WO2016021660A1 - Copolymer, photoelectric conversion element, solar cell and solar cell module - Google Patents

Copolymer, photoelectric conversion element, solar cell and solar cell module Download PDF

Info

Publication number
WO2016021660A1
WO2016021660A1 PCT/JP2015/072279 JP2015072279W WO2016021660A1 WO 2016021660 A1 WO2016021660 A1 WO 2016021660A1 JP 2015072279 W JP2015072279 W JP 2015072279W WO 2016021660 A1 WO2016021660 A1 WO 2016021660A1
Authority
WO
WIPO (PCT)
Prior art keywords
group
formula
copolymer
substituent
photoelectric conversion
Prior art date
Application number
PCT/JP2015/072279
Other languages
French (fr)
Japanese (ja)
Inventor
理恵子 藤田
光教 古屋
和弘 毛利
賢一 佐竹
真紀 大場
潤也 河井
Original Assignee
三菱化学株式会社
Priority date (The priority date is an assumption and is not a legal conclusion. Google has not performed a legal analysis and makes no representation as to the accuracy of the date listed.)
Filing date
Publication date
Application filed by 三菱化学株式会社 filed Critical 三菱化学株式会社
Priority to JP2016540274A priority Critical patent/JPWO2016021660A1/en
Publication of WO2016021660A1 publication Critical patent/WO2016021660A1/en

Links

Images

Classifications

    • CCHEMISTRY; METALLURGY
    • C08ORGANIC MACROMOLECULAR COMPOUNDS; THEIR PREPARATION OR CHEMICAL WORKING-UP; COMPOSITIONS BASED THEREON
    • C08GMACROMOLECULAR COMPOUNDS OBTAINED OTHERWISE THAN BY REACTIONS ONLY INVOLVING UNSATURATED CARBON-TO-CARBON BONDS
    • C08G61/00Macromolecular compounds obtained by reactions forming a carbon-to-carbon link in the main chain of the macromolecule
    • C08G61/12Macromolecular compounds containing atoms other than carbon in the main chain of the macromolecule

Definitions

  • the present invention relates to a copolymer, a photoelectric conversion element, a solar cell, and a solar cell module.
  • ⁇ -conjugated polymers are used as semiconductor materials for organic electronic devices such as organic solar cells, organic EL elements, organic thin film transistors, and organic light emitting sensors.
  • organic electronic devices such as organic solar cells, organic EL elements, organic thin film transistors, and organic light emitting sensors.
  • organic solar cell it is desired to improve sunlight absorption efficiency, and it is important to develop a polymer that can absorb light having a long wavelength (600 nm or more).
  • a copolymer of a donor monomer and an acceptor monomer hereinafter sometimes referred to as a copolymer
  • Non-Patent Document 1 describes a photoelectric conversion element using a copolymer having an imidothiophene unit and a dithienocyclopentadiene unit.
  • Non-Patent Documents 1, 2, 3 and Patent Document 1 describe photoelectric conversion elements using a copolymer having an imidothiophene unit and a dithienosilole unit.
  • Non-Patent Document 2 describes a photoelectric conversion element using a copolymer having an imidothiophene unit and a dithienogermol unit.
  • Patent Document 2 describes an example in which a photoelectric conversion element is manufactured using a copolymer having a donor unit, an acceptor unit, and a spacer unit.
  • organic thin-film solar cells are expected to be used in environments exposed to sunlight, not only conversion efficiency but also exposure stability is desired for practical use of organic thin-film solar cells. .
  • the organic thin-film solar cell using the copolymer described in Patent Document 1 and Non-Patent Documents 1 to 3 is irradiated with light at the manufacturing stage or when used. It has been found that there is a possibility that the conversion efficiency deteriorates as the time elapses. This is mainly because the copolymer of the material constituting the photoelectric conversion element of the organic thin film solar cell is deteriorated by light.
  • the present invention solves the above problems, and when used in a photoelectric conversion element, a copolymer that can improve the exposure stability of the photoelectric conversion element, and a photoelectric conversion element, a solar cell, and a solar cell module having high exposure stability.
  • the issue is to provide.
  • the inventors of the present application can solve the above problems by using a copolymer having a specific repeating unit in addition to a repeating unit of a donor monomer unit and an acceptor monomer unit.
  • the present invention has been found and the present invention has been achieved. That is, the gist of the present invention is as follows.
  • D represents a donor monomer unit
  • A1 represents an acceptor monomer unit.
  • A2 represents an acceptor monomer unit
  • L represents a direct bond or a divalent monomer unit.
  • R 1 and R 2 each independently represent a monovalent organic group, and the repeating unit represented by the formula (I) and the repeating unit represented by the formula (II) are the same as each other. Not a repeating unit.
  • [2] The copolymer according to [1], wherein D in the formula (I) is a structural unit represented by the following formula (III) or a structural unit represented by the following formula (XI): .
  • Ar 1 and Ar 2 each independently represent an aromatic ring which may have a substituent.
  • X 1 represents Q 1 (R 3 ) (R 4 ) or Q 3.
  • Q 1 represents an atom selected from the periodic table group 14 element
  • R 3 and R 4 are each independently, .
  • Q 3 represents a hydrogen atom or a monovalent organic group
  • R 10 represents a hydrogen atom or a monovalent organic group
  • X 2 represents a direct bond, an oxygen atom (O), a sulfur atom (S), N (R 5 ) or Q 2 (R 6 ) (R 7 )
  • Q 2 represents an atom selected from Group 14 elements of the periodic table
  • R 5 to R 7 each represents a hydrogen atom or a monovalent organic group.
  • Ar 3 and Ar 4 each independently represent an aromatic ring optionally having a substituent, and X 3 and X 4 each independently represent Q 4 (R 11 ).
  • Q 4 represents an atom selected from Group 14 elements of the periodic table, and R 11 represents a hydrogen atom or a monovalent organic group.
  • A1 and A2 are each a structural unit represented by the following formula (XIV) or a structural unit represented by the following formula (XV). The copolymer according to [1] or [2].
  • Ar 5 is an aromatic hydrocarbon ring which may have a substituent, an aliphatic heterocyclic ring which may have a substituent, or an aromatic which may have a substituent.
  • X 5 represents an atom selected from Group 16 elements of the periodic table.
  • Ar 6 represents an aromatic hydrocarbon ring that may have a substituent, an aliphatic heterocyclic ring that may have a substituent, or an aromatic that may have a substituent.
  • X 6 and X 7 each independently represent a nitrogen atom (N) or Q 5 (R 12 ), Q 5 represents an atom selected from Group 14 elements of the Periodic Table, 12 represents a hydrogen atom or a monovalent organic group.
  • L is a direct bond, a divalent monocyclic aromatic heterocyclic group which may have a substituent, and a substituent. Any one of [1] to [4], wherein the cyclic aromatic heterocyclic group is one selected from the group consisting of divalent polycyclic aromatic heterocyclic groups linked to each other The copolymer described.
  • a photoelectric conversion element having at least a pair of electrodes and an active layer between the pair of electrodes on a substrate, wherein the active layer is any one of [1] to [5] A photoelectric conversion element comprising a copolymer.
  • a solar cell having the photoelectric conversion element according to [6].
  • the copolymer which can improve the exposure stability of a photoelectric conversion element, and the photoelectric conversion element, solar cell, and solar cell module provided with high exposure stability are provided. Can do.
  • FIG. 1 is a cross-sectional view schematically showing a configuration of a photoelectric conversion element as one embodiment of the present invention.
  • FIG. 2 is a cross-sectional view schematically showing a configuration of a solar cell as one embodiment of the present invention.
  • FIG. 3 is a cross-sectional view schematically showing the configuration of the solar cell module as one embodiment of the present invention.
  • copolymer according to the present invention has a repeating unit represented by the following formula (I) and a repeating unit represented by the following formula (II).
  • the repeating unit represented by the following formula (I) and the repeating unit represented by the following formula (II) are not the same repeating unit.
  • the repeating unit represented by the formula (I) and the repeating unit represented by the formula (II) are not the same repeating unit. It means that the repeating unit represented by II) is not the same structural unit.
  • the repeating unit represented by the formula (I) and the repeating unit represented by the formula (II) differ only in substituents, the repeating unit represented by the formula (I) and the formula (II) are also represented.
  • the repeating unit is different from the repeating unit.
  • D represents a donor monomer unit
  • A1 represents an acceptor monomer unit.
  • the donor monomer unit means a monomer unit having a small ionization potential and a strong tendency to donate electrons.
  • the acceptor monomer unit means a monomer unit having a large electron affinity and a strong tendency to accept electrons.
  • the donor monomer unit (D) is a monomer unit having a smaller ionization potential and electron affinity than the acceptor monomer unit (A1), and the acceptor monomer unit (A1) is more than the donor monomer unit (D). Is a monomer unit having a large ionization potential and electron affinity.
  • the donor monomer unit (D) has a HOMO energy level higher than that of the acceptor monomer unit (A1) and is higher than the LUMO energy level of the acceptor monomer unit.
  • HOMO energy level and LUMO energy level can be estimated experimentally by photoelectron yield spectroscopy (PYS) measurement, ultraviolet photoelectron spectroscopy (UPS) measurement, inverse photoelectron spectroscopy (IPES) measurement, cyclic voltammetry measurement, etc. It can be calculated by quantum chemical calculation such as orbital method (MO method) and density half function method (DFT method).
  • the calculation is performed by substituting each terminal portion with a hydrogen atom.
  • the donor monomer unit (D) is not particularly limited as long as it has the above-described characteristics, and examples thereof include a divalent aromatic group which may have a substituent.
  • examples of the divalent aromatic group include a divalent aromatic hydrocarbon group and a divalent aromatic heterocyclic group.
  • the divalent aromatic hydrocarbon group is not particularly limited, and examples thereof include a divalent condensed polycyclic aromatic hydrocarbon group.
  • a divalent organic group obtained by removing two hydrogen atoms from an aromatic hydrocarbon compound such as naphthalene, fluorene, anthracene, phenanthrene, perylene, or pyrene can be given.
  • the divalent aromatic heterocyclic group is not particularly limited, and is a divalent monocyclic aromatic heterocyclic group, a divalent condensed polycyclic aromatic heterocyclic group, or a divalent monocyclic. And a divalent polycyclic aromatic heterocyclic group in which a divalent condensed polycyclic aromatic heterocyclic group is linked.
  • thiophene bithiophene, terthiophene, quarterthiophene, thienothiophene, dithienothiophene, benzodithiophene, cyclopentadithiophene, dithienosilole, dithienogermole, indasenodithiophene , Divalent organic groups obtained by removing two hydrogen atoms from an aromatic heterocyclic compound such as dithienopyrrole, carbazole, arylamine, and isothianaphthene. Further, donor monomer units described in non-patent literature (Macromolecules 2012, 45, 607-632) can be mentioned.
  • the divalent aromatic hydrocarbon group and aromatic heterocyclic group constituting the donor monomer unit (D) may have a substituent as described above.
  • the substituent is not particularly limited, and examples thereof include a monovalent organic group. Specifically, aliphatic hydrocarbon group, aromatic hydrocarbon group, aliphatic heterocyclic group, aromatic heterocyclic group, alkoxy group, aryloxy group, amino group, amide group, alkoxycarbonyl group, aryloxycarbonyl group , An alkylcarbonyl group, an arylcarbonyl group, an alkylthio group, an arylthio group, or a halogen atom.
  • the number of the substituents is not particularly limited, and may have a plurality of substituents as long as substitution is possible. Moreover, you may have 2 or more types of substituents.
  • the donor monomer unit (D) is easily expressed on the same plane and is easily expressed by the structural unit represented by the following formula (III) or the following formula (XI) from the viewpoint of easily increasing the wavelength by ⁇ conjugation. It is preferable that it is a structural unit.
  • Ar 1 and Ar 2 each independently represent an aromatic ring which may have a substituent.
  • the aromatic ring which may have a substituent include an aromatic hydrocarbon ring which may have a substituent or an aromatic heterocyclic ring which may have a substituent.
  • Ar 1 and Ar 2 form a condensed ring with the ring containing X 1 and X 2 .
  • the aromatic hydrocarbon ring of the aromatic hydrocarbon ring which may have a substituent is not particularly limited, but is preferably an aromatic hydrocarbon ring having 6 to 30 carbon atoms.
  • monocyclic aromatic hydrocarbon rings such as benzene rings; condensed polycyclic rings such as naphthalene rings, indane rings, indene rings, phenanthrene rings, fluorene rings, anthracene rings, azulene rings, pyrene rings, and perylene rings
  • the aromatic heterocyclic ring that may have a substituent is not particularly limited, but is preferably an aromatic heterocyclic ring having 2 to 30 carbon atoms.
  • monocyclic aromatic heterocycles such as thiophene ring, furan ring, pyridine ring, pyrimidine ring, thiazole ring, oxazole ring, triazole ring; or thienothiophene ring, benzothiophene ring, benzofuran ring, benzothiazole
  • condensed polycyclic aromatic heterocycles such as a ring, a benzoxazole ring, a benzotriazole ring, and a thiadiazolopyridine ring.
  • a thiophene ring, a pyridine ring, a pyrimidine ring, a thiazole ring, a thiadiazole ring, an oxazole ring, an oxadiazole ring, or a triazole ring is preferable.
  • the substituent that the aromatic hydrocarbon ring and aromatic heterocyclic ring that are aromatic rings may have is not particularly limited.
  • the divalent monomer unit (D1) constituting the donor monomer unit (D1) is not limited.
  • the substituent which the aromatic hydrocarbon group and the bivalent aromatic heterocyclic group may have is mentioned, and may have a plurality of substituents within a substitutable range.
  • the aromatic ring may have two or more kinds of substituents.
  • Ar 1 and Ar 2 are each independently an optionally substituted aromatic hydrocarbon ring having 2 to 6 carbon atoms, or an optionally substituted carbon.
  • An aromatic heterocycle having 2 to 6 carbon atoms is more preferable, and an aromatic heterocycle having 2 to 6 carbon atoms which may have a substituent is particularly preferable.
  • Specific examples include a furan ring which may have a substituent or a thiophene ring which may have a substituent, and a thiophene ring which may have a substituent is particularly preferable.
  • X 1 represents Q 1 (R 3 ) (R 4 ) or Q 3 (R 10 ).
  • Q 1 represents an atom selected from Group 14 elements of the periodic table, preferably a carbon atom (C), a silicon atom (Si), or a germanium atom (Ge).
  • Q 3 represents an atom selected from Group 15 elements of the periodic table, preferably nitrogen atom (N) or phosphorus atom (P).
  • R 3 and R 4 each represent a group bonded to Q 1 , and each independently represents a hydrogen atom or a monovalent organic group.
  • R 3 and R 4 may be the same group or different from each other.
  • R 10 represents a group bonded to Q 3 and represents a hydrogen atom or a monovalent organic group.
  • the monovalent organic group is not particularly limited, but may have an aliphatic hydrocarbon group that may have a substituent, an aromatic hydrocarbon group that may have a substituent, or a substituent.
  • Examples of the aliphatic hydrocarbon group include a linear aliphatic hydrocarbon group, a branched aliphatic hydrocarbon group, and a cyclic aliphatic hydrocarbon group.
  • the aliphatic hydrocarbon group has 1 or more carbon atoms, preferably 3 or more, more preferably 4 or more, and preferably 30 or less, and 20 or less. More preferably, it is more preferably 16 or less, and particularly preferably 12 or less.
  • the range of the carbon number is the number of carbons forming the longest straight chain.
  • linear aliphatic hydrocarbon group examples include a linear alkyl group, a linear alkenyl group, and a linear alkynyl group.
  • the linear alkyl group is not particularly limited, and examples thereof include n-butyl group, n-hexyl group, n-heptyl group, n-octyl group, n-decyl group, and n-dodecyl group.
  • the linear alkenyl group is not particularly limited, and examples thereof include a 5-hexenyl group, a 7-octenyl group, an 11-dodecenyl group, and a 12-tridecenyl group.
  • the linear alkynyl group is not particularly limited, and examples thereof include a 5-hexynyl group, a 7-octynyl group, a 9-decynyl group, and an 11-dodecynyl group.
  • Examples of the branched aliphatic hydrocarbon group include a branched alkyl group, a branched alkenyl group, and a branched alkynyl group.
  • Examples of the branched alkyl group include a branched primary alkyl group, a branched secondary alkyl group, and a branched tertiary alkyl group.
  • the branched primary alkyl group means a branched alkyl group having two hydrogen atoms bonded to a carbon atom having a free valence.
  • the branched secondary alkyl group means a branched alkyl group having one hydrogen atom bonded to a carbon atom having a free valence.
  • the branched tertiary alkyl group means a branched alkyl group having no hydrogen atom bonded to a carbon atom having a free valence.
  • the free valence refers to a substance that can form a bond with another free valence as described in the organic chemistry / biochemical nomenclature (above) (Revised 2nd edition, Nankodo, 1992).
  • the branched primary alkyl group is not particularly limited, and examples thereof include 2-ethylhexyl group, 2-butyloctyl group, 3,7-dimethyloctyl group, 2-hexyldecyl group, and 2-decyltetradecyl group. It is done.
  • the branched secondary alkyl group is not particularly limited, and examples thereof include isopropyl group, 3-ethyl-1,5-dimethylnonyl group, and 1-propylheptyl group.
  • the branched tertiary alkyl group is not particularly limited, and examples thereof include a t-butyl group, a 1-butyl-1-ethylpentyl group, a 1-butyl-1-methylpentyl group, and a 1-ethyl-1-methylhexyl group.
  • the branched alkenyl group is not particularly limited, and examples thereof include a 2-methyl-2-propenyl group, a 3-methyl-3-butenyl group, and a 4-methyl-2-hexenyl group.
  • the branched alkynyl group is not particularly limited, and examples thereof include 1-methyl-2-propenyl group, 2-methyl-3-butenyl group, 4-methyl-2-hexenyl group and the like.
  • the aromatic hydrocarbon group is not particularly limited, and examples thereof include a monocyclic aromatic hydrocarbon group, a polycyclic aromatic hydrocarbon group, and a condensed polycyclic aromatic hydrocarbon group.
  • the aromatic hydrocarbon group has preferably 6 or more carbon atoms, on the other hand, preferably 30 or less, more preferably 20 or less, and particularly preferably 14 or less.
  • Specific examples include a phenyl group, a naphthyl group, an indanyl group, an indenyl group, a fluorenyl group, an anthracenyl group, and an azulenyl group. Of these, a phenyl group is preferred.
  • the aliphatic heterocyclic group is not particularly limited, but the aliphatic heterocyclic group preferably has 2 or more carbon atoms, on the other hand, preferably 30 or less, more preferably 14 or less. Preferably, it is 10 or less, more preferably 6 or less. Specific examples include an oxetanyl group, a pyrrolidinyl group, a tetrahydrofuryl group, a tetrahydrothienyl group, a piperidinyl group, a tetrahydropyranyl group, and a tetrahydrothiopyranyl group.
  • the aromatic heterocyclic group is not particularly limited, and examples thereof include a monocyclic aromatic heterocyclic group, a polycyclic aromatic heterocyclic group, and a condensed polycyclic aromatic heterocyclic group.
  • the number of carbon atoms contained in the aromatic heterocyclic group is preferably 2 or more, on the other hand, preferably 30 or less, more preferably 20 or less, and particularly preferably 14 or less.
  • a thienyl group, a pyridyl group, a pyrimidyl group, a thiazolyl group, or an oxazolyl group can be given.
  • the alkoxy group is not particularly limited, but the alkoxy group has 1 or more carbon atoms, preferably 3 or more, more preferably 5 or more, and preferably 30 or less. It is more preferably 20 or less, and particularly preferably 14 or less. Specific examples include a hexyloxy group, an octyloxy group, a nonyloxy group, a decyloxy group, a dodecyloxy group, and a tetradecyloxy group.
  • alkylcarbonyl group, arylcarbonyl group, alkylthio group, and arylthio group may have is not particularly limited.
  • aliphatic hydrocarbon group aromatic hydrocarbon group, aliphatic heterocyclic group, or aromatic heterocyclic group, alkoxy group, aryloxy group, amino group, amide group, alkoxycarbonyl group, aryloxycarbonyl group, alkyl
  • alkoxycarbonyl group amino group, amide group, alkoxycarbonyl group, aryloxycarbonyl group, alkyl
  • substituents may further have another substituent.
  • R 3 and R 4 are each independently a linear aliphatic hydrocarbon group having 4 to 12 carbon atoms or a branched aliphatic hydrocarbon group having 4 to 12 carbon atoms. It is preferable that In particular, a linear alkyl group having 4 to 12 carbon atoms or a branched alkyl group having 4 to 12 carbon atoms is preferable. For example, n-octyl group, 2-ethylhexyl group and the like can be mentioned. In the case of a branched aliphatic hydrocarbon group, the range of the carbon number is the number of carbons forming the longest straight chain.
  • X 2 represents a direct bond, an oxygen atom (O), a sulfur atom (S), N (R 5 ), or Q 2 (R 6 ) (R 7 ).
  • Q 2 represents an atom selected from Group 14 elements of the periodic table, and examples thereof include a carbon atom (C), a silicon atom (Si), or a germanium atom (Ge), which is a silicon atom (Si). It is particularly preferred.
  • R 5 represents a group bonded to the nitrogen atom (N), and R 6 and R 7 each represents a group bonded to Q 2 .
  • R 5 to R 7 are each a hydrogen atom or a monovalent organic group, and specific examples thereof include the groups described for R 3 and R 4 , and preferred groups are also the same.
  • X 2 is preferably a direct bond, an oxygen atom (O), a sulfur atom (S), or Q 2 (R 6 ) (R 7 ).
  • X 2 is more preferably a direct bond, an oxygen atom (O) or a sulfur atom (S) Particularly preferred is a direct bond.
  • examples of the structural unit represented by the above formula (III) include the following structural units.
  • the donor monomer unit (D) is a structural unit represented by the following formula (XII) in which both Ar 1 and Ar 2 are thiophene rings. preferable.
  • X 1 and X 2 are synonymous with X 1 and X 2 of In the formula (III), the same is true preferred group.
  • X 3 and X 4 each independently represent Q 4 (R 11 ).
  • Q 4 represents an atom selected from Group 14 elements of the periodic table, and specifically includes a carbon atom (C), a silicon atom (Si), or a germanium atom (Ge). Among them, a carbon atom (C) It is preferable that R 11 represents a group bonded to Q 4 and represents a hydrogen atom or a monovalent organic group.
  • the monovalent organic group is not particularly limited, but has an aliphatic hydrocarbon group that may have a substituent, an aromatic hydrocarbon group that may have a substituent, and a substituent.
  • These groups are not particularly limited, but specific examples include the groups mentioned for R 3 above, and the preferred groups are also the same.
  • X 3 and X 4 may be the same group or different groups.
  • Ar 3 and Ar 4 each independently represent an aromatic ring which may have a substituent
  • Ar 3 and Ar 4 are a ring containing X 3 and X 4 and a condensed ring Form.
  • the aromatic ring which may have a substituent include an aromatic hydrocarbon ring which may have a substituent or an aromatic heterocyclic ring which may have a substituent.
  • the aromatic hydrocarbon ring which may have a substituent and the aromatic heterocyclic ring which may have a substituent are not particularly limited, but Ar 1 and Ar 2 in the formula (III)
  • the aromatic hydrocarbon ring which may have the substituent mentioned and the aromatic heterocyclic ring which may have a substituent are mentioned.
  • Ar 3 and Ar 4 are both preferably structural units represented by the following formula (XIII), which are thiophene rings.
  • the donor monomer unit is represented by the following formula (IV) in which X 1 is Q 1 (R 3 ) (R 4 ) and X 2 is a direct bond in the above formula (XII). It is preferably a structural unit.
  • the reason why the donor monomer unit (D) is preferably a repeating unit represented by the above formula (IV) includes the following reasons.
  • a copolymer having the repeating unit represented by the above formula (IV) as a main component is used for a photoelectric conversion element, high conversion efficiency can be expected, but the photoelectric conversion element using the copolymer was exposed. In some cases, conversion efficiency may be significantly reduced.
  • the copolymer mainly composed of the repeating unit represented by the above formula (II) tends not to have high conversion efficiency, but the copolymers form a good ⁇ stack and have high exposure stability. Tend.
  • the copolymer having the repeating unit represented by the above formula (II) is used for a photoelectric conversion element, thereby having high conversion efficiency and high exposure stability.
  • a photoelectric conversion element can be provided.
  • Q 1 has the same meaning as to Q 1 in formula (III).
  • Q 1 is preferably a silicon atom (Si).
  • R 3 and R 4 have the same meanings as R 3 and R 4 mentioned in the description of formula (III), respectively. Among them, R 3 and R 4 are each a linear aliphatic hydrocarbon group that may have a substituent or a branched aliphatic hydrocarbon group that may have a substituent. Is preferred.
  • A1 represents an acceptor monomer unit as described above.
  • the acceptor monomer unit is not particularly limited as long as it has an acceptor property, and examples thereof include a divalent aromatic group which may have a substituent.
  • examples of the divalent aromatic group include a divalent aromatic hydrocarbon group and a divalent aromatic heterocyclic group. Examples include benzothiadiazole, naphthobisiathiazole, diketopyrrolopyrrole, thienothiophene, thiazole, thiadiazole, oxazole, oxadiazole, pyridine, pyrimidine, quinoxaline, thienopyrazine, imidothiophene, and fluorobenzene.
  • acceptor monomer units described in non-patent literature can be mentioned.
  • the divalent aromatic hydrocarbon group and divalent aromatic heterocyclic group constituting these acceptor monomer units may have a substituent.
  • the substituent that the acceptor monomer unit may have is not particularly limited, and examples thereof include the substituent that the donor monomer unit described above may have.
  • the acceptor monomer unit is preferably a structural unit represented by the following formula (XIV) or a structural unit represented by the following formula (XV).
  • Ar 5 is an aromatic hydrocarbon ring that may have a substituent, an aliphatic heterocyclic ring that may have a substituent, or an aromatic that may have a substituent.
  • Group heterocycles The aromatic hydrocarbon ring which may have a substituent or the aromatic hydrocarbon ring which may have a substituent is the aromatic heterocycle of the aromatic heterocycle which may have a substituent, Ar in the above formula (III)
  • the aromatic hydrocarbon ring and aromatic heterocyclic ring mentioned in 1 are mentioned.
  • a thiophene ring, a pyridine ring, a pyrimidine ring, a thiazole ring, a thiadiazole ring, an oxazole ring, an oxadiazole ring, or a triazole ring is preferable.
  • the aliphatic heterocyclic ring include a pyrrolidine ring and a piperidine ring, and among them, a pyrrolidine ring is preferable.
  • X 5 represents an atom selected from Group 16 elements of the periodic table. Specifically, an oxygen atom (O), a sulfur atom (S), a selenium atom (Se) or a tellurium atom ( Te). Of these, X 5 is preferably a sulfur atom.
  • Ar 6 represents an aromatic hydrocarbon ring that may have a substituent, an aliphatic heterocyclic ring that may have a substituent, or an aromatic that may have a substituent.
  • the aromatic hydrocarbon ring optionally having a substituent, the aliphatic heterocyclic ring optionally having a substituent or the aromatic heterocyclic ring optionally having a substituent is not particularly limited, For example, the aromatic hydrocarbon ring which may have a substituent mentioned for Ar 5 in the above formula (XIV), an aliphatic heterocyclic ring which may have a substituent, or a substituent Aromatic heterocycles may be mentioned.
  • X 6 and X 7 each independently represent a nitrogen atom (N) or Q 5 (R 12 ).
  • Q 5 represents an atom selected from Group 14 elements of the periodic table, and specifically includes a carbon atom (C), a silicon atom (Si), or a germanium atom (Ge), and among them, a carbon atom (C)
  • R 12 represents a group bonded to Q 5 and represents a hydrogen atom or a monovalent organic group.
  • the monovalent organic group is not particularly limited, and examples thereof include the groups described above for R 3 .
  • the acceptor monomer unit (A1) is preferably a structural unit represented by the following formula (V).
  • X 5 has the same meaning as X 5 in the formula (XIV), represents an atom selected from periodic table Group 16 element, specifically, an oxygen atom (O), sulfur atom (S) represents a selenium (Se) atom or a tellurium atom (Te).
  • X 5 is preferably an oxygen atom (O) or a sulfur atom (S), and particularly preferably a sulfur atom (S).
  • R 8 may be a hydrogen atom or a monovalent organic group.
  • the monovalent organic group is not particularly limited, but may have an aliphatic hydrocarbon group that may have a substituent, an aromatic hydrocarbon group that may have a substituent, or a substituent.
  • An alkylcarbonyl group which may have a group, an arylcarbonyl group which may have a substituent, an alkylthio group which may have a substituent, an arylthio group which may have a substituent, or A halogen atom is mentioned. Specific groups of these groups are not particularly limited, and examples thereof include the same groups as those described above for R 3 and R 4 . Moreover, the substituent which these groups may have includes the same substituents as the substituents mentioned in the above R 3 and R
  • R 8 is preferably a linear aliphatic hydrocarbon group which may have a substituent or an aromatic hydrocarbon group which may have a substituent.
  • the aromatic hydrocarbon group preferably has an alkoxy group or an aliphatic hydrocarbon group as a substituent in order to improve solubility and conversion efficiency.
  • the preferable form of the repeating unit represented by the formula (I) of the copolymer according to the present invention is a structural unit in which the donor monomer unit (D) is represented by the above formula (III) or the above formula (IV).
  • the acceptor monomer unit (A1) is a repeating unit which is a structural unit represented by the above formula (XIV).
  • the donor monomer unit (D) is a repeating unit represented by the above formula (IV) or the acceptor monomer unit (A1) is a repeating unit represented by the above formula (V). More preferably, the donor monomer unit (D) is a monomer unit represented by the above formula (IV) and the acceptor monomer unit (A1) is a repeating unit which is a monomer unit represented by the above formula (V).
  • repeating unit represented by the formula (I) of the copolymer according to the present invention will be exemplified.
  • the repeating unit represented by the formula (I) is not limited to the following.
  • the copolymer according to the present invention has a repeating unit represented by the following formula (II).
  • L includes a direct bond or a divalent linking group.
  • the divalent linking group There are no particular restrictions on the divalent linking group, but it is likely to be coplanar with the thiophene rings on both sides, so that it has 2 or more and 8 or less carbon atoms such as a vinylene group or an alkenylene group or an ethynylene group or more. Examples thereof include an alkynylene group of 8 or less, a divalent aromatic hydrocarbon group which may have a substituent, or a divalent aromatic heterocyclic group which may have a substituent.
  • the divalent aromatic hydrocarbon group which may have a substituent and the divalent aromatic heterocyclic group which may have a substituent are monocyclic, polycyclic, or condensed polycyclic Any of these may be used.
  • a direct bond a divalent monocyclic aromatic heterocyclic group which may have a substituent, or a monocyclic aromatic heterocyclic group which may have a substituent It is preferably a cyclic aromatic heterocyclic group, specifically, a thienylene group which may have a substituent, a bithienylene group which may have a substituent, or a substituent.
  • An optional tertienylene group may be mentioned.
  • L has a direct bond and a substituent. It is preferably a thienylene group which may have a substituent or a bithienylene group which may have a substituent, more preferably a thienylene group which may have a direct bond or a substituent, and a direct bond. Particularly preferred.
  • the substituent that the divalent aromatic hydrocarbon group and the divalent aromatic heterocyclic group may have is not particularly limited, and examples thereof include an aliphatic hydrocarbon group, an aromatic hydrocarbon group, an aromatic group.
  • An aromatic group, an alkoxy group, or a halogen atom can be mentioned, and it is preferably unsubstituted in order to reduce steric hindrance.
  • R 1 and R 2 each independently represents a monovalent organic group.
  • the monovalent organic group is not particularly limited, but has an aliphatic hydrocarbon group that may have a substituent, an aromatic hydrocarbon group that may have a substituent, and a substituent.
  • An alkylcarbonyl group which may have a substituent, an arylcarbonyl group which may have a substituent, an alkylthio group which may have a substituent, and an arylthio group which may have a substituent; Can be mentioned.
  • R 1 and R 2 may be the same group or different groups. These groups are not particularly limited, and specific examples thereof include the same groups as those described for R 3 and R 4 in formula (III). Among them, both R 1 and R 2 may have an aliphatic hydrocarbon group which may have a substituent, an aromatic hydrocarbon group which may have a substituent, or a substituent. An aliphatic heterocyclic group, an aromatic heterocyclic group which may have a substituent, and an alkoxy group which may have a substituent are preferable, and among them, an aliphatic which may have a substituent An aromatic hydrocarbon group optionally having a substituent, an aliphatic heterocyclic group optionally having a substituent, and an aromatic heterocyclic group optionally having a substituent. More preferably it is.
  • R 1 and R 2 have the above-described group, the solubility of the copolymer having the structural unit in the solvent is improved as compared with the case where R 1 and R 2 are hydrogen atoms, An improvement in properties can be expected, and uniform film formation becomes possible.
  • the copolymer having the structural unit at the time of film formation is easily oriented in a certain direction, it contributes to a longer wavelength, and carrier movement proceeds smoothly, so that improvement in conversion efficiency can be expected.
  • it is extremely important that the above-mentioned groups are arranged at the positions of R 1 and R 2 in the formula (II).
  • the thiophene ring-L-thiophene ring in formula (II) is preferably a donor component. Since the thiophene ring-L-thiophene ring in the formula (II) is a donor component, hole transport through the ⁇ stack formed by L and the thiophene rings on both sides of the thiophene ring smoothly proceeds, thereby providing photoelectric conversion characteristics. Is considered to increase. Further, the thiophene ring-L-thiophene ring in the formula (II) is considered to be a donor component, so that intramolecular charge transfer with the A2 component is likely to occur, so that the absorption wavelength tends to be long. .
  • R 1 and R 2 are preferably each independently an aliphatic hydrocarbon group or an alkoxy group in order to further suppress steric hindrance among the groups described above, and when used as an organic thin film solar cell.
  • An aliphatic hydrocarbon group is particularly preferable because the open circuit voltage tends to increase.
  • R 1 and R 2 are preferably aliphatic hydrocarbon groups having 3 to 16 carbon atoms, and in particular, having 6 to 14 carbon atoms. It is preferably an aliphatic hydrocarbon group.
  • the aliphatic hydrocarbon group is particularly preferably an alkyl group. In this case, an alkyl group having 3 to 16 carbon atoms is preferable, and an alkyl group having 6 to 14 carbon atoms is particularly preferable. Specific examples include an n-octyl group, an n-decyl group, and an n-dodecyl group.
  • A2 represents an acceptor monomer unit in the same manner as A1.
  • A2 is an acceptor component, it is considered that the absorption wavelength becomes longer because intramolecular charge transfer easily occurs between the thiophene ring and the L-thiophene ring that functions as a donor component.
  • A2 is not particularly limited, but is preferably a structural unit represented by the above formula (XIV) or a structural unit represented by the above formula (XV) mentioned in the acceptor monomer unit (A1), and is preferably a repeating unit. The unit is the same.
  • A1 and A2 may be the same acceptor monomer units or different acceptor monomer units.
  • the main skeleton of A1 and the main skeleton of A2 are the same in order to easily develop high photoelectric conversion characteristics because carrier movement occurs smoothly without generating intramolecular carrier traps, and A1 and It is particularly preferred that A2 is the same.
  • the main skeleton of A1 and the main skeleton of A2 are the same as long as the main skeleton of A1 and the main skeleton of A2 are the same, the substituents of the main skeleton of A1 and the main skeleton of A have It means that the substituents may be different.
  • A1 and A2 being the same means that A1 and A2 including the substituent are the same structural unit.
  • A1 is a repeating unit represented by the above formula (V)
  • A2 is preferably a structural unit represented by the following formula (VI).
  • X 8 represents an atom selected from Group 16 elements of the periodic table, specifically, an oxygen atom (O), a sulfur atom (S), a selenium atom (Se), or tellurium (Te ) Atoms. Among them, an oxygen atom or a sulfur atom is preferable, and a sulfur atom is particularly preferable.
  • R 9 represents a hydrogen atom or a monovalent organic group.
  • the monovalent organic group is not particularly limited, but may have an aliphatic hydrocarbon group that may have a substituent, an aromatic hydrocarbon group that may have a substituent, or a substituent.
  • aliphatic hydrocarbon group, aromatic hydrocarbon group, aliphatic heterocyclic group, an aromatic heterocyclic group is not particular limitation, include the same groups as R 8, a preferred group in R 8 Examples thereof include the same groups as those mentioned above.
  • R 9 in the formula (VI) may be the same as or different from R 8 in the formula (V), but R 8 and R 9 are preferably the same group.
  • repeating unit represented by the formula (II) of the copolymer according to the present invention will be exemplified.
  • the repeating unit represented by the formula (II) is not limited to the following.
  • the repeating unit represented by the above formula (I) and the repeating unit represented by the above formula (II) can be arbitrarily selected, but the above formula (I) and the above formula (II) ),
  • the donor monomer unit (D) is a structural unit represented by the above formula (III) or a structural unit represented by the above formula (XI), and the acceptor monomer units (A1) and (A2) are The structural unit represented by the above formula (XIV) is preferable.
  • the donor monomer unit (D) is a structural unit represented by the above formula (XII) or a structural unit represented by the above formula (XIII), and an acceptor
  • the monomeric units (A1) and (A2) are preferably structural units represented by the above formula (XIV).
  • the donor monomer unit (D) in the above formula (I) and the above formula (II) is a structural unit represented by the above formula (IV)
  • the acceptor monomer unit (A1) is the above formula (V). It is preferable that the acceptor monomer unit (A2) is a copolymer represented by the above formula (VI).
  • the arrangement state of the repeating unit represented by the above formula (I) and the repeating unit represented by the above formula (II) may be any of alternating, block or random. That is, the copolymer according to the present invention may be an alternating copolymer, a block copolymer, or a random copolymer. In addition, a copolymer having an intermediate structure among these copolymers, for example, a random copolymer having a block property may be used. Further, it may be a copolymer having a branch in the main chain and having 3 or more terminal portions, and a dendrimer.
  • a block copolymer or a random copolymer is preferable because it is easy to synthesize and regularity can be lowered, and the solubility of the copolymer is improved and the storage stability of the ink in which the copolymer is dissolved is improved. In view of this, a random copolymer is more preferable.
  • the terminal portion of the polymer having the repeating unit represented by the formula (I) and the repeating unit represented by the formula (II) is not particularly limited, but an aromatic hydrocarbon ring, an aromatic heterocyclic ring, or It is preferably end-gapped with hydrogen atoms.
  • the ratio of each repeating unit is not particularly limited, but the repeating unit represented by the formula (I)
  • the ratio of the repeating unit represented by the formula (II) to the unit is such that the units represented by the above formula (II) are sufficiently ⁇ stacked so that many intermolecular carrier paths are formed and light is irradiated. Even when a part is damaged, the decrease in photoelectric conversion efficiency is suppressed, so that it is preferably 0.1 or more, more preferably 0.3 or more, and particularly preferably 0.4 or more. preferable.
  • the ratio of the repeating unit represented by the formula (II) to the repeating unit represented by the formula (I) increases the contribution of the ⁇ stack and increases the solubility as the unit represented by the formula (II) increases.
  • it is preferably 10 or less, more preferably 8 or less, and particularly preferably 3 or less.
  • the copolymer according to the present invention may contain a repeating unit other than the repeating unit represented by the above formula (I) and the repeating unit represented by the above formula (II) as long as the effects of the present invention are not impaired. Good.
  • the repeating unit which may be specifically contained is not particularly limited, the donor monomer unit and the acceptor monomer mentioned in D and A1 in the above formula (I) and A2 in the formula (II) And repeating units composed of units.
  • the ratio of the repeating unit represented by the above formula (I) and the total number represented by the above formula (II) is not particularly limited, but the repeating unit represented by the above formula (I) and the above
  • the copolymer according to the present invention has a copolymer in which the total of the repeating units represented by the formula (II) has a repeating unit represented by the above formula (I) and a repeating unit represented by the above formula (II).
  • the ratio of the repeating unit to the repeating unit is preferably 0.1 or more, more preferably 0.3 or more, and particularly preferably 0.5 or more in order to obtain good semiconductor characteristics.
  • the upper limit is 1 or less.
  • the polystyrene-reduced weight average molecular weight (Mw) of the copolymer according to the present invention is not particularly limited, but is usually 5.0 ⁇ 10 3 or more, preferably 1.0 ⁇ 10 4 or more, more preferably 1.5 ⁇ . 10 4 or more, more preferably 2.0 ⁇ 10 4 or more, still more preferably 3.0 ⁇ 10 4 or more, particularly preferably 3.5 ⁇ 10 4 or more, and most preferably 4.0 ⁇ 10 4 or more. . On the other hand, it is preferably 1.0 ⁇ 10 7 or less, more preferably 1.0 ⁇ 10 6 or less, and particularly preferably 5.0 ⁇ 10 5 or less.
  • the weight average molecular weight is preferably in this range from the viewpoint of increasing the light absorption wavelength, from the viewpoint of realizing high absorbance, from the viewpoint of realizing high carrier movement, and from the viewpoint of solubility in an organic solvent.
  • the polystyrene-reduced number average molecular weight (Mn) of the copolymer according to the present invention is not particularly limited, but is usually 3.0 ⁇ 10 3 or more, preferably 5.0 ⁇ 10 3 or more, more preferably 8.0 ⁇ . 10 3 or more, more preferably 1.0 ⁇ 10 4 or more, and particularly preferably 2.0 ⁇ 10 4 or more.
  • Mn number average molecular weight
  • the number average molecular weight is preferably in this range from the viewpoint of increasing the light absorption wavelength, from the viewpoint of realizing high absorbance, from the viewpoint of realizing high carrier movement, and from the viewpoint of solubility in an organic solvent.
  • the molecular weight distribution (PDI, (weight average molecular weight / number average molecular weight (Mw / Mn))) of the copolymer according to the present invention is usually 1.0 or more, preferably 1.1 or more, more preferably 1.2 or more, Preferably it is 1.3 or more. On the other hand, it is usually 50.0 or less, preferably 20.0 or less, more preferably 15.0 or less, and still more preferably 10.0 or less.
  • the molecular weight distribution is preferably in this range in that the solubility of the copolymer can be in a range suitable for coating.
  • the polystyrene equivalent weight average molecular weight, number average molecular weight, and molecular weight distribution of the copolymer according to the present invention can be determined by gel permeation chromatography (GPC). Specifically, two Polymer Laboratories GPC columns (PLgel MIXED-B 10 ⁇ m, inner diameter 7.5 mm, length 30 cm) are connected in series as a column, and LC-10AT (manufactured by Shimadzu Corporation) as a pump, as an oven It can be measured by using CTO-10A (manufactured by Shimadzu Corporation), a differential refractive index detector (manufactured by Shimadzu Corporation: RID-10A), and a UV-vis detector (manufactured by Shimadzu Corporation: SPD-10A).
  • GPC gel permeation chromatography
  • a copolymer (1 mg) to be measured is dissolved in chloroform (200 mg), and 1 ⁇ L of the obtained solution is injected into a column. Measurement is performed at a flow rate of 1.0 mL / min at 80 ° C. using orthodichlorobenzene as the mobile phase. LC-Solution (manufactured by Shimadzu Corporation) is used for the analysis.
  • the solubility of the copolymer according to the present invention is not particularly limited, but preferably the solubility in chlorobenzene at 25 ° C. is usually 0.1% by mass or more, preferably 0.5% by mass or more, more preferably 1% by mass or more. On the other hand, it is usually 30% by mass or less, preferably 20% by mass. High solubility is preferable because a thicker film can be formed by coating.
  • the copolymer according to the present invention preferably has an appropriate interaction between molecules.
  • the interaction between molecules means that the distance between polymer chains is shortened by an interaction such as ⁇ - ⁇ stacking between molecules. The stronger the interaction, the higher the mobility and / or crystallinity, and the more suitable the semiconductor material is. That is, in a copolymer that interacts between molecules, electron transfer between molecules is likely to occur.
  • a p-type semiconductor compound in the active layer is used. It is considered that holes generated at the interface between the n-type semiconductor compound and the n-type semiconductor compound can be efficiently transported to the electrode (anode).
  • crystallinity measuring method is X-ray diffraction (XRD).
  • XRD X-ray diffraction
  • having crystallinity means that an X-ray diffraction spectrum obtained by XRD measurement has a diffraction peak.
  • Having crystallinity is considered to mean that it has a laminated structure in which molecules are arranged, and is preferable in that the active layer described later tends to be thickened.
  • XRD measurement can be performed based on a method described in a known document (X-ray crystal analysis guide (applied physics selection book 4)).
  • the hole mobility (sometimes referred to as hole mobility) of the copolymer according to the present invention is usually 1.0 ⁇ 10 ⁇ 7 cm 2 / Vs or more, preferably 1.0 ⁇ 10 ⁇ 6 cm 2 / Vs or more. More preferably, it is 1.0 ⁇ 10 ⁇ 5 cm 2 / Vs or more, and particularly preferably 1.0 ⁇ 10 ⁇ 4 cm 2 / Vs or more.
  • the hole mobility of the copolymer according to the present invention is usually 1.0 ⁇ 10 4 cm 2 / Vs or less, preferably 1.0 ⁇ 10 3 cm 2 / Vs or less, and more preferably 1.0 ⁇ 10 6.
  • the copolymer according to the present invention is suitably used as a semiconductor material. Further, in order to obtain high conversion efficiency in the photoelectric conversion element, it is important to balance the mobility of the n-type semiconductor compound and the mobility of the p-type semiconductor compound.
  • the copolymer according to the present invention is used as a p-type semiconductor compound in a photoelectric conversion element, from the viewpoint of bringing the hole mobility of the copolymer according to the present invention close to the electron mobility of the n-type semiconductor compound, the copolymer according to the present invention is positive.
  • the hole mobility is preferably within this range.
  • As a method for measuring the hole mobility there is an FET method.
  • the FET method can be performed by a method described in a known document (Japanese Patent Laid-Open No. 2010-045186).
  • the copolymer according to the present invention preferably has high storage stability in a solution state.
  • High storage stability means that it is difficult to aggregate when made into a solution. More specifically, 2 mg of the copolymer according to the present invention was placed in a 2 mL screw vial, dissolved in o-xylene to a concentration of 1.5% by mass, and then cooled to room temperature. Then, it is preferable not to gel for 5 minutes or more, and it is more preferable not to gel for 1 hour or more.
  • the impurities in the copolymer according to the present invention are preferably as small as possible.
  • a copolymer having a repeating unit represented by the formula (I) when synthesized, when a transition metal catalyst such as palladium or copper is used, these may remain in the copolymer. If these metal catalysts remain in the copolymer, exciton traps due to the heavy atom effect of the transition metal occur and charge transfer is inhibited. As a result, when the copolymer according to the present invention is used in a photoelectric conversion element, There is a risk of reducing the conversion efficiency.
  • the concentration of the transition metal catalyst is usually 1000 ppm or less, preferably 500 pm or less, more preferably 100 ppm or less per 1 g of copolymer. On the other hand, it is usually larger than 0 ppm and may be 1 ppm or more, or 3 ppm or more.
  • the impurities contained in the copolymer can be measured by, for example, ICP mass spectrometry.
  • ICP mass spectrometry can be carried out by a method described in a known document (“Plasma ion source mass spectrometry” (Academic Publishing Center)). Specifically, for palladium atoms and copper atoms, after the sample is wet-decomposed, Pd and Sn in the decomposition solution are obtained by a calibration curve method using an ICP mass spectrometer (ICP mass spectrometer 7500ce type manufactured by Agilent Technologies). It can be quantified.
  • Method for producing copolymer according to the present invention is not particularly limited.
  • D has the same meaning as D in the above formula (I).
  • L, R 1 and R 2 are as defined L in above-mentioned formula (II), and R 1 and R 2.
  • A1 has the same meaning as A1 in formula (I).
  • A2 has the same meaning as A2 in the above formula (II).
  • Y1 to Y8 in the formulas (VII) to (X) can be appropriately selected according to the kind of the polymerization reaction and are not particularly limited, but are independently a halogen atom, an alkylstannyl group, or an alkylsulfo group. , Arylsulfo group, arylalkylsulfo group, boric acid ester residue, sulfonium methyl group, phosphonium methyl group, phosphonate methyl group, monohalogenated methyl group, boric acid residue (-B (OH) 2 ), formyl group, An alkenyl group or an alkynyl group is represented.
  • the halogen atom is not particularly limited, but is preferably a bromine atom (Br) or an iodine atom (I).
  • the borate ester residue is not particularly limited, and examples thereof include a group represented by the following formula.
  • Me represents a methyl group
  • Et represents an ethyl group
  • the alkylstannyl group is not particularly limited, and examples thereof include a group represented by the following formula.
  • Me represents a methyl group
  • Bu represents a butyl group
  • the alkenyl group is not particularly limited, but for example, an alkenyl group having 2 to 12 carbon atoms is preferable.
  • Y1 to Y8 are each independently a halogen atom, an alkylstannyl group, from the viewpoint of the synthesis of the compounds represented by formulas (VII) to (X) and the ease of reaction.
  • a boric acid ester residue or a boric acid residue (—B (OH) 2 ) is preferable.
  • Examples of the reaction method used for polymerization of the copolymer of the present invention include Suzuki-Miyaura cross-coupling reaction method, Stille coupling reaction method, Yamamoto coupling reaction method, Grignard reaction method, Heck reaction method, Sonogashira reaction method, FeCl 3 and the like.
  • the Suzuki-Miyaura coupling reaction method, Stille coupling reaction method, Yamamoto coupling reaction method, and Grignard reaction method are preferable in terms of easy structure control.
  • the Suzuki-Miyaura cross-coupling reaction method is preferable from the viewpoint of easy availability of materials and easy reaction operation.
  • These reactions include “cross coupling-basics and industrial applications-(CMC Publishing)", “transition metal catalyzed reactions for organic synthesis (written by Jiro Jiro: edited by the Society of Synthetic Organic Chemistry)", “for organic synthesis”
  • the reaction can be carried out according to a method described in known literature such as “catalytic reaction 103 (Teijiro Hatakeyama: Tokyo Kagaku Dojin)”.
  • Y1 to Y8 in the formulas (VII) to (X) may be appropriately selected to carry out the polymerization reaction.
  • Y1 to Y4 in formula (VII) and formula (VIII) are alkylstannyl groups
  • Y5 to Y8 in formula (IX) and formula (X) are used as halogen atoms to perform known Stille coupling reactions. What is necessary is just to react according to conditions.
  • Y1 to Y4 in the formulas (VII) and (VIII) are known borate esters or boric acid residues
  • Y5 to Y8 in the formulas (IX) and (X) are halogen atoms
  • Suzuki Suzuki
  • the reaction may be performed according to the conditions of the Miyaura coupling reaction. Furthermore, Y1 to Y4 in formula (VII) and formula (VIII) are used as silyl groups, Y5 to Y8 in formula (IX) and formula (X) are used as halogen atoms, and the reaction is carried out according to known Hiyama coupling reaction conditions. Just do it.
  • a catalyst for the coupling reaction for example, a combination of a transition metal such as palladium and a ligand (for example, a phosphine ligand such as triphenylphosphine) can be used.
  • the copolymer obtained by the polymerization reaction it is preferable to further end-treat the copolymer obtained by the polymerization reaction.
  • the terminal treatment of the copolymer By performing the terminal treatment of the copolymer, the residual amount of the terminal residues (Y1 to Y8 described above) can be reduced.
  • halogen atoms, alkylstannyl groups, and the like in the obtained copolymer can be reduced. Therefore, when the copolymer according to the present invention is used for a photoelectric conversion element, conversion efficiency and durability are improved. This is preferable because of improved properties.
  • a process for separating the copolymer is usually performed.
  • the terminal treatment of the copolymer it is preferable to perform a step of separating the copolymer after the terminal treatment. If necessary, further copolymer separation and purification may be performed prior to copolymer termination. From the viewpoint of obtaining the copolymer in a shorter processing step, it is preferable to carry out the terminal treatment of the copolymer, separation of the copolymer and purification of the copolymer in this order after the polymerization reaction.
  • the reaction solution and a poor solvent are mixed to precipitate the copolymer, or the active species in the reaction solution is quenched with water or hydrochloric acid, and then the copolymer is extracted with an organic solvent.
  • Examples include a method of distilling off the organic solvent.
  • Examples of the purification method of the copolymer include known methods such as reprecipitation purification, extraction using a Soxhlet extractor, gel permeation chromatography, or metal removal using a scavenger.
  • Method for producing compounds represented by formula (VII) to formula (X)> The method for producing the compounds represented by formulas (VII) to (X) is not particularly limited, but can be carried out with reference to known examples.
  • Known examples include Polymer, 1990, 31, 1379-1383, Adv. Mater. , 2007, 19, 4160-4165, Macromolecules, 2010, 43, 6936-6938, Adv. Mater. , 2011, 23, 3315-3319, Angew. Chem. Int. Ed. 2012, 51, 2068-2071, J. MoI. Mater. Chem. 2011, 21, 3895-3902, J. MoI. Am. Chem. Soc. , 2011, 133, 10062-10065 or Chem. Commun. , 2011, 47, 4920, International Publication No. 2013/180243, and the like.
  • the copolymer according to an embodiment of the present invention can be used as a material for a photoelectric conversion element.
  • the active layer of the photoelectric conversion element contains the copolymer according to the present invention, thereby providing high exposure stability. It can be a photoelectric conversion element.
  • an embodiment of a photoelectric conversion element using the copolymer according to the present invention will be described.
  • the photoelectric conversion element according to an embodiment of the present invention includes at least a base material, a pair of electrodes formed on the base material, and an active layer formed between the pair of electrodes.
  • a photoelectric conversion element according to the present invention will be described with reference to FIG.
  • one embodiment of the photoelectric conversion element according to the present invention includes a lower electrode 101, a lower buffer layer 102, an active layer 103, an upper buffer layer 104, and an upper electrode on a substrate 106.
  • 105 have a layer structure in which are sequentially formed.
  • the lower electrode means an electrode laminated on the substrate 106 side
  • the upper electrode means an electrode laminated above the lower electrode when the substrate 106 is used as the bottom.
  • the lower electrode 101 and the upper electrode 105 may be collectively referred to as a pair of electrodes.
  • the lower buffer layer 102 and the upper buffer layer 104 are not essential components, and may be provided arbitrarily, and may include only one of the lower buffer layer 102 and the upper buffer layer 104.
  • the photoelectric conversion element may optionally have another layer other than the above. Hereinafter, each component of the photoelectric conversion element will be described.
  • the photoelectric conversion element 107 is usually formed on a base material 106 that serves as a support.
  • a base material 106 that serves as a support.
  • the material of the substrate 106 includes inorganic materials such as quartz, glass, sapphire, and titania, and flexible substrates.
  • the flexible substrate include, but are not limited to, polyethylene terephthalate, polyethylene naphthalate, polyethersulfone, polyimide, nylon, polystyrene, polyvinyl alcohol, ethylene vinyl alcohol copolymer, fluororesin film, vinyl chloride.
  • polyolefin such as polyethylene
  • organic material such as cellulose, polyvinylidene chloride, aramid, polyphenylene sulfide, polyurethane, polycarbonate, polyarylate, polynorbornene, or epoxy resin
  • paper material such as paper or synthetic paper
  • stainless steel Examples thereof include composite materials such as a metal foil such as titanium or aluminum whose surface is coated or laminated in order to impart insulation.
  • the glass include soda glass, blue plate glass, and non-alkali glass. Among these, alkali-free glass is preferable in that there are few eluted ions from the glass.
  • known techniques can be referred to. Specifically, for example, publicly known documents such as International Publication No. 2011-016430 or Japanese Unexamined Patent Application Publication No. 2012-191194 are available. Those described can be adopted.
  • the pair of electrodes (101, 106) has a function of collecting holes and electrons generated by light absorption. Accordingly, the pair of electrodes includes an electrode suitable for collecting holes (hereinafter sometimes referred to as an anode) and an electrode suitable for collecting electrons (hereinafter sometimes referred to as a cathode). It is preferable to use it. Any one of the pair of electrodes may be translucent, and both may be translucent. Translucency means that sunlight passes through 40% or more. Further, the solar light transmittance of the transparent electrode is preferably 70% or more in order to allow light to reach the active layer through the transparent electrode. The light transmittance can be measured with a normal spectrophotometer.
  • the anode is an electrode generally made of a conductive material having a work function higher than that of the cathode and having a function of smoothly extracting holes generated in the active layer.
  • the material of the anode is not particularly limited.
  • conductive metal oxide such as nickel oxide, tin oxide, indium oxide, indium tin oxide (ITO), indium-zirconium oxide (IZO), titanium oxide, indium oxide, or zinc oxide.
  • a metal such as gold, platinum, silver, chromium or cobalt, or an alloy thereof.
  • a conductive polymer material represented by PEDOT: PSS in which a polythiophene derivative is doped with polystyrene sulfonic acid can be stacked.
  • the work function of this conductive polymer material is high, so even if it is not a material with a high work function as described above, it is suitable for cathodes such as Al and Mg. Metals can also be widely used.
  • PEDOT PSS in which a polythiophene derivative is doped with polystyrene sulfonic acid, or a conductive polymer material in which polypyrrole, polyaniline, or the like is doped with iodine or the like can also be used as an anode material.
  • the anode is a transparent electrode, it is preferable to use a light-transmitting conductive metal oxide such as ITO, zinc oxide or tin oxide, and ITO is particularly preferable.
  • the cathode is generally an electrode made of a conductive material having a low work function, and having a function of smoothly extracting electrons generated in the active layer 103.
  • the cathode is adjacent to the electron extraction layer.
  • the material of the cathode is not particularly limited.
  • metals such as platinum, gold, silver, copper, iron, tin, zinc, aluminum, indium, chromium, lithium, sodium, potassium, cesium, calcium or magnesium and alloys thereof; Inorganic salts such as lithium fluoride and cesium fluoride; metal oxides such as nickel oxide, aluminum oxide, lithium oxide, and cesium oxide. These materials are preferable because they are materials having a low work function.
  • the cathode material is preferably a metal such as platinum, gold, silver, copper, iron, tin, aluminum, calcium or indium, or an alloy using these metals such as indium tin oxide.
  • the active layer 103 is a layer that contains a p-type semiconductor compound and an n-type semiconductor compound and undergoes photoelectric conversion. Specifically, when the photoelectric conversion element 107 receives light, the light is absorbed by the active layer 103, electricity is generated at the interface between the p-type semiconductor material and the n-type semiconductor material, and the generated electricity is extracted from the anode and the cathode. It is.
  • the layer structure of the active layer 103 As the layer structure of the active layer 103, a thin film stack type in which a layer containing a p-type semiconductor compound and a layer containing an n-type semiconductor compound are stacked, or a layer in which a p-type semiconductor compound and an n-type semiconductor compound are mixed is used.
  • a bulk heterojunction type Note that the bulk heterojunction active layer may have a structure in which a layer containing a p-type semiconductor compound and / or a layer containing an n-type semiconductor compound is further stacked in addition to the mixed layer. From the viewpoint that high photoelectric conversion efficiency can be expected, a bulk heterojunction type is preferable.
  • the active layer 103 contains at least a copolymer according to an embodiment of the present invention as a p-type semiconductor compound.
  • a photoelectric conversion element having high conversion efficiency and high exposure stability can be obtained.
  • the active layer 103 may contain other p-type semiconductor compounds in addition to the copolymer according to the present invention as long as the effects according to the present invention are not impaired.
  • the other p-type semiconductor compound may be a low molecular organic compound or a high molecular compound.
  • These p-type semiconductor compounds are not particularly limited, but for example, those described in known literatures such as International Publication No. 2011-016430 or Japanese Unexamined Patent Publication No. 2012-191194 can be used.
  • the n-type semiconductor compound is not particularly limited.
  • a fullerene compound a quinolinol derivative metal complex represented by 8-hydroxyquinoline aluminum
  • a condensed ring tetracarboxylic acid such as naphthalenetetracarboxylic acid diimide or perylenetetracarboxylic acid diimide.
  • Acid diimides perylene diimide derivatives, terpyridine metal complexes, tropolone metal complexes, flavonol metal complexes, perinone derivatives, benzimidazole derivatives, benzoxazole derivatives, thiazole derivatives, benzthiazole derivatives, benzothiadiazole derivatives, oxadiazole derivatives, thiadiazole derivatives, Triazole derivatives, aldazine derivatives, bisstyryl derivatives, pyrazine derivatives, phenanthroline derivatives, quinoxaline derivatives, benzoquinoline derivatives Bipyridine derivatives, borane derivatives; anthracene, pyrene, total fluoride condensed polycyclic aromatic hydrocarbons such as naphthacene or pentacene; single-walled carbon nanotubes, n-type polymer (n-type polymer semiconductor material), and the like.
  • fullerene compounds borane derivatives, thiazole derivatives, benzothiazole derivatives, benzothiadiazole derivatives, N-alkyl substituted naphthalene tetracarboxylic acid diimides, N-alkyl substituted perylene diimide derivatives or n-type polymer semiconductor materials are preferred. More preferred are fullerene compounds, N-alkyl substituted perylene diimide derivatives, N-alkyl substituted naphthalene tetracarboxylic acid diimides or n-type polymer semiconductor compounds, and fullerene compounds are particularly preferred. These compounds are not particularly limited, but for example, those described in known literatures such as International Publication No.
  • 2011-016430 or Japanese Unexamined Patent Publication No. 2012-191194 can be used.
  • a kind of compound may be used among the above, and a mixture of a plurality of kinds of compounds may be used.
  • the thickness of the active layer 103 is not particularly limited, but is usually 10 nm or more, preferably 50 nm or more, usually 1 ⁇ m or less, preferably 500 nm or less, more preferably 200 nm or less.
  • a thickness of the active layer 103 of 10 nm or more is preferable because the uniformity of the film is maintained and a short circuit is hardly caused.
  • it is preferable that the thickness of the active layer 103 is 1 ⁇ m or less because the internal resistance is reduced, and further, the charge diffusion is improved without the pair of electrodes being separated too much.
  • the method for forming the active layer 103 is not particularly limited, but is preferably formed by a coating method because productivity is improved. Specifically, the active layer 103 is preferably formed by applying an active layer forming ink containing a copolymer according to the present invention.
  • any method can be used.
  • spin coating method reverse roll coating method, gravure coating method, kiss coating method, roll brush method, spray coating method, air knife coating method, wire barber coating method, pipe Examples include a doctor method, an impregnation / coating method, and a curtain coating method.
  • an active layer forming ink containing at least a copolymer according to the present invention as a p-type semiconductor compound and an active layer ink containing an n-type semiconductor compound are used, respectively, by a coating method.
  • An active layer may be formed by stacking a p-type semiconductor-containing layer and an n-type semiconductor-containing layer.
  • an active layer forming ink containing at least a copolymer according to the present invention and an n type semiconductor compound as a p type semiconductor compound is used, and a bulk hetero type active layer is formed by a coating method.
  • An active layer may be formed.
  • the above-described ink for forming an active layer usually contains a solvent in addition to the above-described compound.
  • the solvent is not particularly limited, but for example, aliphatic hydrocarbons such as hexane, heptane, octane, isooctane, nonane or decane; aromatic such as toluene, xylene, mesitylene, cyclohexylbenzene, chlorobenzene or orthodichlorobenzene Hydrocarbons; cycloaliphatic hydrocarbons such as cyclopentane, cyclohexane, methylcyclohexane, cycloheptane, cyclooctane, tetralin or decalin; lower alcohols such as methanol, ethanol or propanol; acetone, methyl ethyl ketone, cyclopentanone or cyclohexanone Aliphatic ketones such as acetophenone or
  • aromatic hydrocarbons such as toluene, xylene, mesitylene, cyclohexylbenzene, chlorobenzene or orthodichlorobenzene; cycloaliphatic carbonization such as cyclopentane, cyclohexane, methylcyclohexane, cycloheptane, cyclooctane, tetralin or decalin Hydrogens; ketones such as acetone, methyl ethyl ketone, cyclopentanone or cyclohexanone; halogen hydrocarbons such as chloroform, methylene chloride, dichloroethane, trichloroethane or trichloroethylene; or ethers such as ethyl ether, tetrahydrofuran or dioxane.
  • aromatic hydrocarbons such as toluene, xylene, mesitylene, cyclohexylbenzene, chlorobenz
  • non-halogen aromatic hydrocarbons such as toluene, xylene, mesitylene or cyclohexylbenzene; non-halogen ketones such as cyclopentanone or cyclohexanone; aromatic ketones such as acetophenone or propiophenone; tetrahydrofuran, cyclohexane Alicyclic hydrocarbons such as pentane, cyclohexane, methylcyclohexane, cycloheptane, cyclooctane, tetralin or decalin; ketones such as acetone, methyl ethyl ketone, cyclopentanone or cyclohexanone; or non-halogens such as 1,4-dioxane Aliphatic ethers.
  • non-halogen aromatic hydrocarbons such as toluene, xylene, mesitylene or cyclohexylbenzene.
  • one type of solvent may be used alone, or any two or more types of solvents may be used in an arbitrary ratio.
  • combinations of low and high boiling solvents include non-halogen aromatic hydrocarbons and alicyclic hydrocarbons, non-halogen aromatic hydrocarbons and aromatic ketones, ethers and alicyclic carbonization.
  • Examples thereof include hydrogens, ethers and aromatic ketones, aliphatic ketones and alicyclic hydrocarbons, or aliphatic ketones and aromatic ketones.
  • Specific examples of preferred combinations include toluene and tetralin, xylene and tetralin, toluene and acetophenone, xylene and acetophenone, tetrahydrofuran and tetralin, tetrahydrofuran and acetophenone, methyl ethyl ketone and tetralin, methyl ethyl ketone and acetophenone, and the like.
  • the active layer forming ink may contain other additives in addition to the compounds described above as long as the effects according to the present invention are not impaired.
  • the photoelectric conversion element includes the lower buffer layer 102 between the lower electrode 101 and the active layer 103, and the upper buffer layer 104 between the upper electrode 105 and the active layer 103. .
  • the lower buffer layer 102 and the upper buffer layer 104 each have a function of improving the electron extraction efficiency from the active layer 103 to the cathode or the hole extraction efficiency from the active layer 103 to the anode.
  • a buffer layer having a function of improving the electron extraction efficiency from the active layer 103 to the cathode is referred to as an electron extraction layer
  • a buffer layer having a function of improving the electron extraction efficiency from the active layer 103 to the cathode is referred to as a hole extraction layer.
  • the lower buffer layer 102 and the upper buffer layer 104 are not essential components, and the organic thin film solar cell element 4 may not include the lower buffer layer 102 and the upper buffer layer 104. Moreover, you may have only any one layer.
  • Either the lower buffer layer 102 or the upper buffer layer 104 may be an electron extraction layer or a hole extraction layer, but when the lower electrode 101 is a cathode and the upper electrode 105 is an anode, the lower buffer layer 102 is an electron extraction layer.
  • the upper buffer layer 104 is a hole extraction layer.
  • the lower buffer layer 102 is a hole extraction layer and the upper buffer layer 104 is an electron extraction layer.
  • the material of the electron extraction layer is not particularly limited as long as it is a material that improves the efficiency of extracting electrons from the active layer 103 to the cathode, and examples thereof include inorganic compounds and organic compounds.
  • inorganic compounds include salts of alkali metals such as Li, Na, K or Cs; n-type semiconductor oxides such as titanium oxide (TiOx) and zinc oxide (ZnO).
  • the alkali metal salt is preferably a fluoride salt such as LiF, NaF, KF or CsF
  • the n-type semiconductor oxide is preferably zinc oxide (ZnO).
  • organic compounds include phosphine compounds having a double bond between a phosphorus atom and a group 16 element such as triarylphosphine oxide compounds; substituents such as bathocuproin (BCP) or bathophenanthrene (Bphen) A phenanthrene compound in which the 1-position and the 10-position may be substituted with a heteroatom; a boron compound such as triarylboron; an organometallic such as (8-hydroxyquinolinato) aluminum (Alq3) Oxide; Compound having 1 or 2 ring structure which may have a substituent such as oxadiazole compound or benzimidazole compound; naphthalenetetracarboxylic anhydride (NTCDA) or perylenetetracarboxylic anhydride Such as (
  • the material for the hole extraction layer is not particularly limited as long as it is a material capable of improving the efficiency of extracting holes from the active layer 103 to the anode. Specifically, conductive polymers in which polythiophene, polypyrrole, polyacetylene, triphenylenediamine, polyaniline, etc.
  • sulfonic acid and / or iodine are doped with sulfonic acid and / or iodine, polythiophene derivatives having a sulfonyl group as a substituent, conductive organics such as arylamine Examples thereof include compounds, copper oxide, nickel oxide, manganese oxide, molybdenum oxide, vanadium oxide, metal oxide such as tungsten oxide, Nafion, and a p-type semiconductor described later.
  • a conductive polymer doped with sulfonic acid is preferable, and (3,4-ethylenedioxythiophene) poly (styrenesulfonic acid) (PEDOT: PSS) in which a polythiophene derivative is doped with polystyrene sulfonic acid is more preferable. It is.
  • a thin film of metal such as gold, indium, silver or palladium can also be used.
  • a thin film of metal or the like may be formed alone or in combination with the above organic material.
  • known techniques can be referred to. Specifically, for example, publicly known publications such as International Publication No. 2012/102390 or Japanese Unexamined Patent Publication No. 2012-191194 are known. Those described in the literature can be employed.
  • the photoelectric conversion element 107 having the configuration shown in FIG. 1 is formed on the base 106 by, for example, the lower electrode 101, the lower buffer layer 102, the active layer 103, and the upper buffer layer 104 by the method described in the above-described publicly known literature.
  • the upper electrode 105 can be sequentially stacked.
  • the lower electrode 101, the lower buffer layer 102, the first active layer 108, the intermediate layer 109, and the second active element are formed on the substrate 106.
  • the layer 110, the upper buffer layer 104, and the upper electrode 105 can be sequentially stacked.
  • the photoelectric conversion element is usually in a temperature range of 50 ° C. or higher, preferably 80 ° C. or higher, usually 300 ° C. or lower, preferably 280 ° C. or lower, more preferably 250 ° C. or lower. It is preferable to heat (this step is referred to as an annealing treatment step).
  • Performing the annealing process at a temperature of 50 ° C. or higher improves adhesion between the layers of the photoelectric conversion element, for example, adhesion between the lower buffer layer 102 and the lower electrode 101 and / or the lower buffer layer 102 and the active layer 103. This is preferable because the effect of By improving the adhesion between the layers, the thermal stability and durability of the photoelectric conversion element can be improved. In addition, the self-organization of the active layer can be promoted by the annealing process. It is preferable to set the temperature of the annealing treatment step to 300 ° C. or lower because the possibility that the organic compound in the active layer 103 is thermally decomposed is reduced. In the annealing treatment step, stepwise heating may be performed within the above temperature range.
  • the heating time is usually 1 minute or longer, preferably 3 minutes or longer, and usually 3 hours or shorter, preferably 1 hour or shorter.
  • the annealing treatment step is preferably terminated when the open-circuit voltage, the short-circuit current, and the fill factor, which are parameters of the solar cell performance, reach a constant value. Further, the annealing treatment step is preferably performed under normal pressure and in an inert gas atmosphere.
  • the photoelectric conversion element may be placed on a heat source such as a hot plate, or the photoelectric conversion element may be placed in a heating atmosphere such as an oven.
  • the heating may be performed batchwise or continuously.
  • the thermal treatment and durability of the photoelectric conversion element can be improved by the annealing treatment step, the fullerene compound is aggregated during the annealing treatment step and phase separation is promoted, so that the photoelectric conversion efficiency may be lowered.
  • the active layer 103 contains an additive, aggregation of the fullerene compound during the annealing process is suppressed by the additive.
  • the photoelectric conversion element 107 with higher photoelectric conversion efficiency after performing an annealing process can be obtained by making the active layer 103 contain an additive.
  • Each layer constituting the photoelectric conversion element according to the present invention is not particularly limited, and can be formed by a sheet-to-sheet (manyoba) method or a roll-to-roll method. -It is preferable to form by a two-roll system.
  • the roll-to-roll method is a method in which a flexible base material wound in a roll shape is fed out and processed intermittently or continuously until it is taken up by a take-up roll. is there. According to the roll-to-roll method, it is possible to batch-process long substrates on the order of km, so that the production method is more suitable for mass production than the sheet-to-sheet method.
  • the size of the roll that can be used in the roll-to-roll method is not particularly limited as long as it can be handled by a roll-to-roll manufacturing apparatus, but the outer diameter is usually 5 m or less, preferably 3 m or less. Preferably, it is 1 m or less, usually 10 cm or more, preferably 20 cm or more, more preferably 30 cm or more.
  • the outer diameter of the roll core is usually 4 m or less, preferably 3 m or less, more preferably 0.5 m or less, usually 1 cm or more, preferably 3 cm or more, more preferably 5 cm or more, still more preferably 10 cm or more, particularly preferably 20 cm or more.
  • the width of the roll is usually 5 cm or more, preferably 10 cm or more, more preferably 20 cm or more, and is usually 5 m or less, preferably 3 m or less, more preferably 2 m or less.
  • the width is not more than the upper limit, it is preferable from the viewpoint of high handleability of the roll, and when the width is not less than the lower limit, the degree of freedom of the size of the photoelectric conversion element is preferable.
  • the photoelectric conversion characteristics of the photoelectric conversion element 107 can be obtained as follows.
  • the photoelectric conversion element 107 is irradiated with light having an AM1.5G condition with a solar simulator at an irradiation intensity of 100 mW / cm 2 , and current-voltage characteristics are measured. From the obtained current-voltage curve, photoelectric conversion characteristics such as photoelectric conversion efficiency (PCE), short circuit current density (Jsc), open circuit voltage (Voc), fill factor (FF), series resistance, and shunt resistance can be obtained.
  • PCE photoelectric conversion efficiency
  • Jsc short circuit current density
  • Voc open circuit voltage
  • FF fill factor
  • series resistance series resistance
  • shunt resistance series resistance
  • the photoelectric conversion efficiency of the photoelectric conversion element according to the present invention is not particularly limited, but is usually 1% or more, preferably 1.5% or more, more preferably 2% or more. On the other hand, there is no particular limitation on the upper limit, and the higher the better.
  • the maintenance rate of photoelectric conversion efficiency before and after exposure to the atmosphere for one week is preferably 60% or more, more preferably 75% or more, further preferably 80% or more, particularly preferably 85% or more, and high if high. Moderate.
  • FIG. 2 is a cross-sectional view schematically showing the configuration of a thin-film solar cell as one embodiment of the present invention.
  • the thin film solar cell 14 of this embodiment includes a weather-resistant protective film 1, an ultraviolet cut film 2, a gas barrier film 3, a getter material film 4, a sealing material 5, and a photoelectric conversion element. 6, a sealing material 7, a getter material film 8, a gas barrier film 9, and a back sheet 10 are provided in this order.
  • a thin film solar cell is normally irradiated with light from the side (downward in the figure) in which the weather-resistant protective film 1 was formed, and the photoelectric conversion element 6 generates electric power.
  • the thin-film solar cell does not need to have all of these constituent members, and each constituent member may be arbitrarily selected and provided.
  • the solar cell according to the present invention there is no particular limitation on the use of the solar cell according to the present invention, particularly the thin film solar cell 14 described above, and it can be used for any application.
  • Examples include solar cells for building materials, solar cells for automobiles, solar cells for spacecrafts, solar cells for home appliances, solar cells for mobile phones, solar cells for toys, and the like.
  • the solar cell according to the present invention may be used as it is, or for example, a solar cell may be installed on a substrate and used as a solar cell module.
  • a solar cell may be installed on a substrate and used as a solar cell module.
  • the solar cell module 13 having the thin film solar cell 14 on the base 12 can be installed and used at a place of use.
  • the substrate 12 well-known techniques can be used, for example, those described in International Publication No. 2011-016430 or Japanese Unexamined Patent Publication No. 2012-191194.
  • a solar cell panel can be produced as the solar cell module 13 by providing the thin film solar cell 14 on the surface of the plate.
  • the polystyrene equivalent weight average molecular weight (Mw) and number average molecular weight (Mn) were determined by gel permeation chromatography (GPC).
  • the molecular weight distribution (PDI) represents Mw / Mn.
  • 1,3-Dibromo-5- (n-octyl) was obtained in a 50 mL two-necked eggplant flask under a nitrogen atmosphere as a monomer by referring to a method described in a known document (Organic Letters 2004, 6, 3381-3384).
  • the obtained solid was dissolved in chloroform, diamine silica gel (Fuji Silysia Chemical) was added, and the mixture was stirred for 1 hour at room temperature and passed through a short column of acidic silica gel.
  • the solution was concentrated, recrystallized using chloroform / ethyl acetate as a solvent, and the deposited precipitate was filtered off to obtain the target copolymer 1 in a yield of 74%.
  • the weight average molecular weight Mw of the obtained copolymer 1 was 37 k, and PDI was 2.1.
  • 1,3-Dibromo-5- (n-octyl) was obtained in a 50 mL two-necked eggplant flask under a nitrogen atmosphere as a monomer by referring to a method described in a known document (Organic Letters 2004, 6, 3381-3384).
  • reaction solution was diluted 4-fold with toluene and further heated and stirred at 100 ° C. for 0.5 hour, as a terminal treatment, trimethyl (phenyl) tin (0.08 mL) was added and heated and stirred at 100 ° C. for 1 hour.
  • Bromobenzene (4 mL) was further added, and the mixture was stirred with heating at 100 ° C. for 1 hr.
  • the reaction solution was poured into methanol, and the deposited precipitate was collected by filtration.
  • the obtained solid was dissolved in chloroform, diamine silica gel (Fuji Silysia Chemical) was added, and the mixture was stirred for 1 hour at room temperature and passed through a short column of acidic silica gel.
  • the solution was concentrated, recrystallized using chloroform / ethyl acetate as a solvent, and the deposited precipitate was filtered off to obtain the target copolymer 2 in a yield of 67%.
  • the weight average molecular weight Mw of the obtained copolymer 2 was 62 k, and PDI was 1.8.
  • 1,3-Dibromo-5- (n-octyl) was obtained in a 50 mL two-necked eggplant flask under a nitrogen atmosphere as a monomer by referring to a method described in a known document (Organic Letters 2004, 6, 3381-3384).
  • reaction solution was diluted 4-fold with toluene and further heated and stirred at 100 ° C. for 0.5 hour, as a terminal treatment, trimethyl (phenyl) tin (0.08 mL) was added and heated and stirred at 100 ° C. for 1 hour.
  • Bromobenzene (4 mL) was further added, and the mixture was stirred with heating at 100 ° C. for 1 hr.
  • the reaction solution was poured into methanol, and the deposited precipitate was collected by filtration.
  • the obtained solid was dissolved in chloroform, diamine silica gel (Fuji Silysia Chemical) was added, and the mixture was stirred for 1 hour at room temperature and passed through a short column of acidic silica gel.
  • the solution was concentrated, recrystallized using chloroform / ethyl acetate as a solvent, and the deposited precipitate was filtered off to obtain the target copolymer 3 in a yield of 72%.
  • the weight average molecular weight Mw of the obtained copolymer 3 was 50K, and PDI was 2.0.
  • 1,3-Dibromo-5- (n-octyl) was obtained in a 50 mL two-necked eggplant flask under a nitrogen atmosphere as a monomer by referring to a method described in a known document (Organic Letters 2004, 6, 3381-3384).
  • reaction solution was diluted 4-fold with toluene and heated and stirred at 100 ° C. for another 0.5 hours, as a terminal treatment, trimethyl (phenyl) tin (0.16 mL) was added and heated and stirred at 100 ° C. for 2 hours.
  • Bromobenzene (8 mL) was further added, and the mixture was heated and stirred at 100 ° C. for 5 hours.
  • the reaction solution was poured into methanol, and the deposited precipitate was collected by filtration.
  • the obtained solid was dissolved in chloroform, diamine silica gel (Fuji Silysia Chemical) was added, and the mixture was stirred for 1 hour at room temperature and passed through a short column of acidic silica gel. By concentrating the solution, the target copolymer 4 was obtained in a yield of 83%.
  • the weight average molecular weight Mw of the obtained copolymer 4 was 66K, and PDI was 2.9.
  • a tetrahydrofuran / hexane solution of lithium diisopropylamide (LDA) (manufactured by Kanto Chemical Co., Inc., concentrations 1.13 M, 2.18 mL, 1.2 eq) was added dropwise and stirred for about 1 hour.
  • LDA lithium diisopropylamide
  • a tetrahydrofuran solution of trimethyltin chloride (manufactured by Aldrich, 1.0 M, 2.46 mL, 1.2 eq) was added dropwise, and the temperature was slowly raised to room temperature. After cooling to ⁇ 78 ° C.
  • LDA lithium diisopropylamide
  • tetrahydrofuran / hexane a solution of lithium diisopropylamide (LDA) in tetrahydrofuran / hexane (manufactured by Kanto Chemical Co., Inc., concentration 1.13 M, 2.18 mL, 1.2 eq) was added dropwise and stirred for about 1 hour.
  • a tetrahydrofuran solution of trimethyltin chloride manufactured by Aldrich, 1.0 M, 2.46 mL, 1.2 eq
  • 1,3-Dibromo-5- (n-octyl) was obtained in a 50 mL two-necked eggplant flask under a nitrogen atmosphere as a monomer by referring to a method described in a known document (Organic Letters 2004, 6, 3381-3384).
  • Triphenylphosphine-containing heterogeneous palladium complex catalyst Pd-EnCatTPP30 manufactured by Aldrich, 130 mg, 0.85 mol%), toluene (20.0 mL), and N, N-dimethylformamide (5.00 mL) 1 hour at 100 ° C, then 11 The mixture was stirred for 5 hours at °C.
  • the reaction solution was poured into methanol, and the deposited precipitate was collected by filtration. The obtained solid was dissolved in hexane and subjected to column chromatography (acidic silica gel, hexane). By concentrating the solution, the desired 4,3 ′, 4 ′′ -tridodecyl-2,2 ′: 5 ′, 2 ′′ -terthiophene (Compound T7) was obtained in a yield of 45.0%. .
  • a tetrahydrofuran solution of trimethyltin chloride (manufactured by Aldrich, 1.0M, 3.19 mL, 1.2 eq) was added dropwise, and the temperature was slowly raised to room temperature. After cooling again to ⁇ 78 ° C., a solution of lithium diisopropylamide (LDA) in tetrahydrofuran / hexane (manufactured by Kanto Chemical Co., Inc., concentration 1.13 M, 2.82 mL, 1.2 eq) was added dropwise and stirred for about 1 hour.
  • LDA lithium diisopropylamide
  • a tetrahydrofuran solution of trimethyltin chloride (manufactured by Aldrich, 1.0M, 3.19 mL, 1.2 eq) was added dropwise, and the temperature was slowly raised to room temperature. After cooling again to ⁇ 78 ° C., a solution of lithium diisopropylamide (LDA) in tetrahydrofuran / hexane (manufactured by Kanto Chemical Co., Inc., concentration 1.13 M, 2.82 mL, 1.2 eq) was added dropwise and stirred for about 1 hour.
  • LDA lithium diisopropylamide
  • 1,3-Dibromo-5- (n-octyl) was obtained in a 50 mL two-necked eggplant flask under a nitrogen atmosphere as a monomer by referring to a method described in a known document (Organic Letters 2004, 6, 3381-3384).
  • 1,3-Dibromo-5- (n-octyl) was obtained in a 50 mL two-necked eggplant flask under a nitrogen atmosphere as a monomer by referring to a method described in a known document (Organic Letters 2004, 6, 3381-3384).
  • the solution was concentrated, recrystallized using chloroform / ethyl acetate as a solvent, and the deposited precipitate was filtered off to obtain the target copolymer 7 in a yield of 75%.
  • the weight average molecular weight Mw of the obtained copolymer 7 was 137K, and PDI was 3.3.
  • Triphenylphosphine-containing heterogeneous palladium complex catalyst Pd-EnCatTPP30 manufactured by Aldrich, 130 mg, 0.85 mol%), toluene (24.0 mL), and N, N-dimethylformamide (6.00 mL) 1 hour at 0 ° C, followed by 5 hours at 110 ° C It was.
  • the reaction solution was poured into methanol, and the deposited precipitate was collected by filtration. The obtained solid was dissolved in hexane and subjected to column chromatography (acidic silica gel, hexane).
  • a tetrahydrofuran / hexane solution of lithium diisopropylamide (LDA) (manufactured by Kanto Chemical Co., Inc., concentration 1.13 M, 2.68 mL, 1.2 eq) was added dropwise and stirred for about 1 hour.
  • LDA lithium diisopropylamide
  • a tetrahydrofuran solution of trimethyltin chloride (manufactured by Aldrich, 1.0 M, 3.03 mL, 1.2 eq) was added dropwise, and the temperature was slowly raised to room temperature. After cooling to ⁇ 78 ° C.
  • a tetrahydrofuran / hexane solution of lithium diisopropylamide (LDA) (manufactured by Kanto Chemical Co., Inc., concentration 1.13 M, 2.68 mL, 1.2 eq) was added dropwise and stirred for about 1 hour.
  • LDA lithium diisopropylamide
  • a tetrahydrofuran solution of trimethyltin chloride (manufactured by Aldrich, 1.0 M, 3.03 mL, 1.2 eq) was added dropwise, and the temperature was slowly raised to room temperature. After cooling to ⁇ 78 ° C.
  • a tetrahydrofuran / hexane solution of lithium diisopropylamide (LDA) (manufactured by Kanto Chemical Co., Inc., concentration 1.13 M, 2.68 mL, 1.2 eq) was added dropwise, and the mixture was stirred for about 1 hour.
  • LDA lithium diisopropylamide
  • a tetrahydrofuran solution of trimethyltin chloride manufactured by Aldrich, 1.0 M, 3.03 mL, 1.2 eq
  • 1,3-Dibromo-5- (n-octyl) was obtained in a 50 mL two-necked eggplant flask under a nitrogen atmosphere as a monomer by referring to a method described in a known document (Organic Letters 2004, 6, 3381-3384).
  • 2013/180243 b 2 ′, 3′-d] silole (compound E2) (176 mg, 0.237 mmol) was added, and tetrakis (triphenylphosphine) palladium (0) (9.8 mg, 2.50 mol%), triphenylphosphine Containing heterogeneous palladium complex catalyst Pd-EnCatTPP30 (manufactured by Aldrich, 12.7 mg, 1.53 mol%), toluene (10.0 mL), and N, N-dimethylformamide (2.50 mL) at 100 ° C. The mixture was stirred for 1 hour and then at 110 ° C. for 5 hours.
  • the reaction solution was diluted twice with toluene and heated and stirred at 110 ° C. for another 0.5 hours, and then trimethyl (phenyl) tin (0.20 mL) was added as a terminal treatment and heated and stirred at 110 ° C. for 2.0 hours. Further, bromobenzene (4.00 mL) was added and stirred with heating at 110 ° C. for 2.0 hours.
  • the reaction solution was poured into methanol, and the deposited precipitate was collected by filtration. The obtained solid was dissolved in chloroform, diamine silica gel (Fuji Silysia Chemical) was added, and the mixture was stirred for 1 hour at room temperature and passed through a short column of acidic silica gel. By concentrating the solution, the target copolymer 8 was obtained in a yield of 80%.
  • the weight average molecular weight Mw of the obtained copolymer 8 was 46K, and PDI was 2.4.
  • Triphenylphosphine-containing heterogeneous palladium complex catalyst Pd-EnCatTPP30 manufactured by Aldrich, 130 mg, 0.85 mol%), toluene (24.0 mL), and N, N-dimethylformamide (6.00 mL) 1 hour at 100 ° C, followed by 110 In and the mixture was stirred for 5 hours.
  • the reaction solution was poured into methanol, and the deposited precipitate was collected by filtration. The obtained solid was dissolved in hexane and subjected to column chromatography (acidic silica gel, hexane). By concentrating the solution, the target 2,5-bis (4-dodecylthiophen-2-yl) -3,4-ethylenedioxythiophene (Compound T11) was obtained in a yield of 52.0%.
  • a tetrahydrofuran solution of trimethyltin chloride (manufactured by Aldrich, 1.0M, 3.13 mL, 1.2 eq) was added dropwise, and the temperature was slowly raised to room temperature. After cooling to ⁇ 78 ° C. again, a solution of lithium diisopropylamide (LDA) in tetrahydrofuran / hexane (manufactured by Kanto Chemical Co., Inc., concentration 1.13 M, 2.77 mL, 1.2 eq) was added dropwise and stirred for about 1 hour.
  • LDA lithium diisopropylamide
  • a tetrahydrofuran solution of trimethyltin chloride (manufactured by Aldrich, 1.0M, 3.13 mL, 1.2 eq) was added dropwise, and the temperature was slowly raised to room temperature. After cooling to ⁇ 78 ° C. again, a tetrahydrofuran / hexane solution of lithium diisopropylamide (LDA) (manufactured by Kanto Chemical Co., Inc., concentration 1.13 M, 2.77 mL, 1.2 eq) was added dropwise, and the mixture was stirred for about 1 hour.
  • LDA lithium diisopropylamide
  • 1,3-Dibromo-5- (n-octyl) was obtained in a 50 mL two-necked eggplant flask under a nitrogen atmosphere as a monomer by referring to a method described in a known document (Organic Letters 2004, 6, 3381-3384).
  • the mixture was stirred for 1 hour and then at 110 ° C. for 5 hours.
  • the reaction solution was diluted twice with toluene and heated and stirred at 110 ° C. for another 0.5 hours, and then trimethyl (phenyl) tin (0.20 mL) was added as a terminal treatment and heated and stirred at 110 ° C. for 2.0 hours. Further, bromobenzene (4.00 mL) was added and stirred with heating at 110 ° C. for 2.0 hours.
  • the reaction solution was poured into methanol, and the deposited precipitate was collected by filtration.
  • the obtained solid was dissolved in chloroform, diamine silica gel (Fuji Silysia Chemical) was added, and the mixture was stirred for 1 hour at room temperature and passed through a short column of acidic silica gel. By concentrating the solution, the target copolymer 9 was obtained in a yield of 78%.
  • the weight average molecular weight Mw of the obtained copolymer 9 was 87K, and PDI was 2.5.
  • a tetrahydrofuran solution of trimethyltin chloride (manufactured by Aldrich, 1.0 M, 1.12 mL, 1.2 eq) was added dropwise, and the temperature was slowly raised to room temperature. After cooling again to ⁇ 78 ° C., a solution of lithium diisopropylamide (LDA) in tetrahydrofuran / hexane (manufactured by Kanto Chemical Co., Inc., concentration 1.13 M, 1.00 mL, 1.2 eq) was added dropwise and stirred for about 1 hour.
  • LDA lithium diisopropylamide
  • a tetrahydrofuran solution of trimethyltin chloride (manufactured by Aldrich, 1.0 M, 1.12 mL, 1.2 eq) was added dropwise, and the temperature was slowly raised to room temperature. After cooling to ⁇ 78 ° C. again, a tetrahydrofuran / hexane solution of lithium diisopropylamide (LDA) (manufactured by Kanto Chemical Co., Inc., concentration 1.13 M, 1.00 mL, 1.2 eq) was added dropwise and stirred for about 1 hour.
  • LDA lithium diisopropylamide
  • 1,3-Dibromo-5- (n-octyl) was obtained in a 50 mL two-necked eggplant flask under a nitrogen atmosphere as a monomer by referring to a method described in a known document (Organic Letters 2004, 6, 3381-3384).
  • the obtained solid was dissolved in chloroform, diamine silica gel (Fuji Silysia Chemical) was added, and the mixture was stirred for 1 hour at room temperature and passed through a short column of acidic silica gel. By concentrating the solution, the target copolymer 10 was obtained in a yield of 79%.
  • the weight average molecular weight Mw of the obtained copolymer 10 was 72K, and PDI was 2.4.
  • 1,4-bis (4-dodecylthiophen-2-yl) -benzene (T15) (618 mg, 1.07 mmol) obtained by the above method was placed in a 50 mL two-necked eggplant flask, and tetrahydrofuran was added. (THF, 30.0 mL) was dissolved and cooled to -78 ° C. Further, a tetrahydrofuran / hexane solution of lithium diisopropylamide (LDA) (manufactured by Kanto Chemical Co., Inc., concentrations 1.13 M, 1.13 mL, 1.2 eq) was added dropwise and stirred for about 1 hour.
  • LDA lithium diisopropylamide
  • a tetrahydrofuran solution of trimethyltin chloride (manufactured by Aldrich, 1.0 M, 1.28 mL, 1.2 eq) was added dropwise, and the temperature was slowly raised to room temperature. After cooling again to ⁇ 78 ° C., a solution of lithium diisopropylamide (LDA) in tetrahydrofuran / hexane (manufactured by Kanto Chemical Co., Inc., concentrations 1.13 M, 1.13 mL, 1.2 eq) was added dropwise and stirred for about 1 hour.
  • LDA lithium diisopropylamide
  • a tetrahydrofuran solution of trimethyltin chloride (manufactured by Aldrich, 1.0 M, 1.28 mL, 1.2 eq) was added dropwise, and the temperature was slowly raised to room temperature. After cooling to ⁇ 78 ° C. again, a solution of lithium diisopropylamide (LDA) in tetrahydrofuran / hexane (manufactured by Kanto Chemical Co., Inc., concentrations 1.13 M, 1.13 mL, 1.2 eq) was added dropwise and stirred for about 1 hour.
  • LDA lithium diisopropylamide
  • 1,3-Dibromo-5- (n-octyl) was obtained in a 50 mL two-necked eggplant flask under a nitrogen atmosphere as a monomer by referring to a method described in a known document (Organic Letters 2004, 6, 3381-3384).
  • the reaction solution was diluted twice with toluene and heated and stirred at 110 ° C. for another 0.5 hours, and then trimethyl (phenyl) tin (0.20 mL) was added as a terminal treatment and heated and stirred at 110 ° C. for 2.0 hours. Further, bromobenzene (4.00 mL) was added and stirred with heating at 110 ° C. for 2.0 hours.
  • the reaction solution was poured into methanol, and the deposited precipitate was collected by filtration. The obtained solid was dissolved in chloroform, diamine silica gel (Fuji Silysia Chemical) was added, and the mixture was stirred for 1 hour at room temperature and passed through a short column of acidic silica gel. By concentrating the solution, the target copolymer 11 was obtained in a yield of 78%.
  • the weight average molecular weight Mw of the obtained copolymer 11 was 54K, and PDI was 3.2.
  • reaction solution was diluted twice with toluene and heated and stirred at 110 ° C. for another 0.5 hours, and then trimethyl (phenyl) tin (0.20 mL) was added as a terminal treatment and heated and stirred at 110 ° C. for 2.0 hours. Further, bromobenzene (4.00 mL) was added and stirred with heating at 110 ° C. for 2.0 hours. The reaction solution was poured into methanol, and the deposited precipitate was collected by filtration.
  • the obtained solid was dissolved in chloroform, diamine silica gel (Fuji Silysia Chemical) was added, and the mixture was stirred for 1 hour at room temperature and passed through a short column of acidic silica gel. By concentrating the solution, the target copolymer 12 was obtained in a yield of 78%.
  • the weight average molecular weight Mw of the obtained copolymer 12 was 83K, and PDI was 1.7.
  • 1,3-Dibromo-5- (n-octyl) was obtained in a 50 mL two-necked eggplant flask under a nitrogen atmosphere as a monomer by referring to a method described in a known document (Organic Letters 2004, 6, 3381-3384).
  • the obtained solid was dissolved in chloroform, diamine silica gel (Fuji Silysia Chemical) was added, and the mixture was stirred at room temperature for 30 minutes and passed through a short column of acidic silica gel.
  • the solution was concentrated, recrystallized using chloroform / ethyl acetate as a solvent, and the deposited precipitate was separated by filtration to obtain the target copolymer 14 in a yield of 18%.
  • the weight average molecular weight Mw of the obtained copolymer 14 was 124 k, and PDI was 3.0.
  • 1,3-Dibromo-5- (2-ethylhexyl) obtained in a 50 mL two-necked eggplant flask under a nitrogen atmosphere was obtained as a monomer by referring to a method described in a known document (Organic Letters 2004, 6, 3381-3384).
  • Tetrakis (triphenylphosphine) palladium (0) (4.7 mg, 3.0 mol%), tri A heterogeneous palladium complex catalyst Pd-EnCatTPP30 (Aldrich, 6.1 mg, 2.0 mol%), toluene (4 mL), and N, N-dimethylformamide (1 mL) were charged at 95 ° C. for 1 hour. Subsequently, the mixture was stirred at 110 ° C. for 5 hours. As a terminal treatment, trimethyl (phenyl) tin (0.03 mL) was added followed by 6 mL of toluene, and the mixture was further heated and stirred at 110 ° C.
  • a tetrahydrofuran / hexane solution of normal butyl lithium (nBuLi) (manufactured by Kanto Chemical Co., Inc., concentration 1.60 M, 6.24 mL, 2.2 eq) was added dropwise and stirred for about 1 hour.
  • a tetrahydrofuran solution of trimethyltin chloride (manufactured by Aldrich, 1.0 M, 9.99 mL, 2.2 eq) was added dropwise, and the temperature was slowly raised to room temperature. Water was added to the reaction solution, followed by extraction with hexane, and the organic layer was washed with water.
  • 1,3-Dibromo-5- (n-octyl) was obtained in a 50 mL two-necked eggplant flask under a nitrogen atmosphere as a monomer by referring to a method described in a known document (Organic Letters 2004, 6, 3381-3384).
  • the reaction solution was diluted twice with toluene and heated and stirred at 110 ° C. for another 0.5 hours, and then trimethyl (phenyl) tin (0.20 mL) was added as a terminal treatment and heated and stirred at 110 ° C. for 2.0 hours. Further, bromobenzene (4.00 mL) was added and stirred with heating at 110 ° C. for 2.0 hours.
  • the reaction solution was poured into methanol, and the deposited precipitate was collected by filtration. The obtained solid was dissolved in chloroform, diamine silica gel (Fuji Silysia Chemical) was added, and the mixture was stirred for 1 hour at room temperature and passed through a short column of acidic silica gel. By concentrating the solution, the target copolymer 16 was obtained in a yield of 82.0%.
  • the weight average molecular weight Mw of the obtained copolymer 16 was 49.0K, and PDI was 2.2.
  • 1,3-Dibromo-5- (n-octyl) was obtained in a 50 mL two-necked eggplant flask under a nitrogen atmosphere as a monomer by referring to a method described in a known document (Organic Letters 2004, 6, 3381-3384).
  • 2-Bromo-3-dodecylthiophene (1.65 g, 5.0 mmol) and 2-tributylstannylthiophene (2.8 g, 7.5 mmol) were placed in a 50 mL two-necked eggplant flask, and nitrogen substitution was performed three times. It was. Tetrakis (triphenylphosphine) palladium (0) (173 mg, 3 mol%), triphenylphosphine-containing heterogeneous palladium complex catalyst Pd-EnCatTPP30 (Aldrich, 50 mg, 1 mol%), toluene (8 mL), and N, N -Dimethylformamide (2 mL) was added and stirred at 110 ° C for 5 hours.
  • Tetrakis (triphenylphosphine) palladium (0) (173 mg, 3 mol%)
  • triphenylphosphine-containing heterogeneous palladium complex catalyst Pd-EnCatTPP30 Aldrich,
  • 3-dodecyl-2,2′-bithiophene (T20) (1.11 g, 3.32 mmol) obtained by the above-described method was placed in a 50 mL two-necked eggplant flask, and tetrahydrofuran (THF, 15.2. (0 mL) and cooled to -78 ° C. Further, a tetrahydrofuran solution of trimethyltin chloride (manufactured by TIC, 1.0 M, 3.3 mL, 1.0 eq) was added dropwise.
  • T20 tetrahydrofuran
  • LDA lithium diisopropylamide
  • 1,3-Dibromo-5- (n-octyl) was obtained in a 50 mL two-necked eggplant flask under a nitrogen atmosphere as a monomer by referring to a method described in a known document (Organic Letters 2004, 6, 3381-3384).
  • This solution was stirred and mixed on a hot stirrer at a temperature of 80 ° C. for 1 hour.
  • the solution after stirring and mixing was filtered through a 1 ⁇ m polytetrafluoroethylene (PTFE) filter to obtain an ink for coating an active layer.
  • PTFE polytetrafluoroethylene
  • a glass substrate manufactured by Geomatic Co., Ltd.
  • ITO indium tin oxide
  • the substrate on which the electron extraction layer was formed was brought into a glove box, heat-treated at 150 ° C. for 3 minutes in a nitrogen atmosphere, and after cooling, the ink for active layer application (0.12 mL) produced as described above was spin-coated.
  • An active layer having a thickness of 200 nm was formed. Then, it heated at 140 degreeC for 10 minute (s) on the hotplate. The substrate on which the active layer was formed was taken out of the glove box, allowed to stand in the atmosphere (25 ° C., humidity 1% or less) for 3 hours under light shielding, and then brought back into the glove box. Further, a molybdenum trioxide (MoO 3 ) film having a thickness of 1.5 nm is formed on the active layer as a hole extraction layer, and then a silver film having a thickness of 100 nm is formed as an upper electrode by resistance heating vacuum deposition. A 5 mm square photoelectric conversion element was produced by sequentially forming a film. The photoelectric conversion element 1 thus produced was evaluated by measuring the current-voltage characteristics as described above, and the photoelectric conversion efficiency (PCE) when the active layer was not exposed was obtained.
  • PCE photoelectric conversion efficiency
  • Example 2 Production of photoelectric conversion element 2> A photoelectric conversion element 2 was produced in the same manner as in Example 1 except that the copolymer 2 obtained in Synthesis Example 2 was used instead of the copolymer 1 obtained in Synthesis Example 1, and the photoelectric conversion efficiency (PCE) was increased. Asked. The obtained results are shown in Table 1.
  • Example 3 Production of photoelectric conversion element 3> A photoelectric conversion element 3 was prepared in the same manner as in Example 1 except that the copolymer 3 obtained in Synthesis Example 3 was used instead of the copolymer 1 obtained in Synthesis Example 1, and the photoelectric conversion efficiency (PCE) was increased. Asked. The obtained results are shown in Table 1.
  • Example 4 Production of photoelectric conversion element 4> A photoelectric conversion element 4 was produced in the same manner as in Example 1 except that the copolymer 4 obtained in Synthesis Example 4 was used instead of the copolymer 1 obtained in Synthesis Example 1, and the photoelectric conversion efficiency (PCE) was increased. Asked. The obtained results are shown in Table 1.
  • Example 5 Production of photoelectric conversion element 5> A photoelectric conversion element 5 was produced in the same manner as in Example 1 except that the copolymer 5 obtained in Synthesis Example 5 was used instead of the copolymer 1 obtained in Synthesis Example 1, and the photoelectric conversion efficiency (PCE) was increased. Asked. The obtained results are shown in Table 1.
  • Example 6 Production of photoelectric conversion element 6> A photoelectric conversion element 6 was produced in the same manner as in Example 1 except that the copolymer 6 obtained in Synthesis Example 6 was used instead of the copolymer 1 obtained in Synthesis Example 1, and the photoelectric conversion efficiency (PCE) was increased. Asked. The obtained results are shown in Table 1.
  • Example 7 Production of photoelectric conversion element 8> A photoelectric conversion element 8 was produced in the same manner as in Example 1 except that the copolymer 8 obtained in Synthesis Example 8 was used instead of the copolymer 1 obtained in Synthesis Example 1, and the photoelectric conversion efficiency (PCE) was increased. Asked. The obtained results are shown in Table 1.
  • Example 8 Production of photoelectric conversion element 9> A photoelectric conversion element 9 was produced in the same manner as in Example 1 except that the copolymer 9 obtained in Synthesis Example 9 was used instead of the copolymer 1 obtained in Synthesis Example 1, and the photoelectric conversion efficiency (PCE) was changed. Asked. The obtained results are shown in Table 1.
  • Example 9 Production of photoelectric conversion element 10> A photoelectric conversion element 10 was produced in the same manner as in Example 1 except that the copolymer 10 obtained in Synthesis Example 10 was used instead of the copolymer 1 obtained in Synthesis Example 1, and the photoelectric conversion efficiency (PCE) was increased. Asked. The obtained results are shown in Table 1.
  • Example 10 Production of photoelectric conversion element 11> A photoelectric conversion element 11 was produced in the same manner as in Example 1 except that the copolymer 11 obtained in Synthesis Example 11 was used instead of the copolymer 1 obtained in Synthesis Example 1, and the photoelectric conversion efficiency (PCE) was increased. Asked. The obtained results are shown in Table 1.
  • Example 11 Production of photoelectric conversion element 12> A photoelectric conversion element 12 was produced in the same manner as in Example 1 except that the copolymer 12 obtained in Synthesis Example 12 was used instead of the copolymer 1 obtained in Synthesis Example 1, and the photoelectric conversion efficiency (PCE) was increased. Asked. The obtained results are shown in Table 1.
  • Example 12 Production of photoelectric conversion element 13> A photoelectric conversion element 13 was produced in the same manner as in Example 1 except that the copolymer 13 obtained in Synthesis Example 13 was used instead of the copolymer 1 obtained in Synthesis Example 1, and the photoelectric conversion efficiency (PCE) was increased. Asked. The obtained results are shown in Table 1.
  • Example 13 Production of photoelectric conversion element 14> A photoelectric conversion element 14 was produced in the same manner as in Example 1 except that the copolymer 14 obtained in Synthesis Example 14 was used instead of the copolymer 1 obtained in Synthesis Example 1, and the photoelectric conversion efficiency (PCE) was increased. Asked. The obtained results are shown in Table 1.
  • a photoelectric conversion element 15 was produced in the same manner as in Example 1 except that the copolymer 15 obtained in Synthesis Example 15 was used instead of the copolymer 1 obtained in Synthesis Example 1. However, the copolymer 15 has low solubility and cannot form a uniform film. As a result, the copolymer 15 did not function as a photoelectric conversion element.
  • a photoelectric conversion element 17 was produced in the same manner as in Example 1 except that the copolymer 17 obtained in Synthesis Example 17 was used instead of the copolymer 1 obtained in Synthesis Example 1. However, the copolymer 17 had low solubility and could not form a uniform film, and consequently did not function as a photoelectric conversion element.
  • the copolymer according to Reference Example 2 that does not have a thiophene ring in which a substituent is introduced at a specific position as in the present invention and only one of the thiophene rings has a substituent is also active when the active layer is exposed. It can be seen that the conversion efficiency is greatly reduced compared to the case where the layer was not exposed. Further, the copolymer according to Comparative Example 2 having only the partial structure of the formula (II) was not soluble and could not form a uniform film, and did not function as a photoelectric conversion element.
  • the copolymer according to Comparative Example 3 which does not have a thiophene ring having a substituent introduced at a specific position as in the present invention, cannot form a uniform film with low solubility, and can be used as a photoelectric conversion element. Didn't work. From the above, it can be seen that by using the copolymer according to the present invention having both the partial structures of formula (I) and formula (II), a photoelectric conversion element having excellent exposure resistance can be provided. In addition, since the copolymer according to an embodiment of the present invention has high exposure stability, the conversion efficiency of the obtained photoelectric conversion element is reduced even if the active layer is exposed to light during the manufacturing process of the photoelectric conversion element. Can be prevented.

