WO2012041479A1 - Mikrofluidikchip mit mehreren zylinder-kolben-anordnungen - Google Patents

Mikrofluidikchip mit mehreren zylinder-kolben-anordnungen Download PDF

Info

Publication number
WO2012041479A1
WO2012041479A1 PCT/EP2011/004816 EP2011004816W WO2012041479A1 WO 2012041479 A1 WO2012041479 A1 WO 2012041479A1 EP 2011004816 W EP2011004816 W EP 2011004816W WO 2012041479 A1 WO2012041479 A1 WO 2012041479A1
Authority
WO
WIPO (PCT)
Prior art keywords
microfluidic device
adjacent channels
piston
substrate
microfluidic
Prior art date
Application number
PCT/EP2011/004816
Other languages
English (en)
French (fr)
Other versions
WO2012041479A8 (de
Inventor
Klaus-Stefan Dresse
Daniel Latta
Marion Ritzi-Lehnert
Tina Roeser
Original Assignee
INSTITUT FüR MIKROTECHNIK MAINZ GMBH
Priority date (The priority date is an assumption and is not a legal conclusion. Google has not performed a legal analysis and makes no representation as to the accuracy of the date listed.)
Filing date
Publication date
Application filed by INSTITUT FüR MIKROTECHNIK MAINZ GMBH filed Critical INSTITUT FüR MIKROTECHNIK MAINZ GMBH
Priority to US13/824,817 priority Critical patent/US9278352B2/en
Priority to EP11779084.0A priority patent/EP2621633A1/de
Publication of WO2012041479A1 publication Critical patent/WO2012041479A1/de
Publication of WO2012041479A8 publication Critical patent/WO2012041479A8/de

