WO2012043401A1 - Alternating copolymerization polymer and organic photoelectric conversion element - Google Patents

Alternating copolymerization polymer and organic photoelectric conversion element Download PDF

Info

Publication number
WO2012043401A1
WO2012043401A1 PCT/JP2011/071691 JP2011071691W WO2012043401A1 WO 2012043401 A1 WO2012043401 A1 WO 2012043401A1 JP 2011071691 W JP2011071691 W JP 2011071691W WO 2012043401 A1 WO2012043401 A1 WO 2012043401A1
Authority
WO
WIPO (PCT)
Prior art keywords
photoelectric conversion
group
general formula
alternating copolymer
hydrocarbon group
Prior art date
Application number
PCT/JP2011/071691
Other languages
French (fr)
Japanese (ja)
Inventor
豪志 武藤
近藤 健
Original Assignee
リンテック株式会社
Priority date (The priority date is an assumption and is not a legal conclusion. Google has not performed a legal analysis and makes no representation as to the accuracy of the date listed.)
Filing date
Publication date
Application filed by リンテック株式会社 filed Critical リンテック株式会社
Publication of WO2012043401A1 publication Critical patent/WO2012043401A1/en

Links

Images

Classifications

    • CCHEMISTRY; METALLURGY
    • C08ORGANIC MACROMOLECULAR COMPOUNDS; THEIR PREPARATION OR CHEMICAL WORKING-UP; COMPOSITIONS BASED THEREON
    • C08GMACROMOLECULAR COMPOUNDS OBTAINED OTHERWISE THAN BY REACTIONS ONLY INVOLVING UNSATURATED CARBON-TO-CARBON BONDS
    • C08G61/00Macromolecular compounds obtained by reactions forming a carbon-to-carbon link in the main chain of the macromolecule
    • C08G61/12Macromolecular compounds containing atoms other than carbon in the main chain of the macromolecule
    • C08G61/122Macromolecular compounds containing atoms other than carbon in the main chain of the macromolecule derived from five- or six-membered heterocyclic compounds, other than imides
    • C08G61/123Macromolecular compounds containing atoms other than carbon in the main chain of the macromolecule derived from five- or six-membered heterocyclic compounds, other than imides derived from five-membered heterocyclic compounds
    • CCHEMISTRY; METALLURGY
    • C08ORGANIC MACROMOLECULAR COMPOUNDS; THEIR PREPARATION OR CHEMICAL WORKING-UP; COMPOSITIONS BASED THEREON
    • C08GMACROMOLECULAR COMPOUNDS OBTAINED OTHERWISE THAN BY REACTIONS ONLY INVOLVING UNSATURATED CARBON-TO-CARBON BONDS
    • C08G61/00Macromolecular compounds obtained by reactions forming a carbon-to-carbon link in the main chain of the macromolecule
    • C08G61/12Macromolecular compounds containing atoms other than carbon in the main chain of the macromolecule
    • C08G61/122Macromolecular compounds containing atoms other than carbon in the main chain of the macromolecule derived from five- or six-membered heterocyclic compounds, other than imides
    • C08G61/123Macromolecular compounds containing atoms other than carbon in the main chain of the macromolecule derived from five- or six-membered heterocyclic compounds, other than imides derived from five-membered heterocyclic compounds
    • C08G61/124Macromolecular compounds containing atoms other than carbon in the main chain of the macromolecule derived from five- or six-membered heterocyclic compounds, other than imides derived from five-membered heterocyclic compounds with a five-membered ring containing one nitrogen atom in the ring
    • CCHEMISTRY; METALLURGY
    • C08ORGANIC MACROMOLECULAR COMPOUNDS; THEIR PREPARATION OR CHEMICAL WORKING-UP; COMPOSITIONS BASED THEREON
    • C08GMACROMOLECULAR COMPOUNDS OBTAINED OTHERWISE THAN BY REACTIONS ONLY INVOLVING UNSATURATED CARBON-TO-CARBON BONDS
    • C08G61/00Macromolecular compounds obtained by reactions forming a carbon-to-carbon link in the main chain of the macromolecule
    • C08G61/12Macromolecular compounds containing atoms other than carbon in the main chain of the macromolecule
    • C08G61/122Macromolecular compounds containing atoms other than carbon in the main chain of the macromolecule derived from five- or six-membered heterocyclic compounds, other than imides
    • C08G61/123Macromolecular compounds containing atoms other than carbon in the main chain of the macromolecule derived from five- or six-membered heterocyclic compounds, other than imides derived from five-membered heterocyclic compounds
    • C08G61/126Macromolecular compounds containing atoms other than carbon in the main chain of the macromolecule derived from five- or six-membered heterocyclic compounds, other than imides derived from five-membered heterocyclic compounds with a five-membered ring containing one sulfur atom in the ring
    • HELECTRICITY
    • H10SEMICONDUCTOR DEVICES; ELECTRIC SOLID-STATE DEVICES NOT OTHERWISE PROVIDED FOR
    • H10KORGANIC ELECTRIC SOLID-STATE DEVICES
    • H10K85/00Organic materials used in the body or electrodes of devices covered by this subclass
    • H10K85/10Organic polymers or oligomers
    • H10K85/111Organic polymers or oligomers comprising aromatic, heteroaromatic, or aryl chains, e.g. polyaniline, polyphenylene or polyphenylene vinylene
    • H10K85/113Heteroaromatic compounds comprising sulfur or selene, e.g. polythiophene
    • HELECTRICITY
    • H10SEMICONDUCTOR DEVICES; ELECTRIC SOLID-STATE DEVICES NOT OTHERWISE PROVIDED FOR
    • H10KORGANIC ELECTRIC SOLID-STATE DEVICES
    • H10K85/00Organic materials used in the body or electrodes of devices covered by this subclass
    • H10K85/10Organic polymers or oligomers
    • H10K85/151Copolymers
    • CCHEMISTRY; METALLURGY
    • C08ORGANIC MACROMOLECULAR COMPOUNDS; THEIR PREPARATION OR CHEMICAL WORKING-UP; COMPOSITIONS BASED THEREON
    • C08GMACROMOLECULAR COMPOUNDS OBTAINED OTHERWISE THAN BY REACTIONS ONLY INVOLVING UNSATURATED CARBON-TO-CARBON BONDS
    • C08G2261/00Macromolecular compounds obtained by reactions forming a carbon-to-carbon link in the main chain of the macromolecule
    • C08G2261/10Definition of the polymer structure
    • C08G2261/12Copolymers
    • C08G2261/124Copolymers alternating
    • CCHEMISTRY; METALLURGY
    • C08ORGANIC MACROMOLECULAR COMPOUNDS; THEIR PREPARATION OR CHEMICAL WORKING-UP; COMPOSITIONS BASED THEREON
    • C08GMACROMOLECULAR COMPOUNDS OBTAINED OTHERWISE THAN BY REACTIONS ONLY INVOLVING UNSATURATED CARBON-TO-CARBON BONDS
    • C08G2261/00Macromolecular compounds obtained by reactions forming a carbon-to-carbon link in the main chain of the macromolecule
    • C08G2261/30Monomer units or repeat units incorporating structural elements in the main chain
    • C08G2261/31Monomer units or repeat units incorporating structural elements in the main chain incorporating aromatic structural elements in the main chain
    • C08G2261/314Condensed aromatic systems, e.g. perylene, anthracene or pyrene
    • C08G2261/3142Condensed aromatic systems, e.g. perylene, anthracene or pyrene fluorene-based, e.g. fluorene, indenofluorene, or spirobifluorene
    • CCHEMISTRY; METALLURGY
    • C08ORGANIC MACROMOLECULAR COMPOUNDS; THEIR PREPARATION OR CHEMICAL WORKING-UP; COMPOSITIONS BASED THEREON
    • C08GMACROMOLECULAR COMPOUNDS OBTAINED OTHERWISE THAN BY REACTIONS ONLY INVOLVING UNSATURATED CARBON-TO-CARBON BONDS
    • C08G2261/00Macromolecular compounds obtained by reactions forming a carbon-to-carbon link in the main chain of the macromolecule
    • C08G2261/30Monomer units or repeat units incorporating structural elements in the main chain
    • C08G2261/32Monomer units or repeat units incorporating structural elements in the main chain incorporating heteroaromatic structural elements in the main chain
    • C08G2261/322Monomer units or repeat units incorporating structural elements in the main chain incorporating heteroaromatic structural elements in the main chain non-condensed
    • C08G2261/3221Monomer units or repeat units incorporating structural elements in the main chain incorporating heteroaromatic structural elements in the main chain non-condensed containing one or more nitrogen atoms as the only heteroatom, e.g. pyrrole, pyridine or triazole
    • CCHEMISTRY; METALLURGY
    • C08ORGANIC MACROMOLECULAR COMPOUNDS; THEIR PREPARATION OR CHEMICAL WORKING-UP; COMPOSITIONS BASED THEREON
    • C08GMACROMOLECULAR COMPOUNDS OBTAINED OTHERWISE THAN BY REACTIONS ONLY INVOLVING UNSATURATED CARBON-TO-CARBON BONDS
    • C08G2261/00Macromolecular compounds obtained by reactions forming a carbon-to-carbon link in the main chain of the macromolecule
    • C08G2261/30Monomer units or repeat units incorporating structural elements in the main chain
    • C08G2261/32Monomer units or repeat units incorporating structural elements in the main chain incorporating heteroaromatic structural elements in the main chain
    • C08G2261/322Monomer units or repeat units incorporating structural elements in the main chain incorporating heteroaromatic structural elements in the main chain non-condensed
    • C08G2261/3223Monomer units or repeat units incorporating structural elements in the main chain incorporating heteroaromatic structural elements in the main chain non-condensed containing one or more sulfur atoms as the only heteroatom, e.g. thiophene
    • CCHEMISTRY; METALLURGY
    • C08ORGANIC MACROMOLECULAR COMPOUNDS; THEIR PREPARATION OR CHEMICAL WORKING-UP; COMPOSITIONS BASED THEREON
    • C08GMACROMOLECULAR COMPOUNDS OBTAINED OTHERWISE THAN BY REACTIONS ONLY INVOLVING UNSATURATED CARBON-TO-CARBON BONDS
    • C08G2261/00Macromolecular compounds obtained by reactions forming a carbon-to-carbon link in the main chain of the macromolecule
    • C08G2261/30Monomer units or repeat units incorporating structural elements in the main chain
    • C08G2261/32Monomer units or repeat units incorporating structural elements in the main chain incorporating heteroaromatic structural elements in the main chain
    • C08G2261/324Monomer units or repeat units incorporating structural elements in the main chain incorporating heteroaromatic structural elements in the main chain condensed
    • C08G2261/3241Monomer units or repeat units incorporating structural elements in the main chain incorporating heteroaromatic structural elements in the main chain condensed containing one or more nitrogen atoms as the only heteroatom, e.g. carbazole
    • CCHEMISTRY; METALLURGY
    • C08ORGANIC MACROMOLECULAR COMPOUNDS; THEIR PREPARATION OR CHEMICAL WORKING-UP; COMPOSITIONS BASED THEREON
    • C08GMACROMOLECULAR COMPOUNDS OBTAINED OTHERWISE THAN BY REACTIONS ONLY INVOLVING UNSATURATED CARBON-TO-CARBON BONDS
    • C08G2261/00Macromolecular compounds obtained by reactions forming a carbon-to-carbon link in the main chain of the macromolecule
    • C08G2261/30Monomer units or repeat units incorporating structural elements in the main chain
    • C08G2261/32Monomer units or repeat units incorporating structural elements in the main chain incorporating heteroaromatic structural elements in the main chain
    • C08G2261/324Monomer units or repeat units incorporating structural elements in the main chain incorporating heteroaromatic structural elements in the main chain condensed
    • C08G2261/3246Monomer units or repeat units incorporating structural elements in the main chain incorporating heteroaromatic structural elements in the main chain condensed containing nitrogen and sulfur as heteroatoms
    • CCHEMISTRY; METALLURGY
    • C08ORGANIC MACROMOLECULAR COMPOUNDS; THEIR PREPARATION OR CHEMICAL WORKING-UP; COMPOSITIONS BASED THEREON
    • C08GMACROMOLECULAR COMPOUNDS OBTAINED OTHERWISE THAN BY REACTIONS ONLY INVOLVING UNSATURATED CARBON-TO-CARBON BONDS
    • C08G2261/00Macromolecular compounds obtained by reactions forming a carbon-to-carbon link in the main chain of the macromolecule
    • C08G2261/90Applications
    • C08G2261/91Photovoltaic applications
    • HELECTRICITY
    • H10SEMICONDUCTOR DEVICES; ELECTRIC SOLID-STATE DEVICES NOT OTHERWISE PROVIDED FOR
    • H10KORGANIC ELECTRIC SOLID-STATE DEVICES
    • H10K30/00Organic devices sensitive to infrared radiation, light, electromagnetic radiation of shorter wavelength or corpuscular radiation
    • YGENERAL TAGGING OF NEW TECHNOLOGICAL DEVELOPMENTS; GENERAL TAGGING OF CROSS-SECTIONAL TECHNOLOGIES SPANNING OVER SEVERAL SECTIONS OF THE IPC; TECHNICAL SUBJECTS COVERED BY FORMER USPC CROSS-REFERENCE ART COLLECTIONS [XRACs] AND DIGESTS
    • Y02TECHNOLOGIES OR APPLICATIONS FOR MITIGATION OR ADAPTATION AGAINST CLIMATE CHANGE
    • Y02EREDUCTION OF GREENHOUSE GAS [GHG] EMISSIONS, RELATED TO ENERGY GENERATION, TRANSMISSION OR DISTRIBUTION
    • Y02E10/00Energy generation through renewable energy sources
    • Y02E10/50Photovoltaic [PV] energy
    • Y02E10/549Organic PV cells

