JP5664200B2 - Conjugated polymer, electron donating organic material, photovoltaic device material and photovoltaic device using the same - Google Patents

Conjugated polymer, electron donating organic material, photovoltaic device material and photovoltaic device using the same Download PDF

Info

Publication number
JP5664200B2
JP5664200B2 JP2010279071A JP2010279071A JP5664200B2 JP 5664200 B2 JP5664200 B2 JP 5664200B2 JP 2010279071 A JP2010279071 A JP 2010279071A JP 2010279071 A JP2010279071 A JP 2010279071A JP 5664200 B2 JP5664200 B2 JP 5664200B2
Authority
JP
Japan
Prior art keywords
group
electron
organic material
compound
added
Prior art date
Legal status (The legal status is an assumption and is not a legal conclusion. Google has not performed a legal analysis and makes no representation as to the accuracy of the status listed.)
Expired - Fee Related
Application number
JP2010279071A
Other languages
Japanese (ja)
Other versions
JP2011144367A (en
Inventor
北澤 大輔
大輔 北澤
山本 修平
修平 山本
塚本 遵
遵 塚本
Current Assignee (The listed assignees may be inaccurate. Google has not performed a legal analysis and makes no representation or warranty as to the accuracy of the list.)
Toray Industries Inc
Original Assignee
Toray Industries Inc
Priority date (The priority date is an assumption and is not a legal conclusion. Google has not performed a legal analysis and makes no representation as to the accuracy of the date listed.)
Filing date
Publication date
Application filed by Toray Industries Inc filed Critical Toray Industries Inc
Priority to JP2010279071A priority Critical patent/JP5664200B2/en
Publication of JP2011144367A publication Critical patent/JP2011144367A/en
Application granted granted Critical
Publication of JP5664200B2 publication Critical patent/JP5664200B2/en
Expired - Fee Related legal-status Critical Current
Anticipated expiration legal-status Critical

Links

Images

Classifications

    • YGENERAL TAGGING OF NEW TECHNOLOGICAL DEVELOPMENTS; GENERAL TAGGING OF CROSS-SECTIONAL TECHNOLOGIES SPANNING OVER SEVERAL SECTIONS OF THE IPC; TECHNICAL SUBJECTS COVERED BY FORMER USPC CROSS-REFERENCE ART COLLECTIONS [XRACs] AND DIGESTS
    • Y02TECHNOLOGIES OR APPLICATIONS FOR MITIGATION OR ADAPTATION AGAINST CLIMATE CHANGE
    • Y02EREDUCTION OF GREENHOUSE GAS [GHG] EMISSIONS, RELATED TO ENERGY GENERATION, TRANSMISSION OR DISTRIBUTION
    • Y02E10/00Energy generation through renewable energy sources
    • Y02E10/50Photovoltaic [PV] energy
    • Y02E10/549Organic PV cells

Landscapes

  • Compositions Of Macromolecular Compounds (AREA)
  • Polyoxymethylene Polymers And Polymers With Carbon-To-Carbon Bonds (AREA)
  • Photovoltaic Devices (AREA)

Description

本発明は、共役系重合体、これを用いた電子供与性有機材料、光起電力素子用材料および光起電力素子に関する。   The present invention relates to a conjugated polymer, an electron-donating organic material, a photovoltaic device material and a photovoltaic device using the conjugated polymer.

太陽電池は環境に優しい電気エネルギー源として、現在深刻さを増すエネルギー問題に対して有力なエネルギー源と注目されている。現在、太陽電池の光起電力素子の半導体素材としては、単結晶シリコン、多結晶シリコン、アモルファスシリコン、化合物半導体などの無機物が使用されている。しかし、無機半導体を用いて製造される太陽電池は、火力発電や原子力発電などの発電方式と比べてコストが高いために、一般家庭に広く普及するには至っていない。コスト高の要因は主として、真空かつ高温下で半導体薄膜を製造するプロセスにある。そこで、製造プロセスの簡略化が期待される半導体素材として、共役系重合体や有機結晶などの有機半導体や有機色素を用いた有機太陽電池が検討されている。   Solar cells are attracting attention as an environmentally friendly electrical energy source and an influential energy source for increasing energy problems. Currently, inorganic materials such as single crystal silicon, polycrystalline silicon, amorphous silicon, and compound semiconductors are used as semiconductor materials for photovoltaic elements of solar cells. However, solar cells manufactured using inorganic semiconductors have not been widely used in ordinary households because of high costs compared with power generation methods such as thermal power generation and nuclear power generation. The high cost factor is mainly in the process of manufacturing a semiconductor thin film under vacuum and high temperature. Therefore, organic solar cells using organic semiconductors and organic dyes such as conjugated polymers and organic crystals are being studied as semiconductor materials expected to simplify the manufacturing process.

しかし、共役系重合体などを用いた有機太陽電池は、従来の無機半導体を用いた太陽電池と比べて光電変換効率が低いことが最大の課題であり、まだ実用化には至っていない。従来の共役系重合体を用いた有機太陽電池の光電変換効率が低いのは、主として、太陽光の吸収効率が低いことや、太陽光によって生成された電子と正孔が分離しにくいエキシトンという束縛状態が形成されることと、キャリア(電子、正孔)を捕獲するトラップが形成されやすいため生成したキャリアがトラップに捕獲されやすく、キャリアの移動度が遅いことなどによる。   However, an organic solar cell using a conjugated polymer or the like has the biggest problem that the photoelectric conversion efficiency is lower than that of a conventional solar cell using an inorganic semiconductor, and has not yet been put into practical use. The photoelectric conversion efficiency of organic solar cells using conventional conjugated polymers is mainly due to the low solar absorption efficiency and the excitons that are difficult to separate the electrons and holes generated by sunlight. This is because a state is formed and a trap for trapping carriers (electrons and holes) is easily formed, so that the generated carriers are easily trapped in the trap and the mobility of carriers is slow.

これまでの有機半導体による光電変換素子は、現在のところ一般的に次のような素子構成に分類することができる。電子供与性有機材料(p型有機半導体)と仕事関数の小さい金属を接合させるショットキー型、電子受容性有機材料(n型有機半導体)と電子供与性有機材料(p型有機半導体)を接合させるヘテロ接合型などである。これらの素子は、接合部の有機層(数分子層程度)のみが光電流生成に寄与するため光電変換効率が低く、その向上が課題となっている。   Conventional photoelectric conversion elements using organic semiconductors can be generally classified into the following element configurations at present. A Schottky type that joins an electron-donating organic material (p-type organic semiconductor) and a metal having a low work function, and an electron-accepting organic material (n-type organic semiconductor) and an electron-donating organic material (p-type organic semiconductor). Heterojunction type. In these elements, only the organic layer (about several molecular layers) at the junction contributes to the photocurrent generation, so that the photoelectric conversion efficiency is low, and its improvement is a problem.

光電変換効率向上の一つの方法として、電子受容性有機材料(n型有機半導体)と電子供与性有機材料(p型有機半導体)を混合し、光電変換に寄与する接合面を増加させたバルクヘテロ接合型(例えば、非特許文献1参照)がある。なかでも、電子供与性有機材料(p型有機半導体)として共役系重合体を用い、電子受容性有機材料としてn型の半導体特性をもつ導電性高分子のほかPCBMなどのC60誘導体を用いた光電変換材料が報告されている(例えば、非特許文献2参照)。 As a method for improving photoelectric conversion efficiency, a bulk heterojunction in which an electron-accepting organic material (n-type organic semiconductor) and an electron-donating organic material (p-type organic semiconductor) are mixed to increase the bonding surface contributing to photoelectric conversion There is a type (for example, see Non-Patent Document 1). Among them, the conjugated polymer used as the electron donating organic material (p-type organic semiconductor), was used C 60 derivatives such other PCBM conductive polymer having semiconductor properties of n-type as the electron accepting organic material A photoelectric conversion material has been reported (for example, see Non-Patent Document 2).

また、太陽光スペクトルの広い範囲にわたる放射エネルギーを効率よく吸収させるために、主鎖に電子供与性基と電子吸引性基を導入し、バンドギャップを小さくした有機半導体による光電変換材料が報告されている(例えば、非特許文献3参照)。この電子供与性基としてはチオフェン骨格が、電子吸引性基としてはベンゾチアジアゾール骨格やキノキサリン骨格などが精力的に研究されている(例えば、非特許文献3〜14、特許文献1〜2参照)。しかしながら、十分な光電変換効率は得られていなかった。   In addition, in order to efficiently absorb radiant energy over a wide range of the solar spectrum, a photoelectric conversion material using an organic semiconductor in which an electron-donating group and an electron-withdrawing group are introduced into the main chain to reduce the band gap has been reported. (For example, see Non-Patent Document 3). As this electron-donating group, a thiophene skeleton has been intensively studied, and as an electron-withdrawing group, a benzothiadiazole skeleton and a quinoxaline skeleton have been energetically studied (see, for example, Non-Patent Documents 3 to 14 and Patent Documents 1 and 2). However, sufficient photoelectric conversion efficiency has not been obtained.

特表2004−534863号公報(請求項1)JP 2004-534863 A (Claim 1) 特表2004−500464号公報(請求項1)Japanese translation of PCT publication No. 2004-500464 (Claim 1)

J.J.M.Halls、C.A.Walsh、N.C.Greenham、E.A.Marseglla、R.H.Frirnd、S.C.Moratti、A.B.Homes著、「ネイチャー(Nature)」、1995年、376号、498頁J. et al. J. et al. M.M. Halls, C.I. A. Walsh, N .; C. Greenham, E.I. A. Marsegla, R.M. H. Frind, S.M. C. Moratti, A.M. B. Homes, "Nature", 1995, 376, 498 G.Yu、J.Gao、J.C.Hummelen、F.Wudl、A.J.Heeger著、「サイエンス(Science)」、1995年、270巻、1789頁G. Yu, J. et al. Gao, J .; C. Hummelen, F.M. Wudl, A.W. J. et al. Heeger, "Science", 1995, 270, 1789 E.Bundgaard、F.C.Krebs著、「ソーラー エナジー マテリアルズ アンド ソーラー セル(Solar Energy Materials & Solar Cells)」、2007年、91巻、954頁E. Bundgaard, F.M. C. Krebs, "Solar Energy Materials & Solar Cells", 2007, 91, 954. A.Gadisa、W.Mammo、L.M.Andersson、S.Admassie、F.Zhang、M.R.Andersson、O.Inganas著、「アドバンスト ファンクショナル マテリアルズ(Advanced Functional Materials)」、2007年、17巻、3836−3842頁A. Gadisa, W .; Mamo, L.M. M.M. Andersson, S.M. Admassie, F.A. Zhang, M.M. R. Andersson, O.D. Inganas, “Advanced Functional Materials”, 2007, 17: 3836-3842 W.Mammo、S.Admassie、A.Gadisa、F.Zhang、O.Inganas、M.R.Andersson著、「ソーラー エナジー マテリアルズ アンド ソーラー セル(Solar Energy Materials & Solar Cells)」、2007年、91巻、1010−1018頁W. Mammo, S .; Admassie, A.M. Gadisa, F .; Zhang, O .; Inganas, M.M. R. By Andersson, “Solar Energy Materials & Solar Cells”, 2007, 91, 1010-1018 R.S.Ashraf、H.Hoppe、M.Shahid、G.Gobsch、S.Sensfuss、E.Klemm著、「ジャーナル オブ ポリマー サイエンス パートA ポリマー ケミストリー(Journal of Polymer Science:Part A:Polymer Chemistry)」、2006年、44巻、6952−6961頁R. S. Ashraf, H.M. Hoppe, M.M. Shahid, G.H. Gobsch, S.M. Sensfuss, E.M. Klemm, “Journal of Polymer Science: Part A: Polymer Chemistry”, 2006, 44, 6952-6916. C−L.Liu、J−H.Tsai、W−Y.Lee、W−C.Chen、S.A.Jenekhe著、「マクロモレキュルズ(Macromolecules)」、2008年、41巻、6952−6959頁CL. Liu, JH. Tsai, WY. Lee, WC. Chen, S.M. A. Jenekhe, “Macromolecules”, 2008, 41, 6952-6959. N.Blouin、A.Michaud、D.Gendron、S.Wakim、E.Blair、R.Neagu−Plesu、M.Belletete、G.Durocher、Y.Tao、M.Leclerc著、「ジャーナル オブ アメリカン ケミカル ソサイェティー(Journal of American Chemical Society)」、2008年、130巻、732−742頁N. Blauin, A.M. Michaud, D.M. Gendron, S.M. Wakim, E .; Blair, R.A. Neagu-Plesu, M .; Bellette, G.M. Durocher, Y.M. Tao, M.C. Leclerc, "Journal of American Chemical Society", 2008, 130, 732-742. M.Sun、Q.Niu、B.Du、J.Peng、W.Yang、Y.Cao著、「マクロモレキュラー ケミストリー アンド フィジクス(Macromolecular Chemistry and Physics)」、2007年、208巻、988−993頁M.M. Sun, Q.D. Niu, B.A. Du, J. et al. Peng, W.H. Yang, Y. et al. Cao, “Macromolecular Chemistry and Physics”, 2007, 208, 988-993. W−Y.Lee、K−F.Chang、T−F.Wang、C−C.Chueh、W−C.Chen、C−S.Tuan、J−L.Lin著、「マクロモレキュラー ケミストリー アンド フィジクス(Macromolecular Chemistry and Physics)」、2007年、208巻、1919−1927頁W-Y. Lee, K-F. Chang, TF. Wang, CC. Chueh, WC. Chen, CS. Tuan, JL. Lin, “Macromolecular Chemistry and Physics”, 2007, 208, 1919-1927. A.Tsami、T.W.Bunnagel、T.Farrell、M.Scharber、S.A.Choulis、C.J.Brabec、U.Scherf著、「ジャーナル オブ マテリアルズ ケミストリー(Journal of Materials Chemistry)」、2007年、17巻、1353−1355頁A. Tsami, T .; W. Bunnagel, T .; Farrell, M.M. Scharber, S .; A. Choulis, C.I. J. et al. Brabec, U. Scherf, “Journal of Materials Chemistry”, 2007, Vol. 17, pp. 1353-1355. M.Lai、C.Chueh、W.Chen、J.Wu、F.Chen著、「ジャーナル オブ ポリマー サイエンス パートA ポリマー ケミストリー(Journal of Polymer Science:Part A:Polymer Chemistry)」、2009年、47巻、973−985頁M.M. Lai, C.I. Chueh, W.H. Chen, J. et al. Wu, F.W. Chen, “Journal of Polymer Science (Part A: Polymer Chemistry)”, 2009, 47, 973-985, Journal of Polymer Science Part A, Polymer Chemistry (Part of Polymer Science: Part A: Polymer Chemistry). J.Lee、W.Shin、J.Haw、D.Moon著「ジャーナル オブ マテリアルズ ケミストリー(Journal of Materials Chemistry)」、2009年、19巻、4938−4945頁J. et al. Lee, W.H. Shin, J. et al. Haw, D.H. Moon, "Journal of Materials Chemistry", 2009, 19, 4938-4945 L.J.Lindgren、F.Zhang、M.Andersson、S.Barrau、S.Hellstrom、W.Mammo、E.Perzon、O.Inganas、M.R.Andersson著「ケミストリー オブ マテリアルズ(Chemistry of Materials)」、2009年、21巻、3491−3502頁L. J. et al. Lindgren, F.M. Zhang, M.M. Andersson, S.M. Barrau, S .; Hellstrom, W.M. Mammo, E .; Perzon, O.M. Inganas, M.M. R. Andersson, “Chemistry of Materials”, 2009, 21, pp. 3491-3502.

上述のように、従来の有機太陽電池はいずれも光電変換効率が低いことが課題であった。本発明は光電変換効率の高い光起電力素子を提供することを目的とする。   As described above, all of the conventional organic solar cells have a problem of low photoelectric conversion efficiency. An object of this invention is to provide a photovoltaic device with high photoelectric conversion efficiency.

すなわち本発明は、下記一般式(1)で表される構造を有する共役系重合体、これを用いた電子供与性有機材料、光起電力素子用材料および光起電力素子である。   That is, the present invention is a conjugated polymer having a structure represented by the following general formula (1), an electron donating organic material, a photovoltaic element material and a photovoltaic element using the conjugated polymer.

Figure 0005664200
Figure 0005664200

上記一般式(1)中、R〜R16は同じでも異なっていてもよく、水素、アルキル基、アルコキシ基、アリール基、ヘテロアリール基、ハロゲンの中から選ばれる。Aは炭素、窒素またはケイ素を表す。Aが窒素の場合、上記R16は存在しない。W、X、YおよびZは同じでも異なっていてもよく、単結合、アリーレン基、チエノチエニレン基を除くヘテロアリーレン基の中から選ばれる。nは10以上1000以下の範囲を表す。 In the general formula (1), R 1 to R 16 may be the same or different and are selected from hydrogen, an alkyl group, an alkoxy group, an aryl group, a heteroaryl group, and a halogen. A represents carbon, nitrogen or silicon. When A is nitrogen, the above R 16 does not exist. W, X, Y and Z may be the same or different and are selected from a single bond, an arylene group and a heteroarylene group excluding a thienothienylene group. n represents the range of 10 or more and 1000 or less.