Links

Classifications

    • BPERFORMING OPERATIONS; TRANSPORTING
    • B01PHYSICAL OR CHEMICAL PROCESSES OR APPARATUS IN GENERAL
    • B01LCHEMICAL OR PHYSICAL LABORATORY APPARATUS FOR GENERAL USE
    • B01L3/00Containers or dishes for laboratory use, e.g. laboratory glassware; Droppers
    • B01L3/50Containers for the purpose of retaining a material to be analysed, e.g. test tubes
    • B01L3/502Containers for the purpose of retaining a material to be analysed, e.g. test tubes with fluid transport, e.g. in multi-compartment structures
    • B01L3/5027Containers for the purpose of retaining a material to be analysed, e.g. test tubes with fluid transport, e.g. in multi-compartment structures by integrated microfluidic structures, i.e. dimensions of channels and chambers are such that surface tension forces are important, e.g. lab-on-a-chip
    • B01L3/50273Containers for the purpose of retaining a material to be analysed, e.g. test tubes with fluid transport, e.g. in multi-compartment structures by integrated microfluidic structures, i.e. dimensions of channels and chambers are such that surface tension forces are important, e.g. lab-on-a-chip characterised by the means or forces applied to move the fluids
    • BPERFORMING OPERATIONS; TRANSPORTING
    • B01PHYSICAL OR CHEMICAL PROCESSES OR APPARATUS IN GENERAL
    • B01LCHEMICAL OR PHYSICAL LABORATORY APPARATUS FOR GENERAL USE
    • B01L3/00Containers or dishes for laboratory use, e.g. laboratory glassware; Droppers
    • B01L3/50Containers for the purpose of retaining a material to be analysed, e.g. test tubes
    • B01L3/502Containers for the purpose of retaining a material to be analysed, e.g. test tubes with fluid transport, e.g. in multi-compartment structures
    • B01L3/5027Containers for the purpose of retaining a material to be analysed, e.g. test tubes with fluid transport, e.g. in multi-compartment structures by integrated microfluidic structures, i.e. dimensions of channels and chambers are such that surface tension forces are important, e.g. lab-on-a-chip
    • FMECHANICAL ENGINEERING; LIGHTING; HEATING; WEAPONS; BLASTING
    • F04POSITIVE - DISPLACEMENT MACHINES FOR LIQUIDS; PUMPS FOR LIQUIDS OR ELASTIC FLUIDS
    • F04BPOSITIVE-DISPLACEMENT MACHINES FOR LIQUIDS; PUMPS
    • F04B19/00Machines or pumps having pertinent characteristics not provided for in, or of interest apart from, groups F04B1/00 - F04B17/00
    • F04B19/006Micropumps
    • BPERFORMING OPERATIONS; TRANSPORTING
    • B01PHYSICAL OR CHEMICAL PROCESSES OR APPARATUS IN GENERAL
    • B01LCHEMICAL OR PHYSICAL LABORATORY APPARATUS FOR GENERAL USE
    • B01L2200/00Solutions for specific problems relating to chemical or physical laboratory apparatus
    • B01L2200/06Fluid handling related problems
    • B01L2200/0605Metering of fluids
    • BPERFORMING OPERATIONS; TRANSPORTING
    • B01PHYSICAL OR CHEMICAL PROCESSES OR APPARATUS IN GENERAL
    • B01LCHEMICAL OR PHYSICAL LABORATORY APPARATUS FOR GENERAL USE
    • B01L2200/00Solutions for specific problems relating to chemical or physical laboratory apparatus
    • B01L2200/06Fluid handling related problems
    • B01L2200/0689Sealing
    • BPERFORMING OPERATIONS; TRANSPORTING
    • B01PHYSICAL OR CHEMICAL PROCESSES OR APPARATUS IN GENERAL
    • B01LCHEMICAL OR PHYSICAL LABORATORY APPARATUS FOR GENERAL USE
    • B01L2300/00Additional constructional details
    • B01L2300/06Auxiliary integrated devices, integrated components
    • B01L2300/0627Sensor or part of a sensor is integrated
    • B01L2300/0645Electrodes
    • BPERFORMING OPERATIONS; TRANSPORTING
    • B01PHYSICAL OR CHEMICAL PROCESSES OR APPARATUS IN GENERAL
    • B01LCHEMICAL OR PHYSICAL LABORATORY APPARATUS FOR GENERAL USE
    • B01L2300/00Additional constructional details
    • B01L2300/08Geometry, shape and general structure
    • B01L2300/0832Geometry, shape and general structure cylindrical, tube shaped
    • B01L2300/0838Capillaries
    • BPERFORMING OPERATIONS; TRANSPORTING
    • B01PHYSICAL OR CHEMICAL PROCESSES OR APPARATUS IN GENERAL
    • B01LCHEMICAL OR PHYSICAL LABORATORY APPARATUS FOR GENERAL USE
    • B01L2300/00Additional constructional details
    • B01L2300/08Geometry, shape and general structure
    • B01L2300/0848Specific forms of parts of containers
    • B01L2300/0858Side walls
    • BPERFORMING OPERATIONS; TRANSPORTING
    • B01PHYSICAL OR CHEMICAL PROCESSES OR APPARATUS IN GENERAL
    • B01LCHEMICAL OR PHYSICAL LABORATORY APPARATUS FOR GENERAL USE
    • B01L2300/00Additional constructional details
    • B01L2300/08Geometry, shape and general structure
    • B01L2300/0861Configuration of multiple channels and/or chambers in a single devices
    • BPERFORMING OPERATIONS; TRANSPORTING
    • B01PHYSICAL OR CHEMICAL PROCESSES OR APPARATUS IN GENERAL
    • B01LCHEMICAL OR PHYSICAL LABORATORY APPARATUS FOR GENERAL USE
    • B01L2300/00Additional constructional details
    • B01L2300/08Geometry, shape and general structure
    • B01L2300/0861Configuration of multiple channels and/or chambers in a single devices
    • B01L2300/0864Configuration of multiple channels and/or chambers in a single devices comprising only one inlet and multiple receiving wells, e.g. for separation, splitting
    • BPERFORMING OPERATIONS; TRANSPORTING
    • B01PHYSICAL OR CHEMICAL PROCESSES OR APPARATUS IN GENERAL
    • B01LCHEMICAL OR PHYSICAL LABORATORY APPARATUS FOR GENERAL USE
    • B01L2300/00Additional constructional details
    • B01L2300/08Geometry, shape and general structure
    • B01L2300/0861Configuration of multiple channels and/or chambers in a single devices
    • B01L2300/0883Serpentine channels
    • BPERFORMING OPERATIONS; TRANSPORTING
    • B01PHYSICAL OR CHEMICAL PROCESSES OR APPARATUS IN GENERAL
    • B01LCHEMICAL OR PHYSICAL LABORATORY APPARATUS FOR GENERAL USE
    • B01L2300/00Additional constructional details
    • B01L2300/08Geometry, shape and general structure
    • B01L2300/089Virtual walls for guiding liquids
    • BPERFORMING OPERATIONS; TRANSPORTING
    • B01PHYSICAL OR CHEMICAL PROCESSES OR APPARATUS IN GENERAL
    • B01LCHEMICAL OR PHYSICAL LABORATORY APPARATUS FOR GENERAL USE
    • B01L2400/00Moving or stopping fluids
    • B01L2400/04Moving fluids with specific forces or mechanical means
    • B01L2400/0475Moving fluids with specific forces or mechanical means specific mechanical means and fluid pressure
    • B01L2400/0478Moving fluids with specific forces or mechanical means specific mechanical means and fluid pressure pistons
    • BPERFORMING OPERATIONS; TRANSPORTING
    • B01PHYSICAL OR CHEMICAL PROCESSES OR APPARATUS IN GENERAL
    • B01LCHEMICAL OR PHYSICAL LABORATORY APPARATUS FOR GENERAL USE
    • B01L3/00Containers or dishes for laboratory use, e.g. laboratory glassware; Droppers
    • B01L3/02Burettes; Pipettes
    • B01L3/021Pipettes, i.e. with only one conduit for withdrawing and redistributing liquids
    • B01L3/0217Pipettes, i.e. with only one conduit for withdrawing and redistributing liquids of the plunger pump type
    • BPERFORMING OPERATIONS; TRANSPORTING
    • B01PHYSICAL OR CHEMICAL PROCESSES OR APPARATUS IN GENERAL
    • B01LCHEMICAL OR PHYSICAL LABORATORY APPARATUS FOR GENERAL USE
    • B01L3/00Containers or dishes for laboratory use, e.g. laboratory glassware; Droppers
    • B01L3/50Containers for the purpose of retaining a material to be analysed, e.g. test tubes
    • B01L3/502Containers for the purpose of retaining a material to be analysed, e.g. test tubes with fluid transport, e.g. in multi-compartment structures
    • B01L3/5027Containers for the purpose of retaining a material to be analysed, e.g. test tubes with fluid transport, e.g. in multi-compartment structures by integrated microfluidic structures, i.e. dimensions of channels and chambers are such that surface tension forces are important, e.g. lab-on-a-chip
    • B01L3/502707Containers for the purpose of retaining a material to be analysed, e.g. test tubes with fluid transport, e.g. in multi-compartment structures by integrated microfluidic structures, i.e. dimensions of channels and chambers are such that surface tension forces are important, e.g. lab-on-a-chip characterised by the manufacture of the container or its components
    • BPERFORMING OPERATIONS; TRANSPORTING
    • B01PHYSICAL OR CHEMICAL PROCESSES OR APPARATUS IN GENERAL
    • B01LCHEMICAL OR PHYSICAL LABORATORY APPARATUS FOR GENERAL USE
    • B01L3/00Containers or dishes for laboratory use, e.g. laboratory glassware; Droppers
    • B01L3/50Containers for the purpose of retaining a material to be analysed, e.g. test tubes
    • B01L3/502Containers for the purpose of retaining a material to be analysed, e.g. test tubes with fluid transport, e.g. in multi-compartment structures
    • B01L3/5027Containers for the purpose of retaining a material to be analysed, e.g. test tubes with fluid transport, e.g. in multi-compartment structures by integrated microfluidic structures, i.e. dimensions of channels and chambers are such that surface tension forces are important, e.g. lab-on-a-chip
    • B01L3/502738Containers for the purpose of retaining a material to be analysed, e.g. test tubes with fluid transport, e.g. in multi-compartment structures by integrated microfluidic structures, i.e. dimensions of channels and chambers are such that surface tension forces are important, e.g. lab-on-a-chip characterised by integrated valves
    • BPERFORMING OPERATIONS; TRANSPORTING
    • B01PHYSICAL OR CHEMICAL PROCESSES OR APPARATUS IN GENERAL
    • B01LCHEMICAL OR PHYSICAL LABORATORY APPARATUS FOR GENERAL USE
    • B01L3/00Containers or dishes for laboratory use, e.g. laboratory glassware; Droppers
    • B01L3/50Containers for the purpose of retaining a material to be analysed, e.g. test tubes
    • B01L3/502Containers for the purpose of retaining a material to be analysed, e.g. test tubes with fluid transport, e.g. in multi-compartment structures
    • B01L3/5027Containers for the purpose of retaining a material to be analysed, e.g. test tubes with fluid transport, e.g. in multi-compartment structures by integrated microfluidic structures, i.e. dimensions of channels and chambers are such that surface tension forces are important, e.g. lab-on-a-chip
    • B01L3/502746Containers for the purpose of retaining a material to be analysed, e.g. test tubes with fluid transport, e.g. in multi-compartment structures by integrated microfluidic structures, i.e. dimensions of channels and chambers are such that surface tension forces are important, e.g. lab-on-a-chip characterised by the means for controlling flow resistance, e.g. flow controllers, baffles
    • FMECHANICAL ENGINEERING; LIGHTING; HEATING; WEAPONS; BLASTING
    • F16ENGINEERING ELEMENTS AND UNITS; GENERAL MEASURES FOR PRODUCING AND MAINTAINING EFFECTIVE FUNCTIONING OF MACHINES OR INSTALLATIONS; THERMAL INSULATION IN GENERAL
    • F16KVALVES; TAPS; COCKS; ACTUATING-FLOATS; DEVICES FOR VENTING OR AERATING
    • F16K99/00Subject matter not provided for in other groups of this subclass
    • F16K2099/0082Microvalves adapted for a particular use
    • F16K2099/0084Chemistry or biology, e.g. "lab-on-a-chip" technology
    • FMECHANICAL ENGINEERING; LIGHTING; HEATING; WEAPONS; BLASTING
    • F16ENGINEERING ELEMENTS AND UNITS; GENERAL MEASURES FOR PRODUCING AND MAINTAINING EFFECTIVE FUNCTIONING OF MACHINES OR INSTALLATIONS; THERMAL INSULATION IN GENERAL
    • F16KVALVES; TAPS; COCKS; ACTUATING-FLOATS; DEVICES FOR VENTING OR AERATING
    • F16K99/00Subject matter not provided for in other groups of this subclass
    • F16K99/0001Microvalves