Definitions

  • the present invention relates to an alternating photoelectric polymer and an organic photoelectric conversion element having a photoelectric conversion layer made of the alternating copolymer.
  • an organic solar cell using an organic semiconductor material is capable of producing a light, inexpensive, and flexible element, and is replaced with a solar cell using an inorganic material such as a silicon semiconductor, which is currently mainstream. It is expected as a solar cell of the next generation. From such a background, research on organic photoelectric conversion elements using organic semiconductor materials has been conducted worldwide, and in improving the photoelectric conversion efficiency of organic photoelectric conversion elements, the organic semiconductor materials constituting the photoelectric conversion layer It is known that electronic structure design techniques are important.
  • Non-Patent Document 1 describes that an appropriate design of a p-type semiconductor material combined with fullerene, which is an n-type semiconductor material, is important in improving the efficiency of an organic thin film solar cell.
  • Appropriate design here refers to the highest occupied orbital (HOMO) level of a polymer by introducing a weak electron acceptor in an appropriate manner into the p-type polymer skeleton, where electron donor properties are inherently important. It means deepening (increasing the absolute value in the negative direction) to increase the difference from the lowest empty orbital (LUMO) level of n-type fullerene.
  • HOMO highest occupied orbital
  • the energy difference between the HOMO level of the polymer and the LUMO level of the fullerene is a factor that determines the open circuit voltage (Voc) that greatly affects the device characteristics. Therefore, the above design is promising for achieving a practical conversion efficiency. It is regarded as a method.
  • Patent Document 1 discloses a photovoltaic element using an alternating copolymer incorporating a thienothiophene unit as an electron acceptor.
  • Patent Documents 2 to 5 disclose organic photoelectric conversion elements using copolymers obtained by alternating copolymerization with various electron acceptor units using a polyfluorene derivative skeleton as an electron donor unit.
  • Patent Document 6 discloses an organic device using a ⁇ -conjugated polymer containing a benzotriazole skeleton as an n-type semiconductor material. Yes.
  • the present invention has been made to solve the above-described problems, and an object of the present invention is to provide a novel organic material that can further improve the open-circuit voltage as compared with conventional p-type semiconductor materials.
  • alternating copolymer having a repeating unit represented by the following general formula (I).
  • R represents a monovalent hydrocarbon group or a substituted hydrocarbon group
  • D represents a polycyclic aromatic compound comprising a carbon skeleton or a heteropolycyclic aromatic compound containing a hetero atom.
  • n represents the number of repeating units and is 2 to 25.
  • R in the general formula (I) is an alkyl group having 1 to 12 carbon atoms or a substituted alkyl group.
  • n in the general formula (I) is 3 to 20.
  • D in the general formula (I) is a structural unit containing an aromatic group having a fluorene structure or a carbazole structure. .
  • the organic photoelectric conversion element using the photoelectric conversion layer containing the alternating copolymer of the present invention can further improve the obtained open-circuit voltage as compared with the organic photoelectric conversion element using a conventional p-type semiconductor material.
  • the alternating copolymer of the present invention has a repeating unit represented by the following general formula (I).
  • n represents the number of repeating units and is 2 to 25.
  • n is preferably 3 to 20, more preferably 4 to 18, and still more preferably 4 to 10.
  • the number average molecular weight of the alternating copolymer represented by the formula (I) is preferably 500 to 100,000, more preferably 1000 to 50,000, and further preferably 1500 to 30,000 from the above viewpoint.
  • the number average molecular weight (Mn) is a value calculated as a polystyrene conversion value by gel permeation chromatography (GPC method) (hereinafter the same).
  • R represents a monovalent hydrocarbon group or a substituted hydrocarbon group.
  • the hydrocarbon group include an alkyl group, an alkenyl group, a cycloalkyl group, an aryl group, an aralkyl group, and the like.
  • the alkyl group include a methyl group, an ethyl group, a propyl group, an isopropyl group, a butyl group, a sec-butyl group, a tert-butyl group, a pentyl group, a hexyl group, a heptyl group, an octyl group, and a stearyl group.
  • an alkyl group having 1 to 12 carbon atoms is preferable, an alkyl group having 1 to 10 carbon atoms is more preferable, and 1 to More preferred is an alkyl group of 8.
  • alkenyl groups include vinyl, allyl, butenyl, butanedienyl, methylvinyl, and styryl groups.
  • cycloalkyl group examples include a cyclopropyl group, a cyclobutyl group, a cyclopentyl group, a cyclohexyl group, a cycloheptyl group, a cyclooctyl group, a cyclononyl group, a bicycloheptyl group, a bicyclooctyl group, a tricycloheptyl group, and an adamantyl group.
  • adamantyl group examples include a cyclopropyl group, a cyclobutyl group, a cyclopentyl group, a cyclohexyl group, a cycloheptyl group, a cyclooctyl group, a cyclononyl group, a bicycloheptyl group, a bicyclooctyl group, a tricycloheptyl group, and an adamantyl
  • aryl group for example, phenyl group, methylphenyl group, ethylphenyl group, biphenyl group, methylbiphenyl group, ethylbiphenyl group, cyclohexylbiphenyl group, terphenyl group, naphthyl group, methylnaphthyl group, anthryl group, pyrenyl group,
  • aryl group for example, phenyl group, methylphenyl group, ethylphenyl group, biphenyl group, methylbiphenyl group, ethylbiphenyl group, cyclohexylbiphenyl group, terphenyl group, naphthyl group, methylnaphthyl group, anthryl group, pyrenyl group
  • Examples include a chrycenyl group, a fluoranthenyl group, and a perylenyl group.
  • aralkyl group examples include benzyl group, methylbenzyl group, phenylethyl group, phenylpropyl group, naphthylmethyl group, naphthylethyl group, naphthylpropyl group, and the like.
  • substituted hydrocarbon group one or more hydrogen atoms in the above-mentioned hydrocarbon group are substituted with a substituent, and a substituted alkyl group, a substituted alkenyl group, a substituted cycloalkyl group, a substituted aryl group, a substituted aralkyl group Etc.
  • a substituted alkyl group having 1 to 12 carbon atoms is preferable, a substituted alkyl group having 1 to 10 carbon atoms is more preferable, More preferred are 1-8 substituted alkyl groups.
  • substituent examples include halogen atoms such as fluorine atom, chlorine atom, bromine atom and iodine atom, and hetero atom-containing hydrocarbon group.
  • hetero atom examples include an oxygen atom, a silicon atom, a nitrogen atom, a sulfur atom, and a phosphorus atom.
  • the substituted hydrocarbon group may also contain a heteroaromatic ring.
  • heteroatom-containing hydrocarbon group include an alkoxy group represented by —OR, a silyl group represented by —SiR 3 , and an amino group represented by —NR 2 .
  • R includes the above-described hydrocarbon groups.
  • an alkyl group or a substituted alkyl group is preferable, and an alkyl group is more preferable from the viewpoint of improving solubility and being suitable for a coating method as described later.
  • the number of carbon atoms of the hydrocarbon group or substituted hydrocarbon group is preferably from the viewpoint of increasing the solubility in a solvent and the crystallinity of the resulting alternating copolymer, and improving the carrier mobility when used in an organic photoelectric conversion device. Is 1 to 12, more preferably 1 to 10, and still more preferably 1 to 8.
  • the alternating copolymer of the present invention preferably has an inactive functional group at the terminal and is capped.
  • the inactive functional group is not particularly limited as long as it is inactive, but a hydrogen atom or an inactive hydrocarbon group is preferable, an aryl group is more preferable, and a phenyl group is more preferable.
  • D represents a structural unit derived from a polycyclic aromatic compound comprising a carbon skeleton or a heteropolycyclic aromatic compound containing a hetero atom.
  • the structural unit derived from a polycyclic aromatic compound include structural units derived from a polycyclic aromatic compound such as naphthalene, azulene, carbazole, fluorene, anthracene, pyrene, azobenzene, and naphthoquinone.
  • an aromatic compound containing a heteroatom such as a nitrogen atom, a sulfur atom, a silicon atom, or an oxygen atom and having the same structural unit as the above polycyclic aromatic compound
  • the structural unit derived from is mentioned.
  • fluorene, carbazole, anthracene, 4,4-di- (2-alkyl) -4H-cyclopenta [2] from the viewpoint of improving open circuit voltage obtained when an alternating copolymer is used as an organic photoelectric conversion element.
  • a structural unit derived from a polycyclic aromatic compound having a tricyclic structure such as [1,2-b: 4,5-b ′] dithiophene is preferred, and a polycyclic aromatic compound having a fluorene structure or a carbazole structure The structural unit derived from is more preferable.
  • Examples of the polycyclic aromatic compound having a fluorene structure include a polycyclic aromatic compound represented by the following general formula (II).
  • a polycyclic aromatic compound having a fluorene structure having a substitution position represented by the following general formula (IIa) is more preferable.
  • examples of the polycyclic aromatic compound having a carbazole structure include a heteropolycyclic aromatic compound represented by the following general formula (III), and the productivity and alternating copolymer are used as an organic photoelectric conversion element. From the viewpoint of extending the ⁇ -electron conjugated system obtained in the case of the above, a polycyclic aromatic compound having a carbazole structure represented by the following general formula (IIIa) is more preferable.
  • R 1, R 2 in the formula (II) and (IIa), and, R 3 in formula (III) and (IIIa) each represents a monovalent hydrocarbon group or substituted hydrocarbon group.
  • the hydrocarbon group and the substituted hydrocarbon group are the same as the hydrocarbon group or substituted hydrocarbon group for R in the formula (I).
  • R 1 to R 3 are each preferably an alkyl group or a substituted alkyl group, and more preferably an alkyl group.
  • the number of carbon atoms of R 1 to R 3 is preferably 1 to 12, more preferably 1 to 10, and still more preferably 1 from the viewpoint of solubility in a solvent and crystallinity of the resulting alternating copolymer. ⁇ 8.
  • the method for synthesizing the alternating copolymer of the present invention is not particularly limited, but includes a monomer represented by the following general formula (Ia) and a repeating unit represented by D in the above general formula (I).
  • the corresponding derivative can be synthesized by a method of copolymerizing in the presence of a metal complex.
  • R is as described above, and X is a halogen atom such as a fluorine atom, a chlorine atom, a bromine atom or an iodine atom, MgCl, MgBr, MgI, B (OR) 2 , SnR (R is monovalent) And the above-mentioned hydrocarbon groups or substituted hydrocarbon groups.
  • B (OR) 2 includes those having a cyclic structure such as 1,3,2-dioxaborane and 4,4,5,5-tetramethyl-1,3,2-dioxaborolane.
  • the method for synthesizing the monomer represented by the general formula (Ia) is not particularly limited. For example, the method described in “Toppare, L. et al., Chemistry of Materials, 2008, Vol. 20, p. And the like, known synthesis methods. Examples of the synthesis method include the methods of the examples.
  • the synthesis method of the derivative corresponding to the repeating unit represented by the formula (II) is not particularly limited.
  • a known synthesis method such as the method described in “Chen, SH et al., Chemistry of Materials, 2003, Vol.
  • Examples of the derivative corresponding to the repeating unit represented by the formula (II) thus obtained include 2,2 ′-(9,9-bis (n-octyl) fluorene-2,7-diyl)- And bis [4,4,5,5-tetramethyl- [1,3,2] dioxaborolane].
  • D in the general formula (I) is a repeating unit represented by the formula (III)
  • the method for synthesizing the derivative corresponding to the repeating unit represented by the formula (III) is not particularly limited.
  • are known synthesis methods such as the method described in "Leclerc, M. et al., Advanced Materials, 2007, Vol. 19, p. 2295".
  • Examples of the derivative corresponding to the repeating unit represented by the formula (III) thus obtained include 2,7-bis (4,4,5,5-tetramethyl-1 ′, 3 ′, 2 ′. -Dioxaborolane-2'-yl) -N-octylcarbazole and the like.
  • reduction catalysts such as a copper complex, a nickel complex, and a palladium complex
  • a nickel complex and a palladium complex are mentioned.
  • a nickel complex and a palladium complex are preferable.
  • the nickel complex include bis (1,5-cyclooctadiene) nickel, tetrakis (triphenylphosphine) nickel, dichloro (2,2′-bipyridine) nickel, and among these, the viewpoint of polymerization performance Therefore, bis (1,5-cyclooctadiene) nickel is preferable.
  • the palladium complex examples include tetrakis (triphenylphosphine) palladium, dichloro ⁇ 1,3-bis (diphenylphosphine) propane ⁇ palladium and the like.
  • tetrakis (triphenylphosphine) palladium is preferable from the viewpoint of polymerization performance.
  • the polymerization procedure is not particularly limited, but usually the monomer is dissolved or dispersed in a solvent in a reaction vessel, and the above metal complex is added thereto as a catalyst to initiate the reaction.
  • the solvent is not particularly limited as long as it can suitably dissolve or disperse the monomer and does not cause an undesirable reaction with the monomer or polymer.
  • toluene, tetrahydrofuran, N, N-dimethylformamide and the like can be mentioned.
  • the atmosphere during the polymerization reaction is not particularly limited, but is usually performed in the air or in an inert atmosphere, preferably in an inert atmosphere.
  • the inert atmosphere include nitrogen gas or argon gas atmosphere.
  • the polymerization reaction is not particularly limited, but is preferably performed under heating and reflux.
  • the heating temperature is usually room temperature (25 ° C.) to 180 ° C., preferably 80 to 150 ° C., more preferably 80 to 120 ° C.
  • limiting in particular as a pressure at the time of a polymerization reaction Usually, it carries out at a normal pressure.
  • the polymerization time is usually 1 to 240 hours, preferably 2 to 72 hours, more preferably 4 to 48 hours, although it varies depending on the type of monomer and catalyst used, the temperature and pressure during polymerization, and the like.
  • the organic photoelectric conversion element 4 of the present invention has at least one p-type semiconductor material (electron donating material) between a pair of electrodes 1 and 3, at least one of which is transparent or translucent.
  • the p-type semiconductor material and the n-type semiconductor material may be mixed or stacked.
  • FIG. 1 shows a case where a p-type semiconductor material and an n-type semiconductor material are mixed.
  • An organic photoelectric conversion element is an element that generates an electromotive force when irradiated with light energy.
  • an element that converts light energy into electrical energy is provided with an electrode for extracting charges from the photoelectric conversion layer. It is a thing.
  • Examples of organic photoelectric conversion elements include various organic semiconductor device applications such as organic solar cells and photodiodes. Among these, as an application of the organic photoelectric conversion element of the present invention, it is suitable for an organic solar cell.
  • a photoelectric converting layer is a layer which receives the photoelectric effect which makes the center of an organic photoelectric conversion element, may consist of a single layer, and may consist of multiple layers. In the case of a single layer, the photoelectric conversion layer is usually formed from an intrinsic semiconductor layer.
  • the intrinsic semiconductor layer is an organic layer having a pn junction interface made of an electron donating material (p-type semiconductor material) and an electron accepting material (n-type semiconductor material). In the case of a plurality of layers, it is formed from an organic layer having a pn junction interface composed of an electron donating material layer and an electron accepting material layer.
  • the organic photoelectric conversion element of the present invention has at least a photoelectric conversion layer made of an alternating copolymer represented by the general formula (I). This photoelectric conversion layer is excellent in electron donating property as a p-type semiconductor.
  • the n-type semiconductor material is not particularly limited.
  • NTCDA 1,4,5,8-naphthalene tetracarboxyl dianhydride
  • PTCDA 3,4,9,10-perylene tetracarboxyl dianhydride
  • PTCBI 3,4,9,10-perylenetetracarboxylic bisbenzimidazole
  • PTCBI 3,4,9,10-perylenetetracarboxylic bisbenzimidazole
  • PTCBI 3,4,9,10-perylenetetracarboxylic bisbenzimidazole
  • PTCBI 3,4,9,10-perylenetetracarboxylic bisbenzimidazole
  • PTCBI 3,4,9,10-perylenetetracarboxylic bisbenzimidazole
  • PTCBI 3,4,9,10-perylenetetracarboxylic bisbenzimidazole
  • PTDI-C8H N, N′-dioctyl-3,4,9,10
  • fullerene compound is preferable because it is an n-type semiconductor material that is stable and has high carrier mobility.
  • fullerene compounds include unsubstituted compounds such as C 60 , C 70 , C 76 , C 78 , C 82 , C 84 , C 90 , and C 94 , and [6,6] -phenyl C61 butyric acid.
  • Methyl ester ([6,6] -PCBM, or [60] PCBM), [5,6] -phenyl C61 butyric acid methyl ester ([5,6] -PCBM), [6,6] -phenyl C61 buty Rick acid hexyl ester ([6,6] -PCBH), [6,6] -phenyl C61 butyric acid dodecyl ester ([6,6] -PCBD), phenyl C71 butyric acid methyl ester (PC 70 BM, or [70] PCBM), phenyl C85 butyric acid methyl ester (PC 84 BM), and the like.
  • [6,6] -phenyl C61 butyric acid methyl ester ([6,6] -PCBM or [60] PCBM) is more preferable from the viewpoint of having excellent electron accepting properties.
  • These n-type semiconductor materials can be used alone or in combination of two or more.
  • the mass ratio of the p-type semiconductor material to the n-type semiconductor material is preferably 10: 1 to 1:10, more preferably from the viewpoint of obtaining high photoelectric conversion efficiency. Is from 5: 1 to 1: 5, more preferably from 1: 1 to 1: 5.
  • the conversion efficiency in an organic photoelectric conversion element can be calculated
  • Photoelectric conversion efficiency [%] Voc [V] ⁇ Jsc [mA / cm 2 ] ⁇ FF (Formula 1) (Voc is an open circuit voltage, Jsc is a short circuit current density, and FF is a fill factor.)
  • the organic photoelectric conversion element in the present invention includes an alternating copolymer represented by the general formula (I) as a p-type semiconductor material, and thus has an effect of increasing the open circuit voltage among the above factors. The reason for this is not clear, but it is presumed that the HOMO level is deep.
  • a method for forming a photoelectric conversion layer containing a p-type semiconductor material and an n-type semiconductor material is not particularly limited, and examples thereof include a coating method such as spin coating and bar coating, and a vacuum deposition method.
  • coating method is preferable.
  • the solvent contained in this solution is not particularly limited, and for example, chlorobenzene, orthodichlorobenzene, chloroform, dichloromethane, toluene, tetrahydrofuran and the like can be used.
  • the electrode material of the organic photoelectric conversion element of the present invention is not particularly limited, but the cathode electrode material preferably has a low energy barrier with respect to the LUMO level of the electron-accepting material and a relatively small work function, Examples thereof include Ag, Al, Pt, Ir, Cr, ZnO, CNT, and alloys and composites thereof.
  • the material of the anode electrode is preferably an electron donating material having a small HOMO level and energy barrier, a relatively large work function, and more preferably a transparent material.
  • Examples thereof include materials such as tin-doped indium oxide (ITO), IrO 2 , In 2 O 3 , SnO 2 , indium oxide-zinc oxide (IZO), ZnO (Ga, Al-doped), and MoO 3 .
  • the method for forming the electrode is not particularly limited, and examples thereof include vacuum deposition and various sputtering methods.
  • these photoelectric conversion layers and electrode materials can be laminated on a base material.
  • the substrate is appropriately selected according to the type and application of the photoelectric conversion material.
  • inorganic materials such as alkali-free glass and quartz glass, polyester, polycarbonate, polyolefin, polyamide, polyimide, polyphenylene sulfide, and polyparaxylene.
  • films and plates produced by an arbitrary method from an organic material such as an epoxy resin or a fluorine resin.
  • a buffer layer may be provided at the contact interface of each layer.
  • the buffer layer may be a conductive layer.
  • compound 1b represented by the following formula (1b) was obtained by the same method as above except that 1-bromoethyl was used instead of 1-bromooctane (yield 42%, 1 H-NMR (400 MHz, solvent: deuterated chloroform): 7.88 (2H, m), 7.38 (2H, m), 4.78 (2H, q), 1.73 (3H, t)).
  • silica gel trade name “C-200” manufactured by Wako Pure Chemical Industries, Ltd.
  • the compound 2a represented by the following formula (2a) was obtained as 6.44 g of a pale yellow oil (yield 92%, 1 H-NMR (400 MHz, solvent: deuterated chloroform): 7.46 (2H, d), 4.80 (2H, m), 2.14 (2H, br), 1.32-1.27 (10H, br), 0.88 (3H, t)).
  • compound 2b represented by the following formula (2b) was obtained by the same method as above except that compound 1b was used instead of compound 1a (yield 83%, 1 H— NMR (400 MHz, solvent: deuterated chloroform): 7.45 (2H, d), 4.85 (2H, q), 1.76 (3H, t)).
  • compound 3b represented by the following formula (3) was obtained by the same method as above except that compound 2b was used instead of compound 2a (yield 91%, 1 H— NMR (400 MHz, solvent: deuterated chloroform): 8.10 (2H, d), 7.65 (2H, d), 7.39 (2H, m), 7.20 (2H, m), 4.90 (2H, q), 1.81 (3H, t )).
  • the organic phase was separated, dried over anhydrous magnesium sulfate (manufactured by Wako Pure Chemical Industries, Ltd.), magnesium sulfate was removed by filtration, and the filtrate was concentrated under reduced pressure.
  • the concentrate was purified by column chromatography (developing solvent: dichloromethane) using silica gel (manufactured by Wako Pure Chemical Industries, Ltd., trade name “B-200”) to give 710 mg of the following formula (4 The compound 4a represented by this was obtained (yield 85%).
  • compound 4b represented by the following formula (4) was obtained by the same method as above except that compound 3b was used instead of compound 3a (yield 99%, 1 H— NMR (400 MHz, solvent: deuterated chloroform): 7.82 (2H, m), 7.60 (2H, m), 7.13 (2H, m), 4.88 (2H, m), 1.80 (3H, m)).
  • Example 1 Synthesis of alternating copolymer 5a
  • Compound 4a was synthesized as 100 mg according to the literature (Chen, SH et al., Chemistry of Materials, 2003, Vol. 15, p. 542), 2,2 ′-(9,9-bis ( 113 mg of n-octyl) fluorene-2,7-diyl) -bis [4,4,5,5-tetramethyl- [1,3,2] dioxaborolane] was dissolved in 8 mL of toluene, Heated to reflux at ° C.
  • phenylboronic acid manufactured by Aldrich Co., Ltd.
  • heating and refluxing were continued for 12 hours It was.
  • it cooled to room temperature 30 mL of methanol was added, and the precipitated red solid was separated by filtration.
  • the resulting red solid was extracted with a Soxhlet extractor with diethyl ether for 12 hours and then with chloroform for 12 hours.
  • the extract with chloroform was concentrated under reduced pressure using a rotary evaporator, dissolved in a minimum amount of chloroform, and then reprecipitated with methanol.
  • Example 2 Synthesis of alternating copolymer 5b
  • Example 3 Synthesis of alternating copolymer 6a
  • Compound 7a was synthesized in accordance with the literature (Leclerc, M. et al., Advanced Materials, 2007, Vol. 19, p. 2295) in a dry nitrogen stream, according to the literature (Leclerc, M. et al., Advanced Materials, p. 136 mg of 5-tetramethyl-1 ′, 3 ′, 2′-dioxaborolan-2′-yl) -N-octylcarbazole was dissolved in 8 mL of toluene and heated to reflux at 115 ° C. for 10 minutes.
  • phenylboronic acid manufactured by Aldrich Co.
  • 60 mg of phenylboronic acid manufactured by Aldrich Co.
  • heating and refluxing were continued for 12 hours. It was.
  • 30 mL of methanol was added, and the precipitated red solid was separated by filtration.
  • the resulting red solid was extracted with a Soxhlet extractor with diethyl ether for 12 hours and then with chloroform for 12 hours.
  • the extract with chloroform was concentrated under reduced pressure using a rotary evaporator, dissolved in a minimum amount of chloroform, and then reprecipitated with methanol.
  • Example 4 Synthesis of alternating copolymer 6b
  • Example 5 Production of organic photoelectric conversion element 1
  • 15.3 mg of alternating copolymer 5a as a p-type semiconductor and 11.7 mg of [60] PCBM (manufactured by Frontier Carbon Co., Ltd., trade name “Nanom Spectra E100H”) as an n-type semiconductor material are weighed under a nitrogen atmosphere.
  • 1.0 mL of dehydrated chlorobenzene (manufactured by Sigma Aldrich, dehydrated product) was added and stirred for 24 hours under a nitrogen atmosphere to prepare a mixed solution.
  • ITO glass cleaned by cleaning and UV-ozone treatment transparent conductive glass having a tin-doped indium oxide film formed on a glass substrate, resistance value 14 ⁇ / sq
  • literature Branbec, CJ et al. , Advanced Materials, 2009, Vol. 21, p. 1
  • PEDOT / PSS manufactured by Clevios
  • the solution was dropped with a syringe filter and spin-coated at a rotational speed of 2500 rpm for 60 seconds to form a photoelectric conversion layer having a thickness of 120 nm.
  • Example 6-16 Production of organic photoelectric conversion elements 2 to 12
  • Example 5 instead of using 15.3 mg of the alternating copolymer 5a as the p-type semiconductor, the types and masses of the alternating copolymer 5a, 5b, and 6a, 6b shown in Table 2 below are used to form an organic material. Photoelectric conversion elements 2 to 12 were produced.
  • PEDOT-PSS manufactured by Clevios
  • the mixed solution is filtered through a syringe filter having a pore diameter of 0.45 ⁇ m and then dropped, and spin coating is performed at 2500 rpm for 60 seconds to form a thin film.
  • the thin film is subjected to heat treatment at 150 ° C. for 10 minutes to obtain a photoelectric conversion layer. It was. When the surface of the formed photoelectric conversion layer was observed, a homogeneous and cloudless film was formed.
  • the organic photoelectric conversion elements 1 to 12 using the alternating copolymer synthesized in Examples 1 to 4 are the [60] PCBM-P3HT mixed system of Reference Example 1, which is one of the most common organic thin film solar cells. Compared with the organic photoelectric conversion element 13, a larger open circuit voltage was obtained. From this result, the alternating copolymer of the present invention is very useful as a p-type semiconductor material for organic thin film solar cells.
  • the alternating copolymer of the present invention is very useful as a p-type semiconductor material for organic thin film solar cells.