本発明によれば、光電変換効率の高い光起電力素子を提供することができる。   According to the present invention, a photovoltaic device with high photoelectric conversion efficiency can be provided.

本発明の光起電力素子の一態様を示した模式図。The schematic diagram which showed the one aspect | mode of the photovoltaic device of this invention. 本発明の光起電力素子の別の態様を示した模式図。The schematic diagram which showed another aspect of the photovoltaic element of this invention.

本発明の共役系重合体は、下記一般式(1)で表される構造を有することを特徴とする。   The conjugated polymer of the present invention has a structure represented by the following general formula (1).

Figure 0005664200
Figure 0005664200

上記一般式(1)中、R〜R16は同じでも異なっていてもよく、水素、アルキル基、アルコキシ基、アリール基、ヘテロアリール基、ハロゲンの中から選ばれる。Aは炭素、窒素またはケイ素を表す。Aが窒素の場合、上記R16は存在しない。W、X、YおよびZは同じでも異なっていてもよく、単結合、アリーレン基、チエノチエニレン基を除くヘテロアリーレン基の中から選ばれる。nは10以上1000以下の範囲を表す。 In the general formula (1), R 1 to R 16 may be the same or different and are selected from hydrogen, an alkyl group, an alkoxy group, an aryl group, a heteroaryl group, and a halogen. A represents carbon, nitrogen or silicon. When A is nitrogen, the above R 16 does not exist. W, X, Y and Z may be the same or different and are selected from a single bond, an arylene group and a heteroarylene group excluding a thienothienylene group. n represents the range of 10 or more and 1000 or less.

ここでアルキル基とは、例えば、メチル基、エチル基、プロピル基、ブチル基、ペンチル基、ヘキシル基、ヘプチル基、オクチル基、ノニル基、デシル基、ウンデシル基、ドデシル基のような飽和脂肪族炭化水素基であり、直鎖状であっても分岐状であっても環状であってもよく、無置換でも置換されていてもかまわない。耐熱性の観点から、アルキル基の炭素数は30個以下が好ましく、20個以下がさらに好ましい。置換される場合の置換基の例としては、下記アルコキシ基、アリール基、ヘテロアリール基、ハロゲンが挙げられる。また、アルコキシ基とは、例えば、メトキシ基、エトキシ基、プロポキシ基、ブトキシ基などのエーテル結合を介した脂肪族炭化水素基を示し、脂肪族炭化水素基は無置換でも置換されていてもかまわない。耐熱性の観点から、アルコキシ基の炭素数は30個以下が好ましく、20個以下がさらに好ましい。置換される場合の置換基の例としては、下記アリール基、ヘテロアリール基、ハロゲンが挙げられる。また、アリール基とは、例えば、フェニル基、ナフチル基、ビフェニル基、フェナントリル基、アントリル基、ターフェニル基、ピレニル基、フルオレニル基、ペリレニル基などの芳香族炭化水素基を示し、これは無置換でも置換されていてもかまわない。アリール基の炭素数は、加工性の観点から6個以上30個以下が好ましい。置換される場合の置換基の例としては、上記アルキル基、アルコキシ基、下記ヘテロアリール基、ハロゲンが挙げられる。また、ヘテロアリール基とは、例えば、チエニル基、チエノチエニル基、フリル基、ピロリル基、イミダゾリル基、ピラゾリル基、オキサゾリル基、ピリジル基、ピラジル基、ピリミジル基、キノリニル基、イソキノリル基、キノキサリル基、アクリジニル基、インドリル基、カルバゾリル基、ベンゾフラン基、ジベンゾフラン基、ベンゾチオフェン基、ジベンゾチオフェン基、ベンゾジチオフェン基、シロール基、ベンゾシロール基、ジベンゾシロール基などの炭素以外の原子を有する複素芳香環基を示し、これは無置換でも置換されていてもかまわない。置換される場合の置換基の例としては、上記アルキル基、アルコキシ基、アリール基、下記ハロゲンが挙げられる。また、ハロゲンはフッ素、塩素、臭素、ヨウ素のいずれかである。   Here, the alkyl group is, for example, a saturated aliphatic group such as methyl group, ethyl group, propyl group, butyl group, pentyl group, hexyl group, heptyl group, octyl group, nonyl group, decyl group, undecyl group, dodecyl group. The hydrocarbon group may be linear, branched, or cyclic, and may be unsubstituted or substituted. From the viewpoint of heat resistance, the alkyl group preferably has 30 or less carbon atoms, more preferably 20 or less. Examples of the substituent when substituted include the following alkoxy groups, aryl groups, heteroaryl groups, and halogens. The alkoxy group refers to, for example, an aliphatic hydrocarbon group via an ether bond such as a methoxy group, an ethoxy group, a propoxy group, or a butoxy group, and the aliphatic hydrocarbon group may be unsubstituted or substituted. Absent. From the viewpoint of heat resistance, the alkoxy group preferably has 30 or less carbon atoms, more preferably 20 or less. Examples of the substituent when substituted include the following aryl groups, heteroaryl groups, and halogens. The aryl group represents, for example, an aromatic hydrocarbon group such as a phenyl group, a naphthyl group, a biphenyl group, a phenanthryl group, an anthryl group, a terphenyl group, a pyrenyl group, a fluorenyl group, and a perylenyl group, which is unsubstituted. But it can be replaced. The number of carbon atoms of the aryl group is preferably 6 or more and 30 or less from the viewpoint of processability. Examples of the substituent when substituted include the above alkyl group, alkoxy group, the following heteroaryl group, and halogen. The heteroaryl group is, for example, thienyl group, thienothienyl group, furyl group, pyrrolyl group, imidazolyl group, pyrazolyl group, oxazolyl group, pyridyl group, pyrazyl group, pyrimidyl group, quinolinyl group, isoquinolyl group, quinoxalyl group, acridinyl A heteroaromatic group having an atom other than carbon, such as a group, an indolyl group, a carbazolyl group, a benzofuran group, a dibenzofuran group, a benzothiophene group, a dibenzothiophene group, a benzodithiophene group, a silole group, a benzosilole group, or a dibenzosilole group This can be unsubstituted or substituted. Examples of the substituent in the case of substitution include the above alkyl group, alkoxy group, aryl group, and the following halogen. Halogen is any one of fluorine, chlorine, bromine and iodine.

また、アリーレン基とは上記アリール基(芳香族炭化水素基)の2価の基であり、ヘテロアリーレン基とは上記ヘテロアリール基(炭素以外の原子を有する複素芳香環基)の2価の基である。ただし、W、X、YまたはZがヘテロアリーレン基である場合、チエノチエニレン基は除く。   The arylene group is a divalent group of the aryl group (aromatic hydrocarbon group), and the heteroarylene group is a divalent group of the heteroaryl group (heteroaromatic group having an atom other than carbon). It is. However, when W, X, Y, or Z is a heteroarylene group, a thienothienylene group is excluded.

また、nは重合度を示し、10以上1000以下の範囲である。重合度は重量平均分子量から求めることができる。重量平均分子量はGPC(ゲルパーミエーションクロマトグラフィー)を用いて測定し、ポリスチレンの標準試料に換算して求めることができる。   N represents the degree of polymerization and is in the range of 10 to 1,000. The degree of polymerization can be determined from the weight average molecular weight. The weight average molecular weight can be determined by measuring using GPC (gel permeation chromatography) and converting to a polystyrene standard sample.

一般式(1)で表される共役系重合体は、光吸収特性やキャリア(特にホール)輸送能に優れるため、光起電力素子における電子供与性有機材料として好ましく用いることができる。   Since the conjugated polymer represented by the general formula (1) is excellent in light absorption characteristics and carrier (especially hole) transporting ability, it can be preferably used as an electron donating organic material in a photovoltaic device.

光起電力素子の光電変換効率は、電子供与性有機材料の分子量と相関する場合が多い。高い光電変換効率を得るためには、電子供与性有機材料として重量平均分子量10000以上の共役系重合体を用いることが好ましく、重量平均分子量20000以上がさらに好ましい。しかしながら、一般的に共役系重合体は主鎖が剛直であるために溶解性が低く、このような高分子量で溶解性の高い重合体を得るためには、通常炭素数6個以上のアルキル基や、炭素数6個以上のアルコキシ基を可溶化基として導入することが必要であるとされている(例えば、ポリ(3−ヘキシルチオフェン)や、前記非特許文献13に記載されているPQTT、PQPDTT、PQTPDTTなど)。一方、素子構成の点から光電変換効率を高める手法として、電子受容性有機材料と電子供与性有機材料を混合することにより光電変換に寄与する接合面を増加させる、バルクヘテロ接合型光起電力素子が知られている。バルクヘテロ接合型光起電力素子では、電子とホールの通り道(キャリアパス)を形成するために、電子供与性有機材料と電子受容性有機材料は、完全には相溶せずにナノレベルで相分離することが好ましい。しかしながら、上述のように電子供与性有機材料の溶解性を上げるために導入した可溶化基は電子受容性有機材料との相溶性を高めて相分離構造の形成を阻害したり、逆に電子受容性有機材料との相溶性を低めてマイクロメートルスケールの相分離を引き起こしたりする場合が多く、バルクヘテロ接合型光起電力素子における光電変換効率効果を十分発揮することができない。   The photoelectric conversion efficiency of a photovoltaic element often correlates with the molecular weight of the electron donating organic material. In order to obtain high photoelectric conversion efficiency, it is preferable to use a conjugated polymer having a weight average molecular weight of 10,000 or more as the electron donating organic material, and more preferably a weight average molecular weight of 20,000 or more. However, in general, a conjugated polymer has low solubility because the main chain is rigid, and in order to obtain a polymer having high molecular weight and high solubility, usually an alkyl group having 6 or more carbon atoms. In addition, it is said that it is necessary to introduce an alkoxy group having 6 or more carbon atoms as a solubilizing group (for example, poly (3-hexylthiophene), PQTT described in Non-Patent Document 13, PQPDTT, PQTPDTT, etc.). On the other hand, as a technique for increasing the photoelectric conversion efficiency in terms of element configuration, a bulk heterojunction photovoltaic element that increases the bonding surface contributing to photoelectric conversion by mixing an electron-accepting organic material and an electron-donating organic material is used. Are known. In bulk heterojunction photovoltaic devices, the electron-donating organic material and the electron-accepting organic material are not completely compatible with each other in order to form a path for electrons and holes (carrier path). It is preferable to do. However, as described above, the solubilizing group introduced to increase the solubility of the electron-donating organic material enhances the compatibility with the electron-accepting organic material and inhibits the formation of a phase separation structure, or conversely. In many cases, the compatibility with the conductive organic material is lowered to cause phase separation on the micrometer scale, and the photoelectric conversion efficiency effect in the bulk heterojunction photovoltaic device cannot be sufficiently exhibited.

このように、溶解性を確保しつつ高分子量化することと、バルクヘテロ接合型光起電力素子に適した相分離構造形成能を付与することの両立は困難であったが、本発明における一般式(1)で表される構造を有する共役系重合体は、この両立を可能にするものである。   As described above, it is difficult to achieve a high molecular weight while ensuring solubility and to impart a phase separation structure forming ability suitable for a bulk heterojunction photovoltaic device. The conjugated polymer having the structure represented by (1) enables this coexistence.

一般式(1)で表される構造を有する共役系重合体の主鎖構造は、RとRを有するキノキサリン骨格と、このキノキサリン骨格の両側に配置される2つのチエノチオフェン骨格と、これらチエノチオフェン−キノキサリン−チエノチオフェンのトライアッドを連結する2価の連結基(フルオレン、シラフルオレンまたはカルバゾール)を有する。 The main chain structure of the conjugated polymer having the structure represented by the general formula (1) includes a quinoxaline skeleton having R 1 and R 2 , two thienothiophene skeletons arranged on both sides of the quinoxaline skeleton, It has a divalent linking group (fluorene, silafluorene, or carbazole) linking thienothiophene-quinoxaline-thienothiophene triads.

1つ目の構成要素であるキノキサリン骨格は、平面性が高いためπ−πスタッキングによる凝集を起こしやすく、上述のバルクヘテロ接合に適した相分離構造を形成しやすいと考えられる。さらに、RおよびRの位置に、置換されていてもよいアルキル基、置換されていてもよいアルコキシ基、置換されていてもよいアリール基または置換されていてもよいヘテロアリール基を有する場合、容易に高分子量化することができるため好ましい。また、置換されていてもよいアルキル基および置換されていてもよいアルコキシ基の炭素数が5個以下である場合、前述の電子受容性有機材料との相溶性をより適度な範囲に調整することができるため好ましい。このような観点から、RとRは、置換されていてもよい炭素数1個以上5個以下のアルキル基、置換されていてもよい炭素数1個以上5個以下のアルコキシ基、置換されていてもよいアリール基または置換されていてもよいヘテロアリール基であることが好ましい。ここで、アルキル基およびアルコキシ基の炭素数には、置換される場合の置換基に含まれる炭素は含まない。 The quinoxaline skeleton, which is the first component, has high planarity, so that it is likely to cause aggregation due to π-π stacking, and a phase separation structure suitable for the above-described bulk heterojunction is likely to be formed. Furthermore, when R 1 and R 2 have an optionally substituted alkyl group, an optionally substituted alkoxy group, an optionally substituted aryl group or an optionally substituted heteroaryl group It is preferable because it can be easily increased in molecular weight. Further, when the carbon number of the optionally substituted alkyl group and the optionally substituted alkoxy group is 5 or less, the compatibility with the above-described electron-accepting organic material should be adjusted to a more appropriate range. Is preferable. From such a viewpoint, R 1 and R 2 are each an optionally substituted alkyl group having 1 to 5 carbon atoms, an optionally substituted alkoxy group having 1 to 5 carbon atoms, and a substituted group. It is preferably an aryl group which may be substituted or a heteroaryl group which may be substituted. Here, the carbon number of the alkyl group and the alkoxy group does not include the carbon contained in the substituent when substituted.

2つ目の構成要素であるチエノチオフェン骨格は、キノキサリン骨格と組み合わされてチエノチオフェン−キノキサリン−チエノチオフェンのトライアッドを形成することにより、主鎖骨格のバンドギャップを低下させて、光起電力素子の短絡電流(Jsc)の増大に寄与する。この効果はチエノチオフェンとキノキサリンが直接結合している場合に最も高くなる。このため、上記X、Yは単結合であることが好ましい。   The second component, the thienothiophene skeleton, is combined with the quinoxaline skeleton to form a thienothiophene-quinoxaline-thienothiophene triad, thereby reducing the band gap of the main chain skeleton and This contributes to an increase in the short circuit current (Jsc). This effect is highest when thienothiophene and quinoxaline are bound directly. For this reason, it is preferable that said X and Y are a single bond.

3つ目の構成要素である2価の連結基(フルオレン、シラフルオレンまたはカルバゾール)は、高分子量化と、適度なナノレベル相分離構造の形成に有効な骨格である。これらの連結基は、高分子量化のために必要とされる可溶化基を導入することが合成的に容易であるという特徴を有する。そのような溶解性確保の観点から、R15とR16は炭素数6個以上のアルキル基であることが好ましい。 The third constituent divalent linking group (fluorene, silafluorene or carbazole) is a skeleton that is effective for increasing the molecular weight and forming an appropriate nano-level phase separation structure. These linking groups have a feature that it is synthetically easy to introduce a solubilizing group required for high molecular weight. From the viewpoint of ensuring such solubility, R 15 and R 16 are preferably alkyl groups having 6 or more carbon atoms.

上記のような高分子量化と相分離構造形成能との両立や溶解性の確保といった観点に加え、合成の容易さや合成収率といった観点から、上述の置換基のうち、RおよびRは置換されていてもよいアリール基であることがより好ましく、R〜R14は水素またはアルキル基であることがより好ましく、WとZは単結合であることが好ましく、Aは炭素であることが好ましい。RおよびRが置換されているアリール基である場合、その置換基は炭素数1個以上5個以下のアルキル基または炭素数1個以上5個以下のアルコキシ基であることが好ましく、炭素数1個以上3個以下のアルキル基または炭素数1個以上3個以下のアルコキシ基であることがさらに好ましい。 Of the above substituents, R 1 and R 2 are not only from the viewpoint of achieving both high molecular weight and ability to form a phase separation structure and ensuring solubility, but also from the viewpoint of ease of synthesis and synthesis yield. More preferably, it is an optionally substituted aryl group, R 3 to R 14 are more preferably hydrogen or an alkyl group, W and Z are preferably a single bond, and A is carbon. Is preferred. When R 1 and R 2 are substituted aryl groups, the substituent is preferably an alkyl group having 1 to 5 carbon atoms or an alkoxy group having 1 to 5 carbon atoms, More preferably, it is an alkyl group having 1 to 3 carbon atoms or an alkoxy group having 1 to 3 carbon atoms.

上記の一般式(1)で表される構造を有する共役系重合体として、下記のような構造が挙げられる。なお、下記構造において、nは10以上1000以下の範囲である。   Examples of the conjugated polymer having the structure represented by the general formula (1) include the following structures. In the following structure, n is in the range of 10 to 1000.