Definitions

  • the invention relates to a microfluidic device with a substrate, in particular in the form of one or more microfluidic chips, also referred to as Lap-on-a-chip system, in which a microfluidic structure for performing chemical, biological, biochemical and / or medical Analysis and / or detection method (short: tests), such as immunoassays, DNA assays or the like is formed.
  • a sample to be examined is distributed via a central feed line to a plurality of separate reaction chambers or detection regions in which, for example, different reaction components for the sample to be analyzed are immobilized or otherwise introduced or introduced.
  • the invention further relates to a method for producing a corresponding microfluidic device.
  • Microfluidics is characterized by a controlled movement of smallest sample volumes in the micro or nanoliter range. An exact control of reactions in microchannels or microchambers within the microfluidic chips is thereby possible.
  • the microfluidic control is therefore a great challenge in particular because, due to the very small dimensions of the channels and chambers, surface effects play a very dominant role, which complicates reproducible processes within the microfluidic arrangement.
  • This problem is particularly in the active filling of several similar channels or chambers to bear when created for a larger number of samples the same experimental conditions, ie in particular the multiple channels are all to be filled with the same sample volumes.
  • the filling of the multiple channels should be synchronized in order to synchronize tests without loss of time. to run chronically in all channels. So far, no actuators in the field of microfluidic arrangements are known, which meet the above-described requirements.
  • microfluidic device capable of filling a plurality of adjacent channels synchronously and with high volumetric accuracy for the purpose of sample analysis.
  • the object of the invention is also to provide a method for producing such a microfluidic device.
  • the invention is achieved by a microfluidic device having the features of patent claim 1 and by a method according to patent claim 13.
  • the microfluidic device comprises a substrate in which a microfluidic structure is formed having a plurality of adjacent channels and at least one common feed line into which the adjacent channels open, each of the adjacent channels receiving the cylinder of a cylinder-piston arrangement an associated piston forms.
  • the principle for active filling of the adjacent channels or reaction channels is similar to that of a multipipette, as known for example from US Pat. No. 3,855,868, this principle being applied according to the invention in the field of microfluidics, in particular lap-on-a-chip systems.
  • This is in contrast to the known multipipettes special because the cylinder is formed as an integral part of the substrate of the microfluidic device, so for example, the one or more chips.
  • Such a substrate is known to have a flat, planar shape, similar to the format of a check card, with flat top and bottom sides and a plurality, typically four, narrow end faces along the edge.
  • the channels typically extend as grooves on the top and / or bottom or as holes in the plane, wherein the grooves are closed by a cover in the form of a film from the environment. Further, filling or communicating holes communicating with the channels may be provided perpendicular to the plane in the substrate.
  • Each of the adjacent channels is assigned a piston.
  • the pistons may be in the form of wires which are preferably inserted laterally through openings in one or more of the end faces of the substrate into the cylinders and are moveable back and forth along the longitudinal axis in the cylinders.
  • the invention is advantageously further developed in that a sealing arrangement which is stationary relative to the microfluidic structure is provided for sealing the piston in the cylinder.
  • the seal assembly according to the invention is not moved with the piston, but the piston moves relative to the seal assembly.
  • This has the advantage, in the case of an ideal design, that no contact takes place between the piston and the cylinder wall. Any functionalization of the channel surface in the cylinder region, for example by immobilization of a reaction component, is thereby not impaired when the piston is moved back and forth.
  • the sealing arrangement preferably has a contiguous sealing element which spans the piston side over several adjacent channels.
  • Such a central sealing element for sealing all adjacent cylinder-piston assemblies is only made possible by the fact that the seal assembly is arranged stationary to the microfluidic structure and not to the piston.
  • the cohesive, central sealing element is above all manufacturing technology easier to implement than individual sealing elements for each of the adjacent cylinder-piston assemblies.
  • the sealing arrangement has a sealing channel, which crosses the several adjacent channels, for receiving the continuous sealing element.
  • the sealing element can be introduced, for example, in the form of a high-viscosity fluid (eg, fat) or in the form of an elastomer (rubber, silicone) or generally as a polymeric plastic.
  • a high-viscosity fluid eg, fat
  • an elastomer rubber, silicone
  • the sealing element is attached to the end face of the substrate of the microfluidic device.
  • the sealing element is connected by injection molding with the substrate of the microfluidic device. This applies both to the design with a sealing channel in the sealing channel and with a sealing element attached to the end face.
  • the substrate of the microfluidic device itself is also preferably produced by injection molding.
  • the sealing element is particularly preferably inserted or attached in a two-component injection molding process.
  • the advantage lies in a cost-effective production and a high manufacturing accuracy inherent in the manufacturing process.
  • the method for producing a microfluidic arrangement of the type described above provides that the microfluidic device is produced by injection molding, wherein the piston in a Inserted injection mold and molded with at least one plastic.
  • microfluidic arrangement is produced as such by injection molding, then preferably all the microfluidic structures on the substrate are already part of the injection-molded part, so that mechanical post-processing can largely be dispensed with.
  • the pistons are inserted into the mold either after spraying the substrate or with the finished substrate and then overmoulded with the polymer / elastomer of the sealing element.
  • the plurality of pistons associated with the adjacent channels are coupled together by a common actuator.
  • the common supply line preferably has a sufficient volume in the flow direction in front of the orifices of all adjacent channels, which ensures that all adjacent channels can be filled simultaneously and uniformly.
  • the common supply line is preferably formed by a transversely to the adjacent channels extending channel with two accesses, of which at least one is particularly preferably closed gas-tight.
  • Figure 1 is a plan view of a first embodiment of the microfluidic device
  • Figure 2 is a sectional side view of the first embodiment of
  • Figure 3 is a sectional side view of a second embodiment of the microfluidic device according to the invention.
  • FIG. 4 shows an enlarged perspective view in partial section of the microfluidic arrangement according to the invention
  • FIG. 5 is a perspective view of a third embodiment of the microfluidic device with detection module.
  • FIG. 6 is a plan view of a fourth embodiment of the microfluidic device distributed over four microfluidic chips.
  • FIGS. 1 and 2 schematically show a first embodiment of the microfluidic device according to the invention.
  • the microfluidic device is located on a single microfluidic chip.
  • This has a substrate 10, in which a plurality of adjacent channels 12 and a common feed line 14, in which the adjacent channels 12 open, are formed.
  • the plurality of adjacent channels 12 are incorporated in the form of parallel grooves and the common feed line 14 in the form of a wider groove extending perpendicular to the mouth-side end of the parallel channels 12 on an upper side of the substrate 10.
  • the top of the substrate is closed with a cover 16 to the environment, so that from the grooves circumferentially closed channels are formed on all sides.
  • the parallel channels 12 have a flat portion 18, which is ready for the reaction or detection of the fluid to be tested, hereinafter referred to as function section.
  • the flat functional section 18 is adjoined by an abruptly recessed section 20, which forms the cylinder of a cylinder-piston arrangement, hereinafter called the cylinder section.
  • an associated piston 22 is received in each of the cylinders thus formed.
  • the piston 22 displaces a defined volume within the cylinder portion 20 and can be moved back and forth in the cylinder portion 20 parallel to its longitudinal axis, which ideally coincides with the longitudinal axis of the channel 12, thereby increasing or decreasing the displaced volume.
  • transverse sealing channel 24 is formed from the top into the substrate 1 0.
  • the channels 12, respectively, the cylinder sections 20, and the sealing channel 24 does not intersect directly but extend transversely to each other at a distance.
  • the sealing channel 24 receives over the width of all parallel channels 12 away continuously contiguous sealing element 26.
  • the pistons 22 are inserted through frontal openings 27 in the cylindrical portions 20 of the parallel channels 12.
  • the sealing element at this point - or another, as shown in Figure 3 - but in any case arranged on the piston side.
  • the sealing element also has passage openings for the pistons, but is elastically in contact therewith, preferably under radial pressure.
  • the sealing element therefore preferably consists of an elastomer and is particularly preferably connected to the substrate 10 by injection molding.
  • the plurality of pistons 22 associated with the adjacent channels 12 are guided in the openings 27 through the substrate 10 and the sealing element 26 parallel to the cylinder sections 20.
  • the pistons 22 are coupled together at their projecting from the substrate 10 ends 28 by a common actuator 30 in such a way that they can be pulled out of the associated cylinders only synchronously and in parallel or inserted into this. In this way, it is ensured that - assuming identical profiles of the pistons - the change of the displaced volume within the cylinder sections 20 in all adjacent channels 12 is the same, so that an equal underpressure or overpressure forms in the channels 12 simultaneously.
  • the adjacent channels 12 or the associated channels Neten piston 22, as shown in Figure 1 and Figure 2 have identical dimensions.
  • larger or smaller volumes of fluid are moved, for example, by changing the piston cross section accordingly. This may be desired, for example, if different detection reactions with markers of different sensitivity are carried out simultaneously with a device of the type according to the invention, so that different amounts of fluid are required.
  • the adjacent channels are, as shown in Figure 1, preferably arranged substantially parallel, so that the joint operation of the piston can be done in a simple manner, with high precision and little effort.
  • a non-parallel arrangement of the channels would not be excluded.
  • this requires, for example, flexible pistons or a flexible common actuator, which could affect the sealing and / or the precision of the volume change and therefore is not preferable without special reason.
  • FIG 3 embodiment of the microfluidic device according to the invention differs from that of Figure 2 by adjacent channels 12 ', which are formed in its cylinder portion 20' in the form of a bore and in by means of a transverse bore 34 perpendicular to the plane of the substrate 10 'continue into the otherwise same functional portions 18, which then open in the manner shown in Figure 1 in the common supply line 14.
  • the pistons 22 almost completely fill the space of the cylindrical cylinder sections 20 ', which are small compared to the example of FIG. 2, so that when the pistons 22 are pulled out there is a greater relative change in the volume of the channels 12'.
  • the consequence is that a larger pressure change or, in the case of When the piston 22 is withdrawn, the actuation speed thereof causes a rapid pressure drop to act on the fluid present in the common supply line, which consequently is sucked into the functional channel 18 more rapidly.
  • FIG. 3 has a contiguous sealing element 26 'which spans the piston side over several adjacent channels 12' and which is mounted on the front side of the substrate 10 '.
  • this sealing element is preferably made of an elastomer, which is connected by injection molding with the end face 32 of the substrate 10 '.
  • FIG. 4 shows an enlarged perspective detail of an embodiment of the microfluidic arrangement according to the invention similar to that according to FIGS. 1 and 2. From Figure 4 it can be seen that the piston 22 has a significantly smaller cross-section than the associated cylinder portion 20 and therefore a displacement of the piston results in a lower relative volume and thus pressure change than in the example of Figure 3. This teaches that appropriate design measures at a certain speed of the piston feed the desired pressure change can be adjusted.
  • the piston has a cylindrical geometry.
  • the piston 22 is formed of a straight piece of wire. It should be noted at this point that the structures shown here have dimensions in the millimeter range or in the submillimeter range. Therefore, the cylindrical geometry of wire-shaped pistons represents the simplest embodiment of pistons to be realized.
  • the cylinder section 20 not only has a larger cross section than the piston but also a has another cross-sectional shape, namely a rectangular.
  • the function of the corresponding channel or channel section is meant as part of a cylinder-piston arrangement and not a channel / channel section with a strict cylinder geometry, ie a round base.
  • FIG. 4 clearly shows that the piston 22 does not touch the wall of the cylinder section 20 because of its smaller cross section, which remains essentially the same over its entire length, so that a mechanical effect on a reactive substance applied, for example, to the inner surface of the cylinder wall 20 is avoided becomes.
  • This requires sufficient processing precision in terms of parallelism of cylinder section and piston or piston guide.
  • the embodiment of the microfluidic device according to the invention according to Figure 5 differs from those described above, in particular by its more complex shape. Similar to the examples described above, the arrangement is formed on a chip providing the substrate 50. In the substrate, however, two blocks 52, 54 each having 32 parallel, adjacent channels are formed in this embodiment, each of which form the cylinder of a cylinder-piston assembly and each associated with a piston. All sixty-four pistons of both blocks are coupled together by a common actuator 56 such that they can only be withdrawn from their cylinders together and in parallel.
  • the common supply line 58 comprises in this embodiment two accesses, namely an inlet 60 and a drain 62.
  • a reservoir 64 for receiving a larger amount of the fluid to be tested, which is sufficient to the functional sections to fill all 64 parallel channels.
  • the adjacent channels open in sequence into the feed line 58.
  • the feed line 58 has at this point a sufficiently large cross-sectional area in order to be able to fill all parallel channels simultaneously and uniformly when pulling out the pistons at the required speed.
  • the filling takes place as follows: The fluid is first introduced into the common supply line 58 while the reservoir 64 is filled. If this is done, an access of the supply line, here the drainage 62 closed gas-tight. Subsequently, the pistons are pulled out by means of the common actuating element, for example using a linear drive from the cylinder portions of the parallel channels, whereby in all hitherto filled with air or gas channels, a negative pressure. Due to the negative pressure, the fluid flows from the common supply line and in particular from the reservoir 64 in the parallel channels until a pressure equalization has taken place. This is achieved with suitable dimensioning of the pistons, the functional sections of the parallel channels and the piston stroke when the functional sections are filled as far as desired.
  • an electronic detection unit 70 is shown by way of example, to which two foil electrodes 74 are connected as part of an electrochemical sensor system via two plug connections 72, for example.
  • FIG. 6 shows a further exemplary embodiment of the microfluidic arrangement according to the invention, which, similar to the arrangement from FIG. 5, has two blocks of parallel, adjacent channels and associated pistons.
  • a key difference of this arrangement is that it extends over a total of four microfluidic chips providing a common substrate.
  • the two chips 80, 82 shown below each have a block with the cylinder-piston arrangements and the two upper chips 84, 86 each have a portion of the common supply line 88, in which only in the chip 86, a reservoir 90 is integrated for the fluid sample.
  • connection channels 92 for connecting the cylindrical portions 94 of the parallel channels on the chips 80 and 82 to the respective associated functional portions 96 of the parallel channels on the chips 84 and 86. Also needed a connection channel (not shown) for bridging the common lead 88 from the chip 84 to the chip 86.