Landscapes

  • Chemical & Material Sciences (AREA)
  • Health & Medical Sciences (AREA)
  • Chemical Kinetics & Catalysis (AREA)
  • Medicinal Chemistry (AREA)
  • Polymers & Plastics (AREA)
  • Organic Chemistry (AREA)
  • Engineering & Computer Science (AREA)
  • Materials Engineering (AREA)
  • Photovoltaic Devices (AREA)
  • Polyoxymethylene Polymers And Polymers With Carbon-To-Carbon Bonds (AREA)

Abstract

An alternating copolymerization polymer containing a repeating unit represented by general formula (I), and an organic photoelectric conversion element containing a photoelectric conversion layer containing the alternating copolymerization polymer are novel organic materials capable of further improving the open-circuit voltage as compared with the conventional p-type semiconductor materials. (In general formula (I), R represents a monovalent hydrocarbon group or a substituted hydrocarbon group, D represents a polycyclic aromatic compound composed of carbon skeleton or a constitutional unit derived from a polycyclic aromatic heterocyclic compound containing a hetero atom. n represents the number of repeating units and is 2 to 25.)

Description

交互共重合ポリマー、及び有機光電変換素子Alternating copolymer and organic photoelectric conversion element
 本発明は、交互共重合ポリマー、及びその交互共重合ポリマーからなる光電変換層を有する有機光電変換素子に関する。 The present invention relates to an alternating photoelectric polymer and an organic photoelectric conversion element having a photoelectric conversion layer made of the alternating copolymer.
 地球規模での問題であるエネルギー問題を解決するためのエネルギー源の一つとして、環境負荷が少なく、半永久的に供給される太陽光エネルギーの利用が活発に研究されている。その中でも、特に、有機半導体材料を用いた有機太陽電池は、軽量、安価、フレキシブルな素子の作製が可能であり、現在の主流であるシリコン半導体等の無機系材料を用いた太陽電池に代わる次世代の太陽電池として期待されている。
 このような背景から、有機半導体材料を用いた有機光電変換素子の研究が全世界的に行われており、有機光電変換素子の光電変換効率向上においては、光電変換層を構成する有機半導体材料の電子構造の設計技術が重要であることが知られている。
As one of energy sources for solving an energy problem that is a global problem, the use of solar energy that has a low environmental load and is supplied semipermanently has been actively researched. Among them, in particular, an organic solar cell using an organic semiconductor material is capable of producing a light, inexpensive, and flexible element, and is replaced with a solar cell using an inorganic material such as a silicon semiconductor, which is currently mainstream. It is expected as a solar cell of the next generation.
From such a background, research on organic photoelectric conversion elements using organic semiconductor materials has been conducted worldwide, and in improving the photoelectric conversion efficiency of organic photoelectric conversion elements, the organic semiconductor materials constituting the photoelectric conversion layer It is known that electronic structure design techniques are important.
 例えば、非特許文献1では、有機薄膜太陽電池の効率向上において、n型半導体材料であるフラーレンと組合せるp型半導体材料の適切な設計が重要であると記載されている。ここでいう適切な設計とは、本来電子ドナー性が重要であるp型ポリマーの骨格に、敢えて弱い電子アクセプターを適切な様式で導入することで、ポリマーの最高被占軌道(HOMO)準位を深く(負の方向に絶対値を大きくする)させ、n型フラーレンの最低空軌道(LUMO)準位との差を大きくすることを指す。ポリマーのHOMO準位とフラーレンのLUMO準位のエネルギー差は素子特性を大きく左右する開放電圧(Voc)を決定する因子となることから、上記設計は実用化レベルの変換効率達成に向けて有望な手法とみなされている。 For example, Non-Patent Document 1 describes that an appropriate design of a p-type semiconductor material combined with fullerene, which is an n-type semiconductor material, is important in improving the efficiency of an organic thin film solar cell. Appropriate design here refers to the highest occupied orbital (HOMO) level of a polymer by introducing a weak electron acceptor in an appropriate manner into the p-type polymer skeleton, where electron donor properties are inherently important. It means deepening (increasing the absolute value in the negative direction) to increase the difference from the lowest empty orbital (LUMO) level of n-type fullerene. The energy difference between the HOMO level of the polymer and the LUMO level of the fullerene is a factor that determines the open circuit voltage (Voc) that greatly affects the device characteristics. Therefore, the above design is promising for achieving a practical conversion efficiency. It is regarded as a method.
 光電変換層を構成する有機半導体のうち、p型半導体材料については、有機合成的に電子ドナーと電子アクセプターを適切な形態で共有結合させた繰り返し単位を有する交互共重合体を用いることで、太陽光吸収効率の良い2eV程度の狭いバンドギャップが得られ、また、最高被占軌道の準位を深くすることで、素子内で大きな開放電圧(Voc)を得られることが知られている。
 例えば、特許文献1では、電子アクセプターとして、チエノチオフェンユニットを組み込んだ交互共重合体を用いた光起電力素子が開示されている。また、特許文献2~5では、ポリフルオレン誘導体骨格を電子ドナーユニットとして、様々な電子アクセプターユニットと交互共重合して得られた共重合体を用いた有機光電変換素子が開示されている。
Among the organic semiconductors constituting the photoelectric conversion layer, for the p-type semiconductor material, by using an alternating copolymer having a repeating unit in which an electron donor and an electron acceptor are covalently bonded in an appropriate form through organic synthesis, It is known that a narrow band gap of about 2 eV with good light absorption efficiency can be obtained, and that a large open circuit voltage (Voc) can be obtained in the device by deepening the level of the highest occupied orbit.
For example, Patent Document 1 discloses a photovoltaic element using an alternating copolymer incorporating a thienothiophene unit as an electron acceptor. Patent Documents 2 to 5 disclose organic photoelectric conversion elements using copolymers obtained by alternating copolymerization with various electron acceptor units using a polyfluorene derivative skeleton as an electron donor unit.
 一方、光電変換層を構成する有機半導体のうち、n型半導体材料については、例えば、特許文献6には、ベンゾトリアゾール骨格を含むπ共役ポリマーをn型半導体材料として用いた有機デバイスが開示されている。 On the other hand, regarding an n-type semiconductor material among organic semiconductors constituting the photoelectric conversion layer, for example, Patent Document 6 discloses an organic device using a π-conjugated polymer containing a benzotriazole skeleton as an n-type semiconductor material. Yes.
特開2009-158921号公報JP 2009-158921 A 特開2008-106239号公報JP 2008-106239 A 特開2008-106240号公報JP 2008-106240 A WO2005/060012号公報WO2005 / 06001 gazette 特開2009-215349号公報JP 2009-215349 A 特開2006-077171号公報JP 2006-077171 A
 上記のように光電変換層を構成する有機半導体材料について様々な開発がなされているが、開放電圧を更に向上し得る有機半導体材料が求められている。
 本発明は、上記の課題を解決するためになされたもので、従来のp型半導体材料と比べ、開放電圧を更に向上し得る新規有機材料を提供することを目的とする。
As described above, various developments have been made on the organic semiconductor material constituting the photoelectric conversion layer, but an organic semiconductor material capable of further improving the open-circuit voltage is demanded.
The present invention has been made to solve the above-described problems, and an object of the present invention is to provide a novel organic material that can further improve the open-circuit voltage as compared with conventional p-type semiconductor materials.
 本発明者らは、下記に示す交互共重合ポリマーが、上記課題を解決しうることを見出し、本発明を完成させた。すなわち、本発明は、下記[1]~[7]を提供するものである。
[1]下記一般式(I)で表される繰り返し単位を有する、交互共重合ポリマー。
Figure JPOXMLDOC01-appb-C000003
(式(I)中、Rは一価の炭化水素基又は置換炭化水素基を表し、Dは炭素骨格からなる多環式芳香族化合物もしくはヘテロ原子を含む複素多環式芳香族化合物由来の構成単位を示す。nは繰り返し単位の数を示し、2~25である。)
[2]前記一般式(I)中のRが、炭素数1~12のアルキル基又は置換アルキル基である、上記[1]に記載の交互共重合ポリマー。
[3]前記一般式(I)中のnが、3~20である、上記[1]又は[2]に記載の交互共重合ポリマー。
[4]前記一般式(I)中のDが、フルオレン構造又はカルバゾール構造を有する芳香族を含む構成単位である、上記[1]~[3]のいずれか1項に記載の交互共重合ポリマー。
[5]前記一般式(I)中のDが、下記一般式(IIa)又は(IIIa)で表される構成単位である、上記[4]に記載の交互共重合ポリマー。
Figure JPOXMLDOC01-appb-C000004
(式(IIa)中のR1、R2、及び(IIIa)中のR3は、それぞれ独立に一価の炭化水素基又は置換炭化水素基を表す。)
[6]前記一般式(IIa)又は(IIIa)中のR1~R3が、それぞれ独立に炭素数1~12のアルキル基又は置換アルキル基である、上記[5]に記載の交互共重合ポリマー。
[7]上記[1]~[6]のいずれか1項に記載の交互共重合ポリマーを含む光電変換層を有する、有機光電変換素子。
The present inventors have found that the alternating copolymer shown below can solve the above problems, and have completed the present invention. That is, the present invention provides the following [1] to [7].
[1] An alternating copolymer having a repeating unit represented by the following general formula (I).
Figure JPOXMLDOC01-appb-C000003
(In formula (I), R represents a monovalent hydrocarbon group or a substituted hydrocarbon group, and D represents a polycyclic aromatic compound comprising a carbon skeleton or a heteropolycyclic aromatic compound containing a hetero atom. (Indicating unit, n represents the number of repeating units and is 2 to 25.)
[2] The alternating copolymer according to the above [1], wherein R in the general formula (I) is an alkyl group having 1 to 12 carbon atoms or a substituted alkyl group.
[3] The alternating copolymer according to the above [1] or [2], wherein n in the general formula (I) is 3 to 20.
[4] The alternating copolymer according to any one of the above [1] to [3], wherein D in the general formula (I) is a structural unit containing an aromatic group having a fluorene structure or a carbazole structure. .
[5] The alternating copolymer according to the above [4], wherein D in the general formula (I) is a structural unit represented by the following general formula (IIa) or (IIIa).
Figure JPOXMLDOC01-appb-C000004
(R 1 and R 2 in formula (IIa) and R 3 in (IIIa) each independently represent a monovalent hydrocarbon group or a substituted hydrocarbon group.)
[6] The alternating copolymer according to [5], wherein R 1 to R 3 in the general formula (IIa) or (IIIa) are each independently an alkyl group having 1 to 12 carbon atoms or a substituted alkyl group. polymer.
[7] An organic photoelectric conversion element having a photoelectric conversion layer containing the alternating copolymer of any one of [1] to [6].
 本発明の交互共重合ポリマーを含む光電変換層を用いた有機光電変換素子は、従来のp型半導体材料を用いた有機光電変換素子に比べ、得られる開放電圧を更に向上させることができる。 The organic photoelectric conversion element using the photoelectric conversion layer containing the alternating copolymer of the present invention can further improve the obtained open-circuit voltage as compared with the organic photoelectric conversion element using a conventional p-type semiconductor material.
本発明の有機光電変換素子の一例を示す図である。It is a figure which shows an example of the organic photoelectric conversion element of this invention.
[交互共重合ポリマー]
 本発明の交互共重合ポリマーは、下記一般式(I)で表される繰り返し単位を有するものである。
[Alternate copolymer]
The alternating copolymer of the present invention has a repeating unit represented by the following general formula (I).
Figure JPOXMLDOC01-appb-C000005
Figure JPOXMLDOC01-appb-C000005
 式(I)中、nは繰り返し単位の数を示し、2~25である。nが2未満であると、π電子共役系が充分に伸長しないため、充分な太陽光吸収効率が得られず好ましくない。また、nが25を超えると、溶解性が低下し、後述するような塗布法に適さないため好ましくない。そのため、nとしては、好ましくは3~20、より好ましくは4~18、更に好ましくは4~10である。
 また、式(I)で表される交互共重合ポリマーの数平均分子量としては、上記観点から、好ましくは500~100000、より好ましくは1000~50000、更に好ましくは1500~30000である。なお、本発明において数平均分子量(Mn)は、ゲルパーミエーションクロマトグラフィー(GPC法)によりポリスチレン換算値として算出した値である(以下同じ)。
In the formula (I), n represents the number of repeating units and is 2 to 25. When n is less than 2, the π-electron conjugated system does not extend sufficiently, so that sufficient solar light absorption efficiency cannot be obtained, which is not preferable. On the other hand, when n exceeds 25, the solubility is lowered, which is not preferable because it is not suitable for the coating method described later. Therefore, n is preferably 3 to 20, more preferably 4 to 18, and still more preferably 4 to 10.
Further, the number average molecular weight of the alternating copolymer represented by the formula (I) is preferably 500 to 100,000, more preferably 1000 to 50,000, and further preferably 1500 to 30,000 from the above viewpoint. In the present invention, the number average molecular weight (Mn) is a value calculated as a polystyrene conversion value by gel permeation chromatography (GPC method) (hereinafter the same).
 式(I)中、Rは一価の炭化水素基又は置換炭化水素基を表す。
 炭化水素基としては、例えば、アルキル基、アルケニル基、シクロアルキル基、アリール基、アラルキル基等が挙げられる。
 アルキル基としては、例えば、メチル基、エチル基、プロピル基、イソプロピル基、ブチル基、sec-ブチル基、tert-ブチル基、ペンチル基、ヘキシル基、ヘプチル基、オクチル基、ステアリル基等が挙げられる。これらの中でも、溶媒への溶解性及び交互共重合ポリマーの結晶性を向上させる観点から、炭素数1~12のアルキル基が好ましく、炭素数1~10のアルキル基がより好ましく、炭素数1~8のアルキル基が更に好ましい。
 アルケニル基としては、例えば、ビニル基、アリル基、ブテニル基、ブタンジエニル基、メチルビニル基、スチリル基等が挙げられる。
 シクロアルキル基としては、例えば、シクロプロピル基、シクロブチル基、シクロペンチル基、シクロヘキシル基、シクロへプチル基、シクロオクチル基、シクロノニル基、ビシクロヘプチル基、ビシクロオクチル基、トリシクロヘプチル基、アダマンチル基等が挙げられる。
 アリール基としては、例えば、フェニル基、メチルフェニル基、エチルフェニル基、ビフェニル基、メチルビフェニル基、エチルビフェニル基、シクロヘキシルビフェニル基、ターフェニル基、ナフチル基、メチルナフチル基、アントリル基、ピレニル基、クリセニル基、フルオランテニル基、ペリレニル基等が挙げられる。
 アラルキル基としては、例えば、ベンジル基、メチルベンジル基、フェニルエチル基、フェニルプロピル基、ナフチルメチル基、ナフチルエチル基、ナフチルプロピル基等が挙げられる。
In formula (I), R represents a monovalent hydrocarbon group or a substituted hydrocarbon group.
Examples of the hydrocarbon group include an alkyl group, an alkenyl group, a cycloalkyl group, an aryl group, an aralkyl group, and the like.
Examples of the alkyl group include a methyl group, an ethyl group, a propyl group, an isopropyl group, a butyl group, a sec-butyl group, a tert-butyl group, a pentyl group, a hexyl group, a heptyl group, an octyl group, and a stearyl group. . Among these, from the viewpoint of improving the solubility in a solvent and the crystallinity of the alternating copolymer, an alkyl group having 1 to 12 carbon atoms is preferable, an alkyl group having 1 to 10 carbon atoms is more preferable, and 1 to More preferred is an alkyl group of 8.
Examples of alkenyl groups include vinyl, allyl, butenyl, butanedienyl, methylvinyl, and styryl groups.
Examples of the cycloalkyl group include a cyclopropyl group, a cyclobutyl group, a cyclopentyl group, a cyclohexyl group, a cycloheptyl group, a cyclooctyl group, a cyclononyl group, a bicycloheptyl group, a bicyclooctyl group, a tricycloheptyl group, and an adamantyl group. Can be mentioned.
As the aryl group, for example, phenyl group, methylphenyl group, ethylphenyl group, biphenyl group, methylbiphenyl group, ethylbiphenyl group, cyclohexylbiphenyl group, terphenyl group, naphthyl group, methylnaphthyl group, anthryl group, pyrenyl group, Examples include a chrycenyl group, a fluoranthenyl group, and a perylenyl group.
Examples of the aralkyl group include benzyl group, methylbenzyl group, phenylethyl group, phenylpropyl group, naphthylmethyl group, naphthylethyl group, naphthylpropyl group, and the like.
 置換炭化水素基としては、上述の炭化水素基における1つ以上の水素原子が置換基で置換されたものであり、置換アルキル基、置換アルケニル基、置換シクロアルキル基、置換アリール基、置換アラルキル基等が挙げられる。これらの中でも、溶媒への溶解性及び交互共重合ポリマーの結晶性を向上させる観点から、炭素数1~12の置換アルキル基が好ましく、炭素数1~10の置換アルキル基がより好ましく、炭素数1~8の置換アルキル基が更に好ましい。
 当該置換基としては、フッ素原子、塩素原子、臭素原子、ヨウ素原子等のハロゲン原子や、、ヘテロ原子含有炭化水素基等が挙げられる。ヘテロ原子としては、酸素原子、ケイ素原子、窒素原子、硫黄原子、リン原子等が挙げられる。置換炭化水素基としては、ヘテロ芳香族環も含有してもよい。ヘテロ原子含有炭化水素基としては、-ORで表されるアルコキシ基、-SiR3で表されるシリル基、-NR2で表されるアミノ基等が挙げられる。但し、Rは、上述の炭化水素基が挙げられる。
As the substituted hydrocarbon group, one or more hydrogen atoms in the above-mentioned hydrocarbon group are substituted with a substituent, and a substituted alkyl group, a substituted alkenyl group, a substituted cycloalkyl group, a substituted aryl group, a substituted aralkyl group Etc. Among these, from the viewpoint of improving the solubility in a solvent and the crystallinity of the alternating copolymer, a substituted alkyl group having 1 to 12 carbon atoms is preferable, a substituted alkyl group having 1 to 10 carbon atoms is more preferable, More preferred are 1-8 substituted alkyl groups.
Examples of the substituent include halogen atoms such as fluorine atom, chlorine atom, bromine atom and iodine atom, and hetero atom-containing hydrocarbon group. Examples of the hetero atom include an oxygen atom, a silicon atom, a nitrogen atom, a sulfur atom, and a phosphorus atom. The substituted hydrocarbon group may also contain a heteroaromatic ring. Examples of the heteroatom-containing hydrocarbon group include an alkoxy group represented by —OR, a silyl group represented by —SiR 3 , and an amino group represented by —NR 2 . However, R includes the above-described hydrocarbon groups.
