the plating film 14 to be formed, the distance L3 is preferably 0 or more, more preferably greater than 0, further preferably greater than 10 mm, and greater than 20 mm. Is still preferred.
 また、本実施形態では、隣り合う基体10間の距離L5,L8が30mm以下である。距離L1に対する距離L5,L8の比(L5/L1,L8/L1)は、0.4以下である。このように、本実施形態では、距離L5,L8が小さくされている。このため、基体10A、10B間で、形成されるめっき膜14の厚みむらをさらに小さくすることができる。従って、太陽電池1を、さらに小さな電極11p、11nの厚みばらつきで製造することができる。なお、距離L5,L8を小さくすることによって形成されるめっき膜14の厚みむらを小さくできるのは、基体10A,10Bの端縁部を通過する電気力線の密度を小さくできるためであると考えられる。 In this embodiment, the distances L5 and L8 between the adjacent base bodies 10 are 30 mm or less. The ratio of the distances L5 and L8 to the distance L1 (L5 / L1, L8 / L1) is 0.4 or less. Thus, in this embodiment, the distances L5 and L8 are reduced. For this reason, the thickness unevenness of the plating film 14 formed between the bases 10A and 10B can be further reduced. Therefore, the solar cell 1 can be manufactured with smaller thickness variations of the electrodes 11p and 11n. The reason why the thickness unevenness of the plating film 14 formed by reducing the distances L5 and L8 can be reduced is that the density of the electric lines of force passing through the edge portions of the bases 10A and 10B can be reduced. It is done.
 以下、本発明について、具体的な実施例に基づいて、さらに詳細に説明するが、本発明は以下の実施例に何ら限定されるものではなく、その要旨を変更しない範囲において適宜変更して実施することが可能である。 Hereinafter, the present invention will be described in more detail on the basis of specific examples. However, the present invention is not limited to the following examples, and may be appropriately modified and implemented without departing from the scope of the present invention. Is possible.
 (実施例1~3) 上記実施形態に係る方法により、下記の表1に示す条件で、Cuからなるめっき膜を形成した。なお、L7は、70mmとした。L1は、80mmとした。 (Examples 1 to 3) By the method according to the above embodiment, a plated film made of Cu was formed under the conditions shown in Table 1 below. L7 was 70 mm. L1 was 80 mm.
 そして、外側に配置された基体10Aの上に形成されためっき膜14のうち、中心に最も近い部分の厚み(T)と、中央側に配置された基体10Bの上に形成されためっき膜14のうち、中心に最も近い部分の厚み(T)とを測定し、T/Tを算出した。結果を下記の表1に示す。また、各実施例1~3における距離L5とT/Tとの関係を図5に示す。 And among the plating films 14 formed on the substrate 10A arranged outside, the thickness (T 1 ) of the portion closest to the center and the plating film formed on the substrate 10B arranged on the center side. The thickness (T 2 ) of the portion closest to the center of 14 was measured, and T 1 / T 2 was calculated. The results are shown in Table 1 below. Further, FIG. 5 shows the relationship between the distance L5 and T 1 / T 2 in each of Examples 1 to 3.
 (比較例) 遮蔽部材を用いなかったこと以外は、上記実施例1~3と同様に、下記の表1に示す条件でめっき膜を形成し、T/Tを算出した。結果を下記の表1に示す。また、本比較例における距離L5とT/Tとの関係を図5に示す。 Comparative Example A plating film was formed under the conditions shown in Table 1 below, and T 1 / T 2 was calculated in the same manner as in Examples 1 to 3 except that the shielding member was not used. The results are shown in Table 1 below. Also, the relationship between the distance L5 and T 1 / T 2 in the comparative example shown in FIG.
Figure JPOXMLDOC01-appb-T000001
Figure JPOXMLDOC01-appb-T000001
 上記表1及び図5に示す結果から、少なくとも複数の基体10が設けられている領域の外側を覆うように遮蔽部材を配置した状態でめっき膜を形成することにより、形成されるめっき膜の膜厚ばらつきを小さくできることが分かる。 From the results shown in Table 1 and FIG. 5, the plating film is formed by forming the plating film in a state where the shielding member is disposed so as to cover the outside of the region where at least the plurality of bases 10 are provided. It can be seen that the thickness variation can be reduced.
 また、隣り合う基体間の距離を30mm以下、距離L1に対する距離L5,L8の比(L5/L1,L8/L1)を0.38以下にすることにより、形成されるめっき膜のばらつきをさらに小さくできることが分かる。 Further, by setting the distance between adjacent substrates to 30 mm or less and the ratio of the distances L5 and L8 to the distance L1 (L5 / L1, L8 / L1) to 0.38 or less, the variation in the formed plating film is further reduced. I understand that I can do it.
1…太陽電池
10…基体
10a…受光面
10b…裏面
10bn…n型表面
10bp…p型表面
11n…n側電極
11p…p側電極
13…シード層
14…めっき膜
20…ホルダー
21…めっき用電極
22…遮蔽部材
23…外縁部
24…めっき浴
DESCRIPTION OF SYMBOLS 1 ... Solar cell 10 ... Base | substrate 10a ... Light-receiving surface 10b ... Back surface 10bn ... N-type surface 10bp ... P-type surface 11n ... N-side electrode 11p ... P-side electrode 13 ... Seed layer 14 ... Plating film 20 ... Holder 21 ... Electrode for plating 22 ... Shield member 23 ... Outer edge 24 ... Plating bath