Landscapes

  • Chemical & Material Sciences (AREA)
  • Health & Medical Sciences (AREA)
  • Engineering & Computer Science (AREA)
  • Clinical Laboratory Science (AREA)
  • General Health & Medical Sciences (AREA)
  • Hematology (AREA)
  • Analytical Chemistry (AREA)
  • Chemical Kinetics & Catalysis (AREA)
  • Dispersion Chemistry (AREA)
  • Mechanical Engineering (AREA)
  • General Engineering & Computer Science (AREA)
  • Physical Or Chemical Processes And Apparatus (AREA)
  • Automatic Analysis And Handling Materials Therefor (AREA)
  • Micromachines (AREA)
  • Apparatus Associated With Microorganisms And Enzymes (AREA)

Abstract

Die Erfindung betrifft eine Mikrofluidik-Anordnung mit einem Substrat (10, 10', 50), in das eine mehrere benachbarte Kanäle (12, 12') und wenigstens eine gemeinsame Zuleitung (14), in die die benachbarten Kanäle (12, 12') münden, aufweisende mikrofluidische Struktur eingeformt ist, wobei jeder der benachbarten Kanäle (12, 12') den Zylinder einer Zylinder-Kolben-Anordnung zur Aufnahme eines zugeordneten Kolbens (22) bildet. Die Erfindung betrifft außerdem ein Verfahren zur Herstellung einer solchen Mikrofluidik-Anordnung.