Abstract

The present invention addresses the problem of providing a copolymer capable of improving exposure stability of a photoelectric conversion element, a photoelectric conversion element having high exposure stability, solar cell, and solar cell module. A copolymer comprises repeating units represented by formula (I) and repeating units represented by formula (II). (In formula (I), D is a donor monomer unit and A1 is an acceptor monomer unit. In formula (II), A2 is an acceptor monomer unit, L is a single bond or divalent linking group, and R1 and R2 are each independently a monovalent organic group.)

Description

コポリマー、光電変換素子、太陽電池及び太陽電池モジュールCopolymer, photoelectric conversion element, solar cell, and solar cell module
 本発明はコポリマー、光電変換素子、太陽電池及び太陽電池モジュールに関する。 The present invention relates to a copolymer, a photoelectric conversion element, a solar cell, and a solar cell module.
 有機太陽電池、有機EL素子、有機薄膜トランジスタ、及び有機発光センサー等の有機電子デバイスの半導体材料として、π共役高分子が用いられている。特に有機太陽電池においては、太陽光の吸収効率を向上させることが望まれており、長波長(600nm以上)の光を吸収できるポリマーの開発が重要である。吸収波長の長波長化を達成するために、ドナー性モノマーとアクセプター性モノマーの共重合体(以後、コポリマーと称す場合がある)を光電変換素子に用いた例が報告されている。 Π-conjugated polymers are used as semiconductor materials for organic electronic devices such as organic solar cells, organic EL elements, organic thin film transistors, and organic light emitting sensors. In particular, in an organic solar cell, it is desired to improve sunlight absorption efficiency, and it is important to develop a polymer that can absorb light having a long wavelength (600 nm or more). In order to achieve a longer absorption wavelength, an example in which a copolymer of a donor monomer and an acceptor monomer (hereinafter sometimes referred to as a copolymer) is used for a photoelectric conversion element has been reported.
 具体的には、非特許文献1にはイミドチオフェン単位とジチエノシクロペンタジエン単位を有するコポリマーを使用した光電変換素子が記載されている。また、非特許文献1,2,3及び特許文献1には、イミドチオフェン単位とジチエノシロール単位を有するコポリマーを使用した光電変換素子が記載されている。さらに非特許文献2には、イミドチオフェン単位とジチエノゲルモール単位を有するコポリマーを使用した光電変換素子が記載されている。また、特許文献2には、ドナー性ユニット、アクセプター性ユニット及びスペーサーユニットを有するコポリマーを用いて光電変換素子を作製した例が記載されている。 Specifically, Non-Patent Document 1 describes a photoelectric conversion element using a copolymer having an imidothiophene unit and a dithienocyclopentadiene unit. Non-Patent Documents 1, 2, 3 and Patent Document 1 describe photoelectric conversion elements using a copolymer having an imidothiophene unit and a dithienosilole unit. Further, Non-Patent Document 2 describes a photoelectric conversion element using a copolymer having an imidothiophene unit and a dithienogermol unit. Patent Document 2 describes an example in which a photoelectric conversion element is manufactured using a copolymer having a donor unit, an acceptor unit, and a spacer unit.
国際公開第2012/102390号International Publication No. 2012/102390 国際公開第2013/135339号International Publication No. 2013/135339
 有機薄膜太陽電池は、太陽光に晒される環境下での使用が想定されるために、有機薄膜太陽電池の実用化のためには変換効率の向上のみならず、露光安定性の向上が望まれる。しかしながら、本発明者等の検討によると、特許文献1及び非特許文献1~3に記載されるコポリマーを用いた有機薄膜太陽電池は、その製造段階、又は使用する際に、光が照射されるにつれて劣化してしまい、変換効率が低下してしまう可能性があることが判明した。これは主に、有機薄膜太陽電池の光電変換素子を構成する材料の上記コポリマーが光により劣化してしまうためであると考えられる。
 本発明は上記問題を解決し、光電変換素子に用いた場合、光電変換素子の露光安定性を向上させ得るコポリマー、並びに高い露光安定性を備えた光電変換素子、太陽電池、及び太陽電池モジュールを提供することを課題とする。
Since organic thin-film solar cells are expected to be used in environments exposed to sunlight, not only conversion efficiency but also exposure stability is desired for practical use of organic thin-film solar cells. . However, according to the study by the present inventors, the organic thin-film solar cell using the copolymer described in Patent Document 1 and Non-Patent Documents 1 to 3 is irradiated with light at the manufacturing stage or when used. It has been found that there is a possibility that the conversion efficiency deteriorates as the time elapses. This is mainly because the copolymer of the material constituting the photoelectric conversion element of the organic thin film solar cell is deteriorated by light.
The present invention solves the above problems, and when used in a photoelectric conversion element, a copolymer that can improve the exposure stability of the photoelectric conversion element, and a photoelectric conversion element, a solar cell, and a solar cell module having high exposure stability. The issue is to provide.
 本願発明者らは上記課題を解決すべく鋭意検討した結果、ドナー性モノマー単位とアクセプター性モノマー単位との繰り返し単位に加えて、特定の繰り返し単位を有するコポリマーを用いることで、上記問題が解決できることを見出し、本発明を達成するに至った。即ち、本発明は以下を要旨とする。 As a result of intensive studies to solve the above problems, the inventors of the present application can solve the above problems by using a copolymer having a specific repeating unit in addition to a repeating unit of a donor monomer unit and an acceptor monomer unit. The present invention has been found and the present invention has been achieved. That is, the gist of the present invention is as follows.
[1]下記式(I)で表される繰り返し単位と、下記式(II)で表される繰り返し単位と、を有するコポリマー。 [1] A copolymer having a repeating unit represented by the following formula (I) and a repeating unit represented by the following formula (II).
Figure JPOXMLDOC01-appb-C000007
Figure JPOXMLDOC01-appb-C000007
Figure JPOXMLDOC01-appb-C000008
(式(I)中、Dはドナー性のモノマー単位を表し、A1はアクセプター性モノマー単位を表す。式(II)中、A2は、アクセプター性モノマー単位を表し、Lは直接結合又は2価の連結基を表し、R1及びR2は、それぞれ独立して1価の有機基を表す。前記式(I)で表される繰り返し単位と前記式(II)で表される繰り返し単位は互いに同じ繰り返し単位ではない。)
[2]前記式(I)中、Dは、下記式(III)で表される構成単位又は下記式(XI)で表される構成単位であることを特徴とする[1]に記載のコポリマー。
Figure JPOXMLDOC01-appb-C000008
(In Formula (I), D represents a donor monomer unit, A1 represents an acceptor monomer unit. In Formula (II), A2 represents an acceptor monomer unit, and L represents a direct bond or a divalent monomer unit. R 1 and R 2 each independently represent a monovalent organic group, and the repeating unit represented by the formula (I) and the repeating unit represented by the formula (II) are the same as each other. Not a repeating unit.)
[2] The copolymer according to [1], wherein D in the formula (I) is a structural unit represented by the following formula (III) or a structural unit represented by the following formula (XI): .
Figure JPOXMLDOC01-appb-C000009
Figure JPOXMLDOC01-appb-C000009
(式(III)中、Ar1及びAr2は、それぞれ独立して、置換基を有していてもよい芳香環を表す。X1は、Q1(R3)(R4)又はQ3(R10)を表し、Q1は、周期表第14族元素から選ばれる原子を表し、R3及びR4はそれぞれ独立して、水素原子又は1価の有機基を表す。Q3は、周期表第15族元素から選ばれる原子を表し、R10は、水素原子又は1価の有機基を表す。X2は、直接結合、酸素原子(O)、硫黄原子(S)、N(R5)、又はQ2(R6)(R7)を表し、Q2は、周期表第14族元素から選ばれる原子を表し、R5~R7はそれぞれ水素原子又は1価の有機基を表す。) (In formula (III), Ar 1 and Ar 2 each independently represent an aromatic ring which may have a substituent. X 1 represents Q 1 (R 3 ) (R 4 ) or Q 3. represents (R 10), Q 1 represents an atom selected from the periodic table group 14 element, R 3 and R 4 are each independently, .Q 3 represents a hydrogen atom or a monovalent organic group, Represents an atom selected from Group 15 elements of the periodic table, and R 10 represents a hydrogen atom or a monovalent organic group, X 2 represents a direct bond, an oxygen atom (O), a sulfur atom (S), N (R 5 ) or Q 2 (R 6 ) (R 7 ), Q 2 represents an atom selected from Group 14 elements of the periodic table, and R 5 to R 7 each represents a hydrogen atom or a monovalent organic group. To express.)
Figure JPOXMLDOC01-appb-C000010
Figure JPOXMLDOC01-appb-C000010
(式(XI)中、Ar3及びAr4はそれぞれ独立して置換基を有していてもよい芳香環を表し、X3及びX4はそれぞれ独立して、Q4(R11)を表す。Q4は、周期表第14族元素から選ばれる原子を表し、R11は水素原子又は1価の有機基を表す。)
[3]前記式(I)及び前記式(II)中、A1及びA2は、それぞれ下記式(XIV)で表される構成単位又は下記式(XV)で表される構成単位であることを特徴とする[1]又は[2]に記載のコポリマー。
(In the formula (XI), Ar 3 and Ar 4 each independently represent an aromatic ring optionally having a substituent, and X 3 and X 4 each independently represent Q 4 (R 11 ). Q 4 represents an atom selected from Group 14 elements of the periodic table, and R 11 represents a hydrogen atom or a monovalent organic group.)
[3] In the formula (I) and the formula (II), A1 and A2 are each a structural unit represented by the following formula (XIV) or a structural unit represented by the following formula (XV). The copolymer according to [1] or [2].
Figure JPOXMLDOC01-appb-C000011
Figure JPOXMLDOC01-appb-C000011
(式(XIV)中、Ar5は、置換基を有していてもよい芳香族炭化水素環、置換基を有していてもよい脂肪族複素環又は置換基を有していてもよい芳香族複素環を表し、X5は、周期表第16族元素から選ばれる原子を表す。) (In the formula (XIV), Ar 5 is an aromatic hydrocarbon ring which may have a substituent, an aliphatic heterocyclic ring which may have a substituent, or an aromatic which may have a substituent. X 5 represents an atom selected from Group 16 elements of the periodic table.
Figure JPOXMLDOC01-appb-C000012
Figure JPOXMLDOC01-appb-C000012
(式(XV)中、Ar6は、置換基を有していてもよい芳香族炭化水素環、置換基を有していてもよい脂肪族複素環又は置換基を有していてもよい芳香族複素環を表し、X6及びX7はそれぞれ独立して、窒素原子(N)又はQ5(R12)を表す。Q5は、周期表第14族元素から選ばれる原子を表し、R12は水素原子又は1価の有機基を表す。)
[4]前記式(I)中のA1と前記式(II)中のA2は同じであることを特徴とする[1]~[3]のいずれかに記載のコポリマー。
[5]前記式(II)中、Lは直接結合、置換基を有していてもよい、2価の単環式の芳香族複素環基、及び置換基を有していてもよい、単環式の芳香族複素環基が連結した2価の多環式の芳香族複素環基からなる群より選ばれた1種であることを特徴とする[1]~[4]のいずれかに記載のコポリマー。
[6]基材上に、少なくとも一対の電極と、該一対の電極間に活性層と、を有する光電変換素子であって、前記活性層が[1]~[5]のいずれかに記載のコポリマーを含有することを特徴とする光電変換素子。
[7][6]に記載の光電変換素子を有する太陽電池。
[8][7]に記載の太陽電池を有する太陽電池モジュール。
(In the formula (XV), Ar 6 represents an aromatic hydrocarbon ring that may have a substituent, an aliphatic heterocyclic ring that may have a substituent, or an aromatic that may have a substituent. X 6 and X 7 each independently represent a nitrogen atom (N) or Q 5 (R 12 ), Q 5 represents an atom selected from Group 14 elements of the Periodic Table, 12 represents a hydrogen atom or a monovalent organic group.)
[4] The copolymer according to any one of [1] to [3], wherein A1 in the formula (I) and A2 in the formula (II) are the same.
[5] In the formula (II), L is a direct bond, a divalent monocyclic aromatic heterocyclic group which may have a substituent, and a substituent. Any one of [1] to [4], wherein the cyclic aromatic heterocyclic group is one selected from the group consisting of divalent polycyclic aromatic heterocyclic groups linked to each other The copolymer described.
[6] A photoelectric conversion element having at least a pair of electrodes and an active layer between the pair of electrodes on a substrate, wherein the active layer is any one of [1] to [5] A photoelectric conversion element comprising a copolymer.
[7] A solar cell having the photoelectric conversion element according to [6].
[8] A solar cell module having the solar cell according to [7].
 本発明によれば、光電変換素子に用いた場合、光電変換素子の露光安定性を向上させ得るコポリマー、並びに高い露光安定性を備えた光電変換素子、太陽電池、及び太陽電池モジュールを提供することができる。 ADVANTAGE OF THE INVENTION According to this invention, when used for a photoelectric conversion element, the copolymer which can improve the exposure stability of a photoelectric conversion element, and the photoelectric conversion element, solar cell, and solar cell module provided with high exposure stability are provided. Can do.
図1は、本発明の一実施形態としての光電変換素子の構成を模式的に示す断面図である。FIG. 1 is a cross-sectional view schematically showing a configuration of a photoelectric conversion element as one embodiment of the present invention. 図2は、本発明の一実施形態としての太陽電池の構成を模式的に示す断面図である。FIG. 2 is a cross-sectional view schematically showing a configuration of a solar cell as one embodiment of the present invention. 図3は、本発明の一実施形態としての太陽電池モジュールの構成を模式的に示す断面図である。FIG. 3 is a cross-sectional view schematically showing the configuration of the solar cell module as one embodiment of the present invention.
 以下に、本発明の実施の形態を詳細に説明する。以下に記載する構成要件の説明は、本発明の実施形態の一例(代表例)であり、本発明はその要旨を超えない限り、これらの内容に特定はされない。 Hereinafter, embodiments of the present invention will be described in detail. The description of the constituent requirements described below is an example (representative example) of an embodiment of the present invention, and the present invention is not specified in these contents unless it exceeds the gist.
<1.本発明に係るコポリマー>
 本発明に係るコポリマーは、下記式(I)で表される繰り返し単位と、下記式(II)で表される繰り返し単位と、を有する。なお、下記式(I)で表される繰り返し単位と下記式(II)で表される繰り返し単位は互いに同じ繰り返し単位ではない。なお、本発明において、式(I)で表される繰り返し単位と式(II)で表される繰り返し単位が互いに同じ繰り返し単位ではないとは、式(I)で表される繰り返し単位と式(II)で表される繰り返し単位とが同一の構成単位ではないことを意味する。すなわち、式(I)で表される繰り返し単位と式(II)で表される繰り返し単位が置換基のみ異なる場合も、式(I)で表される繰り返し単位と式(II)で表される繰り返し単位とは異なる繰り返し単位とする。
<1. Copolymer according to the present invention>
The copolymer according to the present invention has a repeating unit represented by the following formula (I) and a repeating unit represented by the following formula (II). The repeating unit represented by the following formula (I) and the repeating unit represented by the following formula (II) are not the same repeating unit. In the present invention, the repeating unit represented by the formula (I) and the repeating unit represented by the formula (II) are not the same repeating unit. It means that the repeating unit represented by II) is not the same structural unit. That is, even when the repeating unit represented by the formula (I) and the repeating unit represented by the formula (II) differ only in substituents, the repeating unit represented by the formula (I) and the formula (II) are also represented. The repeating unit is different from the repeating unit.
Figure JPOXMLDOC01-appb-C000013
Figure JPOXMLDOC01-appb-C000013
Figure JPOXMLDOC01-appb-C000014
Figure JPOXMLDOC01-appb-C000014
 式(I)中、Dはドナー性モノマー単位を表し、A1はアクセプター性モノマー単位を表す。なお、本発明において、ドナー性モノマー単位とはイオン化ポテンシャルが小さく電子を供与する傾向の強いモノマー単位を意味する。また、アクセプター性モノマー単位とは電子親和力が大きく電子を受容する傾向の強いモノマー単位を意味する。具体的に、ドナー性モノマー単位(D)は、アクセプター性モノマー単位(A1)よりもイオン化ポテンシャル及び電子親和力が小さいモノマー単位であり、アクセプター性モノマー単位(A1)はドナー性モノマー単位(D)よりもイオン化ポテンシャル及び電子親和力が大きいモノマー単位である。すなわち、本発明において、ドナー性モノマー単位(D)は、アクセプター性モノマー単位(A1)のHOMOエネルギー準位よりも高いHOMOエネルギー順位を有し、かつアクセプター性モノマー単位のLUMOエネルギー準位よりも高いLUMOエネルギー準位を有する構成単位である。HOMOエネルギー準位及びLUMOエネルギー準位は光電子収量分光(PYS)測定、紫外光電子分光(UPS)測定、逆光電子分光(IPES)測定及びサイクリックボルタンメトリー測定等により実験的に見積もることができる他、分子軌道法(MO法)及び密度半関数法(DFT法)等の量子化学計算により算出することができる。なお、ドナー性モノマー単位(D)及びアクセプター性モノマー単位(A1)のHOMOエネルギー準位及びLUMOエネルギー準位を算出する際は、それぞれ末端部分を水素原子で置換させて算出することとする。 In formula (I), D represents a donor monomer unit, and A1 represents an acceptor monomer unit. In the present invention, the donor monomer unit means a monomer unit having a small ionization potential and a strong tendency to donate electrons. The acceptor monomer unit means a monomer unit having a large electron affinity and a strong tendency to accept electrons. Specifically, the donor monomer unit (D) is a monomer unit having a smaller ionization potential and electron affinity than the acceptor monomer unit (A1), and the acceptor monomer unit (A1) is more than the donor monomer unit (D). Is a monomer unit having a large ionization potential and electron affinity. That is, in the present invention, the donor monomer unit (D) has a HOMO energy level higher than that of the acceptor monomer unit (A1) and is higher than the LUMO energy level of the acceptor monomer unit. A structural unit having a LUMO energy level. HOMO energy level and LUMO energy level can be estimated experimentally by photoelectron yield spectroscopy (PYS) measurement, ultraviolet photoelectron spectroscopy (UPS) measurement, inverse photoelectron spectroscopy (IPES) measurement, cyclic voltammetry measurement, etc. It can be calculated by quantum chemical calculation such as orbital method (MO method) and density half function method (DFT method). In addition, when calculating the HOMO energy level and the LUMO energy level of the donor monomer unit (D) and the acceptor monomer unit (A1), the calculation is performed by substituting each terminal portion with a hydrogen atom.
 ドナー性モノマー単位(D)は、上述の特性を有するものであれば、特段の制限はないが、例えば、置換基を有していてもよい2価の芳香族基が挙げられる。前記2価の芳香族基としては、2価の芳香族炭化水素基又は2価の芳香族複素環基が挙げられる。 The donor monomer unit (D) is not particularly limited as long as it has the above-described characteristics, and examples thereof include a divalent aromatic group which may have a substituent. Examples of the divalent aromatic group include a divalent aromatic hydrocarbon group and a divalent aromatic heterocyclic group.
 前記2価の芳香族炭化水素基は、特段の制限はなく、2価の縮合多環芳香族炭化水素基が挙げられる。例えば、ナフタレン、フルオレン、アントラセン、フェナントレン、ペリレン、ピレン等の芳香族炭化水素化合物から水素原子を2個除いた2価の有機基が挙げられる。 The divalent aromatic hydrocarbon group is not particularly limited, and examples thereof include a divalent condensed polycyclic aromatic hydrocarbon group. For example, a divalent organic group obtained by removing two hydrogen atoms from an aromatic hydrocarbon compound such as naphthalene, fluorene, anthracene, phenanthrene, perylene, or pyrene can be given.
 前記2価の芳香族複素環基は、特段の制限はなく、2価の単環式の芳香族複素環基、2価の縮合多環式の芳香族複素環基、2価の単環式の芳香族複素環基及び/又は2価の縮合多環式の芳香族複素環基が連結した2価の多環式の芳香族複素環基が挙げられる。これらの基は、特段の制限はなく、例えば、チオフェン、ビチオフェン、ターチオフェン、クオーターチオフェン、チエノチオフェン、ジチエノチオフェン、ベンゾジチオフェン、シクロペンタジチオフェン、ジチエノシロール、ジチエノゲルモール、インダセノジチオフェン、ジチエノピロール、カルバゾール、アリールアミン、イソチアナフテン等の芳香族複素環化合物から水素原子を2個除いた2価の有機基が挙げられる。また、非特許文献(Macromolecules 2012,45,607-632)に記載のドナー性モノマー単位が挙げられる。 The divalent aromatic heterocyclic group is not particularly limited, and is a divalent monocyclic aromatic heterocyclic group, a divalent condensed polycyclic aromatic heterocyclic group, or a divalent monocyclic. And a divalent polycyclic aromatic heterocyclic group in which a divalent condensed polycyclic aromatic heterocyclic group is linked. These groups are not particularly limited, for example, thiophene, bithiophene, terthiophene, quarterthiophene, thienothiophene, dithienothiophene, benzodithiophene, cyclopentadithiophene, dithienosilole, dithienogermole, indasenodithiophene , Divalent organic groups obtained by removing two hydrogen atoms from an aromatic heterocyclic compound such as dithienopyrrole, carbazole, arylamine, and isothianaphthene. Further, donor monomer units described in non-patent literature (Macromolecules 2012, 45, 607-632) can be mentioned.
 ドナー性モノマー単位(D)を構成する、2価の芳香族炭化水素基及び芳香族複素環基は、上述したように、置換基を有していてもよい。当該置換基は、特段の制限はなく、1価の有機基が挙げられる。具体的には、脂肪族炭化水素基、芳香族炭化水素基、脂肪族複素環基、芳香族複素環基、アルコキシ基、アリールオキシ基、アミノ基、アミド基、アルコキシカルボニル基、アリールオキシカルボニル基、アルキルカルボニル基、アリールカルボニル基、アルキルチオ基、アリールチオ基、又はハロゲン原子が挙げられる。また、当該置換基の数は、特段の制限はなく、置換可能な範囲であれば、複数の置換基を有していてもよい。また、2種以上の置換基を有していてもよい。 The divalent aromatic hydrocarbon group and aromatic heterocyclic group constituting the donor monomer unit (D) may have a substituent as described above. The substituent is not particularly limited, and examples thereof include a monovalent organic group. Specifically, aliphatic hydrocarbon group, aromatic hydrocarbon group, aliphatic heterocyclic group, aromatic heterocyclic group, alkoxy group, aryloxy group, amino group, amide group, alkoxycarbonyl group, aryloxycarbonyl group , An alkylcarbonyl group, an arylcarbonyl group, an alkylthio group, an arylthio group, or a halogen atom. In addition, the number of the substituents is not particularly limited, and may have a plurality of substituents as long as substitution is possible. Moreover, you may have 2 or more types of substituents.
 なかでも、ドナー性モノマー単位(D)は、同一平面上に固定されやすく、π共役により長波長化し易いという観点から、下記式(III)で表される構成単位又は下記式(XI)で表される構成単位であることが好ましい。 Among them, the donor monomer unit (D) is easily expressed on the same plane and is easily expressed by the structural unit represented by the following formula (III) or the following formula (XI) from the viewpoint of easily increasing the wavelength by π conjugation. It is preferable that it is a structural unit.
Figure JPOXMLDOC01-appb-C000015
Figure JPOXMLDOC01-appb-C000015
Figure JPOXMLDOC01-appb-C000016
Figure JPOXMLDOC01-appb-C000016
 式(III)中、Ar1及びAr2は、それぞれ独立して、置換基を有していてもよい芳香環を表す。置換基を有していてもよい芳香環としては、置換基を有していてもよい芳香族炭化水素環又は置換基を有していてもよい芳香族複素環が挙げられる。Ar1及びAr2は、X1及びX2を含む環と縮合環を形成する。 In formula (III), Ar 1 and Ar 2 each independently represent an aromatic ring which may have a substituent. Examples of the aromatic ring which may have a substituent include an aromatic hydrocarbon ring which may have a substituent or an aromatic heterocyclic ring which may have a substituent. Ar 1 and Ar 2 form a condensed ring with the ring containing X 1 and X 2 .
 置換基を有していてもよい芳香族炭化水素環の芳香族炭化水素環は、特段の制限はないが、炭素数が6以上30以下の芳香族炭化水素環が好ましい。具体的には、ベンゼン環等の単環式の芳香族炭化水素環;ナフタレン環、インダン環、インデン環、フェナントレン環、フルオレン環、アントラセン環、アズレン環、ピレン環、ペリレン環等の縮合多環式の芳香族炭化水素環が挙げられる。なかでも、ベンゼン環又はナフタレン環が好ましい。 The aromatic hydrocarbon ring of the aromatic hydrocarbon ring which may have a substituent is not particularly limited, but is preferably an aromatic hydrocarbon ring having 6 to 30 carbon atoms. Specifically, monocyclic aromatic hydrocarbon rings such as benzene rings; condensed polycyclic rings such as naphthalene rings, indane rings, indene rings, phenanthrene rings, fluorene rings, anthracene rings, azulene rings, pyrene rings, and perylene rings An aromatic hydrocarbon ring of the formula Of these, a benzene ring or a naphthalene ring is preferable.
 置換基を有していてもよい芳香族複素環の芳香族複素環は、特段の制限はないが、炭素数が2以上30以下の芳香族複素環が好ましい。具体的には、チオフェン環、フラン環、ピリジン環、ピリミジン環、チアゾール環、オキサゾール環、トリアゾール環等の単環式の芳香族複素環;又はチエノチオフェン環、ベンゾチオフェン環、ベンゾフラン環、ベンゾチアゾール環、ベンゾオキサゾール環、ベンゾトリアゾール環、チアジアゾロピリジン環等の縮合多環式の芳香族複素環が挙げられる。なかでも、チオフェン環、ピリジン環、ピリミジン環、チアゾール環、チアジアゾール環、オキサゾール環、オキサジアゾール環又はトリアゾール環が好ましい。 The aromatic heterocyclic ring that may have a substituent is not particularly limited, but is preferably an aromatic heterocyclic ring having 2 to 30 carbon atoms. Specifically, monocyclic aromatic heterocycles such as thiophene ring, furan ring, pyridine ring, pyrimidine ring, thiazole ring, oxazole ring, triazole ring; or thienothiophene ring, benzothiophene ring, benzofuran ring, benzothiazole Examples thereof include condensed polycyclic aromatic heterocycles such as a ring, a benzoxazole ring, a benzotriazole ring, and a thiadiazolopyridine ring. Among these, a thiophene ring, a pyridine ring, a pyrimidine ring, a thiazole ring, a thiadiazole ring, an oxazole ring, an oxadiazole ring, or a triazole ring is preferable.
 芳香環である、芳香族炭化水素環及び芳香族複素環が有していてもよい置換基は特段の制限はなく、例えば、上述の通り、ドナー性モノマー単位(D1)を構成する2価の芳香族炭化水素基及び2価の芳香族複素環基が有していてもよい置換基が挙げられ、置換可能な範囲で複数の置換基を有していてもよい。また、芳香環は2種以上の置換基を有していてもよい。 The substituent that the aromatic hydrocarbon ring and aromatic heterocyclic ring that are aromatic rings may have is not particularly limited. For example, as described above, the divalent monomer unit (D1) constituting the donor monomer unit (D1) is not limited. The substituent which the aromatic hydrocarbon group and the bivalent aromatic heterocyclic group may have is mentioned, and may have a plurality of substituents within a substitutable range. The aromatic ring may have two or more kinds of substituents.
 上記の中でも、Ar1及びAr2は、それぞれ独立して、置換基を有していてもよい、炭素数2以上6以下の芳香族炭化水素環又は置換基を有していてもよい、炭素数2以上6以下の芳香族複素環がさらに好ましく、なかでも、置換基を有していてもよい炭素数2以上6以下の芳香族複素環が特に好ましい。具体的には、置換基を有していてもよいフラン環又は置換基を有していてもよいチオフェン環が挙げられ、置換基を有していてもよいチオフェン環が特に好ましい。 Among the above, Ar 1 and Ar 2 are each independently an optionally substituted aromatic hydrocarbon ring having 2 to 6 carbon atoms, or an optionally substituted carbon. An aromatic heterocycle having 2 to 6 carbon atoms is more preferable, and an aromatic heterocycle having 2 to 6 carbon atoms which may have a substituent is particularly preferable. Specific examples include a furan ring which may have a substituent or a thiophene ring which may have a substituent, and a thiophene ring which may have a substituent is particularly preferable.
 式(III)中、X1は、Q1(R3)(R4)又はQ3(R10)を表す。なお、Q1は、周期表第14族元素から選ばれる原子を表し、好ましくは炭素原子(C)、珪素原子(Si)、又はゲルマニウム原子(Ge)である。Q3は、周期表第15族元素から選ばれる原子を表し、好ましくは窒素原子(N)又はリン原子(P)が挙げられる。 In formula (III), X 1 represents Q 1 (R 3 ) (R 4 ) or Q 3 (R 10 ). Q 1 represents an atom selected from Group 14 elements of the periodic table, preferably a carbon atom (C), a silicon atom (Si), or a germanium atom (Ge). Q 3 represents an atom selected from Group 15 elements of the periodic table, preferably nitrogen atom (N) or phosphorus atom (P).
 R3及びR4は、それぞれQ1に結合している基を表し、それぞれ独立して、水素原子又は1価の有機基を表す。なお、R3及びR4は、同じ基であってもよいし、互いに異なる基であってもよい。また、R10は、Q3に結合している基を表し、水素原子又は1価の有機基を表す。 R 3 and R 4 each represent a group bonded to Q 1 , and each independently represents a hydrogen atom or a monovalent organic group. R 3 and R 4 may be the same group or different from each other. R 10 represents a group bonded to Q 3 and represents a hydrogen atom or a monovalent organic group.
 1価の有機基は特段の制限はないが、置換基を有していてもよい脂肪族炭化水素基、置換基を有していてもよい芳香族炭化水素基、置換基を有していてもよい脂肪族複素環基、置換基を有していてもよい芳香族複素環基、置換基を有していてもよいアルコキシ基、置換基を有していてもよいアリールオキシ基、置換基を有していてもよいアミノ基、置換基を有していてもよいアミド基、置換基を有していてもよいアルコキシカルボニル基、置換基を有していてもよいアリールオキシカルボニル基、置換基を有していてもよいアルキルカルボニル基、置換基を有していてもよいアリールカルボニル基、置換基を有していてもよいアルキルチオ基、置換基を有していてもよいアリールチオ基、又はハロゲン原子が挙げられる。 The monovalent organic group is not particularly limited, but may have an aliphatic hydrocarbon group that may have a substituent, an aromatic hydrocarbon group that may have a substituent, or a substituent. An aliphatic heterocyclic group which may have a substituent, an aromatic heterocyclic group which may have a substituent, an alkoxy group which may have a substituent, an aryloxy group which may have a substituent, a substituent An amino group which may have a substituent, an amide group which may have a substituent, an alkoxycarbonyl group which may have a substituent, an aryloxycarbonyl group which may have a substituent, a substituent An alkylcarbonyl group which may have a group, an arylcarbonyl group which may have a substituent, an alkylthio group which may have a substituent, an arylthio group which may have a substituent, or A halogen atom is mentioned.
 脂肪族炭化水素基は、直鎖状の脂肪族炭化水素基、分岐状の脂肪族炭化水素基、又は環状の脂肪族炭化水素基が挙げられる。なお、脂肪族炭化水素基が有する炭素数は1以上であり、3以上であることが好ましく、4以上であることがより好ましく、一方、30以下であることが好ましく、20以下であることがより好ましく、16以下であることがさらに好ましく、12以下であることが特に好ましい。なお、前記炭素数の範囲は、分枝状の脂肪族炭化水素基の場合、一番長い直鎖を形成する炭素の数である。 Examples of the aliphatic hydrocarbon group include a linear aliphatic hydrocarbon group, a branched aliphatic hydrocarbon group, and a cyclic aliphatic hydrocarbon group. The aliphatic hydrocarbon group has 1 or more carbon atoms, preferably 3 or more, more preferably 4 or more, and preferably 30 or less, and 20 or less. More preferably, it is more preferably 16 or less, and particularly preferably 12 or less. In the case of a branched aliphatic hydrocarbon group, the range of the carbon number is the number of carbons forming the longest straight chain.
 直鎖状の脂肪族炭化水素基は、直鎖アルキル基、直鎖アルケニル基、又は直鎖アルキニル基が挙げられる。 Examples of the linear aliphatic hydrocarbon group include a linear alkyl group, a linear alkenyl group, and a linear alkynyl group.
 直鎖アルキル基は、特段の制限はないが、例えば、n-ブチル基、n-ヘキシル基、n-ヘプチル基、n-オクチル基、n-デシル基、又はn-ドデシル基が挙げられる。 The linear alkyl group is not particularly limited, and examples thereof include n-butyl group, n-hexyl group, n-heptyl group, n-octyl group, n-decyl group, and n-dodecyl group.
 直鎖アルケニル基は、特段の制限はないが、例えば、5-ヘキセニル基、7-オクテニル基、11-ドデセニル基、又は12-トリデセニル基が挙げられる。 The linear alkenyl group is not particularly limited, and examples thereof include a 5-hexenyl group, a 7-octenyl group, an 11-dodecenyl group, and a 12-tridecenyl group.
 直鎖アルキニル基は、特段の制限はないが、5-ヘキシニル基、7-オクチニル基、9-デシニル基、又は11-ドデシニル基が挙げられる。 The linear alkynyl group is not particularly limited, and examples thereof include a 5-hexynyl group, a 7-octynyl group, a 9-decynyl group, and an 11-dodecynyl group.
 分岐状の脂肪族炭化水素基は、分岐アルキル基、分岐アルケニル基、又は分岐アルキニル基が挙げられる。 Examples of the branched aliphatic hydrocarbon group include a branched alkyl group, a branched alkenyl group, and a branched alkynyl group.
 分岐アルキル基は、分岐1級アルキル基、分岐2級アルキル基又は分岐3級アルキル基が挙げられる。分岐1級アルキル基とは、遊離原子価を有する炭素原子に結合する水素原子が2つである分岐アルキル基を意味する。分岐2級アルキル基とは、遊離原子価を有する炭素原子に結合する水素原子が1つである分岐アルキル基を意味する。また分岐3級アルキル基とは、遊離原子価を有する炭素原子に結合する水素原子が無い分岐アルキル基を意味する。ここで、遊離原子価とは、有機化学・生化学命名法(上)(改訂第2版、南江堂、1992年発行)に記載のとおり、他の遊離原子価と結合を形成できるものをいう。 Examples of the branched alkyl group include a branched primary alkyl group, a branched secondary alkyl group, and a branched tertiary alkyl group. The branched primary alkyl group means a branched alkyl group having two hydrogen atoms bonded to a carbon atom having a free valence. The branched secondary alkyl group means a branched alkyl group having one hydrogen atom bonded to a carbon atom having a free valence. The branched tertiary alkyl group means a branched alkyl group having no hydrogen atom bonded to a carbon atom having a free valence. Here, the free valence refers to a substance that can form a bond with another free valence as described in the organic chemistry / biochemical nomenclature (above) (Revised 2nd edition, Nankodo, 1992).
 分岐1級アルキル基は、特段の制限はないが、例えば、2-エチルヘキシル基、2-ブチルオクチル基、3,7-ジメチルオクチル基、2-ヘキシルデシル基、又は2-デシルテトラデシル基が挙げられる。 The branched primary alkyl group is not particularly limited, and examples thereof include 2-ethylhexyl group, 2-butyloctyl group, 3,7-dimethyloctyl group, 2-hexyldecyl group, and 2-decyltetradecyl group. It is done.
 分岐2級アルキル基は、特段の制限はないが、例えば、イソプロピル基、3-エチル-1,5-ジメチルノニル基又は1-プロピルヘプチル基が挙げられる。 The branched secondary alkyl group is not particularly limited, and examples thereof include isopropyl group, 3-ethyl-1,5-dimethylnonyl group, and 1-propylheptyl group.
 分岐3級アルキル基は、特段の制限はないが、例えば、t-ブチル基、1-ブチル-1-エチルペンチル基、1-ブチル-1-メチルペンチル基、1-エチル-1-メチルヘキシル基、1-メチル-1-プロピルペンチル基、1-エチル-1-メチルプロピル基又は1,1,2,2-テトラメチルプロピル基が挙げられる。 The branched tertiary alkyl group is not particularly limited, and examples thereof include a t-butyl group, a 1-butyl-1-ethylpentyl group, a 1-butyl-1-methylpentyl group, and a 1-ethyl-1-methylhexyl group. 1-methyl-1-propylpentyl group, 1-ethyl-1-methylpropyl group or 1,1,2,2-tetramethylpropyl group.
 分岐アルケニル基は、特段の制限はないが、例えば、2-メチル-2-プロペニル基、3-メチル-3-ブテニル基、4-メチル-2-ヘキセニル基が挙げられる。 The branched alkenyl group is not particularly limited, and examples thereof include a 2-methyl-2-propenyl group, a 3-methyl-3-butenyl group, and a 4-methyl-2-hexenyl group.
 分岐アルキニル基は、特段の制限はないが、例えば、1-メチル-2-プロペニル基、2-メチル-3-ブテニル基、4-メチル-2-ヘキセニル基等が挙げられる。 The branched alkynyl group is not particularly limited, and examples thereof include 1-methyl-2-propenyl group, 2-methyl-3-butenyl group, 4-methyl-2-hexenyl group and the like.
 芳香族炭化水素基は、特段の制限はないが、単環式の芳香族炭化水素基、多環式の芳香族炭化水素基、又は縮合多環式の芳香族炭化水素基が挙げられる。芳香族炭化水素基が有する炭素数は、6以上であることが好ましく、一方、30以下であることが好ましく、20以下であることがさらに好ましく、14以下であることが特に好ましい。具体的には、フェニル基、ナフチル基、インダニル基、インデニル基、フルオレニル基、アントラセニル基又はアズレニル基等が挙げられる。なかでも、フェニル基が好ましい。 The aromatic hydrocarbon group is not particularly limited, and examples thereof include a monocyclic aromatic hydrocarbon group, a polycyclic aromatic hydrocarbon group, and a condensed polycyclic aromatic hydrocarbon group. The aromatic hydrocarbon group has preferably 6 or more carbon atoms, on the other hand, preferably 30 or less, more preferably 20 or less, and particularly preferably 14 or less. Specific examples include a phenyl group, a naphthyl group, an indanyl group, an indenyl group, a fluorenyl group, an anthracenyl group, and an azulenyl group. Of these, a phenyl group is preferred.
 脂肪族複素環基は、特段の制限はないが、脂肪族複素環基が有する炭素数は、2以上であることが好ましく、一方、30以下であることが好ましく、14以下であることがより好ましく、10以下であることがさらに好ましく、6以下であることが特に好ましい。具体的には、オキセタニル基、ピロリジニル基、テトラヒドロフリル基、テトラヒドロチエニル基、ピペリジニル基、テトラヒドロピラニル基又はテトラヒドロチオピラニル基が挙げられる。 The aliphatic heterocyclic group is not particularly limited, but the aliphatic heterocyclic group preferably has 2 or more carbon atoms, on the other hand, preferably 30 or less, more preferably 14 or less. Preferably, it is 10 or less, more preferably 6 or less. Specific examples include an oxetanyl group, a pyrrolidinyl group, a tetrahydrofuryl group, a tetrahydrothienyl group, a piperidinyl group, a tetrahydropyranyl group, and a tetrahydrothiopyranyl group.
 芳香族複素環基は、特段の制限はなく、単環式の芳香族複素環基、多環式の芳香族複素環基又は縮合多環式の芳香族複素環基が挙げられる。なお、芳香族複素環基が有する炭素数は、2以上であることが好ましく、一方、30以下であることが好ましく、20以下であることがより好ましく、14以下であることが特に好ましい。具体的には、チエニル基、フラニル基、ピリジル基、ピロリル基、イミダゾリル基、ピリミジル基、チアゾリル基、オキサゾリル基、イソオキサゾリル基、イソチアゾリル基、ピラゾリル基、トリアゾリル基、ベンゾチオフェニル基、ベンゾフラニル基、ベンゾチアゾリル基、ベンゾオキサゾリル基又はベンゾトリアゾリル基が挙げられる。これらの中でも、チエニル基、ピリジル基、ピリミジル基、チアゾリル基又はオキサゾリル基が挙げられる。 The aromatic heterocyclic group is not particularly limited, and examples thereof include a monocyclic aromatic heterocyclic group, a polycyclic aromatic heterocyclic group, and a condensed polycyclic aromatic heterocyclic group. The number of carbon atoms contained in the aromatic heterocyclic group is preferably 2 or more, on the other hand, preferably 30 or less, more preferably 20 or less, and particularly preferably 14 or less. Specifically, thienyl, furanyl, pyridyl, pyrrolyl, imidazolyl, pyrimidyl, thiazolyl, oxazolyl, isoxazolyl, isothiazolyl, pyrazolyl, triazolyl, benzothiophenyl, benzofuranyl, benzothiazolyl Group, benzoxazolyl group or benzotriazolyl group. Among these, a thienyl group, a pyridyl group, a pyrimidyl group, a thiazolyl group, or an oxazolyl group can be given.
 アルコキシ基は、特段の制限はないが、アルコキシ基が有する炭素数は、1以上であり、3以上であることが好ましく、5以上であることより好ましく、一方、30以下であることが好ましく、20以下であることがさらに好ましく、14以下であることが特に好ましい。具体的には、ヘキシルオキシ基、オクチルオキシ基、ノニルオキシ基、デシルオキシ基、ドデシルオキシ基、テトラデシルオキシ基が挙げられる。 The alkoxy group is not particularly limited, but the alkoxy group has 1 or more carbon atoms, preferably 3 or more, more preferably 5 or more, and preferably 30 or less. It is more preferably 20 or less, and particularly preferably 14 or less. Specific examples include a hexyloxy group, an octyloxy group, a nonyloxy group, a decyloxy group, a dodecyloxy group, and a tetradecyloxy group.
 なお、上述の、脂肪族炭化水素基、芳香族炭化水素基、脂肪族複素環基及び芳香族複素環基、アルコキシ基、アリールオキシ基、アミノ基、アミド基、アルコキシカルボニル基、アリールオキシカルボニル基、アルキルカルボニル基、アリールカルボニル基、アルキルチオ基、及びアリールチオ基が有していてもよい置換基は、特段の制限はない。例えば、脂肪族炭化水素基、芳香族炭化水素基、脂肪族複素環基、又は芳香族複素環基、アルコキシ基、アリールオキシ基、アミノ基、アミド基、アルコキシカルボニル基、アリールオキシカルボニル基、アルキルカルボニル基、アリールカルボニル基、アルキルチオ基、アリールチオ基、又はハロゲン原子が挙げられる。また、2種以上の置換基を有していてもよい。さらに、これらの置換基はさらに別の置換基を有していてもよい。 In addition, the above-mentioned aliphatic hydrocarbon group, aromatic hydrocarbon group, aliphatic heterocyclic group and aromatic heterocyclic group, alkoxy group, aryloxy group, amino group, amide group, alkoxycarbonyl group, aryloxycarbonyl group The substituent that the alkylcarbonyl group, arylcarbonyl group, alkylthio group, and arylthio group may have is not particularly limited. For example, aliphatic hydrocarbon group, aromatic hydrocarbon group, aliphatic heterocyclic group, or aromatic heterocyclic group, alkoxy group, aryloxy group, amino group, amide group, alkoxycarbonyl group, aryloxycarbonyl group, alkyl Examples include a carbonyl group, an arylcarbonyl group, an alkylthio group, an arylthio group, or a halogen atom. Moreover, you may have 2 or more types of substituents. Furthermore, these substituents may further have another substituent.
 なお、上述の中でも、R3及びR4は、それぞれ独立して、炭素数4以上12以下の直鎖状の脂肪族炭化水素基又は炭素数4以上12以下の分岐状の脂肪族炭化水素基であることが好ましい。特に、炭素数4以上12以下の直鎖状のアルキル基又は、炭素数4以上12以下の分岐状のアルキル基であることが好ましい。例えば、n-オクチル基、2-エチルヘキシル基等が挙げられる。なお、前記炭素数の範囲は、分枝状の脂肪族炭化水素基の場合、一番長い直鎖を形成する炭素の数である。 Among the above, R 3 and R 4 are each independently a linear aliphatic hydrocarbon group having 4 to 12 carbon atoms or a branched aliphatic hydrocarbon group having 4 to 12 carbon atoms. It is preferable that In particular, a linear alkyl group having 4 to 12 carbon atoms or a branched alkyl group having 4 to 12 carbon atoms is preferable. For example, n-octyl group, 2-ethylhexyl group and the like can be mentioned. In the case of a branched aliphatic hydrocarbon group, the range of the carbon number is the number of carbons forming the longest straight chain.
 上記式(III)中、X2は、直接結合、酸素原子(O)、硫黄原子(S)、N(R5)、又はQ2(R6)(R7)を表す。なお、Q2は、周期表第14族元素から選ばれる原子を表し、例えば、炭素原子(C)、珪素原子(Si)、又はゲルマニウム原子(Ge)が挙げられ、珪素原子(Si)であることが特に好ましい。 In the above formula (III), X 2 represents a direct bond, an oxygen atom (O), a sulfur atom (S), N (R 5 ), or Q 2 (R 6 ) (R 7 ). Q 2 represents an atom selected from Group 14 elements of the periodic table, and examples thereof include a carbon atom (C), a silicon atom (Si), or a germanium atom (Ge), which is a silicon atom (Si). It is particularly preferred.
 R5は、窒素原子(N)に結合している基を表し、R6及びR7は、それぞれQ2に結合している基を表す。R5~R7はそれぞれ、水素原子又は1価の有機基であり、具体的には、R3及びR4で説明した基が挙げられ、好ましい基も同様である。 R 5 represents a group bonded to the nitrogen atom (N), and R 6 and R 7 each represents a group bonded to Q 2 . R 5 to R 7 are each a hydrogen atom or a monovalent organic group, and specific examples thereof include the groups described for R 3 and R 4 , and preferred groups are also the same.
 これらのなかでも、X2は直接結合、酸素原子(O)、硫黄原子(S)、Q2(R6)(R7)であることが好ましい。なお、Ar1及びAr2上の立体障害が大きくなりすぎず、良好な分子間のキャリア移動を得るために、X2は直接結合、酸素原子(O)又は硫黄原子(S)がさらに好ましく、直接結合であることが特に好ましい。 Among these, X 2 is preferably a direct bond, an oxygen atom (O), a sulfur atom (S), or Q 2 (R 6 ) (R 7 ). In addition, in order to obtain good carrier transfer between molecules without excessively increasing the steric hindrance on Ar 1 and Ar 2 , X 2 is more preferably a direct bond, an oxygen atom (O) or a sulfur atom (S) Particularly preferred is a direct bond.
 限定されるわけではないが、上記式(III)で表される構成単位としては、下記の構成単位が挙げられる。 Although not necessarily limited, examples of the structural unit represented by the above formula (III) include the following structural units.
Figure JPOXMLDOC01-appb-C000017
Figure JPOXMLDOC01-appb-C000017
 上記式(III)で表される構成単位の中でも、ドナー性モノマー単位(D)は、Ar1及びAr2が共に、チオフェン環である下記式(XII)で表される構成単位であることが好ましい。 Among the structural units represented by the formula (III), the donor monomer unit (D) is a structural unit represented by the following formula (XII) in which both Ar 1 and Ar 2 are thiophene rings. preferable.
Figure JPOXMLDOC01-appb-C000018
Figure JPOXMLDOC01-appb-C000018
 上記式(XII)中、X1及びX2はそれぞれ、式(III)中のX1及びX2と同義であり、好ましい基も同様である。 In the formula (XII), X 1 and X 2 are synonymous with X 1 and X 2 of In the formula (III), the same is true preferred group.
 上記式(XI)中、X3及びX4はそれぞれ独立して、Q4(R11)を表す。Q4は周期表第14族元素から選ばれる原子を表し、具体的には、炭素原子(C)、珪素原子(Si)又はゲルマニウム原子(Ge)が挙げられる、なかでも、炭素原子(C)であることが好ましい。R11は、Q4に結合する基を表し、水素原子又は1価の有機基を表す。1価の有機基は、特段の制限はないが、置換基を有していてもよい脂肪族炭化水素基、置換基を有していてもよい芳香族炭化水素基、置換基を有していてもよい脂肪族複素環基、又は置換基を有していてもよい芳香族複素環基、置換基を有していてもよいアルコキシ基、置換基を有していてもよいアリールオキシ基、置換基を有していてもよいアミノ基、置換基を有していてもよいアミド基、置換基を有していてもよいアルコキシカルボニル基、置換基を有していてもよいアリールオキシカルボニル基、置換基を有していてもよいアルキルカルボニル基、置換基を有していてもよいアリールカルボニル基、置換基を有していてもよいアルキルチオ基、置換基を有していてもよいアリールチオ基、又はハロゲン原子が挙げられる。なお、これらの基は、特段の制限はないが、具体的には、上述のR3で挙げた基が挙げられ、好ましい基も同様である。なお、X3及びX4は同じ基であってもよいし、異なる基であってもよい。 In the above formula (XI), X 3 and X 4 each independently represent Q 4 (R 11 ). Q 4 represents an atom selected from Group 14 elements of the periodic table, and specifically includes a carbon atom (C), a silicon atom (Si), or a germanium atom (Ge). Among them, a carbon atom (C) It is preferable that R 11 represents a group bonded to Q 4 and represents a hydrogen atom or a monovalent organic group. The monovalent organic group is not particularly limited, but has an aliphatic hydrocarbon group that may have a substituent, an aromatic hydrocarbon group that may have a substituent, and a substituent. An aliphatic heterocyclic group that may be substituted, an aromatic heterocyclic group that may have a substituent, an alkoxy group that may have a substituent, an aryloxy group that may have a substituent, An amino group which may have a substituent, an amide group which may have a substituent, an alkoxycarbonyl group which may have a substituent, an aryloxycarbonyl group which may have a substituent An optionally substituted alkylcarbonyl group, an optionally substituted arylcarbonyl group, an optionally substituted alkylthio group, and an optionally substituted arylthio group Or a halogen atom. These groups are not particularly limited, but specific examples include the groups mentioned for R 3 above, and the preferred groups are also the same. X 3 and X 4 may be the same group or different groups.
 式(XI)中、Ar3及びAr4は、それぞれ独立して、置換基を有していてもよい芳香環を表し、Ar3及びAr4は、X3及びX4を含む環と縮合環を形成する。置換基を有していてもよい芳香環としては、置換基を有していてもよい芳香族炭化水素環又は置換基を有していてもよい芳香族複素環が挙げられる。置換基を有していてもよい芳香族炭化水素環及び置換基を有していてもよい芳香族複素環としては、特段の制限はないが、式(III)中のAr1及びAr2で挙げた置換基を有していてもよい芳香族炭化水素環及び置換基を有していてもよい芳香族複素環が挙げられる。 In formula (XI), Ar 3 and Ar 4 each independently represent an aromatic ring which may have a substituent, and Ar 3 and Ar 4 are a ring containing X 3 and X 4 and a condensed ring Form. Examples of the aromatic ring which may have a substituent include an aromatic hydrocarbon ring which may have a substituent or an aromatic heterocyclic ring which may have a substituent. The aromatic hydrocarbon ring which may have a substituent and the aromatic heterocyclic ring which may have a substituent are not particularly limited, but Ar 1 and Ar 2 in the formula (III) The aromatic hydrocarbon ring which may have the substituent mentioned and the aromatic heterocyclic ring which may have a substituent are mentioned.
 限定されるわけではないが、上記式(XI)で表される構成単位の具体例としては、以下の構成単位が挙げられる。 Although not limited, specific examples of the structural unit represented by the formula (XI) include the following structural units.
Figure JPOXMLDOC01-appb-C000019
Figure JPOXMLDOC01-appb-C000019
 上記式(XI)で表される構成単位の中でも、Ar3及びAr4が共にチオフェン環である下記式(XIII)で表される構成単位であることが好ましい。 Among the structural units represented by the formula (XI), Ar 3 and Ar 4 are both preferably structural units represented by the following formula (XIII), which are thiophene rings.
Figure JPOXMLDOC01-appb-C000020
Figure JPOXMLDOC01-appb-C000020
 上記式(XIII)中、X3及びX4はそれぞれ、上記式(XI)中のX3及びX4と同義であり、好ましい基も同様である。 In the formula (XIII), respectively X 3 and X 4 has the same meaning as X 3 and X 4 in the formula (XI), it is also preferred group.
 これらの中でも、ドナー性モノマー単位は、上記式(XII)において、X1がQ1(R3)(R4)であり、X2が直接結合である、下記式(IV)で表される構成単位であることが好ましい。 Among these, the donor monomer unit is represented by the following formula (IV) in which X 1 is Q 1 (R 3 ) (R 4 ) and X 2 is a direct bond in the above formula (XII). It is preferably a structural unit.
Figure JPOXMLDOC01-appb-C000021
Figure JPOXMLDOC01-appb-C000021
 ドナー性モノマー単位(D)が、上記式(IV)で表される繰り返し単位であることが好ましい理由は、以下の理由が挙げられる。上記式(IV)で表される繰り返し単位を主成分として有するコポリマーを光電変換素子に用いた場合、高い変換効率を得られることが期待できるものの、当該コポリマーを用いた光電変換素子は、露光した際に変換効率が著しく低下する場合がある。一方、後述するように上記式(II)で表される繰り返し単位を主体とするコポリマーは、変換効率は高くない傾向にあるものの、コポリマーどうしが良好なπスタックを形成し、露光安定性が高い傾向がある。そのため、上記式(I)で表される繰り返し単位に加えて、上記式(II)で表される繰り返し単位を有するコポリマーを光電変換素子に用いることで、高い変換効率とともに高い露光安定性を有する光電変換素子を提供することができる。 The reason why the donor monomer unit (D) is preferably a repeating unit represented by the above formula (IV) includes the following reasons. When a copolymer having the repeating unit represented by the above formula (IV) as a main component is used for a photoelectric conversion element, high conversion efficiency can be expected, but the photoelectric conversion element using the copolymer was exposed. In some cases, conversion efficiency may be significantly reduced. On the other hand, as will be described later, the copolymer mainly composed of the repeating unit represented by the above formula (II) tends not to have high conversion efficiency, but the copolymers form a good π stack and have high exposure stability. Tend. Therefore, in addition to the repeating unit represented by the above formula (I), the copolymer having the repeating unit represented by the above formula (II) is used for a photoelectric conversion element, thereby having high conversion efficiency and high exposure stability. A photoelectric conversion element can be provided.
 式(IV)中、Q1は、式(III)中のQ1と同義である。なかでも、Q1は、珪素原子(Si)であることが好ましい。 Wherein (IV), Q 1 has the same meaning as to Q 1 in formula (III). Among these, Q 1 is preferably a silicon atom (Si).
 式(IV)中、R3及びR4はそれぞれ、式(III)の説明において挙げたR3及びR4と同義である。なかでも、R3及びR4は、それぞれ置換基を有していてもよい直鎖状の脂肪族炭化水素基又は置換基を有していてもよい分岐状の脂肪族炭化水素基であることが好ましい。 In formula (IV), R 3 and R 4 have the same meanings as R 3 and R 4 mentioned in the description of formula (III), respectively. Among them, R 3 and R 4 are each a linear aliphatic hydrocarbon group that may have a substituent or a branched aliphatic hydrocarbon group that may have a substituent. Is preferred.
 上記式(I)中、A1は上述の通り、アクセプター性モノマー単位を表す。アクセプター性モノマー単位は、アクセプターとしての特性を有するものであれば、特段の制限はなく、置換基を有していてもよい2価の芳香族基が挙げられる。前記2価の芳香族基としては、2価の芳香族炭化水素基又は2価の芳香族複素環基が挙げられる。例えば、ベンゾチアジアゾール、ナフトビスチアジアゾール、ジケトピロロピロール、チエノチオフェン、チアゾール、チアジアゾール、オキサゾール、オキサジアゾール、ピリジン、ピリミジン、キノキサリン、チエノピラジン、イミドチオフェン、フルオロベンゼン等が挙げられる。また、非特許文献(Macromolecules 2012,45,607-632)に記載のアクセプター性モノマー単位が挙げられる。なお、前述したように、これらのアクセプター性モノマー単位を構成する、2価の芳香族炭化水素基及び2価の芳香族複素環基は、置換基を有していてもよい。アクセプター性モノマー単位が有していてもよい置換基は、特段の制限はなく、上述したドナー性モノマー単位が有していてもよい置換基が挙げられる。 In the above formula (I), A1 represents an acceptor monomer unit as described above. The acceptor monomer unit is not particularly limited as long as it has an acceptor property, and examples thereof include a divalent aromatic group which may have a substituent. Examples of the divalent aromatic group include a divalent aromatic hydrocarbon group and a divalent aromatic heterocyclic group. Examples include benzothiadiazole, naphthobisiathiazole, diketopyrrolopyrrole, thienothiophene, thiazole, thiadiazole, oxazole, oxadiazole, pyridine, pyrimidine, quinoxaline, thienopyrazine, imidothiophene, and fluorobenzene. Further, acceptor monomer units described in non-patent literature (Macromolecules 2012, 45, 607-632) can be mentioned. As described above, the divalent aromatic hydrocarbon group and divalent aromatic heterocyclic group constituting these acceptor monomer units may have a substituent. The substituent that the acceptor monomer unit may have is not particularly limited, and examples thereof include the substituent that the donor monomer unit described above may have.
 これらの中でも、アクセプター性モノマー単位は下記式(XIV)で表される構成単位又は下記式(XV)で表される構成単位であることが好ましい。 Among these, the acceptor monomer unit is preferably a structural unit represented by the following formula (XIV) or a structural unit represented by the following formula (XV).
Figure JPOXMLDOC01-appb-C000022
Figure JPOXMLDOC01-appb-C000022
Figure JPOXMLDOC01-appb-C000023
Figure JPOXMLDOC01-appb-C000023
上記式(XIV)中、Ar5は、置換基を有していてもよい芳香族炭化水素環、置換基を有していてもよい脂肪族複素環又は置換基を有していてもよい芳香族複素環が挙げられる。置換基を有していてもよい芳香族炭化水素環又の芳香族炭化水素環は置換基を有していてもよい芳香族複素環の芳香族複素環は、上記式(III)中のAr1で挙げた芳香族炭化水素環及び芳香族複素環が挙げられる。なかでも、チオフェン環、ピリジン環、ピリミジン環、チアゾール環、チアジアゾール環、オキサゾール環、オキサジアゾール環又はトリアゾール環が好ましい。脂肪族複素環は、ピロリジン環、ピペリジン環が挙げられ、なかでも、ピロリジン環が好ましい。 In the above formula (XIV), Ar 5 is an aromatic hydrocarbon ring that may have a substituent, an aliphatic heterocyclic ring that may have a substituent, or an aromatic that may have a substituent. Group heterocycles. The aromatic hydrocarbon ring which may have a substituent or the aromatic hydrocarbon ring which may have a substituent is the aromatic heterocycle of the aromatic heterocycle which may have a substituent, Ar in the above formula (III) The aromatic hydrocarbon ring and aromatic heterocyclic ring mentioned in 1 are mentioned. Among these, a thiophene ring, a pyridine ring, a pyrimidine ring, a thiazole ring, a thiadiazole ring, an oxazole ring, an oxadiazole ring, or a triazole ring is preferable. Examples of the aliphatic heterocyclic ring include a pyrrolidine ring and a piperidine ring, and among them, a pyrrolidine ring is preferable.
 上記式(XIV)中、X5は、周期表第16族元素から選ばれる原子を表し、具体的には、酸素原子(O)、硫黄原子(S)、セレン原子(Se)又はテルル原子(Te)が挙げられる。なかでも、X5は硫黄原子であることが好ましい。 In the above formula (XIV), X 5 represents an atom selected from Group 16 elements of the periodic table. Specifically, an oxygen atom (O), a sulfur atom (S), a selenium atom (Se) or a tellurium atom ( Te). Of these, X 5 is preferably a sulfur atom.
 限定されるわけではないが、上記式(XIV)で表される構成単位の具体例として以下のものが挙げられる。 Although not necessarily limited, the following are mentioned as specific examples of the structural unit represented by the above formula (XIV).
Figure JPOXMLDOC01-appb-C000024
Figure JPOXMLDOC01-appb-C000024
 上記式(XV)中、Ar6は、置換基を有していてもよい芳香族炭化水素環、置換基を有していてもよい脂肪族複素環又は置換基を有していてもよい芳香族複素環を表す。置換基を有していてもよい芳香族炭化水素環、置換基を有していてもよい脂肪族複素環又は置換基を有していてもよい芳香族複素環は、特段の制限はなく、例えば、上記式(XIV)中のAr5で挙げた置換基を有していてもよい芳香族炭化水素環、置換基を有していてもよい脂肪族複素環又は置換基を有していてもよい芳香族複素環が挙げられる。 In the above formula (XV), Ar 6 represents an aromatic hydrocarbon ring that may have a substituent, an aliphatic heterocyclic ring that may have a substituent, or an aromatic that may have a substituent. Represents a family heterocycle. The aromatic hydrocarbon ring optionally having a substituent, the aliphatic heterocyclic ring optionally having a substituent or the aromatic heterocyclic ring optionally having a substituent is not particularly limited, For example, the aromatic hydrocarbon ring which may have a substituent mentioned for Ar 5 in the above formula (XIV), an aliphatic heterocyclic ring which may have a substituent, or a substituent Aromatic heterocycles may be mentioned.
 上記式(XV)中、X6及びX7はそれぞれ独立して、窒素原子(N)又はQ5(R12)を表す。Q5は周期表第14族元素から選ばれる原子を表し、具体的には、炭素原子(C)、珪素原子(Si)又はゲルマニウム原子(Ge)が挙げられ、なかでも、炭素原子(C)であることが好ましい。また、R12は、Q5に結合した基を表し、水素原子又は1価の有機基を表す。1価の有機基は、特段の制限はなく、上述のR3で挙げた基が挙げられる。 In the formula (XV), X 6 and X 7 each independently represent a nitrogen atom (N) or Q 5 (R 12 ). Q 5 represents an atom selected from Group 14 elements of the periodic table, and specifically includes a carbon atom (C), a silicon atom (Si), or a germanium atom (Ge), and among them, a carbon atom (C) It is preferable that R 12 represents a group bonded to Q 5 and represents a hydrogen atom or a monovalent organic group. The monovalent organic group is not particularly limited, and examples thereof include the groups described above for R 3 .
 限定されるわけではないが、上記式(XV)で表される構成単位の具体例として以下のものが挙げられる。 Although not limited, the following are mentioned as specific examples of the structural unit represented by the above formula (XV).
Figure JPOXMLDOC01-appb-C000025
Figure JPOXMLDOC01-appb-C000025
 これらのなかでも、アクセプター性モノマー単位(A1)は、下記式(V)で表される構成単位であることが好ましい。 Among these, the acceptor monomer unit (A1) is preferably a structural unit represented by the following formula (V).
Figure JPOXMLDOC01-appb-C000026
Figure JPOXMLDOC01-appb-C000026
 式(V)中、X5は、上記式(XIV)中のX5と同義であり、周期表第16族元素から選ばれる原子を表し、具体的には、酸素原子(O)、硫黄原子(S)、セレン(Se)原子又はテルル原子(Te)を表す。なかでも、合成の容易性の点から、X5は酸素原子(O)又は硫黄原子(S)であることが好ましく、硫黄原子(S)であることが特に好ましい。 Wherein (V), X 5 has the same meaning as X 5 in the formula (XIV), represents an atom selected from periodic table Group 16 element, specifically, an oxygen atom (O), sulfur atom (S) represents a selenium (Se) atom or a tellurium atom (Te). Among these, from the viewpoint of ease of synthesis, X 5 is preferably an oxygen atom (O) or a sulfur atom (S), and particularly preferably a sulfur atom (S).