Figure 0005664200
Figure 0005664200

Figure 0005664200
Figure 0005664200

Figure 0005664200
Figure 0005664200

Figure 0005664200
Figure 0005664200

Figure 0005664200
Figure 0005664200

Figure 0005664200
Figure 0005664200

Figure 0005664200
Figure 0005664200

Figure 0005664200
Figure 0005664200

Figure 0005664200
Figure 0005664200

Figure 0005664200
Figure 0005664200

Figure 0005664200
Figure 0005664200

Figure 0005664200
Figure 0005664200

なお、一般式(1)で表される構造を有する電子供与性有機材料は、例えば、前記非特許文献4に記載されている方法に類似した手法や、前記非特許文献13に記載されている方法に類似した手法により合成することができる。   The electron donating organic material having the structure represented by the general formula (1) is described in, for example, a method similar to the method described in Non-Patent Document 4 or the Non-Patent Document 13. It can be synthesized by a method similar to the method.

本発明の電子供与性有機材料は、一般式(1)で表される構造を有する共役系重合体のみからなるものでもよいし、他の電子供与性有機材料を含んでもよい。他の電子供与性有機材料としては、例えばポリチオフェン系重合体、ポリ−p−フェニレンビニレン系重合体、ポリ−p−フェニレン系重合体、ポリフルオレン系重合体、ポリピロール系重合体、ポリアニリン系重合体、ポリアセチレン系重合体、ポリチエニレンビニレン系重合体などの共役系重合体や、Hフタロシアニン(HPc)、銅フタロシアニン(CuPc)、亜鉛フタロシアニン(ZnPc)等のフタロシアニン誘導体、ポルフィリン誘導体、N,N’−ジフェニル−N,N’−ジ(3−メチルフェニル)−4,4’−ジフェニル−1,1’−ジアミン(TPD)、N,N’−ジナフチル−N,N’−ジフェニル−4,4’−ジフェニル−1,1’−ジアミン(NPD)等のトリアリールアミン誘導体、4,4’−ジ(カルバゾール−9−イル)ビフェニル(CBP)等のカルバゾール誘導体、オリゴチオフェン誘導体(ターチオフェン、クウォーターチオフェン、セキシチオフェン、オクチチオフェンなど)等の低分子有機化合物が挙げられる。 The electron donating organic material of the present invention may be composed only of a conjugated polymer having a structure represented by the general formula (1), or may contain other electron donating organic materials. Examples of other electron-donating organic materials include polythiophene polymers, poly-p-phenylene vinylene polymers, poly-p-phenylene polymers, polyfluorene polymers, polypyrrole polymers, polyaniline polymers. Conjugated polymers such as polyacetylene polymers and polythienylene vinylene polymers, phthalocyanine derivatives such as H 2 phthalocyanine (H 2 Pc), copper phthalocyanine (CuPc), and zinc phthalocyanine (ZnPc), porphyrin derivatives, N , N′-diphenyl-N, N′-di (3-methylphenyl) -4,4′-diphenyl-1,1′-diamine (TPD), N, N′-dinaphthyl-N, N′-diphenyl- Triarylamine derivatives such as 4,4′-diphenyl-1,1′-diamine (NPD), 4,4′-di (carbazole-9) Yl) biphenyl (CBP) as an electroluminescent host carbazole derivatives such as, oligothiophene derivatives (terthiophene, quarter thiophene, sexithiophene include low molecular organic compound of octyl thiophene etc.) and the like.

一般式(1)で表される構造を有する共役系重合体はp型半導体特性を示すため、光起電力素子用材料としてより高い光電変換効率を得るためには電子受容性有機材料(n型有機半導体)と組み合わせることが好ましい。   Since the conjugated polymer having the structure represented by the general formula (1) exhibits p-type semiconductor characteristics, an electron-accepting organic material (n-type) is required to obtain higher photoelectric conversion efficiency as a photovoltaic device material. It is preferable to combine with an organic semiconductor.

本発明で用いる電子受容性有機材料とは、n型半導体特性を示す有機材料であり、例えば1,4,5,8−ナフタレンテトラカルボキシリックジアンハイドライド(NTCDA)、3,4,9,10−ペリレンテトラカルボキシリックジアンハイドライド(PTCDA)、3,4,9,10−ペリレンテトラカルボキシリックビスベンズイミダゾール(PTCBI)、N,N'−ジオクチル−3,4,9,10−ナフチルテトラカルボキシジイミド(PTCDI−C8H)、2−(4−ビフェニリル)−5−(4−t−ブチルフェニル)−1,3,4−オキサジアゾール(PBD)、2,5−ジ(1−ナフチル)−1,3,4−オキサジアゾール(BND)等のオキサゾール誘導体、3−(4−ビフェニリル)−4−フェニル−5−(4−t−ブチルフェニル)−1,2,4−トリアゾール(TAZ)等のトリアゾール誘導体、フェナントロリン誘導体、ホスフィンオキサイド誘導体、フラーレン化合物(C60、C70、C76、C78、C82、C84、C90、C94を始めとする無置換のものと、[6,6]−フェニル C61 ブチリックアシッドメチルエステル([6,6]−PCBM)、[5,6]−フェニル C61 ブチリックアシッドメチルエステル([5,6]−PCBM)、[6,6]−フェニル C61 ブチリックアシッドヘキシルエステル([6,6]−PCBH)、[6,6]−フェニル C61 ブチリックアシッドドデシルエステル([6,6]−PCBD)、フェニル C71 ブチリックアシッドメチルエステル(PC70BM)、フェニル C85 ブチリックアシッドメチルエステル(PC84BM)など)、カーボンナノチューブ(CNT)、ポリ−p−フェニレンビニレン系重合体にシアノ基を導入した誘導体(CN−PPV)などが挙げられる。中でも、フラーレン化合物は電荷分離速度と電子移動速度が速いため、好ましく用いられる。フラーレン化合物の中でも、C70誘導体(上記PC70BMなど)は光吸収特性に優れ、より高い光電変換効率を得られるため、より好ましい。 The electron-accepting organic material used in the present invention is an organic material exhibiting n-type semiconductor characteristics. For example, 1,4,5,8-naphthalenetetracarboxylic dianhydride (NTCDA), 3,4,9,10- Perylenetetracarboxylic dianhydride (PTCDA), 3,4,9,10-perylenetetracarboxylic bisbenzimidazole (PTCBI), N, N′-dioctyl-3,4,9,10-naphthyltetracarboxydiimide (PTCDI) -C8H), 2- (4-biphenylyl) -5- (4-tert-butylphenyl) -1,3,4-oxadiazole (PBD), 2,5-di (1-naphthyl) -1,3 , 4-oxadiazole (BND) and other oxazole derivatives, 3- (4-biphenylyl) -4-phenyl-5- (4-t- Triazole derivatives such as butylphenyl) -1,2,4-triazole (TAZ), phenanthroline derivatives, phosphine oxide derivatives, fullerene compounds (C 60 , C 70 , C 76 , C 78 , C 82 , C 84 , C 90 , as unsubstituted, including C 94, [6,6] - phenyl C61 butyric acid methyl ester ([6,6] -PCBM), [ 5,6] - phenyl C61 butyric acid methyl ester ([ 5,6] -PCBM), [6,6] -phenyl C61 butyric acid hexyl ester ([6,6] -PCBH), [6,6] -phenyl C61 butyric acid dodecyl ester ([6,6] -PCBD), phenyl C71 butyric acid methyl ester (PC 70 BM), phenyl C85 butyric acid methyl ester (PC 84 BM, etc.), carbon nanotubes (CNT), and derivatives in which a cyano group is introduced into a poly-p-phenylene vinylene polymer (CN-PPV). Among these, fullerene compounds are preferably used because of their high charge separation speed and electron transfer speed. Among the fullerene compounds, C 70 derivatives (such as the PC 70 BM) because excellent light absorption characteristics, it is possible to obtain a relatively high photoelectric conversion efficiency, more preferred.

本発明の光起電力素子用材料において、電子供与性有機材料と電子受容性有機材料の含有比率(重量分率)は特に限定されないが、電子供与性有機材料:電子受容性有機材料の重量分率が、1〜99:99〜1の範囲であることが好ましく、より好ましくは10〜90:90〜10の範囲であり、さらに好ましくは20〜60:80〜40の範囲である。電子供与性有機材料と電子受容性有機材料は混合して用いることが好ましい。混合方法としては特に限定されるものではないが、所望の比率で溶媒に添加した後、加熱、撹拌、超音波照射などの方法を1種または複数種組み合わせて溶媒中に溶解させる方法が挙げられる。なお、後述するように、光起電力素子用材料が一層の有機半導体層を形成する場合は、上述の含有比率はその一層に含まれる電子供与性有機材料と電子受容性有機材料の含有比率となり、有機半導体層が二層以上の積層構造である場合は、有機半導体層全体における電子供与性有機材料と電子受容性有機材料の含有比率を意味する。   In the photovoltaic device material of the present invention, the content ratio (weight fraction) of the electron-donating organic material and the electron-accepting organic material is not particularly limited. The rate is preferably in the range of 1 to 99:99 to 1, more preferably in the range of 10 to 90:90 to 10, still more preferably in the range of 20 to 60:80 to 40. It is preferable to use a mixture of an electron-donating organic material and an electron-accepting organic material. Although it does not specifically limit as a mixing method, After adding to a solvent in a desired ratio, the method of making it melt | dissolve in a solvent combining 1 type or multiple types of methods, such as a heating, stirring, and ultrasonic irradiation, is mentioned. . As will be described later, when the photovoltaic element material forms a single organic semiconductor layer, the above-mentioned content ratio is the content ratio of the electron-donating organic material and the electron-accepting organic material contained in the single layer. When the organic semiconductor layer has a laminated structure of two or more layers, it means the content ratio of the electron donating organic material and the electron accepting organic material in the whole organic semiconductor layer.

光電変換効率をより向上させるためには、キャリアのトラップとなるような不純物は極力除去することが好ましい。本発明では、前述の一般式(1)で表される構造を有する共役系重合体や、電子受容性有機材料の不純物を除去する方法は特に限定されないが、カラムクロマトグラフィー法、再結晶法、昇華法、再沈殿法、ソクスレー抽出法、GPC(ゲルパーミエーションクロマトグラフィー)による分子量分画法、濾過法、イオン交換法、キレート法等を用いることができる。一般的に低分子有機材料の精製にはカラムクロマトグラフィー法、再結晶法、昇華法が好ましく用いられる。他方、高分子量体の精製には、低分子量成分を除去する場合には再沈殿法やソクスレー抽出法、GPCによる分子量分画法が好ましく用いられ、金属成分を除去する場合には再沈殿法やキレート法、イオン交換法、カラムクロマトグラフィー法が好ましく用いられる。これらの方法のうち、複数を組み合わせてもよい。   In order to further improve the photoelectric conversion efficiency, it is preferable to remove impurities that can trap carriers as much as possible. In the present invention, the method for removing impurities from the conjugated polymer having the structure represented by the general formula (1) and the electron-accepting organic material is not particularly limited, but column chromatography, recrystallization, Sublimation method, reprecipitation method, Soxhlet extraction method, molecular weight fractionation method by GPC (gel permeation chromatography), filtration method, ion exchange method, chelate method and the like can be used. In general, a column chromatography method, a recrystallization method, and a sublimation method are preferably used for purification of a low molecular weight organic material. On the other hand, for purification of high molecular weight compounds, reprecipitation method, Soxhlet extraction method, molecular weight fractionation method by GPC is preferably used when removing low molecular weight components, and reprecipitation method or the like when removing metal components. A chelate method, an ion exchange method, and a column chromatography method are preferably used. A plurality of these methods may be combined.

次に、本発明の光起電力素子について説明する。本発明の光起電力素子は、少なくとも正極と負極を有し、これらの間に本発明の光起電力素子用材料を含む。図1は本発明の光起電力素子の一例を示す模式図である。図1において符号1は基板、符号2は正極、符号3は本発明の光起電力素子用材料を含む有機半導体層、符号4は負極である。   Next, the photovoltaic element of the present invention will be described. The photovoltaic device of the present invention has at least a positive electrode and a negative electrode, and includes the photovoltaic device material of the present invention between them. FIG. 1 is a schematic view showing an example of the photovoltaic element of the present invention. In FIG. 1, reference numeral 1 is a substrate, reference numeral 2 is a positive electrode, reference numeral 3 is an organic semiconductor layer containing the photovoltaic element material of the present invention, and reference numeral 4 is a negative electrode.

有機半導体層3は本発明の光起電力素子用材料を含む。すなわち、一般式(1)で表される構造を有する共役系重合体を含む電子供与性有機材料と、電子受容性有機材料を含む。これらの材料は混合されていても積層されていてもよいが、混合されていることが好ましい。上述の「バルクヘテロ接合型」とは、この混合されているタイプを示す。混合されている場合は、電子供与性有機材料と電子受容性有機材料は分子レベルで相溶しているか、相分離しているが、ナノレベルで相分離していることが好ましい。この相分離構造のドメインサイズは特に限定されるものではないが通常1nm以上50nm以下のサイズである。積層されている場合は、p型半導体特性を示す電子供与性有機材料を有する層が正極側、n型半導体特性を示す電子受容性有機材料を有する層が負極側であることが好ましい。有機半導体層3が積層されている場合の光起電力素子の一例を図2に示す。符号5は一般式(1)で表される構造を有する共役系重合体を含む電子供与性有機材料を有する層、符号6は電子受容性有機材料を有する層である。有機半導体層は5nm〜500nmの厚さが好ましく、より好ましくは30nm〜300nmである。積層されている場合は、一般式(1)で表される構造を有する共役系重合体を含む電子供与性有機材料を有する層は上記厚さのうち1nm〜400nmの厚さを有していることが好ましく、より好ましくは15nm〜150nmである。   The organic semiconductor layer 3 contains the photovoltaic element material of the present invention. That is, an electron donating organic material including a conjugated polymer having a structure represented by the general formula (1) and an electron accepting organic material are included. These materials may be mixed or laminated, but are preferably mixed. The aforementioned “bulk heterojunction type” indicates this mixed type. When they are mixed, the electron-donating organic material and the electron-accepting organic material are compatible or phase-separated at the molecular level, but are preferably phase-separated at the nano-level. The domain size of this phase separation structure is not particularly limited, but is usually 1 nm or more and 50 nm or less. When laminated, the layer having an electron-donating organic material exhibiting p-type semiconductor characteristics is preferably on the positive electrode side, and the layer having an electron-accepting organic material exhibiting n-type semiconductor characteristics is preferably on the negative electrode side. An example of the photovoltaic element in the case where the organic semiconductor layer 3 is laminated is shown in FIG. Reference numeral 5 denotes a layer having an electron donating organic material containing a conjugated polymer having a structure represented by the general formula (1), and reference numeral 6 denotes a layer having an electron accepting organic material. The organic semiconductor layer preferably has a thickness of 5 nm to 500 nm, more preferably 30 nm to 300 nm. When laminated, the layer having the electron donating organic material containing the conjugated polymer having the structure represented by the general formula (1) has a thickness of 1 nm to 400 nm among the above thicknesses. It is preferably 15 nm to 150 nm.

また、有機半導体層3には一般式(1)で表される構造を有する共役系重合体、および電子受容性有機材料以外の電子供与性有機材料(p型有機半導体)を含んでいてもよい。ここで用いる電子供与性有機材料(p型有機半導体)としては、先に例示したものが挙げられる。   The organic semiconductor layer 3 may contain a conjugated polymer having a structure represented by the general formula (1) and an electron-donating organic material (p-type organic semiconductor) other than the electron-accepting organic material. . Examples of the electron donating organic material (p-type organic semiconductor) used here include those exemplified above.

本発明の光起電力素子においては、正極2もしくは負極4のいずれかに光透過性を有することが好ましい。電極の光透過性は、有機半導体層3に入射光が到達して起電力が発生する程度であれば、特に限定されるものではない。ここで、本発明における光透過性は、[透過光強度(W/m)/入射光強度(W/m)]×100(%)で求められる値である。電極の厚さは光透過性と導電性とを有する範囲であればよく、電極素材によって異なるが20nm〜300nmが好ましい。なお、もう一方の電極は導電性があれば必ずしも光透過性は必要ではなく、厚さも特に限定されない。 In the photovoltaic device of the present invention, it is preferable that either the positive electrode 2 or the negative electrode 4 has light transmittance. The light transmittance of the electrode is not particularly limited as long as incident light reaches the organic semiconductor layer 3 and an electromotive force is generated. Here, the light transmittance in the present invention is a value obtained by [transmitted light intensity (W / m 2 ) / incident light intensity (W / m 2 )] × 100 (%). The thickness of the electrode may be in a range having light transparency and conductivity, and is preferably 20 nm to 300 nm, although it varies depending on the electrode material. The other electrode is not necessarily light-transmitting as long as it has conductivity, and the thickness is not particularly limited.