 以上の炭化水素基又は置換炭化水素基の中でも、溶解性を向上させ、後述するような塗布法に適するという観点から、アルキル基又は置換アルキル基が好ましく、アルキル基がより好ましい。 Among the above hydrocarbon groups or substituted hydrocarbon groups, an alkyl group or a substituted alkyl group is preferable, and an alkyl group is more preferable from the viewpoint of improving solubility and being suitable for a coating method as described later.
 炭化水素基又は置換炭化水素基の炭素数は、溶媒への溶解性や得られる交互共重合ポリマーの結晶性を上げ、有機光電変換素子に用いた際にキャリア移動度を向上させる観点から、好ましくは1~12、より好ましくは1~10、更に好ましくは1~8である。 The number of carbon atoms of the hydrocarbon group or substituted hydrocarbon group is preferably from the viewpoint of increasing the solubility in a solvent and the crystallinity of the resulting alternating copolymer, and improving the carrier mobility when used in an organic photoelectric conversion device. Is 1 to 12, more preferably 1 to 10, and still more preferably 1 to 8.
 また、本発明の交互共重合ポリマーは、末端に不活性の官能基を有し、キャッピングしているものが好ましい。不活性の官能基としては、不活性であれば特に限定はされないが、水素原子又は不活性の炭化水素基が好ましく、アリール基がより好ましく、フェニル基が更に好ましい。 Further, the alternating copolymer of the present invention preferably has an inactive functional group at the terminal and is capped. The inactive functional group is not particularly limited as long as it is inactive, but a hydrogen atom or an inactive hydrocarbon group is preferable, an aryl group is more preferable, and a phenyl group is more preferable.
 式(I)中、Dは炭素骨格からなる多環式芳香族化合物もしくはヘテロ原子を含む複素多環式芳香族化合物由来の構成単位を示す。
 多環式芳香族化合物由来の構成単位としては、ナフタレン、アズレン、カルバゾール、フルオレン、アントラセン、ピレン、アゾベンゼン、ナフトキノン等の多環式芳香族化合物由来の構成単位が挙げられる。
 複素多環式芳香族化合物由来の構成単位としては、窒素原子、硫黄原子、ケイ素原子、酸素原子等のヘテロ原子を含み、上記の多環式芳香族化合物と同様の構成単位を有する芳香族化合物由来の構成単位が挙げられる。
 これらの中でも、交互共重合ポリマーを有機光電変換素子として用いた場合に得られる開放電圧向上の観点から、フルオレン、カルバゾール、アントラセン、4,4-ジ-(2-アルキル)-4H-シクロペンタ[2,1-b:3,4-b’]ジチオフェン、(4,4-ジ-2-アルキルジチエノ[3,2-b:2’,3’-d]シロール、4,8-ジアルコキシベンゾ[1,2-b:4,5-b’]ジチオフェン等の三環式の構造を有する多環式芳香族化合物由来の構成単位が好ましく、フルオレン構造、カルバゾール構造を有する多環式芳香族化合物由来の構成単位がより好ましい。
In formula (I), D represents a structural unit derived from a polycyclic aromatic compound comprising a carbon skeleton or a heteropolycyclic aromatic compound containing a hetero atom.
Examples of the structural unit derived from a polycyclic aromatic compound include structural units derived from a polycyclic aromatic compound such as naphthalene, azulene, carbazole, fluorene, anthracene, pyrene, azobenzene, and naphthoquinone.
As a structural unit derived from a heteropolycyclic aromatic compound, an aromatic compound containing a heteroatom such as a nitrogen atom, a sulfur atom, a silicon atom, or an oxygen atom and having the same structural unit as the above polycyclic aromatic compound The structural unit derived from is mentioned.
Among these, fluorene, carbazole, anthracene, 4,4-di- (2-alkyl) -4H-cyclopenta [2] from the viewpoint of improving open circuit voltage obtained when an alternating copolymer is used as an organic photoelectric conversion element. , 1-b: 3,4-b ′] dithiophene, (4,4-di-2-alkyldithieno [3,2-b: 2 ′, 3′-d] silole, 4,8-dialkoxybenzo A structural unit derived from a polycyclic aromatic compound having a tricyclic structure such as [1,2-b: 4,5-b ′] dithiophene is preferred, and a polycyclic aromatic compound having a fluorene structure or a carbazole structure The structural unit derived from is more preferable.
 フルオレン構造を有する多環式芳香族化合物としては、下記一般式(II)で表される多環式芳香族化合物が挙げられ、生産性及び交互共重合ポリマーを有機光電変換素子として用いた場合に得られる開放電圧向上の観点から、下記一般式(IIa)で表される置換位置を有するフルオレン構造を有する多環式芳香族化合物がより好ましい。 Examples of the polycyclic aromatic compound having a fluorene structure include a polycyclic aromatic compound represented by the following general formula (II). When the productivity and the alternating copolymer are used as an organic photoelectric conversion element, From the viewpoint of improving the open circuit voltage obtained, a polycyclic aromatic compound having a fluorene structure having a substitution position represented by the following general formula (IIa) is more preferable.
Figure JPOXMLDOC01-appb-C000006
Figure JPOXMLDOC01-appb-C000006
Figure JPOXMLDOC01-appb-C000007
Figure JPOXMLDOC01-appb-C000007
 一方、カルバゾール構造を有する多環式芳香族化合物としては、下記一般式(III)で表される複素多環式芳香族化合物が挙げられ、生産性及び交互共重合ポリマーを有機光電変換素子として用いた場合に得られるπ電子共役系を伸長させる観点から、下記一般式(IIIa)で表されるカルバゾール構造を有する多環式芳香族化合物がより好ましい。 On the other hand, examples of the polycyclic aromatic compound having a carbazole structure include a heteropolycyclic aromatic compound represented by the following general formula (III), and the productivity and alternating copolymer are used as an organic photoelectric conversion element. From the viewpoint of extending the π-electron conjugated system obtained in the case of the above, a polycyclic aromatic compound having a carbazole structure represented by the following general formula (IIIa) is more preferable.
Figure JPOXMLDOC01-appb-C000008
Figure JPOXMLDOC01-appb-C000008
Figure JPOXMLDOC01-appb-C000009
Figure JPOXMLDOC01-appb-C000009
 上記式(II)及び(IIa)中のR1、R2、並びに、式(III)及び(IIIa)中のR3は、それぞれ一価の炭化水素基又は置換炭化水素基を表す。炭化水素基、置換炭化水素基としては、式(I)中のRの炭化水素基又は置換炭化水素基と同じものが例示される。
 これらの中でも、R1~R3としては、それぞれアルキル基又は置換アルキル基が好ましく、アルキル基がより好ましい。また、R1~R3のそれぞれの炭素数は、溶媒への溶解性や得られる交互共重合ポリマーの結晶性の観点から、好ましくは1~12、より好ましくは1~10、更に好ましくは1~8である。
R 1, R 2 in the formula (II) and (IIa), and, R 3 in formula (III) and (IIIa) each represents a monovalent hydrocarbon group or substituted hydrocarbon group. Examples of the hydrocarbon group and the substituted hydrocarbon group are the same as the hydrocarbon group or substituted hydrocarbon group for R in the formula (I).
Among these, R 1 to R 3 are each preferably an alkyl group or a substituted alkyl group, and more preferably an alkyl group. The number of carbon atoms of R 1 to R 3 is preferably 1 to 12, more preferably 1 to 10, and still more preferably 1 from the viewpoint of solubility in a solvent and crystallinity of the resulting alternating copolymer. ~ 8.
[交互共重合ポリマーの合成方法]
 本発明の交互共重合ポリマーの合成方法は、特に制限されるものではないが、下記一般式(Ia)で表されるモノマーと、上記一般式(I)中のDで表される繰り返し単位に対応する誘導体とを、金属錯体の存在下で共重合させる方法により、合成することができる。
[Synthesis Method of Alternating Copolymer]
The method for synthesizing the alternating copolymer of the present invention is not particularly limited, but includes a monomer represented by the following general formula (Ia) and a repeating unit represented by D in the above general formula (I). The corresponding derivative can be synthesized by a method of copolymerizing in the presence of a metal complex.
Figure JPOXMLDOC01-appb-C000010
Figure JPOXMLDOC01-appb-C000010
 式(Ia)中、Rは上述のとおりで、Xは、フッ素原子、塩素原子、臭素原子、ヨウ素原子等のハロゲン原子、MgCl、MgBr、MgI、B(OR)2、SnR(Rは一価の炭化水素基又は置換炭化水素基で、具体的には上述のものが挙げられる。)等を表す。なお、例えば、B(OR)2は、1,3,2-ジオキサボランや4,4,5,5-テトラメチル-1,3,2-ジオキサボロラン等のような環状構造を有するものも含まれる。上記一般式(Ia)で表されるモノマーの合成方法は、特に制限はないが、例えば、「Toppare, L. et al., Chemistry of Materials,2008年,20巻,7510ページ」に記載の方法等の公知の合成方法が挙げられる。当該合成方法の一例としては、実施例の方法が挙げられる。 In the formula (Ia), R is as described above, and X is a halogen atom such as a fluorine atom, a chlorine atom, a bromine atom or an iodine atom, MgCl, MgBr, MgI, B (OR) 2 , SnR (R is monovalent) And the above-mentioned hydrocarbon groups or substituted hydrocarbon groups. For example, B (OR) 2 includes those having a cyclic structure such as 1,3,2-dioxaborane and 4,4,5,5-tetramethyl-1,3,2-dioxaborolane. The method for synthesizing the monomer represented by the general formula (Ia) is not particularly limited. For example, the method described in “Toppare, L. et al., Chemistry of Materials, 2008, Vol. 20, p. And the like, known synthesis methods. Examples of the synthesis method include the methods of the examples.
 上記一般式(I)中のDが、式(II)で表される繰り返し単位である場合、式(II)で表される繰り返し単位に対応する誘導体の合成方法は、特に制限はないが、例えば、「Chen, S. H. et al., Chemistry of Materials, 2003年,15巻,542ページ」に記載の方法等の公知の合成方法が挙げられる。このようにして得られる式(II)で表される繰り返し単位に対応する誘導体としては、例えば、2,2’-(9,9-ビス(n-オクチル)フルオレン-2,7-ジイル)-ビス[4,4,5,5-テトラメチル-[1,3,2]ジオキサボロラン]等が挙げられる。
 また、上記一般式(I)中のDが、式(III)で表される繰り返し単位である場合、式(III)で表される繰り返し単位に対応する誘導体の合成方法も、特に制限はないが、例えば、「Leclerc, M. et al., Advanced Materials,2007年,19巻,2295ページ」に記載の方法等の公知の合成方法が挙げられる。このようにして得られる式(III)で表される繰り返し単位に対応する誘導体としては、例えば、2,7-ビス(4,4,5,5-テトラメチル-1’,3’,2’-ジオキサボロラン-2’-イル)-N-オクチルカルバゾール等が挙げられる。
When D in the general formula (I) is a repeating unit represented by the formula (II), the synthesis method of the derivative corresponding to the repeating unit represented by the formula (II) is not particularly limited. For example, a known synthesis method such as the method described in “Chen, SH et al., Chemistry of Materials, 2003, Vol. Examples of the derivative corresponding to the repeating unit represented by the formula (II) thus obtained include 2,2 ′-(9,9-bis (n-octyl) fluorene-2,7-diyl)- And bis [4,4,5,5-tetramethyl- [1,3,2] dioxaborolane].
In addition, when D in the general formula (I) is a repeating unit represented by the formula (III), the method for synthesizing the derivative corresponding to the repeating unit represented by the formula (III) is not particularly limited. Are known synthesis methods such as the method described in "Leclerc, M. et al., Advanced Materials, 2007, Vol. 19, p. 2295". Examples of the derivative corresponding to the repeating unit represented by the formula (III) thus obtained include 2,7-bis (4,4,5,5-tetramethyl-1 ′, 3 ′, 2 ′. -Dioxaborolane-2'-yl) -N-octylcarbazole and the like.
 金属錯体としては、特に制限されず、例えば、銅錯体、ニッケル錯体、パラジウム錯体等の還元触媒が挙げられる。これらの中でも、ニッケル錯体、パラジウム錯体が好ましい。
 ニッケル錯体としては、例えば、ビス(1,5-シクロオクタジエン)ニッケル、テトラキス(トリフェニルホスフィン)ニッケル、ジクロロ(2,2’-ビピリジン)ニッケル等が挙げられ、これらの中でも、重合性能の観点から、ビス(1,5-シクロオクタジエン)ニッケルが好ましい。
 パラジウム錯体の例としては、テトラキス(トリフェニルホスフィン)パラジウム、ジクロロ{1,3-ビス(ジフェニルホスフィン)プロパン}パラジウム等が挙げられる。これらの中でも、重合性能の観点から、テトラキス(トリフェニルホスフィン)パラジウムが好ましい。
 なお、これらの金属錯体は、単独で又は2種以上組み合わせて用いてもよい。
It does not restrict | limit especially as a metal complex, For example, reduction catalysts, such as a copper complex, a nickel complex, and a palladium complex, are mentioned. Among these, a nickel complex and a palladium complex are preferable.
Examples of the nickel complex include bis (1,5-cyclooctadiene) nickel, tetrakis (triphenylphosphine) nickel, dichloro (2,2′-bipyridine) nickel, and among these, the viewpoint of polymerization performance Therefore, bis (1,5-cyclooctadiene) nickel is preferable.
Examples of the palladium complex include tetrakis (triphenylphosphine) palladium, dichloro {1,3-bis (diphenylphosphine) propane} palladium and the like. Among these, tetrakis (triphenylphosphine) palladium is preferable from the viewpoint of polymerization performance.
In addition, you may use these metal complexes individually or in combination of 2 or more types.
 重合の手順は、特に制限されないが、通常は、反応容器中でモノマーを溶媒に溶解又は分散させ、そこに上記金属錯体を触媒として加えて反応を開始する。
 溶媒としては、モノマーを好適に溶解又は分散させることができ、且つ、モノマーや高分子との間に好ましくない反応を生じないものであれば、特に制限されない。例えば、トルエン、テトラヒドロフラン、N,N-ジメチルホルムアミド等が挙げられる。
 なお、これらの溶媒は、単独で又は2種以上組み合わせて用いてもよい。
The polymerization procedure is not particularly limited, but usually the monomer is dissolved or dispersed in a solvent in a reaction vessel, and the above metal complex is added thereto as a catalyst to initiate the reaction.
The solvent is not particularly limited as long as it can suitably dissolve or disperse the monomer and does not cause an undesirable reaction with the monomer or polymer. For example, toluene, tetrahydrofuran, N, N-dimethylformamide and the like can be mentioned.
In addition, you may use these solvents individually or in combination of 2 or more types.
 重合反応時の雰囲気は、特に制限されないが、通常は空気中又は不活性雰囲気下で、好ましくは不活性雰囲気下で行う。不活性雰囲気としては、窒素ガス又はアルゴンガス雰囲気が挙げられる。
 重合反応は、特に制限されないが、加熱還流下で行うことが好ましい。加熱温度としては、通常室温(25℃)~180℃、好ましくは80~150℃、より好ましくは80~120℃である。重合反応時の圧力としては、特に制限はないが、通常は常圧で行う。
 重合時間としては、使用するモノマーや触媒の種類、重合時の温度や圧力等によっても異なるが、通常1~240時間、好ましくは2~72時間、より好ましくは4~48時間である。
The atmosphere during the polymerization reaction is not particularly limited, but is usually performed in the air or in an inert atmosphere, preferably in an inert atmosphere. Examples of the inert atmosphere include nitrogen gas or argon gas atmosphere.
The polymerization reaction is not particularly limited, but is preferably performed under heating and reflux. The heating temperature is usually room temperature (25 ° C.) to 180 ° C., preferably 80 to 150 ° C., more preferably 80 to 120 ° C. Although there is no restriction | limiting in particular as a pressure at the time of a polymerization reaction, Usually, it carries out at a normal pressure.
The polymerization time is usually 1 to 240 hours, preferably 2 to 72 hours, more preferably 4 to 48 hours, although it varies depending on the type of monomer and catalyst used, the temperature and pressure during polymerization, and the like.
[有機光電変換素子]
 次に、本発明の交互共重合ポリマーからなる光電変換層を有する有機光電変換素子について説明する。
 本発明の有機光電変換素子4は、図1に示すように、少なくとも一方が透明又は半透明である一対の電極1、3の間に、少なくとも1種のp型半導体材料(電子供与性材料)及びn型半導体材料(電子受容性材料)からなる光電変換層2を有する有機光電変換素子である。p型半導体材料、及びn型半導体材料は、混合されていてもよく、積層されていてもよい。図1では、p型半導体材料及びn型半導体材料が混合されている場合を示している。
 有機光電変換素子とは、光エネルギー照射によって起電力を発生する素子のことであり、一般的には光エネルギーを電気的なエネルギーに変換する素子で光電変換層に電荷を取り出すための電極を設けたものである。有機光電変換素子としては、有機太陽電池、フォトダイオード等の種々の有機半導体デバイス用途が挙げられる。これらの中でも、本発明の有機光電変換素子の用途としては、有機太陽電池に適している。
 また、光電変換層とは、有機光電変換素子の中心をなす光電効果を受ける層であり、単層からなってもよいし、複数層からなってもよい。単層の場合には、光電変換層は、通常、真性半導体層から形成される。真性半導体層とは、電子供与性材料(p型半導体材料)及び電子受容性材料(n型半導体材料)よりなるp-n接合界面を持つ有機層のことである。複数層の場合には、電子供与性材料層と電子受容性材料層からなるp-n接合界面を持つ有機層から形成される。
[Organic photoelectric conversion element]
Next, an organic photoelectric conversion element having a photoelectric conversion layer made of the alternating copolymer of the present invention will be described.
As shown in FIG. 1, the organic photoelectric conversion element 4 of the present invention has at least one p-type semiconductor material (electron donating material) between a pair of electrodes 1 and 3, at least one of which is transparent or translucent. And an organic photoelectric conversion element having a photoelectric conversion layer 2 made of an n-type semiconductor material (electron-accepting material). The p-type semiconductor material and the n-type semiconductor material may be mixed or stacked. FIG. 1 shows a case where a p-type semiconductor material and an n-type semiconductor material are mixed.
An organic photoelectric conversion element is an element that generates an electromotive force when irradiated with light energy. In general, an element that converts light energy into electrical energy is provided with an electrode for extracting charges from the photoelectric conversion layer. It is a thing. Examples of organic photoelectric conversion elements include various organic semiconductor device applications such as organic solar cells and photodiodes. Among these, as an application of the organic photoelectric conversion element of the present invention, it is suitable for an organic solar cell.
Moreover, a photoelectric converting layer is a layer which receives the photoelectric effect which makes the center of an organic photoelectric conversion element, may consist of a single layer, and may consist of multiple layers. In the case of a single layer, the photoelectric conversion layer is usually formed from an intrinsic semiconductor layer. The intrinsic semiconductor layer is an organic layer having a pn junction interface made of an electron donating material (p-type semiconductor material) and an electron accepting material (n-type semiconductor material). In the case of a plurality of layers, it is formed from an organic layer having a pn junction interface composed of an electron donating material layer and an electron accepting material layer.