 式(V)中、R8は水素原子又は1価の有機基が挙げられる。1価の有機基は特段の制限はないが、置換基を有していてもよい脂肪族炭化水素基、置換基を有していてもよい芳香族炭化水素基、置換基を有していてもよい脂肪族複素環基、置換基を有していてもよい芳香族複素環基、置換基を有していてもよいアルコキシ基、置換基を有していてもよいアリールオキシ基、置換基を有していてもよいアミノ基、置換基を有していてもよいアミド基、置換基を有していてもよいアルコキシカルボニル基、置換基を有していてもよいアリールオキシカルボニル基、置換基を有していてもよいアルキルカルボニル基、置換基を有していてもよいアリールカルボニル基、置換基を有していてもよいアルキルチオ基、置換基を有していてもよいアリールチオ基、又はハロゲン原子が挙げられる。なお、これらの基の具体的な基は、特段の制限はないが、上述のR3及びR4で挙げた基と同様の基が挙げられる。また、これらの基が有していてもよい置換基も、上述のR3及びR4で挙げた置換基と同様の置換基が挙げられる。 In formula (V), R 8 may be a hydrogen atom or a monovalent organic group. The monovalent organic group is not particularly limited, but may have an aliphatic hydrocarbon group that may have a substituent, an aromatic hydrocarbon group that may have a substituent, or a substituent. An aliphatic heterocyclic group which may have a substituent, an aromatic heterocyclic group which may have a substituent, an alkoxy group which may have a substituent, an aryloxy group which may have a substituent, a substituent An amino group which may have a substituent, an amide group which may have a substituent, an alkoxycarbonyl group which may have a substituent, an aryloxycarbonyl group which may have a substituent, a substituent An alkylcarbonyl group which may have a group, an arylcarbonyl group which may have a substituent, an alkylthio group which may have a substituent, an arylthio group which may have a substituent, or A halogen atom is mentioned. Specific groups of these groups are not particularly limited, and examples thereof include the same groups as those described above for R 3 and R 4 . Moreover, the substituent which these groups may have includes the same substituents as the substituents mentioned in the above R 3 and R 4 .
 これらのなかでも、R8は、置換基を有していてもよい直鎖状の脂肪族炭化水素基又は置換基を有していてもよい芳香族炭化水素基であることが好ましい。なお、R8が、芳香族炭化水素基である場合、芳香族炭化水素基は溶解性及び変換効率の向上のために、置換基としてアルコキシ基又は脂肪族炭化水素基を有することが好ましい。 Among these, R 8 is preferably a linear aliphatic hydrocarbon group which may have a substituent or an aromatic hydrocarbon group which may have a substituent. When R 8 is an aromatic hydrocarbon group, the aromatic hydrocarbon group preferably has an alkoxy group or an aliphatic hydrocarbon group as a substituent in order to improve solubility and conversion efficiency.
 なお、本発明に係るコポリマーが有する式(I)で表される繰り返し単位の好ましい形態は、ドナー性モノマー単位(D)が上記式(III)又は上記式(IV)で表される構成単位であり、アクセプター性モノマー単位(A1)が上記式(XIV)で表される構成単位である、繰り返し単位である。なかでも、ドナー性モノマー単位(D)が上記式(IV)で表わされる繰り返し単位であるか、又はアクセプター性モノマー単位(A1)が上記式(V)で表わされる繰り返し単位であることが好ましく、ドナー性モノマー単位(D)が上記式(IV)で表わされるモノマー単位であり、かつアクセプター性モノマー単位(A1)が上記式(V)で表わされるモノマー単位である繰り返し単位であることがさらに好ましい。 In addition, the preferable form of the repeating unit represented by the formula (I) of the copolymer according to the present invention is a structural unit in which the donor monomer unit (D) is represented by the above formula (III) or the above formula (IV). Yes, the acceptor monomer unit (A1) is a repeating unit which is a structural unit represented by the above formula (XIV). Among them, it is preferable that the donor monomer unit (D) is a repeating unit represented by the above formula (IV) or the acceptor monomer unit (A1) is a repeating unit represented by the above formula (V). More preferably, the donor monomer unit (D) is a monomer unit represented by the above formula (IV) and the acceptor monomer unit (A1) is a repeating unit which is a monomer unit represented by the above formula (V). .
 以下に、本発明に係るコポリマーが有する式(I)で表される繰り返し単位の具体的な形態を例示する。しかしながら、本発明において、式(I)で表される繰り返し単位は以下に限定されるわけではない。 Hereinafter, specific examples of the repeating unit represented by the formula (I) of the copolymer according to the present invention will be exemplified. However, in the present invention, the repeating unit represented by the formula (I) is not limited to the following.
Figure JPOXMLDOC01-appb-C000027
Figure JPOXMLDOC01-appb-C000027
Figure JPOXMLDOC01-appb-C000028
Figure JPOXMLDOC01-appb-C000028
Figure JPOXMLDOC01-appb-C000029
Figure JPOXMLDOC01-appb-C000029
 本発明に係るコポリマーは、上述の通り、下記式(II)で表される繰り返し単位を有する。 As described above, the copolymer according to the present invention has a repeating unit represented by the following formula (II).
Figure JPOXMLDOC01-appb-C000030
Figure JPOXMLDOC01-appb-C000030
 式(II)中、Lは、直接結合又は2価の連結基が挙げられる。2価の連結基は特段の制限はないが、両側のチオフェン環との間で共平面となりやすいことから、ビニレン基等の炭素数2以上8以下のアルケニレン基、エチニレン基等の炭素数2以上8以下のアルキニレン基、置換基を有していてもよい2価の芳香族炭化水素基、又は置換基を有していてもよい2価の芳香族複素環基が挙げられる。 In formula (II), L includes a direct bond or a divalent linking group. There are no particular restrictions on the divalent linking group, but it is likely to be coplanar with the thiophene rings on both sides, so that it has 2 or more and 8 or less carbon atoms such as a vinylene group or an alkenylene group or an ethynylene group or more. Examples thereof include an alkynylene group of 8 or less, a divalent aromatic hydrocarbon group which may have a substituent, or a divalent aromatic heterocyclic group which may have a substituent.
 置換基を有していてもよい2価の芳香族炭化水素基及び置換基を有していてもよい2価の芳香族複素環基は、単環式、多環式、又は縮合多環式のいずれであってもよい。 The divalent aromatic hydrocarbon group which may have a substituent and the divalent aromatic heterocyclic group which may have a substituent are monocyclic, polycyclic, or condensed polycyclic Any of these may be used.
 なかでも、隣り合う環どうしがより共平面になり易く、分子以内キャリア移動が向上し、さらには分子間のπスタックにも有利であり分子間のキャリア移動にも有利であることから、Lは直接結合、置換基を有していてもよい、2価の単環式の芳香族複素環基、又は置換基を有していてもよい、単環式の芳香族複素環基が連結した多環式の芳香族複素環基であることが好ましく、具体的には、置換基を有していてもよいチエニレン基、置換基を有していてもよいビチエニレン基、又は置換基を有していてもよいターチエニレン基が挙げられる。これらのなかでも連結される環が増加するに従い、隣り合う環どうしの間の回転の自由度が増加し、全体として共平面になりにくいことから、Lは、直接結合、置換基を有していてもよいチエニレン基又は置換基を有していてもよいビチエニレン基であることが好ましく、直接結合又は置換基を有していてもよいチエニレン基であることがさらに好ましく、直接結合であることが特に好ましい。 Among them, since adjacent rings are more likely to be coplanar, intramolecular carrier movement is improved, and also advantageous for π stack between molecules and for intermolecular carrier movement. A direct bond, a divalent monocyclic aromatic heterocyclic group which may have a substituent, or a monocyclic aromatic heterocyclic group which may have a substituent It is preferably a cyclic aromatic heterocyclic group, specifically, a thienylene group which may have a substituent, a bithienylene group which may have a substituent, or a substituent. An optional tertienylene group may be mentioned. Among these, as the number of rings to be connected increases, the degree of freedom of rotation between adjacent rings increases, so that L as a whole is less likely to be coplanar. Therefore, L has a direct bond and a substituent. It is preferably a thienylene group which may have a substituent or a bithienylene group which may have a substituent, more preferably a thienylene group which may have a direct bond or a substituent, and a direct bond. Particularly preferred.
 なお、2価の芳香族炭化水素基及び2価の芳香族複素環基が有していてもよい置換基は特段の制限はなく、例えば、脂肪族炭化水素基、芳香族炭化水素基、芳香族複素環基、アルコキシ基又はハロゲン原子が挙げられるが、立体障害を低減するために無置換であることが好ましい。 The substituent that the divalent aromatic hydrocarbon group and the divalent aromatic heterocyclic group may have is not particularly limited, and examples thereof include an aliphatic hydrocarbon group, an aromatic hydrocarbon group, an aromatic group. An aromatic group, an alkoxy group, or a halogen atom can be mentioned, and it is preferably unsubstituted in order to reduce steric hindrance.
 式(II)中、R1及びR2は、それぞれ独立して1価の有機基を表す。1価の有機基は、特段の制限はないが、置換基を有していてもよい脂肪族炭化水素基、置換基を有していてもよい芳香族炭化水素基、置換基を有していてもよい脂肪族複素環基、置換基を有していてもよい芳香族複素環基、置換基を有していてもよいアルコキシ基、置換基を有していてもよいアリールオキシ基、置換基を有していてもよいアミノ基、置換基を有していてもよいアミド基、置換基を有していてもよいアルコキシカルボニル基、置換基を有していてもよいアリールオキシカルボニル基、置換基を有していてもよいアルキルカルボニル基、置換基を有していてもよいアリールカルボニル基、置換基を有していてもよいアルキルチオ基、置換基を有していてもよいアリールチオ基が挙げられる。なお、R1及びR2は互いに同じ基であってもよいし、異なる基であってもよい。これらの基は、特段の制限はないが、具体的には、式(III)中のR3及びR4で挙げた基と同じ基が挙げられる。なかでも、R1及びR2はともに、置換基を有していてもよい脂肪族炭化水素基、置換基を有していてもよい芳香族炭化水素基、置換基を有していてもよい脂肪族複素環基、置換基を有していてもよい芳香族複素環基、置換基を有していてもよいアルコキシ基であることが好ましく、なかでも置換基を有していてもよい脂肪族炭化水素基、置換基を有していてもよい芳香族炭化水素基、置換基を有していてもよい脂肪族複素環基、置換基を有していてもよい芳香族複素環基であることがさらに好ましい。 In formula (II), R 1 and R 2 each independently represents a monovalent organic group. The monovalent organic group is not particularly limited, but has an aliphatic hydrocarbon group that may have a substituent, an aromatic hydrocarbon group that may have a substituent, and a substituent. An aliphatic heterocyclic group which may be substituted, an aromatic heterocyclic group which may have a substituent, an alkoxy group which may have a substituent, an aryloxy group which may have a substituent, a substituent An amino group which may have a group, an amide group which may have a substituent, an alkoxycarbonyl group which may have a substituent, an aryloxycarbonyl group which may have a substituent, An alkylcarbonyl group which may have a substituent, an arylcarbonyl group which may have a substituent, an alkylthio group which may have a substituent, and an arylthio group which may have a substituent; Can be mentioned. R 1 and R 2 may be the same group or different groups. These groups are not particularly limited, and specific examples thereof include the same groups as those described for R 3 and R 4 in formula (III). Among them, both R 1 and R 2 may have an aliphatic hydrocarbon group which may have a substituent, an aromatic hydrocarbon group which may have a substituent, or a substituent. An aliphatic heterocyclic group, an aromatic heterocyclic group which may have a substituent, and an alkoxy group which may have a substituent are preferable, and among them, an aliphatic which may have a substituent An aromatic hydrocarbon group optionally having a substituent, an aliphatic heterocyclic group optionally having a substituent, and an aromatic heterocyclic group optionally having a substituent. More preferably it is.
 R1及びR2が上述の基を有することで、R1及びR2が水素原子である場合と比較して、当該構成単位を有するコポリマーの溶媒中への溶解度が向上することになり、プロセス性の向上が期待でき、均一な成膜が可能となる。また、成膜時に当該構成単位を有するコポリマーは、一定方向に配向しやすくなるために長波長化に寄与すると共に、キャリア移動が円滑に進行することとなり、変換効率の向上が期待できる。また、式(II)中のR1及びR2の位置に上述の基が配置されることは極めて重要である。すなわち、式(II)中のR1及びR2が配置される以外の箇所に、上述のような基が配置されている場合、当該基と、その他の基との間で立体障害が発生しやすくなってしまう。立体障害が発生すると、コポリマーどうしが一定方向に配列できなくなるために、不安定な構造となってしまうために、露光安定性が低くなるものと考えられる。そのため、式(II)において、立体障害が発生しにくいR1及びR2の位置に上述の基が配置されることにより立体障害が発生することなくコポリマーどうしが一定方向に配向されやすくなり、結果的に、露光安定性が向上するものと考えられる。 When R 1 and R 2 have the above-described group, the solubility of the copolymer having the structural unit in the solvent is improved as compared with the case where R 1 and R 2 are hydrogen atoms, An improvement in properties can be expected, and uniform film formation becomes possible. In addition, since the copolymer having the structural unit at the time of film formation is easily oriented in a certain direction, it contributes to a longer wavelength, and carrier movement proceeds smoothly, so that improvement in conversion efficiency can be expected. In addition, it is extremely important that the above-mentioned groups are arranged at the positions of R 1 and R 2 in the formula (II). That is, when the group as described above is arranged at a place other than where R 1 and R 2 in the formula (II) are arranged, steric hindrance occurs between the group and the other group. It becomes easy. If steric hindrance occurs, the copolymers cannot be arranged in a certain direction, resulting in an unstable structure, and it is considered that the exposure stability is lowered. Therefore, in the formula (II), the above groups are arranged at the positions of R 1 and R 2 where steric hindrance is unlikely to occur, so that the copolymers are easily oriented in a certain direction without steric hindrance. Therefore, it is considered that the exposure stability is improved.
 なお、式(II)中のチオフェン環-L-チオフェン環はドナー成分であることが好ましい。式(II)中のチオフェン環-L-チオフェン環がドナー成分であることにより、L及びその両側のチオフェン環により形成されるπスタックを介した正孔輸送が円滑に進行することで光電変換特性が高まるものと考えられる。また、式(II)中のチオフェン環-L-チオフェン環はドナー成分であることにより、A2成分との間で分子内電荷移動が起こり易くなることで吸収波長が長波長になり易いと考えられる。 The thiophene ring-L-thiophene ring in formula (II) is preferably a donor component. Since the thiophene ring-L-thiophene ring in the formula (II) is a donor component, hole transport through the π stack formed by L and the thiophene rings on both sides of the thiophene ring smoothly proceeds, thereby providing photoelectric conversion characteristics. Is considered to increase. Further, the thiophene ring-L-thiophene ring in the formula (II) is considered to be a donor component, so that intramolecular charge transfer with the A2 component is likely to occur, so that the absorption wavelength tends to be long. .
 R1及びR2は、上述の基のなかでも、立体障害をさらに抑えるために、それぞれ独立して、脂肪族炭化水素基又はアルコキシ基であることが好ましく、有機薄膜太陽電池として使用した際の開放電圧が大きくなりやすいために、脂肪族炭化水素基であることが特に好ましい。 R 1 and R 2 are preferably each independently an aliphatic hydrocarbon group or an alkoxy group in order to further suppress steric hindrance among the groups described above, and when used as an organic thin film solar cell. An aliphatic hydrocarbon group is particularly preferable because the open circuit voltage tends to increase.
 また、立体障害を抑えると共に変換効率の向上のために、R1及びR2は、炭素数3以上16以下の脂肪族炭化水素基であることが好ましく、なかでも、炭素数6以上14以下の脂肪族炭化水素基であることが好ましい。なお、脂肪族炭化水素基は、アルキル基であることが特に好ましい。この場合、炭素数3以上16以下のアルキル基であることが好ましく、炭素数6以上14以下のアルキル基であることが特に好ましい。具体的には、n-オクチル基、n-デシル基、又はn-ドデシル基が挙げられる。 In order to suppress steric hindrance and improve the conversion efficiency, R 1 and R 2 are preferably aliphatic hydrocarbon groups having 3 to 16 carbon atoms, and in particular, having 6 to 14 carbon atoms. It is preferably an aliphatic hydrocarbon group. The aliphatic hydrocarbon group is particularly preferably an alkyl group. In this case, an alkyl group having 3 to 16 carbon atoms is preferable, and an alkyl group having 6 to 14 carbon atoms is particularly preferable. Specific examples include an n-octyl group, an n-decyl group, and an n-dodecyl group.
 式(II)中、A2はA1と同様にアクセプター性モノマー単位を表す。A2がアクセプター成分であることにより、ドナー成分として機能する、チオフェン環-L-チオフェン環との間で、分子内電荷移動が起こりやすくなるために吸収波長が長波長化するものと考えられる。A2は特段の制限はないが、好ましくは、アクセプター性モノマー単位(A1)で挙げた上記式(XIV)で表される構成単位又は上記式(XV)で表される構成単位であり、好ましい繰り返し単位も同様である。 In formula (II), A2 represents an acceptor monomer unit in the same manner as A1. When A2 is an acceptor component, it is considered that the absorption wavelength becomes longer because intramolecular charge transfer easily occurs between the thiophene ring and the L-thiophene ring that functions as a donor component. A2 is not particularly limited, but is preferably a structural unit represented by the above formula (XIV) or a structural unit represented by the above formula (XV) mentioned in the acceptor monomer unit (A1), and is preferably a repeating unit. The unit is the same.
 なお、A1及びA2は互いに同じアクセプター性モノマー単位であってもよいし、異なるアクセプター性モノマー単位であってもよい。しかしながら、分子内のキャリアトラップが生成せずにキャリア移動が円滑に起こるために高い光電変換特性を発現し易い為に、A1の主骨格とA2の主骨格が同じであることが好ましく、A1とA2が同じであることが特に好ましい。なお、A1の主骨格とA2の主骨格が同じであるとは、A1の主骨格とA2の主骨格が同じでありさえすれば、A1の主骨格が有する置換基とAの主骨格が有する置換基は異なっていてもよいことを意味する。一方、A1とA2が同じとは、置換基を含めてA1とA2が同じ構成単位であることを意味する。以上の観点から、A1が上記式(V)で表される繰り返し単位である場合、A2は、下記式(VI)で表される構成単位であることが好ましい。 Note that A1 and A2 may be the same acceptor monomer units or different acceptor monomer units. However, it is preferable that the main skeleton of A1 and the main skeleton of A2 are the same in order to easily develop high photoelectric conversion characteristics because carrier movement occurs smoothly without generating intramolecular carrier traps, and A1 and It is particularly preferred that A2 is the same. The main skeleton of A1 and the main skeleton of A2 are the same as long as the main skeleton of A1 and the main skeleton of A2 are the same, the substituents of the main skeleton of A1 and the main skeleton of A have It means that the substituents may be different. On the other hand, A1 and A2 being the same means that A1 and A2 including the substituent are the same structural unit. From the above viewpoint, when A1 is a repeating unit represented by the above formula (V), A2 is preferably a structural unit represented by the following formula (VI).
Figure JPOXMLDOC01-appb-C000031
Figure JPOXMLDOC01-appb-C000031
 式(VI)中、X8は、周期表第16族元素から選ばれる原子を表し、具体的には、酸素原子(O)、硫黄原子(S)、セレン原子(Se)、又はテルル(Te)原子が挙げられ、なかでも、酸素原子又は硫黄原子であることが好ましく、硫黄原子であることが特に好ましい。 In the formula (VI), X 8 represents an atom selected from Group 16 elements of the periodic table, specifically, an oxygen atom (O), a sulfur atom (S), a selenium atom (Se), or tellurium (Te ) Atoms. Among them, an oxygen atom or a sulfur atom is preferable, and a sulfur atom is particularly preferable.
 式(VI)中、R9は、水素原子又は1価の有機基を表す。1価の有機基は特段の制限はないが、置換基を有していてもよい脂肪族炭化水素基、置換基を有していてもよい芳香族炭化水素基、置換基を有していてもよい脂肪族複素環基、又は置換基を有していてもよい芳香族複素環基が挙げられる。なお、脂肪族炭化水素基、芳香族炭化水素基、脂肪族複素環基、芳香族複素環基は、特段の制限はないが、R8と同様の基が挙げられ、好ましい基もR8で挙げた基と同様の基が挙げられる。なお、式(VI)中のR9は、式(V)中のR8と同じであってもよいし異なっていてもよいが、R8とR9は同じ基であることが好ましい。 In formula (VI), R 9 represents a hydrogen atom or a monovalent organic group. The monovalent organic group is not particularly limited, but may have an aliphatic hydrocarbon group that may have a substituent, an aromatic hydrocarbon group that may have a substituent, or a substituent. And an aliphatic heterocyclic group which may be substituted or an aromatic heterocyclic group which may have a substituent. Incidentally, aliphatic hydrocarbon group, aromatic hydrocarbon group, aliphatic heterocyclic group, an aromatic heterocyclic group is not particular limitation, include the same groups as R 8, a preferred group in R 8 Examples thereof include the same groups as those mentioned above. R 9 in the formula (VI) may be the same as or different from R 8 in the formula (V), but R 8 and R 9 are preferably the same group.
 以下に、本発明に係るコポリマーが有する式(II)で表される繰り返し単位の好ましい形態を例示する。しかしながら、式(II)で表される繰り返し単位は以下に限定されるわけではない。 Hereinafter, preferred modes of the repeating unit represented by the formula (II) of the copolymer according to the present invention will be exemplified. However, the repeating unit represented by the formula (II) is not limited to the following.
Figure JPOXMLDOC01-appb-C000032
Figure JPOXMLDOC01-appb-C000032
Figure JPOXMLDOC01-appb-C000033
Figure JPOXMLDOC01-appb-C000033
Figure JPOXMLDOC01-appb-C000034
Figure JPOXMLDOC01-appb-C000034
Figure JPOXMLDOC01-appb-C000035
Figure JPOXMLDOC01-appb-C000035
 本発明に係るコポリマーは、上記式(I)で表される繰り返し単位及び上記式(II)で表される繰り返し単位を任意で選択することができるが、上記式(I)及び上記式(II)中、ドナー性モノマー単位(D)が上記式(III)で表される構成単位又は上記式(XI)で表される構成単位であり、アクセプター性モノマー単位(A1)及び(A2)が、上記式(XIV)で表される構成単位であることが好ましい。さらに、上記式(I)及び上記式(II)中、ドナー性モノマー単位(D)が上記式(XII)で表される構成単位又は上記式(XIII)で表される構成単位であり、アクセプター性モノマー単位(A1)及び(A2)が、上記式(XIV)で表される構成単位であることが好ましい。また、上記式(I)及び上記式(II)中のドナー性モノマー単位(D)が上記式(IV)で表される構成単位であり、アクセプター性モノマー単位(A1)が上記式(V)で表される構成単位であり、アクセプター性モノマー単位(A2)が、上記式(VI)で表される構成単位であるコポリマーであることが好ましい。 In the copolymer according to the present invention, the repeating unit represented by the above formula (I) and the repeating unit represented by the above formula (II) can be arbitrarily selected, but the above formula (I) and the above formula (II) ), The donor monomer unit (D) is a structural unit represented by the above formula (III) or a structural unit represented by the above formula (XI), and the acceptor monomer units (A1) and (A2) are The structural unit represented by the above formula (XIV) is preferable. Further, in the above formulas (I) and (II), the donor monomer unit (D) is a structural unit represented by the above formula (XII) or a structural unit represented by the above formula (XIII), and an acceptor The monomeric units (A1) and (A2) are preferably structural units represented by the above formula (XIV). In addition, the donor monomer unit (D) in the above formula (I) and the above formula (II) is a structural unit represented by the above formula (IV), and the acceptor monomer unit (A1) is the above formula (V). It is preferable that the acceptor monomer unit (A2) is a copolymer represented by the above formula (VI).
 本発明に係るコポリマーにおける、上記式(I)で表される繰り返し単位と、上記式(II)で表される繰り返し単位との配列状態は、交互、ブロック又はランダムのいずれでもよい。すなわち、本発明に係るコポリマーは、交互コポリマー、ブロックコポリマー又はランダムコポリマーのいずれでもよい。また、これらのコポリマーのうち中間的な構造を有するコポリマー、例えばブロック性を帯びたランダムコポリマーであってもよい。また、主鎖に枝分かれがあり末端部が3つ以上あるコポリマー、及びデンドリマーであってもよい。なかでも、合成が容易であり、規則性がより低下しうる点で、ブロックコポリマー又はランダムコポリマーであることが好ましく、コポリマーの溶解性が向上しかつコポリマーを溶解させたインクの保存安定性が向上しうる点で、ランダムコポリマーであることがより好ましい。 In the copolymer according to the present invention, the arrangement state of the repeating unit represented by the above formula (I) and the repeating unit represented by the above formula (II) may be any of alternating, block or random. That is, the copolymer according to the present invention may be an alternating copolymer, a block copolymer, or a random copolymer. In addition, a copolymer having an intermediate structure among these copolymers, for example, a random copolymer having a block property may be used. Further, it may be a copolymer having a branch in the main chain and having 3 or more terminal portions, and a dendrimer. Among these, a block copolymer or a random copolymer is preferable because it is easy to synthesize and regularity can be lowered, and the solubility of the copolymer is improved and the storage stability of the ink in which the copolymer is dissolved is improved. In view of this, a random copolymer is more preferable.
 また、式(I)で表される繰り返し単位及び式(II)で表される繰り返し単位を有するポリマーの末端部分は、特段の制限はないが、芳香族炭化水素環、芳香族複素環、又は水素原子でエンドギャップされていることが好ましい。 The terminal portion of the polymer having the repeating unit represented by the formula (I) and the repeating unit represented by the formula (II) is not particularly limited, but an aromatic hydrocarbon ring, an aromatic heterocyclic ring, or It is preferably end-gapped with hydrogen atoms.
 また、式(I)で表される繰り返し単位及び式(II)で表される繰り返し単位を有するコポリマー中、各繰り返し単位の比率は特段の制限はないが、式(I)で表される繰り返し単位に対する式(II)で表される繰り返し単位の比率は、上記式(II)で表される単位同志が十分にπスタックをすることで分子間のキャリアパスが数多く形成され、光が照射して一部が損傷した場合においても光電変換効率の低下が抑制されるために0.1以上であることが好ましく、0.3以上であることがさらに好ましく、0.4以上であることが特に好ましい。一方で、式(I)で表される繰り返し単位に対する式(II)で表される繰り返し単位の比率は式(II)で表される単位が多くなるにつれて、πスタックの寄与が大きくなり溶解度が低くなってくると考えられるために、10以下であることが好ましく、8以下であることがさらに好ましく、3以下であることが特に好ましい。 Further, in the copolymer having the repeating unit represented by the formula (I) and the repeating unit represented by the formula (II), the ratio of each repeating unit is not particularly limited, but the repeating unit represented by the formula (I) The ratio of the repeating unit represented by the formula (II) to the unit is such that the units represented by the above formula (II) are sufficiently π stacked so that many intermolecular carrier paths are formed and light is irradiated. Even when a part is damaged, the decrease in photoelectric conversion efficiency is suppressed, so that it is preferably 0.1 or more, more preferably 0.3 or more, and particularly preferably 0.4 or more. preferable. On the other hand, the ratio of the repeating unit represented by the formula (II) to the repeating unit represented by the formula (I) increases the contribution of the π stack and increases the solubility as the unit represented by the formula (II) increases. In order to be considered to become low, it is preferably 10 or less, more preferably 8 or less, and particularly preferably 3 or less.
 本発明に係るコポリマーは、本発明の効果を損なわない範囲で、上記式(I)で表される繰り返し単位、及び上記式(II)で表される繰り返し単位以外の繰り返し単位を含んでいてもよい。具体的に含んでいてもよい繰り返し単位は、特段の制限はないが、上述の式(I)中のD及びA1、並びに式(II)中のA2で挙げたドナー性モノマー単位及びアクセプター性モノマー単位とから構成される繰り返し単位が挙げられる。 The copolymer according to the present invention may contain a repeating unit other than the repeating unit represented by the above formula (I) and the repeating unit represented by the above formula (II) as long as the effects of the present invention are not impaired. Good. Although the repeating unit which may be specifically contained is not particularly limited, the donor monomer unit and the acceptor monomer mentioned in D and A1 in the above formula (I) and A2 in the formula (II) And repeating units composed of units.
 本発明に係るコポリマー中、上記式(I)で表わされる繰り返し単位及び上記式(II)で表わされる総数の比率は、特段の制限はないが、上記式(I)で表わされる繰り返し単位及び上記式(II)で表わされる繰り返し単位の合計が、上記式(I)で表される繰り返し単位と上記式(II)で表される繰り返し単位とを有するコポリマーを有する、本発明に係るコポリマーを構成する繰り返し単位に占める比率は、良好な半導体特性を得るために、0.1以上であることが好ましく、0.3以上であることがさらに好ましく、0.5以上であることが特に好ましい。一方、上限は1以下である。 In the copolymer according to the present invention, the ratio of the repeating unit represented by the above formula (I) and the total number represented by the above formula (II) is not particularly limited, but the repeating unit represented by the above formula (I) and the above The copolymer according to the present invention has a copolymer in which the total of the repeating units represented by the formula (II) has a repeating unit represented by the above formula (I) and a repeating unit represented by the above formula (II). The ratio of the repeating unit to the repeating unit is preferably 0.1 or more, more preferably 0.3 or more, and particularly preferably 0.5 or more in order to obtain good semiconductor characteristics. On the other hand, the upper limit is 1 or less.
 本発明に係るコポリマーのポリスチレン換算の重量平均分子量(Mw)は、特段の制限はないが、通常5.0×103以上、好ましくは1.0×104以上、より好ましくは1.5×104以上、さらに好ましくは2.0×104以上、よりさらに好ましくは3.0×104以上、特に好ましくは3.5×104以上、最も好ましくは4.0×104以上である。一方、好ましくは1.0×107以下、より好ましくは1.0×106以下、特に好ましくは5.0×105以下である。光吸収波長を長波長化するという観点、高い吸光度を実現するという観点、高いキャリア移動を実現できるという観点、及び有機溶媒への溶解度の観点から、重量平均分子量がこの範囲にあることが好ましい。 The polystyrene-reduced weight average molecular weight (Mw) of the copolymer according to the present invention is not particularly limited, but is usually 5.0 × 10 3 or more, preferably 1.0 × 10 4 or more, more preferably 1.5 ×. 10 4 or more, more preferably 2.0 × 10 4 or more, still more preferably 3.0 × 10 4 or more, particularly preferably 3.5 × 10 4 or more, and most preferably 4.0 × 10 4 or more. . On the other hand, it is preferably 1.0 × 10 7 or less, more preferably 1.0 × 10 6 or less, and particularly preferably 5.0 × 10 5 or less. The weight average molecular weight is preferably in this range from the viewpoint of increasing the light absorption wavelength, from the viewpoint of realizing high absorbance, from the viewpoint of realizing high carrier movement, and from the viewpoint of solubility in an organic solvent.
 本発明に係るコポリマーのポリスチレン換算の数平均分子量(Mn)は、特段の制限はないが、通常3.0×103以上、好ましくは5.0×103以上、より好ましくは8.0×103以上、さらに好ましくは1.0×104以上、特に好ましくは2.0×104以上である。一方、好ましくは1.0×107以下、より好ましくは1.0×106以下、さらに好ましくは5.0×105以下、殊更に好ましくは2.0×105以下、特に好ましくは1.0×105以下である。光吸収波長を長波長化するという観点、高い吸光度を実現するという観点、高いキャリア移動を実現できるという観点、及び有機溶媒への溶解度の観点から、数平均分子量がこの範囲にあることが好ましい。 The polystyrene-reduced number average molecular weight (Mn) of the copolymer according to the present invention is not particularly limited, but is usually 3.0 × 10 3 or more, preferably 5.0 × 10 3 or more, more preferably 8.0 ×. 10 3 or more, more preferably 1.0 × 10 4 or more, and particularly preferably 2.0 × 10 4 or more. On the other hand, preferably 1.0 × 10 7 or less, more preferably 1.0 × 10 6 or less, further preferably 5.0 × 10 5 or less, even more preferably 2.0 × 10 5 or less, and particularly preferably 1 0.0 × 10 5 or less. The number average molecular weight is preferably in this range from the viewpoint of increasing the light absorption wavelength, from the viewpoint of realizing high absorbance, from the viewpoint of realizing high carrier movement, and from the viewpoint of solubility in an organic solvent.
 本発明に係るコポリマーの分子量分布(PDI,(重量平均分子量/数平均分子量(Mw/Mn)))は、通常1.0以上、好ましくは1.1以上、より好ましくは1.2以上、さらに好ましくは1.3以上である。一方、通常50.0以下、好ましくは20.0以下、より好ましくは15.0以下、さらに好ましくは10.0以下である。コポリマーの溶解度が塗布に適した範囲になりうるという点で、分子量分布がこの範囲にあることが好ましい。 The molecular weight distribution (PDI, (weight average molecular weight / number average molecular weight (Mw / Mn))) of the copolymer according to the present invention is usually 1.0 or more, preferably 1.1 or more, more preferably 1.2 or more, Preferably it is 1.3 or more. On the other hand, it is usually 50.0 or less, preferably 20.0 or less, more preferably 15.0 or less, and still more preferably 10.0 or less. The molecular weight distribution is preferably in this range in that the solubility of the copolymer can be in a range suitable for coating.
 本発明に係るコポリマーのポリスチレン換算の重量平均分子量、数平均分子量、及び分子量分布は、ゲル浸透クロマトグラフィー(GPC)により求めることができる。具体的には、カラムとして、PolymerLaboratories GPC用カラム(PLgel MIXED-B 10μm 内径7.5mm,長さ30cm)を2本直列に繋げて用い、ポンプとしてLC-10AT(島津製作所社製)、オーブンとしてCTO-10A(島津製作所社製)、検出器として示差屈折率検出器(島津製作所製:RID-10A)、及びUV-vis検出器(島津製作所製:SPD-10A)を用いることにより測定できる。測定方法としては、測定対象のコポリマー(1mg)をクロロホルム(200mg)に溶解させ、得られた溶液1μLをカラムに注入する。移動相としてオルトジクロロベンゼンを用い、80℃にて、1.0mL/minの流速で測定を行う。解析にはLC-Solution(島津製作所製)を用いる。 The polystyrene equivalent weight average molecular weight, number average molecular weight, and molecular weight distribution of the copolymer according to the present invention can be determined by gel permeation chromatography (GPC). Specifically, two Polymer Laboratories GPC columns (PLgel MIXED-B 10 μm, inner diameter 7.5 mm, length 30 cm) are connected in series as a column, and LC-10AT (manufactured by Shimadzu Corporation) as a pump, as an oven It can be measured by using CTO-10A (manufactured by Shimadzu Corporation), a differential refractive index detector (manufactured by Shimadzu Corporation: RID-10A), and a UV-vis detector (manufactured by Shimadzu Corporation: SPD-10A). As a measuring method, a copolymer (1 mg) to be measured is dissolved in chloroform (200 mg), and 1 μL of the obtained solution is injected into a column. Measurement is performed at a flow rate of 1.0 mL / min at 80 ° C. using orthodichlorobenzene as the mobile phase. LC-Solution (manufactured by Shimadzu Corporation) is used for the analysis.
 本発明に係るコポリマーの溶解度は、特に限定は無いが、好ましくは25℃におけるクロロベンゼンに対する溶解度が通常0.1質量%以上、好ましくは0.5質量%以上、さらに好ましくは1質量%以上であり、一方、通常30質量%以下、好ましくは20質量%である。溶解性が高いことは、塗布によりより厚い膜を成膜できるために好ましい。 The solubility of the copolymer according to the present invention is not particularly limited, but preferably the solubility in chlorobenzene at 25 ° C. is usually 0.1% by mass or more, preferably 0.5% by mass or more, more preferably 1% by mass or more. On the other hand, it is usually 30% by mass or less, preferably 20% by mass. High solubility is preferable because a thicker film can be formed by coating.
 本発明に係るコポリマーは、分子間で適度な相互作用が起こることが好ましい。本明細書において、分子間で相互作用するということは、分子間でのπ-πスタッキング等の相互作用によってポリマー鎖間の距離が短くなることを意味する。相互作用が強いほど、高い移動度及び/又は結晶性を示す傾向があるため、半導体材料として好適であるものと考えられる。すなわち、分子間で相互作用するコポリマーにおいては分子間での電子移動が起こりやすいため、例えば光電変換素子において活性層中に本発明に係るコポリマーを用いた場合に、活性層内のp型半導体化合物とn型半導体化合物との界面で生成した正孔(ホール)を効率よく電極(アノード)へ輸送できると考えられる。 The copolymer according to the present invention preferably has an appropriate interaction between molecules. In the present specification, the interaction between molecules means that the distance between polymer chains is shortened by an interaction such as π-π stacking between molecules. The stronger the interaction, the higher the mobility and / or crystallinity, and the more suitable the semiconductor material is. That is, in a copolymer that interacts between molecules, electron transfer between molecules is likely to occur. For example, when the copolymer according to the present invention is used in an active layer in a photoelectric conversion element, a p-type semiconductor compound in the active layer is used. It is considered that holes generated at the interface between the n-type semiconductor compound and the n-type semiconductor compound can be efficiently transported to the electrode (anode).
 結晶性の測定方法としてはX線回折法(XRD)が挙げられる。本明細書において結晶性を有するとは、XRD測定により得られたX線回折スペクトルが回折ピークを有することを意味する。結晶性を有することは、分子同士が配列した積層構造を有することを意味すると考えられ、後述する活性層を厚膜化できる傾向がある点で好ましい。XRD測定は公知文献(X線結晶解析の手引き(応用物理学選書4))に記載の方法に基づいて行うことができる。 An example of the crystallinity measuring method is X-ray diffraction (XRD). In this specification, having crystallinity means that an X-ray diffraction spectrum obtained by XRD measurement has a diffraction peak. Having crystallinity is considered to mean that it has a laminated structure in which molecules are arranged, and is preferable in that the active layer described later tends to be thickened. XRD measurement can be performed based on a method described in a known document (X-ray crystal analysis guide (applied physics selection book 4)).
 本発明に係るコポリマーの正孔移動度(ホール移動度と記す場合がある)は、通常1.0×10-7cm2/Vs以上、好ましくは1.0×10-6cm2/Vs以上、より好ましくは1.0×10-5cm2/Vs以上、特に好ましくは1.0×10-4cm2/Vs以上である。一方、本発明に係るコポリマーの正孔移動度は通常1.0×104cm2/Vs以下、好ましくは1.0×103cm2/Vs以下であり、より好ましくは1.0×102cm2/Vs以下であり、特に好ましくは1.0×10cm2/Vs以下である。正孔移動度がこの範囲にあることにより、本発明に係るコポリマーは半導体材料として好適に用いられる。また、光電変換素子において高い変換効率を得るためには、n型半導体化合物の移動度と、p型半導体化合物の移動度とのバランスが重要である。本発明に係るコポリマーを光電変換素子においてp型半導体化合物として用いる場合、本発明に係るコポリマーの正孔移動度とn型半導体化合物の電子移動度とを近づける観点から、本発明に係るコポリマーの正孔移動度がこの範囲にあることが好ましい。正孔移動度の測定方法としてはFET法が挙げられる。FET法は公知文献(特開2010-045186号公報)に記載の方法により行うことができる。 The hole mobility (sometimes referred to as hole mobility) of the copolymer according to the present invention is usually 1.0 × 10 −7 cm 2 / Vs or more, preferably 1.0 × 10 −6 cm 2 / Vs or more. More preferably, it is 1.0 × 10 −5 cm 2 / Vs or more, and particularly preferably 1.0 × 10 −4 cm 2 / Vs or more. On the other hand, the hole mobility of the copolymer according to the present invention is usually 1.0 × 10 4 cm 2 / Vs or less, preferably 1.0 × 10 3 cm 2 / Vs or less, and more preferably 1.0 × 10 6. 2 cm 2 / Vs or less, particularly preferably 1.0 × 10 cm 2 / Vs or less. When the hole mobility is in this range, the copolymer according to the present invention is suitably used as a semiconductor material. Further, in order to obtain high conversion efficiency in the photoelectric conversion element, it is important to balance the mobility of the n-type semiconductor compound and the mobility of the p-type semiconductor compound. When the copolymer according to the present invention is used as a p-type semiconductor compound in a photoelectric conversion element, from the viewpoint of bringing the hole mobility of the copolymer according to the present invention close to the electron mobility of the n-type semiconductor compound, the copolymer according to the present invention is positive. The hole mobility is preferably within this range. As a method for measuring the hole mobility, there is an FET method. The FET method can be performed by a method described in a known document (Japanese Patent Laid-Open No. 2010-045186).
 本発明に係るコポリマーは溶液状態での保存安定性が高いことが好ましい。保存安定性が高いとは、溶液とした時に凝集しにくいことを意味する。より具体的には、本発明に係るコポリマー2mgを2mLのスクリューバイアルに入れ、1.5質量%の濃度になるようにo-キシレンに加熱溶解させてから室温まで冷却した際に、冷却を開始してから5分間以上ゲル化しないことが好ましく、1時間以上ゲル化しないことがより好ましい。 The copolymer according to the present invention preferably has high storage stability in a solution state. High storage stability means that it is difficult to aggregate when made into a solution. More specifically, 2 mg of the copolymer according to the present invention was placed in a 2 mL screw vial, dissolved in o-xylene to a concentration of 1.5% by mass, and then cooled to room temperature. Then, it is preferable not to gel for 5 minutes or more, and it is more preferable not to gel for 1 hour or more.
 本発明に係るコポリマー中の不純物は極力少ないほうが好ましい。特に、式(I)で表される繰り返し単位を有するコポリマーを合成する際に、パラジウム、銅等の遷移金属触媒を用いた場合、これらがコポリマー中に残存する場合がありうる。これらの金属触媒がコポリマー中に残存していると遷移金属の重原子効果による励起子トラップが生じるために電荷移動が阻害され、結果として本発明に係るコポリマーを光電変換素子に用いた際に光電変換効率を低下させるおそれがある。そのため、遷移金属触媒の濃度は、コポリマー1gあたり、通常1000ppm以下、好ましくは500pm以下、より好ましくは100ppm以下である。一方、通常0ppmより大きく、1ppm以上であってもよく、3ppm以上であってもよい。 The impurities in the copolymer according to the present invention are preferably as small as possible. In particular, when a copolymer having a repeating unit represented by the formula (I) is synthesized, when a transition metal catalyst such as palladium or copper is used, these may remain in the copolymer. If these metal catalysts remain in the copolymer, exciton traps due to the heavy atom effect of the transition metal occur and charge transfer is inhibited. As a result, when the copolymer according to the present invention is used in a photoelectric conversion element, There is a risk of reducing the conversion efficiency. Therefore, the concentration of the transition metal catalyst is usually 1000 ppm or less, preferably 500 pm or less, more preferably 100 ppm or less per 1 g of copolymer. On the other hand, it is usually larger than 0 ppm and may be 1 ppm or more, or 3 ppm or more.
 なお、コポリマー中に含有される不純物は、例えば、ICP質量分析法により測定することができる。ICP質量分析法は、公知文献(「プラズマイオン源質量分析」(学会出版センター))に記載されている方法により実施できる。具体的には、パラジウム原子及び銅原子については、試料を湿式分解後、分解液中のPd,SnをICP質量分析装置(Agilent Technologies社製 ICP質量分析装置 7500ce型)を用いて検量線法により定量することができる。 The impurities contained in the copolymer can be measured by, for example, ICP mass spectrometry. ICP mass spectrometry can be carried out by a method described in a known document (“Plasma ion source mass spectrometry” (Academic Publishing Center)). Specifically, for palladium atoms and copper atoms, after the sample is wet-decomposed, Pd and Sn in the decomposition solution are obtained by a calibration curve method using an ICP mass spectrometer (ICP mass spectrometer 7500ce type manufactured by Agilent Technologies). It can be quantified.
<2.本発明に係るコポリマーの製造方法>
 本発明のコポリマーの製造方法は、特段の限定はなく、下記式(VII)で表される化合物と、下記式(VIII)で表される化合物と、下記式(IX)で表される化合物と、下記式(X)で表される化合物とを必要であれば適当な触媒の存在下で、重合する方法が挙げられる。なお、式(I)中のA1と式(II)中のA2が同じであるコポリマーを製造する場合は、下記式(VII)で表される化合物と、下記式(VIII)で表される化合物と、下記式(IX)で表される化合物(又は下記式(X)で表される化合物)とを後述する重合反応に従って製造することができる。また、式(I)中のA1と式(II)中のA2とが異なるコポリマーを製造する場合は、一例として、あらかじめ、下記式(VII)で表される化合物と、下記式(IX)で表される化合物との重合反応により得られる中間体1と、下記式(VIII)で表される化合物と、下記式(X)で表される化合物との重合反応により得られる中間体2とを製造しておき、中間体1と中間体2とを後述の重合反応により合成することで本発明に係るコポリマーを製造することができる。
<2. Method for producing copolymer according to the present invention>
The method for producing the copolymer of the present invention is not particularly limited. The compound represented by the following formula (VII), the compound represented by the following formula (VIII), and the compound represented by the following formula (IX): A method of polymerizing a compound represented by the following formula (X) in the presence of a suitable catalyst if necessary. In the case of producing a copolymer in which A1 in formula (I) and A2 in formula (II) are the same, a compound represented by the following formula (VII) and a compound represented by the following formula (VIII) And a compound represented by the following formula (IX) (or a compound represented by the following formula (X)) can be produced according to a polymerization reaction described later. In the case of producing a copolymer in which A1 in the formula (I) and A2 in the formula (II) are different, as an example, in advance, a compound represented by the following formula (VII) and the following formula (IX): Intermediate 1 obtained by polymerization reaction with the compound represented, Compound represented by the following formula (VIII), and Intermediate 2 obtained by polymerization reaction of the compound represented by the following formula (X) The copolymer which concerns on this invention can be manufactured by producing and synthesizing the intermediate body 1 and the intermediate body 2 by the polymerization reaction mentioned later.
Figure JPOXMLDOC01-appb-C000036
Figure JPOXMLDOC01-appb-C000036
Figure JPOXMLDOC01-appb-C000037
Figure JPOXMLDOC01-appb-C000037
Figure JPOXMLDOC01-appb-C000038
Figure JPOXMLDOC01-appb-C000038
Figure JPOXMLDOC01-appb-C000039
Figure JPOXMLDOC01-appb-C000039
 上記式(VII)中、Dは、上記式(I)中のDと同義である。上記式(VIII)中、L、R1及びR2は、上記式(II)中のL、R1及びR2と同義である。上記式(IX)中、A1は式(I)中のA1と同義である。上記式(X)中、A2は、上記式(II)中のA2と同義である。 In the above formula (VII), D has the same meaning as D in the above formula (I). In the above formula (VIII), L, R 1 and R 2 are as defined L in above-mentioned formula (II), and R 1 and R 2. In formula (IX), A1 has the same meaning as A1 in formula (I). In the above formula (X), A2 has the same meaning as A2 in the above formula (II).
 式(VII)~式(X)中のY1~Y8は、重合反応の種類に応じて適宜選択でき、特段の制限はないが、それぞれ独立して、ハロゲン原子、アルキルスタニル基、アルキルスルホ基、アリールスルホ基、アリールアルキルスルホ基、ホウ酸エステル残基、スルホニウムメチル基、ホスホニウムメチル基、ホスホネートメチル基、モノハロゲン化メチル基、ホウ酸残基(-B(OH)2)、ホルミル基、アルケニル基又はアルキニル基を表す。 Y1 to Y8 in the formulas (VII) to (X) can be appropriately selected according to the kind of the polymerization reaction and are not particularly limited, but are independently a halogen atom, an alkylstannyl group, or an alkylsulfo group. , Arylsulfo group, arylalkylsulfo group, boric acid ester residue, sulfonium methyl group, phosphonium methyl group, phosphonate methyl group, monohalogenated methyl group, boric acid residue (-B (OH) 2 ), formyl group, An alkenyl group or an alkynyl group is represented.
 ハロゲン原子は、特段の制限はないが、臭素原子(Br)又はヨウ素原子(I)が好ましい。 The halogen atom is not particularly limited, but is preferably a bromine atom (Br) or an iodine atom (I).
 ホウ酸エステル残基は、特段の制限はないが、例えば、下記式で示される基が挙げられる。 The borate ester residue is not particularly limited, and examples thereof include a group represented by the following formula.
Figure JPOXMLDOC01-appb-C000040
Figure JPOXMLDOC01-appb-C000040
 上記式中、Meはメチル基を表し、Etはエチル基を表す。 In the above formula, Me represents a methyl group, and Et represents an ethyl group.
 アルキルスタニル基は、特段の制限はないが、例えば、下記式で示される基が挙げられる。 The alkylstannyl group is not particularly limited, and examples thereof include a group represented by the following formula.
Figure JPOXMLDOC01-appb-C000041
Figure JPOXMLDOC01-appb-C000041
 上記式中、Meはメチル基を表し、Buはブチル基を表す。 In the above formula, Me represents a methyl group, and Bu represents a butyl group.
 アルケニル基は、特段の制限はないが、例えば、炭素数2~12のアルケニル基が好ましい。 The alkenyl group is not particularly limited, but for example, an alkenyl group having 2 to 12 carbon atoms is preferable.
 上述の中でも、式(VII)~式(X)で表される化合物の合成上の観点及び反応のし易さの観点から、Y1~Y8はそれぞれ独立して、ハロゲン原子、アルキルスタニル基、ホウ酸エステル残基、又はホウ酸残基(-B(OH)2)であることが好ましい。 Among the above, Y1 to Y8 are each independently a halogen atom, an alkylstannyl group, from the viewpoint of the synthesis of the compounds represented by formulas (VII) to (X) and the ease of reaction. A boric acid ester residue or a boric acid residue (—B (OH) 2 ) is preferable.
 本発明のコポリマーの重合に用いる反応方法としては、Suzuki-Miyauraクロスカップリング反応方法、Stilleカップリング反応方法、Yamamotoカップリング反応方法、Grignard反応方法、ヘック反応方法、園頭反応方法、FeCl3などの酸化剤を用いる反応方法、電気化学的な酸化反応を用いる方法、適当な脱離基を有する中間体化合物の分解による反応方法などが挙げられる。これらの中でも、Suzuki-Miyauraカップリング反応方法、Stilleカップリング反応方法、Yamamotoカップリング反応方法、Grignard反応方法が、構造制御がしやすい点で好ましい。特に、Suzuki-Miyauraクロスカップリング反応方法、Stilleカップリング反応方法、Grignard反応方法が、材料の入手しやすさ、反応操作の簡便さの点からも好ましい。これらの反応は、「クロスカップリング-基礎と産業応用-(CMC出版)」、「有機合成のための遷移金属触媒反応(辻二郎著:有機合成化学協会編)」、「有機合成のための触媒反応103(檜山為次郎:東京化学同人)」などの公知文献の記載の方法に従って行うことができる。 Examples of the reaction method used for polymerization of the copolymer of the present invention include Suzuki-Miyaura cross-coupling reaction method, Stille coupling reaction method, Yamamoto coupling reaction method, Grignard reaction method, Heck reaction method, Sonogashira reaction method, FeCl 3 and the like. A reaction method using an oxidizing agent, a method using an electrochemical oxidation reaction, a reaction method by decomposition of an intermediate compound having an appropriate leaving group, and the like. Among these, the Suzuki-Miyaura coupling reaction method, Stille coupling reaction method, Yamamoto coupling reaction method, and Grignard reaction method are preferable in terms of easy structure control. In particular, the Suzuki-Miyaura cross-coupling reaction method, the Stille coupling reaction method, and the Grignard reaction method are preferable from the viewpoint of easy availability of materials and easy reaction operation. These reactions include "cross coupling-basics and industrial applications-(CMC Publishing)", "transition metal catalyzed reactions for organic synthesis (written by Jiro Jiro: edited by the Society of Synthetic Organic Chemistry)", "for organic synthesis" The reaction can be carried out according to a method described in known literature such as “catalytic reaction 103 (Teijiro Hatakeyama: Tokyo Kagaku Dojin)”.
 なお、上述の通り、式(VII)~式(X)中のY1~Y8は適宜選択して重合反応を行なえばよい。例えば、式(VII)及び式(VIII)中のY1~Y4がアルキルスタニル基であり、式(IX)及び式(X)中のY5~Y8をハロゲン原子として、公知のStilleカップリング反応の条件に従って反応を行えばよい。また、式(VII)及び式(VIII)中のY1~Y4がホウ酸エステル残基又はホウ酸残基として、式(IX)及び式(X)中のY5~Y8をハロゲン原子として公知のSuzuki-Miyauraカップリング反応の条件に従って反応を行えばよい。さらに、式(VII)及び式(VIII)中のY1~Y4をシリル基として、式(IX)及び式(X)中のY5~Y8をハロゲン原子として公知のHiyamaカップリング反応の条件に従って反応を行えばよい。なお、カップリング反応の触媒としては例えば、パラジウム等の遷移金属と、配位子(例えばトリフェニルホスフィン等のホスフィン配位子)との組み合わせを用いることができる。 In addition, as described above, Y1 to Y8 in the formulas (VII) to (X) may be appropriately selected to carry out the polymerization reaction. For example, Y1 to Y4 in formula (VII) and formula (VIII) are alkylstannyl groups, and Y5 to Y8 in formula (IX) and formula (X) are used as halogen atoms to perform known Stille coupling reactions. What is necessary is just to react according to conditions. In addition, Y1 to Y4 in the formulas (VII) and (VIII) are known borate esters or boric acid residues, Y5 to Y8 in the formulas (IX) and (X) are halogen atoms, and known Suzuki. -The reaction may be performed according to the conditions of the Miyaura coupling reaction. Furthermore, Y1 to Y4 in formula (VII) and formula (VIII) are used as silyl groups, Y5 to Y8 in formula (IX) and formula (X) are used as halogen atoms, and the reaction is carried out according to known Hiyama coupling reaction conditions. Just do it. As a catalyst for the coupling reaction, for example, a combination of a transition metal such as palladium and a ligand (for example, a phosphine ligand such as triphenylphosphine) can be used.
 また、重合反応により得られたコポリマーに対しては、さらに末端処理を行うことが好ましい。コポリマーの末端処理を行うことにより、コポリマーの末端残基(上述のY1~Y8)の残存量を減らすことができる。このような末端処理を行うことにより、得られるコポリマー中のハロゲン原子、アルキルスタニル基等を減らすことができるために、光電変換素子に本発明に係るコポリマーを用いた場合に、変換効率及び耐久性が向上するために好ましい。 Further, it is preferable to further end-treat the copolymer obtained by the polymerization reaction. By performing the terminal treatment of the copolymer, the residual amount of the terminal residues (Y1 to Y8 described above) can be reduced. By performing such a terminal treatment, halogen atoms, alkylstannyl groups, and the like in the obtained copolymer can be reduced. Therefore, when the copolymer according to the present invention is used for a photoelectric conversion element, conversion efficiency and durability are improved. This is preferable because of improved properties.
 また、重合反応後には、通常、コポリマーを分離する工程が行われる。コポリマーの末端処理を行う場合には、末端処理後にコポリマーを分離する工程を行うことが好ましい。必要に応じて、コポリマーの末端処理前に、さらにコポリマーの分離及び精製を行なってもよい。より短い処理工程でコポリマーを得る観点からは、重合反応後に、コポリマーの末端処理、コポリマーの分離及びコポリマーの精製をこの順に行うことが好ましい。 In addition, after the polymerization reaction, a process for separating the copolymer is usually performed. When the terminal treatment of the copolymer is performed, it is preferable to perform a step of separating the copolymer after the terminal treatment. If necessary, further copolymer separation and purification may be performed prior to copolymer termination. From the viewpoint of obtaining the copolymer in a shorter processing step, it is preferable to carry out the terminal treatment of the copolymer, separation of the copolymer and purification of the copolymer in this order after the polymerization reaction.
 コポリマーの分離方法としては、例えば、反応溶液と貧溶媒とを混合してコポリマーを析出させる方法、又は、水若しくは塩酸で反応溶液中の活性種をクエンチした後にコポリマーを有機溶媒で抽出し、この有機溶媒を留去する方法等が挙げられる。 As a method for separating the copolymer, for example, the reaction solution and a poor solvent are mixed to precipitate the copolymer, or the active species in the reaction solution is quenched with water or hydrochloric acid, and then the copolymer is extracted with an organic solvent. Examples include a method of distilling off the organic solvent.
 コポリマーの精製方法としては、再沈精製、ソックスレー抽出器を用いた抽出、ゲル浸透クロマトグラフィ、又はスキャベンジャーを用いた金属除去等の、公知の方法が挙げられる。 Examples of the purification method of the copolymer include known methods such as reprecipitation purification, extraction using a Soxhlet extractor, gel permeation chromatography, or metal removal using a scavenger.
<2-1.式(VII)~式(X)で表される化合物の製造方法>
 式(VII)~(X)で表される化合物を製造する方法は、特段の制限はないが、公知の例を参考にして行うことができる。公知例としては、Polymer, 1990,31,1379-1383、Adv.Mater.,2007,19,4160-4165、Macromolecules,2010,43,6936-6938、Adv.Mater.,2011,23,3315-3319、Angew.Chem.Int.Ed.,2012,51,2068-2071、J.Mater.Chem.,2011,21,3895-3902、J.Am.Chem.Soc.,2011,133,10062-10065またはChem.Commun.,2011,47,4920、国際公開2013/180243号等が挙げられる。
<2-1. Method for producing compounds represented by formula (VII) to formula (X)>
The method for producing the compounds represented by formulas (VII) to (X) is not particularly limited, but can be carried out with reference to known examples. Known examples include Polymer, 1990, 31, 1379-1383, Adv. Mater. , 2007, 19, 4160-4165, Macromolecules, 2010, 43, 6936-6938, Adv. Mater. , 2011, 23, 3315-3319, Angew. Chem. Int. Ed. 2012, 51, 2068-2071, J. MoI. Mater. Chem. 2011, 21, 3895-3902, J. MoI. Am. Chem. Soc. , 2011, 133, 10062-10065 or Chem. Commun. , 2011, 47, 4920, International Publication No. 2013/180243, and the like.
<3.光電変換素子>
 本発明の一実施形態に係るコポリマーは光電変換素子の材料として用いることができ、具体的には、光電変換素子の活性層が本発明に係るコポリマーを含有することで、高い露光安定性を備えた光電変換素子となり得る。以下、本発明に係るコポリマーを用いた光電変換素子の一実施形態について説明する。
<3. Photoelectric conversion element>
The copolymer according to an embodiment of the present invention can be used as a material for a photoelectric conversion element. Specifically, the active layer of the photoelectric conversion element contains the copolymer according to the present invention, thereby providing high exposure stability. It can be a photoelectric conversion element. Hereinafter, an embodiment of a photoelectric conversion element using the copolymer according to the present invention will be described.