電極材料としては、一方の電極には仕事関数の大きな導電性素材、もう一方の電極には仕事関数の小さな導電性素材を使用することが好ましい。仕事関数の大きな導電性素材を用いた電極は正極となる。この仕事関数の大きな導電性素材としては金、白金、クロム、ニッケルなどの金属のほか、透明性を有するインジウム、スズ、モリブデンなどの金属酸化物、複合金属酸化物(インジウム錫酸化物(ITO)、インジウム亜鉛酸化物(IZO)など)が好ましく用いられる。ここで、正極2に用いられる導電性素材は、有機半導体層3とオーミック接合するものであることが好ましい。さらに、後述する正孔輸送層を用いた場合においては、正極2に用いられる導電性素材は正孔輸送層とオーミック接合するものであることが好ましい。   As an electrode material, it is preferable to use a conductive material having a high work function for one electrode and a conductive material having a low work function for the other electrode. An electrode using a conductive material having a large work function is a positive electrode. Conductive materials with a large work function include metals such as gold, platinum, chromium and nickel, transparent metal oxides such as indium, tin and molybdenum, and composite metal oxides (indium tin oxide (ITO)). Indium zinc oxide (IZO) and the like are preferably used. Here, the conductive material used for the positive electrode 2 is preferably one that is in ohmic contact with the organic semiconductor layer 3. Furthermore, when a hole transport layer described later is used, it is preferable that the conductive material used for the positive electrode 2 is in ohmic contact with the hole transport layer.

仕事関数の小さな導電性素材を用いた電極は負極となるが、この仕事関数の小さな導電性素材としては、アルカリ金属やアルカリ土類金属、具体的にはリチウム、マグネシウム、カルシウムなどが使用される。また、錫や銀、アルミニウムも好ましく用いられる。さらに、上記の金属からなる合金や上記の金属の積層体からなる電極も好ましく用いられる。また、負極4と電子輸送層の界面にフッ化リチウムやフッ化セシウムなどの金属フッ化物や炭酸セシウムなどの金属炭酸塩を導入することで、取り出し電流を向上させることも可能である。ここで、負極4に用いられる導電性素材は、有機半導体層3とオーミック接合するものであることが好ましい。さらに、後述する電子輸送層を用いた場合においては、負極4に用いられる導電性素材は電子輸送層とオーミック接合するものであることが好ましい。   An electrode using a conductive material with a low work function is a negative electrode, but as the conductive material with a low work function, alkali metal or alkaline earth metal, specifically lithium, magnesium, calcium, etc. are used. . Tin, silver, and aluminum are also preferably used. Furthermore, an electrode made of an alloy made of the above metal or a laminate of the above metal is also preferably used. In addition, it is possible to improve the extraction current by introducing a metal fluoride such as lithium fluoride or cesium fluoride or a metal carbonate such as cesium carbonate at the interface between the negative electrode 4 and the electron transport layer. Here, the conductive material used for the negative electrode 4 is preferably one that is in ohmic contact with the organic semiconductor layer 3. Furthermore, when an electron transport layer described later is used, it is preferable that the conductive material used for the negative electrode 4 is in ohmic contact with the electron transport layer.

基板1は、光電変換材料の種類や用途に応じて、電極材料や有機半導体層が積層できる基板、例えば、無アルカリガラス、石英ガラス等の無機材料、ポリエステル、ポリカーボネート、ポリオレフィン、ポリアミド、ポリイミド、ポリフェニレンスルフィド、ポリパラキシレン、エポキシ樹脂やフッ素系樹脂等の有機材料から任意の方法によって作製されたフィルムや板が使用可能である。また基板側から光を入射して用いる場合は、上記に示した各基板に80%程度の光透過性を持たせておくことが好ましい。   The substrate 1 is a substrate on which an electrode material and an organic semiconductor layer can be laminated according to the type and application of the photoelectric conversion material, for example, inorganic materials such as alkali-free glass and quartz glass, polyester, polycarbonate, polyolefin, polyamide, polyimide, polyphenylene A film or plate produced by an arbitrary method from an organic material such as sulfide, polyparaxylene, epoxy resin or fluorine resin can be used. When light is incident from the substrate side and used, it is preferable that each substrate described above has a light transmittance of about 80%.

本発明では、正極2と有機半導体層3の間に正孔輸送層を設けてもよい。正孔輸送層を形成する材料としては、ポリチオフェン系重合体、ポリ−p−フェニレンビニレン系重合体、ポリフルオレン系重合体などの導電性高分子や、フタロシアニン誘導体(HPc、CuPc、ZnPcなど)、ポルフィリン誘導体などのp型半導体特性を示す低分子有機化合物が好ましく用いられる。特に、ポリチオフェン系重合体であるポリエチレンジオキシチオフェン(PEDOT)やPEDOTにポリスチレンスルホネート(PSS)が添加されたものが好ましく用いられる。正孔輸送層は5nm〜600nmの厚さが好ましく、より好ましくは30nm〜200nmである。また、正孔輸送層をフルオラス化合物(分子中にフッ素原子を1個以上有する有機化合物)により処理することが好ましく、光電変換効率をより向上させることができる。フルオラス化合物として、例えばベンゾトリフルオリド、ヘキサフルオロベンゼン、1,1,1,3,3,3−ヘキサフルオロ−2−プロパノール、ペルフルオロトルエン、ペルフルオロデカリン、ペルフルオロヘキサン、1H,1H,2H,2H−ヘプタデカフルオロ−1−デカノール(F−デカノール)などが挙げられる。より好ましくはベンゾトリフルオリド、ペルフルオロヘキサン、F−デカノールが用いられる。処理方法としては、正孔輸送層を形成する材料に上述のフルオラス化合物をあらかじめ混合してから正孔輸送層を形成する方法や、正孔輸送層を形成してから上述のフルオラス化合物を接触させる方法(スピンコート、ディップコート、ブレードコート、蒸着、蒸気処理など)が挙げられる。 In the present invention, a hole transport layer may be provided between the positive electrode 2 and the organic semiconductor layer 3. As a material for forming the hole transport layer, conductive polymers such as polythiophene polymers, poly-p-phenylene vinylene polymers, polyfluorene polymers, phthalocyanine derivatives (H 2 Pc, CuPc, ZnPc, etc.) ), Low molecular organic compounds exhibiting p-type semiconductor properties such as porphyrin derivatives are preferably used. In particular, polyethylenedioxythiophene (PEDOT), which is a polythiophene polymer, or PEDOT to which polystyrene sulfonate (PSS) is added is preferably used. The hole transport layer preferably has a thickness of 5 nm to 600 nm, more preferably 30 nm to 200 nm. Further, it is preferable to treat the hole transport layer with a fluorous compound (an organic compound having one or more fluorine atoms in the molecule), and the photoelectric conversion efficiency can be further improved. Examples of fluorous compounds include benzotrifluoride, hexafluorobenzene, 1,1,1,3,3,3-hexafluoro-2-propanol, perfluorotoluene, perfluorodecalin, perfluorohexane, 1H, 1H, 2H, 2H-hepta. Decafluoro-1-decanol (F-decanol) and the like can be mentioned. More preferably, benzotrifluoride, perfluorohexane, or F-decanol is used. As a treatment method, the above-mentioned fluorous compound is mixed in advance with the material for forming the hole-transporting layer and then the hole-transporting layer is formed, or the hole-transporting layer is formed and then the above-mentioned fluorous compound is contacted Examples thereof include spin coating, dip coating, blade coating, vapor deposition, and steam treatment.

また、本発明の光起電力素子は、有機半導体層3と負極4の間に電子輸送層を設けてもよい。電子輸送層を形成する材料として、特に限定されるものではないが、上述の電子受容性有機材料(NTCDA、PTCDA、PTCDI−C8H、オキサゾール誘導体、トリアゾール誘導体、フェナントロリン誘導体、ホスフィンオキサイド誘導体、フラーレン化合物、CNT、CN−PPVなど)や酸化チタンのようにn型半導体特性を示す化合物が好ましく用いられる。電子輸送層は5nm〜600nmの厚さが好ましく、より好ましくは30nm〜200nmである。   In the photovoltaic device of the present invention, an electron transport layer may be provided between the organic semiconductor layer 3 and the negative electrode 4. The material for forming the electron transport layer is not particularly limited, but the above-described electron-accepting organic materials (NTCDA, PTCDA, PTCDI-C8H, oxazole derivatives, triazole derivatives, phenanthroline derivatives, phosphine oxide derivatives, fullerene compounds, A compound exhibiting n-type semiconductor properties such as CNT and CN-PPV) and titanium oxide is preferably used. The thickness of the electron transport layer is preferably 5 nm to 600 nm, more preferably 30 nm to 200 nm.

また、本発明の光起電力素子は、1つ以上の中間電極を介して2層以上の有機半導体層を積層(タンデム化)して直列接合を形成してもよい。例えば、基板/正極/第1の有機半導体層/中間電極/第2の有機半導体層/負極という積層構成を挙げることができる。このように積層することにより、開放電圧を向上させることができる。なお、正極と第1の有機半導体層の間、および、中間電極と第2の有機半導体層の間に上述の正孔輸送層を設けてもよく、第1の有機半導体層と中間電極の間、および、第2の有機半導体層と負極の間に上述の正孔輸送層を設けてもよい。   In the photovoltaic device of the present invention, two or more organic semiconductor layers may be stacked (tandemized) via one or more intermediate electrodes to form a series junction. For example, a laminated structure of substrate / positive electrode / first organic semiconductor layer / intermediate electrode / second organic semiconductor layer / negative electrode can be given. By laminating in this way, the open circuit voltage can be improved. Note that the hole transport layer described above may be provided between the positive electrode and the first organic semiconductor layer and between the intermediate electrode and the second organic semiconductor layer, and between the first organic semiconductor layer and the intermediate electrode. The hole transport layer described above may be provided between the second organic semiconductor layer and the negative electrode.

このような積層構成の場合、有機半導体層の少なくとも1層が本発明の光起電力素子用材料を含み、他の層には、短絡電流を低下させないために、一般式(1)で表される構造を有する共役系重合体とはバンドギャップの異なる電子供与性有機材料を含むことが好ましい。このような電子供与性有機材料としては、例えば上述のポリチオフェン系重合体、ポリ−p−フェニレンビニレン系重合体、ポリ−p−フェニレン系重合体、ポリフルオレン系重合体、ポリピロール系重合体、ポリアニリン系重合体、ポリアセチレン系重合体、ポリチエニレンビニレン系重合体、ベンゾチアジアゾール系重合体(例えば、PCPDTBT(poly[2,6−(4,4−bis−(2−ethylhexyl)−4H−cyclopenta[2,1−b;3,4−b’]dithiophene)−alt−4,7−(2,1,3−benzothiadiazole)])や、PSBTBT(poly[(4,4−bis−(2−ethylhexyl)dithieno[3,2−b:2’,3’−d]silole)−2,6−diyl−alt−(2,1,3−benzothiadiazole)−4,7−diyl]))などの共役系重合体や、Hフタロシアニン(HPc)、銅フタロシアニン(CuPc)、亜鉛フタロシアニン(ZnPc)等のフタロシアニン誘導体、ポルフィリン誘導体、N,N’−ジフェニル−N,N’−ジ(3−メチルフェニル)−4,4’−ジフェニル−1,1’−ジアミン(TPD)、N,N’−ジナフチル−N,N’−ジフェニル−4,4’−ジフェニル−1,1’−ジアミン(NPD)等のトリアリールアミン誘導体、4,4’−ジ(カルバゾール−9−イル)ビフェニル(CBP)等のカルバゾール誘導体、オリゴチオフェン誘導体(ターチオフェン、クウォーターチオフェン、セキシチオフェン、オクチチオフェンなど)等の低分子有機化合物が挙げられる。また、ここで用いられる中間電極用の素材としては高い導電性を有するものが好ましく、例えば上述の金、白金、クロム、ニッケル、リチウム、マグネシウム、カルシウム、錫、銀、アルミニウムなどの金属や、透明性を有するインジウム、スズ、モリブデン、チタンなどの金属酸化物、複合金属酸化物(インジウム錫酸化物(ITO)、インジウム亜鉛酸化物(IZO)など)、上記の金属からなる合金や上記の金属の積層体、ポリエチレンジオキシチオフェン(PEDOT)やPEDOTにポリスチレンスルホネート(PSS)が添加されたものなどが挙げられる。中間電極は光透過性を有することが好ましいが、光透過性が低い金属のような素材でも膜厚を薄くすることで充分な光透過性を確保できる場合が多い。 In the case of such a laminated structure, at least one of the organic semiconductor layers contains the material for a photovoltaic device of the present invention, and the other layers are represented by the general formula (1) in order not to reduce the short-circuit current. It is preferable to include an electron-donating organic material having a different band gap from the conjugated polymer having a structure. Examples of such an electron-donating organic material include the polythiophene polymer, poly-p-phenylene vinylene polymer, poly-p-phenylene polymer, polyfluorene polymer, polypyrrole polymer, polyaniline described above. Polymer, polyacetylene polymer, polythienylene vinylene polymer, benzothiadiazole polymer (for example, PCPDTBT (poly [2,6- (4,4-bis- (2-ethylhexyl) -4H-cyclopenta [ 2,1-b; 3,4-b ′] dithiophene) -alt-4,7- (2,1,3-benzothiadiazole)]) and PSBTBT (poly [(4,4-bis- (2-ethylhexyl)). ) Dithino [3,2-b: 2 ′, 3′-d] silole) − , 6-diyl-alt- (2,1,3 -benzothiadiazole) -4,7-diyl])) conjugated polymer or, H 2 phthalocyanine such as (H 2 Pc), copper phthalocyanine (CuPc), zinc phthalocyanine Phthalocyanine derivatives such as (ZnPc), porphyrin derivatives, N, N′-diphenyl-N, N′-di (3-methylphenyl) -4,4′-diphenyl-1,1′-diamine (TPD), N, Triarylamine derivatives such as N′-dinaphthyl-N, N′-diphenyl-4,4′-diphenyl-1,1′-diamine (NPD), 4,4′-di (carbazol-9-yl) biphenyl ( Carbazole derivatives such as CBP), oligothiophene derivatives (terthiophene, quarterthiophene, sexithiophene, octithiophene, etc. Low molecular organic compounds and the like. In addition, the material for the intermediate electrode used here is preferably a material having high conductivity, for example, the above-mentioned metals such as gold, platinum, chromium, nickel, lithium, magnesium, calcium, tin, silver, aluminum, and transparent Metal oxides such as indium, tin, molybdenum and titanium, composite metal oxides (indium tin oxide (ITO), indium zinc oxide (IZO), etc.), alloys composed of the above metals and the above metals Examples include laminates, polyethylenedioxythiophene (PEDOT) and those obtained by adding polystyrene sulfonate (PSS) to PEDOT. The intermediate electrode preferably has a light transmission property, but even a material such as a metal having a low light transmission property can often ensure a sufficient light transmission property by reducing the film thickness.

次に、本発明の光起電力素子の製造方法について例を挙げて説明する。基板上にITOなどの透明電極(この場合正極に相当)をスパッタリング法などにより形成する。次に、一般式(1)で表される構造を有する共役系重合体、および必要によりその他の電子供与性有機材料や電子受容性有機材料を含む光起電力素子用材料を溶媒に溶解させて溶液を作り、透明電極上に塗布し有機半導体層を形成する。このとき用いられる溶媒は有機溶媒が好ましく、例えば、メタノール、エタノール、ブタノール、トルエン、キシレン、o−クロロフェノール、アセトン、酢酸エチル、エチレングリコール、テトラヒドロフラン、ジクロロメタン、クロロホルム、ジクロロエタン、クロロベンゼン、ジクロロベンゼン、トリクロロベンゼン、クロロナフタレン、ジメチルホルムアミド、ジメチルスルホキシド、N−メチルピロリドン、γ−ブチロラクトンなどが挙げられる。これらを2種以上用いてもよい。また、上述のフルオラス化合物を含有することで光電変換効率をより向上させることができる。常温常圧で液体であるフルオラス化合物(フルオラス溶媒)が好ましく、より好ましくは上述のベンゾトリフルオリド、ペルフルオロヘキサン、F−デカノールが用いられる。フルオラス化合物の含有量は全溶媒量に対して0.01〜20体積%が好ましく、より好ましくは0.1〜2体積%である。また、フルオラス溶媒の含有量は全溶媒中0.01〜30重量%が好ましく、より好ましくは0.1〜4重量%である。   Next, an example is given and demonstrated about the manufacturing method of the photovoltaic device of this invention. A transparent electrode such as ITO (corresponding to a positive electrode in this case) is formed on the substrate by sputtering or the like. Next, a conjugated polymer having a structure represented by the general formula (1) and, if necessary, a material for a photovoltaic device including other electron donating organic materials and electron accepting organic materials are dissolved in a solvent. A solution is made and applied onto the transparent electrode to form an organic semiconductor layer. The solvent used at this time is preferably an organic solvent. For example, methanol, ethanol, butanol, toluene, xylene, o-chlorophenol, acetone, ethyl acetate, ethylene glycol, tetrahydrofuran, dichloromethane, chloroform, dichloroethane, chlorobenzene, dichlorobenzene, Examples include chlorobenzene, chloronaphthalene, dimethylformamide, dimethyl sulfoxide, N-methylpyrrolidone, and γ-butyrolactone. Two or more of these may be used. Moreover, photoelectric conversion efficiency can be improved more by containing the above-mentioned fluorous compound. Fluorous compounds (fluorus solvents) that are liquid at normal temperature and pressure are preferred, and the above-mentioned benzotrifluoride, perfluorohexane, and F-decanol are more preferably used. The content of the fluoro compound is preferably 0.01 to 20% by volume, more preferably 0.1 to 2% by volume, based on the total amount of the solvent. Further, the content of the fluorous solvent is preferably 0.01 to 30% by weight, more preferably 0.1 to 4% by weight in the total solvent.