Claims (8)

  1.  めっき浴中において、複数の基体がマトリクス状に支持されたホルダーをめっき用電極に対向させて配置すると共に、前記ホルダーと前記めっき用電極との間に少なくとも前記複数の基体が配置されている領域の外側の領域を覆うように遮蔽部材を配置し、前記複数の基体上にめっき膜を形成する工程を備える、太陽電池の製造方法。 In the plating bath, a region where a plurality of substrates are supported in a matrix is disposed so as to face the electrode for plating, and at least the plurality of substrates are disposed between the holder and the electrode for plating. The manufacturing method of a solar cell provided with the process of arrange | positioning a shielding member so that the area | region of the outer side may be covered, and forming a plating film on the said several base | substrate.
  2.  請求項1に記載の太陽電池の製造方法であって、
     前記複数の基体が配置されている領域の外縁部を覆うように前記遮蔽部材を配置した状態で、前記めっき膜を形成する。
    It is a manufacturing method of the solar cell of Claim 1, Comprising:
    The plating film is formed in a state where the shielding member is disposed so as to cover an outer edge portion of an area where the plurality of substrates are disposed.
  3.  請求項1または2に記載の太陽電池の製造方法であって、
     隣り合う前記基体間の距離を30mm以下とする。
    It is a manufacturing method of the solar cell of Claim 1 or 2, Comprising:
    The distance between the adjacent substrates is 30 mm or less.
  4.  請求項1~3のいずれか一項に記載の太陽電池の製造方法であって、
     隣り合う前記基体間の距離の前記めっき用電極と前記基体の一の主面との間の距離に対する比((隣り合う基体間の距離)/(めっき用電極と基体の一の主面との間の距離))を0.4以下とする。
    A method for producing a solar cell according to any one of claims 1 to 3,
    Ratio of the distance between the adjacent substrates to the distance between the electrode for plating and one main surface of the substrate ((distance between adjacent substrates) / (between the electrode for plating and one main surface of the substrate) The distance between) is set to 0.4 or less.
  5.  請求項1~4のいずれか一項に記載の太陽電池の製造方法であって、
     前記遮蔽部材として、絶縁部材を用いる。
    A method for producing a solar cell according to any one of claims 1 to 4,
    An insulating member is used as the shielding member.
  6.  請求項1~5のいずれか一項に記載の太陽電池の製造方法であって、
     前記ホルダーを揺動させながら前記めっき膜を形成する。
    A method for producing a solar cell according to any one of claims 1 to 5,
    The plating film is formed while swinging the holder.
  7.  請求項1~6のいずれか一項に記載の太陽電池の製造方法であって、
     前記めっき浴を攪拌しながら前記めっき膜を形成する。
    A method for producing a solar cell according to any one of claims 1 to 6,
    The plating film is formed while stirring the plating bath.
  8.  請求項1~7のいずれか一項に記載の太陽電池の製造方法であって、
     前記複数の基体上に同時にめっき膜を形成する。
     
    A method for producing a solar cell according to any one of claims 1 to 7,
    A plating film is simultaneously formed on the plurality of substrates.
PCT/JP2011/072178 2010-09-28 2011-09-28 Method for manufacturing solar cells WO2012043626A1 (en)

Applications Claiming Priority (2)