 本発明の一実施形態に係る光電変換素子は、少なくとも、基材と、基材上に形成された一対の電極と、一対の電極間に形成された活性層と、を有する。以下、図1を参照して、本発明に係る光電変換素子の一実施形態について説明する。 The photoelectric conversion element according to an embodiment of the present invention includes at least a base material, a pair of electrodes formed on the base material, and an active layer formed between the pair of electrodes. Hereinafter, an embodiment of a photoelectric conversion element according to the present invention will be described with reference to FIG.
 図1に示すように、本発明に係る光電変換素子の一実施形態は、基材106上に、下部電極101と、下部バッファ層102と、活性層103と、上部バッファ層104と、上部電極105と、が順次形成された層構造を有する。本発明において、下部電極とは、基材106側に積層される電極を意味し、上部電極とは、基材106をボトムとした際に、下部電極よりも上部に積層される電極を意味する。なお、本発明において、下部電極101及び上部電極105を合わせて一対の電極と称す場合がある。また、下部バッファ層102及び上部バッファ層104は、必須の構成ではなく、任意で設ければよく、下部バッファ層102及び上部バッファ層104のうち一方のみを有していてもよい。また、光電変換素子は、上記以外の別の層を任意で有していてもよい。以下、光電変換素子の各構成部材について説明する。 As shown in FIG. 1, one embodiment of the photoelectric conversion element according to the present invention includes a lower electrode 101, a lower buffer layer 102, an active layer 103, an upper buffer layer 104, and an upper electrode on a substrate 106. 105 have a layer structure in which are sequentially formed. In the present invention, the lower electrode means an electrode laminated on the substrate 106 side, and the upper electrode means an electrode laminated above the lower electrode when the substrate 106 is used as the bottom. . In the present invention, the lower electrode 101 and the upper electrode 105 may be collectively referred to as a pair of electrodes. In addition, the lower buffer layer 102 and the upper buffer layer 104 are not essential components, and may be provided arbitrarily, and may include only one of the lower buffer layer 102 and the upper buffer layer 104. Moreover, the photoelectric conversion element may optionally have another layer other than the above. Hereinafter, each component of the photoelectric conversion element will be described.
<3-1.基材106>
 光電変換素子107は、通常は支持体となる基材106に形成される。基材106の材料に特段の制限は無い。
 基材106の材料の好適な例としては、石英、ガラス、サファイア又はチタニア等の無機材料、及びフレキシブル基材等が挙げられる。フレキシブル基材の具体例としては、限定されるわけではないが、ポリエチレンテレフタレート、ポリエチレンナフタレート、ポリエーテルスルホン、ポリイミド、ナイロン、ポリスチレン、ポリビニルアルコール、エチレンビニルアルコール共重合体、フッ素樹脂フィルム、塩化ビニル又はポリエチレン等のポリオレフィン;セルロース、ポリ塩化ビニリデン、アラミド、ポリフェニレンスルフィド、ポリウレタン、ポリカーボネート、ポリアリレート、ポリノルボルネン又はエポキシ樹脂等の有機材料(樹脂基材);紙又は合成紙等の紙材料;ステンレス、チタン又はアルミニウム等の金属箔に、絶縁性を付与するために表面をコート又はラミネートしたもの等の複合材料が挙げられる。ガラスとしてはソーダガラス、青板ガラス又は無アルカリガラス等が挙げられる。ガラスからの溶出イオンが少ない点で、これらの中でも無アルカリガラスが好ましい。
 基材106の形状、構成等については、周知技術を参考にすることができ、具体的には、例えば、国際公開第2011/016430号又は日本国特開2012-191194号公報等の公知文献に記載のものを採用できる。
<3-1. Substrate 106>
The photoelectric conversion element 107 is usually formed on a base material 106 that serves as a support. There is no particular limitation on the material of the substrate 106.
Preferable examples of the material of the substrate 106 include inorganic materials such as quartz, glass, sapphire, and titania, and flexible substrates. Specific examples of the flexible substrate include, but are not limited to, polyethylene terephthalate, polyethylene naphthalate, polyethersulfone, polyimide, nylon, polystyrene, polyvinyl alcohol, ethylene vinyl alcohol copolymer, fluororesin film, vinyl chloride. Or polyolefin such as polyethylene; organic material (resin substrate) such as cellulose, polyvinylidene chloride, aramid, polyphenylene sulfide, polyurethane, polycarbonate, polyarylate, polynorbornene, or epoxy resin; paper material such as paper or synthetic paper; stainless steel, Examples thereof include composite materials such as a metal foil such as titanium or aluminum whose surface is coated or laminated in order to impart insulation. Examples of the glass include soda glass, blue plate glass, and non-alkali glass. Among these, alkali-free glass is preferable in that there are few eluted ions from the glass.
For the shape, configuration and the like of the base material 106, known techniques can be referred to. Specifically, for example, publicly known documents such as International Publication No. 2011-016430 or Japanese Unexamined Patent Application Publication No. 2012-191194 are available. Those described can be adopted.
<3-2.一対の電極(下部電極101及び上部電極105)>
 一対の電極(101、106)は、光吸収により生じた正孔及び電子を捕集する機能を有する。したがって一対の電極には、正孔の捕集に適した電極(以下、アノードと記載する場合もある)と、電子の捕集に適した電極(以下、カソードと記載する場合もある)とを用いることが好ましい。一対の電極は、いずれか一方が透光性であればよく、両方が透光性であっても構わない。透光性があるとは、太陽光が40%以上透過することを指す。また、透明電極の太陽光線透過率は70%以上であることが、透明電極を透過させて活性層に光を到達させるために好ましい。光の透過率は、通常の分光光度計で測定できる。
<3-2. Pair of electrodes (lower electrode 101 and upper electrode 105)>
The pair of electrodes (101, 106) has a function of collecting holes and electrons generated by light absorption. Accordingly, the pair of electrodes includes an electrode suitable for collecting holes (hereinafter sometimes referred to as an anode) and an electrode suitable for collecting electrons (hereinafter sometimes referred to as a cathode). It is preferable to use it. Any one of the pair of electrodes may be translucent, and both may be translucent. Translucency means that sunlight passes through 40% or more. Further, the solar light transmittance of the transparent electrode is preferably 70% or more in order to allow light to reach the active layer through the transparent electrode. The light transmittance can be measured with a normal spectrophotometer.
 アノードとは、一般には仕事関数がカソードよりも高い導電性材料で構成され、活性層で発生した正孔をスムーズに取り出す機能を有する電極である。
 アノードの材料は特に限定されないが、例えば、酸化ニッケル、酸化スズ、酸化インジウム、酸化インジウムスズ(ITO)、インジウム-ジルコニウム酸化物(IZO)、酸化チタン、酸化インジウム又は酸化亜鉛等の導電性金属酸化物;金、白金、銀、クロム又はコバルト等の金属あるいはその合金が挙げられる。これらの物質は高い仕事関数を有するため、好ましく、さらに、ポリチオフェン誘導体にポリスチレンスルホン酸をドーピングしたPEDOT:PSSで代表されるような導電性高分子材料を積層することができるため、好ましい。このような導電性高分子を積層する場合には、この導電性高分子材料の仕事関数が高いことから、上記のような高い仕事関数の材料でなくとも、AlやMg等のカソードに適した金属も広く用いることが可能である。ポリチオフェン誘導体にポリスチレンスルホン酸をドーピングしたPEDOT:PSSや、ポリピロール又はポリアニリン等にヨウ素等をドーピングした導電性高分子材料を、アノードの材料として使用することもできる。
 アノードが透明電極である場合には、ITO、酸化亜鉛又は酸化スズ等の透光性がある導電性金属酸化物を用いることが好ましく、特にITOが好ましい。
The anode is an electrode generally made of a conductive material having a work function higher than that of the cathode and having a function of smoothly extracting holes generated in the active layer.
The material of the anode is not particularly limited. For example, conductive metal oxide such as nickel oxide, tin oxide, indium oxide, indium tin oxide (ITO), indium-zirconium oxide (IZO), titanium oxide, indium oxide, or zinc oxide. A metal such as gold, platinum, silver, chromium or cobalt, or an alloy thereof. These substances are preferable because they have a high work function, and further, a conductive polymer material represented by PEDOT: PSS in which a polythiophene derivative is doped with polystyrene sulfonic acid can be stacked. When laminating such a conductive polymer, the work function of this conductive polymer material is high, so even if it is not a material with a high work function as described above, it is suitable for cathodes such as Al and Mg. Metals can also be widely used. PEDOT: PSS in which a polythiophene derivative is doped with polystyrene sulfonic acid, or a conductive polymer material in which polypyrrole, polyaniline, or the like is doped with iodine or the like can also be used as an anode material.
When the anode is a transparent electrode, it is preferable to use a light-transmitting conductive metal oxide such as ITO, zinc oxide or tin oxide, and ITO is particularly preferable.
 カソードは、一般には仕事関数が低い値を有する導電性材料で構成され、活性層103で発生した電子をスムーズに取り出す機能を有する電極である。カソードは、電子取り出し層と隣接する。
 カソードの材料は特に限定されないが、例えば、白金、金、銀、銅、鉄、スズ、亜鉛、アルミニウム、インジウム、クロム、リチウム、ナトリウム、カリウム、セシウム、カルシウム又はマグネシウム等の金属及びその合金;フッ化リチウムやフッ化セシウム等の無機塩;酸化ニッケル、酸化アルミニウム、酸化リチウム又は酸化セシウムのような金属酸化物等が挙げられる。これらの材料は低い仕事関数を有する材料であるため、好ましい。カソードについてもアノードと同様に、電子取り出し層としてチタニアのようなn型半導体で導電性を有するものを用いることにより、高い仕事関数を有する材料を用いることもできる。電極保護の観点から、カソードの材料として好ましくは、白金、金、銀、銅、鉄、スズ、アルミニウム、カルシウム若しくはインジウム等の金属、又は酸化インジウムスズ等のこれらの金属を用いた合金である。
The cathode is generally an electrode made of a conductive material having a low work function, and having a function of smoothly extracting electrons generated in the active layer 103. The cathode is adjacent to the electron extraction layer.
The material of the cathode is not particularly limited. For example, metals such as platinum, gold, silver, copper, iron, tin, zinc, aluminum, indium, chromium, lithium, sodium, potassium, cesium, calcium or magnesium and alloys thereof; Inorganic salts such as lithium fluoride and cesium fluoride; metal oxides such as nickel oxide, aluminum oxide, lithium oxide, and cesium oxide. These materials are preferable because they are materials having a low work function. Similarly to the anode, a material having a high work function can be used for the cathode by using an n-type semiconductor such as titania having conductivity as the electron extraction layer. From the viewpoint of electrode protection, the cathode material is preferably a metal such as platinum, gold, silver, copper, iron, tin, aluminum, calcium or indium, or an alloy using these metals such as indium tin oxide.
 アノード及びカソードの材料のシート抵抗等の物性、構成及びその製造方法については、周知技術を参考にすることができ、具体的には、例えば、国際公開第2011/016430号又は日本国特開2012-191194号公報等の公知文献に記載のものを採用できる。 Regarding physical properties such as sheet resistance of anode and cathode materials, composition, and manufacturing method thereof, well-known techniques can be referred to. Specifically, for example, International Publication No. 2011-016430 or Japanese Unexamined Patent Application Publication No. 2012. Those described in publicly known documents such as -191194 can be employed.
<3-3.活性層103>
 活性層103はp型半導体化合物とn型半導体化合物とを含有し、光電変換が行われる層である。具体的には、光電変換素子107が光を受けると、光が活性層103に吸収され、p型半導体材料とn型半導体材料の界面で電気が発生し、発生した電気がアノード及びカソードから取り出される。
<3-3. Active layer 103>
The active layer 103 is a layer that contains a p-type semiconductor compound and an n-type semiconductor compound and undergoes photoelectric conversion. Specifically, when the photoelectric conversion element 107 receives light, the light is absorbed by the active layer 103, electricity is generated at the interface between the p-type semiconductor material and the n-type semiconductor material, and the generated electricity is extracted from the anode and the cathode. It is.
 活性層103の層構成としては、p型半導体化合物を含有する層とn型半導体化合物を含有する層とが積層された薄膜積層型、又はp型半導体化合物とn型半導体化合物が混合した層を有するバルクヘテロ接合型が挙げられる。なお、バルクヘテロ接合型の活性層は、該混合層の他にp型半導体化合物を含有する層及び/又はn型半導体化合物を含有する層と、がさらに積層された構造であってもよい。なお、高い光電変換効率が期待できるという観点からはバルクヘテロ接合型であることが好ましい。 As the layer structure of the active layer 103, a thin film stack type in which a layer containing a p-type semiconductor compound and a layer containing an n-type semiconductor compound are stacked, or a layer in which a p-type semiconductor compound and an n-type semiconductor compound are mixed is used. A bulk heterojunction type. Note that the bulk heterojunction active layer may have a structure in which a layer containing a p-type semiconductor compound and / or a layer containing an n-type semiconductor compound is further stacked in addition to the mixed layer. From the viewpoint that high photoelectric conversion efficiency can be expected, a bulk heterojunction type is preferable.
 活性層103は、p型半導体化合物として、少なくとも本発明の一実施形態に係るコポリマーを含有する。活性層103が本発明に係るコポリマーを含有することで、高い変換効率及び高い露光安定性を有する光電変換素子とすることができる。 The active layer 103 contains at least a copolymer according to an embodiment of the present invention as a p-type semiconductor compound. When the active layer 103 contains the copolymer according to the present invention, a photoelectric conversion element having high conversion efficiency and high exposure stability can be obtained.
 なお、活性層103は、本発明に係るコポリマー以外にも、本発明に係る効果を損なわない限りにおいて、他のp型半導体化合物を含んでいてもよい。他のp型半導体化合物としては、低分子有機化合物であっても高分子化合物であってもよい。これらのp型半導体化合物として特段の制限はないが、例えば、国際公開第2011/016430号又は日本国特開2012-191194号公報等の公知文献に記載のものを使用することができる。 The active layer 103 may contain other p-type semiconductor compounds in addition to the copolymer according to the present invention as long as the effects according to the present invention are not impaired. The other p-type semiconductor compound may be a low molecular organic compound or a high molecular compound. These p-type semiconductor compounds are not particularly limited, but for example, those described in known literatures such as International Publication No. 2011-016430 or Japanese Unexamined Patent Publication No. 2012-191194 can be used.
 n型半導体化合物としては、特段の制限はないが、例えば、フラーレン化合物;8-ヒドロキシキノリンアルミニウムに代表されるキノリノール誘導体金属錯体;ナフタレンテトラカルボン酸ジイミド又はペリレンテトラカルボン酸ジイミド等の縮合環テトラカルボン酸ジイミド類;ペリレンジイミド誘導体、ターピリジン金属錯体、トロポロン金属錯体、フラボノール金属錯体、ペリノン誘導体、ベンズイミダゾール誘導体、ベンズオキサゾール誘導体、チアゾール誘導体、ベンズチアゾール誘導体、ベンゾチアジアゾール誘導体、オキサジアゾール誘導体、チアジアゾール誘導体、トリアゾール誘導体、アルダジン誘導体、ビススチリル誘導体、ピラジン誘導体、フェナントロリン誘導体、キノキサリン誘導体、ベンゾキノリン誘導体、ビピリジン誘導体、ボラン誘導体;アントラセン、ピレン、ナフタセン又はペンタセン等の縮合多環芳香族炭化水素の全フッ化物;単層カーボンナノチューブ、n型ポリマー(n型高分子半導体材料)等が挙げられる。 The n-type semiconductor compound is not particularly limited. For example, a fullerene compound; a quinolinol derivative metal complex represented by 8-hydroxyquinoline aluminum; a condensed ring tetracarboxylic acid such as naphthalenetetracarboxylic acid diimide or perylenetetracarboxylic acid diimide. Acid diimides; perylene diimide derivatives, terpyridine metal complexes, tropolone metal complexes, flavonol metal complexes, perinone derivatives, benzimidazole derivatives, benzoxazole derivatives, thiazole derivatives, benzthiazole derivatives, benzothiadiazole derivatives, oxadiazole derivatives, thiadiazole derivatives, Triazole derivatives, aldazine derivatives, bisstyryl derivatives, pyrazine derivatives, phenanthroline derivatives, quinoxaline derivatives, benzoquinoline derivatives Bipyridine derivatives, borane derivatives; anthracene, pyrene, total fluoride condensed polycyclic aromatic hydrocarbons such as naphthacene or pentacene; single-walled carbon nanotubes, n-type polymer (n-type polymer semiconductor material), and the like.
 その中でも、フラーレン化合物、ボラン誘導体、チアゾール誘導体、ベンゾチアゾール誘導体、ベンゾチアジアゾール誘導体、N-アルキル置換されたナフタレンテトラカルボン酸ジイミド、N-アルキル置換されたペリレンジイミド誘導体又はn型高分子半導体材料が好ましく、フラーレン化合物、N-アルキル置換されたペリレンジイミド誘導体、N-アルキル置換されたナフタレンテトラカルボン酸ジイミド又はn型高分子半導体化合物がより好ましく、フラーレン化合物が特に好ましい。これらの化合物としては、特段の制限はないが、例えば、国際公開第2011/016430号又は日本国特開2012-191194号公報等の公知文献に記載のものを使用することができる。なお、上記のうち一種の化合物を用いてもよいし、複数種の化合物の混合物を用いてもよい。これらの中でも、特に60PCBM、70PCBM又はこれらの混合物を用いることが好ましい。 Among them, fullerene compounds, borane derivatives, thiazole derivatives, benzothiazole derivatives, benzothiadiazole derivatives, N-alkyl substituted naphthalene tetracarboxylic acid diimides, N-alkyl substituted perylene diimide derivatives or n-type polymer semiconductor materials are preferred. More preferred are fullerene compounds, N-alkyl substituted perylene diimide derivatives, N-alkyl substituted naphthalene tetracarboxylic acid diimides or n-type polymer semiconductor compounds, and fullerene compounds are particularly preferred. These compounds are not particularly limited, but for example, those described in known literatures such as International Publication No. 2011-016430 or Japanese Unexamined Patent Publication No. 2012-191194 can be used. In addition, a kind of compound may be used among the above, and a mixture of a plurality of kinds of compounds may be used. Among these, it is particularly preferable to use 60 PCBM, 70 PCBM or a mixture thereof.
 活性層103の膜厚は特に限定されないが、通常10nm以上、好ましくは50nm以上であり、通常1μm以下、好ましくは500nm以下、より好ましくは200nm以下である。活性層103の膜厚が10nm以上であることにより、膜の均一性が保たれ、短絡を起こしにくくなるために好ましい。また、活性層103の厚さが1μm以下であれば内部抵抗が小さくなり、さらには一対の電極間が離れすぎることなく、電荷の拡散が良好になるために好ましい。 The thickness of the active layer 103 is not particularly limited, but is usually 10 nm or more, preferably 50 nm or more, usually 1 μm or less, preferably 500 nm or less, more preferably 200 nm or less. A thickness of the active layer 103 of 10 nm or more is preferable because the uniformity of the film is maintained and a short circuit is hardly caused. In addition, it is preferable that the thickness of the active layer 103 is 1 μm or less because the internal resistance is reduced, and further, the charge diffusion is improved without the pair of electrodes being separated too much.
 活性層103の作成方法としては、特段に制限はないが、生産性が向上することから、塗布法により形成することが好ましい。具体的には、本発明に係るコポリマーを含む活性層形成用インクを塗布して活性層103を形成することが好ましい。 The method for forming the active layer 103 is not particularly limited, but is preferably formed by a coating method because productivity is improved. Specifically, the active layer 103 is preferably formed by applying an active layer forming ink containing a copolymer according to the present invention.
 塗布法としては、任意の方法を用いることができ、例えば、スピンコート法、リバースロールコート法、グラビアコート法、キスコート法、ロールブラッシュ法、スプレーコート法、エアナイフコート法、ワイヤーバーバーコート法、パイプドクター法、含浸・コート法、カーテンコート法等が挙げられる。 As the coating method, any method can be used. For example, spin coating method, reverse roll coating method, gravure coating method, kiss coating method, roll brush method, spray coating method, air knife coating method, wire barber coating method, pipe Examples include a doctor method, an impregnation / coating method, and a curtain coating method.
 積層型の活性層を形成する場合、少なくともp型半導体化合物として本発明に係るコポリマーを含有する活性層形成用インクと、n型半導体化合物を含有する活性層用インクを用いて、それぞれ塗布法によりp型半導体含有層とn型半導体含有層とを積層して活性層を形成すればよい。一方で、バルクヘテロ型の活性層を形成する場合は、少なくともp型半導体化合物として本発明に係るコポリマーと、n型半導体化合物とを含有する活性層形成用インクを用いて、塗布法によりバルクヘテロ型の活性層を形成すればよい。 When forming a laminated type active layer, an active layer forming ink containing at least a copolymer according to the present invention as a p-type semiconductor compound and an active layer ink containing an n-type semiconductor compound are used, respectively, by a coating method. An active layer may be formed by stacking a p-type semiconductor-containing layer and an n-type semiconductor-containing layer. On the other hand, when forming a bulk hetero type active layer, an active layer forming ink containing at least a copolymer according to the present invention and an n type semiconductor compound as a p type semiconductor compound is used, and a bulk hetero type active layer is formed by a coating method. An active layer may be formed.
 上述の活性層形成用インクは、上述の化合物以外に通常、溶媒を含む。溶媒としては、特段の制限はないが、例えば、ヘキサン、ヘプタン、オクタン、イソオクタン、ノナン若しくはデカン等の脂肪族炭化水素類;トルエン、キシレン、メシチレン、シクロヘキシルベンゼン、クロロベンゼン若しくはオルトジクロロベンゼン等の芳香族炭化水素類;シクロペンタン、シクロヘキサン、メチルシクロヘキサン、シクロヘプタン、シクロオクタン、テトラリン若しくはデカリン等の脂環式炭化水素類;メタノール、エタノール若しくはプロパノール等の低級アルコール類;アセトン、メチルエチルケトン、シクロペンタノン若しくはシクロヘキサノン等の脂肪族ケトン類;アセトフェノン若しくはプロピオフェノン等の芳香族ケトン類;酢酸エチル、酢酸ブチル若しくは乳酸メチル等のエステル類;クロロホルム、塩化メチレン、ジクロロエタン、トリクロロエタン若しくはトリクロロエチレン等のハロゲン炭化水素類;エチルエーテル、テトラヒドロフラン若しくはジオキサン等のエーテル類;又は、ジメチルホルムアミド若しくはジメチルアセトアミド等のアミド類等が挙げられる。 The above-described ink for forming an active layer usually contains a solvent in addition to the above-described compound. The solvent is not particularly limited, but for example, aliphatic hydrocarbons such as hexane, heptane, octane, isooctane, nonane or decane; aromatic such as toluene, xylene, mesitylene, cyclohexylbenzene, chlorobenzene or orthodichlorobenzene Hydrocarbons; cycloaliphatic hydrocarbons such as cyclopentane, cyclohexane, methylcyclohexane, cycloheptane, cyclooctane, tetralin or decalin; lower alcohols such as methanol, ethanol or propanol; acetone, methyl ethyl ketone, cyclopentanone or cyclohexanone Aliphatic ketones such as acetophenone or propiophenone; esters such as ethyl acetate, butyl acetate or methyl lactate; chloroform, Methylene, dichloroethane, halogenated hydrocarbons such as trichloroethane or trichlorethylene; ethers such as ethyl ether and tetrahydrofuran or dioxane; or an amide such as dimethylformamide or dimethylacetamide, and the like.
 なかでも好ましくは、トルエン、キシレン、メシチレン、シクロヘキシルベンゼン、クロロベンゼン若しくはオルトジクロロベンゼン等の芳香族炭化水素類;シクロペンタン、シクロヘキサン、メチルシクロヘキサン、シクロヘプタン、シクロオクタン、テトラリン若しくはデカリン等の脂環式炭化水素類;アセトン、メチルエチルケトン、シクロペンタノン若しくはシクロヘキサノン等のケトン類;クロロホルム、塩化メチレン、ジクロロエタン、トリクロロエタン若しくはトリクロロエチレン等のハロゲン炭化水素類;又は、エチルエーテル、テトラヒドロフラン若しくはジオキサン等のエーテル類である。より好ましくは、トルエン、キシレン、メシチレン若しくはシクロヘキシルベンゼン等の非ハロゲン芳香族炭化水素類;シクロペンタノン若しくはシクロヘキサノン等の非ハロゲン系ケトン類;アセトフェノン若しくはプロピオフェノン等の芳香族ケトン類;テトラヒドロフラン、シクロペンタン、シクロヘキサン、メチルシクロヘキサン、シクロヘプタン、シクロオクタン、テトラリン若しくはデカリン等の脂環式炭化水素類;アセトン、メチルエチルケトン、シクロペンタノン若しくはシクロヘキサノン等のケトン類;又は、1,4-ジオキサン等の非ハロゲン系脂肪族エーテル類である。特に好ましくは、トルエン、キシレン、メシチレン又はシクロヘキシルベンゼン等の非ハロゲン芳香族炭化水素類である。 Among them, aromatic hydrocarbons such as toluene, xylene, mesitylene, cyclohexylbenzene, chlorobenzene or orthodichlorobenzene; cycloaliphatic carbonization such as cyclopentane, cyclohexane, methylcyclohexane, cycloheptane, cyclooctane, tetralin or decalin Hydrogens; ketones such as acetone, methyl ethyl ketone, cyclopentanone or cyclohexanone; halogen hydrocarbons such as chloroform, methylene chloride, dichloroethane, trichloroethane or trichloroethylene; or ethers such as ethyl ether, tetrahydrofuran or dioxane. More preferably, non-halogen aromatic hydrocarbons such as toluene, xylene, mesitylene or cyclohexylbenzene; non-halogen ketones such as cyclopentanone or cyclohexanone; aromatic ketones such as acetophenone or propiophenone; tetrahydrofuran, cyclohexane Alicyclic hydrocarbons such as pentane, cyclohexane, methylcyclohexane, cycloheptane, cyclooctane, tetralin or decalin; ketones such as acetone, methyl ethyl ketone, cyclopentanone or cyclohexanone; or non-halogens such as 1,4-dioxane Aliphatic ethers. Particularly preferred are non-halogen aromatic hydrocarbons such as toluene, xylene, mesitylene or cyclohexylbenzene.
 溶媒としては1種の溶媒を単独で用いてもよいし、任意の2種以上の溶媒を任意の比率で併用してもよい。2種以上の溶媒を併用する場合、沸点が60℃以上150℃以下である低沸点溶媒と、沸点が180℃以上250℃以下である高沸点溶媒とを組み合わせることが好ましい。低沸点溶媒と高沸点溶媒との組み合わせの例としては、非ハロゲン芳香族炭化水素類と脂環式炭化水素類、非ハロゲン芳香族炭化水素類と芳香族ケトン類、エーテル類と脂環式炭化水素類、エーテル類と芳香族ケトン類、脂肪族ケトン類と脂環式炭化水素類、又は脂肪族ケトン類と芳香族ケトン類、等が挙げられる。好ましい組み合わせの具体例としては、トルエンとテトラリン、キシレンとテトラリン、トルエンとアセトフェノン、キシレンとアセトフェノン、テトラヒドロフランとテトラリン、テトラヒドロフランとアセトフェノン、メチルエチルケトンとテトラリン、メチルエチルケトンとアセトフェノン、等が挙げられる。 As the solvent, one type of solvent may be used alone, or any two or more types of solvents may be used in an arbitrary ratio. When two or more kinds of solvents are used in combination, it is preferable to combine a low boiling point solvent having a boiling point of 60 ° C. or higher and 150 ° C. or lower and a high boiling point solvent having a boiling point of 180 ° C. or higher and 250 ° C. or lower. Examples of combinations of low and high boiling solvents include non-halogen aromatic hydrocarbons and alicyclic hydrocarbons, non-halogen aromatic hydrocarbons and aromatic ketones, ethers and alicyclic carbonization. Examples thereof include hydrogens, ethers and aromatic ketones, aliphatic ketones and alicyclic hydrocarbons, or aliphatic ketones and aromatic ketones. Specific examples of preferred combinations include toluene and tetralin, xylene and tetralin, toluene and acetophenone, xylene and acetophenone, tetrahydrofuran and tetralin, tetrahydrofuran and acetophenone, methyl ethyl ketone and tetralin, methyl ethyl ketone and acetophenone, and the like.
 なお、活性層形成用インクは上述した化合物以外にも、本発明に係る効果を損なわない限りにおいて、他の添加剤等を含んでいてもよい。 The active layer forming ink may contain other additives in addition to the compounds described above as long as the effects according to the present invention are not impaired.
<3-4.下部バッファ層102、上部バッファ層104>
 上述の通り、本実施形態に係る光電変換素子は、下部電極101と活性層103との間に下部バッファ層102と、上部電極105と活性層103との間に上部バッファ層104と、を有する。下部バッファ層102及び上部バッファ層104は、それぞれ、活性層103からカソードへの電子取り出し効率又は活性層103からアノードへの正孔取り出し効率を向上させる機能を有する。なお、活性層103からカソードへの電子取り出し効率を向上させる機能を有するバッファ層を電子取り出し層、活性層103からカソードへの電子取り出し効率を向上させる機能を有するバッファ層を正孔取り出し層という。なお、上述の通り、下部バッファ層102及び上部バッファ層104は、必須の構成部材ではなく、有機薄膜太陽電池素子4は、下部バッファ層102及び上部バッファ層104を有していなくてもよい。また、どちらか一方の層のみを有していてもよい。
<3-4. Lower buffer layer 102, upper buffer layer 104>
As described above, the photoelectric conversion element according to this embodiment includes the lower buffer layer 102 between the lower electrode 101 and the active layer 103, and the upper buffer layer 104 between the upper electrode 105 and the active layer 103. . The lower buffer layer 102 and the upper buffer layer 104 each have a function of improving the electron extraction efficiency from the active layer 103 to the cathode or the hole extraction efficiency from the active layer 103 to the anode. Note that a buffer layer having a function of improving the electron extraction efficiency from the active layer 103 to the cathode is referred to as an electron extraction layer, and a buffer layer having a function of improving the electron extraction efficiency from the active layer 103 to the cathode is referred to as a hole extraction layer. As described above, the lower buffer layer 102 and the upper buffer layer 104 are not essential components, and the organic thin film solar cell element 4 may not include the lower buffer layer 102 and the upper buffer layer 104. Moreover, you may have only any one layer.
 下部バッファ層102及び上部バッファ層104は、どちらが電子取り出し層でも、正孔取り出し層でもよいが、下部電極101がカソードで、上部電極105がアノードの場合、下部バッファ層102は電子取り出し層であり、上部バッファ層104は正孔取り出し層である。一方、下部電極101がアノードで、上部電極105がカソードの場合、下部バッファ層102は正孔取り出し層であり、上部バッファ層104は電子取り出し層である。 Either the lower buffer layer 102 or the upper buffer layer 104 may be an electron extraction layer or a hole extraction layer, but when the lower electrode 101 is a cathode and the upper electrode 105 is an anode, the lower buffer layer 102 is an electron extraction layer. The upper buffer layer 104 is a hole extraction layer. On the other hand, when the lower electrode 101 is an anode and the upper electrode 105 is a cathode, the lower buffer layer 102 is a hole extraction layer and the upper buffer layer 104 is an electron extraction layer.
<3-4-1.電子取り出し層>
 電子取り出し層の材料は、活性層103からカソードへ電子の取り出し効率を向上させる材料であれば特段の制限はないが、無機化合物又は有機化合物が挙げられる。
 無機化合物の例としては、Li、Na、K又はCs等のアルカリ金属の塩;酸化チタン(TiOx)や酸化亜鉛(ZnO)のようなn型半導体酸化物等が挙げられる。なかでも、アルカリ金属の塩としては、LiF、NaF、KF又はCsFのようなフッ化物塩が好ましく、n型半導体酸化物としては、酸化亜鉛(ZnO)が好ましい。このような材料の動作機構は不明であるが、Al等で構成されるカソードと組み合わされた際にカソードの仕事関数を小さくし、太陽電池素子内部に印加される電圧を上げる事が考えられる。
 有機化合物の例としては、例えば、トリアリールホスフィンオキシド化合物のようなリン原子と第16族元素との二重結合を有するホスフィン化合物;バソキュプロイン(BCP)又はバソフェナントレン(Bphen)のような、置換基を有してもよく、1位及び10位がヘテロ原子で置き換えられていてもよいフェナントレン化合物;トリアリールホウ素のようなホウ素化合物;(8-ヒドロキシキノリナト)アルミニウム(Alq3)のような有機金属酸化物;オキサジアゾール化合物又はベンゾイミダゾール化合物のような、置換基を有していてもよい1又は2の環構造を有する化合物;ナフタレンテトラカルボン酸無水物(NTCDA)又はペリレンテトラカルボン酸無水物(PTCDA)のような、ジカルボン酸無水物のような縮合ジカルボン酸構造を有する芳香族化合物等が挙げられる。
 電子取り出し層の材料の物性、構成及びその製造方法については、周知技術を参考にすることができ、具体的には、例えば、国際公開第2013/180243号、国際公開第2011/016430号又は日本国特開2012-191194号公報等の公知文献に記載のものを採用できる。
<3-4-1. Electron extraction layer>
The material of the electron extraction layer is not particularly limited as long as it is a material that improves the efficiency of extracting electrons from the active layer 103 to the cathode, and examples thereof include inorganic compounds and organic compounds.
Examples of inorganic compounds include salts of alkali metals such as Li, Na, K or Cs; n-type semiconductor oxides such as titanium oxide (TiOx) and zinc oxide (ZnO). Among them, the alkali metal salt is preferably a fluoride salt such as LiF, NaF, KF or CsF, and the n-type semiconductor oxide is preferably zinc oxide (ZnO). Although the operation mechanism of such a material is unknown, it is conceivable to reduce the work function of the cathode when combined with a cathode made of Al or the like and increase the voltage applied to the solar cell element.
Examples of organic compounds include phosphine compounds having a double bond between a phosphorus atom and a group 16 element such as triarylphosphine oxide compounds; substituents such as bathocuproin (BCP) or bathophenanthrene (Bphen) A phenanthrene compound in which the 1-position and the 10-position may be substituted with a heteroatom; a boron compound such as triarylboron; an organometallic such as (8-hydroxyquinolinato) aluminum (Alq3) Oxide; Compound having 1 or 2 ring structure which may have a substituent such as oxadiazole compound or benzimidazole compound; naphthalenetetracarboxylic anhydride (NTCDA) or perylenetetracarboxylic anhydride Such as (PTCDA), such as dicarboxylic anhydride Aromatic compounds having a slip dicarboxylic acid structure.
As for the physical properties, the configuration of the material of the electron extraction layer, and the manufacturing method thereof, well-known techniques can be referred to. Specifically, for example, International Publication No. 2013/180243, International Publication No. 2011-016430 or Japan Those described in publicly known documents such as Japanese Unexamined Patent Publication No. 2012-191194 can be adopted.
<3-4-2.正孔取り出し層>
 正孔取り出し層の材料に特に限定は無く、活性層103からアノードへの正孔の取り出し効率を向上させることが可能な材料であれば特に限定されない。
 具体的には、ポリチオフェン、ポリピロール、ポリアセチレン、トリフェニレンジアミン又はポリアニリン等に、スルホン酸及び/又はヨウ素等がドーピングされた導電性ポリマー、スルホニル基を置換基に有するポリチオフェン誘導体、アリールアミン等の導電性有機化合物、酸化銅、酸化ニッケル、酸化マンガン、酸化モリブデン、酸化バナジウム又は酸化タングステン等の金属酸化物、ナフィオン、後述のp型半導体等が挙げられる。その中でも好ましくは、スルホン酸をドーピングした導電性ポリマーであり、より好ましくは、ポリチオフェン誘導体にポリスチレンスルホン酸をドーピングした(3,4-エチレンジオキシチオフェン)ポリ(スチレンスルホン酸)(PEDOT:PSS)である。また、金、インジウム、銀又はパラジウム等の金属等の薄膜も使用することができる。金属等の薄膜は、単独で形成してもよいし、上記の有機材料と組み合わせて用いることもできる。
 正孔取り出し層の構成及びその製造方法については、周知技術を参考にすることができ、具体的には、例えば、国際公開第2012/102390号又は日本国特開2012-191194号公報等の公知文献に記載のものを採用できる。
<3-4-2. Hole extraction layer>
The material for the hole extraction layer is not particularly limited as long as it is a material capable of improving the efficiency of extracting holes from the active layer 103 to the anode.
Specifically, conductive polymers in which polythiophene, polypyrrole, polyacetylene, triphenylenediamine, polyaniline, etc. are doped with sulfonic acid and / or iodine, polythiophene derivatives having a sulfonyl group as a substituent, conductive organics such as arylamine Examples thereof include compounds, copper oxide, nickel oxide, manganese oxide, molybdenum oxide, vanadium oxide, metal oxide such as tungsten oxide, Nafion, and a p-type semiconductor described later. Among them, a conductive polymer doped with sulfonic acid is preferable, and (3,4-ethylenedioxythiophene) poly (styrenesulfonic acid) (PEDOT: PSS) in which a polythiophene derivative is doped with polystyrene sulfonic acid is more preferable. It is. A thin film of metal such as gold, indium, silver or palladium can also be used. A thin film of metal or the like may be formed alone or in combination with the above organic material.
For the structure of the hole extraction layer and the method for producing the hole extraction layer, known techniques can be referred to. Specifically, for example, publicly known publications such as International Publication No. 2012/102390 or Japanese Unexamined Patent Publication No. 2012-191194 are known. Those described in the literature can be employed.
<3-5.光電変換素子の製造方法>
 図1に示される構成を有する光電変換素子107は、上述した公知文献等に記載の方法により、例えば、基材106上に、下部電極101、下部バッファ層102、活性層103、上部バッファ層104、及び上部電極105を順次積層することにより作製することができる。また、図2に示されるタンデム構造を有する光電変換素子を製造する場合は、基材106上に、下部電極101、下部バッファ層102、第1の活性層108、中間層109、第2の活性層110、上部バッファ層104及び上部電極105を順次積層することにより作製することができる。
<3-5. Manufacturing method of photoelectric conversion element>
The photoelectric conversion element 107 having the configuration shown in FIG. 1 is formed on the base 106 by, for example, the lower electrode 101, the lower buffer layer 102, the active layer 103, and the upper buffer layer 104 by the method described in the above-described publicly known literature. , And the upper electrode 105 can be sequentially stacked. In the case of manufacturing the photoelectric conversion element having the tandem structure shown in FIG. 2, the lower electrode 101, the lower buffer layer 102, the first active layer 108, the intermediate layer 109, and the second active element are formed on the substrate 106. The layer 110, the upper buffer layer 104, and the upper electrode 105 can be sequentially stacked.
 下部電極101及び上部電極105を積層した後に、光電変換素子を通常50℃以上、好ましくは80℃以上、一方、通常300℃以下、好ましくは280℃以下、より好ましくは250℃以下の温度範囲において、加熱することが好ましい(この工程をアニーリング処理工程と称する)。 After laminating the lower electrode 101 and the upper electrode 105, the photoelectric conversion element is usually in a temperature range of 50 ° C. or higher, preferably 80 ° C. or higher, usually 300 ° C. or lower, preferably 280 ° C. or lower, more preferably 250 ° C. or lower. It is preferable to heat (this step is referred to as an annealing treatment step).
 アニーリング処理工程を50℃以上の温度で行うことは、光電変換素子の各層間の密着性、例えば、下部バッファ層102と下部電極101及び/又は下部バッファ層102と活性層103の密着性が向上する効果が得られるため、好ましい。各層間の密着性が向上することにより、光電変換素子の熱安定性や耐久性等が向上し得る。また、アニーリング処理工程により、活性層の自己組織化が促進され得る。アニーリング処理工程の温度を300℃以下にすることは、活性層103内の有機化合物が熱分解する可能性が低くなるため、好ましい。アニーリング処理工程においては、上記の温度範囲内で段階的な加熱を行ってもよい。 Performing the annealing process at a temperature of 50 ° C. or higher improves adhesion between the layers of the photoelectric conversion element, for example, adhesion between the lower buffer layer 102 and the lower electrode 101 and / or the lower buffer layer 102 and the active layer 103. This is preferable because the effect of By improving the adhesion between the layers, the thermal stability and durability of the photoelectric conversion element can be improved. In addition, the self-organization of the active layer can be promoted by the annealing process. It is preferable to set the temperature of the annealing treatment step to 300 ° C. or lower because the possibility that the organic compound in the active layer 103 is thermally decomposed is reduced. In the annealing treatment step, stepwise heating may be performed within the above temperature range.
 加熱する時間としては、通常1分以上、好ましくは3分以上、一方、通常3時間以下、好ましくは1時間以下である。アニーリング処理工程は、太陽電池性能のパラメータである開放電圧、短絡電流及びフィルファクターが一定の値になったところで終了させることが好ましい。また、アニーリング処理工程は、常圧下、かつ不活性ガス雰囲気中で実施することが好ましい。 The heating time is usually 1 minute or longer, preferably 3 minutes or longer, and usually 3 hours or shorter, preferably 1 hour or shorter. The annealing treatment step is preferably terminated when the open-circuit voltage, the short-circuit current, and the fill factor, which are parameters of the solar cell performance, reach a constant value. Further, the annealing treatment step is preferably performed under normal pressure and in an inert gas atmosphere.
 加熱する方法としては、ホットプレート等の熱源に光電変換素子を載せてもよいし、オーブン等の加熱雰囲気中に光電変換素子を入れてもよい。また、加熱はバッチ式で行っても連続方式で行ってもよい。 As a heating method, the photoelectric conversion element may be placed on a heat source such as a hot plate, or the photoelectric conversion element may be placed in a heating atmosphere such as an oven. The heating may be performed batchwise or continuously.
 アニーリング処理工程により光電変換素子の熱安定性や耐久性等が向上し得るものの、アニーリング処理工程中にフラーレン化合物が凝集し、相分離が促進されるために、光電変換効率が低下することがある。しかしながら活性層103は添加剤を含有しているため、添加剤によってアニーリング処理工程中のフラーレン化合物の凝集が抑制される。このように、活性層103に添加剤を含有させることにより、アニーリング処理工程を行った後での光電変換効率がより高い光電変換素子107が得られることができる。 Although the thermal treatment and durability of the photoelectric conversion element can be improved by the annealing treatment step, the fullerene compound is aggregated during the annealing treatment step and phase separation is promoted, so that the photoelectric conversion efficiency may be lowered. . However, since the active layer 103 contains an additive, aggregation of the fullerene compound during the annealing process is suppressed by the additive. Thus, the photoelectric conversion element 107 with higher photoelectric conversion efficiency after performing an annealing process can be obtained by making the active layer 103 contain an additive.
 本発明に係る光電変換素子を構成する各層は、特段の制限はなく、シート・ツー・シート(万葉)方式、又はロール・ツー・ロール方式で形成することができるが、下記の理由により、ロール・ツー・ロール方式で形成することが好ましい。 Each layer constituting the photoelectric conversion element according to the present invention is not particularly limited, and can be formed by a sheet-to-sheet (manyoba) method or a roll-to-roll method. -It is preferable to form by a two-roll system.
 ロール・ツー・ロール方式とは、ロール状に巻かれたフレキシブルな基材を繰り出して、間欠的、或いは連続的に搬送しながら、巻き取りロールにより巻き取られるまでの間に加工を行う方式である。ロール・ツー・ロール方式によれば、kmオーダの長尺基板を一括処理することが可能であるため、シート・ツー・シート方式に比べて量産化に適した生産方式である。 The roll-to-roll method is a method in which a flexible base material wound in a roll shape is fed out and processed intermittently or continuously until it is taken up by a take-up roll. is there. According to the roll-to-roll method, it is possible to batch-process long substrates on the order of km, so that the production method is more suitable for mass production than the sheet-to-sheet method.
 なお、ロール・ツー・ロール方式に用いることのできるロールの大きさは、ロール・ツー・ロール方式の製造装置で扱える限り特に限定されないが、外径は、通常5m以下、好ましくは3m以下、より好ましくは1m以下であり、通常10cm以上、好ましくは20cm以上、より好ましくは30cm以上である。ロール芯の外径は、通常4m以下、好ましくは3m以下、より好ましくは0.5m以下であり、通常1cm以上、好ましくは3cm以上、より好ましくは5cm以上、更に好ましくは10cm以上、特に好ましくは20cm以上である。これらの径が上記上限以下であるとロールの取り扱い性が高い点で好ましく、下限以上であると、以下の各工程で成膜される層が、曲げ応力により破壊される可能性が低くなる点で好ましい。ロールの幅は、通常5cm以上、好ましくは10cm以上、より好ましくは20cm以上であり、通常5m以下、好ましくは3m以下、より好ましくは2m以下である。幅が上限以下であるとロールの取り扱い性が高い点で好ましく、下限以上であると光電変換素子の大きさの自由度が高くなるため好ましい。 The size of the roll that can be used in the roll-to-roll method is not particularly limited as long as it can be handled by a roll-to-roll manufacturing apparatus, but the outer diameter is usually 5 m or less, preferably 3 m or less. Preferably, it is 1 m or less, usually 10 cm or more, preferably 20 cm or more, more preferably 30 cm or more. The outer diameter of the roll core is usually 4 m or less, preferably 3 m or less, more preferably 0.5 m or less, usually 1 cm or more, preferably 3 cm or more, more preferably 5 cm or more, still more preferably 10 cm or more, particularly preferably 20 cm or more. When these diameters are not more than the above upper limit, it is preferable in terms of high handleability of the roll, and when it is more than the lower limit, the layer formed in each of the following steps is less likely to be broken by bending stress. Is preferable. The width of the roll is usually 5 cm or more, preferably 10 cm or more, more preferably 20 cm or more, and is usually 5 m or less, preferably 3 m or less, more preferably 2 m or less. When the width is not more than the upper limit, it is preferable from the viewpoint of high handleability of the roll, and when the width is not less than the lower limit, the degree of freedom of the size of the photoelectric conversion element is preferable.
<3-6.光電変換特性>
 光電変換素子107の光電変換特性は次のようにして求めることができる。光電変換素子107にソーラシュミレーターでAM1.5G条件の光を照射強度100mW/cm2で照射して、電流-電圧特性を測定する。得られた電流-電圧曲線から、光電変換効率(PCE)、短絡電流密度(Jsc)、開放電圧(Voc)、フィルファクター(FF)、直列抵抗、シャント抵抗といった光電変換特性を求めることができる。
<3-6. Photoelectric conversion characteristics>
The photoelectric conversion characteristics of the photoelectric conversion element 107 can be obtained as follows. The photoelectric conversion element 107 is irradiated with light having an AM1.5G condition with a solar simulator at an irradiation intensity of 100 mW / cm 2 , and current-voltage characteristics are measured. From the obtained current-voltage curve, photoelectric conversion characteristics such as photoelectric conversion efficiency (PCE), short circuit current density (Jsc), open circuit voltage (Voc), fill factor (FF), series resistance, and shunt resistance can be obtained.
 本発明に係る光電変換素子の光電変換効率は、特段の制限はないが、通常1%以上、好ましくは1.5%以上、より好ましくは2%以上である。一方、上限に特段の制限はなく、高ければ高いほどよい。 The photoelectric conversion efficiency of the photoelectric conversion element according to the present invention is not particularly limited, but is usually 1% or more, preferably 1.5% or more, more preferably 2% or more. On the other hand, there is no particular limitation on the upper limit, and the higher the better.
 また、光電変換素子の耐久性を測定する方法としては、光電変換素子を大気暴露する前後での、光電変換効率の維持率を求める方法が挙げられる。
 (維持率)=(大気暴露N時間後の光電変換効率)/(大気暴露直前の光電変換効率)
Moreover, as a method for measuring the durability of the photoelectric conversion element, a method for obtaining a maintenance ratio of the photoelectric conversion efficiency before and after exposing the photoelectric conversion element to the atmosphere can be mentioned.
(Maintenance rate) = (Photoelectric conversion efficiency after N hours of atmospheric exposure) / (Photoelectric conversion efficiency immediately before atmospheric exposure)
光電変換素子を実用化するには、製造が簡便かつ安価であること以外に、高い光電変換効率及び高い耐久性を有することが重要である。この観点から、1週間大気暴露する前後での光電変換効率の維持率は、60%以上が好ましく、75%以上がより好ましく、80%以上がさらに好ましく、85%以上が特に好ましく、高ければ高いほどよい。 In order to put a photoelectric conversion element into practical use, it is important to have high photoelectric conversion efficiency and high durability in addition to simple and inexpensive manufacture. From this point of view, the maintenance rate of photoelectric conversion efficiency before and after exposure to the atmosphere for one week is preferably 60% or more, more preferably 75% or more, further preferably 80% or more, particularly preferably 85% or more, and high if high. Moderate.
<4.太陽電池>
 上述の実施形態に係る光電変換素子は、太陽電池、なかでも薄膜太陽電池の太陽電池素子として使用されることが好ましい。図2は、本発明の一実施形態としての薄膜太陽電池の構成を模式的に示す断面図である。図2に示すように、本実施形態の薄膜太陽電池14は、耐候性保護フィルム1と、紫外線カットフィルム2と、ガスバリアフィルム3と、ゲッター材フィルム4と、封止材5と、光電変換素子6と、封止材7と、ゲッター材フィルム8と、ガスバリアフィルム9と、バックシート10とをこの順に備える。そして、薄膜太陽電池は、通常、耐候性保護フィルム1が形成された側(図中下方)から光が照射されて、光電変換素子6が発電する。なお、薄膜太陽電池は、これらの構成部材を全て有する必要はなく、各構成部材を任意で選択して設ければよい。
<4. Solar cell>
The photoelectric conversion element according to the above-described embodiment is preferably used as a solar cell, particularly a solar cell element of a thin film solar cell. FIG. 2 is a cross-sectional view schematically showing the configuration of a thin-film solar cell as one embodiment of the present invention. As shown in FIG. 2, the thin film solar cell 14 of this embodiment includes a weather-resistant protective film 1, an ultraviolet cut film 2, a gas barrier film 3, a getter material film 4, a sealing material 5, and a photoelectric conversion element. 6, a sealing material 7, a getter material film 8, a gas barrier film 9, and a back sheet 10 are provided in this order. And a thin film solar cell is normally irradiated with light from the side (downward in the figure) in which the weather-resistant protective film 1 was formed, and the photoelectric conversion element 6 generates electric power. Note that the thin-film solar cell does not need to have all of these constituent members, and each constituent member may be arbitrarily selected and provided.
 薄膜太陽電池を構成するこれらの構成部材及びその製造方法について特段の制限はなく、周知技術を用いることができる。例えば、国際公開第2011/016430号又は日本国特開2012-191194号公報等の公知文献に記載のものを使用することができる。 There are no particular restrictions on these constituent members constituting the thin-film solar cell and the manufacturing method thereof, and well-known techniques can be used. For example, those described in known documents such as International Publication No. 2011/016430 or Japanese Patent Application Laid-Open No. 2012-191194 can be used.
 本発明に係る太陽電池、特に上述した薄膜太陽電池14の用途に特段の制限はなく、任意の用途に用いることができる。例えば、建材用太陽電池、自動車用太陽電池、宇宙機用太陽電池、家電用太陽電池、携帯電話用太陽電池又は玩具用太陽電池等が挙げられる。 There is no particular limitation on the use of the solar cell according to the present invention, particularly the thin film solar cell 14 described above, and it can be used for any application. Examples include solar cells for building materials, solar cells for automobiles, solar cells for spacecrafts, solar cells for home appliances, solar cells for mobile phones, solar cells for toys, and the like.
 本発明に係る太陽電池、特に薄膜太陽電池はそのまま用いてもよいし、例えば基材上に太陽電池を設置して太陽電池モジュールとして用いてもよい。例えば、図3に示すように、基材12上に薄膜太陽電池14を備えた太陽電池モジュール13として、使用場所に設置して用いることができる。基材12については、周知技術を用いることができ、例えば、国際公開第2011/016430号又は日本国特開2012-191194号公報等に記載のものを用いることができる。例えば、基材12として建材用板材を使用する場合、この板材の表面に薄膜太陽電池14を設けることにより、太陽電池モジュール13として太陽電池パネルを作製することができる。 The solar cell according to the present invention, particularly a thin-film solar cell, may be used as it is, or for example, a solar cell may be installed on a substrate and used as a solar cell module. For example, as shown in FIG. 3, the solar cell module 13 having the thin film solar cell 14 on the base 12 can be installed and used at a place of use. For the substrate 12, well-known techniques can be used, for example, those described in International Publication No. 2011-016430 or Japanese Unexamined Patent Publication No. 2012-191194. For example, when a building material plate is used as the substrate 12, a solar cell panel can be produced as the solar cell module 13 by providing the thin film solar cell 14 on the surface of the plate.
 以下に、実施例により本発明の実施形態を説明するが、本発明はその要旨を超えない限り、これらに限定されるものではない。なお、本実施例に記載の項目は以下の方法によって測定した。 Hereinafter, embodiments of the present invention will be described by way of examples. However, the present invention is not limited to these examples as long as the gist of the present invention is not exceeded. The items described in the examples were measured by the following methods.
[重量平均分子量及び数平均分子量の測定方法]
 ポリスチレン換算の重量平均分子量(Mw)及び数平均分子量(Mn)は、ゲル浸透クロマトグラフィ(GPC)より求めた。なお、分子量分布(PDI)は、Mw/Mnを表す。
[Method for measuring weight average molecular weight and number average molecular weight]
The polystyrene equivalent weight average molecular weight (Mw) and number average molecular weight (Mn) were determined by gel permeation chromatography (GPC). The molecular weight distribution (PDI) represents Mw / Mn.
 ゲル浸透クロマトグラフィ(GPC)測定は以下の条件で行った。
 カラム:PolymerLaboratories GPC用カラム(PLgel MIXED-B 10μm 内径7.5mm,長さ30cm)2本直列に接続して使用
 ポンプ:LC-10AT(島津製作所社製)
 オーブン:CTO-10A(島津製作所社製)
検出器:示差屈折率検出器(島津製作所社製,RID-10A)及びUV-vis検出器(島津製作所社製,RID-10A)及びUV-vis検出
器(島津製作所社製,SPD-10A)
 サンプル:試料1mgをオルトジクロロベンゼン(200mg)に溶解させた液1μL
 移動相:オルトジクロロベンゼン
 流速:1.0mL/min
 温度:80℃
 解析:LC-Solution(島津製作所社製)
Gel permeation chromatography (GPC) measurement was performed under the following conditions.
Column: PolymerLaboratories GPC column (PLgel MIXED-B 10 μm, inner diameter 7.5 mm, length 30 cm), connected in series Pump: LC-10AT (manufactured by Shimadzu Corporation)
Oven: CTO-10A (manufactured by Shimadzu Corporation)
Detector: Differential refractive index detector (manufactured by Shimadzu Corporation, RID-10A) and UV-vis detector (manufactured by Shimadzu Corporation, RID-10A) and UV-vis detector (manufactured by Shimadzu Corporation, SPD-10A)
Sample: 1 μL of 1 mg sample dissolved in orthodichlorobenzene (200 mg)
Mobile phase: orthodichlorobenzene Flow rate: 1.0 mL / min
Temperature: 80 ° C
Analysis: LC-Solution (manufactured by Shimadzu Corporation)
 <合成例1:コポリマー1の合成> <Synthesis Example 1: Synthesis of Copolymer 1>
Figure JPOXMLDOC01-appb-C000042
Figure JPOXMLDOC01-appb-C000042
 窒素雰囲気下、50mL二口ナスフラスコに、モノマーとして、公知文献(Organic Letters 2004,6,3381-3384)に記載の方法を参考にして得られた1,3-ジブロモ-5-(n-オクチル)-4H-チエノ[3,4-c]ピロール-4,6-(5H)-ジオン(化合物F1(イミドチオフェンジブロミド),350mg,0.826mmol)、公知文献(Polymer, 1990,31,1379-1383)を参考にして得られた4,4'-ジドデシル-5,5'-ビス(トリメチルスタニル)-2,2'-ビチオフェン(化合物T1)(342mg,0.413mmol)、及び国際公開2013/180243号に記載の方法を参考にして得られた4,4-ビス(2-エチルヘキシル)-2,6-ビス(トリメチルスズ)-ジチエノ[3,2-b:2',3'-d]シロール(化合物E1)(308mg,0.413mmol)を入れ、さらにテトラキス(トリフェニルホスフィン)パラジウム(0)(28.6mg,3mol%)、トリフェニルホスフィン含有不均一系パラジウム錯体触媒Pd-EnCatTPP30(Aldrich社製,37.2mg,3mol%)、トルエン(24mL)、及びN,N-ジメチルホルムアミド(6mL)を入れ、90℃で1時間、続いて100℃で10時間攪拌した。反応液をトルエンで4倍に希釈して100℃でさらに0.5時間加熱攪拌した後、末端処理として、トリメチル(フェニル)スズ(0.036mL)を加えて100℃で5時間加熱攪拌し、さらにブロモベンゼン(8mL)を加えて100℃で2時間加熱攪拌して、反応溶液をメタノール中に注ぎ、析出した沈殿をろ取した。得られた固体をクロロホルムに溶解させ、ジアミンシリカゲル(Fujiシリシア化学製)を加えて1時間室温で攪拌し、酸性シリカゲルのショートカラムを通した。溶液を濃縮し、クロロホルム/酢酸エチルを溶媒として再結晶を行い、析出した沈殿を濾別することで、目的とするコポリマー1を、収率74%で得た。得られたコポリマー1の重量平均分子量Mwは37kであり、PDIは2.1であった。 1,3-Dibromo-5- (n-octyl) was obtained in a 50 mL two-necked eggplant flask under a nitrogen atmosphere as a monomer by referring to a method described in a known document (Organic Letters 2004, 6, 3381-3384). ) -4H-thieno [3,4-c] pyrrole-4,6- (5H) -dione (compound F1 (imidothiophene dibromide), 350 mg, 0.826 mmol), known literature (Polymer, 1990, 31, 1379) −1383), 4,4′-didodecyl-5,5′-bis (trimethylstannyl) -2,2′-bithiophene (compound T1) (342 mg, 0.413 mmol), and international publication 4,4-bis (2-ethylhexyl) -2 obtained by referring to the method described in 2013/180243 -Bis (trimethyltin) -dithieno [3,2-b: 2 ', 3'-d] silole (compound E1) (308 mg, 0.413 mmol) was added, and tetrakis (triphenylphosphine) palladium (0) ( 28.6 mg, 3 mol%), triphenylphosphine-containing heterogeneous palladium complex catalyst Pd-EnCatTPP30 (Aldrich, 37.2 mg, 3 mol%), toluene (24 mL), and N, N-dimethylformamide (6 mL) The mixture was stirred at 90 ° C. for 1 hour and then at 100 ° C. for 10 hours. After diluting the reaction solution 4 times with toluene and heating and stirring at 100 ° C. for another 0.5 hours, as a terminal treatment, trimethyl (phenyl) tin (0.036 mL) was added and heating and stirring at 100 ° C. for 5 hours. Bromobenzene (8 mL) was further added, and the mixture was heated and stirred at 100 ° C. for 2 hours. The reaction solution was poured into methanol, and the deposited precipitate was collected by filtration. The obtained solid was dissolved in chloroform, diamine silica gel (Fuji Silysia Chemical) was added, and the mixture was stirred for 1 hour at room temperature and passed through a short column of acidic silica gel. The solution was concentrated, recrystallized using chloroform / ethyl acetate as a solvent, and the deposited precipitate was filtered off to obtain the target copolymer 1 in a yield of 74%. The weight average molecular weight Mw of the obtained copolymer 1 was 37 k, and PDI was 2.1.
<合成例2:コポリマー2の合成> <Synthesis Example 2: Synthesis of Copolymer 2>
Figure JPOXMLDOC01-appb-C000043
Figure JPOXMLDOC01-appb-C000043