一般式(1)で表される構造を有する共役系重合体を含む電子供与性有機材料および電子受容性有機材料を混合して有機半導体層を形成する場合は、一般式(1)で表される構造を有する共役系重合体を含む電子供与性有機材料と電子受容性有機材料を所望の比率で溶媒に添加し、加熱、撹拌、超音波照射などの方法を用いて溶解させ溶液を作り、透明電極上に塗布する。この場合、2種以上の溶媒を混合して用いることで光起電力素子の光電変換効率を向上させることもできる。これは、電子供与性有機材料と電子受容性有機材料がナノレベルで相分離を起こし、電子と正孔の通り道となるキャリアパスが形成されるためと推測される。組み合わせる溶媒は、用いる電子供与性有機材料と電子受容性有機材料の種類によって最適な組み合わせの種類を選択することができる。一般式(1)で表される構造を有する共役系重合体を含む電子供与性有機材料を用いる場合、組み合わせる好ましい溶媒として上述の中でもクロロホルムとクロロベンゼンが挙げられる。この場合、各溶媒の混合体積比率は、クロロホルム:クロロベンゼン=5:95〜95:5の範囲であることが好ましく、さらに好ましくはクロロホルム:クロロベンゼン=10:90〜90:10の範囲である。また、一般式(1)で表される構造を有する共役系重合体を含む電子供与性有機材料および電子受容性有機材料を積層して有機半導体層を形成する場合は、例えば電子供与性有機材料の溶液を塗布して電子供与性有機材料を有する層を形成した後に、電子受容性有機材料の溶液を塗布して層を形成する。ここで、電子供与性有機材料および電子受容性有機材料は、分子量が1000以下程度の低分子量体である場合には、蒸着法を用いて層を形成することも可能である。   When an organic semiconductor layer is formed by mixing an electron-donating organic material containing an conjugated polymer having a structure represented by the general formula (1) and an electron-accepting organic material, the organic semiconductor layer is represented by the general formula (1). An electron-donating organic material containing a conjugated polymer having a structure and an electron-accepting organic material are added to a solvent at a desired ratio, and dissolved using a method such as heating, stirring, or ultrasonic irradiation to form a solution. Apply on a transparent electrode. In this case, the photoelectric conversion efficiency of the photovoltaic element can be improved by using a mixture of two or more solvents. This is presumably because the electron-donating organic material and the electron-accepting organic material undergo phase separation at the nano level, and a carrier path that forms a path for electrons and holes is formed. As the solvent to be combined, an optimal combination type can be selected depending on the types of the electron donating organic material and the electron accepting organic material to be used. When using an electron-donating organic material containing a conjugated polymer having a structure represented by the general formula (1), chloroform and chlorobenzene are mentioned as preferred solvents to be combined. In this case, the mixing volume ratio of each solvent is preferably in the range of chloroform: chlorobenzene = 5: 95 to 95: 5, more preferably in the range of chloroform: chlorobenzene = 10: 90 to 90:10. Further, when an organic semiconductor layer is formed by laminating an electron donating organic material containing a conjugated polymer having a structure represented by the general formula (1) and an electron accepting organic material, for example, an electron donating organic material After forming a layer having an electron-donating organic material by applying the above solution, a layer of the electron-accepting organic material is applied to form a layer. Here, when the electron-donating organic material and the electron-accepting organic material are low molecular weight substances having a molecular weight of about 1000 or less, it is possible to form a layer using a vapor deposition method.

有機半導体層の形成には、スピンコート塗布、ブレードコート塗布、スリットダイコート塗布、スクリーン印刷塗布、バーコーター塗布、鋳型塗布、印刷転写法、浸漬引き上げ法、インクジェット法、スプレー法、真空蒸着法など何れの方法を用いてもよく、膜厚制御や配向制御など、得ようとする有機半導体層特性に応じて形成方法を選択すればよい。例えばスピンコート塗布を行う場合には、一般式(1)で表される構造を有する共役系重合体を含む電子供与性有機材料、および電子受容性有機材料が1〜20g/lの濃度(一般式(1)で表される構造を有する共役系重合体を含む電子供与性有機材料と電子受容性有機材料と溶媒を含む溶液の体積に対する、一般式(1)で表される構造を有する共役系重合体を含む電子供与性有機材料と電子受容性有機材料の重量)であることが好ましく、この濃度にすることで厚さ5〜200nmの均質な有機半導体層を得ることができる。形成した有機半導体層に対して、溶媒を除去するために、減圧下または不活性雰囲気下(窒素やアルゴン雰囲気下)などでアニーリング処理を行ってもよい。アニーリング処理の好ましい温度は40℃〜300℃、より好ましくは50℃〜200℃である。また、アニーリング処理を行うことで、積層した層が界面で互いに浸透して接触する実効面積が増加し、短絡電流を増大させることができる。このアニーリング処理は、負極の形成後に行ってもよい。   For organic semiconductor layer formation, spin coating, blade coating, slit die coating, screen printing coating, bar coater coating, mold coating, printing transfer method, dip pulling method, ink jet method, spray method, vacuum deposition method, etc. This method may be used, and the formation method may be selected according to the characteristics of the organic semiconductor layer to be obtained, such as film thickness control and orientation control. For example, when spin coating is performed, the concentration of electron donating organic material including a conjugated polymer having the structure represented by the general formula (1) and the electron accepting organic material is 1 to 20 g / l (general Conjugation having the structure represented by the general formula (1) with respect to the volume of the solution containing the electron donating organic material, the electron accepting organic material and the solvent including the conjugated polymer having the structure represented by the formula (1) The weight of the electron-donating organic material and the electron-accepting organic material containing the polymer is preferable, and a homogeneous organic semiconductor layer having a thickness of 5 to 200 nm can be obtained by using this concentration. In order to remove the solvent, the formed organic semiconductor layer may be subjected to an annealing treatment under reduced pressure or in an inert atmosphere (in a nitrogen or argon atmosphere). A preferable temperature for the annealing treatment is 40 ° C to 300 ° C, more preferably 50 ° C to 200 ° C. Further, by performing the annealing treatment, the effective area where the stacked layers permeate and contact each other at the interface increases, and the short-circuit current can be increased. This annealing treatment may be performed after the formation of the negative electrode.

次に、有機半導体層上にAlなどの金属電極(この場合負極に相当)を真空蒸着法やスパッタ法により形成する。金属電極は、電子輸送層に低分子有機材料を用いて真空蒸着した場合は、引き続き、真空を保持したまま続けて形成することが好ましい。   Next, a metal electrode such as Al (corresponding to a negative electrode in this case) is formed on the organic semiconductor layer by vacuum deposition or sputtering. When the metal electrode is vacuum-deposited using a low molecular organic material for the electron transport layer, it is preferable that the metal electrode is continuously formed while maintaining the vacuum.

正極と有機半導体層の間に正孔輸送層を設ける場合には、所望のp型有機半導体材料(PEDOTなど)を正極上にスピンコート法、バーコーティング法、ブレードによるキャスト法等で塗布した後、真空恒温槽やホットプレートなどを用いて溶媒を除去し、正孔輸送層を形成する。フタロシアニン誘導体やポルフィリン誘導体などの低分子有機材料を使用する場合には、真空蒸着機を用いた真空蒸着法を適用することも可能である。   When a hole transport layer is provided between the positive electrode and the organic semiconductor layer, a desired p-type organic semiconductor material (such as PEDOT) is applied on the positive electrode by spin coating, bar coating, blade casting, or the like. Then, the solvent is removed using a vacuum thermostat or a hot plate to form a hole transport layer. In the case of using a low molecular organic material such as a phthalocyanine derivative or a porphyrin derivative, it is also possible to apply a vacuum vapor deposition method using a vacuum vapor deposition machine.

有機半導体層と負極の間に電子輸送層を設ける場合には、所望のn型有機半導体材料(フラーレン誘導体など)n型無機半導体材料(酸化チタンゲルなど)を有機半導体層上にスピンコート法、バーコーティング法、ブレードによるキャスト法、スプレー法等で塗布した後、真空恒温槽やホットプレートなどを用いて溶媒を除去し、電子輸送層を形成する。フェナントロリン誘導体やC60などの低分子有機材料を使用する場合には、真空蒸着機を用いた真空蒸着法を適用することも可能である。 When an electron transport layer is provided between the organic semiconductor layer and the negative electrode, a desired n-type organic semiconductor material (such as fullerene derivatives) or an n-type inorganic semiconductor material (such as titanium oxide gel) is spin-coated on the organic semiconductor layer. After coating by a coating method, a casting method using a blade, a spray method, or the like, the solvent is removed using a vacuum thermostat or a hot plate to form an electron transport layer. When using a low molecular organic material such as a phenanthroline derivative or C 60, it is also possible to apply a vacuum deposition method using a vacuum deposition machine.

本発明の光起電力素子は、光電変換機能、光整流機能などを利用した種々の光電変換デバイスへの応用が可能である。例えば光電池(太陽電池など)、電子素子(光センサ、光スイッチ、フォトトランジスタなど)、光記録材(光メモリなど)などに有用である。   The photovoltaic element of the present invention can be applied to various photoelectric conversion devices using a photoelectric conversion function, an optical rectification function, and the like. For example, it is useful for photovoltaic cells (such as solar cells), electronic devices (such as optical sensors, optical switches, phototransistors), optical recording materials (such as optical memories), and the like.

以下、本発明を実施例に基づいてさらに具体的に説明する。なお、本発明は下記実施例に限定されるものではない。また実施例等で用いた化合物のうち、略語を使用しているものについて、以下に示す。
ITO:インジウム錫酸化物
PEDOT:ポリエチレンジオキシチオフェン
PSS:ポリスチレンスルホネート
PC70BM:フェニル C71 ブチリックアシッドメチルエステル
Eg:バンドギャップ
HOMO:最高被占分子軌道
Isc:短絡電流密度
Voc:開放電圧
FF:フィルファクター
PCE:光電変換効率 。
Hereinafter, the present invention will be described more specifically based on examples. In addition, this invention is not limited to the following Example. Of the compounds used in the examples and the like, those using abbreviations are shown below.
ITO: indium tin oxide PEDOT: polyethylene dioxythiophene PSS: polystyrene sulfonate PC 70 BM: phenyl C71 butyric acid methyl ester Eg: band gap HOMO: highest occupied molecular orbital Isc: short circuit current density Voc: open circuit voltage FF: fill Factor PCE: photoelectric conversion efficiency.

なお、H−NMR測定にはFT−NMR装置((株)日本電子製JEOL JNM−EX270)を用いた。また、平均分子量(数平均分子量、重量平均分子量)はGPC装置(クロロホルムを送液したTOSOH社製、高速GPC装置HLC−8220GPC)を用い、絶対検量線法によって算出した。重合度nは以下の式で算出した。
重合度n=[(重量平均分子量)/(繰り返しユニットの分子量)]
また、光吸収端波長は、ガラス上に約60nmの厚さに形成した薄膜について、日立製作所(株)製のU−3010型分光光度計を用いて測定した薄膜の紫外可視吸収スペクトル(測定波長範囲:300〜900nm)から得た。バンドギャップ(Eg)は以下の式により、光吸収端波長から算出した。なお、薄膜はクロロホルムを溶媒に用いてスピンコート法により形成した。
Eg(eV)=1240/光吸収端波長(nm)
また、最高被占分子軌道(HOMO)準位は、ITOガラス上に約60nmの厚さに形成した薄膜について、表面分析装置(大気中紫外線光電子分光装置AC−2型、理研機器(株)製)を用いて測定した。なお、薄膜はクロロホルムを溶媒に用いてスピンコート法により形成した。
For 1 H-NMR measurement, an FT-NMR apparatus (JEOL JNM-EX270 manufactured by JEOL Ltd.) was used. Moreover, the average molecular weight (number average molecular weight, weight average molecular weight) was calculated by an absolute calibration curve method using a GPC apparatus (manufactured by TOSOH Co., Ltd., to which chloroform was fed, high-speed GPC apparatus HLC-8220 GPC). The degree of polymerization n was calculated by the following formula.
Degree of polymerization n = [(weight average molecular weight) / (molecular weight of repeating unit)]
The light absorption edge wavelength is an ultraviolet-visible absorption spectrum (measurement wavelength) of a thin film formed on glass with a thickness of about 60 nm using a U-3010 spectrophotometer manufactured by Hitachi, Ltd. (Range: 300-900 nm). The band gap (Eg) was calculated from the light absorption edge wavelength by the following equation. The thin film was formed by spin coating using chloroform as a solvent.
Eg (eV) = 1240 / light absorption edge wavelength (nm)
In addition, the highest occupied molecular orbital (HOMO) level was determined by using a surface analyzer (in-air ultraviolet photoelectron spectrometer AC-2 type, manufactured by Riken Instruments Co., Ltd.) ). The thin film was formed by spin coating using chloroform as a solvent.

合成例1
化合物A−1を式1に示す方法で合成した。
Synthesis example 1
Compound A-1 was synthesized by the method shown in Formula 1.

Figure 0005664200
Figure 0005664200

化合物(1−a)((株)東京化成工業製)4.3gと臭素((株)和光純薬工業製)10gを48%臭化水素酸((株)和光純薬工業製)150mlに加え、120℃で3時間撹拌した。室温に冷却し、析出した固体をグラスフィルターで濾過し、水1000mlとアセトン100mlで洗浄した。得られた固体を60℃で真空乾燥し、化合物(1−b)6.72gを得た。   Compound (1-a) (manufactured by Tokyo Chemical Industry Co., Ltd.) 4.3 g and bromine (manufactured by Wako Pure Chemical Industries, Ltd.) 10 g are added to 150 ml of 48% hydrobromic acid (manufactured by Wako Pure Chemical Industries, Ltd.). In addition, the mixture was stirred at 120 ° C. for 3 hours. After cooling to room temperature, the precipitated solid was filtered through a glass filter and washed with 1000 ml of water and 100 ml of acetone. The obtained solid was vacuum-dried at 60 ° C. to obtain 6.72 g of compound (1-b).

上記の化合物(1−b)5.56gをエタノール((株)和光純薬工業製)180mlに加え、窒素雰囲気下5℃でNaBH((株)和光純薬工業製)13.2gを加えた後、室温で2日間撹拌した。溶媒を留去したのち水500mlを加え、固体を濾取し、水1000mlで洗浄した。得られた固体をジエチルエーテル200mlに溶解し、水300mlで洗浄後、硫酸マグネシウムで乾燥した。溶媒を留去し、化合物(1−c)を2.37g得た。 5.56 g of the above compound (1-b) is added to 180 ml of ethanol (manufactured by Wako Pure Chemical Industries, Ltd.), and 13.2 g of NaBH 4 (manufactured by Wako Pure Chemical Industries, Ltd.) is added at 5 ° C. in a nitrogen atmosphere. After that, the mixture was stirred at room temperature for 2 days. After distilling off the solvent, 500 ml of water was added, and the solid was collected by filtration and washed with 1000 ml of water. The obtained solid was dissolved in 200 ml of diethyl ether, washed with 300 ml of water, and dried over magnesium sulfate. The solvent was distilled off to obtain 2.37 g of compound (1-c).

上記の化合物(1−c)2.37gとベンジル((株)和光純薬工業製)1.87gをクロロホルム80mlに加え、窒素雰囲気下でメタンスルホン酸((株)和光純薬工業製)3滴を加えた後、11時間加熱還流した。得られた溶液を炭酸水素ナトリウム水溶液で洗浄後、硫酸マグネシウムで乾燥した。得られた溶液をカラムクロマトグラフィー(充填材:シリカゲル、溶離液:クロロホルム)で精製し、メタノールで洗浄して化合物(1−d)を3.72g得た。   2.37 g of the above compound (1-c) and 1.87 g of benzyl (manufactured by Wako Pure Chemical Industries, Ltd.) are added to 80 ml of chloroform, and methanesulfonic acid (manufactured by Wako Pure Chemical Industries, Ltd.) 3 is added in a nitrogen atmosphere. After adding the drops, the mixture was heated to reflux for 11 hours. The resulting solution was washed with an aqueous sodium bicarbonate solution and then dried over magnesium sulfate. The resulting solution was purified by column chromatography (filler: silica gel, eluent: chloroform) and washed with methanol to obtain 3.72 g of compound (1-d).