Description

Mikrofluidikchip mit mehreren Zylinder-Kolben-Anordnungen
Beschreibung
Die Erfindung betrifft eine Mikrofluidik-Anordnung mit einem Substrat, insbesondere in Form eines oder mehrerer mikrofluidischer Chips, auch als Lap-on-a- Chip-System bezeichnet, in das eine mikrofluidische Struktur zur Durchführung von chemischen, biologischen, biochemischen und/oder medizinischen Analyse- und/oder Detektionsverfahren (kurz: Tests), wie beispielsweise Immunoassays, DNA-Assays oder dergleichen eingeformt ist. Eine zu untersuchende Probe wird in einer derartigen Mikrofluidik-Anordnung über eine zentrale Zuleitung auf mehrere getrennte Reaktionskammern oder Detektionsbereiche verteilt, in denen beispielsweise verschiedene Reaktionskomponenten für die zu analysierende Probe immobilisiert oder anderweitig eingebracht oder einbringbar sind. Die Erfindung betrifft ferner ein Verfahren zur Herstellung einer entsprechenden Mikrofluidik-Anordnung.
Die Mikrofluidik zeichnet sich durch eine kontrollierte Bewegung kleinster Probenvolumina im Mikro- oder Nanoliterbereich aus. Eine exakte Steuerung von Reaktionen in Mikrokanälen bzw. Mikrokammern innerhalb der mikrofluidischen Chips ist dadurch möglich. Die mikrofluidische Steuerung stellt insbesondere deswegen eine große Herausforderung dar, weil aufgrund der sehr geringen Abmessungen der Kanäle und Kammern Oberflächeneffekte eine sehr dominante Rolle spielen, die reproduzierbare Abläufe innerhalb der Mikrofluidik- Anordnung erschweren. Diese Problematik kommt insbesondere bei der aktiven Befüllung mehrerer gleichartiger Kanäle oder Kammern zum Tragen, wenn für eine größere Anzahl von Proben gleiche Versuchsbedingungen geschaffen, also insbesondere die mehreren Kanäle alle mit den gleichen Probenvolumina befüllt werden sollen. Zudem soll, ähnlich dem High-Throughput-Screening, die Befüllung der mehreren Kanäle synchron erfolgen, um Tests ohne Zeitverlust syn- chron in allen Kanälen ausführen zu können. Es ist bislang keine Aktorik aus dem Gebiet mikrofluidischer Anordnungen bekannt, welche den vorstehend geschilderten Anforderungen gerecht wird.
Aufgabe der vorliegenden Erfindung ist es demgemäß, eine Mikrofluidik- Anordnung bereitzustellen, mit der mehrere benachbarte Kanäle zum Zwecke der Probenanalyse synchron und mit hoher volumetrischer Genauigkeit befüllt werden können. Aufgabe der Erfindung ist es ferner, ein Verfahren zur Herstellung einer solchen Mikrofluidik-Anordnung bereitzustellen.
Die Erfindung wird durch eine Mikrofluidik-Anordnung mit den Merkmalen des Patentanspruchs 1 sowie durch ein Verfahren gemäß Patentanspruch 13 gelöst.
Die erfindungsgemäße Mikrofluidik-Anordnung umfasst ein Substrat, in das eine mikrofluidische Struktur eingeformt ist, die mehrere benachbarte Kanäle und wenigstens eine gemeinsame Zuleitung aufweist, in die die benachbarten Kanäle münden, wobei jeder der benachbarten Kanäle den Zylinder einer Zylinder- Kolben-Anordnung zur Aufnahme eines zugeordneten Kolbens bildet.
Das Prinzip zur aktiven Befüllung der benachbarten Kanäle oder auch Reaktionskanäle gleicht dem einer Multipipette, wie beispielsweise aus dem US-Patent 3,855,868 bekannt, wobei dieses Prinzip erfindungsgemäß auf das Gebiet der Mikrofluidik, insbesondere der Lap-on-a-Chip-Systeme angewandt wird. Das im Gegensatz zu den bekannten Multipipetten besondere daran ist, dass der Zylinder als integraler Bestandteil des Substrats der Mikrofluidik-Anordnung, also beispielsweise des oder der Chips, ausgebildet ist. Ein solches Substrat hat bekanntermaßen eine flache, ebene Gestalt, ähnlich dem Format einer Checkkarte, mit ebenen Ober- und Unterseiten sowie mehreren, typischerweise vier, schmalen Stirnflächen entlang des Randes. Die Kanäle erstrecken sich typischerweise als Nuten auf der Ober- und/oder Unterseite oder als Bohrungen in der Ebene, wobei die Nuten durch eine Abdeckung in Form einer Folie gegenüber der Umgebung verschlossen sind. Ferner können mit den Kanälen kommunizierende Einfüll- oder Auslass- oder Verbindungsbohrungen senkrecht zu der Ebene in dem Substrat vorgesehen sein.
Jedem der benachbarten Kanäle ist ein Kolben zugeordnet. Die Kolben können beispielsweise in Form von Drähten ausgebildet sein, die vorzugsweise seitlich durch Öffnungen in einer oder mehrerer der Stirnflächen des Substrats in die Zylinder eingeführt und entlang der Längsachse in dem Zylindern vor- und zurück beweglich angeordnet sind.
Die Erfindung ist vorteilhafterweise dadurch weitergebildet, dass eine relativ zur mikrofluidischen Struktur ortsfeste Dichtungsanordnung zur Abdichtung des Kolbens in dem Zylinder vorgesehen ist.
Anders als Zylinder-Kolben-Anordnungen, bei denen ein Dichtelement meist am vorderen Ende des Kolbens vorgesehen ist, wird die erfindungsgemäße Dichtungsanordnung nicht mit dem Kolben mitbewegt, sondern der Kolben bewegt sich relativ zur Dichtungsanordnung. Dies hat bei idealer Ausführung den Vorteil, dass zwischen dem Kolben und der Zylinderwand kein Kontakt stattfindet. Eine etwaige Funktionalisierung der Kanaloberfläche in dem Zylinder-Bereich, beispielsweise durch Immobilisation einer Reaktionskomponente, wird dadurch beim hin-und-her-Bewegen des Kolbens nicht beeinträchtigt.
Bevorzugt weist die Dichtungsanordnung ein die mehreren benachbarten Kanäle kolbenseitig überspannendes, zusammenhängendes Dichtelement auf.
Ein solches zentrales Dichtelement zur Abdichtung aller benachbarter Zylinder- Kolben-Anordnungen wird erst dadurch ermöglicht, dass die Dichtungsanordnung ortsfest zur mikrofluidischen Struktur und nicht zum Kolben angeordnet ist. Das zusammenhängende, zentrale Dichtelement ist vor allem herstellungstechnisch einfacher zu realisieren als einzelne Dichtelemente für jede der benachbarten Zylinder-Kolben-Anordnungen.
Vorteilhafterweise weist die Dichtungsanordnung einen die mehreren benachbarten Kanäle querenden Dichtungskanal zur Aufnahme des zusammenhängenden Dichtelements auf.
In diesen Kanal kann das Dichtungselement beispielsweise in Form eines hochviskosen Fluids (z. B. Fett) oder in Form eines Elastomers (Gummi, Silikon) oder allgemein als polymerer Kunststoff eingebracht werden.
Als alternative Ausgestaltung der Erfindung ist das Dichtelement stirnseitig an dem Substrat der Mikrofluidik-Anordnung angebracht.
Besonders bevorzugt wird das Dichtelement durch Spritzguss mit dem Substrat der Mikrofluidik-Anordnung verbunden. Dies gilt sowohl für die Ausgestaltung mit einem im Dichtkanal als auch mit einem stirnseitig angebrachten Dichtelement.
Auch das Substrat der Mikrofluidik-Anordnung selbst wird vorzugsweise durch Spritzguss hergestellt. In diesem Fall wird das Dichtelement besonders bevorzugt in einem Zwei-Komponenten-Spritzgussverfahren ein- bzw. angebracht.
Der Vorteil liegt in einer kostengünstigen Herstellung sowie einer dem Herstellungsverfahren innewohnenden hohen Fertigungsgenauigkeit.
Besonders bevorzugt sieht das Verfahren zur Herstellung einer Mikrofluidik- Anordnung der vorstehend beschriebenen Art vor, dass die Mikrofluidik- Anordnung im Spritzgussverfahren hergestellt wird, wobei die Kolben in eine Spritzgussform eingelegt und mit wenigstens einem Kunststoff umspritzt werden.
Wird die Mikrofluidik-Anordnung als solche durch Spritzguss hergestellt, dann sind vorzugsweise alle mikrofluidischen Strukturen auf dem Substrat bereits Bestandteil des Spritzgussteils, sodass eine mechanische Nachbearbeitung weitestgehend entfallen kann. Die Kolben werden entweder nach dem Spritzen des Substrats bzw. mit dem fertigen Substrat in die Form eingelegt und dann mit dem Polymer/Elastomer des Dichtelements umspritzt.
Oder sie werden zuerst in die Form eingelegt und dann zunächst mit dem Substratkunststoff der Mikrofluidik-Anordnung und anschließend mit dem Polymer/Elastomer des Dichtelements umspritzt. Entscheidend ist dabei jeweils die Materialwahl, um die gewünschte Abdichtung und eine ausreichende Beweglichkeit der Kolben zu erzielen.