 窒素雰囲気下、50mL二口ナスフラスコに、モノマーとして、公知文献(Organic Letters 2004,6,3381-3384)に記載の方法を参考にして得られた1,3-ジブロモ-5-(n-オクチル)-4H-チエノ[3,4-c]ピロール-4,6-(5H)-ジオン(化合物F1(イミドチオフェンジブロミド),166mg,0.393mmol)、公知文献(Polymer, 1990,31,1379-1383)を参考にして得られた4,4'-ジノニル-5,5'-ビス(トリメチルスタニル)-2,2'-ビチオフェン(化合物T2)(147mg,0.197mmol)、及び国際公開2013/180243号に記載の方法を参考にして得られた4,4-ビス(2-エチルヘキシル)-2,6-ビス(トリメチルスズ)-ジチエノ[3,2-b:2',3'-d]シロール(化合物E1)(146mg,0.197mmol)を入れ、さらにテトラキス(トリフェニルホスフィン)パラジウム(0)(13.6mg,3mol%)、トリフェニルホスフィン含有不均一系パラジウム錯体触媒Pd-EnCatTPP30(Aldrich社製,17.7mg,3mol%)、トルエン(12mL)、及びN,N-ジメチルホルムアミド(3mL)を入れ、90℃で1時間、続いて100℃で10時間攪拌した。反応液をトルエンで4倍に希釈して100℃でさらに0.5時間加熱攪拌した後、末端処理として、トリメチル(フェニル)スズ(0.08mL)を加えて100℃で1時間加熱攪拌し、さらにブロモベンゼン(4mL)を加えて100℃で1時間加熱攪拌して、反応溶液をメタノール中に注ぎ、析出した沈殿をろ取した。得られた固体をクロロホルムに溶解させ、ジアミンシリカゲル(Fujiシリシア化学製)を加えて1時間室温で攪拌し、酸性シリカゲルのショートカラムを通した。溶液を濃縮し、クロロホルム/酢酸エチルを溶媒として再結晶を行い、析出した沈殿を濾別することで、目的とするコポリマー2を、収率67%で得た。得られたコポリマー2の重量平均分子量Mwは62kであり、PDIは1.8であった。 1,3-Dibromo-5- (n-octyl) was obtained in a 50 mL two-necked eggplant flask under a nitrogen atmosphere as a monomer by referring to a method described in a known document (Organic Letters 2004, 6, 3381-3384). ) -4H-thieno [3,4-c] pyrrole-4,6- (5H) -dione (compound F1 (imidothiophene dibromide), 166 mg, 0.393 mmol), known literature (Polymer, 1990, 31, 1379) -1,383), 4,4′-dinonyl-5,5′-bis (trimethylstannyl) -2,2′-bithiophene (compound T2) (147 mg, 0.197 mmol), and international publication 4,4-bis (2-ethylhexyl) -2,6 obtained by referring to the method described in 2013/180243 Bis (trimethyltin) -dithieno [3,2-b: 2 ′, 3′-d] silole (compound E1) (146 mg, 0.197 mmol) was added, and tetrakis (triphenylphosphine) palladium (0) (13) .6 mg, 3 mol%), triphenylphosphine-containing heterogeneous palladium complex catalyst Pd-EnCatTPP30 (Aldrich, 17.7 mg, 3 mol%), toluene (12 mL), and N, N-dimethylformamide (3 mL) The mixture was stirred at 90 ° C. for 1 hour and then at 100 ° C. for 10 hours. After the reaction solution was diluted 4-fold with toluene and further heated and stirred at 100 ° C. for 0.5 hour, as a terminal treatment, trimethyl (phenyl) tin (0.08 mL) was added and heated and stirred at 100 ° C. for 1 hour. Bromobenzene (4 mL) was further added, and the mixture was stirred with heating at 100 ° C. for 1 hr. The reaction solution was poured into methanol, and the deposited precipitate was collected by filtration. The obtained solid was dissolved in chloroform, diamine silica gel (Fuji Silysia Chemical) was added, and the mixture was stirred for 1 hour at room temperature and passed through a short column of acidic silica gel. The solution was concentrated, recrystallized using chloroform / ethyl acetate as a solvent, and the deposited precipitate was filtered off to obtain the target copolymer 2 in a yield of 67%. The weight average molecular weight Mw of the obtained copolymer 2 was 62 k, and PDI was 1.8.
<合成例3:コポリマー3の合成> <Synthesis Example 3: Synthesis of Copolymer 3>
Figure JPOXMLDOC01-appb-C000044
Figure JPOXMLDOC01-appb-C000044
 窒素雰囲気下、50mL二口ナスフラスコに、モノマーとして、公知文献(Organic Letters 2004,6,3381-3384)に記載の方法を参考にして得られた1,3-ジブロモ-5-(n-オクチル)-4H-チエノ[3,4-c]ピロール-4,6-(5H)-ジオン(化合物F1(イミドチオフェンジブロミド),167mg,0.395mmol)、公知文献(Polymer, 1990,31,1379-1383)を参考にして得られた4,4'-ジドデシル-5,5'-ビス(トリメチルスタニル)-2,2'-ビチオフェン(化合物T1)(197mg,0.237mmol)、及び国際公開2013/180243号に記載の方法を参考にして得られた4,4-ビス(2-エチルヘキシル)-2,6-ビス(トリメチルスズ)-ジチエノ[3,2-b:2',3'-d]シロール(化合物E1)(118mg,0.158mmol)を入れ、さらにテトラキス(トリフェニルホスフィン)パラジウム(0)(13.7mg,3mol%)、トリフェニルホスフィン含有不均一系パラジウム錯体触媒Pd-EnCatTPP30(Aldrich社製,17.8mg,3mol%)、トルエン(12mL)、及びN,N-ジメチルホルムアミド(3mL)を入れ、90℃で1時間、続いて100℃で10時間攪拌した。反応液をトルエンで4倍に希釈して100℃でさらに0.5時間加熱攪拌した後、末端処理として、トリメチル(フェニル)スズ(0.08mL)を加えて100℃で1時間加熱攪拌し、さらにブロモベンゼン(4mL)を加えて100℃で1時間加熱攪拌して、反応溶液をメタノール中に注ぎ、析出した沈殿をろ取した。得られた固体をクロロホルムに溶解させ、ジアミンシリカゲル(Fujiシリシア化学製)を加えて1時間室温で攪拌し、酸性シリカゲルのショートカラムを通した。溶液を濃縮し、クロロホルム/酢酸エチルを溶媒として再結晶を行い、析出した沈殿を濾別することで、目的とするコポリマー3を、収率72%で得た。得られたコポリマー3の重量平均分子量Mwは50Kであり、PDIは2.0であった。 1,3-Dibromo-5- (n-octyl) was obtained in a 50 mL two-necked eggplant flask under a nitrogen atmosphere as a monomer by referring to a method described in a known document (Organic Letters 2004, 6, 3381-3384). ) -4H-thieno [3,4-c] pyrrole-4,6- (5H) -dione (compound F1 (imidothiophene dibromide), 167 mg, 0.395 mmol), known literature (Polymer, 1990, 31, 1379) −1383), 4,4′-didodecyl-5,5′-bis (trimethylstannyl) -2,2′-bithiophene (compound T1) (197 mg, 0.237 mmol), and international publication 4,4-bis (2-ethylhexyl) -2 obtained by referring to the method described in 2013/180243 -Bis (trimethyltin) -dithieno [3,2-b: 2 ', 3'-d] silole (compound E1) (118 mg, 0.158 mmol) was added, and tetrakis (triphenylphosphine) palladium (0) ( 13.7 mg, 3 mol%), a triphenylphosphine-containing heterogeneous palladium complex catalyst Pd-EnCatTPP30 (Aldrich, 17.8 mg, 3 mol%), toluene (12 mL), and N, N-dimethylformamide (3 mL) The mixture was stirred at 90 ° C. for 1 hour and then at 100 ° C. for 10 hours. After the reaction solution was diluted 4-fold with toluene and further heated and stirred at 100 ° C. for 0.5 hour, as a terminal treatment, trimethyl (phenyl) tin (0.08 mL) was added and heated and stirred at 100 ° C. for 1 hour. Bromobenzene (4 mL) was further added, and the mixture was stirred with heating at 100 ° C. for 1 hr. The reaction solution was poured into methanol, and the deposited precipitate was collected by filtration. The obtained solid was dissolved in chloroform, diamine silica gel (Fuji Silysia Chemical) was added, and the mixture was stirred for 1 hour at room temperature and passed through a short column of acidic silica gel. The solution was concentrated, recrystallized using chloroform / ethyl acetate as a solvent, and the deposited precipitate was filtered off to obtain the target copolymer 3 in a yield of 72%. The weight average molecular weight Mw of the obtained copolymer 3 was 50K, and PDI was 2.0.
<合成例4:コポリマー4の合成> <Synthesis Example 4: Synthesis of Copolymer 4>
Figure JPOXMLDOC01-appb-C000045
Figure JPOXMLDOC01-appb-C000045
 窒素雰囲気下、50mL二口ナスフラスコに、モノマーとして、公知文献(Organic Letters 2004,6,3381-3384)に記載の方法を参考にして得られた1,3-ジブロモ-5-(n-オクチル)-4H-チエノ[3,4-c]ピロール-4,6-(5H)-ジオン(化合物F1(イミドチオフェンジブロミド),343mg,0.811mmol)、公知文献(Polymer, 1990,31,1379-1383)を参考にして得られた4,4'-ジドデシル-5,5'-ビス(トリメチルスタニル)-2,2'-ビチオフェン(化合物T1)(336mg,0.406mmol)、及び国際公開2013/180243号に記載の方法を参考にして得られた4,4-ジオクチル-2,6-ビス(トリメチルスズ)-ジチエノ[3,2-b:2',3'-d]シロール(化合物E2)(302mg,0.406mmol)を入れ、さらにテトラキス(トリフェニルホスフィン)パラジウム(0)(23.4mg,2.5mol%)、トリフェニルホスフィン含有不均一系パラジウム錯体触媒Pd-EnCatTPP30(Aldrich社製,36.5mg,3mol%)、トルエン(24mL)、及びN,N-ジメチルホルムアミド(6mL)を入れ、90℃で1時間、続いて100℃で10時間攪拌した。反応液をトルエンで4倍に希釈して100℃でさらに0.5時間加熱攪拌した後、末端処理として、トリメチル(フェニル)スズ(0.16mL)を加えて100℃で2時間加熱攪拌し、さらにブロモベンゼン(8mL)を加えて100℃で5時間加熱攪拌して、反応溶液をメタノール中に注ぎ、析出した沈殿をろ取した。得られた固体をクロロホルムに溶解させ、ジアミンシリカゲル(Fujiシリシア化学製)を加えて1時間室温で攪拌し、酸性シリカゲルのショートカラムを通した。溶液を濃縮することで、目的とするコポリマー4を、収率83%で得た。得られたコポリマー4の重量平均分子量Mwは66Kであり、PDIは2.9であった。 1,3-Dibromo-5- (n-octyl) was obtained in a 50 mL two-necked eggplant flask under a nitrogen atmosphere as a monomer by referring to a method described in a known document (Organic Letters 2004, 6, 3381-3384). ) -4H-thieno [3,4-c] pyrrole-4,6- (5H) -dione (compound F1 (imidothiophene dibromide), 343 mg, 0.811 mmol), known literature (Polymer, 1990, 31, 1379) −1383), 4,4′-didodecyl-5,5′-bis (trimethylstannyl) -2,2′-bithiophene (compound T1) (336 mg, 0.406 mmol), and international publication 4,4-Dioctyl-2,6-bis (trimethyl) obtained by referring to the method described in 2013/180243 Ruthin) -dithieno [3,2-b: 2 ′, 3′-d] silole (compound E2) (302 mg, 0.406 mmol) was added, and tetrakis (triphenylphosphine) palladium (0) (23.4 mg, 2.5 mol%), triphenylphosphine-containing heterogeneous palladium complex catalyst Pd-EnCatTPP30 (Aldrich, 36.5 mg, 3 mol%), toluene (24 mL), and N, N-dimethylformamide (6 mL) The mixture was stirred at 90 ° C. for 1 hour and then at 100 ° C. for 10 hours. After the reaction solution was diluted 4-fold with toluene and heated and stirred at 100 ° C. for another 0.5 hours, as a terminal treatment, trimethyl (phenyl) tin (0.16 mL) was added and heated and stirred at 100 ° C. for 2 hours. Bromobenzene (8 mL) was further added, and the mixture was heated and stirred at 100 ° C. for 5 hours. The reaction solution was poured into methanol, and the deposited precipitate was collected by filtration. The obtained solid was dissolved in chloroform, diamine silica gel (Fuji Silysia Chemical) was added, and the mixture was stirred for 1 hour at room temperature and passed through a short column of acidic silica gel. By concentrating the solution, the target copolymer 4 was obtained in a yield of 83%. The weight average molecular weight Mw of the obtained copolymer 4 was 66K, and PDI was 2.9.
<合成例5:コポリマー5の合成>
[合成例:4,4''-ジドデシル-5,5''-ビス(トリメチルスタニル)-2,2':5',2''-ターチオフェン(T4)の合成]
<Synthesis Example 5: Synthesis of Copolymer 5>
[Synthesis Example: Synthesis of 4,4 ″ -didodecyl-5,5 ″ -bis (trimethylstannyl) -2,2 ′: 5 ′, 2 ″ -terthiophene (T4)]
Figure JPOXMLDOC01-appb-C000046
Figure JPOXMLDOC01-appb-C000046
 窒素雰囲気下、100mL二口ナスフラスコ中に、非特許文献(Angew.Chem.Int.Ed.,2012,51,2068-2071)を参考にして得られた4,4''-ジドデシル-2,2':5',2''-ターチオフェン(化合物T3)(1.20g,2.05mmol)を入れ、テトラヒドロフラン(THF,40.0mL)に溶解させ、-78℃に冷却した。さらにリチウムジイソプロピルアミド(LDA)のテトラヒドロフラン/ヘキサン溶液(関東化学社製,濃度1.13M,2.18mL,1.2eq)を滴下し、約1時間攪拌した。さらに塩化トリメチルスズのテトラヒドロフラン溶液(Aldrich社製,1.0M,2.46mL,1.2eq)を滴下後、ゆっくり室温に昇温した。再び-78℃に冷却後、リチウムジイソプロピルアミド(LDA)のテトラヒドロフラン/ヘキサン溶液(関東化学社製,濃度1.13M,2.18mL,1.2eq)を滴下し、約1時間攪拌した。さらに塩化トリメチルスズのテトラヒドロフラン溶液(Aldrich社製,1.0M,2.46mL,1.2eq)を滴下後、ゆっくり室温に昇温した。再び-78℃に冷却後、リチウムジイソプロピルアミド(LDA)のテトラヒドロフラン/ヘキサン溶液(関東化学社製,濃度1.13M、2.18mL,1.2eq)を滴下し、約1時間攪拌した。さらに塩化トリメチルスズのテトラヒドロフラン溶液(Aldrich社製,1.0M,2.46mL,1.2eq)を滴下後、ゆっくり室温に昇温した。反応液に水を加え、ヘキサンで抽出後、有機層を水洗した。有機層を硫酸ナトリウム上で乾燥し、ろ過して減圧濃縮後、真空下で乾燥することにより、4,4''-ジドデシル-5,5''-ビス(トリメチルスタニル)-2,2':5',2''-ターチオフェン(化合物T4)を薄黄色固形物として定量的に得た。なお、化合物の同定はプロトンNMRにより行った。 In a 100 mL two-necked eggplant flask under a nitrogen atmosphere, 4,4 ″ -didodecyl-2, obtained by referring to non-patent literature (Angew. Chem. Int. Ed., 2012, 51, 2068-2071), 2 ′: 5 ′, 2 ″ -terthiophene (Compound T3) (1.20 g, 2.05 mmol) was added, dissolved in tetrahydrofuran (THF, 40.0 mL), and cooled to −78 ° C. Further, a tetrahydrofuran / hexane solution of lithium diisopropylamide (LDA) (manufactured by Kanto Chemical Co., Inc., concentrations 1.13 M, 2.18 mL, 1.2 eq) was added dropwise and stirred for about 1 hour. Further, a tetrahydrofuran solution of trimethyltin chloride (manufactured by Aldrich, 1.0 M, 2.46 mL, 1.2 eq) was added dropwise, and the temperature was slowly raised to room temperature. After cooling to −78 ° C. again, a solution of lithium diisopropylamide (LDA) in tetrahydrofuran / hexane (manufactured by Kanto Chemical Co., Inc., concentration 1.13 M, 2.18 mL, 1.2 eq) was added dropwise and stirred for about 1 hour. Further, a tetrahydrofuran solution of trimethyltin chloride (manufactured by Aldrich, 1.0 M, 2.46 mL, 1.2 eq) was added dropwise, and the temperature was slowly raised to room temperature. After cooling again to −78 ° C., a solution of lithium diisopropylamide (LDA) in tetrahydrofuran / hexane (manufactured by Kanto Chemical Co., Inc., concentration 1.13 M, 2.18 mL, 1.2 eq) was added dropwise and stirred for about 1 hour. Further, a tetrahydrofuran solution of trimethyltin chloride (manufactured by Aldrich, 1.0 M, 2.46 mL, 1.2 eq) was added dropwise, and the temperature was slowly raised to room temperature. Water was added to the reaction solution, followed by extraction with hexane, and the organic layer was washed with water. The organic layer was dried over sodium sulfate, filtered, concentrated under reduced pressure, and then dried under vacuum to obtain 4,4 ″ -didodecyl-5,5 ″ -bis (trimethylstannyl) -2,2 ′. : 5 ′, 2 ″ -terthiophene (Compound T4) was obtained quantitatively as a pale yellow solid. The compound was identified by proton NMR.
 化合物T4:1H-NMR(400MHz,溶媒:重クロロホルム):δ7.13(s,2H),δ7.02(s,2H),δ2.55(t,4H,J=8.0Hz),δ1.62-1.55(m,4H),δ1.40-1.22(m,36H),δ0.88(t,6H,J=7.2Hz),δ0.39(s,18H).
[コポリマー5の合成]
Compound T4: 1 H-NMR (400 MHz, solvent: deuterated chloroform): δ 7.13 (s, 2H), δ 7.02 (s, 2H), δ 2.55 (t, 4H, J = 8.0 Hz), δ1 .62-1.55 (m, 4H), δ 1.40-1.22 (m, 36H), δ 0.88 (t, 6H, J = 7.2 Hz), δ 0.39 (s, 18H).
[Synthesis of Copolymer 5]
Figure JPOXMLDOC01-appb-C000047
Figure JPOXMLDOC01-appb-C000047
 窒素雰囲気下、50mL二口ナスフラスコに、モノマーとして、公知文献(Organic Letters 2004,6,3381-3384)に記載の方法を参考にして得られた1,3-ジブロモ-5-(n-オクチル)-4H-チエノ[3,4-c]ピロール-4,6-(5H)-ジオン(化合物F1(イミドチオフェンジブロミド),140mg,0.330mmol)、上述の方法で得られた4,4''-ジドデシル-5,5''-ビス(トリメチルスタニル)-2,2':5',2''-ターチオフェン(化合物T4)(154mg,0.169mmol)、及び国際公開2013/180243号に記載の方法を参考にして得られた4,4-ジオクチル-2,6-ビス(トリメチルスズ)-ジチエノ[3,2-b:2',3'-d]シロール(化合物E2)(126mg,0.169mmol)を入れ、さらにテトラキス(トリフェニルホスフィン)パラジウム(0)(11.7mg,3.00mol%)、トリフェニルホスフィン含有不均一系パラジウム錯体触媒Pd-EnCatTPP30(Aldrich社製,15.2mg,1.83mol%)、トルエン(10.0mL)、及びN,N-ジメチルホルムアミド(2.50mL)を入れ、100℃で1時間、続いて110℃で5時間攪拌した。反応液をトルエンで2倍に希釈して110℃でさらに0.5時間加熱攪拌した後、末端処理として、トリメチル(フェニル)スズ(0.20mL)を加えて110℃で2.0時間加熱攪拌し、さらにブロモベンゼン(4.00mL)を加えて110℃で2.0時間加熱攪拌して、反応溶液をメタノール中に注ぎ、析出した沈殿をろ取した。得られた固体をクロロホルムに溶解させ、ジアミンシリカゲル(Fujiシリシア化学製)を加えて1時間室温で攪拌し、酸性シリカゲルのショートカラムを通した。溶液を濃縮することで、目的とするコポリマー5を、収率82.0%で得た。得られたコポリマー5の重量平均分子量Mwは15.2Kであり、PDIは6.1であった。 1,3-Dibromo-5- (n-octyl) was obtained in a 50 mL two-necked eggplant flask under a nitrogen atmosphere as a monomer by referring to a method described in a known document (Organic Letters 2004, 6, 3381-3384). ) -4H-thieno [3,4-c] pyrrole-4,6- (5H) -dione (compound F1 (imidothiophene dibromide), 140 mg, 0.330 mmol), 4,4 obtained by the method described above ″ -Didodecyl-5,5 ″ -bis (trimethylstannyl) -2,2 ′: 5 ′, 2 ″ -terthiophene (Compound T4) (154 mg, 0.169 mmol), and International Publication 2013/180243 4,4-dioctyl-2,6-bis (trimethyltin) -dithieno [3,2-b: 2 ′, 3′-d] shiro (Compound E2) (126 mg, 0.169 mmol), tetrakis (triphenylphosphine) palladium (0) (11.7 mg, 3.00 mol%), triphenylphosphine-containing heterogeneous palladium complex catalyst Pd— EnCatTPP30 (Aldrich, 15.2 mg, 1.83 mol%), toluene (10.0 mL), and N, N-dimethylformamide (2.50 mL) were added, followed by 1 hour at 100 ° C., followed by 5 at 110 ° C. Stir for hours. The reaction solution was diluted twice with toluene and heated and stirred at 110 ° C. for another 0.5 hours, and then trimethyl (phenyl) tin (0.20 mL) was added as a terminal treatment and heated and stirred at 110 ° C. for 2.0 hours. Further, bromobenzene (4.00 mL) was added and stirred with heating at 110 ° C. for 2.0 hours. The reaction solution was poured into methanol, and the deposited precipitate was collected by filtration. The obtained solid was dissolved in chloroform, diamine silica gel (Fuji Silysia Chemical) was added, and the mixture was stirred for 1 hour at room temperature and passed through a short column of acidic silica gel. By concentrating the solution, the target copolymer 5 was obtained in a yield of 82.0%. The weight average molecular weight Mw of the obtained copolymer 5 was 15.2K, and PDI was 6.1.
<合成例6:コポリマー6の合成>
[合成例:4,3',4''-トリドデシル-2,2':5',2''-ターチオフェン(T7)の合成]
<Synthesis Example 6: Synthesis of Copolymer 6>
[Synthesis Example: Synthesis of 4,3 ′, 4 ″ -tridodecyl-2,2 ′: 5 ′, 2 ″ -terthiophene (T7)]
Figure JPOXMLDOC01-appb-C000048
Figure JPOXMLDOC01-appb-C000048
 窒素雰囲気下、50mL二口ナスフラスコ中に、公知文献(Macromolecules,2002,35,6883-6892)を参考にして得られた4-ドデシル-2-トリメチルスタニルチオフェン(化合物T5)(7.14g,17.2mmol)及び2,5-ジブロモ-3-ドデシルチオフェン(化合物T6)(2.54g,6.20mmol)を入れ、さらにテトラキス(トリフェニルホスフィン)パラジウム(0)(100mg,1.40mol%)、トリフェニルホスフィン含有不均一系パラジウム錯体触媒Pd-EnCatTPP30(Aldrich社製,130mg,0.85mol%)、トルエン(20.0mL)、及びN,N-ジメチルホルムアミド(5.00mL)を入れ、100℃で1時間、続いて110℃で5時間攪拌した。反応溶液をメタノール中に注ぎ、析出した沈殿をろ取した。得られた固体をヘキサンに溶解させ、カラムクロマトグラフィー(酸性シリカゲル,ヘキサン)を行った。溶液を濃縮することで、目的とする4,3',4''-トリドデシル-2,2':5',2''-ターチオフェン(化合物T7)を、収率45.0%で得た。 4-dodecyl-2-trimethylstannylthiophene (Compound T5) (7.14 g) obtained by referring to a known document (Macromolecules, 2002, 35, 6883-6892) in a 50 mL two-necked eggplant flask under a nitrogen atmosphere , 17.2 mmol) and 2,5-dibromo-3-dodecylthiophene (compound T6) (2.54 g, 6.20 mmol), and tetrakis (triphenylphosphine) palladium (0) (100 mg, 1.40 mol%). ), Triphenylphosphine-containing heterogeneous palladium complex catalyst Pd-EnCatTPP30 (manufactured by Aldrich, 130 mg, 0.85 mol%), toluene (20.0 mL), and N, N-dimethylformamide (5.00 mL) 1 hour at 100 ° C, then 11 The mixture was stirred for 5 hours at ℃. The reaction solution was poured into methanol, and the deposited precipitate was collected by filtration. The obtained solid was dissolved in hexane and subjected to column chromatography (acidic silica gel, hexane). By concentrating the solution, the desired 4,3 ′, 4 ″ -tridodecyl-2,2 ′: 5 ′, 2 ″ -terthiophene (Compound T7) was obtained in a yield of 45.0%. .
 化合物T7:1H-NMR(400MHz,溶媒:重クロロホルム):δ6.98(d,1H,J=1.2Hz),δ6.96(s,1H),δ6.94(d,1H,J=1.6Hz),δ6.87(d,1H,J=1.6Hz),δ6.78(d,1H,J=1.2Hz),δ2.71(t,2H,J=8.0Hz),δ2.62-2.55(m,4H),δ1.65-1.60(m,6H),δ1.40-1.20(m,54H),δ0.88(t,9H,J=7.2Hz). Compound T7: 1 H-NMR (400 MHz, solvent: deuterated chloroform): δ 6.98 (d, 1 H, J = 1.2 Hz), δ 6.96 (s, 1 H), δ 6.94 (d, 1 H, J = 1.6 Hz), δ 6.87 (d, 1 H, J = 1.6 Hz), δ 6.78 (d, 1 H, J = 1.2 Hz), δ 2.71 (t, 2 H, J = 8.0 Hz), δ 2.62-2.55 (m, 4H), δ 1.65-1.60 (m, 6H), δ 1.40-1.20 (m, 54H), δ 0.88 (t, 9H, J = 7 .2 Hz).
[合成例:4,3',4''-トリドデシル-5,5''-ビス(トリメチルスタニル)-2,2':5',2''-ターチオフェン(T8)の合成] [Synthesis Example: Synthesis of 4,3 ′, 4 ″ -Tridodecyl-5,5 ″ -bis (trimethylstannyl) -2,2 ′: 5 ′, 2 ″ -terthiophene (T8)]
Figure JPOXMLDOC01-appb-C000049
Figure JPOXMLDOC01-appb-C000049
 窒素雰囲気下、100mL二口ナスフラスコ中に、上述の方法で得られた4,3',4''-トリドデシル-2,2':5',2''-ターチオフェン(T7)(2.00g,2.66mmol)を入れ、テトラヒドロフラン(THF,50.0mL)に溶解させ、-78℃に冷却した。さらにリチウムジイソプロピルアミド(LDA)のテトラヒドロフラン/ヘキサン溶液(関東化学社製,濃度1.13M,2.82mL,1.2eq)を滴下し、約1時間攪拌した。さらに塩化トリメチルスズのテトラヒドロフラン溶液(Aldrich社製,1.0M,3.19mL,1.2eq)を滴下後、ゆっくり室温に昇温した。再び-78℃に冷却後、リチウムジイソプロピルアミド(LDA)のテトラヒドロフラン/ヘキサン溶液(関東化学社製,濃度1.13M,2.82mL,1.2eq)を滴下し、約1時間攪拌した。さらに塩化トリメチルスズのテトラヒドロフラン溶液(Aldrich社製,1.0M,3.19mL,1.2eq)を滴下後、ゆっくり室温に昇温した。再び-78℃に冷却後、リチウムジイソプロピルアミド(LDA)のテトラヒドロフラン/ヘキサン溶液(関東化学社製,濃度1.13M、2.82mL,1.2eq)を滴下し、約1時間攪拌した。さらに塩化トリメチルスズのテトラヒドロフラン溶液(Aldrich社製,1.0M,3.19mL,1.2eq)を滴下後、ゆっくり室温に昇温した。反応液に水を加え、ヘキサンで抽出後、有機層を水洗した。有機層を硫酸ナトリウム上で乾燥し、ろ過して減圧濃縮後、真空下で乾燥することにより、4,3',4''-トリドデシル-5,5''-ビス(トリメチルスタニル)-2,2':5',2''-ターチオフェン(化合物T8)を薄黄色固形物として定量的に得た。 In a 100 mL two-necked eggplant flask under a nitrogen atmosphere, 4,3 ′, 4 ″ -tridodecyl-2,2 ′: 5 ′, 2 ″ -terthiophene (T7) (2. 00 g, 2.66 mmol) was added, dissolved in tetrahydrofuran (THF, 50.0 mL), and cooled to -78 ° C. Further, a tetrahydrofuran / hexane solution of lithium diisopropylamide (LDA) (manufactured by Kanto Chemical Co., Inc., concentration 1.13 M, 2.82 mL, 1.2 eq) was added dropwise and stirred for about 1 hour. Further, a tetrahydrofuran solution of trimethyltin chloride (manufactured by Aldrich, 1.0M, 3.19 mL, 1.2 eq) was added dropwise, and the temperature was slowly raised to room temperature. After cooling again to −78 ° C., a solution of lithium diisopropylamide (LDA) in tetrahydrofuran / hexane (manufactured by Kanto Chemical Co., Inc., concentration 1.13 M, 2.82 mL, 1.2 eq) was added dropwise and stirred for about 1 hour. Further, a tetrahydrofuran solution of trimethyltin chloride (manufactured by Aldrich, 1.0M, 3.19 mL, 1.2 eq) was added dropwise, and the temperature was slowly raised to room temperature. After cooling again to −78 ° C., a solution of lithium diisopropylamide (LDA) in tetrahydrofuran / hexane (manufactured by Kanto Chemical Co., Inc., concentration 1.13 M, 2.82 mL, 1.2 eq) was added dropwise and stirred for about 1 hour. Further, a tetrahydrofuran solution of trimethyltin chloride (manufactured by Aldrich, 1.0M, 3.19 mL, 1.2 eq) was added dropwise, and the temperature was slowly raised to room temperature. Water was added to the reaction solution, followed by extraction with hexane, and the organic layer was washed with water. The organic layer was dried over sodium sulfate, filtered, concentrated under reduced pressure, and then dried under vacuum, whereby 4,3 ′, 4 ″ -tridodecyl-5,5 ″ -bis (trimethylstannyl) -2 , 2 ′: 5 ′, 2 ″ -terthiophene (Compound T8) was quantitatively obtained as a pale yellow solid.
 化合物T8:1H-NMR(400MHz,溶媒:重クロロホルム):δ7.11(s,1H),δ7.08(s,1H),δ6.95(s,1H),δ2.72(t,2H,J=8.0Hz),δ2.59-2.53(m,4H),δ1.67-1.56(m,6H),δ1.40-1.20(m,54H),δ0.88(t,9H,J=7.2Hz),δ0.39(s,18H). Compound T8: 1 H-NMR (400 MHz, solvent: deuterated chloroform): δ 7.11 (s, 1H), δ 7.08 (s, 1H), δ 6.95 (s, 1H), δ 2.72 (t, 2H , J = 8.0 Hz), δ 2.59-2.53 (m, 4H), δ 1.67-1.56 (m, 6H), δ 1.40-1.20 (m, 54H), δ 0.88 (T, 9H, J = 7.2 Hz), δ 0.39 (s, 18H).
[コポリマー6の合成] [Synthesis of Copolymer 6]
Figure JPOXMLDOC01-appb-C000050
Figure JPOXMLDOC01-appb-C000050
 窒素雰囲気下、50mL二口ナスフラスコに、モノマーとして、公知文献(Organic Letters 2004,6,3381-3384)に記載の方法を参考にして得られた1,3-ジブロモ-5-(n-オクチル)-4H-チエノ[3,4-c]ピロール-4,6-(5H)-ジオン(化合物F1(イミドチオフェンジブロミド),140mg,0.330mmol)、上述の方法で得られた4,3',4''-トリドデシル-5,5''-ビス(トリメチルスタニル)-2,2':5',2''-ターチオフェン(化合物T8)(182mg,0.169mmol)、及び国際公開2013/180243号に記載の方法を参考にして得られた4,4-ジオクチル-2,6-ビス(トリメチルスズ)-ジチエノ[3,2-b:2',3'-d]シロール(化合物E2)(126mg,0.169mmol)を入れ、さらにテトラキス(トリフェニルホスフィン)パラジウム(0)(11.7mg,3.00mol%)、トリフェニルホスフィン含有不均一系パラジウム錯体触媒Pd-EnCatTPP30(Aldrich社製,15.2mg,1.83mol%)、トルエン(10.0mL)、及びN,N-ジメチルホルムアミド(5.00mL)を入れ、100℃で1時間、続いて110℃で5時間攪拌した。反応液をトルエンで2倍に希釈して110℃でさらに0.5時間加熱攪拌した後、末端処理として、トリメチル(フェニル)スズ(0.20mL)を加えて110℃で2.0時間加熱攪拌し、さらにブロモベンゼン(4.00mL)を加えて110℃で2.0時間加熱攪拌して、反応溶液をメタノール中に注ぎ、析出した沈殿をろ取した。得られた固体をクロロホルムに溶解させ、ジアミンシリカゲル(Fujiシリシア化学製)を加えて1時間室温で攪拌し、酸性シリカゲルのショートカラムを通した。溶液を濃縮することで、目的とするコポリマー6を、収率82%で得た。得られたコポリマー6の重量平均分子量Mwは58Kであり、PDIは2.4であった。 1,3-Dibromo-5- (n-octyl) was obtained in a 50 mL two-necked eggplant flask under a nitrogen atmosphere as a monomer by referring to a method described in a known document (Organic Letters 2004, 6, 3381-3384). ) -4H-thieno [3,4-c] pyrrole-4,6- (5H) -dione (compound F1 (imidothiophene dibromide), 140 mg, 0.330 mmol), 4,3 obtained by the method described above ', 4 ″ -Tridodecyl-5,5 ″ -bis (trimethylstannyl) -2,2 ′: 5 ′, 2 ″ -terthiophene (Compound T8) (182 mg, 0.169 mmol), and international publication 4,4-Dioctyl-2,6-bis (trimethyltin) -dithieno [3,2-b: 2 ′, 3′-] obtained by referring to the method described in 2013/180243 ] Silole (Compound E2) (126 mg, 0.169 mmol) was added, and tetrakis (triphenylphosphine) palladium (0) (11.7 mg, 3.00 mol%), a triphenylphosphine-containing heterogeneous palladium complex catalyst Pd- EnCatTPP30 (Aldrich, 15.2 mg, 1.83 mol%), toluene (10.0 mL), and N, N-dimethylformamide (5.00 mL) were added, followed by 1 hour at 100 ° C., followed by 5 at 110 ° C. Stir for hours. The reaction solution was diluted twice with toluene and heated and stirred at 110 ° C. for another 0.5 hours, and then trimethyl (phenyl) tin (0.20 mL) was added as a terminal treatment and heated and stirred at 110 ° C. for 2.0 hours. Further, bromobenzene (4.00 mL) was added and stirred with heating at 110 ° C. for 2.0 hours. The reaction solution was poured into methanol, and the deposited precipitate was collected by filtration. The obtained solid was dissolved in chloroform, diamine silica gel (Fuji Silysia Chemical) was added, and the mixture was stirred for 1 hour at room temperature and passed through a short column of acidic silica gel. By concentrating the solution, the target copolymer 6 was obtained in a yield of 82%. The weight average molecular weight Mw of the obtained copolymer 6 was 58K, and PDI was 2.4.
<合成例7:コポリマー7の合成> <Synthesis Example 7: Synthesis of Copolymer 7>
Figure JPOXMLDOC01-appb-C000051
Figure JPOXMLDOC01-appb-C000051
 窒素雰囲気下、50mL二口ナスフラスコに、モノマーとして、公知文献(Organic Letters 2004,6,3381-3384)に記載の方法を参考にして得られた1,3-ジブロモ-5-(n-オクチル)-4H-チエノ[3,4-c]ピロール-4,6-(5H)-ジオン(化合物F1(イミドチオフェンジブロミド),138mg,0.33mmol)及び国際公開2013/180243号に記載の方法を参考にして得られた化合物E1(255mg,0.34mmol)を入れ、さらにテトラキス(トリフェニルホスフィン)パラジウム(0)(12mg,3mol%)、トリフェニルホスフィン含有不均一系パラジウム錯体触媒Pd-EnCatTPP30(Aldrich社製,23mg,3mol%)、トルエン(5.3mL)、及びN,N-ジメチルホルムアミド(1.3mL)を入れ、90℃で1時間、続いて100℃で10時間攪拌した。反応液をトルエンで4倍に希釈して100℃でさらに0.5時間加熱攪拌した後、末端処理として、トリメチル(フェニル)スズ(0.3mL)を加えて100℃で8時間加熱攪拌し、さらにブロモベンゼン(1.5mL)を加えて100℃で8時間加熱攪拌して、反応溶液をメタノール中に注ぎ、析出した沈殿をろ取した。得られた固体をクロロホルムに溶解させ、ジアミンシリカゲル(Fujiシリシア化学製)を加えて1時間室温で攪拌し、酸性シリカゲルのショートカラムを通した。溶液を濃縮し、クロロホルム/酢酸エチルを溶媒として再結晶を行い、析出した沈殿を濾別することで、目的とするコポリマー7を、収率75%で得た。得られたコポリマー7の重量平均分子量Mwは137Kであり、PDIは3.3であった。 1,3-Dibromo-5- (n-octyl) was obtained in a 50 mL two-necked eggplant flask under a nitrogen atmosphere as a monomer by referring to a method described in a known document (Organic Letters 2004, 6, 3381-3384). ) -4H-thieno [3,4-c] pyrrole-4,6- (5H) -dione (compound F1 (imidothiophene dibromide), 138 mg, 0.33 mmol) and the method described in WO2013 / 180243 Compound E1 (255 mg, 0.34 mmol) obtained with reference to the above was added, and tetrakis (triphenylphosphine) palladium (0) (12 mg, 3 mol%), a triphenylphosphine-containing heterogeneous palladium complex catalyst Pd-EnCatTPP30 (Aldrich, 23 mg, 3 mol%) Toluene (5.3 mL), and N, placed N- dimethylformamide (1.3 mL), 1 hour at 90 ° C., followed by stirring for 10 hours at 100 ° C.. After the reaction solution was diluted 4-fold with toluene and heated and stirred at 100 ° C. for another 0.5 hours, as a terminal treatment, trimethyl (phenyl) tin (0.3 mL) was added and heated and stirred at 100 ° C. for 8 hours. Bromobenzene (1.5 mL) was further added, and the mixture was heated and stirred at 100 ° C. for 8 hours. The reaction solution was poured into methanol, and the deposited precipitate was collected by filtration. The obtained solid was dissolved in chloroform, diamine silica gel (Fuji Silysia Chemical) was added, and the mixture was stirred for 1 hour at room temperature and passed through a short column of acidic silica gel. The solution was concentrated, recrystallized using chloroform / ethyl acetate as a solvent, and the deposited precipitate was filtered off to obtain the target copolymer 7 in a yield of 75%. The weight average molecular weight Mw of the obtained copolymer 7 was 137K, and PDI was 3.3.
<合成例8:コポリマー8の合成>
[合成例:4,4'''-ジドデシル-2,2':5',2'':5'',2'''-クオーターチオフェン(T9)の合成]
<Synthesis Example 8: Synthesis of Copolymer 8>
[Synthesis Example: Synthesis of 4,4 ′ ″-didodecyl-2,2 ′: 5 ′, 2 ″: 5 ″, 2 ′ ″-quarterthiophene (T9)]
Figure JPOXMLDOC01-appb-C000052
Figure JPOXMLDOC01-appb-C000052
 窒素雰囲気下、50mL二口ナスフラスコ中に、公知文献(Macromolecules,2002,35,6883-6892)を参考にして得られた4-ドデシル-2-トリメチルスタニルチオフェン(化合物T5)(6.00g,13.6mmol)及び5,5'-ジブロモ-2,2'-ビチオフェン(1.76g,5.43mmol)を入れ、さらにテトラキス(トリフェニルホスフィン)パラジウム(0)(100mg,1.40mol%)、トリフェニルホスフィン含有不均一系パラジウム錯体触媒Pd-EnCatTPP30(Aldrich社製,130mg,0.85mol%)、トルエン(24.0mL)、及びN,N-ジメチルホルムアミド(6.00mL)を入れ、100℃で1時間、続いて110℃で5時間攪拌した。反応溶液をメタノール中に注ぎ、析出した沈殿をろ取した。得られた固体をヘキサンに溶解させ、カラムクロマトグラフィー(酸性シリカゲル,ヘキサン)を行った。溶液を濃縮することで、目的とする4,4'''-ジドデシル-2,2':5',2'':5'',2'''-クオーターチオフェン(化合物T9)を、収率49.0%で得た。 4-dodecyl-2-trimethylstannylthiophene (compound T5) (6.00 g) obtained by referring to a known document (Macromolecules, 2002, 35, 6883-6892) in a 50 mL two-necked eggplant flask under a nitrogen atmosphere , 13.6 mmol) and 5,5′-dibromo-2,2′-bithiophene (1.76 g, 5.43 mmol), and tetrakis (triphenylphosphine) palladium (0) (100 mg, 1.40 mol%). , Triphenylphosphine-containing heterogeneous palladium complex catalyst Pd-EnCatTPP30 (manufactured by Aldrich, 130 mg, 0.85 mol%), toluene (24.0 mL), and N, N-dimethylformamide (6.00 mL) 1 hour at 0 ° C, followed by 5 hours at 110 ° C It was. The reaction solution was poured into methanol, and the deposited precipitate was collected by filtration. The obtained solid was dissolved in hexane and subjected to column chromatography (acidic silica gel, hexane). By concentrating the solution, the desired 4,4 ′ ″-didodecyl-2,2 ′: 5 ′, 2 ″: 5 ″, 2 ′ ″-quarterthiophene (Compound T9) was obtained in a yield. Obtained at 49.0%.
 化合物T9:1H-NMR(400MHz,溶媒:重クロロホルム):δ7.05(s,4H),δ7.01(s,2H),δ6.81(s,2H),δ2.58(t,4H,J=8.0Hz),δ1.58-1.68(m,4H),δ1.26-1.40(m,36H),δ0.88(t,6H,J=6.8Hz). Compound T9: 1 H-NMR (400 MHz, solvent: deuterated chloroform): δ 7.05 (s, 4H), δ 7.01 (s, 2H), δ 6.81 (s, 2H), δ 2.58 (t, 4H , J = 8.0 Hz), δ1.58-1.68 (m, 4H), δ1.26-1.40 (m, 36H), δ0.88 (t, 6H, J = 6.8 Hz).
[合成例:4,4'''-ジドデシル-5,5'''-ビス(トリメチルスタニル)-2,2':5',2'':5'',2'''-クオーターチオフェン(T10)の合成] [Synthesis Example: 4,4 ′ ″-didodecyl-5,5 ′ ″-bis (trimethylstannyl) -2,2 ′: 5 ′, 2 ″: 5 ″, 2 ′ ″-quarterthiophene Synthesis of (T10)]
Figure JPOXMLDOC01-appb-C000053
Figure JPOXMLDOC01-appb-C000053
 窒素雰囲気下、300mL二口ナスフラスコ中に、上述の方法で得られた4,4'''-ジドデシル-2,2':5',2'':5'',2'''-クオーターチオフェン(T9)(1.69g,2.53mmol)を入れ、テトラヒドロフラン(THF,150.0mL)に溶解させ、-78℃に冷却した。さらにリチウムジイソプロピルアミド(LDA)のテトラヒドロフラン/ヘキサン溶液(関東化学社製,濃度1.13M,2.68mL,1.2eq)を滴下し、約1時間攪拌した。さらに塩化トリメチルスズのテトラヒドロフラン溶液(Aldrich社製,1.0M,3.03mL,1.2eq)を滴下後、ゆっくり室温に昇温した。再び-78℃に冷却後、リチウムジイソプロピルアミド(LDA)のテトラヒドロフラン/ヘキサン溶液(関東化学社製,濃度1.13M,2.68mL,1.2eq)を滴下し、約1時間攪拌した。さらに塩化トリメチルスズのテトラヒドロフラン溶液(Aldrich社製,1.0M,3.03mL,1.2eq)を滴下後、ゆっくり室温に昇温した。再び-78℃に冷却後、リチウムジイソプロピルアミド(LDA)のテトラヒドロフラン/ヘキサン溶液(関東化学社製,濃度1.13M、2.68mL,1.2eq)を滴下し、約1時間攪拌した。さらに塩化トリメチルスズのテトラヒドロフラン溶液(Aldrich社製,1.0M,3.03mL,1.2eq)を滴下後、ゆっくり室温に昇温した。反応液に水を加え、ヘキサンで抽出後、有機層を水洗した。有機層を硫酸ナトリウム上で乾燥し、ろ過して減圧濃縮後、真空下で乾燥することにより、4,4'''-ジドデシル-5,5'''-ビス(トリメチルスタニル)-2,2':5',2'':5'',2'''-クオーターチオフェン(化合物T10)を薄オレンジ色固形物として定量的に得た。 4,4 ′ ″-didodecyl-2,2 ′: 5 ′, 2 ″: 5 ″, 2 ′ ″-quarter obtained by the above method in a 300 mL two-necked eggplant flask under nitrogen atmosphere Thiophene (T9) (1.69 g, 2.53 mmol) was added, dissolved in tetrahydrofuran (THF, 150.0 mL), and cooled to -78 ° C. Further, a tetrahydrofuran / hexane solution of lithium diisopropylamide (LDA) (manufactured by Kanto Chemical Co., Inc., concentration 1.13 M, 2.68 mL, 1.2 eq) was added dropwise and stirred for about 1 hour. Further, a tetrahydrofuran solution of trimethyltin chloride (manufactured by Aldrich, 1.0 M, 3.03 mL, 1.2 eq) was added dropwise, and the temperature was slowly raised to room temperature. After cooling to −78 ° C. again, a tetrahydrofuran / hexane solution of lithium diisopropylamide (LDA) (manufactured by Kanto Chemical Co., Inc., concentration 1.13 M, 2.68 mL, 1.2 eq) was added dropwise and stirred for about 1 hour. Further, a tetrahydrofuran solution of trimethyltin chloride (manufactured by Aldrich, 1.0 M, 3.03 mL, 1.2 eq) was added dropwise, and the temperature was slowly raised to room temperature. After cooling to −78 ° C. again, a tetrahydrofuran / hexane solution of lithium diisopropylamide (LDA) (manufactured by Kanto Chemical Co., Inc., concentration 1.13 M, 2.68 mL, 1.2 eq) was added dropwise, and the mixture was stirred for about 1 hour. Further, a tetrahydrofuran solution of trimethyltin chloride (manufactured by Aldrich, 1.0 M, 3.03 mL, 1.2 eq) was added dropwise, and the temperature was slowly raised to room temperature. Water was added to the reaction solution, followed by extraction with hexane, and the organic layer was washed with water. The organic layer was dried over sodium sulfate, filtered, concentrated under reduced pressure, and then dried under vacuum to obtain 4,4 ′ ″-didodecyl-5,5 ′ ″-bis (trimethylstannyl) -2, 2 ′: 5 ′, 2 ″: 5 ″, 2 ′ ″-quarterthiophene (Compound T10) was obtained quantitatively as a light orange solid.
 化合物T10:1H-NMR(400MHz,溶媒:重クロロホルム):δ7.17(s,4H),δ7.13(s,1H),δ6.93(s,1H),δ2.58(t,4H,J=8.0Hz),δ1.58-1.68(m,4H),δ1.26-1.40(m,36H),δ0.88(t,6H,J=6.8Hz),δ0.39(s,18H).
[コポリマー8の合成]
Compound T10: 1 H-NMR (400 MHz, solvent: deuterated chloroform): δ 7.17 (s, 4H), δ 7.13 (s, 1H), δ 6.93 (s, 1H), δ 2.58 (t, 4H , J = 8.0 Hz), δ1.58-1.68 (m, 4H), δ1.26-1.40 (m, 36H), δ0.88 (t, 6H, J = 6.8 Hz), δ0 .39 (s, 18H).
[Synthesis of Copolymer 8]
Figure JPOXMLDOC01-appb-C000054
Figure JPOXMLDOC01-appb-C000054
 窒素雰囲気下、50mL二口ナスフラスコに、モノマーとして、公知文献(Organic Letters 2004,6,3381-3384)に記載の方法を参考にして得られた1,3-ジブロモ-5-(n-オクチル)-4H-チエノ[3,4-c]ピロール-4,6-(5H)-ジオン(化合物F1)(イミドチオフェンジブロミド)(140mg,0.330mmol)、上述の方法で得られた4,4'''-ジドデシル-5,5'''-ビス(トリメチルスタニル)-2,2':5',2'':5'',2'''-クオーターチオフェン(化合物T10)(100mg,0.101mmol)、及び国際公開2013/180243号に記載の方法を参考にして得られた4,4-ジオクチル-2,6-ビス(トリメチルスズ)-ジチエノ[3,2-b:2',3'-d]シロール(化合物E2)(176mg,0.237mmol)を入れ、さらにテトラキス(トリフェニルホスフィン)パラジウム(0)(9.8mg,2.50mol%)、トリフェニルホスフィン含有不均一系パラジウム錯体触媒Pd-EnCatTPP30(Aldrich社製,12.7mg,1.53mol%)、トルエン(10.0mL)、及びN,N-ジメチルホルムアミド(2.50mL)を入れ、100℃で1時間、続いて110℃で5時間攪拌した。反応液をトルエンで2倍に希釈して110℃でさらに0.5時間加熱攪拌した後、末端処理として、トリメチル(フェニル)スズ(0.20mL)を加えて110℃で2.0時間加熱攪拌し、さらにブロモベンゼン(4.00mL)を加えて110℃で2.0時間加熱攪拌して、反応溶液をメタノール中に注ぎ、析出した沈殿をろ取した。得られた固体をクロロホルムに溶解させ、ジアミンシリカゲル(Fujiシリシア化学製)を加えて1時間室温で攪拌し、酸性シリカゲルのショートカラムを通した。溶液を濃縮することで、目的とするコポリマー8を、収率80%で得た。得られたコポリマー8の重量平均分子量Mwは46Kであり、PDIは2.4であった。 1,3-Dibromo-5- (n-octyl) was obtained in a 50 mL two-necked eggplant flask under a nitrogen atmosphere as a monomer by referring to a method described in a known document (Organic Letters 2004, 6, 3381-3384). ) -4H-thieno [3,4-c] pyrrole-4,6- (5H) -dione (compound F1) (imidothiophene dibromide) (140 mg, 0.330 mmol), 4,4 obtained as described above 4 ″ ′-didodecyl-5,5 ′ ″-bis (trimethylstannyl) -2,2 ′: 5 ′, 2 ″: 5 ″, 2 ′ ″-quarterthiophene (Compound T10) (100 mg , 0.101 mmol), and 4,4-dioctyl-2,6-bis (trimethyltin) -dithieno [3,2-] obtained by referring to the method described in International Publication No. 2013/180243 b: 2 ′, 3′-d] silole (compound E2) (176 mg, 0.237 mmol) was added, and tetrakis (triphenylphosphine) palladium (0) (9.8 mg, 2.50 mol%), triphenylphosphine Containing heterogeneous palladium complex catalyst Pd-EnCatTPP30 (manufactured by Aldrich, 12.7 mg, 1.53 mol%), toluene (10.0 mL), and N, N-dimethylformamide (2.50 mL) at 100 ° C. The mixture was stirred for 1 hour and then at 110 ° C. for 5 hours. The reaction solution was diluted twice with toluene and heated and stirred at 110 ° C. for another 0.5 hours, and then trimethyl (phenyl) tin (0.20 mL) was added as a terminal treatment and heated and stirred at 110 ° C. for 2.0 hours. Further, bromobenzene (4.00 mL) was added and stirred with heating at 110 ° C. for 2.0 hours. The reaction solution was poured into methanol, and the deposited precipitate was collected by filtration. The obtained solid was dissolved in chloroform, diamine silica gel (Fuji Silysia Chemical) was added, and the mixture was stirred for 1 hour at room temperature and passed through a short column of acidic silica gel. By concentrating the solution, the target copolymer 8 was obtained in a yield of 80%. The weight average molecular weight Mw of the obtained copolymer 8 was 46K, and PDI was 2.4.
<合成例9:コポリマー9の合成>
[合成例:2,5-ビス(4-ドデシルチオフェン-2-イル)-3,4-エチレンジオキシチオフェン(T11)の合成]
<Synthesis Example 9: Synthesis of Copolymer 9>
[Synthesis Example: Synthesis of 2,5-bis (4-dodecylthiophen-2-yl) -3,4-ethylenedioxythiophene (T11)]
Figure JPOXMLDOC01-appb-C000055
Figure JPOXMLDOC01-appb-C000055
 窒素雰囲気下、50mL二口ナスフラスコ中に、公知文献(Macromolecules,2002,35,6883-6892)を参考にして得られた4-ドデシル-2-トリメチルスタニルチオフェン(化合物T5)(6.00g,13.6mmol)及び2,5-ジブロモ-3,4-エチレンジオキシチオフェン(1.63g,5.43mmol)を入れ、さらにテトラキス(トリフェニルホスフィン)パラジウム(0)(100mg,1.40mol%)、トリフェニルホスフィン含有不均一系パラジウム錯体触媒Pd-EnCatTPP30(Aldrich社製,130mg,0.85mol%)、トルエン(24.0mL)、及びN,N-ジメチルホルムアミド(6.00mL)を入れ、100℃で1時間、続いて110℃で5時間攪拌した。反応溶液をメタノール中に注ぎ、析出した沈殿をろ取した。得られた固体をヘキサンに溶解させ、カラムクロマトグラフィー(酸性シリカゲル,ヘキサン)を行った。溶液を濃縮することで、目的とする2,5-ビス(4-ドデシルチオフェン-2-イル)-3,4-エチレンジオキシチオフェン(化合物T11)を、収率52.0%で得た。 4-dodecyl-2-trimethylstannylthiophene (compound T5) (6.00 g) obtained by referring to a known document (Macromolecules, 2002, 35, 6883-6892) in a 50 mL two-necked eggplant flask under a nitrogen atmosphere , 13.6 mmol) and 2,5-dibromo-3,4-ethylenedioxythiophene (1.63 g, 5.43 mmol), and tetrakis (triphenylphosphine) palladium (0) (100 mg, 1.40 mol%). ), Triphenylphosphine-containing heterogeneous palladium complex catalyst Pd-EnCatTPP30 (manufactured by Aldrich, 130 mg, 0.85 mol%), toluene (24.0 mL), and N, N-dimethylformamide (6.00 mL) 1 hour at 100 ° C, followed by 110 In and the mixture was stirred for 5 hours. The reaction solution was poured into methanol, and the deposited precipitate was collected by filtration. The obtained solid was dissolved in hexane and subjected to column chromatography (acidic silica gel, hexane). By concentrating the solution, the target 2,5-bis (4-dodecylthiophen-2-yl) -3,4-ethylenedioxythiophene (Compound T11) was obtained in a yield of 52.0%.
 化合物T11:1H-NMR(400MHz,溶媒:重クロロホルム):δ7.05(s,2H),δ6.80(s,2H),δ4.38(s,4H),δ2.58(t,4H,J=8.0Hz),δ1.58-1.68(m,4H),δ1.26-1.40(m,36H),δ0.88(t,6H,J=6.8Hz). Compound T11: 1 H-NMR (400 MHz, solvent: deuterated chloroform): δ 7.05 (s, 2H), δ 6.80 (s, 2H), δ 4.38 (s, 4H), δ 2.58 (t, 4H , J = 8.0 Hz), δ1.58-1.68 (m, 4H), δ1.26-1.40 (m, 36H), δ0.88 (t, 6H, J = 6.8 Hz).
[合成例:2,5-ビス(4-ドデシル-5-トリメチルスタニルチオフェン-2-イル)-3,4-エチレンジオキシチオフェン(T12)の合成] [Synthesis Example: Synthesis of 2,5-bis (4-dodecyl-5-trimethylstannylthiophen-2-yl) -3,4-ethylenedioxythiophene (T12)]
Figure JPOXMLDOC01-appb-C000056
Figure JPOXMLDOC01-appb-C000056
 窒素雰囲気下、200mL二口ナスフラスコ中に、上述の方法で得られた2,5-ビス(4-ドデシルチオフェン-2-イル)-3,4-エチレンジオキシチオフェン(T11)(1.68g,2.61mmol)を入れ、テトラヒドロフラン(THF,100.0mL)に溶解させ、-78℃に冷却した。さらにリチウムジイソプロピルアミド(LDA)のテトラヒドロフラン/ヘキサン溶液(関東化学社製,濃度1.13M,2.77mL,1.2eq)を滴下し、約1時間攪拌した。さらに塩化トリメチルスズのテトラヒドロフラン溶液(Aldrich社製,1.0M,3.13mL,1.2eq)を滴下後、ゆっくり室温に昇温した。再び-78℃に冷却後、リチウムジイソプロピルアミド(LDA)のテトラヒドロフラン/ヘキサン溶液(関東化学社製,濃度1.13M,2.77mL,1.2eq)を滴下し、約1時間攪拌した。さらに塩化トリメチルスズのテトラヒドロフラン溶液(Aldrich社製,1.0M,3.13mL,1.2eq)を滴下後、ゆっくり室温に昇温した。再び-78℃に冷却後、リチウムジイソプロピルアミド(LDA)のテトラヒドロフラン/ヘキサン溶液(関東化学社製,濃度1.13M、2.77mL,1.2eq)を滴下し、約1時間攪拌した。さらに塩化トリメチルスズのテトラヒドロフラン溶液(Aldrich社製,1.0M,3.13mL,1.2eq)を滴下後、ゆっくり室温に昇温した。反応液に水を加え、ヘキサンで抽出後、有機層を水洗した。有機層を硫酸ナトリウム上で乾燥し、ろ過して減圧濃縮後、真空下で乾燥することにより、2,5-ビス(4-ドデシル-5-トリメチルスタニルチオフェン-2-イル)-3,4-エチレンジオキシチオフェン(化合物T12)を薄オレンジ色固形物として定量的に得た。 In a 200 mL two-necked eggplant flask under a nitrogen atmosphere, 2,5-bis (4-dodecylthiophen-2-yl) -3,4-ethylenedioxythiophene (T11) (1.68 g) obtained by the above method was used. , 2.61 mmol) was dissolved in tetrahydrofuran (THF, 100.0 mL) and cooled to -78 ° C. Further, a tetrahydrofuran / hexane solution of lithium diisopropylamide (LDA) (manufactured by Kanto Chemical Co., Inc., concentration 1.13 M, 2.77 mL, 1.2 eq) was added dropwise and stirred for about 1 hour. Further, a tetrahydrofuran solution of trimethyltin chloride (manufactured by Aldrich, 1.0M, 3.13 mL, 1.2 eq) was added dropwise, and the temperature was slowly raised to room temperature. After cooling to −78 ° C. again, a solution of lithium diisopropylamide (LDA) in tetrahydrofuran / hexane (manufactured by Kanto Chemical Co., Inc., concentration 1.13 M, 2.77 mL, 1.2 eq) was added dropwise and stirred for about 1 hour. Further, a tetrahydrofuran solution of trimethyltin chloride (manufactured by Aldrich, 1.0M, 3.13 mL, 1.2 eq) was added dropwise, and the temperature was slowly raised to room temperature. After cooling to −78 ° C. again, a tetrahydrofuran / hexane solution of lithium diisopropylamide (LDA) (manufactured by Kanto Chemical Co., Inc., concentration 1.13 M, 2.77 mL, 1.2 eq) was added dropwise, and the mixture was stirred for about 1 hour. Further, a tetrahydrofuran solution of trimethyltin chloride (manufactured by Aldrich, 1.0M, 3.13 mL, 1.2 eq) was added dropwise, and the temperature was slowly raised to room temperature. Water was added to the reaction solution, followed by extraction with hexane, and the organic layer was washed with water. The organic layer is dried over sodium sulfate, filtered, concentrated under reduced pressure, and then dried under vacuum to give 2,5-bis (4-dodecyl-5-trimethylstannylthiophen-2-yl) -3,4 -Ethylenedioxythiophene (compound T12) was obtained quantitatively as a light orange solid.
 化合物T12:1H-NMR(400MHz,溶媒:重クロロホルム):δ6.92(s,2H),δ4.38(s,4H),δ2.58(t,4H,J=8.0Hz),δ1.58-1.68(m,4H),δ1.26-1.40(m,36H),δ0.88(t,6H,J=6.8Hz),δ0.39(s,18H).
[コポリマー9の合成]
Compound T12: 1 H-NMR (400 MHz, solvent: deuterated chloroform): δ 6.92 (s, 2H), δ 4.38 (s, 4H), δ 2.58 (t, 4H, J = 8.0 Hz), δ1 58-1.68 (m, 4H), δ1.26-1.40 (m, 36H), δ0.88 (t, 6H, J = 6.8 Hz), δ0.39 (s, 18H).
[Synthesis of Copolymer 9]
Figure JPOXMLDOC01-appb-C000057
Figure JPOXMLDOC01-appb-C000057
 窒素雰囲気下、50mL二口ナスフラスコに、モノマーとして、公知文献(Organic Letters 2004,6,3381-3384)に記載の方法を参考にして得られた1,3-ジブロモ-5-(n-オクチル)-4H-チエノ[3,4-c]ピロール-4,6-(5H)-ジオン(化合物F1)(イミドチオフェンジブロミド)(140mg,0.330mmol)、上述の方法で得られた2,5-ビス(4-ドデシル-5-トリメチルスタニルチオフェン-2-イル)-3,4-エチレンジオキシチオフェン(化合物T12)(33mg,0.034mmol)、及び国際公開2013/180243号に記載の方法を参考にして得られた4,4-ビス(2-エチルヘキシル)-2,6-ビス(トリメチルスズ)-ジチエノ[3,2-b:2',3'-d]シロール(化合物E1)(113mg,0.152mmol)、4,4-ジオクチル-2,6-ビス(トリメチルスズ)-ジチエノ[3,2-b:2',3'-d]シロール(化合物E2)(113mg,0.152mmol)を入れ、さらにテトラキス(トリフェニルホスフィン)パラジウム(0)(9.8mg,2.50mol%)、トリフェニルホスフィン含有不均一系パラジウム錯体触媒Pd-EnCatTPP30(Aldrich社製,12.7mg,1.53mol%)、トルエン(10.0mL)、及びN,N-ジメチルホルムアミド(2.50mL)を入れ、100℃で1時間、続いて110℃で5時間攪拌した。反応液をトルエンで2倍に希釈して110℃でさらに0.5時間加熱攪拌した後、末端処理として、トリメチル(フェニル)スズ(0.20mL)を加えて110℃で2.0時間加熱攪拌し、さらにブロモベンゼン(4.00mL)を加えて110℃で2.0時間加熱攪拌して、反応溶液をメタノール中に注ぎ、析出した沈殿をろ取した。得られた固体をクロロホルムに溶解させ、ジアミンシリカゲル(Fujiシリシア化学製)を加えて1時間室温で攪拌し、酸性シリカゲルのショートカラムを通した。溶液を濃縮することで、目的とするコポリマー9を、収率78%で得た。得られたコポリマー9の重量平均分子量Mwは87Kであり、PDIは2.5であった。 1,3-Dibromo-5- (n-octyl) was obtained in a 50 mL two-necked eggplant flask under a nitrogen atmosphere as a monomer by referring to a method described in a known document (Organic Letters 2004, 6, 3381-3384). ) -4H-thieno [3,4-c] pyrrole-4,6- (5H) -dione (compound F1) (imidothiophene dibromide) (140 mg, 0.330 mmol), 2, 5-bis (4-dodecyl-5-trimethylstannylthiophen-2-yl) -3,4-ethylenedioxythiophene (compound T12) (33 mg, 0.034 mmol) and described in WO2013 / 180243 4,4-bis (2-ethylhexyl) -2,6-bis (trimethyltin) -dithie obtained by referring to the method [3,2-b: 2 ′, 3′-d] silole (compound E1) (113 mg, 0.152 mmol), 4,4-dioctyl-2,6-bis (trimethyltin) -dithieno [3,2- b: 2 ′, 3′-d] silole (compound E2) (113 mg, 0.152 mmol) was added, and tetrakis (triphenylphosphine) palladium (0) (9.8 mg, 2.50 mol%), triphenylphosphine Containing heterogeneous palladium complex catalyst Pd-EnCatTPP30 (manufactured by Aldrich, 12.7 mg, 1.53 mol%), toluene (10.0 mL), and N, N-dimethylformamide (2.50 mL) at 100 ° C. The mixture was stirred for 1 hour and then at 110 ° C. for 5 hours. The reaction solution was diluted twice with toluene and heated and stirred at 110 ° C. for another 0.5 hours, and then trimethyl (phenyl) tin (0.20 mL) was added as a terminal treatment and heated and stirred at 110 ° C. for 2.0 hours. Further, bromobenzene (4.00 mL) was added and stirred with heating at 110 ° C. for 2.0 hours. The reaction solution was poured into methanol, and the deposited precipitate was collected by filtration. The obtained solid was dissolved in chloroform, diamine silica gel (Fuji Silysia Chemical) was added, and the mixture was stirred for 1 hour at room temperature and passed through a short column of acidic silica gel. By concentrating the solution, the target copolymer 9 was obtained in a yield of 78%. The weight average molecular weight Mw of the obtained copolymer 9 was 87K, and PDI was 2.5.
<合成例10:コポリマー10の合成>
[合成例:2,5-ビス(4-ドデシルチオフェン-2-イル)-チエノチオフェン(T13)の合成]
<Synthesis Example 10: Synthesis of Copolymer 10>
[Synthesis Example: Synthesis of 2,5-bis (4-dodecylthiophen-2-yl) -thienothiophene (T13)]
Figure JPOXMLDOC01-appb-C000058
Figure JPOXMLDOC01-appb-C000058
 窒素雰囲気下、50mL二口ナスフラスコ中に、公知文献(Macromolecules,2002,35,6883-6892)を参考にして得られた4-ドデシル-2-トリメチルスタニルチオフェン(化合物T5)(7.73g,18.6mmol)及び2,5-ジブロモチエノ[3,2-b]チオフェン(2.08g,7.00mmol)を入れ、さらにテトラキス(トリフェニルホスフィン)パラジウム(0)(100mg,1.40mol%)、トリフェニルホスフィン含有不均一系パラジウム錯体触媒Pd-EnCatTPP30(Aldrich社製,130mg,0.85mol%)、トルエン(24.0mL)、及びN,N-ジメチルホルムアミド(6.00mL)を入れ、100℃で1時間、続いて110℃で5時間攪拌した。反応溶液をメタノール中に注ぎ、析出した沈殿をろ取した。得られた固体をヘキサンに溶解させ、カラムクロマトグラフィー(酸性シリカゲル,ヘキサン)を行った。溶液を濃縮することで、目的とする2,5-ビス(4-ドデシルチオフェン-2-イル)-チエノチオフェン(化合物T13)を、収率51.0%で得た。 4-Dodecyl-2-trimethylstannylthiophene (Compound T5) (7.73 g) obtained by referring to a known document (Macromolecules, 2002, 35, 6883-6892) in a 50 mL two-necked eggplant flask under a nitrogen atmosphere , 18.6 mmol) and 2,5-dibromothieno [3,2-b] thiophene (2.08 g, 7.00 mmol), and tetrakis (triphenylphosphine) palladium (0) (100 mg, 1.40 mol%) , Triphenylphosphine-containing heterogeneous palladium complex catalyst Pd-EnCatTPP30 (manufactured by Aldrich, 130 mg, 0.85 mol%), toluene (24.0 mL), and N, N-dimethylformamide (6.00 mL) 1 hour at 0 ° C followed by 5 at 110 ° C During the mixture was stirred. The reaction solution was poured into methanol, and the deposited precipitate was collected by filtration. The obtained solid was dissolved in hexane and subjected to column chromatography (acidic silica gel, hexane). By concentrating the solution, the target 2,5-bis (4-dodecylthiophen-2-yl) -thienothiophene (Compound T13) was obtained in a yield of 51.0%.
 化合物T13:1H-NMR(400MHz,溶媒:重クロロホルム):δ7.13(s,2H),δ7.05(s,2H),δ7.02(s,2H),δ2.55(t,4H,J=8.0Hz),δ1.62-1.55(m,4H),δ1.40-1.22(m,36H),δ0.88(t,6H,J=7.2Hz). Compound T13: 1 H-NMR (400 MHz, solvent: deuterated chloroform): δ 7.13 (s, 2H), δ 7.05 (s, 2H), δ 7.02 (s, 2H), δ 2.55 (t, 4H , J = 8.0 Hz), δ1.62-1.55 (m, 4H), δ1.40-1.22 (m, 36H), δ0.88 (t, 6H, J = 7.2 Hz).
[合成例:2,5-ビス(4-ドデシル-5-トリメチルスタニルチオフェン-2-イル)-チエノチオフェン(T14)の合成] [Synthesis Example: Synthesis of 2,5-bis (4-dodecyl-5-trimethylstannylthiophen-2-yl) -thienothiophene (T14)]
Figure JPOXMLDOC01-appb-C000059
Figure JPOXMLDOC01-appb-C000059
 窒素雰囲気下、50mL二口ナスフラスコ中に、上述の方法で得られた2,5-ビス(4-ドデシルチオフェン-2-イル)-チエノチオフェン(T13)(600mg,0.94mmol)を入れ、テトラヒドロフラン(THF,20.0mL)に溶解させ、-78℃に冷却した。さらにリチウムジイソプロピルアミド(LDA)のテトラヒドロフラン/ヘキサン溶液(関東化学社製,濃度1.13M,1.00mL,1.2eq)を滴下し、約1時間攪拌した。さらに塩化トリメチルスズのテトラヒドロフラン溶液(Aldrich社製,1.0M,1.12mL,1.2eq)を滴下後、ゆっくり室温に昇温した。再び-78℃に冷却後、リチウムジイソプロピルアミド(LDA)のテトラヒドロフラン/ヘキサン溶液(関東化学社製,濃度1.13M,1.00mL,1.2eq)を滴下し、約1時間攪拌した。さらに塩化トリメチルスズのテトラヒドロフラン溶液(Aldrich社製,1.0M,1.12mL,1.2eq)を滴下後、ゆっくり室温に昇温した。再び-78℃に冷却後、リチウムジイソプロピルアミド(LDA)のテトラヒドロフラン/ヘキサン溶液(関東化学社製,濃度1.13M、1.00mL,1.2eq)を滴下し、約1時間攪拌した。さらに塩化トリメチルスズのテトラヒドロフラン溶液(Aldrich社製,1.0M,1.12mL,1.2eq)を滴下後、ゆっくり室温に昇温した。反応液に水を加え、ヘキサンで抽出後、有機層を水洗した。有機層を硫酸ナトリウム上で乾燥し、ろ過して減圧濃縮後、真空下で乾燥することにより、2,5-ビス(4-ドデシル-5-トリメチルスタニルチオフェン-2-イル)-チエノチオフェン(化合物T14)を薄黄色固形物として定量的に得た。 In a 50 mL two-necked eggplant flask under a nitrogen atmosphere, 2,5-bis (4-dodecylthiophen-2-yl) -thienothiophene (T13) (600 mg, 0.94 mmol) obtained by the above method was placed. Dissolved in tetrahydrofuran (THF, 20.0 mL) and cooled to -78 ° C. Further, a tetrahydrofuran / hexane solution of lithium diisopropylamide (LDA) (manufactured by Kanto Chemical Co., Inc., concentration 1.13 M, 1.00 mL, 1.2 eq) was added dropwise and stirred for about 1 hour. Further, a tetrahydrofuran solution of trimethyltin chloride (manufactured by Aldrich, 1.0 M, 1.12 mL, 1.2 eq) was added dropwise, and the temperature was slowly raised to room temperature. After cooling again to −78 ° C., a solution of lithium diisopropylamide (LDA) in tetrahydrofuran / hexane (manufactured by Kanto Chemical Co., Inc., concentration 1.13 M, 1.00 mL, 1.2 eq) was added dropwise and stirred for about 1 hour. Further, a tetrahydrofuran solution of trimethyltin chloride (manufactured by Aldrich, 1.0 M, 1.12 mL, 1.2 eq) was added dropwise, and the temperature was slowly raised to room temperature. After cooling to −78 ° C. again, a tetrahydrofuran / hexane solution of lithium diisopropylamide (LDA) (manufactured by Kanto Chemical Co., Inc., concentration 1.13 M, 1.00 mL, 1.2 eq) was added dropwise and stirred for about 1 hour. Further, a tetrahydrofuran solution of trimethyltin chloride (manufactured by Aldrich, 1.0 M, 1.12 mL, 1.2 eq) was added dropwise, and the temperature was slowly raised to room temperature. Water was added to the reaction solution, followed by extraction with hexane, and the organic layer was washed with water. The organic layer was dried over sodium sulfate, filtered, concentrated under reduced pressure, and then dried under vacuum to give 2,5-bis (4-dodecyl-5-trimethylstannylthiophen-2-yl) -thienothiophene ( Compound T14) was obtained quantitatively as a pale yellow solid.
 化合物T14:1H-NMR(400MHz,溶媒:重クロロホルム):δ7.17(s,2H),δ7.14(s,2H),δ2.55(t,4H,J=8.0Hz),δ1.62-1.55(m,4H),δ1.40-1.22(m,36H),δ0.88(t,6H,J=7.2Hz),δ0.39(s,18H). Compound T14: 1 H-NMR (400 MHz, solvent: deuterated chloroform): δ 7.17 (s, 2H), δ 7.14 (s, 2H), δ 2.55 (t, 4H, J = 8.0 Hz), δ1 .62-1.55 (m, 4H), δ 1.40-1.22 (m, 36H), δ 0.88 (t, 6H, J = 7.2 Hz), δ 0.39 (s, 18H).
[コポリマー10の合成] [Synthesis of Copolymer 10]
Figure JPOXMLDOC01-appb-C000060
Figure JPOXMLDOC01-appb-C000060
 窒素雰囲気下、50mL二口ナスフラスコに、モノマーとして、公知文献(Organic Letters 2004,6,3381-3384)に記載の方法を参考にして得られた1,3-ジブロモ-5-(n-オクチル)-4H-チエノ[3,4-c]ピロール-4,6-(5H)-ジオン(化合物F1)(イミドチオフェンジブロミド)(140mg,0.330mmol)、上述の方法で得られた2,5-ビス(4-ドデシル-5-トリメチルスタニルチオフェン-2-イル)-チエノチオフェン(化合物T14)(98mg,0.101mmol)、及び国際公開2013/180243号に記載の方法を参考にして得られた4,4-ジオクチル-2,6-ビス(トリメチルスズ)-ジチエノ[3,2-b:2',3'-d]シロール(化合物E2)(176mg,0.237mmol)を入れ、さらにテトラキス(トリフェニルホスフィン)パラジウム(0)(9.8mg,2.50mol%)、トリフェニルホスフィン含有不均一系パラジウム錯体触媒Pd-EnCatTPP30(Aldrich社製,12.7mg,1.53mol%)、トルエン(10.0mL)、及びN,N-ジメチルホルムアミド(2.50mL)を入れ、100℃で1時間、続いて110℃で5時間攪拌した。反応液をトルエンで2倍に希釈して110℃でさらに0.5時間加熱攪拌した後、末端処理として、トリメチル(フェニル)スズ(0.20mL)を加えて110℃で2.0時間加熱攪拌し、さらにブロモベンゼン(4.00mL)を加えて110℃で2.0時間加熱攪拌して、反応溶液をメタノール中に注ぎ、析出した沈殿をろ取した。得られた固体をクロロホルムに溶解させ、ジアミンシリカゲル(Fujiシリシア化学製)を加えて1時間室温で攪拌し、酸性シリカゲルのショートカラムを通した。溶液を濃縮することで、目的とするコポリマー10を、収率79%で得た。得られたコポリマー10の重量平均分子量Mwは72Kであり、PDIは2.4であった。 1,3-Dibromo-5- (n-octyl) was obtained in a 50 mL two-necked eggplant flask under a nitrogen atmosphere as a monomer by referring to a method described in a known document (Organic Letters 2004, 6, 3381-3384). ) -4H-thieno [3,4-c] pyrrole-4,6- (5H) -dione (compound F1) (imidothiophene dibromide) (140 mg, 0.330 mmol), 2, 5-bis (4-dodecyl-5-trimethylstannylthiophen-2-yl) -thienothiophene (Compound T14) (98 mg, 0.101 mmol) and obtained by referring to the method described in International Publication No. 2013/180243 4,4-Dioctyl-2,6-bis (trimethyltin) -dithieno [3,2-b: 2 ′, 3′-d] shiro (Compound E2) (176 mg, 0.237 mmol) was added, and tetrakis (triphenylphosphine) palladium (0) (9.8 mg, 2.50 mol%), a triphenylphosphine-containing heterogeneous palladium complex catalyst Pd-EnCatTPP30 (Aldrich, 12.7 mg, 1.53 mol%), toluene (10.0 mL), and N, N-dimethylformamide (2.50 mL) were added, and then at 100 ° C. for 1 hour, followed by 110 ° C. for 5 hours. Stir. The reaction solution was diluted twice with toluene and heated and stirred at 110 ° C. for another 0.5 hours, and then trimethyl (phenyl) tin (0.20 mL) was added as a terminal treatment and heated and stirred at 110 ° C. for 2.0 hours. Further, bromobenzene (4.00 mL) was added and stirred with heating at 110 ° C. for 2.0 hours. The reaction solution was poured into methanol, and the deposited precipitate was collected by filtration. The obtained solid was dissolved in chloroform, diamine silica gel (Fuji Silysia Chemical) was added, and the mixture was stirred for 1 hour at room temperature and passed through a short column of acidic silica gel. By concentrating the solution, the target copolymer 10 was obtained in a yield of 79%. The weight average molecular weight Mw of the obtained copolymer 10 was 72K, and PDI was 2.4.