化合物(1−e)((株)東京化成工業製)1.26gをテトラヒドロフラン((株)和光純薬工業製)60mlに溶解し、−80℃に冷却した。n−ブチルリチウム1.6Mヘキサン溶液((株)和光純薬工業製)6.2mlを加えた後、室温まで昇温し、−90℃に冷却した。2−イソプロポキシ−4,4,5,5−テトラメチル−1,3,2−ジオキサボロラン((株)和光純薬工業製)2.4mlを加え、室温まで昇温し、窒素雰囲気下で4時間撹拌した。得られた溶液に1N塩化アンモニウム水溶液100mlと酢酸エチル200mlを加え、有機層を分取し、水200mlで洗浄後、硫酸マグネシウムで乾燥した。得られた溶液から溶媒を減圧留去し、化合物(1−f)1.9gを得た。   1.26 g of compound (1-e) (manufactured by Tokyo Chemical Industry Co., Ltd.) was dissolved in 60 ml of tetrahydrofuran (manufactured by Wako Pure Chemical Industries, Ltd.) and cooled to -80 ° C. After adding 6.2 ml of n-butyllithium 1.6M hexane solution (made by Wako Pure Chemical Industries, Ltd.), the temperature was raised to room temperature and cooled to -90 ° C. 2.4 ml of 2-isopropoxy-4,4,5,5-tetramethyl-1,3,2-dioxaborolane (manufactured by Wako Pure Chemical Industries, Ltd.) was added, the temperature was raised to room temperature, and 4 in a nitrogen atmosphere. Stir for hours. To the resulting solution were added 100 ml of 1N aqueous ammonium chloride solution and 200 ml of ethyl acetate, the organic layer was separated, washed with 200 ml of water, and dried over magnesium sulfate. The solvent was distilled off from the resulting solution under reduced pressure to obtain 1.9 g of compound (1-f).

上記の化合物(1−d)1.42gと、上記の化合物(1−f)1.9gをジメチルホルムアミド50mlに加え、窒素雰囲気下でリン酸カリウム((株)和光純薬工業製)8.15g、[ビス(ジフェニルホスフィノ)フェロセン]ジクロロパラジウム(アルドリッチ社製)0.26gを加え、100℃で4時間撹拌した。得られた溶液に水200mlを加え、析出した沈澱を濾取し、水、メタノールの順に洗浄した。得られた固体をカラムクロマトグラフィー(充填材:シリカゲル、溶離液:クロロホルム)で精製し、化合物(1−g)を1.56g得た。   7. 1.42 g of the above compound (1-d) and 1.9 g of the above compound (1-f) are added to 50 ml of dimethylformamide, and potassium phosphate (manufactured by Wako Pure Chemical Industries, Ltd.) under a nitrogen atmosphere. 15 g of [bis (diphenylphosphino) ferrocene] dichloropalladium (manufactured by Aldrich) 0.26 g was added, and the mixture was stirred at 100 ° C. for 4 hours. 200 ml of water was added to the resulting solution, and the deposited precipitate was collected by filtration and washed with water and methanol in this order. The obtained solid was purified by column chromatography (filler: silica gel, eluent: chloroform) to obtain 1.56 g of compound (1-g).

上記の化合物(1−g)1.56gをジメチルホルムアミド((株)和光純薬工業製)200mlに溶解し、N−ブロモスクシンイミド((株)和光純薬工業製)1.04gを加え、室温で3時間撹拌した。析出した沈澱を濾取し、ジメチルホルムアミド、メタノール、水、メタノールの順に洗浄した。得られた固体を60℃で真空乾燥して化合物(1−h)を1.6g得た。化合物(1−h)のH−NMR測定結果を示す。
H−NMR(CDCl,ppm):8.16(s,2H)、8.00(s,2H)、7.73−7.69(m,4H)、7.43−7.41(m,6H)、7.33(s,2H) 。
1.56 g of the above compound (1-g) is dissolved in 200 ml of dimethylformamide (manufactured by Wako Pure Chemical Industries, Ltd.), 1.04 g of N-bromosuccinimide (manufactured by Wako Pure Chemical Industries, Ltd.) is added, and room temperature is added. For 3 hours. The deposited precipitate was collected by filtration and washed with dimethylformamide, methanol, water and methanol in this order. The obtained solid was vacuum-dried at 60 degreeC, and 1.6g of compounds (1-h) were obtained. The 1 H-NMR measurement result of the compound (1-h) is shown.
1 H-NMR (CDCl 3 , ppm): 8.16 (s, 2H), 8.00 (s, 2H), 7.73-7.69 (m, 4H), 7.43-7.41 ( m, 6H), 7.33 (s, 2H).

上記の化合物(1−h)220mgと、化合物(1−i)(アルドリッチ社製)154mgをトルエン30mlに溶解した。ここに水3ml、炭酸カリウム850mg、テトラキス(トリフェニルホスフィン)パラジウム(0)((株)東京化成工業製)18mg、Aliquat336(アルドリッチ社製)1滴を加え、窒素雰囲気下、100℃にて2時間撹拌した。次いで、ブロモベンゼン((株)東京化成工業製)100mgを加え、100℃にて2時間撹拌した。得られた溶液にメタノール400mlを加え、生成した固体を濾取し、メタノール、アセトン、熱水、熱アセトンの順に洗浄した。得られた固体をアセトン400mlに加え、30分間加熱還流した。熱時濾過して得られた固体をクロロホルム300mlに溶解させ、シリカゲルショートカラム(溶離液:クロロホルム)を通した後に濃縮し、メタノールで再沈澱させて化合物A−1を48mg得た(収率18%)。重量平均分子量は119700、数平均分子量は7800、重合度nは127であった。また、光吸収端波長は660nm、バンドギャップ(Eg)は1.88eV、最高被占分子軌道(HOMO)準位は−5.26eVであった。   220 mg of the above compound (1-h) and 154 mg of compound (1-i) (manufactured by Aldrich) were dissolved in 30 ml of toluene. 3 ml of water, 850 mg of potassium carbonate, 18 mg of tetrakis (triphenylphosphine) palladium (0) (manufactured by Tokyo Chemical Industry Co., Ltd.) and 1 drop of Aliquat 336 (manufactured by Aldrich) were added thereto, and 2 at 100 ° C. in a nitrogen atmosphere. Stir for hours. Subsequently, 100 mg of bromobenzene (manufactured by Tokyo Chemical Industry Co., Ltd.) was added and stirred at 100 ° C. for 2 hours. 400 ml of methanol was added to the resulting solution, and the generated solid was collected by filtration and washed with methanol, acetone, hot water, and hot acetone in this order. The obtained solid was added to 400 ml of acetone and heated to reflux for 30 minutes. The solid obtained by filtration while hot was dissolved in 300 ml of chloroform, passed through a silica gel short column (eluent: chloroform), concentrated, and reprecipitated with methanol to obtain 48 mg of compound A-1 (yield 18 %). The weight average molecular weight was 119700, the number average molecular weight was 7800, and the degree of polymerization n was 127. The light absorption edge wavelength was 660 nm, the band gap (Eg) was 1.88 eV, and the highest occupied molecular orbital (HOMO) level was −5.26 eV.

合成例2
化合物B−1を式2に示す方法で合成した。
Synthesis example 2
Compound B-1 was synthesized by the method shown in Formula 2.

Figure 0005664200
Figure 0005664200

合成例1の化合物(1−d)93mgと、合成例1の化合物(1−i)118mgをトルエン30mlに溶解した。ここに水3ml、炭酸カリウム580mg、テトラキス(トリフェニルホスフィン)パラジウム(0)((株)東京化成工業製)24mg、Aliquat336(アルドリッチ社製)1滴を加え、窒素雰囲気下、100℃にて5時間撹拌した。次いで、ブロモベンゼン((株)東京化成工業製)100mgを加え、100℃にて1時間撹拌した。次いで、フェニルボロン酸((株)東京化成工業製)100mgを加え、100℃にて4時間撹拌した。得られた溶液にメタノール100mlを加え、生成した固体を濾取し、メタノール、アセトン、水、アセトンの順に洗浄した。得られた固体をクロロホルム100mlに溶解し、シリカゲルショートカラム(溶離液:クロロホルム)を通した後に濃縮し、メタノールで再沈澱させて化合物B−1を110mg得た(収率78%)。重量平均分子量は84800、数平均分子量は32900、重合度nは127であった。また、光吸収端波長は487nm、バンドギャップ(Eg)は2.55eV、最高被占分子軌道(HOMO)準位は−5.79eVであった。   93 mg of the compound (1-d) of Synthesis Example 1 and 118 mg of the compound (1-i) of Synthesis Example 1 were dissolved in 30 ml of toluene. 3 ml of water, 580 mg of potassium carbonate, tetrakis (triphenylphosphine) palladium (0) (manufactured by Tokyo Chemical Industry Co., Ltd.) 24 mg, and 1 drop of Aliquat 336 (manufactured by Aldrich) were added thereto, and 5 at 100 ° C. under a nitrogen atmosphere. Stir for hours. Subsequently, 100 mg of bromobenzene (manufactured by Tokyo Chemical Industry Co., Ltd.) was added and stirred at 100 ° C. for 1 hour. Next, 100 mg of phenylboronic acid (manufactured by Tokyo Chemical Industry Co., Ltd.) was added, and the mixture was stirred at 100 ° C. for 4 hours. 100 ml of methanol was added to the obtained solution, and the generated solid was collected by filtration and washed with methanol, acetone, water and acetone in this order. The obtained solid was dissolved in 100 ml of chloroform, passed through a silica gel short column (eluent: chloroform), concentrated and reprecipitated with methanol to obtain 110 mg of compound B-1 (yield 78%). The weight average molecular weight was 84800, the number average molecular weight was 32900, and the polymerization degree n was 127. The light absorption edge wavelength was 487 nm, the band gap (Eg) was 2.55 eV, and the highest occupied molecular orbital (HOMO) level was −5.79 eV.

合成例3
化合物A−2を式3に示す方法で合成した。
Synthesis example 3
Compound A-2 was synthesized by the method shown in Formula 3.

Figure 0005664200
Figure 0005664200

化合物(2−a)((株)和光純薬工業製)50.25g、銅粉末((株)和光純薬工業製)25gをジメチルホルムアミド230mlに加え、窒素雰囲気下、130℃にて7時間撹拌した。溶媒を減圧留去したのちトルエン500mlを加え、セライトでろ過し、水400ml、炭酸水素ナトリウム水溶液200mlの順に洗浄後、硫酸マグネシウムで乾燥した。得られた溶液から溶媒を留去したのちイソプロパノール300mlで洗浄し、化合物(2−b)を26g得た。   Compound (2-a) (manufactured by Wako Pure Chemical Industries, Ltd.) 50.25 g and copper powder (manufactured by Wako Pure Chemical Industries, Ltd.) 25 g are added to 230 ml of dimethylformamide, and the nitrogen atmosphere is maintained at 130 ° C. for 7 hours. Stir. After distilling off the solvent under reduced pressure, 500 ml of toluene was added, filtered through Celite, washed with 400 ml of water and 200 ml of aqueous sodium hydrogencarbonate in this order, and then dried over magnesium sulfate. After the solvent was distilled off from the resulting solution, it was washed with 300 ml of isopropanol to obtain 26 g of compound (2-b).

上記の化合物(2−b)26gをエタノール320mlに加えたのち36%塩酸180ml、すず粉末((株)和光純薬工業製)31gを加え、窒素雰囲気下、100℃にて4時間撹拌した。得られた溶液を水800mlに投入し、水酸化ナトリウム水溶液を加えpHを約10とした。生成した沈澱をろ取し、クロロホルム1000mlに溶解させ、水1000mlで洗浄後、硫酸マグネシウムで乾燥した。得られた溶液から溶媒を留去し化合物(2−c)を21.37g得た。   After 26 g of the above compound (2-b) was added to 320 ml of ethanol, 180 ml of 36% hydrochloric acid and 31 g of tin powder (manufactured by Wako Pure Chemical Industries, Ltd.) were added, followed by stirring at 100 ° C. for 4 hours in a nitrogen atmosphere. The obtained solution was put into 800 ml of water, and an aqueous sodium hydroxide solution was added to adjust the pH to about 10. The resulting precipitate was collected by filtration, dissolved in 1000 ml of chloroform, washed with 1000 ml of water, and dried over magnesium sulfate. The solvent was distilled off from the resulting solution to obtain 21.37 g of compound (2-c).

上記の化合物(2−c)21.3gを36%塩酸75ml、水85mlに加え、5℃にてNaNO水溶液(NaNO10.7g/水55ml)を滴下した。5℃で30分間撹拌後、KI水溶液(KI104g/水200ml)を滴下し、5℃で1時間、室温で1時間、60℃で3時間撹拌した。得られた固体をろ取し、カラムクロマトグラフィー(充填材:シリカゲル、溶離液:ヘキサン)で精製し、化合物(2−d)を4.27g得た。 21.3 g of the above compound (2-c) was added to 75 ml of 36% hydrochloric acid and 85 ml of water, and a NaNO 2 aqueous solution (NaNO 2 10.7 g / 55 ml of water) was added dropwise at 5 ° C. After stirring at 5 ° C. for 30 minutes, a KI aqueous solution (KI 104 g / water 200 ml) was added dropwise, and the mixture was stirred at 5 ° C. for 1 hour, at room temperature for 1 hour, and at 60 ° C. for 3 hours. The obtained solid was collected by filtration and purified by column chromatography (filler: silica gel, eluent: hexane) to obtain 4.27 g of compound (2-d).

上記の化合物(2−d)4.27gをテトラヒドロフラン((株)和光純薬工業製)85mlに溶解し、−80℃に冷却した。n−ブチルリチウム1.6Mヘキサン溶液((株)和光純薬工業製)19mlを1時間かけて加えた後、窒素雰囲気下、−80℃で30分間撹拌した。ジクロロジオクチルシラン((株)和光純薬工業製)5.2mlを加え、室温まで昇温し、窒素雰囲気下で1日間撹拌した。得られた溶液に水50mlを加え、溶媒を留去した。ジエチルエーテル150mlを加えたのち有機層を分取し、水400mlで洗浄後、硫酸マグネシウムで乾燥した。得られた溶液をカラムクロマトグラフィー(充填材:シリカゲル、溶離液:ヘキサン)で精製し、化合物(2−e)を2.49g得た。   4.27 g of the above compound (2-d) was dissolved in 85 ml of tetrahydrofuran (manufactured by Wako Pure Chemical Industries, Ltd.) and cooled to -80 ° C. After adding 19 ml of n-butyllithium 1.6M hexane solution (made by Wako Pure Chemical Industries Ltd.) over 1 hour, it stirred at -80 degreeC for 30 minutes by nitrogen atmosphere. 5.2 ml of dichlorodioctylsilane (manufactured by Wako Pure Chemical Industries, Ltd.) was added, the temperature was raised to room temperature, and the mixture was stirred for 1 day in a nitrogen atmosphere. 50 ml of water was added to the resulting solution, and the solvent was distilled off. After adding 150 ml of diethyl ether, the organic layer was separated, washed with 400 ml of water, and dried over magnesium sulfate. The resulting solution was purified by column chromatography (filler: silica gel, eluent: hexane) to obtain 2.49 g of compound (2-e).

上記の化合物(2−e)2.49gと、ビス(ピナコラト)ジボロン(BASF社製)2.58gを1,4−ジオキサン21mlに加え、窒素雰囲気下で酢酸カリウム((株)和光純薬工業製)2.6g、[ビス(ジフェニルホスフィノ)フェロセン]ジクロロパラジウム(アルドリッチ社製)648mgを加え、80℃で5.5時間撹拌した。得られた溶液に水200mlとジエチルエーテル200mlを加え、有機層を分取し、水300mlで洗浄後、硫酸マグネシウムで乾燥した。得られた溶液をカラムクロマトグラフィー(充填材:フロリジル、溶離液:ヘキサン/酢酸エチル)で精製し、化合物(2−f)を2.6g得た。化合物(2−f)のH−NMR測定結果を示す。
H−NMR(CDCl,ppm):8.04(s,2H)、7.90−7.83(m,4H)、1.37(s,24H)、1.35−1.17(m,24H)、0.93(t,4H)、0.84(t,6H) 。
2.49 g of the above compound (2-e) and 2.58 g of bis (pinacolato) diboron (BASF) were added to 21 ml of 1,4-dioxane, and potassium acetate (Wako Pure Chemical Industries, Ltd.) was added under a nitrogen atmosphere. 2.6 g) [bis (diphenylphosphino) ferrocene] dichloropalladium (Aldrich) 648 mg was added, and the mixture was stirred at 80 ° C. for 5.5 hours. 200 ml of water and 200 ml of diethyl ether were added to the resulting solution, and the organic layer was separated, washed with 300 ml of water, and dried over magnesium sulfate. The resulting solution was purified by column chromatography (filler: Florisil, eluent: hexane / ethyl acetate) to obtain 2.6 g of compound (2-f). The 1 H-NMR measurement result of the compound (2-f) is shown.
1 H-NMR (CDCl 3 , ppm): 8.04 (s, 2H), 7.90-7.83 (m, 4H), 1.37 (s, 24H), 1.35 to 1.17 ( m, 24H), 0.93 (t, 4H), 0.84 (t, 6H).