 本発明の有機光電変換素子において、少なくとも上記一般式(I)で表される交互共重合ポリマーからなる光電変換層を有する。この光電変換層は、p型半導体として電子供与性に優れている。 The organic photoelectric conversion element of the present invention has at least a photoelectric conversion layer made of an alternating copolymer represented by the general formula (I). This photoelectric conversion layer is excellent in electron donating property as a p-type semiconductor.
 一方、n型半導体材料としては、特に限定されず、例えば、1,4,5,8-ナフタレンテトラカルボキシリックジアンハイドライド(NTCDA)、3,4,9,10-ペリレンテトラカルボキシリックジアンハイドライド(PTCDA)、3,4,9,10-ペリレンテトラカルボキシリックビスベンズイミダゾール(PTCBI)、N,N'-ジオクチル-3,4,9,10-ナフチルテトラカルボキシジイミド(PTCDI-C8H)、2-(4-ビフェニリル)-5-(4-t-ブチルフェニル)-1,3,4-オキサジアゾール(PBD)、2,5-ジ(1-ナフチル)-1,3,4-オキサジアゾール(BND)等のオキサゾール誘導体、3-(4-ビフェニリル)-4-フェニル-5-(4-t-ブチルフェニル)-1,2,4-トリアゾール(TAZ)等のトリアゾール誘導体、フェナントロリン誘導体、ホスフィンオキサイド誘導体、フラーレン化合物、カーボンナノチューブ(CNT)、ポリ-p-フェニレンビニレン系重合体にシアノ基を導入した誘導体(CN-PPV)等が挙げられる。これらの中でも、安定でキャリア移動度の高いn型半導体材料であることから、フラーレン化合物が好ましい。
 フラーレン化合物としては、例えば、C60、C70、C76、C78、C82、C84、C90、C94を始めとする無置換のもの、[6,6]-フェニルC61ブチリックアシッドメチルエステル([6,6]-PCBM、又は[60]PCBM)、[5,6]-フェニルC61ブチリックアシッドメチルエステル([5,6]-PCBM)、[6,6]-フェニルC61ブチリックアシッドヘキシルエステル([6,6]-PCBH)、[6,6]-フェニルC61ブチリックアシッドドデシルエステル([6,6]-PCBD)、フェニルC71ブチリックアシッドメチルエステル(PC70BM、又は[70]PCBM)、フェニルC85ブチリックアシッドメチルエステル(PC84BM)等が挙げられる。
 これらの中でも、優れた電子受容性を有する観点から、[6,6]-フェニルC61ブチリックアシッドメチルエステル([6,6]-PCBM、又は[60]PCBM)がより好ましい。
 なお、これらのn型半導体材料は、単独で又は2種以上を組み合わせて用いることができる。
On the other hand, the n-type semiconductor material is not particularly limited. For example, 1,4,5,8-naphthalene tetracarboxyl dianhydride (NTCDA), 3,4,9,10-perylene tetracarboxyl dianhydride (PTCDA) ), 3,4,9,10-perylenetetracarboxylic bisbenzimidazole (PTCBI), N, N′-dioctyl-3,4,9,10-naphthyltetracarboxydiimide (PTCDI-C8H), 2- (4 -Biphenylyl) -5- (4-tert-butylphenyl) -1,3,4-oxadiazole (PBD), 2,5-di (1-naphthyl) -1,3,4-oxadiazole (BND) ) And other oxazole derivatives, 3- (4-biphenylyl) -4-phenyl-5- (4-tert-butylphenyl) -1,2, Triazole derivatives such as 4-triazole (TAZ), phenanthroline derivatives, phosphine oxide derivatives, fullerene compounds, carbon nanotubes (CNT), derivatives in which a cyano group is introduced into a poly-p-phenylene vinylene polymer (CN-PPV), etc. Can be mentioned. Among these, a fullerene compound is preferable because it is an n-type semiconductor material that is stable and has high carrier mobility.
Examples of fullerene compounds include unsubstituted compounds such as C 60 , C 70 , C 76 , C 78 , C 82 , C 84 , C 90 , and C 94 , and [6,6] -phenyl C61 butyric acid. Methyl ester ([6,6] -PCBM, or [60] PCBM), [5,6] -phenyl C61 butyric acid methyl ester ([5,6] -PCBM), [6,6] -phenyl C61 buty Rick acid hexyl ester ([6,6] -PCBH), [6,6] -phenyl C61 butyric acid dodecyl ester ([6,6] -PCBD), phenyl C71 butyric acid methyl ester (PC 70 BM, or [70] PCBM), phenyl C85 butyric acid methyl ester (PC 84 BM), and the like.
Among these, [6,6] -phenyl C61 butyric acid methyl ester ([6,6] -PCBM or [60] PCBM) is more preferable from the viewpoint of having excellent electron accepting properties.
These n-type semiconductor materials can be used alone or in combination of two or more.
 本発明において、p型半導体材料とn型半導体材料の質量比(p型半導体材料:n型半導体材料)は、高い光電変換効率が得る観点から、好ましくは10:1~1:10、より好ましくは5:1~1:5、更に好ましくは1:1~1:5である。 In the present invention, the mass ratio of the p-type semiconductor material to the n-type semiconductor material (p-type semiconductor material: n-type semiconductor material) is preferably 10: 1 to 1:10, more preferably from the viewpoint of obtaining high photoelectric conversion efficiency. Is from 5: 1 to 1: 5, more preferably from 1: 1 to 1: 5.
 ここで、本発明において、有機光電変換素子における変換効率は、下記計算式(式1)により求めることができる。
 光電変換効率[%]=Voc[V]×Jsc[mA/cm2]×FF・・・(式1)
 (Vocは開放電圧、Jscは短絡電流密度、FFは曲線因子を示す。)
Here, in this invention, the conversion efficiency in an organic photoelectric conversion element can be calculated | required by the following formula (Formula 1).
Photoelectric conversion efficiency [%] = Voc [V] × Jsc [mA / cm 2 ] × FF (Formula 1)
(Voc is an open circuit voltage, Jsc is a short circuit current density, and FF is a fill factor.)
 すなわち、光電変換効率は、短絡電流密度、開放電圧、曲線因子という3つの因子の積で求められる。本発明における有機光電変換素子は、p型半導体材料として一般式(I)で表される交互共重合ポリマーを含むことで、上記因子のうち、特に開放電圧が上昇する効果を奏する。その理由は定かではないが、HOMO準位が深くなる結果であると推測される。 That is, the photoelectric conversion efficiency is obtained by the product of three factors: short-circuit current density, open-circuit voltage, and fill factor. The organic photoelectric conversion element in the present invention includes an alternating copolymer represented by the general formula (I) as a p-type semiconductor material, and thus has an effect of increasing the open circuit voltage among the above factors. The reason for this is not clear, but it is presumed that the HOMO level is deep.
 また、p型半導体材料及びn型半導体材料を含む光電変換層の形成方法としては、特に限定されないが、例えは、スピンコート及びバーコート等の塗布法、真空蒸着法等が挙げられる。これらの中でも、p型半導体材料及びn型半導体材料を溶媒に溶かした溶液を上記塗布法により塗布する方法が好ましい。この溶液に含まれる溶媒としては、特に限定されず、例えば、クロロベンゼン、オルトジクロロベンゼン、クロロホルム、ジクロロメタン、トルエン、テトラヒドロフラン等を用いることができる。 Further, a method for forming a photoelectric conversion layer containing a p-type semiconductor material and an n-type semiconductor material is not particularly limited, and examples thereof include a coating method such as spin coating and bar coating, and a vacuum deposition method. Among these, the method of apply | coating the solution which melt | dissolved p-type semiconductor material and n-type semiconductor material in the solvent with the said apply | coating method is preferable. The solvent contained in this solution is not particularly limited, and for example, chlorobenzene, orthodichlorobenzene, chloroform, dichloromethane, toluene, tetrahydrofuran and the like can be used.
 本発明の有機光電変換素子の電極材料としては、特に限定されないが、陰極電極の材料としては、電子受容性材料のLUMOレベルに対してエネルギー障壁が小さく、仕事関数が比較的小さなものが好ましく、例えば、Ag、Al、Pt,Ir、Cr、ZnO、CNT、及びそれらの合金、複合体等が挙げられる。
 一方、陽極電極の材料としては、電子供与性材料のHOMOレベルとエネルギー障壁が小さく、比較的仕事関数が大きなものが好ましく、透明なものがより好ましい。例えば、スズドープ酸化インジウム(ITO)、IrO2、In23、SnO2、酸化インジウム-酸化亜鉛(IZO)、ZnO(Ga、Alドープ)、MoO3等の材料が挙げられる。
 電極の形成方法としては、特に制限はされず、例えば、真空蒸着、各種スパッタリング等の方法が挙げられる。
The electrode material of the organic photoelectric conversion element of the present invention is not particularly limited, but the cathode electrode material preferably has a low energy barrier with respect to the LUMO level of the electron-accepting material and a relatively small work function, Examples thereof include Ag, Al, Pt, Ir, Cr, ZnO, CNT, and alloys and composites thereof.
On the other hand, the material of the anode electrode is preferably an electron donating material having a small HOMO level and energy barrier, a relatively large work function, and more preferably a transparent material. Examples thereof include materials such as tin-doped indium oxide (ITO), IrO 2 , In 2 O 3 , SnO 2 , indium oxide-zinc oxide (IZO), ZnO (Ga, Al-doped), and MoO 3 .
The method for forming the electrode is not particularly limited, and examples thereof include vacuum deposition and various sputtering methods.
 なお、これらの光電変換層や電極材料は、基材上に積層することができる。基材としては、光電変換材料の種類や用途に応じて適宜選択されるが、例えば、無アルカリガラス、石英ガラス等の無機材料、ポリエステル、ポリカーボネート、ポリオレフィン、ポリアミド、ポリイミド、ポリフェニレンスルフィド、ポリパラキシレン、エポキシ樹脂、フッ素系樹脂等の有機材料から任意の方法で作製されたフィルムや板等が挙げられる。 In addition, these photoelectric conversion layers and electrode materials can be laminated on a base material. The substrate is appropriately selected according to the type and application of the photoelectric conversion material. For example, inorganic materials such as alkali-free glass and quartz glass, polyester, polycarbonate, polyolefin, polyamide, polyimide, polyphenylene sulfide, and polyparaxylene. And films and plates produced by an arbitrary method from an organic material such as an epoxy resin or a fluorine resin.
 また、本発明において、必要に応じて、各層の接触界面に緩衝層(バッファ層)を設けることもできる。バッファ層としては、導電性の層であればよく、例えば、ポリ(3,4)-エチレンジオキシチオフェン/ポリスチレンスルフォネート(PEDOT/PSS)、酸化モリブデン、フッ化リチウム、酸化チタン、金あるいはバソクプロイン等からなる導電性の層等が挙げられる。これらの中でも、PEDOT/PSSを用いることが好ましい。 In the present invention, if necessary, a buffer layer (buffer layer) may be provided at the contact interface of each layer. The buffer layer may be a conductive layer. For example, poly (3,4) -ethylenedioxythiophene / polystyrene sulfonate (PEDOT / PSS), molybdenum oxide, lithium fluoride, titanium oxide, gold or Examples thereof include a conductive layer made of bathocuproine or the like. Among these, it is preferable to use PEDOT / PSS.
[合成例1:化合物1a、1bの合成]
 文献(Toppare,L. et al.、Chemistry of Materials、2008年、20巻、7510ページ)に準じて、以下のようにして合成した。
 ベンゾトリアゾール(東京化成(株)製)5.0g、第三ブトキシカリウム(関東化学(株)製)5.0g、1-ブロモオクタン(アルキル源、東京化成(株)製)9.5g、メタノール50mLを混合し、12時間加熱還流を行った。還流後、ロータリーエバポレータで減圧濃縮を行い、得られた油状物を酢酸エチル100mLに溶解し、水100mLで3回洗浄した。
 有機相を分離後、無水硫酸マグネシウム(和光純薬(株)製)で乾燥し、ろ過によって硫酸マグネシウムを除いた後再度減圧濃縮を行った。濃縮物をシリカゲル(和光純薬(株)製、C-200)を用いてカラムクトマトグラフィー(展開溶媒:ジクロロメタン/n-ヘキサン=1/1(体積比))で精製し、4.64gの淡黄色油状物として下記式(1a)で表される化合物1aを得た(収率48%、1H-NMR(400MHz、溶媒:重クロロホルム):7.88(2H,m)、7.38(2H,m)、4.73(2H,q)、2.12(2H,br)、1.35-1.27(10H,m)、0.86(3H,t))。
[Synthesis Example 1: Synthesis of Compounds 1a and 1b]
According to the literature (Toppare, L. et al., Chemistry of Materials, 2008, 20th volume, page 7510), it was synthesized as follows.
Benzotriazole (manufactured by Tokyo Chemical Industry Co., Ltd.) 5.0 g, tertiary butoxy potassium (manufactured by Kanto Chemical Co., Ltd.) 5.0 g, 1-bromooctane (alkyl source, produced by Tokyo Chemical Industry Co., Ltd.) 9.5 g, methanol 50 mL was mixed and heated to reflux for 12 hours. After refluxing, the mixture was concentrated under reduced pressure using a rotary evaporator, and the resulting oil was dissolved in 100 mL of ethyl acetate and washed three times with 100 mL of water.
The organic phase was separated, dried over anhydrous magnesium sulfate (manufactured by Wako Pure Chemical Industries, Ltd.), the magnesium sulfate was removed by filtration, and the filtrate was concentrated again under reduced pressure. The concentrate was purified by column chromatography (developing solvent: dichloromethane / n-hexane = 1/1 (volume ratio)) using silica gel (C-200, manufactured by Wako Pure Chemical Industries, Ltd.). Compound 1a represented by the following formula (1a) was obtained as a pale yellow oil (yield: 48%, 1 H-NMR (400 MHz, solvent: deuterated chloroform): 7.88 (2H, m), 7.38 (2H, m ), 4.73 (2H, q), 2.12 (2H, br), 1.35-1.27 (10H, m), 0.86 (3H, t)).
 また、上記合成例において、1-ブロモオクタンの代わりに、1-ブロモエチルを用いた以外は、上記と同じ方法により、下記式(1b)で表される化合物1bを得た(収率42%、1H-NMR(400MHz、溶媒:重クロロホルム):7.88(2H,m)、7.38(2H,m)、4.78(2H,q)、1.73(3H,t))。 Further, in the above synthesis example, compound 1b represented by the following formula (1b) was obtained by the same method as above except that 1-bromoethyl was used instead of 1-bromooctane (yield 42%, 1 H-NMR (400 MHz, solvent: deuterated chloroform): 7.88 (2H, m), 7.38 (2H, m), 4.78 (2H, q), 1.73 (3H, t)).
Figure JPOXMLDOC01-appb-C000011
Figure JPOXMLDOC01-appb-C000011
[合成例2:化合物2a、2bの合成]
 文献(Toppare,L. et al.、Chemistry of Materials、2008年、20巻、7510ページ)に準じて、以下のようにして合成した。
 化合物1aを4.2g、47%臭化水素水(関東化学(株)製)15mL、水8mLを混合し100℃まで加熱した。反応混合物に臭素6.0mLを滴下後、100℃のまま12時間撹拌した。その後、室温まで冷却し、得られた油状物をジクロロメタン100mLに溶解し、飽和炭酸水素ナトリウム水溶液100mL、10%チオ硫酸ナトリウム水溶液で洗浄した。有機相を分離後、無水硫酸マグネシウム(和光純薬(株)製)で乾燥し、ろ過によって硫酸マグネシウムを除いた後再度減圧濃縮を行った。濃縮物をシリカゲル(和光純薬(株)製、商品名「C-200」)を用いてカラムクトマトグラフィー(展開溶媒:ジクロロメタン/n-ヘキサン=1/1(体積比))で精製し、6.44gの淡黄色油状物として、下記式(2a)で表される化合物2aを得た(収率92%、1H-NMR(400MHz、溶媒:重クロロホルム):7.46(2H,d)、4.80(2H,m)、2.14(2H,br)、1.32-1.27(10H,br)、0.88(3H,t))。
[Synthesis Example 2: Synthesis of Compounds 2a and 2b]
According to the literature (Toppare, L. et al., Chemistry of Materials, 2008, 20th volume, page 7510), it was synthesized as follows.
Compound 1a (4.2 g), 47% hydrogen bromide water (Kanto Chemical Co., Ltd.) (15 mL), and water (8 mL) were mixed and heated to 100 ° C. After dropping 6.0 mL of bromine into the reaction mixture, the mixture was stirred at 100 ° C. for 12 hours. Then, it cooled to room temperature and the obtained oily substance was melt | dissolved in dichloromethane 100mL, and it wash | cleaned by saturated sodium hydrogencarbonate aqueous solution 100mL and 10% sodium thiosulfate aqueous solution. The organic phase was separated, dried over anhydrous magnesium sulfate (manufactured by Wako Pure Chemical Industries, Ltd.), the magnesium sulfate was removed by filtration, and the filtrate was concentrated again under reduced pressure. The concentrate was purified by column chromatography (developing solvent: dichloromethane / n-hexane = 1/1 (volume ratio)) using silica gel (trade name “C-200” manufactured by Wako Pure Chemical Industries, Ltd.) The compound 2a represented by the following formula (2a) was obtained as 6.44 g of a pale yellow oil (yield 92%, 1 H-NMR (400 MHz, solvent: deuterated chloroform): 7.46 (2H, d), 4.80 (2H, m), 2.14 (2H, br), 1.32-1.27 (10H, br), 0.88 (3H, t)).
 また、上記合成例において、化合物1aの代わりに、化合物1bを用いた以外は、上記と同じ方法により、下記式(2b)で表される化合物2bを得た(収率83%、1H-NMR(400MHz、溶媒:重クロロホルム):7.45(2H,d)、4.85(2H,q)、1.76(3H,t))。 Further, in the above synthesis example, compound 2b represented by the following formula (2b) was obtained by the same method as above except that compound 1b was used instead of compound 1a (yield 83%, 1 H— NMR (400 MHz, solvent: deuterated chloroform): 7.45 (2H, d), 4.85 (2H, q), 1.76 (3H, t)).
Figure JPOXMLDOC01-appb-C000012
Figure JPOXMLDOC01-appb-C000012
[合成例3:化合物3a、3bの合成]
 乾燥窒素気流中で、化合物2aを1.0g、2-チエニルトリブチルスズ(アルドリッチ(株)製)4.1mL、ジクロロビストリフェニルホスフィンパラジウム(東京化成(株)製)200mg、脱水テトラヒドロフラン50mLを混合し、70℃で加熱還流した。8時間後、反応混合物を濃縮し、シリカゲル(和光純薬(株)製、商品名「B-200」)を用いてカラムクトマトグラフィー(展開溶媒:ジクロロメタン/n-ヘキサン=1/2(体積比))で精製し、0.6gの淡黄色油状物として、下記式(3)で表される化合物3aを得た(収率63%、1H-NMR(400MHz、溶媒:重クロロホルム):8.10(2H,br)、7.63(2H,d)、7.38(2H,br)、7.18(2H,br)、4.83(2H,m)、2.19(2H,m)、1.35-1.27(10H,br)、0.91(3H,t))。
[Synthesis Example 3: Synthesis of Compounds 3a and 3b]
In a dry nitrogen stream, 1.0 g of compound 2a, 4.1 mL of 2-thienyltributyltin (manufactured by Aldrich Co.), 200 mg of dichlorobistriphenylphosphine palladium (manufactured by Tokyo Chemical Industry Co., Ltd.), 50 mL of dehydrated tetrahydrofuran are mixed. Heated to reflux at 70 ° C. After 8 hours, the reaction mixture was concentrated and column chromatography (developing solvent: dichloromethane / n-hexane = 1/2 (volume) using silica gel (trade name “B-200” manufactured by Wako Pure Chemical Industries, Ltd.) The compound 3a represented by the following formula (3) was obtained as 0.6 g of a pale yellow oil (yield 63%, 1 H-NMR (400 MHz, solvent: deuterated chloroform): 8.10 (2H, br), 7.63 (2H, d), 7.38 (2H, br), 7.18 (2H, br), 4.83 (2H, m), 2.19 (2H, m), 1.35-1.27 (10H, br) 0.91 (3H, t)).
 また、上記合成例において、化合物2aの代わりに、化合物2bを用いた以外は、上記と同じ方法により、下記式(3)で表される化合物3bを得た(収率91%、1H-NMR(400MHz、溶媒:重クロロホルム):8.10(2H,d)、7.65(2H,d)、7.39(2H,m)、7.20(2H,m)、4.90(2H,q)、1.81(3H,t))。 Further, in the above synthesis example, compound 3b represented by the following formula (3) was obtained by the same method as above except that compound 2b was used instead of compound 2a (yield 91%, 1 H— NMR (400 MHz, solvent: deuterated chloroform): 8.10 (2H, d), 7.65 (2H, d), 7.39 (2H, m), 7.20 (2H, m), 4.90 (2H, q), 1.81 (3H, t )).