<合成例11:コポリマー11の合成>
[合成例:1,4-ビス(4-ドデシルチオフェン-2-イル)-ベンゼン(T15)の合成]
<Synthesis Example 11: Synthesis of Copolymer 11>
[Synthesis Example: Synthesis of 1,4-bis (4-dodecylthiophen-2-yl) -benzene (T15)]
Figure JPOXMLDOC01-appb-C000061
Figure JPOXMLDOC01-appb-C000061
 窒素雰囲気下、50mL二口ナスフラスコ中に、公知文献(Macromolecules,2002,35,6883-6892)を参考にして得られた4-ドデシル-2-トリメチルスタニルチオフェン(化合物T5)(6.00g,13.6mmol)及び1,4-ジブロモベンゼン(1.28g,5.43mmol)を入れ、さらにテトラキス(トリフェニルホスフィン)パラジウム(0)(100mg,1.40mol%)、トリフェニルホスフィン含有不均一系パラジウム錯体触媒Pd-EnCatTPP30(Aldrich社製,130mg,0.85mol%)、トルエン(24.0mL)、及びN,N-ジメチルホルムアミド(6.00mL)を入れ、100℃で1時間、続いて110℃で5時間攪拌した。反応溶液をメタノール中に注ぎ、析出した沈殿をろ取した。得られた固体をヘキサンに溶解させ、カラムクロマトグラフィー(酸性シリカゲル,ヘキサン)を行った。溶液を濃縮することで、目的とする1,4-ビス(4-ドデシルチオフェン-2-イル)-ベンゼン(化合物T15)を、収率20.0%で得た。 4-dodecyl-2-trimethylstannylthiophene (compound T5) (6.00 g) obtained by referring to a known document (Macromolecules, 2002, 35, 6883-6892) in a 50 mL two-necked eggplant flask under a nitrogen atmosphere , 13.6 mmol) and 1,4-dibromobenzene (1.28 g, 5.43 mmol), tetrakis (triphenylphosphine) palladium (0) (100 mg, 1.40 mol%), triphenylphosphine-containing heterogeneity Based palladium complex catalyst Pd-EnCatTPP30 (manufactured by Aldrich, 130 mg, 0.85 mol%), toluene (24.0 mL), and N, N-dimethylformamide (6.00 mL) were added at 100 ° C. for 1 hour, followed by Stir at 110 ° C. for 5 hours. The reaction solution was poured into methanol, and the deposited precipitate was collected by filtration. The obtained solid was dissolved in hexane and subjected to column chromatography (acidic silica gel, hexane). By concentrating the solution, the target 1,4-bis (4-dodecylthiophen-2-yl) -benzene (Compound T15) was obtained in a yield of 20.0%.
 化合物T15:1H-NMR(400MHz,溶媒:重クロロホルム):δ7.15(s,2H),δ7.10(s,2H),δ7.00(s,2H),δ6.95(s,2H),δ2.55(t,4H,J=8.0Hz),δ1.62-1.55(m,4H),δ1.40-1.22(m,36H),δ0.88(t,6H,J=7.2Hz). Compound T15: 1 H-NMR (400 MHz, solvent: deuterated chloroform): δ 7.15 (s, 2H), δ 7.10 (s, 2H), δ 7.00 (s, 2H), δ 6.95 (s, 2H) ), Δ2.55 (t, 4H, J = 8.0 Hz), δ1.62-1.55 (m, 4H), δ1.40-1.22 (m, 36H), δ0.88 (t, 6H) , J = 7.2 Hz).
[合成例:1,4-ビス(4-ドデシル-5-トリメチルスタニルチオフェン-2-イル)-ベンゼン(T16)の合成] [Synthesis Example: Synthesis of 1,4-bis (4-dodecyl-5-trimethylstannylthiophen-2-yl) -benzene (T16)]
Figure JPOXMLDOC01-appb-C000062
Figure JPOXMLDOC01-appb-C000062
 窒素雰囲気下、50mL二口ナスフラスコ中に、上述の方法で得られた1,4-ビス(4-ドデシルチオフェン-2-イル)-ベンゼン(T15)(618mg,1.07mmol)を入れ、テトラヒドロフラン(THF,30.0mL)に溶解させ、-78℃に冷却した。さらにリチウムジイソプロピルアミド(LDA)のテトラヒドロフラン/ヘキサン溶液(関東化学社製,濃度1.13M,1.13mL,1.2eq)を滴下し、約1時間攪拌した。さらに塩化トリメチルスズのテトラヒドロフラン溶液(Aldrich社製,1.0M,1.28mL,1.2eq)を滴下後、ゆっくり室温に昇温した。再び-78℃に冷却後、リチウムジイソプロピルアミド(LDA)のテトラヒドロフラン/ヘキサン溶液(関東化学社製,濃度1.13M,1.13mL,1.2eq)を滴下し、約1時間攪拌した。さらに塩化トリメチルスズのテトラヒドロフラン溶液(Aldrich社製,1.0M,1.28mL,1.2eq)を滴下後、ゆっくり室温に昇温した。再び-78℃に冷却後、リチウムジイソプロピルアミド(LDA)のテトラヒドロフラン/ヘキサン溶液(関東化学社製,濃度1.13M、1.13mL,1.2eq)を滴下し、約1時間攪拌した。さらに塩化トリメチルスズのテトラヒドロフラン溶液(Aldrich社製,1.0M,1.28mL,1.2eq)を滴下後、ゆっくり室温に昇温した。反応液に水を加え、ヘキサンで抽出後、有機層を水洗した。有機層を硫酸ナトリウム上で乾燥し、ろ過して減圧濃縮後、真空下で乾燥することにより、1,4-ビス(4-ドデシル-5-トリメチルスタニルチオフェン-2-イル)-ベンゼン(化合物T16)を白色固形物として定量的に得た。 Under a nitrogen atmosphere, 1,4-bis (4-dodecylthiophen-2-yl) -benzene (T15) (618 mg, 1.07 mmol) obtained by the above method was placed in a 50 mL two-necked eggplant flask, and tetrahydrofuran was added. (THF, 30.0 mL) was dissolved and cooled to -78 ° C. Further, a tetrahydrofuran / hexane solution of lithium diisopropylamide (LDA) (manufactured by Kanto Chemical Co., Inc., concentrations 1.13 M, 1.13 mL, 1.2 eq) was added dropwise and stirred for about 1 hour. Further, a tetrahydrofuran solution of trimethyltin chloride (manufactured by Aldrich, 1.0 M, 1.28 mL, 1.2 eq) was added dropwise, and the temperature was slowly raised to room temperature. After cooling again to −78 ° C., a solution of lithium diisopropylamide (LDA) in tetrahydrofuran / hexane (manufactured by Kanto Chemical Co., Inc., concentrations 1.13 M, 1.13 mL, 1.2 eq) was added dropwise and stirred for about 1 hour. Further, a tetrahydrofuran solution of trimethyltin chloride (manufactured by Aldrich, 1.0 M, 1.28 mL, 1.2 eq) was added dropwise, and the temperature was slowly raised to room temperature. After cooling to −78 ° C. again, a solution of lithium diisopropylamide (LDA) in tetrahydrofuran / hexane (manufactured by Kanto Chemical Co., Inc., concentrations 1.13 M, 1.13 mL, 1.2 eq) was added dropwise and stirred for about 1 hour. Further, a tetrahydrofuran solution of trimethyltin chloride (manufactured by Aldrich, 1.0 M, 1.28 mL, 1.2 eq) was added dropwise, and the temperature was slowly raised to room temperature. Water was added to the reaction solution, followed by extraction with hexane, and the organic layer was washed with water. The organic layer is dried over sodium sulfate, filtered, concentrated under reduced pressure, and then dried under vacuum to give 1,4-bis (4-dodecyl-5-trimethylstannylthiophen-2-yl) -benzene (compound T16) was obtained quantitatively as a white solid.
 化合物T16:1H-NMR(400MHz,溶媒:重クロロホルム):δ7.22(s,2H),δ7.12(s,2H),δ7.07(s,2H),δ2.55(t,4H,J=8.0Hz),δ1.62-1.55(m,4H),δ1.40-1.22(m,36H),δ0.88(t,6H,J=7.2Hz),δ0.39(s,18H). Compound T16: 1 H-NMR (400 MHz, solvent: deuterated chloroform): δ 7.22 (s, 2H), δ 7.12 (s, 2H), δ 7.07 (s, 2H), δ 2.55 (t, 4H , J = 8.0 Hz), δ1.62-1.55 (m, 4H), δ1.40-1.22 (m, 36H), δ0.88 (t, 6H, J = 7.2 Hz), δ0 .39 (s, 18H).
[コポリマー11の合成] [Synthesis of Copolymer 11]
Figure JPOXMLDOC01-appb-C000063
Figure JPOXMLDOC01-appb-C000063
 窒素雰囲気下、50mL二口ナスフラスコに、モノマーとして、公知文献(Organic Letters 2004,6,3381-3384)に記載の方法を参考にして得られた1,3-ジブロモ-5-(n-オクチル)-4H-チエノ[3,4-c]ピロール-4,6-(5H)-ジオン(化合物F1)(イミドチオフェンジブロミド)(140mg,0.330mmol)、上述の方法で得られた1,4-ビス(4-ドデシル-5-トリメチルスタニルチオフェン-2-イル)-ベンゼン(化合物T16)(31mg,0.034mmol)、及び国際公開2013/180243号に記載の方法を参考にして得られた4,4-ジオクチル-2,6-ビス(トリメチルスズ)-ジチエノ[3,2-b:2',3'-d]シロール(化合物E2)(226mg,0.304mmol)を入れ、さらにテトラキス(トリフェニルホスフィン)パラジウム(0)(9.8mg,2.50mol%)、トリフェニルホスフィン含有不均一系パラジウム錯体触媒Pd-EnCatTPP30(Aldrich社製,12.7mg,1.53mol%)、トルエン(10.0mL)、及びN,N-ジメチルホルムアミド(2.50mL)を入れ、100℃で1時間、続いて110℃で5時間攪拌した。反応液をトルエンで2倍に希釈して110℃でさらに0.5時間加熱攪拌した後、末端処理として、トリメチル(フェニル)スズ(0.20mL)を加えて110℃で2.0時間加熱攪拌し、さらにブロモベンゼン(4.00mL)を加えて110℃で2.0時間加熱攪拌して、反応溶液をメタノール中に注ぎ、析出した沈殿をろ取した。得られた固体をクロロホルムに溶解させ、ジアミンシリカゲル(Fujiシリシア化学製)を加えて1時間室温で攪拌し、酸性シリカゲルのショートカラムを通した。溶液を濃縮することで、目的とするコポリマー11を、収率78%で得た。得られたコポリマー11の重量平均分子量Mwは54Kであり、PDIは3.2であった。 1,3-Dibromo-5- (n-octyl) was obtained in a 50 mL two-necked eggplant flask under a nitrogen atmosphere as a monomer by referring to a method described in a known document (Organic Letters 2004, 6, 3381-3384). ) -4H-thieno [3,4-c] pyrrole-4,6- (5H) -dione (compound F1) (imidothiophene dibromide) (140 mg, 0.330 mmol), 4-bis (4-dodecyl-5-trimethylstannylthiophen-2-yl) -benzene (Compound T16) (31 mg, 0.034 mmol) and obtained by referring to the method described in International Publication No. 2013/180243 4,4-dioctyl-2,6-bis (trimethyltin) -dithieno [3,2-b: 2 ′, 3′-d] silole Product E2) (226 mg, 0.304 mmol), tetrakis (triphenylphosphine) palladium (0) (9.8 mg, 2.50 mol%), triphenylphosphine-containing heterogeneous palladium complex catalyst Pd-EnCatTPP30 (Aldrich) 12.7 mg, 1.53 mol%), toluene (10.0 mL), and N, N-dimethylformamide (2.50 mL) were added, and the mixture was stirred at 100 ° C. for 1 hour and then at 110 ° C. for 5 hours. . The reaction solution was diluted twice with toluene and heated and stirred at 110 ° C. for another 0.5 hours, and then trimethyl (phenyl) tin (0.20 mL) was added as a terminal treatment and heated and stirred at 110 ° C. for 2.0 hours. Further, bromobenzene (4.00 mL) was added and stirred with heating at 110 ° C. for 2.0 hours. The reaction solution was poured into methanol, and the deposited precipitate was collected by filtration. The obtained solid was dissolved in chloroform, diamine silica gel (Fuji Silysia Chemical) was added, and the mixture was stirred for 1 hour at room temperature and passed through a short column of acidic silica gel. By concentrating the solution, the target copolymer 11 was obtained in a yield of 78%. The weight average molecular weight Mw of the obtained copolymer 11 was 54K, and PDI was 3.2.
<合成例12:コポリマー12の合成> <Synthesis Example 12: Synthesis of Copolymer 12>
Figure JPOXMLDOC01-appb-C000064
Figure JPOXMLDOC01-appb-C000064
 窒素雰囲気下、50mL二口ナスフラスコに、モノマーとして、国際公開2014/042091号に記載の方法を参考にして得られた4,6-ジブロモ-3-フルオロ-2-カルボン酸-(2-エチルヘキシルエステル)-チエノ[3,4-b]チオフェン(化合物F2)(チエノチオフェンジブロミド)(312mg,0.660mmol)、公知文献(Polymer, 1990,31,1379-1383)を参考にして得られた4,4'-ジドデシル-5,5'-ビス(トリメチルスタニル)-2,2'-ビチオフェン(化合物T1)(280mg,0.338mmol)、及び国際公開2013/180243号に記載の方法を参考にして得られた4,4-ビス(2-エチルヘキシル)-2,6-ビス(トリメチルスズ)-ジチエノ[3,2-b:2',3'-d]シロール(化合物E1)(252mg,0.338mmol)を入れ、さらにテトラキス(トリフェニルホスフィン)パラジウム(0)(19.6mg,2.50mol%)、トリフェニルホスフィン含有不均一系パラジウム錯体触媒Pd-EnCatTPP30(Aldrich社製,25.5mg,1.53mol%)、トルエン(20.0mL)、及びN,N-ジメチルホルムアミド(5.00mL)を入れ、100℃で1時間、続いて110℃で5時間攪拌した。反応液をトルエンで2倍に希釈して110℃でさらに0.5時間加熱攪拌した後、末端処理として、トリメチル(フェニル)スズ(0.20mL)を加えて110℃で2.0時間加熱攪拌し、さらにブロモベンゼン(4.00mL)を加えて110℃で2.0時間加熱攪拌して、反応溶液をメタノール中に注ぎ、析出した沈殿をろ取した。得られた固体をクロロホルムに溶解させ、ジアミンシリカゲル(Fujiシリシア化学製)を加えて1時間室温で攪拌し、酸性シリカゲルのショートカラムを通した。溶液を濃縮することで、目的とするコポリマー12を、収率78%で得た。得られたコポリマー12の重量平均分子量Mwは83Kであり、PDIは1.7であった。 4,6-Dibromo-3-fluoro-2-carboxylic acid- (2-ethylhexyl) obtained by referring to a method described in International Publication No. 2014/042091 as a monomer in a 50 mL two-necked eggplant flask under a nitrogen atmosphere Ester) -thieno [3,4-b] thiophene (compound F2) (thienothiophene dibromide) (312 mg, 0.660 mmol), obtained with reference to known literature (Polymer, 1990, 31, 1379-1383) Reference is made to 4,4′-didodecyl-5,5′-bis (trimethylstannyl) -2,2′-bithiophene (Compound T1) (280 mg, 0.338 mmol) and the method described in International Publication No. 2013/180243 4,4-bis (2-ethylhexyl) -2,6-bis (trimethyltin) -dithio [3,2-b: 2 ′, 3′-d] silole (compound E1) (252 mg, 0.338 mmol) was added, and tetrakis (triphenylphosphine) palladium (0) (19.6 mg, 2.50 mol) was added. %), A triphenylphosphine-containing heterogeneous palladium complex catalyst Pd-EnCatTPP30 (Aldrich, 25.5 mg, 1.53 mol%), toluene (20.0 mL), and N, N-dimethylformamide (5.00 mL) And stirred at 100 ° C. for 1 hour and then at 110 ° C. for 5 hours. The reaction solution was diluted twice with toluene and heated and stirred at 110 ° C. for another 0.5 hours, and then trimethyl (phenyl) tin (0.20 mL) was added as a terminal treatment and heated and stirred at 110 ° C. for 2.0 hours. Further, bromobenzene (4.00 mL) was added and stirred with heating at 110 ° C. for 2.0 hours. The reaction solution was poured into methanol, and the deposited precipitate was collected by filtration. The obtained solid was dissolved in chloroform, diamine silica gel (Fuji Silysia Chemical) was added, and the mixture was stirred for 1 hour at room temperature and passed through a short column of acidic silica gel. By concentrating the solution, the target copolymer 12 was obtained in a yield of 78%. The weight average molecular weight Mw of the obtained copolymer 12 was 83K, and PDI was 1.7.
<合成例13:コポリマー13の合成> <Synthesis Example 13: Synthesis of Copolymer 13>
Figure JPOXMLDOC01-appb-C000065
Figure JPOXMLDOC01-appb-C000065
 窒素雰囲気下、50mL二口ナスフラスコに、モノマーとして、公知文献(Organic Letters 2004,6,3381-3384)に記載の方法を参考にして得られた1,3-ジブロモ-5-(n-オクチル)-4H-チエノ[3,4-c]ピロール-4,6-(5H)-ジオン(化合物F1(イミドチオフェンジブロミド),114mg,0.270mmol)、公知文献(Polymer, 1990,31,1379-1383)を参考にして得られた4,4'-ジドデシル-5,5'-ビス(トリメチルスタニル)-2,2'-ビチオフェン(化合物T1)(114mg,0.135mmol)、及び公知文献(日本国特許5292514号公報)に記載の方法を参考にして得られた化合物E3(137mg,0.135mmol)を入れ、さらにテトラキス(トリフェニルホスフィン)パラジウム(0)(5.6mg,1.8mol%)、トリフェニルホスフィン含有不均一系パラジウム錯体触媒Pd-EnCatTPP30(Aldrich社製,10.1mg,1.5mol%)、トルエン(8mL)、及びN,N-ジメチルホルムアミド(2mL)を入れ、100℃で1時間、続いて110℃で5時間攪拌した。末端処理として、トリメチル(フェニル)スズ(0.05mL)を、続いてトルエン8mLを加えて110℃でさらに1時間加熱攪拌した後、さらにブロモベンゼン(1.4mL)を加えて110℃で5時間加熱攪拌して、反応溶液をメタノール中に注ぎ、析出した沈殿をろ取した。得られた固体をクロロホルムに溶解させ、ジアミンシリカゲル(Fujiシリシア化学製)を加えて1時間室温で攪拌し、酸性シリカゲルのショートカラムを通した。溶液を濃縮することで、目的とするコポリマー13を、収率82%で得た。得られたコポリマー13の重量平均分子量Mwは108Kであり、PDIは2.6であった。 1,3-Dibromo-5- (n-octyl) was obtained in a 50 mL two-necked eggplant flask under a nitrogen atmosphere as a monomer by referring to a method described in a known document (Organic Letters 2004, 6, 3381-3384). ) -4H-thieno [3,4-c] pyrrole-4,6- (5H) -dione (compound F1 (imidothiophene dibromide), 114 mg, 0.270 mmol), known literature (Polymer, 1990, 31, 1379) -1,383), 4,4′-didodecyl-5,5′-bis (trimethylstannyl) -2,2′-bithiophene (compound T1) (114 mg, 0.135 mmol), and known literature Compound E3 (137 mg, 0.1) obtained by referring to the method described in (Japanese Patent No. 5292514) 5 mmol), tetrakis (triphenylphosphine) palladium (0) (5.6 mg, 1.8 mol%), triphenylphosphine-containing heterogeneous palladium complex catalyst Pd-EnCatTPP30 (Aldrich, 10.1 mg, 1 0.5 mol%), toluene (8 mL), and N, N-dimethylformamide (2 mL) were added, and the mixture was stirred at 100 ° C. for 1 hour and then at 110 ° C. for 5 hours. As a terminal treatment, trimethyl (phenyl) tin (0.05 mL) was added followed by 8 mL of toluene, and the mixture was further heated and stirred at 110 ° C. for 1 hour. Then, bromobenzene (1.4 mL) was added and the mixture was added at 110 ° C. for 5 hours. The mixture was heated and stirred, and the reaction solution was poured into methanol, and the deposited precipitate was collected by filtration. The obtained solid was dissolved in chloroform, diamine silica gel (Fuji Silysia Chemical) was added, and the mixture was stirred for 1 hour at room temperature and passed through a short column of acidic silica gel. By concentrating the solution, the target copolymer 13 was obtained in a yield of 82%. The weight average molecular weight Mw of the obtained copolymer 13 was 108K, and PDI was 2.6.
<合成例14:コポリマー14の合成> <Synthesis Example 14: Synthesis of Copolymer 14>
Figure JPOXMLDOC01-appb-C000066
Figure JPOXMLDOC01-appb-C000066
 窒素雰囲気下、50mL二口ナスフラスコに、モノマーとして、日本国特開2013-28565号公報に記載の方法を参考にして得られたThieno[3,4-b]thiophene-2-carboxylic acid, 4,6-dibromo-3-fluoro-, 2-ethylhexyl ester(化合物F2(チエノチオフェンジブロミド),79.2mg,0.168mmol)、公知文献(Polymer, 1990,31,1379-1383)を参考にして得られた4,4'-ジドデシル-5,5'-ビス(トリメチルスタニル)-2,2'-ビチオフェン(化合物T1)(71.1mg,0.084mmol)、及び公知文献(Macromolecules,2014,47,2250-2256)を参考にして得られた4,8-Bis(2-Ethylhexyloxy)[benzo1,2-b:4,5-b']dithiophene(化合物E4)(308mg,0.413mmol)を入れ、さらにテトラキス(トリフェニルホスフィン)パラジウム(0)(4.8mg,2.5mol%)、トリフェニルホスフィン含有不均一系パラジウム錯体触媒Pd-EnCatTPP30(Aldrich社製,6.5mg,2.5mol%)、トルエン(6mL)、及びN,N-ジメチルホルムアミド(1.5mL)を入れ、65℃から105℃まで昇温し、続いて115℃で2時間攪拌した。反応液をトルエンで4倍に希釈して115℃でさらに1時間加熱攪拌した後、末端処理として、トリメチル(フェニル)スズ(0.03mL)を加えて115℃で1時間加熱攪拌し、さらにブロモベンゼン(0.9mL)を加えて115℃で5時間加熱攪拌して、酢酸エチルを反応溶液を中に注ぎ、析出した沈殿をろ取した。得られた固体をクロロホルムに溶解させ、ジアミンシリカゲル(Fujiシリシア化学製)を加えて30分室温で攪拌し、酸性シリカゲルのショートカラムを通した。溶液を濃縮し、クロロホルム/酢酸エチルを溶媒として再結晶を行い、析出した沈殿を濾別することで、目的とするコポリマー14を、収率18%で得た。得られたコポリマー14の重量平均分子量Mwは124kであり、PDIは3.0であった。 In a 50 mL two-necked eggplant flask under nitrogen atmosphere, Thieno [3,4-b] thiophene-2-carboxylic acid, 4 obtained as a monomer with reference to the method described in Japanese Patent Application Laid-Open No. 2013-28565. , 6-dibromo-3-fluoro-, 2-ethylhexyl ester (compound F2 (thienothiophene dibromide), 79.2 mg, 0.168 mmol), known literature (Polymer, 1990, 31, 1379-1383) The obtained 4,4′-didodecyl-5,5′-bis (trimethylstannyl) -2,2′-bithiophene (Compound T1) (71.1 mg, 0.084 mmol), and known literature (Macromolecules, 2014, 47,2250-2256 4,8-Bis (2-Ethylhexyloxy) [benzo1,2-b: 4,5-b ′] dithiophene (Compound E4) (308 mg, 0.413 mmol) was added, and tetrakis (tri Phenylphosphine) palladium (0) (4.8 mg, 2.5 mol%), triphenylphosphine-containing heterogeneous palladium complex catalyst Pd-EnCatTPP30 (Aldrich, 6.5 mg, 2.5 mol%), toluene (6 mL) And N, N-dimethylformamide (1.5 mL) were added, the temperature was raised from 65 ° C. to 105 ° C., and the mixture was stirred at 115 ° C. for 2 hours. The reaction solution was diluted 4-fold with toluene and heated and stirred at 115 ° C. for another hour, then, as a terminal treatment, trimethyl (phenyl) tin (0.03 mL) was added and heated and stirred at 115 ° C. for 1 hour. Benzene (0.9 mL) was added and stirred with heating at 115 ° C. for 5 hours. Ethyl acetate was poured into the reaction solution, and the deposited precipitate was collected by filtration. The obtained solid was dissolved in chloroform, diamine silica gel (Fuji Silysia Chemical) was added, and the mixture was stirred at room temperature for 30 minutes and passed through a short column of acidic silica gel. The solution was concentrated, recrystallized using chloroform / ethyl acetate as a solvent, and the deposited precipitate was separated by filtration to obtain the target copolymer 14 in a yield of 18%. The weight average molecular weight Mw of the obtained copolymer 14 was 124 k, and PDI was 3.0.
<合成例15:コポリマー15の合成> <Synthesis Example 15: Synthesis of Copolymer 15>
Figure JPOXMLDOC01-appb-C000067
Figure JPOXMLDOC01-appb-C000067
 窒素雰囲気下、50mL二口ナスフラスコに、モノマーとして、公知文献(Organic Letters 2004,6,3381-3384)に記載の方法を参考にして得られた1,3-ジブロモ-5-(2-エチルヘキシル)-4H-チエノ[3,4-c]ピロール-4,6-(5H)-ジオン(化合物F3(イミドチオフェンジブロミド),57.1mg,0.135mmol)、公知文献(Polymer, 1990,31,1379-1383)を参考にして得られた4,4'-ジドデシル-5,5'-ビス(トリメチルスタニル)-2,2'-ビチオフェン(化合物T1)(114mg,0.135mmol)を入れ、さらにテトラキス(トリフェニルホスフィン)パラジウム(0)(4.7mg,3.0mol%)、トリフェニルホスフィン含有不均一系パラジウム錯体触媒Pd-EnCatTPP30(Aldrich社製,6.1mg,2.0mol%)、トルエン(4mL)、及びN,N-ジメチルホルムアミド(1mL)を入れ、95℃で1時間、続いて110℃で5時間攪拌した。末端処理として、トリメチル(フェニル)スズ(0.03mL)を、続いてトルエン6mLを加えて110℃でさらに1時間加熱攪拌した後、さらにブロモベンゼン(1mL)を加えて110℃で2時間加熱攪拌して、反応溶液をメタノール中に注ぎ、析出した沈殿をろ取した。得られた固体をクロロホルムに溶解させ、ジアミンシリカゲル(Fujiシリシア化学製)を加えて1時間室温で攪拌し、酸性シリカゲルのショートカラムを通した。溶液を濃縮することで、目的とするコポリマー15を、収率40%で得た。得られたコポリマー15の重量平均分子量Mwは18Kであり、PDIは1.8であった。 1,3-Dibromo-5- (2-ethylhexyl) obtained in a 50 mL two-necked eggplant flask under a nitrogen atmosphere was obtained as a monomer by referring to a method described in a known document (Organic Letters 2004, 6, 3381-3384). ) -4H-thieno [3,4-c] pyrrole-4,6- (5H) -dione (compound F3 (imidothiophene dibromide), 57.1 mg, 0.135 mmol), known literature (Polymer, 1990, 31) 4,4′-didodecyl-5,5′-bis (trimethylstannyl) -2,2′-bithiophene (compound T1) (114 mg, 0.135 mmol) was added. Tetrakis (triphenylphosphine) palladium (0) (4.7 mg, 3.0 mol%), tri A heterogeneous palladium complex catalyst Pd-EnCatTPP30 (Aldrich, 6.1 mg, 2.0 mol%), toluene (4 mL), and N, N-dimethylformamide (1 mL) were charged at 95 ° C. for 1 hour. Subsequently, the mixture was stirred at 110 ° C. for 5 hours. As a terminal treatment, trimethyl (phenyl) tin (0.03 mL) was added followed by 6 mL of toluene, and the mixture was further heated and stirred at 110 ° C. for 1 hour, and then further bromobenzene (1 mL) was added and heated and stirred at 110 ° C. for 2 hours. The reaction solution was poured into methanol, and the deposited precipitate was collected by filtration. The obtained solid was dissolved in chloroform, diamine silica gel (Fuji Silysia Chemical) was added, and the mixture was stirred for 1 hour at room temperature and passed through a short column of acidic silica gel. By concentrating the solution, the target copolymer 15 was obtained in a yield of 40%. The weight average molecular weight Mw of the obtained copolymer 15 was 18K, and PDI was 1.8.
<合成例16:コポリマー16の合成>
[合成例:3,3'-ジドデシル-5,5''-ビス(トリメチルスタニル)-2,2'-ビチオフェン(T18)の合成]
<Synthesis Example 16: Synthesis of Copolymer 16>
[Synthesis Example: Synthesis of 3,3′-didodecyl-5,5 ″ -bis (trimethylstannyl) -2,2′-bithiophene (T18)]
Figure JPOXMLDOC01-appb-C000068
Figure JPOXMLDOC01-appb-C000068
 窒素雰囲気下、100mL二口ナスフラスコ中に、公知文献(Materials Chemistry 2009,19,3490-3499)に記載の方法を参考にして得られた3,3'-ジドデシル-5,5''-ジブロモ-2,2'-ビチオフェン(T17)(3.00g,4.54mmol)を入れ、テトラヒドロフラン(THF,50.0mL)に溶解させ、-78℃に冷却した。さらにノルマルブチルリチウム(nBuLi)のテトラヒドロフラン/ヘキサン溶液(関東化学社製,濃度1.60M,6.24mL,2.2eq)を滴下し、約1時間攪拌した。さらに塩化トリメチルスズのテトラヒドロフラン溶液(Aldrich社製,1.0M,9.99mL,2.2eq)を滴下後、ゆっくり室温に昇温した。反応液に水を加え、ヘキサンで抽出後、有機層を水洗した。有機層を硫酸ナトリウム上で乾燥し、ろ過して減圧濃縮後、真空下で乾燥することにより、3,3'-ジドデシル-5,5''-ビス(トリメチルスタニル)-2,2'-ビチオフェン(化合物T18)を薄黄色液状物として定量的に得た。 3,3′-didodecyl-5,5 ″ -dibromo obtained in a 100 mL two-necked eggplant flask under a nitrogen atmosphere with reference to a method described in a known literature (Materials Chemistry 2009, 19, 3490-3499) -2,2'-bithiophene (T17) (3.00 g, 4.54 mmol) was added, dissolved in tetrahydrofuran (THF, 50.0 mL), and cooled to -78 ° C. Further, a tetrahydrofuran / hexane solution of normal butyl lithium (nBuLi) (manufactured by Kanto Chemical Co., Inc., concentration 1.60 M, 6.24 mL, 2.2 eq) was added dropwise and stirred for about 1 hour. Further, a tetrahydrofuran solution of trimethyltin chloride (manufactured by Aldrich, 1.0 M, 9.99 mL, 2.2 eq) was added dropwise, and the temperature was slowly raised to room temperature. Water was added to the reaction solution, followed by extraction with hexane, and the organic layer was washed with water. The organic layer is dried over sodium sulfate, filtered, concentrated under reduced pressure, and then dried under vacuum to give 3,3′-didodecyl-5,5 ″ -bis (trimethylstannyl) -2,2′- Bithiophene (compound T18) was quantitatively obtained as a pale yellow liquid.
 化合物T18:1H-NMR(400MHz,溶媒:重クロロホルム):δ7.02(s,2H),δ2.51(t,4H,J=8.0Hz),δ1.62-1.50(m,4H),δ1.40-1.22(m,36H),δ0.88(t,6H,J=7.2Hz),δ0.37(s,18H). Compound T18: 1 H-NMR (400 MHz, solvent: deuterated chloroform): δ 7.02 (s, 2H), δ 2.51 (t, 4H, J = 8.0 Hz), δ 1.62-1.50 (m, 4H), δ 1.40-1.22 (m, 36H), δ 0.88 (t, 6H, J = 7.2 Hz), δ 0.37 (s, 18H).
[コポリマー16の合成] [Synthesis of Copolymer 16]
Figure JPOXMLDOC01-appb-C000069
Figure JPOXMLDOC01-appb-C000069
 窒素雰囲気下、50mL二口ナスフラスコに、モノマーとして、公知文献(Organic Letters 2004,6,3381-3384)に記載の方法を参考にして得られた1,3-ジブロモ-5-(n-オクチル)-4H-チエノ[3,4-c]ピロール-4,6-(5H)-ジオン(化合物F1)(イミドチオフェンジブロミド)(122mg,0.288mmol)、上述の方法で得られた3,3'-ジドデシル-5,5''-ビス(トリメチルスタニル)-2,2'-ビチオフェン(化合物T18)(122mg,0.147mmol)、及び国際公開2013/180243号に記載の方法を参考にして得られた4,4-ジオクチル-2,6-ビス(トリメチルスズ)-ジチエノ[3,2-b:2',3'-d]シロール(化合物E2)(109mg,0.147mmol)を入れ、さらにテトラキス(トリフェニルホスフィン)パラジウム(0)(10.2mg,3.00mol%)、トリフェニルホスフィン含有不均一系パラジウム錯体触媒Pd-EnCatTPP30(Aldrich社製,13.3mg,1.83mol%)、トルエン(8.00mL)、及びN,N-ジメチルホルムアミド(2.00mL)を入れ、100℃で1時間、続いて110℃で5時間攪拌した。反応液をトルエンで2倍に希釈して110℃でさらに0.5時間加熱攪拌した後、末端処理として、トリメチル(フェニル)スズ(0.20mL)を加えて110℃で2.0時間加熱攪拌し、さらにブロモベンゼン(4.00mL)を加えて110℃で2.0時間加熱攪拌して、反応溶液をメタノール中に注ぎ、析出した沈殿をろ取した。得られた固体をクロロホルムに溶解させ、ジアミンシリカゲル(Fujiシリシア化学製)を加えて1時間室温で攪拌し、酸性シリカゲルのショートカラムを通した。溶液を濃縮することで、目的とするコポリマー16を、収率82.0%で得た。得られたコポリマー16の重量平均分子量Mwは49.0Kであり、PDIは2.2であった。 1,3-Dibromo-5- (n-octyl) was obtained in a 50 mL two-necked eggplant flask under a nitrogen atmosphere as a monomer by referring to a method described in a known document (Organic Letters 2004, 6, 3381-3384). ) -4H-thieno [3,4-c] pyrrole-4,6- (5H) -dione (compound F1) (imidothiophene dibromide) (122 mg, 0.288 mmol), 3,3 With reference to 3′-didodecyl-5,5 ″ -bis (trimethylstannyl) -2,2′-bithiophene (Compound T18) (122 mg, 0.147 mmol) and the method described in International Publication No. 2013/180243 4,4-dioctyl-2,6-bis (trimethyltin) -dithieno [3,2-b: 2 ′, 3′-d] silole obtained Compound E2) (109 mg, 0.147 mmol), tetrakis (triphenylphosphine) palladium (0) (10.2 mg, 3.00 mol%), triphenylphosphine-containing heterogeneous palladium complex catalyst Pd-EnCatTPP30 (Aldrich) 13.3 mg, 1.83 mol%), toluene (8.00 mL), and N, N-dimethylformamide (2.00 mL) were added, and the mixture was stirred at 100 ° C. for 1 hour and then at 110 ° C. for 5 hours. . The reaction solution was diluted twice with toluene and heated and stirred at 110 ° C. for another 0.5 hours, and then trimethyl (phenyl) tin (0.20 mL) was added as a terminal treatment and heated and stirred at 110 ° C. for 2.0 hours. Further, bromobenzene (4.00 mL) was added and stirred with heating at 110 ° C. for 2.0 hours. The reaction solution was poured into methanol, and the deposited precipitate was collected by filtration. The obtained solid was dissolved in chloroform, diamine silica gel (Fuji Silysia Chemical) was added, and the mixture was stirred for 1 hour at room temperature and passed through a short column of acidic silica gel. By concentrating the solution, the target copolymer 16 was obtained in a yield of 82.0%. The weight average molecular weight Mw of the obtained copolymer 16 was 49.0K, and PDI was 2.2.
<合成例17:コポリマー17の合成> <Synthesis Example 17: Synthesis of Copolymer 17>
Figure JPOXMLDOC01-appb-C000070
Figure JPOXMLDOC01-appb-C000070
 窒素雰囲気下、50mL二口ナスフラスコに、モノマーとして、公知文献(Organic Letters 2004,6,3381-3384)に記載の方法を参考にして得られた1,3-ジブロモ-5-(n-オクチル)-4H-チエノ[3,4-c]ピロール-4,6-(5H)-ジオン(化合物F1(イミドチオフェンジブロミド),142.2mg,0.336mmol)、5,5'-ビス(トリメチルスタニル)-2,2'-ビチオフェン(化合物T19)(Aldrich社製,83.5mg,0.168mmol)、国際公開2013/180243号に記載の方法を参考にして得られた4,4-ビス(2-エチルヘキシル)-2,6-ビス(トリメチルスズ)-ジチエノ[3,2-b:2',3'-d]シロール(化合物E1)(127.6mg,0.168mmol)を入れ、さらにテトラキス(トリフェニルホスフィン)パラジウム(0)(9.7mg,2.5mol%)、トリフェニルホスフィン含有不均一系パラジウム錯体触媒Pd-EnCatTPP30(Aldrich社製,12.7mg,2.5mol%)、トルエン(10mL)、及びN,N-ジメチルホルムアミド(2.5mL)を入れ、85℃から105℃まで昇温し、攪拌した。系中で有機溶媒に不溶な固体が析出した。これを濾過し、クロロホルムで洗浄することによりコポリマー17を得た。溶解度が低い為に、分子量を測定することはできなかった。 1,3-Dibromo-5- (n-octyl) was obtained in a 50 mL two-necked eggplant flask under a nitrogen atmosphere as a monomer by referring to a method described in a known document (Organic Letters 2004, 6, 3381-3384). ) -4H-thieno [3,4-c] pyrrole-4,6- (5H) -dione (compound F1 (imidothiophene dibromide), 142.2 mg, 0.336 mmol), 5,5′-bis (trimethyl) Stanyl) -2,2′-bithiophene (Compound T19) (manufactured by Aldrich, 83.5 mg, 0.168 mmol), 4,4-bis obtained by referring to the method described in International Publication No. 2013/180243 (2-Ethylhexyl) -2,6-bis (trimethyltin) -dithieno [3,2-b: 2 ′, 3′-d] silole (compound E 1) (127.6 mg, 0.168 mmol) was added, and tetrakis (triphenylphosphine) palladium (0) (9.7 mg, 2.5 mol%), a triphenylphosphine-containing heterogeneous palladium complex catalyst Pd-EnCatTPP30 ( Aldrich, 12.7 mg, 2.5 mol%), toluene (10 mL), and N, N-dimethylformamide (2.5 mL) were added, and the mixture was heated from 85 ° C. to 105 ° C. and stirred. A solid insoluble in the organic solvent was precipitated in the system. This was filtered and washed with chloroform to obtain copolymer 17. Due to the low solubility, the molecular weight could not be measured.
<合成例18:コポリマー18の合成>
[合成例:3-ドデシル-2,2'-ビチオフェン(T20)の合成]
<Synthesis Example 18: Synthesis of Copolymer 18>
[Synthesis Example: Synthesis of 3-dodecyl-2,2′-bithiophene (T20)]
Figure JPOXMLDOC01-appb-C000071
Figure JPOXMLDOC01-appb-C000071
 50mL二口ナスフラスコ中に、2-ブロモ-3-ドデシルチオフェン(1.65g,5.0mmol)、2-トリブチルスタニルチオフェン(2.8g,7.5mmol)を入れ、窒素置換を3回おこなった。テトラキス(トリフェニルホスフィン)パラジウム(0)(173mg,3mol%)、トリフェニルホスフィン含有不均一系パラジウム錯体触媒Pd-EnCatTPP30(Aldrich社製,50mg,1mol%)、トルエン(8mL)、及びN,N-ジメチルホルムアミド(2mL)を入れ、110℃で5時間攪拌した。室温まで冷却した後、セライト濾過により固形物を除去し、ヘキサンと水を加えた。水相をヘキサンで抽出後、有機層を水、食塩水でそれぞれ一回洗浄し、無水硫酸ナトリウムで乾燥した。溶媒を留去後、シリカゲルカラムクロマトグラフィーにより3-ドデシル-2,2'-ビチオフェン(化合物T20)を透明液体として収率66%で得た。 2-Bromo-3-dodecylthiophene (1.65 g, 5.0 mmol) and 2-tributylstannylthiophene (2.8 g, 7.5 mmol) were placed in a 50 mL two-necked eggplant flask, and nitrogen substitution was performed three times. It was. Tetrakis (triphenylphosphine) palladium (0) (173 mg, 3 mol%), triphenylphosphine-containing heterogeneous palladium complex catalyst Pd-EnCatTPP30 (Aldrich, 50 mg, 1 mol%), toluene (8 mL), and N, N -Dimethylformamide (2 mL) was added and stirred at 110 ° C for 5 hours. After cooling to room temperature, solids were removed by celite filtration, and hexane and water were added. The aqueous phase was extracted with hexane, the organic layer was washed once with water and brine, and dried over anhydrous sodium sulfate. After distilling off the solvent, 3-dodecyl-2,2′-bithiophene (Compound T20) was obtained as a transparent liquid in a yield of 66% by silica gel column chromatography.
[合成例:3-ドデシル-5,5''-ビス(トリメチルスタニル)-2,2'-ビチオフェン(T21)の合成] [Synthesis Example: Synthesis of 3-dodecyl-5,5 ″ -bis (trimethylstannyl) -2,2′-bithiophene (T21)]
Figure JPOXMLDOC01-appb-C000072
Figure JPOXMLDOC01-appb-C000072
 窒素雰囲気下、50mL二口ナスフラスコ中に、上述の方法で得られた3-ドデシル-2,2'-ビチオフェン(T20)(1.11g,3.32mmol)を入れ、テトラヒドロフラン(THF,15.0mL)に溶解させ、-78℃に冷却した。さらに塩化トリメチルスズのテトラヒドロフラン溶液(TIC社製,1.0M,3.3mL,1.0eq)を滴下した。続いて、リチウムジイソプロピルアミド(LDA)のテトラヒドロフラン/ヘキサン溶液(関東化学社製,濃度1.3M,2.5mL,1.0eq)を滴下し、30分攪拌した。この操作を3回繰り返し、ゆっくり室温に昇温した。反応液に水を加え、ヘキサンで抽出後、有機層を水洗した。有機層を硫酸ナトリウム上で乾燥し、ろ過して減圧濃縮後、真空下で乾燥することにより、3-ドデシル-5,5''-ビス(トリメチルスタニル)-2,2'-ビチオフェン(化合物T21)を透明液体として定量的に得た。 Under a nitrogen atmosphere, 3-dodecyl-2,2′-bithiophene (T20) (1.11 g, 3.32 mmol) obtained by the above-described method was placed in a 50 mL two-necked eggplant flask, and tetrahydrofuran (THF, 15.2. (0 mL) and cooled to -78 ° C. Further, a tetrahydrofuran solution of trimethyltin chloride (manufactured by TIC, 1.0 M, 3.3 mL, 1.0 eq) was added dropwise. Subsequently, a tetrahydrofuran / hexane solution of lithium diisopropylamide (LDA) (manufactured by Kanto Chemical Co., Inc., concentration 1.3 M, 2.5 mL, 1.0 eq) was added dropwise and stirred for 30 minutes. This operation was repeated 3 times, and the temperature was slowly raised to room temperature. Water was added to the reaction solution, followed by extraction with hexane, and the organic layer was washed with water. The organic layer is dried over sodium sulfate, filtered, concentrated under reduced pressure, and then dried under vacuum to give 3-dodecyl-5,5 ″ -bis (trimethylstannyl) -2,2′-bithiophene (compound T21) was obtained quantitatively as a clear liquid.
[コポリマー18の合成] [Synthesis of Copolymer 18]
Figure JPOXMLDOC01-appb-C000073
Figure JPOXMLDOC01-appb-C000073
 窒素雰囲気下、50mL二口ナスフラスコに、モノマーとして、公知文献(Organic Letters 2004,6,3381-3384)に記載の方法を参考にして得られた1,3-ジブロモ-5-(n-オクチル)-4H-チエノ[3,4-c]ピロール-4,6-(5H)-ジオン(化合物F1(イミドチオフェンジブロミド),142.1mg,0.336mmol)及び国際公開2013/180243号に記載の方法を参考にして得られた化合物E1(127.6mg,0.168mmol)、化合物T21(113.2mg,0.168mmol)を加えて窒素置換を3回おこなった。さらにテトラキス(トリフェニルホスフィン)パラジウム(0)(9.6mg,2.5mol%)、トリフェニルホスフィン含有不均一系パラジウム錯体触媒Pd-EnCatTPP30(Aldrich社製,12.7mg,1.5mol%)、トルエン(10mL)、及びN,N-ジメチルホルムアミド(2.5mL)を入れ65℃から100℃まで昇温し、1時間撹拌した。さらに105℃で20分撹拌した後、トルエン(10mL)、トリメチル(フェニル)スズ(0.06mL)を加えて105℃でさらに1時間加熱攪拌した。ブロモベンゼン(1mL)を加えて105℃で82時間加熱攪拌して、反応溶液を室温まで冷却した。せライト2.5gとクロロホルム10mLを加え、セライト濾過した。得られた固体をクロロホルムに溶解させ、ジアミンシリカゲル(Fujiシリシア化学製)を加えて30分室温で攪拌し、酸性シリカゲルのショートカラムを通した。溶液を濃縮し、目的とするコポリマー18を、収率14%で得た。得られたコポリマー17の重量平均分子量Mwは60Kであり、PDIは2.6であった。 1,3-Dibromo-5- (n-octyl) was obtained in a 50 mL two-necked eggplant flask under a nitrogen atmosphere as a monomer by referring to a method described in a known document (Organic Letters 2004, 6, 3381-3384). ) -4H-thieno [3,4-c] pyrrole-4,6- (5H) -dione (compound F1 (imidothiophene dibromide), 142.1 mg, 0.336 mmol) and described in WO2013 / 180243 Compound E1 (127.6 mg, 0.168 mmol) and Compound T21 (113.2 mg, 0.168 mmol) obtained by referring to the above method were added, and nitrogen substitution was performed three times. Furthermore, tetrakis (triphenylphosphine) palladium (0) (9.6 mg, 2.5 mol%), triphenylphosphine-containing heterogeneous palladium complex catalyst Pd-EnCatTPP30 (manufactured by Aldrich, 12.7 mg, 1.5 mol%), Toluene (10 mL) and N, N-dimethylformamide (2.5 mL) were added, the temperature was raised from 65 ° C. to 100 ° C., and the mixture was stirred for 1 hour. After further stirring at 105 ° C. for 20 minutes, toluene (10 mL) and trimethyl (phenyl) tin (0.06 mL) were added, and the mixture was further heated and stirred at 105 ° C. for 1 hour. Bromobenzene (1 mL) was added and stirred with heating at 105 ° C. for 82 hours, and the reaction solution was cooled to room temperature. 2.5 g of Celite and 10 mL of chloroform were added and filtered through Celite. The obtained solid was dissolved in chloroform, diamine silica gel (Fuji Silysia Chemical) was added, and the mixture was stirred at room temperature for 30 minutes and passed through a short column of acidic silica gel. The solution was concentrated to give the desired copolymer 18 in 14% yield. The weight average molecular weight Mw of the obtained copolymer 17 was 60K, and PDI was 2.6.
<実施例1:光電変換素子1の作製>
 p型半導体化合物として合成例1で得られたコポリマー1、及びn型半導体化合物としてフラーレン化合物であるPC61BM(フェニルC61酪酸メチルエステル)とPC71BM(フェニルC71酪酸メチルエステル)との混合物(フロンティアカーボン社,nanom spectra E123)を2.4質量%の濃度となるように窒素雰囲気中でo-キシレンとテトラリンとの混合溶媒(体積比9:1)に溶解させた。なお、p型半導体化合物とn型半導体化合物の質量比は、p型半導体化合物:n型半導体化合物=1:2とした。この溶液をホットスターラー上で80℃の温度にて1時間攪拌混合した。攪拌混合後の溶液を1μmのポリテトラフルオロエチレン(PTFE)フィルターで濾過することにより、活性層塗布用インクを得た。
<Example 1: Production of photoelectric conversion element 1>
Copolymer 1 obtained in Synthesis Example 1 as a p-type semiconductor compound, and a mixture of fullerene compounds PC61BM (phenyl C61 butyric acid methyl ester) and PC71BM (phenyl C71 butyric acid methyl ester) as an n-type semiconductor compound (Frontier Carbon Co., Ltd., nanom spectra E123) was dissolved in a mixed solvent of o-xylene and tetralin (volume ratio 9: 1) in a nitrogen atmosphere to a concentration of 2.4% by mass. Note that the mass ratio of the p-type semiconductor compound to the n-type semiconductor compound was p-type semiconductor compound: n-type semiconductor compound = 1: 2. This solution was stirred and mixed on a hot stirrer at a temperature of 80 ° C. for 1 hour. The solution after stirring and mixing was filtered through a 1 μm polytetrafluoroethylene (PTFE) filter to obtain an ink for coating an active layer.
 インジウム・スズ酸化物(ITO)透明導電膜がパターニングされたガラス基板(ジオマテック社製)を、アセトンによる超音波洗浄、ついでイソプロパノールによる超音波洗浄の後、窒素ブローでの乾燥およびUV―オゾン処理を行った。 A glass substrate (manufactured by Geomatic Co., Ltd.) patterned with an indium tin oxide (ITO) transparent conductive film is subjected to ultrasonic cleaning with acetone, followed by ultrasonic cleaning with isopropanol, followed by drying with nitrogen blow and UV-ozone treatment. went.
 次に、酢酸亜鉛(II)二水和物(和光純薬社)を濃度105mg/mLになるように2-メトキシエタノール(Aldrich社)とエタノールアミン(Aldrich社)の混合溶媒(体積比100:3)に溶解した溶液(約0.1mL)を3000rpmの速度にてスピンコートし、UV―オゾン処理した後、200℃のオーブンで15分間加熱することで、電子取り出し層を形成した。
 電子取り出し層を成膜した基板をグローブボックスに持ち込み、窒素雰囲気下150℃で3分間加熱処理し、冷却後に上述の通り作製した活性層塗布用インク(0.12mL)をスピンコートすることにより約200nmの膜厚の活性層を形成した。その後、ホットプレート上にて140℃で10分間加熱した。
 活性層を成膜した基板をグローブボックスから取り出し、遮光下、大気中(25℃、湿度1%以下)に3時間静置した後、グローブボックス中に再度持ち込んだ。
 さらに、活性層上に、正孔取り出し層として厚さ1.5nmの三酸化モリブデン(MoO3)膜を形成し、その後、上部電極として厚さ100nmの銀膜を、抵抗加熱型真空蒸着法により順次成膜して、5mm角の光電変換素子を作製した。このように作製した光電変換素子1を、上述のように電流-電圧特性を測定することにより評価し、活性層が露光されていない場合の光電変換効率(PCE)を求めた。
Next, a mixed solvent of 2-methoxyethanol (Aldrich) and ethanolamine (Aldrich) at a concentration of 105 mg / mL of zinc (II) acetate dihydrate (Wako Pure Chemical Industries) (volume ratio 100: The solution (about 0.1 mL) dissolved in 3) was spin-coated at a speed of 3000 rpm, subjected to UV-ozone treatment, and then heated in an oven at 200 ° C. for 15 minutes to form an electron extraction layer.
The substrate on which the electron extraction layer was formed was brought into a glove box, heat-treated at 150 ° C. for 3 minutes in a nitrogen atmosphere, and after cooling, the ink for active layer application (0.12 mL) produced as described above was spin-coated. An active layer having a thickness of 200 nm was formed. Then, it heated at 140 degreeC for 10 minute (s) on the hotplate.
The substrate on which the active layer was formed was taken out of the glove box, allowed to stand in the atmosphere (25 ° C., humidity 1% or less) for 3 hours under light shielding, and then brought back into the glove box.
Further, a molybdenum trioxide (MoO 3 ) film having a thickness of 1.5 nm is formed on the active layer as a hole extraction layer, and then a silver film having a thickness of 100 nm is formed as an upper electrode by resistance heating vacuum deposition. A 5 mm square photoelectric conversion element was produced by sequentially forming a film. The photoelectric conversion element 1 thus produced was evaluated by measuring the current-voltage characteristics as described above, and the photoelectric conversion efficiency (PCE) when the active layer was not exposed was obtained.
 また、活性層まで成膜した基板をグローブボックスから取り出した後、蛍光灯の照射下、大気中(25℃、湿度1%以下)に3時間静置した以外は、上記と同様に正孔取り出し層及び上部電極を形成し、光電変換素子を作製した。このようにして得られた光電変換素子の変換効率を、活性層が露光された場合の光電変換素子1の光電変換効率(PCE)として値を求めた。なお、活性層が露光されていない場合の光電変換効率(PCE)に対する活性層が露光された場合の光電変換効率(PCE)の割合を露光時のPCE維持率(%)とした。得られた結果を表1に示す。 In addition, holes are taken out in the same manner as described above except that the substrate formed up to the active layer is taken out of the glove box and then left in the atmosphere (25 ° C., humidity 1% or less) for 3 hours under irradiation of a fluorescent lamp. A layer and an upper electrode were formed to produce a photoelectric conversion element. Thus, the value was calculated | required as the photoelectric conversion efficiency (PCE) of the photoelectric conversion element 1 when the active layer was exposed, when the conversion efficiency of the obtained photoelectric conversion element was exposed. In addition, the ratio of the photoelectric conversion efficiency (PCE) when the active layer was exposed to the photoelectric conversion efficiency (PCE) when the active layer was not exposed was defined as the PCE maintenance rate (%) at the time of exposure. The obtained results are shown in Table 1.
<実施例2:光電変換素子2の作製>
 合成例1で得られたコポリマー1の代わりに、合成例2で得られたコポリマー2を用いた以外は実施例1と同様の方法で光電変換素子2を作製し、光電変換効率(PCE)を求めた。得られた結果を表1に示す。
<Example 2: Production of photoelectric conversion element 2>
A photoelectric conversion element 2 was produced in the same manner as in Example 1 except that the copolymer 2 obtained in Synthesis Example 2 was used instead of the copolymer 1 obtained in Synthesis Example 1, and the photoelectric conversion efficiency (PCE) was increased. Asked. The obtained results are shown in Table 1.
<実施例3:光電変換素子3の作製>
 合成例1で得られたコポリマー1の代わりに、合成例3で得られたコポリマー3を用いた以外は実施例1と同様の方法で光電変換素子3を作製し、光電変換効率(PCE)を求めた。得られた結果を表1に示す。
<Example 3: Production of photoelectric conversion element 3>
A photoelectric conversion element 3 was prepared in the same manner as in Example 1 except that the copolymer 3 obtained in Synthesis Example 3 was used instead of the copolymer 1 obtained in Synthesis Example 1, and the photoelectric conversion efficiency (PCE) was increased. Asked. The obtained results are shown in Table 1.
<実施例4:光電変換素子4の作製>
 合成例1で得られたコポリマー1の代わりに、合成例4で得られたコポリマー4を用いた以外は実施例1と同様の方法で光電変換素子4を作製し、光電変換効率(PCE)を求めた。得られた結果を表1に示す。
<Example 4: Production of photoelectric conversion element 4>
A photoelectric conversion element 4 was produced in the same manner as in Example 1 except that the copolymer 4 obtained in Synthesis Example 4 was used instead of the copolymer 1 obtained in Synthesis Example 1, and the photoelectric conversion efficiency (PCE) was increased. Asked. The obtained results are shown in Table 1.
<実施例5:光電変換素子5の作製>
 合成例1で得られたコポリマー1の代わりに、合成例5で得られたコポリマー5を用いた以外は実施例1と同様の方法で光電変換素子5を作製し、光電変換効率(PCE)を求めた。得られた結果を表1に示す。
<Example 5: Production of photoelectric conversion element 5>
A photoelectric conversion element 5 was produced in the same manner as in Example 1 except that the copolymer 5 obtained in Synthesis Example 5 was used instead of the copolymer 1 obtained in Synthesis Example 1, and the photoelectric conversion efficiency (PCE) was increased. Asked. The obtained results are shown in Table 1.
<実施例6:光電変換素子6の作製>
 合成例1で得られたコポリマー1の代わりに、合成例6で得られたコポリマー6を用いた以外は実施例1と同様の方法で光電変換素子6を作製し、光電変換効率(PCE)を求めた。得られた結果を表1に示す。
<Example 6: Production of photoelectric conversion element 6>
A photoelectric conversion element 6 was produced in the same manner as in Example 1 except that the copolymer 6 obtained in Synthesis Example 6 was used instead of the copolymer 1 obtained in Synthesis Example 1, and the photoelectric conversion efficiency (PCE) was increased. Asked. The obtained results are shown in Table 1.
<比較例1:光電変換素子7の作製>
 合成例1で得られたコポリマー1の代わりに、合成例7で得られたコポリマー7を用いた以外は実施例1と同様の方法で光電変換素子7を作製し、光電変換効率(PCE)を求めた。得られた結果を表1に示す。
<Comparative Example 1: Production of photoelectric conversion element 7>
A photoelectric conversion element 7 was produced in the same manner as in Example 1 except that the copolymer 7 obtained in Synthesis Example 7 was used instead of the copolymer 1 obtained in Synthesis Example 1, and the photoelectric conversion efficiency (PCE) was changed. Asked. The obtained results are shown in Table 1.
<実施例7:光電変換素子8の作製>
 合成例1で得られたコポリマー1の代わりに、合成例8で得られたコポリマー8を用いた以外は実施例1と同様の方法で光電変換素子8を作製し、光電変換効率(PCE)を求めた。得られた結果を表1に示す。
<Example 7: Production of photoelectric conversion element 8>
A photoelectric conversion element 8 was produced in the same manner as in Example 1 except that the copolymer 8 obtained in Synthesis Example 8 was used instead of the copolymer 1 obtained in Synthesis Example 1, and the photoelectric conversion efficiency (PCE) was increased. Asked. The obtained results are shown in Table 1.
<実施例8:光電変換素子9の作製>
 合成例1で得られたコポリマー1の代わりに、合成例9で得られたコポリマー9を用いた以外は実施例1と同様の方法で光電変換素子9を作製し、光電変換効率(PCE)を求めた。得られた結果を表1に示す。
<Example 8: Production of photoelectric conversion element 9>
A photoelectric conversion element 9 was produced in the same manner as in Example 1 except that the copolymer 9 obtained in Synthesis Example 9 was used instead of the copolymer 1 obtained in Synthesis Example 1, and the photoelectric conversion efficiency (PCE) was changed. Asked. The obtained results are shown in Table 1.
<実施例9:光電変換素子10の作製>
 合成例1で得られたコポリマー1の代わりに、合成例10で得られたコポリマー10を用いた以外は実施例1と同様の方法で光電変換素子10を作製し、光電変換効率(PCE)を求めた。得られた結果を表1に示す。
<Example 9: Production of photoelectric conversion element 10>
A photoelectric conversion element 10 was produced in the same manner as in Example 1 except that the copolymer 10 obtained in Synthesis Example 10 was used instead of the copolymer 1 obtained in Synthesis Example 1, and the photoelectric conversion efficiency (PCE) was increased. Asked. The obtained results are shown in Table 1.
<実施例10:光電変換素子11の作製>
 合成例1で得られたコポリマー1の代わりに、合成例11で得られたコポリマー11を用いた以外は実施例1と同様の方法で光電変換素子11を作製し、光電変換効率(PCE)を求めた。得られた結果を表1に示す。
<Example 10: Production of photoelectric conversion element 11>
A photoelectric conversion element 11 was produced in the same manner as in Example 1 except that the copolymer 11 obtained in Synthesis Example 11 was used instead of the copolymer 1 obtained in Synthesis Example 1, and the photoelectric conversion efficiency (PCE) was increased. Asked. The obtained results are shown in Table 1.
<実施例11:光電変換素子12の作製>
 合成例1で得られたコポリマー1の代わりに、合成例12で得られたコポリマー12を用いた以外は実施例1と同様の方法で光電変換素子12を作製し、光電変換効率(PCE)を求めた。得られた結果を表1に示す。
<Example 11: Production of photoelectric conversion element 12>
A photoelectric conversion element 12 was produced in the same manner as in Example 1 except that the copolymer 12 obtained in Synthesis Example 12 was used instead of the copolymer 1 obtained in Synthesis Example 1, and the photoelectric conversion efficiency (PCE) was increased. Asked. The obtained results are shown in Table 1.
<実施例12:光電変換素子13の作製>
 合成例1で得られたコポリマー1の代わりに、合成例13で得られたコポリマー13を用いた以外は実施例1と同様の方法で光電変換素子13を作製し、光電変換効率(PCE)を求めた。得られた結果を表1に示す。
<Example 12: Production of photoelectric conversion element 13>
A photoelectric conversion element 13 was produced in the same manner as in Example 1 except that the copolymer 13 obtained in Synthesis Example 13 was used instead of the copolymer 1 obtained in Synthesis Example 1, and the photoelectric conversion efficiency (PCE) was increased. Asked. The obtained results are shown in Table 1.
<実施例13:光電変換素子14の作製>
 合成例1で得られたコポリマー1の代わりに、合成例14で得られたコポリマー14を用いた以外は実施例1と同様の方法で光電変換素子14を作製し、光電変換効率(PCE)を求めた。得られた結果を表1に示す。
<Example 13: Production of photoelectric conversion element 14>
A photoelectric conversion element 14 was produced in the same manner as in Example 1 except that the copolymer 14 obtained in Synthesis Example 14 was used instead of the copolymer 1 obtained in Synthesis Example 1, and the photoelectric conversion efficiency (PCE) was increased. Asked. The obtained results are shown in Table 1.
<比較例2:光電変換素子15の作製>
 合成例1で得られたコポリマー1の代わりに、合成例15で得られたコポリマー15を用いた以外は実施例1と同様の方法で光電変換素子15を作製した。しかしながら、コポリマー15は溶解性が低く、均一な膜を形成することはできず、結果的に光電変換素子として機能しなかった。
<Comparative Example 2: Production of photoelectric conversion element 15>
A photoelectric conversion element 15 was produced in the same manner as in Example 1 except that the copolymer 15 obtained in Synthesis Example 15 was used instead of the copolymer 1 obtained in Synthesis Example 1. However, the copolymer 15 has low solubility and cannot form a uniform film. As a result, the copolymer 15 did not function as a photoelectric conversion element.
<参考例1:光電変換素子16の作製>
 合成例1で得られたコポリマー1の代わりに、合成例16で得られたコポリマー16を用いた以外は実施例1と同様の方法で光電変換素子16を作製し、光電変換効率(PCE)を求めた。得られた結果を表1に示す。
<Reference Example 1: Production of photoelectric conversion element 16>
A photoelectric conversion element 16 was produced in the same manner as in Example 1 except that the copolymer 16 obtained in Synthesis Example 16 was used instead of the copolymer 1 obtained in Synthesis Example 1, and the photoelectric conversion efficiency (PCE) was increased. Asked. The obtained results are shown in Table 1.
<比較例3:光電変換素子17の作製>
 合成例1で得られたコポリマー1の代わりに、合成例17で得られたコポリマー17を用いた以外は実施例1と同様の方法で光電変換素子17を作製した。しかしながら、コポリマー17は溶解性が低く、均一な膜を形成することはできず、結果的に光電変換素子として機能しなかった。
<Comparative Example 3: Production of photoelectric conversion element 17>
A photoelectric conversion element 17 was produced in the same manner as in Example 1 except that the copolymer 17 obtained in Synthesis Example 17 was used instead of the copolymer 1 obtained in Synthesis Example 1. However, the copolymer 17 had low solubility and could not form a uniform film, and consequently did not function as a photoelectric conversion element.
<参考例2:光電変換素子18の作製>
 合成例1で得られたコポリマー1の代わりに、合成例18で得られたコポリマー18を用いた以外は実施例1と同様の方法で光電変換素子18を作製し、光電変換効率(PCE)を求めた。得られた結果を表1に示す。
<Reference Example 2: Production of photoelectric conversion element 18>
A photoelectric conversion element 18 was produced in the same manner as in Example 1 except that the copolymer 18 obtained in Synthesis Example 18 was used instead of the copolymer 1 obtained in Synthesis Example 1, and the photoelectric conversion efficiency (PCE) was increased. Asked. The obtained results are shown in Table 1.
Figure JPOXMLDOC01-appb-T000074
Figure JPOXMLDOC01-appb-T000074
 実施例1~13では、活性層を露光した場合と露光しなかった場合とで、変換効率の差はほとんど見られなかった。すなわち、露光前後の維持率が81%~107%と高い値を示した。一方、式(I)の部分構造のみを有するコポリマー7を用いた比較例1においては、活性層を露光すると、活性層を露光しなかった場合と比較して、変換効率が大幅に低下していることが分かる。また、本発明とは異なる位置に置換基を有するチオフェン環を含む参考例1に係るコポリマーは活性層を露光すると、活性層を露光しなかった場合と比較して、変換効率が大幅に低下していることが分かる。同様に、本発明のように特定の位置に置換基を導入したチオフェン環を有さず、チオフェン環の1つのみが置換基を有する参考例2に係るコポリマーも、活性層を露光すると、活性層を露光しなかった場合と比較して、変換効率が大幅に低下していることが分かる。また、式(II)の部分構造のみを有する比較例2に係るコポリマーは、溶解性が低く均一な膜を形成することができず、光電変換素子として機能しなかった。同様に、本発明のように特定の位置に置換基を導入したチオフェン環を有さない比較例3に係るコポリマーも、溶解性が低く均一な膜を形成することができず、光電変換素子として機能しなかった。以上から、式(I)と式(II)の部分構造を共に有する本願発明に係るコポリマーを用いることにより、露光耐性に優れた光電変換素子を提供することができることが分かる。
 また、本発明の一実施形態に係るコポリマーは露光安定性が高いために、光電変換素子の製造プロセス中に、活性層が光に晒されても、得られる光電変換素子の変換効率が低下するのを防ぐことができる。
In Examples 1 to 13, there was almost no difference in conversion efficiency between when the active layer was exposed and when it was not exposed. That is, the maintenance ratio before and after exposure showed a high value of 81% to 107%. On the other hand, in Comparative Example 1 using the copolymer 7 having only the partial structure of the formula (I), when the active layer is exposed, the conversion efficiency is greatly reduced as compared with the case where the active layer is not exposed. I understand that. In addition, when the copolymer according to Reference Example 1 containing a thiophene ring having a substituent at a position different from that of the present invention is exposed to the active layer, the conversion efficiency is greatly reduced as compared with the case where the active layer is not exposed. I understand that Similarly, the copolymer according to Reference Example 2 that does not have a thiophene ring in which a substituent is introduced at a specific position as in the present invention and only one of the thiophene rings has a substituent is also active when the active layer is exposed. It can be seen that the conversion efficiency is greatly reduced compared to the case where the layer was not exposed. Further, the copolymer according to Comparative Example 2 having only the partial structure of the formula (II) was not soluble and could not form a uniform film, and did not function as a photoelectric conversion element. Similarly, the copolymer according to Comparative Example 3, which does not have a thiophene ring having a substituent introduced at a specific position as in the present invention, cannot form a uniform film with low solubility, and can be used as a photoelectric conversion element. Didn't work. From the above, it can be seen that by using the copolymer according to the present invention having both the partial structures of formula (I) and formula (II), a photoelectric conversion element having excellent exposure resistance can be provided.
In addition, since the copolymer according to an embodiment of the present invention has high exposure stability, the conversion efficiency of the obtained photoelectric conversion element is reduced even if the active layer is exposed to light during the manufacturing process of the photoelectric conversion element. Can be prevented.
101 下部電極
102 下部バッファ層
103 活性層
104 上部バッファ層
105 上部電極
106 基材
107 光電変換素子
1   耐候性保護フィルム
2   紫外線カットフィルム
3,9 ガスバリアフィルム
4,8 ゲッター材フィルム
5,7 封止材
6   太陽電池素子
10  バックシート
12  基材
13  太陽電池ユニット
14  薄膜太陽電池
DESCRIPTION OF SYMBOLS 101 Lower electrode 102 Lower buffer layer 103 Active layer 104 Upper buffer layer 105 Upper electrode 106 Base material 107 Photoelectric conversion element 1 Weatherproofing protective film 2 UV cut film 3,9 Gas barrier film 4,8 Getter material film 5,7 Sealing material 6 Solar cell element 10 Back sheet 12 Base material 13 Solar cell unit 14 Thin film solar cell