上記の化合物(2−f)290mgと、合成例1の化合物(1−h)310mgをトルエン40mlに溶解した。ここに水10ml、炭酸カリウム1.05g、テトラキス(トリフェニルホスフィン)パラジウム(0)((株)東京化成工業製)25mg、Aliquat336(アルドリッチ社製)1滴を加え、窒素雰囲気下、100℃にて6時間撹拌した。次いで、ブロモベンゼン((株)東京化成工業製)150mgを加え、100℃にて1時間撹拌した。次いで、フェニルボロン酸((株)東京化成工業製)150mgを加え、100℃にて6時間撹拌した。得られた溶液にメタノール400mlを加え、生成した固体を濾取し、メタノール、アセトン、熱水、熱アセトンの順に洗浄した。得られた固体をアセトン400mlに加え、30分間加熱還流した。熱時濾過して得られた固体をクロロホルム300mlに溶解させ、シリカゲルショートカラム(溶離液:クロロホルム)を通した後に濃縮し、メタノールで再沈澱させて化合物A−2を105mg得た(収率25%)。重量平均分子量は88700、数平均分子量は9500、重合度nは92.4であった。また、光吸収端波長は670nm、バンドギャップ(Eg)は1.85eV、最高被占分子軌道(HOMO)準位は−5.35eVであった。   290 mg of the above compound (2-f) and 310 mg of the compound (1-h) of Synthesis Example 1 were dissolved in 40 ml of toluene. 10 ml of water, 1.05 g of potassium carbonate, tetrakis (triphenylphosphine) palladium (0) (manufactured by Tokyo Chemical Industry Co., Ltd.) 25 mg, and 1 drop of Aliquat 336 (manufactured by Aldrich) were added to the mixture at 100 ° C. under a nitrogen atmosphere. And stirred for 6 hours. Subsequently, 150 mg of bromobenzene (manufactured by Tokyo Chemical Industry Co., Ltd.) was added and stirred at 100 ° C. for 1 hour. Subsequently, 150 mg of phenylboronic acid (manufactured by Tokyo Chemical Industry Co., Ltd.) was added and stirred at 100 ° C. for 6 hours. 400 ml of methanol was added to the resulting solution, and the generated solid was collected by filtration and washed with methanol, acetone, hot water, and hot acetone in this order. The obtained solid was added to 400 ml of acetone and heated to reflux for 30 minutes. The solid obtained by filtration while hot was dissolved in 300 ml of chloroform, passed through a silica gel short column (eluent: chloroform), concentrated and reprecipitated with methanol to obtain 105 mg of compound A-2 (yield 25 %). The weight average molecular weight was 88700, the number average molecular weight was 9500, and the degree of polymerization n was 92.4. The light absorption edge wavelength was 670 nm, the band gap (Eg) was 1.85 eV, and the highest occupied molecular orbital (HOMO) level was −5.35 eV.

合成例4
化合物A−3を式4に示す方法で合成した。
Synthesis example 4
Compound A-3 was synthesized by the method shown in Formula 4.

Figure 0005664200
Figure 0005664200

ギ酸エチル(3−a)((株)東京化成工業製)6.15gにテトラヒドロフラン125mlを加え−78℃に冷却したところに、濃度1.0Mのオクチルマグネシウムブロミドのテトラヒドロフラン溶液((株)東京化成工業製)250mlを1時間かけて反応溶液を−78℃に保ったまま滴下した。滴下終了後、反応溶液を室温で5時間撹拌した。メタノール50ml加えて過剰のオクチルマグネシウムブロミドを潰した後、テトラヒドロフランを減圧留去した。ジエチルエーテル120mlを加えた後、飽和塩化アンモニウム水溶液100ml、ついで飽和食塩水100mlで洗浄した。有機層を無水硫酸マグネシウムで乾燥させた後に、溶媒を減圧留去した。残渣をカラムクロマトグラフィー(充填材:シリカゲル、溶離液:ヘキサン/酢酸エチル=10/1)で精製することで、16.0gの化合物(3−b)を白色固体として得た。   When 125 ml of tetrahydrofuran was added to 6.15 g of ethyl formate (3-a) (manufactured by Tokyo Chemical Industry Co., Ltd.) and cooled to −78 ° C., a tetrahydrofuran solution of octylmagnesium bromide having a concentration of 1.0 M (Tokyo Chemical Industry Co., Ltd.) 250 ml of Kogyo) was added dropwise over 1 hour while keeping the reaction solution at -78 ° C. After completion of the dropwise addition, the reaction solution was stirred at room temperature for 5 hours. After adding 50 ml of methanol to crush excess octylmagnesium bromide, tetrahydrofuran was distilled off under reduced pressure. After adding 120 ml of diethyl ether, the mixture was washed with 100 ml of saturated aqueous ammonium chloride solution and then with 100 ml of saturated brine. After the organic layer was dried over anhydrous magnesium sulfate, the solvent was distilled off under reduced pressure. The residue was purified by column chromatography (filler: silica gel, eluent: hexane / ethyl acetate = 10/1) to obtain 16.0 g of compound (3-b) as a white solid.

上記化合物(3−b)10.0g、トリエチルアミン((株)和光純薬工業製)5.1gおよびピリジン((株)和光純薬工業製)5mlをジクロロメタン80mlに加え、0℃で撹拌しているところにパラトルエンスルホニルクロリド8.92gを加えた。反応溶液を0℃で1時間撹拌した後、室温で12時間撹拌した。水50mlを加え室温で30分間さらに撹拌した後、ジクロロメタン80mlで二回抽出した。有機層を無水硫酸マグネシウムで乾燥後、溶媒を減圧留去した。残渣をカラムクロマトグラフィー(充填材:シリカゲル、溶離液:ヘキサン/酢酸エチル=10/1)で精製することで、9.2gの化合物(3−c)をろう状固体として得た。   10.0 g of the above compound (3-b), 5.1 g of triethylamine (manufactured by Wako Pure Chemical Industries, Ltd.) and 5 ml of pyridine (manufactured by Wako Pure Chemical Industries, Ltd.) are added to 80 ml of dichloromethane and stirred at 0 ° C. 8.92 g of paratoluenesulfonyl chloride was added there. The reaction solution was stirred at 0 ° C. for 1 hour and then at room temperature for 12 hours. 50 ml of water was added and the mixture was further stirred at room temperature for 30 minutes, and then extracted twice with 80 ml of dichloromethane. The organic layer was dried over anhydrous magnesium sulfate, and the solvent was distilled off under reduced pressure. The residue was purified by column chromatography (filler: silica gel, eluent: hexane / ethyl acetate = 10/1) to obtain 9.2 g of compound (3-c) as a waxy solid.

4−4’−ジブロモビフェニル(3−d)((株)東京化成工業製)25.0gに酢酸((株)和光純薬工業製)375mlを加え、100℃で撹拌しているところに発煙硝酸((株)和光純薬工業製)120mlをゆっくりと加え、続いて水10mlを反応溶液に加えた。反応溶液を100℃で1時間撹拌した後、室温まで冷却し、5時間室温で放置した。析出した固体をろ取した後、水、ついでエタノールで洗浄した。粗生成物をエタノールから再結晶することで17.0gの化合物(3−e)を薄黄色固体として得た。   375 ml of acetic acid (manufactured by Wako Pure Chemical Industries, Ltd.) was added to 25.0 g of 4-4′-dibromobiphenyl (3-d) (manufactured by Tokyo Chemical Industry Co., Ltd.), and smoke was generated when stirring at 100 ° C. 120 ml of nitric acid (manufactured by Wako Pure Chemical Industries, Ltd.) was slowly added, followed by 10 ml of water to the reaction solution. The reaction solution was stirred at 100 ° C. for 1 hour, then cooled to room temperature and left at room temperature for 5 hours. The precipitated solid was collected by filtration, and then washed with water and then with ethanol. The crude product was recrystallized from ethanol to obtain 17.0 g of compound (3-e) as a pale yellow solid.

上記化合物(3−e)11.0gに亜リン酸トリエチル((株)和光純薬工業製)40mlを加え、150℃で10時間撹拌した。亜リン酸トリエチルを減圧留去した後、残渣をカラムクロマトグラフィー(充填材:シリカゲル、溶離液:ヘキサン/酢酸エチル=5/1)で精製することで、2.5gの化合物(3−f)を白色固体として得た。   40 ml of triethyl phosphite (manufactured by Wako Pure Chemical Industries, Ltd.) was added to 11.0 g of the compound (3-e), and the mixture was stirred at 150 ° C. for 10 hours. After distilling off triethyl phosphite under reduced pressure, the residue was purified by column chromatography (filler: silica gel, eluent: hexane / ethyl acetate = 5/1) to obtain 2.5 g of compound (3-f). Was obtained as a white solid.

上記化合物(3−f)1.2gにジメチルスルホキシド((株)和光純薬工業製)10mlおよび水酸化カリウム((株)和光純薬工業製)の粉末1.08gを加え、室温で撹拌しているところに、上記化合物(3−c)2.4gのジメチルスルホキシド溶液(6ml)を室温で1時間かけて滴下した。滴下終了後、室温で5時間撹拌した。水50mlを反応混合物に加えた後、ヘキサン40mlで3回抽出し、有機層を無水硫酸マグネシウムで乾燥後、溶媒を減圧留去した。残渣をカラムクロマトグラフィー(充填材:シリカゲル、溶離液:ヘキサン)で精製することで、540mgの化合物(3−g)を白色固体として得た。   To 1.2 g of the above compound (3-f) are added 10 ml of dimethyl sulfoxide (manufactured by Wako Pure Chemical Industries, Ltd.) and 1.08 g of potassium hydroxide (manufactured by Wako Pure Chemical Industries, Ltd.), and the mixture is stirred at room temperature. Then, a dimethyl sulfoxide solution (6 ml) of 2.4 g of the compound (3-c) was added dropwise at room temperature over 1 hour. After completion of dropping, the mixture was stirred at room temperature for 5 hours. 50 ml of water was added to the reaction mixture, followed by extraction three times with 40 ml of hexane, the organic layer was dried over anhydrous magnesium sulfate, and the solvent was distilled off under reduced pressure. The residue was purified by column chromatography (filler: silica gel, eluent: hexane) to obtain 540 mg of the compound (3-g) as a white solid.

上記化合物(3−g)530mgをテトラヒドロフラン10mlに溶解させ、−78℃に冷却したところに、濃度1.6Mのn−ブチルリチウムヘキサン溶液((株)和光純薬工業製)0.65mlを滴下し、−78℃で1時間撹拌した。反応溶液を30分間0℃で撹拌した後に再びー78℃に冷却し、2−イソプロポキシ−4,4,5,5−テトラメチル−1,3,2−ジオキサボロラン((株)東京化成工業製)440mgを加えた。反応溶液を室温でさらに4時間撹拌した後、水(10ml)ついでジエチルエーテル(50ml)を加えた。有機層を水(30ml)で3回、飽和食塩水(30ml)で1回洗浄した後、無水硫酸マグネシウムで乾燥し、溶媒を減圧留去した。メタノール/アセトン混合溶媒から再結晶することで390mgの化合物(3−h)を白色固体として得た。化合物(3−h)のH−NMR測定結果を示す。 When 530 mg of the above compound (3-g) was dissolved in 10 ml of tetrahydrofuran and cooled to −78 ° C., 0.65 ml of n-butyllithium hexane solution having a concentration of 1.6 M (manufactured by Wako Pure Chemical Industries, Ltd.) was added dropwise. And stirred at −78 ° C. for 1 hour. The reaction solution was stirred for 30 minutes at 0 ° C. and then cooled again to −78 ° C., and 2-isopropoxy-4,4,5,5-tetramethyl-1,3,2-dioxaborolane (manufactured by Tokyo Chemical Industry Co., Ltd.). ) 440 mg was added. The reaction solution was further stirred at room temperature for 4 hours, and then water (10 ml) and then diethyl ether (50 ml) were added. The organic layer was washed 3 times with water (30 ml) and once with saturated brine (30 ml), and then dried over anhydrous magnesium sulfate, and the solvent was distilled off under reduced pressure. By recrystallization from a methanol / acetone mixed solvent, 390 mg of the compound (3-h) was obtained as a white solid. The 1 H-NMR measurement result of the compound (3-h) is shown.

H−NMR(CDCl,ppm):8.12(s,2H)、8.02(s,1H)、7.89(s,1H)、7.66(d,J=7.6Hz,2H)、4.69(m,2H)、2.31(m,2H)、1.95(m,2H)、1.39(s,24H)、1.21−1.12(m,24H)、0.82(t,J=7.0Hz,6H) 。 1 H-NMR (CDCl 3 , ppm): 8.12 (s, 2H), 8.02 (s, 1H), 7.89 (s, 1H), 7.66 (d, J = 7.6 Hz, 2H), 4.69 (m, 2H), 2.31 (m, 2H), 1.95 (m, 2H), 1.39 (s, 24H), 1.21-1.12 (m, 24H) ), 0.82 (t, J = 7.0 Hz, 6H).

上記の化合物(3−h)100mgと、合成例1の化合物(1−h)109mgをトルエン20mlに溶解した。ここに水5ml、炭酸カリウム500mg、テトラキス(トリフェニルホスフィン)パラジウム(0)((株)東京化成工業製)9mg、Aliquat336(アルドリッチ社製)1滴を加え、窒素雰囲気下、100℃にて6時間撹拌した。次いで、ブロモベンゼン((株)東京化成工業製)100mgを加え、100℃にて1時間撹拌した。次いで、フェニルボロン酸((株)東京化成工業製)100mgを加え、100℃にて6時間撹拌した。得られた溶液にメタノール200mlを加え、生成した固体を濾取し、メタノール、アセトン、熱水、熱アセトンの順に洗浄した。得られた固体をアセトン200mlに加え、30分間加熱還流した。熱時濾過して得られた固体をクロロホルム150mlに溶解させ、シリカゲルショートカラム(溶離液:クロロホルム)を通した後に濃縮し、メタノールで再沈澱させて化合物A−3を43mg得た(収率30%)。重量平均分子量は92800、数平均分子量は8500、重合度nは98であった。また、光吸収端波長は670nm、バンドギャップ(Eg)は1.85eV、最高被占分子軌道(HOMO)準位は−5.14eVであった。   100 mg of the above compound (3-h) and 109 mg of the compound (1-h) of Synthesis Example 1 were dissolved in 20 ml of toluene. To this was added 5 ml of water, 500 mg of potassium carbonate, 9 mg of tetrakis (triphenylphosphine) palladium (0) (manufactured by Tokyo Chemical Industry Co., Ltd.) and 1 drop of Aliquat 336 (manufactured by Aldrich), and 6 at 100 ° C. under a nitrogen atmosphere. Stir for hours. Subsequently, 100 mg of bromobenzene (manufactured by Tokyo Chemical Industry Co., Ltd.) was added and stirred at 100 ° C. for 1 hour. Next, 100 mg of phenylboronic acid (manufactured by Tokyo Chemical Industry Co., Ltd.) was added, and the mixture was stirred at 100 ° C. for 6 hours. 200 ml of methanol was added to the resulting solution, and the generated solid was collected by filtration and washed with methanol, acetone, hot water, and hot acetone in this order. The obtained solid was added to 200 ml of acetone and heated to reflux for 30 minutes. The solid obtained by filtration while hot was dissolved in 150 ml of chloroform, passed through a silica gel short column (eluent: chloroform), concentrated and reprecipitated with methanol to obtain 43 mg of compound A-3 (yield 30). %). The weight average molecular weight was 92800, the number average molecular weight was 8500, and the degree of polymerization n was 98. The light absorption edge wavelength was 670 nm, the band gap (Eg) was 1.85 eV, and the highest occupied molecular orbital (HOMO) level was −5.14 eV.

実施例1
上記A−1の1mgとPC70BM(Solenn社製)4mgをクロロベンゼン0.25mlの入ったサンプル瓶の中に加え、超音波洗浄機((株)井内盛栄堂製US−2(商品名)、出力120W)中で30分間超音波照射することにより溶液Aを得た。
Example 1
1 mg of the above A-1 and 4 mg of PC 70 BM (manufactured by Solen) are added to a sample bottle containing 0.25 ml of chlorobenzene, and an ultrasonic cleaning machine (US-2 (trade name) manufactured by Inoue Seieido Co., Ltd.) The solution A was obtained by ultrasonic irradiation for 30 minutes in an output of 120 W).

スパッタリング法により正極となるITO透明導電層を120nm堆積させたガラス基板を38mm×46mmに切断した後、ITOをフォトリソグラフィー法により38mm×13mmの長方形状にパターニングした。得られた基板をアルカリ洗浄液(フルウチ化学(株)製、“セミコクリーン”EL56(商品名))で10分間超音波洗浄した後、超純水で洗浄した。この基板を30分間UV/オゾン処理した後に、基板上に正孔輸送層となるPEDOT:PSS水溶液(PEDOT0.8重量%、PPS0.5重量%)をスピンコート法により60nmの厚さに成膜した。ホットプレートにより200℃で5分間加熱乾燥した後、上記の溶液AをPEDOT:PSS層上に滴下し、スピンコート法により膜厚100nmの有機半導体層を形成した。その後、有機半導体層が形成された基板と陰極用マスクを真空蒸着装置内に設置して、装置内の真空度が1×10−3Pa以下になるまで再び排気し、抵抗加熱法によって、負極となるアルミニウム層を80nmの厚さに蒸着した。以上のように、ストライプ状のITO層とアルミニウム層が交差する部分の面積が5mm×5mmである光起電力素子を作製した。 A glass substrate on which an ITO transparent conductive layer serving as a positive electrode having a thickness of 120 nm was deposited by sputtering was cut into 38 mm × 46 mm, and then ITO was patterned into a 38 mm × 13 mm rectangular shape by photolithography. The obtained substrate was subjected to ultrasonic cleaning for 10 minutes with an alkali cleaning solution (“Semico Clean” EL56 (trade name), manufactured by Furuuchi Chemical Co., Ltd.), and then washed with ultrapure water. After this substrate was UV / ozone treated for 30 minutes, a PEDOT: PSS aqueous solution (0.8% by weight of PEDOT, 0.5% by weight of PPS) serving as a hole transport layer was formed on the substrate to a thickness of 60 nm by spin coating. did. After heating and drying at 200 ° C. for 5 minutes using a hot plate, the above solution A was dropped onto the PEDOT: PSS layer, and an organic semiconductor layer having a thickness of 100 nm was formed by spin coating. Thereafter, the substrate on which the organic semiconductor layer is formed and the cathode mask are placed in a vacuum evaporation apparatus, and the vacuum is exhausted again until the degree of vacuum in the apparatus becomes 1 × 10 −3 Pa or less. An aluminum layer was deposited to a thickness of 80 nm. As described above, a photovoltaic device having an area where the stripe-shaped ITO layer intersects with the aluminum layer was 5 mm × 5 mm was produced.