Figure JPOXMLDOC01-appb-C000013
Figure JPOXMLDOC01-appb-C000013
[合成例4:化合物4a、4bの合成]
 乾燥窒素気流中で、600mgの化合物3aをN,N-ジメチルホルムアミド20mLに溶解させ、40℃に加熱した。反応混合物を遮光して、N-ブロモコハクイミド670mgを加え、40℃の温度で更に6時間撹拌した。その後、反応混合物を室温まで冷却し、水50mLを加えて、ジクロロメタン30mL×3回で抽出した。有機相を分離後、無水硫酸マグネシウム(和光純薬(株)製)で乾燥し、ろ過によって硫酸マグネシウムを除いた後、減圧濃縮を行った。濃縮物をシリカゲル(和光純薬(株)製、商品名「B-200」)を用いてカラムクトマトグラフィー(展開溶媒:ジクロロメタン)で精製し、710mgの淡黄色固形物として、下記式(4)で表される化合物4aを得た(収率85%)。1H-NMR(400MHz、溶媒:重クロロホルム):7.83(2H,m)、7.57(2H,m)、7.12(2H,m)、4.80(2H,q)、2.18(2H,br)、1.32-1.27(10H,br)、0.87(3H,t))。
[Synthesis Example 4: Synthesis of Compounds 4a and 4b]
In a dry nitrogen stream, 600 mg of compound 3a was dissolved in 20 mL of N, N-dimethylformamide and heated to 40 ° C. The reaction mixture was protected from light, 670 mg of N-bromosuccinimide was added, and the mixture was further stirred at a temperature of 40 ° C. for 6 hours. Thereafter, the reaction mixture was cooled to room temperature, 50 mL of water was added, and extraction was performed with 30 mL of dichloromethane × 3 times. The organic phase was separated, dried over anhydrous magnesium sulfate (manufactured by Wako Pure Chemical Industries, Ltd.), magnesium sulfate was removed by filtration, and the filtrate was concentrated under reduced pressure. The concentrate was purified by column chromatography (developing solvent: dichloromethane) using silica gel (manufactured by Wako Pure Chemical Industries, Ltd., trade name “B-200”) to give 710 mg of the following formula (4 The compound 4a represented by this was obtained (yield 85%). 1 H-NMR (400 MHz, solvent: deuterated chloroform): 7.83 (2H, m), 7.57 (2H, m), 7.12 (2H, m), 4.80 (2H, q), 2.18 (2H, br), 1.32- 1.27 (10H, br), 0.87 (3H, t)).
 また、上記合成例において、化合物3aの代わりに、化合物3bを用いた以外は、上記と同じ方法により、下記式(4)で表される化合物4bを得た(収率99%、1H-NMR(400MHz、溶媒:重クロロホルム):7.82(2H,m)、7.60(2H,m)、7.13(2H,m)、4.88(2H,m)、1.80(3H,m))。 Further, in the above synthesis example, compound 4b represented by the following formula (4) was obtained by the same method as above except that compound 3b was used instead of compound 3a (yield 99%, 1 H— NMR (400 MHz, solvent: deuterated chloroform): 7.82 (2H, m), 7.60 (2H, m), 7.13 (2H, m), 4.88 (2H, m), 1.80 (3H, m)).
Figure JPOXMLDOC01-appb-C000014
Figure JPOXMLDOC01-appb-C000014
[実施例1:交互共重合ポリマー5aの合成]
 乾燥窒素気流中で、化合物4aを100mgと、文献(Chen,  S.H.  et  al.、Chemistry of Materials、2003年、15巻、542ページ)に従って合成した、2,2’-(9,9-ビス(n-オクチル)フルオレン-2,7-ジイル)-ビス[4,4,5,5-テトラメチル-[1,3,2]ジオキサボロラン]を113mgとを、トルエン8mLに溶解し、10分間、115℃で加熱還流した。
反応混合物にテトラキストリフェニルホスフィンパラジウム(東京化成(株)製)8mgを加えた後、水酸化テトラエチルアンモニウム35%水溶液(アルドリッチ(株)製)0.2mL、水0.2mLを加えて、115℃で加熱撹拌した。2時間後、ブロモベンゼン(東京化成(株)製)60μLを加え、更に1時間、115℃で還流した後、フェニルボロン酸(アルドリッチ(株)製)58mgを加え、そのまま12時間加熱還流を続けた。その後、室温まで冷却し、メタノール30mLを加えて、析出した赤色固体を濾別した。得られた赤色固体をソクスレー抽出器により、ジエチルエーテルで12時間、次いでクロロホルムで12時間、抽出した。クロロホルムでの抽出分をロータリーエバポレータで減圧濃縮し、最少量のクロロホルムに溶解した後、メタノールを加えて再沈殿させた。沈殿を濾過し、真空乾燥して、赤色粉末として42mgの下記一般式(5)で表される交互共重合ポリマー5a(R=n-オクチル基)を得た(収率31%、1H-NMR(400MHz、溶媒:重オルトジクロロベンゼン):8.14、7.70-7.4、7.34、4.88、2.07、1.55、1.09、0.79(全てbr))。
[Example 1: Synthesis of alternating copolymer 5a]
In a dry nitrogen stream, Compound 4a was synthesized as 100 mg according to the literature (Chen, SH et al., Chemistry of Materials, 2003, Vol. 15, p. 542), 2,2 ′-(9,9-bis ( 113 mg of n-octyl) fluorene-2,7-diyl) -bis [4,4,5,5-tetramethyl- [1,3,2] dioxaborolane] was dissolved in 8 mL of toluene, Heated to reflux at ° C.
After adding 8 mg of tetrakistriphenylphosphine palladium (manufactured by Tokyo Chemical Industry Co., Ltd.) to the reaction mixture, 0.2 mL of 35% aqueous tetraethylammonium hydroxide (manufactured by Aldrich Co., Ltd.) and 0.2 mL of water were added, and the temperature was 115 ° C And stirred with heating. Two hours later, 60 μL of bromobenzene (manufactured by Tokyo Chemical Industry Co., Ltd.) was added, and the mixture was further refluxed at 115 ° C. for 1 hour. Then, 58 mg of phenylboronic acid (manufactured by Aldrich Co., Ltd.) was added, and heating and refluxing were continued for 12 hours It was. Then, it cooled to room temperature, 30 mL of methanol was added, and the precipitated red solid was separated by filtration. The resulting red solid was extracted with a Soxhlet extractor with diethyl ether for 12 hours and then with chloroform for 12 hours. The extract with chloroform was concentrated under reduced pressure using a rotary evaporator, dissolved in a minimum amount of chloroform, and then reprecipitated with methanol. The precipitate was filtered and vacuum-dried to obtain 42 mg of alternating copolymer 5a (R = n-octyl group) represented by the following general formula (5) as a red powder (yield 31%, 1 H- NMR (400 MHz, solvent: heavy orthodichlorobenzene): 8.14, 7.70-7.4, 7.34, 4.88, 2.07, 1.55, 1.09, 0.79 (all br)).
[実施例2:交互共重合ポリマー5bの合成]
 実施例1において、化合物4aの代わりに、化合物4bを用いた以外は、実施例1と同じ方法で、下記一般式(5)で表される化合物5b(R=エチル基)を得た(収率23%、1H-NMR(400MHz、溶媒:重オルトジクロロベンゼン):8.11、7.72-7.4、7.34、4.97、1.87、1.55、1.08、0.79(全てbr))。
[Example 2: Synthesis of alternating copolymer 5b]
In Example 1, compound 5b (R = ethyl group) represented by the following general formula (5) was obtained in the same manner as in Example 1 except that compound 4b was used instead of compound 4a. 23%, 1 H-NMR (400 MHz, solvent: heavy orthodichlorobenzene): 8.11, 7.72-7.4, 7.34, 4.97, 1.87, 1.55, 1.08, 0.79 (all br)).
Figure JPOXMLDOC01-appb-C000015
Figure JPOXMLDOC01-appb-C000015
[実施例3:交互共重合ポリマー6aの合成]
 乾燥窒素気流中で、化合物4aを149mgと、文献(Leclerc、M. et al.、Advanced Materials、2007年、19巻、2295ページ)に従って合成した、2,7-ビス(4,4,5,5-テトラメチル-1’,3’,2’-ジオキサボロラン-2’-イル)-N-オクチルカルバゾールを136mgとを、トルエン8mLに溶解し、10分間、115℃で加熱還流した。反応混合物にテトラキストリフェニルホスフィンパラジウム(東京化成(株)製)14mgを加えた後、水酸化テトラエチルアンモニウム35%水溶液(アルドリッチ(株)製)0.4mL、水0.4mLを加えて、115℃で加熱撹拌した。2時間後、ブロモベンゼン(東京化成(株)製)60μLを加え、更に1時間、115℃で還流した後、フェニルボロン酸(アルドリッチ(株)製)60mgを加え、そのまま12時間加熱還流を続けた。その後、室温まで冷却し、メタノール30mLを加えて、析出した赤色固体を濾別した。得られた赤色固体をソクスレー抽出器により、ジエチルエーテルで12時間、次いでクロロホルムで12時間、抽出した。クロロホルムでの抽出分をロータリーエバポレータで減圧濃縮し、最少量のクロロホルムに溶解した後、メタノールを加えて再沈殿させた。沈殿を濾過し、真空乾燥して、赤色粉末として89mgの下記一般式(6)で表される交互共重合ポリマー6a(R=n-オクチル基)を得た(収率52%、1H-NMR(400MHz、溶媒:重クロロホルム、25℃):8.15、7.67-7.5、4.88、4.35、1.98、1.24、0.86(全てbr))。
[Example 3: Synthesis of alternating copolymer 6a]
Compound 7a was synthesized in accordance with the literature (Leclerc, M. et al., Advanced Materials, 2007, Vol. 19, p. 2295) in a dry nitrogen stream, according to the literature (Leclerc, M. et al., Advanced Materials, p. 136 mg of 5-tetramethyl-1 ′, 3 ′, 2′-dioxaborolan-2′-yl) -N-octylcarbazole was dissolved in 8 mL of toluene and heated to reflux at 115 ° C. for 10 minutes. After adding 14 mg of tetrakistriphenylphosphine palladium (manufactured by Tokyo Chemical Industry Co., Ltd.) to the reaction mixture, 0.4 mL of tetraethylammonium hydroxide 35% aqueous solution (manufactured by Aldrich Co., Ltd.) and 0.4 mL of water were added, and the temperature was 115 ° And stirred with heating. After 2 hours, 60 μL of bromobenzene (manufactured by Tokyo Chemical Industry Co., Ltd.) was added, and the mixture was further refluxed at 115 ° C. for 1 hour. Then, 60 mg of phenylboronic acid (manufactured by Aldrich Co.) was added, and heating and refluxing were continued for 12 hours. It was. Then, it cooled to room temperature, 30 mL of methanol was added, and the precipitated red solid was separated by filtration. The resulting red solid was extracted with a Soxhlet extractor with diethyl ether for 12 hours and then with chloroform for 12 hours. The extract with chloroform was concentrated under reduced pressure using a rotary evaporator, dissolved in a minimum amount of chloroform, and then reprecipitated with methanol. The precipitate was filtered and dried under vacuum to obtain 89 mg of an alternating copolymerized polymer 6a (R = n-octyl group) represented by the following general formula (6) as a red powder (yield: 52%, 1 H— NMR (400 MHz, solvent: deuterated chloroform, 25 ° C.): 8.15, 7.67-7.5, 4.88, 4.35, 1.98, 1.24, 0.86 (all br)).
[実施例4:交互共重合ポリマー6bの合成]
 実施例3において、化合物4aの代わりに、化合物4bを用いた以外は、実施例3と同じ方法で、下記一般式(6)で表される化合物6b(R=エチル基)を得た(収率55%、1H-NMR(溶媒:重クロロホルム、25℃):8.10、7.62-7.3、4.93、4.36、1.87、1.26、0.87(全てbr))。
[Example 4: Synthesis of alternating copolymer 6b]
In Example 3, compound 6b (R = ethyl group) represented by the following general formula (6) was obtained in the same manner as in Example 3 except that compound 4b was used instead of compound 4a (contract). Rate 55%, 1 H-NMR (solvent: deuterated chloroform, 25 ° C.): 8.10, 7.62-7.3, 4.93, 4.36, 1.87, 1.26, 0.87 (all br)).
Figure JPOXMLDOC01-appb-C000016
Figure JPOXMLDOC01-appb-C000016
[数平均分子量(Mn)の測定]
 GPB装置(東ソー製、GPB8020、ポリスチレン換算)用いて、交互共重合ポリマー5a、5b及び6a、6bのクロロホルム中で数平均分子量(Mn)及び分散度(Mw/Mn)を測定し、それを基に式(5)又は(6)中のnの値を算出した。測定結果を表1に示す。
[Measurement of number average molecular weight (Mn)]
Using a GPB apparatus (Tosoh, GPB8020, converted to polystyrene), the number average molecular weight (Mn) and the dispersity (Mw / Mn) were measured in chloroform of the alternating copolymer 5a, 5b and 6a, 6b. The value of n in the formula (5) or (6) was calculated. The measurement results are shown in Table 1.
Figure JPOXMLDOC01-appb-T000017
Figure JPOXMLDOC01-appb-T000017
[実施例5:有機光電変換素子1の作製]
 p型半導体として交互共重合ポリマー5aを15.3mg、n型半導体材料として[60]PCBM(フロンティアカーボン(株)製、商品名「Nanom Spectra E100H」)を11.7mg秤量し、窒素雰囲気下で脱水クロロベンゼン(シグマアルドリッチ社製、脱水品)1.0mLを加え、窒素雰囲気下で24時間撹拌し混合溶液を調製した。
 次に、洗浄及びUV-オゾン処理を行って清浄化したITOガラス(ガラス基板にスズドープ酸化インジウム膜を形成した透明導電性ガラス、抵抗値14Ω/sq)、文献(Brabec、C.J. et al.、Advanced Materials、2009年、21巻、1ページ)に記載された方法で、導電性ポリマー電極としてPEDOT/PSS(Clevios社製)を40nm成膜した上に、上記混合溶液を孔径0.45μmのシリンジフィルターで濾過してから滴下し、回転数2500rpmで60秒間スピンコートを行い、光電変換層を厚み120nmになるように形成した。形成された光電変換層の表面を観察したが、均質で曇りの無い膜が成膜されていた。
 次に、この光電変換層上にアルミニウム(高純度化学研究所(株)製)を約100nm(8.2×10-5Pa、1.5Å/s)積層し、有機光電変換素子1を作製した。
[Example 5: Production of organic photoelectric conversion element 1]
15.3 mg of alternating copolymer 5a as a p-type semiconductor and 11.7 mg of [60] PCBM (manufactured by Frontier Carbon Co., Ltd., trade name “Nanom Spectra E100H”) as an n-type semiconductor material are weighed under a nitrogen atmosphere. 1.0 mL of dehydrated chlorobenzene (manufactured by Sigma Aldrich, dehydrated product) was added and stirred for 24 hours under a nitrogen atmosphere to prepare a mixed solution.
Next, ITO glass cleaned by cleaning and UV-ozone treatment (transparent conductive glass having a tin-doped indium oxide film formed on a glass substrate, resistance value 14Ω / sq), literature (Brabec, CJ et al. , Advanced Materials, 2009, Vol. 21, p. 1), PEDOT / PSS (manufactured by Clevios) was formed into a 40 nm film as a conductive polymer electrode, and the mixed solution was mixed with a pore size of 0.45 μm. The solution was dropped with a syringe filter and spin-coated at a rotational speed of 2500 rpm for 60 seconds to form a photoelectric conversion layer having a thickness of 120 nm. When the surface of the formed photoelectric conversion layer was observed, a homogeneous and cloudless film was formed.
Next, about 100 nm (8.2 × 10 −5 Pa, 1.5 Å / s) of aluminum (manufactured by High-Purity Chemical Laboratory Co., Ltd.) is laminated on this photoelectric conversion layer, and the organic photoelectric conversion element 1 is produced. did.
[実施例6-16:有機光電変換素子2~12の作製]
 実施例5において、p型半導体として交互共重合ポリマー5aを15.3mg用いる代わりに、後述の表2に示す種類、及び質量の交互共重合ポリマー5a、5b、及び6a、6bを用いて、有機光電変換素子2~12を作製した。
[Example 6-16: Production of organic photoelectric conversion elements 2 to 12]
In Example 5, instead of using 15.3 mg of the alternating copolymer 5a as the p-type semiconductor, the types and masses of the alternating copolymer 5a, 5b, and 6a, 6b shown in Table 2 below are used to form an organic material. Photoelectric conversion elements 2 to 12 were produced.
[参考例1:有機光電変換素子13の作製]
 p型半導体として、P3HT(ポリ-3-ヘキシルチオフェン、Merck社製)を15mg)、n型半導体として、[60]PCBM(フロンティアカーボン製、商品名「Nanom Spectra E100H」)を11.3mg秤量し、窒素雰囲気下で脱水クロロベンゼン(シグマアルドリッチ社製、脱水品)1.0mLを加え、窒素雰囲気下で24時間撹拌し混合溶液を調製した。
 次に、実施例5で用いたものと同様のITOガラスに、非特許文献1に記載された方法で、導電性ポリマー電極としてPEDOT-PSS(Clevios社製)を40nm成膜した上に、上記混合溶液を孔径0.45μmのシリンジフィルターで濾過してから滴下し、回転数2500rpmで60秒間スピンコートを行い、薄膜を形成し、この薄膜に150℃で10分間加熱処理を行って光電変換層とした。形成された光電変換層の表面を観察したが、均質で曇りの無い膜が成膜されていた。
 次に、この光電変換層にアルミニウム(高純度化学研究所(株)製)を約100nm(8.2×10-5Pa、1.5Å/s)積層し、有機光電変換素子13を作製した。
[Reference Example 1: Production of organic photoelectric conversion element 13]
Weighing 11.3 mg of P3HT (poly-3-hexylthiophene, Merck) as a p-type semiconductor and 15 mg) of [60] PCBM (made by Frontier Carbon, trade name “Nanom Spectra E100H”) as an n-type semiconductor. Then, 1.0 mL of dehydrated chlorobenzene (manufactured by Sigma-Aldrich, dehydrated product) was added under a nitrogen atmosphere, and the mixture was stirred for 24 hours under a nitrogen atmosphere to prepare a mixed solution.
Next, PEDOT-PSS (manufactured by Clevios) was formed to 40 nm as a conductive polymer electrode on the same ITO glass as that used in Example 5 by the method described in Non-Patent Document 1, and then the above-mentioned The mixed solution is filtered through a syringe filter having a pore diameter of 0.45 μm and then dropped, and spin coating is performed at 2500 rpm for 60 seconds to form a thin film. The thin film is subjected to heat treatment at 150 ° C. for 10 minutes to obtain a photoelectric conversion layer. It was. When the surface of the formed photoelectric conversion layer was observed, a homogeneous and cloudless film was formed.
Next, about 100 nm (8.2 × 10 −5 Pa, 1.5 Å / s) of aluminum (manufactured by High-Purity Chemical Laboratory Co., Ltd.) was laminated on this photoelectric conversion layer to produce an organic photoelectric conversion element 13. .
[開放電圧の測定]
 上記の有機光電変換素子1~13に、均一化した100Wタングステンランプの光を照射しながら、ソーラーシミュレータ(ワコム電創製、WXS-50S-1.5)及び電圧-電流発生器(ADC製、R6243)を用いて、開放電圧(Voc)を測定した。測定結果を表2に示す。
[Measurement of open circuit voltage]
While irradiating the above-mentioned organic photoelectric conversion elements 1 to 13 with light from a uniform 100 W tungsten lamp, a solar simulator (Wacom Denso, WXS-50S-1.5) and a voltage-current generator (ADC, R6243) ) Was used to measure the open circuit voltage (Voc). The measurement results are shown in Table 2.
Figure JPOXMLDOC01-appb-T000018
Figure JPOXMLDOC01-appb-T000018
 実施例1~4で合成した交互共重合ポリマーを用いた有機光電変換素子1~12は、最も一般的な有機薄膜太陽電池の一つである参考例1の[60]PCBM-P3HT混合系の有機光電変換素子13と比べて、更に大きな開放電圧が得られた。
 この結果から、本発明の交互共重合ポリマーは、有機薄膜太陽電池用のp型半導体材料として非常に有用である。
The organic photoelectric conversion elements 1 to 12 using the alternating copolymer synthesized in Examples 1 to 4 are the [60] PCBM-P3HT mixed system of Reference Example 1, which is one of the most common organic thin film solar cells. Compared with the organic photoelectric conversion element 13, a larger open circuit voltage was obtained.
From this result, the alternating copolymer of the present invention is very useful as a p-type semiconductor material for organic thin film solar cells.
 本発明の交互共重合ポリマーは、有機薄膜太陽電池用のp型半導体材料として非常に有用である。 The alternating copolymer of the present invention is very useful as a p-type semiconductor material for organic thin film solar cells.
1 陽極
2 光電変換層
3 陰極
4 有機光電変換素子
1 Anode 2 Photoelectric Conversion Layer 3 Cathode 4 Organic Photoelectric Conversion Element