Claims (8)

  1.  下記式(I)で表される繰り返し単位と、下記式(II)で表される繰り返し単位と、を有するコポリマー。
    Figure JPOXMLDOC01-appb-C000001
    Figure JPOXMLDOC01-appb-C000002
    (式(I)中、Dはドナー性のモノマー単位を表し、A1はアクセプター性モノマー単位を表す。式(II)中、A2は、アクセプター性モノマー単位を表し、Lは直接結合又は2価の連結基を表し、R1及びR2は、それぞれ独立して1価の有機基を表す。前記式(I)で表される繰り返し単位と前記式(II)で表される繰り返し単位は互いに同じ繰り返し単位ではない。)
    A copolymer having a repeating unit represented by the following formula (I) and a repeating unit represented by the following formula (II).
    Figure JPOXMLDOC01-appb-C000001
    Figure JPOXMLDOC01-appb-C000002
    (In Formula (I), D represents a donor monomer unit, A1 represents an acceptor monomer unit. In Formula (II), A2 represents an acceptor monomer unit, and L represents a direct bond or a divalent monomer unit. R 1 and R 2 each independently represent a monovalent organic group, and the repeating unit represented by the formula (I) and the repeating unit represented by the formula (II) are the same as each other. Not a repeating unit.)
  2.  前記式(I)中、Dは、下記式(III)で表される構成単位又は下記式(XI)で表される構成単位であることを特徴とする請求項1に記載のコポリマー。
    Figure JPOXMLDOC01-appb-C000003
    (式(III)中、Ar1及びAr2は、それぞれ独立して、置換基を有していてもよい芳香環を表す。X1は、Q1(R3)(R4)又はQ3(R10)を表し、Q1は、周期表第14族元素から選ばれる原子を表し、R3及びR4はそれぞれ独立して、水素原子又は1価の有機基を表す。Q3は、周期表第15族元素から選ばれる原子を表し、R10は、水素原子又は1価の有機基を表す。X2は、直接結合、酸素原子(O)、硫黄原子(S)、N(R5)、又はQ2(R6)(R7)を表し、Q2は、周期表第14族元素から選ばれる原子を表し、R5~R7はそれぞれ水素原子又は1価の有機基を表す。)
    Figure JPOXMLDOC01-appb-C000004
    (式(XI)中、Ar3及びAr4はそれぞれ独立して置換基を有していてもよい芳香環を表し、X3及びX4はそれぞれ独立して、Q4(R11)を表す。Q4は、周期表第14族元素から選ばれる原子を表し、R11は水素原子又は1価の有機基を表す。)
    The copolymer according to claim 1, wherein D in the formula (I) is a structural unit represented by the following formula (III) or a structural unit represented by the following formula (XI).
    Figure JPOXMLDOC01-appb-C000003
    (In formula (III), Ar 1 and Ar 2 each independently represent an aromatic ring which may have a substituent. X 1 represents Q 1 (R 3 ) (R 4 ) or Q 3. represents (R 10), Q 1 represents an atom selected from the periodic table group 14 element, R 3 and R 4 are each independently, .Q 3 represents a hydrogen atom or a monovalent organic group, Represents an atom selected from Group 15 elements of the periodic table, and R 10 represents a hydrogen atom or a monovalent organic group, X 2 represents a direct bond, an oxygen atom (O), a sulfur atom (S), N (R 5 ) or Q 2 (R 6 ) (R 7 ), Q 2 represents an atom selected from Group 14 elements of the periodic table, and R 5 to R 7 each represents a hydrogen atom or a monovalent organic group. To express.)
    Figure JPOXMLDOC01-appb-C000004
    (In the formula (XI), Ar 3 and Ar 4 each independently represent an aromatic ring optionally having a substituent, and X 3 and X 4 each independently represent Q 4 (R 11 ). Q 4 represents an atom selected from Group 14 elements of the periodic table, and R 11 represents a hydrogen atom or a monovalent organic group.)
  3.  前記式(I)及び前記式(II)中、A1及びA2は、それぞれ下記式(XIV)で表される構成単位又は下記式(XV)で表される構成単位であることを特徴とする請求項1又は2に記載のコポリマー。
    Figure JPOXMLDOC01-appb-C000005
    (式(XIV)中、Ar5は、置換基を有していてもよい芳香族炭化水素環、置換基を有していてもよい脂肪族複素環又は置換基を有していてもよい芳香族複素環を表し、X5は、周期表第16族元素から選ばれる原子を表す。)
    Figure JPOXMLDOC01-appb-C000006
    (式(XV)中、Ar6は、置換基を有していてもよい芳香族炭化水素環、置換基を有していてもよい脂肪族複素環又は置換基を有していてもよい芳香族複素環を表し、X6及びX7はそれぞれ独立して、窒素原子(N)又はQ5(R12)を表す。Q5は、周期表第14族元素から選ばれる原子を表し、R12は水素原子又は1価の有機基を表す。)
    In the formula (I) and the formula (II), A1 and A2 are structural units represented by the following formula (XIV) or structural units represented by the following formula (XV), respectively. Item 3. The copolymer according to Item 1 or 2.
    Figure JPOXMLDOC01-appb-C000005
    (In the formula (XIV), Ar 5 is an aromatic hydrocarbon ring which may have a substituent, an aliphatic heterocyclic ring which may have a substituent, or an aromatic which may have a substituent. X 5 represents an atom selected from Group 16 elements of the periodic table.
    Figure JPOXMLDOC01-appb-C000006
    (In the formula (XV), Ar 6 represents an aromatic hydrocarbon ring that may have a substituent, an aliphatic heterocyclic ring that may have a substituent, or an aromatic that may have a substituent. X 6 and X 7 each independently represent a nitrogen atom (N) or Q 5 (R 12 ), Q 5 represents an atom selected from Group 14 elements of the Periodic Table, 12 represents a hydrogen atom or a monovalent organic group.)
  4.  前記式(I)中のA1と前記式(II)中のA2は同じであることを特徴とする請求項1~3のいずれか1項に記載のコポリマー。 The copolymer according to any one of claims 1 to 3, wherein A1 in the formula (I) and A2 in the formula (II) are the same.
  5.  前記式(II)中、Lは直接結合、置換基を有していてもよい、2価の単環式の芳香族複素環基、及び置換基を有していてもよい、単環式の芳香族複素環基が連結した2価の多環式の芳香族複素環基からなる群より選ばれた1種であることを特徴とする請求項1~4のいずれか1項に記載のコポリマー。 In the formula (II), L is a direct bond, a divalent monocyclic aromatic heterocyclic group which may have a substituent, and a monocyclic which may have a substituent. The copolymer according to any one of claims 1 to 4, wherein the copolymer is one selected from the group consisting of divalent polycyclic aromatic heterocyclic groups to which aromatic heterocyclic groups are linked. .
  6.  基材上に、少なくとも一対の電極と、該一対の電極間に活性層と、を有する光電変換素子であって、前記活性層が請求項1~5のいずれか1項に記載のコポリマーを含有することを特徴とする光電変換素子。 6. A photoelectric conversion element comprising at least a pair of electrodes and an active layer between the pair of electrodes on a base material, wherein the active layer contains the copolymer according to claim 1. A photoelectric conversion element characterized by:
  7.  請求項6に記載の光電変換素子を有する太陽電池。 A solar cell having the photoelectric conversion element according to claim 6.
  8.  請求項7に記載の太陽電池を有する太陽電池モジュール。 A solar cell module having the solar cell according to claim 7.
PCT/JP2015/072279 2014-08-06 2015-08-05 Copolymer, photoelectric conversion element, solar cell and solar cell module WO2016021660A1 (en)