このようにして作製された光起電力素子の正極と負極をヒューレット・パッカード社製ピコアンメーター/ボルテージソース4140Bに接続して、大気中でITO層側から擬似太陽光(山下電装株式会社製 簡易型ソーラシミュレータ YSS−E40、スペクトル形状:AM1.5、強度:100mW/cm)を照射し、印加電圧を−1Vから+2Vまで変化させたときの電流値を測定した。この時の短絡電流密度(印加電圧が0Vのときの電流密度の値)は8.28mA/cm、開放電圧(電流密度が0になるときの印加電圧の値)は0.840V、フィルファクター(FF)は0.460であり、これらの値から算出した光電変換効率は3.20%であった。なお、フィルファクターと光電変換効率は次式により算出した。
フィルファクター=IVmax(mW/cm)/(短絡電流密度(mA/cm)×開放電圧(V))
(ここで、IVmaxは、印加電圧が0Vから開放電圧値の間で電流密度と印加電圧の積が最大となる点における電流密度と印加電圧の積の値である。)
光電変換効率=[(短絡電流密度(mA/cm)×開放電圧(V)×フィルファクター)/擬似太陽光強度(100mW/cm)]×100(%)
以下の比較例におけるフィルファクターと光電変換効率も全て上式により算出した。
The positive and negative electrodes of the photovoltaic device thus fabricated were connected to a picoammeter / voltage source 4140B manufactured by Hewlett-Packard Co., and simulated sunlight (from Yamashita Denso Co., Ltd., simplified) from the ITO layer side in the atmosphere. Type solar simulator YSS-E40, spectrum shape: AM1.5, intensity: 100 mW / cm 2 ), and the current value was measured when the applied voltage was changed from −1V to + 2V. At this time, the short-circuit current density (value of the current density when the applied voltage is 0 V) is 8.28 mA / cm 2 , the open circuit voltage (value of the applied voltage when the current density is 0) is 0.840 V, and the fill factor (FF) was 0.460, and the photoelectric conversion efficiency calculated from these values was 3.20%. The fill factor and photoelectric conversion efficiency were calculated by the following equations.
Fill factor = IVmax (mW / cm 2 ) / (Short-circuit current density (mA / cm 2 ) × Open circuit voltage (V))
(Here, IVmax is the value of the product of the current density and the applied voltage at the point where the product of the current density and the applied voltage becomes maximum when the applied voltage is between 0 V and the open circuit voltage value.)
Photoelectric conversion efficiency = [(short circuit current density (mA / cm 2 ) × open voltage (V) × fill factor) / pseudo sunlight intensity (100 mW / cm 2 )] × 100 (%)
The fill factor and photoelectric conversion efficiency in the following comparative examples were all calculated by the above formula.

実施例2
A−1の代わりに上記A−2を用いた他は実施例1と全く同様にして光起電力素子を作製し、電流−電圧特性を測定した。この時の短絡電流密度は8.12mA/cm、開放電圧は0.830V、フィルファクター(FF)は0.480であり、これらの値から算出した光電変換効率は3.24%であった。
Example 2
A photovoltaic device was produced in the same manner as in Example 1 except that A-2 was used in place of A-1, and current-voltage characteristics were measured. At this time, the short-circuit current density was 8.12 mA / cm 2 , the open-circuit voltage was 0.830 V, the fill factor (FF) was 0.480, and the photoelectric conversion efficiency calculated from these values was 3.24%. .

実施例3
A−1の代わりに上記A−3を用いた他は実施例1と全く同様にして光起電力素子を作製し、電流−電圧特性を測定した。この時の短絡電流密度は8.30mA/cm、開放電圧は0.790V、フィルファクター(FF)は0.490であり、これらの値から算出した光電変換効率は3.21%であった。
Example 3
A photovoltaic device was produced in the same manner as in Example 1 except that A-3 was used instead of A-1, and current-voltage characteristics were measured. The short-circuit current density at this time was 8.30 mA / cm 2 , the open-circuit voltage was 0.790 V, and the fill factor (FF) was 0.490, and the photoelectric conversion efficiency calculated from these values was 3.21%. .

比較例1
A−1の代わりに上記B−1を用いた他は実施例1と全く同様にして光起電力素子を作製し、電流−電圧特性を測定した。この時の短絡電流密度は0.13mA/cm、開放電圧は0.680V、フィルファクター(FF)は0.281であり、これらの値から算出した光電変換効率は0.02%であった。
Comparative Example 1
A photovoltaic device was produced in the same manner as in Example 1 except that B-1 was used instead of A-1, and current-voltage characteristics were measured. The short-circuit current density at this time was 0.13 mA / cm 2 , the open circuit voltage was 0.680 V, the fill factor (FF) was 0.281, and the photoelectric conversion efficiency calculated from these values was 0.02%. .

比較例2
A−1の代わりに下記B−2(ジャーナル オブ マテリアルズ ケミストリー(Journal of Materials Chemistry)、2009年、19巻、4942−4943頁に記載の方法で合成。重量平均分子量は58200、数平均分子量は23900、重合度nは94であった。)を用いた他は実施例1と全く同様にして光起電力素子を作製し、電流−電圧特性を測定した。この時の短絡電流密度は5.81mA/cm、開放電圧は0.710V、フィルファクター(FF)は0.390であり、これらの値から算出した光電変換効率は1.61%であった。
Comparative Example 2
Instead of A-1, the following B-2 (synthesized by the method described in Journal of Materials Chemistry, 2009, Vol. 19, pages 4942-4943. The weight average molecular weight is 58200, and the number average molecular weight is 23900, the degree of polymerization n was 94.) A photovoltaic device was prepared in the same manner as in Example 1 except that was used, and the current-voltage characteristics were measured. The short-circuit current density at this time was 5.81 mA / cm 2 , the open-circuit voltage was 0.710 V, the fill factor (FF) was 0.390, and the photoelectric conversion efficiency calculated from these values was 1.61%. .

Figure 0005664200
Figure 0005664200

比較例3
A−1の代わりに下記B−3(マクロモレキュルズ(Macromolecules)、2003年、36巻、4289頁に記載の方法で合成。重量平均分子量は39700、数平均分子量は20200、重合度nは75.4であった。)を用いた他は実施例1と全く同様にして光起電力素子を作製し、電流−電圧特性を測定した。この時の短絡電流密度は2.74mA/cm、開放電圧は0.880V、フィルファクター(FF)は0.410であり、これらの値から算出した光電変換効率は0.99%であった。
Comparative Example 3
Instead of A-1, it was synthesized by the method described in the following B-3 (Macromolecules, 2003, Volume 36, page 4289. The weight average molecular weight was 39700, the number average molecular weight was 20200, and the polymerization degree n was A photovoltaic device was prepared in exactly the same manner as in Example 1 except that 7) was used, and current-voltage characteristics were measured. At this time, the short-circuit current density was 2.74 mA / cm 2 , the open-circuit voltage was 0.880 V, and the fill factor (FF) was 0.410. The photoelectric conversion efficiency calculated from these values was 0.99%. .

Figure 0005664200
Figure 0005664200

1 基板
2 正極
3 有機半導体層
4 負極
5 一般式(1)で表される構造を有する共役系重合体を含む電子供与性有機材料を有する層
6 電子受容性有機材料を有する層
DESCRIPTION OF SYMBOLS 1 Board | substrate 2 Positive electrode 3 Organic-semiconductor layer 4 Negative electrode 5 The layer which has an electron-donating organic material containing the conjugated polymer which has a structure represented by General formula (1) 6 The layer which has an electron-accepting organic material

Claims (6)

下記一般式(1)で表される構造を有する共役系重合体。
Figure 0005664200
(R〜R16は同じでも異なっていてもよく、水素、アルキル基、アルコキシ基、アリール基、ヘテロアリール基、ハロゲンの中から選ばれる。Aは炭素、窒素またはケイ素を表す。Aが窒素の場合、上記R16は存在しない。W、X、YおよびZは単結合である。nは10以上1000以下の範囲を表す。)
A conjugated polymer having a structure represented by the following general formula (1).
Figure 0005664200
(R 1 to R 16 may be the same or different and are selected from hydrogen, an alkyl group, an alkoxy group, an aryl group, a heteroaryl group, and halogen. A represents carbon, nitrogen, or silicon. A represents nitrogen. In this case, R 16 does not exist. W, X, Y and Z are single bonds . N represents a range of 10 or more and 1000 or less.)
請求項1記載の共役系重合体を含む電子供与性有機材料。 An electron donating organic material comprising the conjugated polymer according to claim 1. 電子受容性有機材料および請求項2記載の電子供与性有機材料を含む光起電力素子用材料。 A material for a photovoltaic device comprising an electron-accepting organic material and the electron-donating organic material according to claim 2. 前記電子受容性有機材料がフラーレン化合物である請求項3記載の光起電力素子用材料。 The photovoltaic element material according to claim 3, wherein the electron-accepting organic material is a fullerene compound. 前記フラーレン化合物がC70誘導体である請求項4記載の光起電力素子用材料。 The fullerene compound material for photovoltaic devices according to claim 4, wherein the C 70 derivative. 少なくとも正極と負極を有する光起電力素子であって、負極と正極の間に請求項3〜5いずれか記載の光起電力素子用材料を含む光起電力素子。 A photovoltaic element having at least a positive electrode and a negative electrode, wherein the photovoltaic element comprises the photovoltaic element material according to any one of claims 3 to 5 between the negative electrode and the positive electrode.
JP2010279071A 2009-12-16 2010-12-15 Conjugated polymer, electron donating organic material, photovoltaic device material and photovoltaic device using the same Expired - Fee Related JP5664200B2 (en)

Priority Applications (1)

Application Number Priority Date Filing Date Title
JP2010279071A JP5664200B2 (en) 2009-12-16 2010-12-15 Conjugated polymer, electron donating organic material, photovoltaic device material and photovoltaic device using the same

Applications Claiming Priority (3)

Application Number Priority Date Filing Date Title
JP2009284772 2009-12-16
JP2009284772 2009-12-16
JP2010279071A JP5664200B2 (en) 2009-12-16 2010-12-15 Conjugated polymer, electron donating organic material, photovoltaic device material and photovoltaic device using the same

Publications (2)

Publication Number Publication Date
JP2011144367A JP2011144367A (en) 2011-07-28
JP5664200B2 true JP5664200B2 (en) 2015-02-04

Family

ID=44459487

Family Applications (1)

Application Number Title Priority Date Filing Date
JP2010279071A Expired - Fee Related JP5664200B2 (en) 2009-12-16 2010-12-15 Conjugated polymer, electron donating organic material, photovoltaic device material and photovoltaic device using the same

Country Status (1)

Country Link
JP (1) JP5664200B2 (en)

Families Citing this family (10)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
WO2011113194A1 (en) * 2010-03-15 2011-09-22 海洋王照明科技股份有限公司 Cyclopentadienedithiophene-quinoxaline conjugated polymer and preparation method and uses thereof
WO2011147067A1 (en) * 2010-05-24 2011-12-01 海洋王照明科技股份有限公司 Quinoxaline conjugated polymer containing fused-ring thiophehe unit, preparation method and uses thereof
JP5300903B2 (en) * 2011-03-29 2013-09-25 株式会社東芝 Polymer, solar cell and solar power generation system using the same
JP2013095813A (en) * 2011-10-31 2013-05-20 Sumitomo Chemical Co Ltd Polymer compound and photoelectric conversion element using the same
JP5591860B2 (en) 2012-03-28 2014-09-17 株式会社東芝 Organic semiconductor and solar cell using the same
JP2013207252A (en) * 2012-03-29 2013-10-07 Sumitomo Chemical Co Ltd Photoelectric conversion element
JP2013207259A (en) * 2012-03-29 2013-10-07 Sumitomo Chemical Co Ltd Photoelectric conversion element
JP2014189666A (en) * 2013-03-27 2014-10-06 Mitsubishi Chemicals Corp Composition for forming semiconductor layer and solar cell element using the composition
CN103420779B (en) * 2013-09-04 2014-08-13 常州夏青化工有限公司 Preparation method of 2, 2'-diiodine-4, 4'-dibromobiphenyl
CN111057222A (en) * 2019-12-30 2020-04-24 广东技术师范大学 Polymer receptor material

Family Cites Families (5)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
JP5546727B2 (en) * 2004-05-18 2014-07-09 メルク パテント ゲゼルシャフト ミット ベシュレンクテル ハフツング Mono-, oligo- and polythieno [3,2-b] thiophenes
CN1302049C (en) * 2005-05-26 2007-02-28 复旦大学 Hyperbranched high-molecular electroluminescent materials
JP5359173B2 (en) * 2007-12-05 2013-12-04 東レ株式会社 Electron donating organic material for photovoltaic element, photovoltaic element material and photovoltaic element
JP5454139B2 (en) * 2008-05-12 2014-03-26 東レ株式会社 Carbon nanotube composite, organic semiconductor composite, and field effect transistor
CN101613462B (en) * 2009-07-15 2011-09-14 中国科学院上海有机化学研究所 Quinoxaline-benzothiadiazole-fluorene polymer and synthesis method and application of organic electroluminescent material with pure green emitted light thereof

Also Published As

Publication number Publication date
JP2011144367A (en) 2011-07-28

Similar Documents

Publication Publication Date Title
JP5533646B2 (en) Material for photovoltaic element and photovoltaic element
KR101548764B1 (en) Electron donating organic material, material for photovoltaic element, and photovoltaic element
JP5664200B2 (en) Conjugated polymer, electron donating organic material, photovoltaic device material and photovoltaic device using the same
KR101361312B1 (en) Electron-donating organic material for photovoltaic devices, material for photovoltaic devices, and photovoltaic devices
JP5359173B2 (en) Electron donating organic material for photovoltaic element, photovoltaic element material and photovoltaic element
JP5482973B1 (en) Conjugated polymer, electron donating organic material, photovoltaic device material and photovoltaic device using the same
JP5655267B2 (en) Quinoxaline compound, electron donating organic material using the same, photovoltaic device material and photovoltaic device
JP5299023B2 (en) Material for photovoltaic element and photovoltaic element
JP5900084B2 (en) Electron donating organic material, photovoltaic device material using the same, and photovoltaic device
WO2014042091A1 (en) Conjugated polymer, and electron-donating organic material, photovoltaic element material and photovoltaic element comprising same
JP5691628B2 (en) Material for photovoltaic element and photovoltaic element
JP6074996B2 (en) Material for photovoltaic element and photovoltaic element
WO2013176156A1 (en) Electron-donating organic material, material for photovoltaic power element using same, and photovoltaic power element using same
JP2012241099A (en) Conjugated polymer, electron-releasing organic material employing the same, material for photovoltaic element and photovoltaic element
JP5428670B2 (en) Material for photovoltaic element and photovoltaic element
JP2022098456A (en) Conjugated compound, electron-donating organic material including the same, material for photovoltaic elements, and photovoltaic element
JP2023031215A (en) Conjugated polymer, conjugated compound, and electron-donating organic material, photovoltaic device material and photovoltaic device that employ the same
JP2014162753A (en) Compound for photovoltaic element, material for photovoltaic element and photovoltaic element

Legal Events

Date Code Title Description
A621 Written request for application examination

Free format text: JAPANESE INTERMEDIATE CODE: A621

Effective date: 20131029

A977 Report on retrieval

Free format text: JAPANESE INTERMEDIATE CODE: A971007

Effective date: 20140205

A131 Notification of reasons for refusal

Free format text: JAPANESE INTERMEDIATE CODE: A131

Effective date: 20140218

A521 Request for written amendment filed

Free format text: JAPANESE INTERMEDIATE CODE: A523

Effective date: 20140402

TRDD Decision of grant or rejection written
A01 Written decision to grant a patent or to grant a registration (utility model)

Free format text: JAPANESE INTERMEDIATE CODE: A01

Effective date: 20141111

A61 First payment of annual fees (during grant procedure)

Free format text: JAPANESE INTERMEDIATE CODE: A61

Effective date: 20141124

R151 Written notification of patent or utility model registration

Ref document number: 5664200

Country of ref document: JP

Free format text: JAPANESE INTERMEDIATE CODE: R151

LAPS Cancellation because of no payment of annual fees