Bevorzugt sind die mehreren, den benachbarten Kanälen zugeordneten Kolben durch ein gemeinsames Betätigungselement miteinander gekoppelt.
Durch ein solches gemeinsames Betätigungselement können alle Kolben von einem gemeinsamen Antrieb oder manuell synchron bewegt werden. Dieses Antriebsprinzip ist von der Anwendung der Multipipette bekannt.
Die gemeinsame Zuleitung weist in Strömungsrichtung vor den Mündungen aller benachbarter Kanäle bevorzugt ein ausreichendes Volumen auf, das sicherstellt, dass alle benachbarten Kanäle gleichzeitig und gleichmäßig befüllbar sind. Die gemeinsame Zuleitung wird vorzugsweise durch einen quer zu den benachbarten Kanälen verlaufenden Kanal mit zwei Zugängen gebildet, von denen wenigstens einer besonders bevorzugt gasdicht verschließbar ist.
Weitere Aufgaben, Merkmale und Vorteile der Erfindung werden nachfolgend anhand von Ausführungsbeispielen mit Hilfe der Zeichnungen näher erläutert. Es zeigen:
Figur 1 eine Aufsicht auf eine erste Ausführungsform der Mikrofluidik- Anordnung;
Figur 2 eine geschnittene Seitenansicht der ersten Ausführungsform der
Mikrofluidik-Anordnung gemäß Figur 1 ;
Figur 3 eine geschnittene Seitenansicht einer zweiten Ausführungsform der erfindungsgemäßen Mikrofluidik-Anordnung;
Figur 4 eine perspektivische Ausschnittsvergrößerung im Teilschnitt der erfindungsgemäßen Mikrofluidik-Anordnung;
Figur 5 eine dritte Ausführungsform der Mikrofluidik-Anordnung mit Detek- tionsmodul in perspektivischer Darstellung; und
Figur 6 eine Aufsicht auf eine vierte Ausführungsform der Mikrofluidik- Anordnung verteilt auf vier Mikrofluidik-Chips.
In den Figuren 1 und 2 ist eine erste Ausführungsform der erfindungsgemäßen Mikrofluidik-Anordnung schematisch dargestellt. Die Mikrofluidik-Anordnung befindet sich auf einem einzelnen Mikrofluidik-Chip. Dieser weist ein Substrat 10 auf, in das mehrere benachbarte Kanäle 12 und eine gemeinsame Zuleitung 14, in die die benachbarten Kanäle 12 münden, eingeformt sind. Die mehreren benachbarten Kanäle 12 sind in Form paralleler Nuten und die gemeinsame Zuleitung 14 in Form einer dazu senkrecht an dem mündungsseitigen Ende der parallelen Kanäle 12 verlaufenden, breiteren Nut auf einer Oberseite des Substrats 10 eingearbeitet. Die Oberseite des Substrats ist mit einer Abdeckfolie 16 zur Umgebung hin verschlossen, so dass aus den Nuten umfänglich allseits geschlossene Kanäle gebildet werden.
Die parallelen Kanäle 12 weisen einen flachen Abschnitt 18 auf, der für die Reaktion oder Detektion des zu testenden Fluids bereit steht, hierin nachfolgend Funktionsabschnitt bezeichnet. An den flachen Funktionsabschnitt 18 schließt sich ein sprunghaft vertiefter Abschnitt 20 an, der den Zylinder einer Zylinder- Kolben-Anordnung bildet, hierin nachfolgend Zylinderabschnitt bezeichnet. In jedem der so gebildeten Zylinder ist ein zugeordneter Kolben 22 aufgenommen. Der Kolben 22 verdrängt ein definiertes Volumen innerhalb des Zylinderabschnittes 20 und kann parallel zu seiner Längsachse, welche idealer Weise mit der Längsachse des Kanals 12 zusammenfällt, in dem Zylinderabschnitt 20 vor und zurück bewegt werden, wodurch das verdrängte Volumen vergrößert bzw. verkleinert wird.
In das Substrat 10 ist ferner ein die mehreren benachbarten Kanäle 12 kolben- seitig, d. h. auf der der Zuleitung 14 entgegengesetzten Seite, querender Dichtungskanal 24 von der Oberseite in das Substrat 1 0 eingeformt. Als querend wird im Sinne dieser Schrift auch eine solche Anordnung bezeichnet, bei der sich, wie in Figur 1 gezeigt, die Kanäle 12, respektive deren Zylinderabschnitte 20, und der Dichtungskanal 24 nicht unmittelbar kreuzen sondern quer zueinander in einem Abstand verlaufen. Der Dichtungskanal 24 nimmt ein über die Breite aller paralleler Kanäle 12 hinweg durchgehend zusammenhängendes Dichtelement 26 auf. Die Kolben 22 sind durch stirnseitige Öffnungen 27 in die Zylinderabschnitte 20 der parallelen Kanäle 12 eingeführt. Damit die Kanäle 12 nicht über diese Öffnungen 27 mit der Außenwelt verbunden sind, ist das Dichtelement an dieser Stelle - oder einer anderen, wie in Figur 3 gezeigt - jedenfalls aber kolbenseitig angeordnet. Das Dichtelement weist dem entsprechend ebenfalls Durchgangsöffnungen für die Kolben auf, liegt jedoch an diesen vorzugsweise unter radialem Druck elastisch an. Das Dichtelement besteht deshalb vorzugsweise aus einem Elastomer und ist besonders bevorzugt durch Spritz- guss mit dem Substrat 10 verbunden.
Die mehreren, den benachbarten Kanälen 12 zugeordneten Kolben 22 werden in den Öffnungen 27 durch das Substrat 10 und das Dichtelement 26 parallel zu den Zylinderabschnitten 20 geführt. Die Kolben 22 sind an ihren aus dem Substrat 10 herausragenden Enden 28 durch ein gemeinsames Betätigungselement 30 dergestalt miteinander gekoppelt, dass sie nur synchron und parallel aus den zugeordneten Zylindern herausgezogen bzw. in diese eingeschoben werden können. Auf diese Weise ist sichergestellt, dass - identische Profile der Kolben vorausgesetzt - die Änderung des verdrängten Volumens innerhalb der Zylinderabschnitte 20 in sämtlichen benachbarten Kanäle 12 gleich groß ist, so dass sich simultan ein gleicher Unter- bzw. Überdruck in den Kanälen 12 bildet. Dadurch wird sicherstellt, dass das zu untersuchende Fluid gleichmäßig aus der gemeinsamen Zuleitung 14 in die Funktionsabschnitte 18 der parallelen Kanäle 12 bzw. umgekehrt strömt und schließlich in allen parallelen Kanälen 12 das gleiche Fluidvolumen bewegt wird. Dies gestaltet die Befüllung der mehreren benachbarten Kanäle 12 und damit die Test in der Mikrofluidik-Anordnung trotz der eingangs erwähnten Oberflächeneffekte sehr prozesssicher, da die Druckänderung in allen Kanälen synchron erfolgt und gleich groß ist, die Kanäle 12 jedoch nur über die Zuleitung 14 miteinander kommunizieren und kolben- (oder bei Befüllen saug-) seitig getrennt sind.
Wenn auch für parallele Tests unter gleichen Bedingungen bevorzugt, ist es nicht erfindungserheblich, dass die benachbarten Kanäle 12 oder die zugeord- neten Kolben 22, wie in Figur 1 und Figur 2 dargestellt, identische Abmessungen aufweisen. Grundsätzlich ist es auch denkbar, dass in ausgewählten Kanälen bei gleichem Kolbenhub größere oder kleinere Volumina des Fluids bewegt werden, indem beispielsweise der Kolbenquerschnitt entsprechend verändert wird. Dies kann beispielsweise dann gewünscht sein, wenn mit einer Vorrichtung der erfindungsgemäßen Art simultan unterschiedliche Nachweisreaktionen mit Markern unterschiedlicher Empfindlichkeit durchgeführt werden, so dass unterschiedliche Fluidmengen benötigt werden.
Die benachbarten Kanäle sind, wie in Figur 1 dargestellt, bevorzugt im wesentlichen parallel angeordnet, damit die gemeinsame Betätigung der Kolben auf einfache Weise, mit hoher Präzision und geringem Kraftaufwand erfolgen kann. Praktisch wäre auch eine nicht parallele Anordnung der Kanäle nicht ausgeschlossen. Dies setzt jedoch beispielsweise flexible Kolben oder ein flexibles gemeinsames Betätigungselement voraus, was die Abdichtung und/oder die Präzision der Volumenänderung beeinträchtigen könnte und deshalb nicht ohne besonderen Grund vorzuziehen ist.
Das in Figur 3 dargestellte Ausführungsbeispiel der erfindungsgemäßen Mikro- fluidik-Anordnung unterscheidet sich von dem gemäß Figur 2 durch benachbarte Kanäle 12', die in ihrem Zylinderabschnitt 20' in Form einer Bohrung ausgebildet sind und sich in mittels einer Querbohrung 34 senkrecht zur Ebene des Substrats 10' in die ansonsten gleichen Funktionsabschnitte 18 fortsetzen, welche dann in der in Figur 1 gezeigten Weise in die gemeinsame Zuleitung 14 münden.
Die Kolben 22 füllen den Raum der zylindrischen, verglichen mit dem Beispiel des Figur 2 kleinen, Zylinderabschnitte 20' fast vollständig aus, so dass beim Herausziehen der Kolben 22 eine größeren relative Volumenänderung der Kanäle 12' erfolgt. Die Folge ist, dass eine größere Druckänderung bzw. bei glei- ch er Betätigungsgeschwindigkeit beim Herausziehen der Kolben 22 ein schneller Druckabfall auf das in der gemeinsamen Zuleitung anstehende Fluid wirkt, welches in Folge dessen schneller in den Funktionskanal 18 eingesaugt wird.