Priority Applications (1)

Application Number Priority Date Filing Date Title
JP2016540274A JPWO2016021660A1 (en) 2014-08-06 2015-08-05 Copolymer, photoelectric conversion element, solar cell, and solar cell module

Applications Claiming Priority (2)

Application Number Priority Date Filing Date Title
JP2014160687 2014-08-06
JP2014-160687 2014-08-06

Publications (1)

Publication Number Publication Date
WO2016021660A1 true WO2016021660A1 (en) 2016-02-11

Family

ID=55263919

Family Applications (1)

Application Number Title Priority Date Filing Date
PCT/JP2015/072279 WO2016021660A1 (en) 2014-08-06 2015-08-05 Copolymer, photoelectric conversion element, solar cell and solar cell module

Country Status (2)

Country Link
JP (1) JPWO2016021660A1 (en)
WO (1) WO2016021660A1 (en)

Cited By (2)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
KR20180029675A (en) * 2016-09-13 2018-03-21 주식회사 엘지화학 Copolymer and organic solar cell comprising the same
KR20190103064A (en) * 2018-02-27 2019-09-04 건국대학교 산학협력단 Conductive polymer containing hetero cyclic compounds introducing halogen atoms and Organic semiconductor device comprising the same

Citations (3)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
WO2012133794A1 (en) * 2011-03-31 2012-10-04 株式会社クラレ Block copolymer and photoelectric conversion element
JP2013221074A (en) * 2012-04-16 2013-10-28 Kuraray Co Ltd π-ELECTRON CONJUGATED BLOCK COPOLYMER AND PHOTOELECTRIC TRANSFER ELEMENT
WO2014029014A1 (en) * 2012-08-20 2014-02-27 UNIVERSITé LAVAL Thieno, furo and selenopheno-[3,4-c]pyrrole-4,6-dione copolymers

Patent Citations (3)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
WO2012133794A1 (en) * 2011-03-31 2012-10-04 株式会社クラレ Block copolymer and photoelectric conversion element
JP2013221074A (en) * 2012-04-16 2013-10-28 Kuraray Co Ltd π-ELECTRON CONJUGATED BLOCK COPOLYMER AND PHOTOELECTRIC TRANSFER ELEMENT
WO2014029014A1 (en) * 2012-08-20 2014-02-27 UNIVERSITé LAVAL Thieno, furo and selenopheno-[3,4-c]pyrrole-4,6-dione copolymers

Non-Patent Citations (1)

* Cited by examiner, † Cited by third party
Title
JANG JO ET AL.: "A New Terthiophene- Thienopyrrolodione Copolymer-Based Bulk Heterojunction Solar Cell with High Open- Circuit Voltage", ADVANCED ENERGY MATERIALS, vol. 2, 2012, pages 1397 - 1403, XP055175664, DOI: doi:10.1002/aenm.201200350 *

Cited By (4)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
KR20180029675A (en) * 2016-09-13 2018-03-21 주식회사 엘지화학 Copolymer and organic solar cell comprising the same
KR102074550B1 (en) * 2016-09-13 2020-02-06 주식회사 엘지화학 Copolymer and organic solar cell comprising the same
KR20190103064A (en) * 2018-02-27 2019-09-04 건국대학교 산학협력단 Conductive polymer containing hetero cyclic compounds introducing halogen atoms and Organic semiconductor device comprising the same
KR102167007B1 (en) * 2018-02-27 2020-10-16 건국대학교 산학협력단 Conductive polymer containing hetero cyclic compounds introducing halogen atoms and Organic semiconductor device comprising the same

Also Published As

Publication number Publication date
JPWO2016021660A1 (en) 2017-05-25

Similar Documents

Publication Publication Date Title
Li et al. Cyclopentadithiophene–benzothiadiazole donor–acceptor polymers as prototypical semiconductors for high-performance field-effect transistors
CN109790176B (en) Organic semiconductor compound
Zhang et al. Bulk-heterojunction solar cells with benzotriazole-based copolymers as electron donors: largely improved photovoltaic parameters by using PFN/Al bilayer cathode
Wang et al. Extending π-conjugation system with benzene: an effective method to improve the properties of benzodithiophene-based polymer for highly efficient organic solar cells
Jiang et al. Crystalline low-band gap polymers comprising thiophene and 2, 1, 3-benzooxadiazole units for bulk heterojunction solar cells
Chen et al. Donor–acceptor random copolymers based on a ladder-type nonacyclic unit: synthesis, characterization, and photovoltaic applications
CN109891616B (en) Organic semiconductor compound
US11508910B2 (en) Organic semiconducting compounds
WO2013018951A1 (en) Conductive polymer comprising 3,6-carbazole and organic solar cell using same
JP6904252B2 (en) Copolymers, photoelectric conversion elements, solar cells and solar cell modules
WO2012043401A1 (en) Alternating copolymerization polymer and organic photoelectric conversion element
WO2018099492A2 (en) Organic semiconducting compounds
Kim et al. Efficient polymer solar cells based on dialkoxynaphthalene and benzo [c][1, 2, 5] thiadiazole: A new approach for simple donor–acceptor pair
CN112368316A (en) Organic semiconducting polymers
JP6127789B2 (en) Copolymer, organic semiconductor material, organic electronic device and solar cell module
US20150194608A1 (en) Building block for low bandgap conjugated polymers
JP6005595B2 (en) Polymer and solar cell using the same
WO2016021660A1 (en) Copolymer, photoelectric conversion element, solar cell and solar cell module
Furukawa et al. High-Crystallinity π-Conjugated Small Molecules Based on Thienylene–Vinylene–Thienylene: Critical Role of Self-Organization in Photovoltaic, Charge-Transport, and Morphological Properties
Wang et al. Incorporating trialkylsilylethynyl-substituted head-to-head bithiophene unit into copolymers for efficient non-fullerene organic solar cells
KR101838232B1 (en) Organic semiconductor compound and organic electronic device comprising the same
JP2014031507A (en) Copolymer, organic semiconductor material, organic electronic device, and solar cell module
JP6699545B2 (en) Photoelectric conversion element and organic semiconductor compound used therein
JP5701453B2 (en) Difluorobenzotriazolyl solar cell material, preparation method, and method of use thereof
JP2016183290A (en) Copolymer, photoelectric conversion element, and solar battery module

Legal Events

Date Code Title Description
121 Ep: the epo has been informed by wipo that ep was designated in this application

Ref document number: 15830642

Country of ref document: EP

Kind code of ref document: A1

ENP Entry into the national phase

Ref document number: 2016540274

Country of ref document: JP

Kind code of ref document: A

NENP Non-entry into the national phase

Ref country code: DE

122 Ep: pct application non-entry in european phase

Ref document number: 15830642

Country of ref document: EP

Kind code of ref document: A1