Claims (7)

  1.  下記一般式(I)で表される繰り返し単位を有する、交互共重合ポリマー。
    Figure JPOXMLDOC01-appb-C000001
    (式(I)中、Rは一価の炭化水素基又は置換炭化水素基を表し、Dは炭素骨格からなる多環式芳香族化合物もしくはヘテロ原子を含む複素多環式芳香族化合物由来の構成単位を示す。nは繰り返し単位の数を示し、2~25である。)
    An alternating copolymer having a repeating unit represented by the following general formula (I).
    Figure JPOXMLDOC01-appb-C000001
    (In formula (I), R represents a monovalent hydrocarbon group or a substituted hydrocarbon group, and D represents a polycyclic aromatic compound comprising a carbon skeleton or a heteropolycyclic aromatic compound containing a hetero atom. (Indicating unit, n represents the number of repeating units and is 2 to 25.)
  2.  前記一般式(I)中のRが、炭素数1~12のアルキル基又は置換アルキル基である、請求項1に記載の交互共重合ポリマー。 2. The alternating copolymer according to claim 1, wherein R in the general formula (I) is an alkyl group having 1 to 12 carbon atoms or a substituted alkyl group.
  3.  前記一般式(I)中のnが、3~20である、請求項1又は2に記載の交互共重合ポリマー。 The alternating copolymer according to claim 1 or 2, wherein n in the general formula (I) is 3 to 20.
  4.  前記一般式(I)中のDが、フルオレン構造又はカルバゾール構造を有する芳香族を含む構成単位である、請求項1~3のいずれか1項に記載の交互共重合ポリマー。 The alternating copolymer according to any one of claims 1 to 3, wherein D in the general formula (I) is a structural unit containing an aromatic group having a fluorene structure or a carbazole structure.
  5.  前記一般式(I)中のDが、下記一般式(IIa)又は(IIIa)で表される構成単位である、請求項4に記載の交互共重合ポリマー。
    Figure JPOXMLDOC01-appb-C000002
    (式(IIa)中のR1、R2、及び(IIIa)中のR3は、それぞれ独立に一価の炭化水素基又は置換炭化水素基を表す。)
    The alternating copolymer according to claim 4, wherein D in the general formula (I) is a structural unit represented by the following general formula (IIa) or (IIIa).
    Figure JPOXMLDOC01-appb-C000002
    (R 1 and R 2 in formula (IIa) and R 3 in (IIIa) each independently represent a monovalent hydrocarbon group or a substituted hydrocarbon group.)
  6.  前記一般式(IIa)又は(IIIa)中のR1~R3が、それぞれ独立に炭素数1~12のアルキル基又は置換アルキル基である、請求項5に記載の交互共重合ポリマー。 6. The alternating copolymer according to claim 5, wherein R 1 to R 3 in the general formula (IIa) or (IIIa) are each independently an alkyl group having 1 to 12 carbon atoms or a substituted alkyl group.
  7.  請求項1~6のいずれか1項に記載の交互共重合ポリマーを含む光電変換層を有する、有機光電変換素子。 An organic photoelectric conversion element having a photoelectric conversion layer containing the alternating copolymer of any one of claims 1 to 6.
PCT/JP2011/071691 2010-09-30 2011-09-22 Alternating copolymerization polymer and organic photoelectric conversion element WO2012043401A1 (en)