Ein weiterer Unterschied ist, dass die Ausführungsform gemäß Figur 3 ein die mehreren benachbarten Kanäle 12' kolbenseitig überspannendes, zusammenhängende Dichtelement 26' aufweist, welches stirnseitig an dem Substrat 10' angebracht ist. Auch dieses Dichtelement besteht bevorzugt aus einem Elastomer, welches durch Spritzguss mit der Stirnfläche 32 des Substrats 10' verbunden ist.
In Figur 4 ist ein vergrößerter perspektivischer Ausschnitt einer Ausführungsform der erfindungsgemäßen Mikrofluidik-Anordnung ähnlich der gemäß Figur 1 und 2 gezeigt. Der Figur 4 kann entnommen werden, dass der Kolben 22 einen deutlich kleineren Querschnitt aufweist als der zugeordnete Zylinderabschnitt 20 und deshalb ein Verschieben des Kolbens eine geringere relative Volumen- und somit Druckveränderung zur Folge hat als im Beispielsfall der Figur 3. Dies lehrt, dass durch entsprechende konstruktive Maßnahmen bei einer bestimmten Geschwindigkeit des Kolbenvorschubs die gewünschte Druckänderung eingestellt werden kann.
Des Weiteren ist in Figur 4 zu erkennen, dass der Kolben eine zylindrische Geometrie aufweist. Vorzugsweise wird der Kolben 22 aus einem geraden Drahtstück gebildet. Es sei an dieser Stelle darauf hingewiesen, dass die hier gezeigten Strukturen Abmessungen im Millimeterbereich oder im Submillimeter- bereich aufweisen. Deshalb stellt die zylindrische Geometrie drahtförmiger Kolben die einfachste zu realisierende Ausführungsform von Kolben dar.
Auch ist in der Darstellung der Figur 4 zu erkennen, dass der Zylinderabschnitt 20 nicht nur einen größeren Querschnitt als der Kolben sondern auch eine andere Querschnittsform, nämlich eine rechteckige aufweist. In diesem Sinne ist, wenn in der vorliegenden Schrift der Begriff Zylinder gebraucht wird, die Funktion des entsprechenden Kanals oder Kanalabschnittes als Teil einer Zylinder-Kolben-Anordnung gemeint und nicht etwa ein Kanal/Kanalabschnitt mit einer strengen Zylindergeometrie, also einer runde Grundfläche.
Schließlich ist Figur 4 gut zu erkennen, dass der Kolben 22 aufgrund seines kleineren, im Wesentlichen über seine gesamte Länge gleichbleibenden Querschnittes die Wand des Zylinderabschnitts 20 nicht berührt, so dass eine mechanische Einwirkung auf eine beispielsweise auf die Innenoberfläche der Zylinderwand 20 aufgebrachte reaktive Substanz vermieden wird. Dies setzt selbstverständlich eine hinreichende Verarbeitungspräzision in puncto Parallität von Zylinderabschnitt und Kolben bzw. Kolbenführung voraus.
Das Ausführungsbeispiel der erfindungsgemäßen Mikrofluidik-Anordnung gemäß Figur 5 unterscheidet sich von den vorstehend beschriebenen insbesondere durch seine komplexere Gestalt. Ähnlich wie in. den vorangehend beschriebenen Beispielen ist die Anordnung auf einem das Substrat 50 bereitstellenden Chip ausgebildet. In dem Substrat sind bei dieser Ausführungsform jedoch zwei Blöcke 52, 54 mit jeweils 32 parallelen, benachbarten Kanälen ausgebildet, die jeweils den Zylinder einer Zylinder-Kolben-Anordnung bilden und denen jeweils ein Kolben zugeordnet ist. Alle vierundsechzig Kolben beider Blöcke sind durch ein gemeinsames Betätigungselement 56 miteinander dergestalt gekoppelt, dass sie nur gemeinsam und parallel aus ihren Zylindern herausgezogen bzw. eingeschoben werden können.
Die gemeinsame Zuleitung 58 umfasst in diesem Ausführungsbeispiel zwei Zugänge, nämlich einen Zulauf 60 und einen Ablauf 62. In Strömungsrichtung hinter dem Zulauf 60 befindet sich ein Reservoir 64 zur Aufnahme einer größeren Menge des zu testenden Fluids, die ausreicht, um die Funktionsabschnitte aller 64 parallelen Kanäle zu befüllen. In Strömungsrichtung hinter dem Reservoir 64 münden die benachbarten Kanäle der Reihe nach in die Zuleitung 58. Die Zuleitung 58 weist an dieser Stelle eine ausreichend große Querschnittsfläche auf, um alle parallelen Kanäle gleichzeitig und gleichmäßig beim Herausziehen der Kolben mit der geforderten Geschwindigkeit befüllen zu können.
Das Befüllen geht dabei wie folgt vonstatten: Das Fluid wird zunächst in die gemeinsame Zuleitung 58 eingeleitet und dabei das Reservoir 64 befüllt. Ist dies erfolgt, wird ein Zugang der Zuleitung, hier der der Ablauf 62 gasdicht verschlossen. Anschließend werden die Kolben mittels des gemeinsamen Betätigungselements beispielsweise unter Verwendung eines Linearantriebs aus den Zylinderabschnitten der parallelen Kanäle herausgezogen, wodurch in allen bis dahin mit Luft oder Gas gefüllten Kanälen ein Unterdruck entsteht. Aufgrund des Unterdrucks strömt das Fluid aus der gemeinsamen Zuleitung und insbesondere aus dem Reservoir 64 in die parallelen Kanäle bis ein Druckausgleich stattgefunden hat. Dies ist bei geeigneter Dimensionierung der Kolben, der Funktionsabschnitte der parallelen Kanäle und des Kolbenhubs dann erreicht, wenn die Funktionsabschnitte so weit wie gewünscht gefüllt sind. Nach dem Befüllen der parallelen Kanäle wird der verschlossene Ablauf 62 der gemeinsamen Zuleitung 58 wieder geöffnet und das restliche Fluid durch Anlegen einer Druckdifferenz zwischen Zu- und Ablauf aus der gemeinsamen Zuleitung und dem Reservoir 64 abgezogen damit zwischen den einzelnen nunmehr in den parallelen Kanälen anstehenden Flüssigkeitsplugs keine Flüssigkeitsbrücke mehr besteht. Auf diese Weise wird eine Kreuzkontamination zwischen den einzelnen Flüssigkeitsplugs in den benachbarten Kanälen verhindert. Das Entleeren der parallelen Kanäle kann in umgekehrter Richtung durch Rückführung der Kolben in die Zylinderabschnitte erfolgen, wodurch ein Überdruck gebildet wird, der die Fluid- probe in die gemeinsame Zuleitung verschiebt. Dies geschieht vorzugsweise bei einem verschlossenen Zugang, um dem Fluid eine gewünschte Transportrichtung zu geben. In der rechten Hälfte der Figur 5 ist beispielhaft eine elektronische Detektions- einheit 70 dargestellt, an welche über zwei Steckverbindungen 72 beispielsweise zwei Folienelektroden 74 als Teil einer elektrochemischen Sensorik angeschlossen sind.
In Figur 6 ist ein weiteres Ausführungsbeispiel der erfindungsgemäßen Mikro- fluidik-Anordnung dargestellt, welche ähnlich wie die Anordnung aus Figur 5 zwei Blöcke paralleler, benachbarter Kanäle und zugeordneter Kolben aufweist. Ein wesentlicher Unterschied dieser Anordnung ist, dass diese sich über insgesamt vier Mikrofluidik-Chips, die ein gemeinsames Substrat bereitstellen, erstreckt. Beispielhaft weisen die beiden unten dargestellten Chips 80, 82 jeweils einen Block mit den Zylinder-Kolben-Anordnungen auf und die beiden oberen Chips 84, 86 weisen jeweils einen Abschnitt der gemeinsamen Zuleitung 88 auf, wobei in diese nur in den Chip 86, ein Reservoir 90 für die Fluidprobe integriert ist. Bei einer derartigen Mikrofluidik-Anordnung bedarf es zusätzlicher Verbindungskanäle 92 (nicht im Einzelnen dargestellt) zur Verbindung der Zylinderabschnitte 94 der parallelen Kanäle auf den Chips 80 und 82 mit den jeweils zugeordneten Funktionsabschnitten 96 der parallelen Kanäle auf den Chips 84 und 86. Ebenso benötigt man einen Verbindungskanal (nicht dargestellt) zum Überbrücken der gemeinsamen Zuleitung 88 von dem Chip 84 zu dem Chip 86.
Bezugszeichenliste
10, 10' Substrat
12, 12' parallele, benachbarte Kanäle
14 gemeinsame Zuleitung
16 Abdeckung, Folie
18 Reaktions-/ Detektions- oder allgemein Funktionsabschnitt
20, 20' Zylinderabschnitt
2 Kolben
4 Dichtungskanal
26, 26' Dichtelement
8 außenliegendes Kolbenende 0 gemeinsames Betätigungselement
2 Stirnseite des Substrats 0 Substrat
2, 54 Blöcke benachbarter, paralleler Kanäle
6 gemeinsames Betätigungselement
8 gemeinsame Zuleitung 0 Zugang, Zulauf
2 Zugang, Ablauf
4 Reservoir 0 Elektronikmodul
2 Steckverbindung
4 Elektrode 80, 82 Mikrofluidikchip
84, 86 Mikrofluidikchip
88 gemeinsame Zuleitung
90 Reservoir
92 Verbindungskanäle
94 Zylinderabschnitt
96 Reaktions-/ Detektions- oder allgemein Funktionsabschnitt