Application Number Priority Date Filing Date Title
JP2010216600A JP2012074442A (en) 2010-09-28 2010-09-28 Manufacturing method of solar battery
JP2010-216600 2010-09-28

Publications (1)

Publication Number Publication Date
WO2012043626A1 true WO2012043626A1 (en) 2012-04-05

Family

ID=45893065

Family Applications (1)

Application Number Title Priority Date Filing Date
PCT/JP2011/072178 WO2012043626A1 (en) 2010-09-28 2011-09-28 Method for manufacturing solar cells

Country Status (2)

Country Link
JP (1) JP2012074442A (en)
WO (1) WO2012043626A1 (en)

Families Citing this family (1)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
JP6502147B2 (en) * 2015-03-31 2019-04-17 株式会社カネカ Method of manufacturing solar cell and method of manufacturing solar cell module

Citations (3)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
JP2000294819A (en) * 1999-04-05 2000-10-20 Sharp Corp Manufacture of solar battery
WO2005029540A2 (en) * 2003-08-06 2005-03-31 Sunpower Corporation Substrate carrier for electroplating solar cells
JP2009149979A (en) * 2007-11-30 2009-07-09 Mitsubishi Materials Corp METHOD FOR REPLENISHING Sn-ALLOY PLATING SOLUTION WITH Sn-COMPONENT AND Sn-ALLOY PLATING TREATMENT APPARATUS

Patent Citations (3)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
JP2000294819A (en) * 1999-04-05 2000-10-20 Sharp Corp Manufacture of solar battery
WO2005029540A2 (en) * 2003-08-06 2005-03-31 Sunpower Corporation Substrate carrier for electroplating solar cells
JP2009149979A (en) * 2007-11-30 2009-07-09 Mitsubishi Materials Corp METHOD FOR REPLENISHING Sn-ALLOY PLATING SOLUTION WITH Sn-COMPONENT AND Sn-ALLOY PLATING TREATMENT APPARATUS

Also Published As

Publication number Publication date
JP2012074442A (en) 2012-04-12

Similar Documents

Publication Publication Date Title
KR100993511B1 (en) Solar cell and manufacturing method of the same
US9624595B2 (en) Electroplating apparatus with improved throughput
WO2009032021A2 (en) Electroplating on roll-to-roll flexible solar cell substrates
Braun et al. High efficiency multi-busbar solar cells and modules
CN114335228B (en) Heterojunction solar cell, preparation method thereof and power generation device
JP4767365B2 (en) Thin film solar cell and manufacturing method thereof
CN105144398B (en) The electric conductivity of solar battery is promoted
CN105914249A (en) Full back electrode contact crystalline silicon solar cell structure and preparation method thereof
JP2000294819A (en) Manufacture of solar battery
CN210711711U (en) Coating equipment for manufacturing transparent conductive oxide film
JP7337703B2 (en) Method for manufacturing photoelectric conversion element, jig for plating, and plating apparatus
WO2012043626A1 (en) Method for manufacturing solar cells
TW201327897A (en) Rear-point-contact process for photovoltaic cells
KR20130061384A (en) Tray for supporting substrate, apparatus and method for manufacturing of solar cell using the same
Drabczyk et al. Electrodeposition of thin metallic layer for solar cell electrodes
US9837557B2 (en) Solar cell apparatus and method of fabricating the same
JPWO2019008955A1 (en) Solar cells and solar cell modules
Beaucarne et al. Summary of the 6th workshop on metallization and interconnection for crystalline silicon solar cells
TW201906187A (en) Solar cell, method for producing same, and solar cell module
JP2011060811A (en) Solar cell module and method of manufacturing the same
KR20030088665A (en) High efficient solar cell and fabrication method thereof
WO2019163786A1 (en) Method for producing solar cell
WO2013027591A1 (en) Solar cell and solar cell module
JP2016192453A (en) Substrate holder and method for manufacturing solar cell using the same
JP3397671B2 (en) Apparatus and method for producing zinc oxide thin film, and method for producing photovoltaic element using the same

Legal Events

Date Code Title Description
121 Ep: the epo has been informed by wipo that ep was designated in this application

Ref document number: 11829179

Country of ref document: EP

Kind code of ref document: A1

NENP Non-entry into the national phase

Ref country code: DE

122 Ep: pct application non-entry in european phase

Ref document number: 11829179

Country of ref document: EP

Kind code of ref document: A1