Applications Claiming Priority (2)

Application Number Priority Date Filing Date Title
JP2010221068A JP2012077116A (en) 2010-09-30 2010-09-30 Alternating copolymerization polymer and organic photoelectric conversion element
JP2010-221068 2010-09-30

Publications (1)

Publication Number Publication Date
WO2012043401A1 true WO2012043401A1 (en) 2012-04-05

Family

ID=45892852

Family Applications (1)

Application Number Title Priority Date Filing Date
PCT/JP2011/071691 WO2012043401A1 (en) 2010-09-30 2011-09-22 Alternating copolymerization polymer and organic photoelectric conversion element

Country Status (3)

Country Link
JP (1) JP2012077116A (en)
TW (1) TW201219443A (en)
WO (1) WO2012043401A1 (en)

Cited By (3)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
US9287419B2 (en) 2011-01-05 2016-03-15 Nitto Denko Corporation Wavelength conversion perylene diester chromophores and luminescent films
US9382424B2 (en) 2011-09-26 2016-07-05 Nitto Denko Corporation Highly-fluorescent and photo-stable chromophores for enhanced solar harvesting efficiency
US9394479B2 (en) 2011-10-05 2016-07-19 Nitto Denko Corporation Wavelength conversion film having pressure sensitive adhesive layer to enhance solar harvesting efficiency

Families Citing this family (4)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
US20140163193A1 (en) * 2011-09-23 2014-06-12 Ocean's King Lighting Scence & Technology Co., Ltd Difluoro benzotriazolyl solar cell polymeric material and preparation method and use thereof
US20140256894A1 (en) * 2011-09-23 2014-09-11 Ocean's King Lighting Science & Technology Co., Ltd. Difluoro benzotriazolyl organic semiconductor material, preparation method and use thereof
EP2759557B1 (en) * 2011-09-23 2016-02-03 Ocean's King Lighting Science&Technology Co., Ltd. Fluorene-containing difluoro benzotriazolyl copolymer and preparation method and use thereof
WO2018051979A1 (en) * 2016-09-14 2018-03-22 国立大学法人大阪大学 Polymer compound and organic semiconductor material containing same

Citations (4)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
WO2004092246A1 (en) * 2003-04-18 2004-10-28 Hitachi Chemical Co., Ltd. Polyquinoline copolymer and organic electroluminescent device using same
JP2006077171A (en) * 2004-09-10 2006-03-23 Tokyo Institute Of Technology Benzotriazole structure-containing polymer, method for producing the same and charge transport material and organic electronic device
JP2007046052A (en) * 2000-01-05 2007-02-22 Cambridge Display Technol Ltd Luminescent polymer
WO2010114116A1 (en) * 2009-04-03 2010-10-07 コニカミノルタホールディングス株式会社 Organic photoelectric conversion element, solar cell using same, and light sensor array

Patent Citations (4)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
JP2007046052A (en) * 2000-01-05 2007-02-22 Cambridge Display Technol Ltd Luminescent polymer
WO2004092246A1 (en) * 2003-04-18 2004-10-28 Hitachi Chemical Co., Ltd. Polyquinoline copolymer and organic electroluminescent device using same
JP2006077171A (en) * 2004-09-10 2006-03-23 Tokyo Institute Of Technology Benzotriazole structure-containing polymer, method for producing the same and charge transport material and organic electronic device
WO2010114116A1 (en) * 2009-04-03 2010-10-07 コニカミノルタホールディングス株式会社 Organic photoelectric conversion element, solar cell using same, and light sensor array

Non-Patent Citations (2)

* Cited by examiner, † Cited by third party
Title
PENG, B. ET AL.: "A New Dithienylbenzotriazole- Based Poly(2,7-carbazole) for Efficient Photovoltaics", MACROMOLECULAR CHEMISTRY AND PHYSICS, vol. 211, no. 18, 15 September 2010 (2010-09-15), pages 2026 - 2033, XP055048111, DOI: doi:10.1002/macp.201000315 *
ZHANG, L. ET AL.: "Bulk-Heterojunction Solar Cells with Benzotriazole-Based Copolymers as Electron Donors: Largely Improved Photovoltaic Parameters by Using PFN/Al Bilayer Cathode", MACROMOLECULES, vol. 43, no. 23, 2010, WASHINGTON, DC, UNITED STATES, pages 9771 - 9778, XP055048161, DOI: doi:10.1021/ma102080c *

Cited By (3)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
US9287419B2 (en) 2011-01-05 2016-03-15 Nitto Denko Corporation Wavelength conversion perylene diester chromophores and luminescent films
US9382424B2 (en) 2011-09-26 2016-07-05 Nitto Denko Corporation Highly-fluorescent and photo-stable chromophores for enhanced solar harvesting efficiency
US9394479B2 (en) 2011-10-05 2016-07-19 Nitto Denko Corporation Wavelength conversion film having pressure sensitive adhesive layer to enhance solar harvesting efficiency

Also Published As

Publication number Publication date
TW201219443A (en) 2012-05-16
JP2012077116A (en) 2012-04-19

Similar Documents

Publication Publication Date Title
KR101548764B1 (en) Electron donating organic material, material for photovoltaic element, and photovoltaic element
KR101361312B1 (en) Electron-donating organic material for photovoltaic devices, material for photovoltaic devices, and photovoltaic devices
KR101680397B1 (en) Material for photovoltaic element, and photovoltaic element
Yang et al. Bisperylene bisimide based conjugated polymer as electron acceptor for polymer-polymer solar cells
JP5034818B2 (en) Organic photoelectric conversion element
Dai et al. Perylene and naphthalene diimide polymers for all-polymer solar cells: a comparative study of chemical copolymerization and physical blend
WO2012043401A1 (en) Alternating copolymerization polymer and organic photoelectric conversion element
Song et al. Conjugated polymers with broad absorption: synthesis and application in polymer solar cells
JP5664200B2 (en) Conjugated polymer, electron donating organic material, photovoltaic device material and photovoltaic device using the same
TW200838896A (en) Organic photoelectric conversion element and polymer useful for producing the same
Long et al. Double B← N bridged bipyridine-containing polymer acceptors with enhanced electron mobility for all-polymer solar cells
JP5900084B2 (en) Electron donating organic material, photovoltaic device material using the same, and photovoltaic device
Fan et al. Improved photovoltaic performance of a 2D-conjugated benzodithiophene-based polymer by the side chain engineering of quinoxaline
Fan et al. Enhancing the photovoltaic properties of low bandgap terpolymers based on benzodithiophene and phenanthrophenazine by introducing different second acceptor units
JP5691628B2 (en) Material for photovoltaic element and photovoltaic element
JP2014034618A (en) Organic thin film, and photoelectric conversion element using the same
JP5476660B2 (en) Organic photoelectric conversion device and polymer useful for production thereof
KR101495152B1 (en) organic semiconductor compound, manufacturing method thereof, and organic electronic device that contains it
TW201317268A (en) Conjugated polymer composition and photoelectric conversion element using same
WO2016021660A1 (en) Copolymer, photoelectric conversion element, solar cell and solar cell module
JP5428670B2 (en) Material for photovoltaic element and photovoltaic element
Chau et al. Complementary absorbing ternary blend containing structural isomeric donor polymers for improving the performance of PC61BM-based indoor photovoltaics
WO2013047293A1 (en) Photoelectric conversion element
JP2015183032A (en) Polymer having condensed ring type cyclopenta-dithiophene skeleton and organic thin-film solar battery material using the same
JP2015183127A (en) Polymer having benzo-dithiophene skeleton and organic thin-film solar battery material using the same

Legal Events

Date Code Title Description
121 Ep: the epo has been informed by wipo that ep was designated in this application

Ref document number: 11828957

Country of ref document: EP

Kind code of ref document: A1

NENP Non-entry into the national phase

Ref country code: DE

122 Ep: pct application non-entry in european phase

Ref document number: 11828957

Country of ref document: EP

Kind code of ref document: A1