Claims

Patentansprüche
1 . Mikrofluidik-Anordnung mit einem Substrat (10 , 1 0', 50), in das eine
mikrofluidische Struktur eingeformt ist, die mehrere benachbarte Kanäle (12, 12') und wenigstens eine gemeinsame Zuleitung (14) aufweist, in die die benachbarten Kanäle (12, 12') münden, wobei jeder der benachbarten Kanäle (12, 12') den Zylinder einer Zylinder-Kolben-Anordnung zur Aufnahme eines zugeordneten Kolbens (22) bildet.
2. Mikrofluidik-Anordnung nach Anspruch 1 mit jeweils einem jedem der benachbarten Kanäle (12, 12') zugeordneten Kolben (22),
gekennzeichnet du rch eine relativ zur mikrofluidischen Struktur ortsfesten Dichtungsanordnung zur Abdichtung des Kolbens (22) in dem Zylinder.
3. Mikrofluidik-Anordnung nach Anspruch 2,
dadurch geken nzeichnet, dass die Dichtungsanordnung ein die mehreren benachbarten Kanäle (12, 12') kolbenseitig überspannendes, zusammenhängendes Dichtelement (26, 26') aufweist.
4. Mikrofluidik-Anordnung nach Anspruch 3,
dadurch geken nzeichnet, dass die Dichtungsanordnung einen die mehreren benachbarten Kanäle (12, 12') querenden Dichtungskanal (24) zur Aufnahme des zusammenhängenden Dichtelementes (26, 26') aufweist.
5. Mikrofluidik-Anordnung nach Anspruch 3,
dadurch gekennzeichnet, dass das Dichtelement (26, 26') stirnseitig an dem Substrat der Mikrofluidik-Anordnung angebracht ist.
6. Mikrofluidik-Anordnung nach Anspruch 4 oder 5, dadurch gekennzeichnet, dass das Dichtelement (26, 26') aus einem Polymer besteht.
7. Mikrofluidik-Anordnung nach Anspruch 6,
dadurch gekennzeichnet, dass das Dichtelement (26, 26') durch Spritz- guss mit dem Substrat der Mikrofluidik-Anordnung verbunden ist.
8. Mikrofluidik-Anordnung nach einem der vorstehenden Ansprüche,
dadurch gekennzeichnet, dass die mehreren, den benachbarten Kanälen (12, 12') zugeordneten Kolben (22) durch ein gemeinsames Betätigungselement (30, 56) miteinander gekoppelt sind.
9. Mikrofluidik-Anordnung nach einem der vorstehenden Ansprüche,
dadurch gekennzeichnet, dass die Kolben (22) durch stirnseitige Öffnungen in das Substrat der Mikrofluidik-Anordnung eingeführt sind.
10. Mikrofluidik-Anordnung nach einem der vorstehenden Ansprüche,
dadurch gekennzeichnet, dass die gemeinsame Zuleitung (58, 88) vor den Mündungen aller benachbarter Kanäle (12, 12!) ein ausreichendes Volumen aufweist, das sicherstellt, dass alle benachbarten Kanälen (12, 12') gleichzeitig und gleichmäßig befüllbar sind.
1 1. Mikrofluidik-Anordnung nach einem der vorstehenden Ansprüche,
dadurch gekennzeichnet, dass die gemeinsame Zuleitung (58, 88) durch einen quer zu den benachbarten Kanälen (12, 12') verlaufenden Kanal mit zwei Zugängen (60, 62) gebildet wird.
12. Mikrofluidik-Anordnung nach Anspruch 1 1 ,
dadurch gekennzeichnet, dass wenigstens einer der Zugänge (60, 62) gasdicht verschließbar ist.
1 3. Verfahren zur Herstellung einer Mikrofluidik-Anordnung nach einem der Ansprüche 2 bis 12,
dadurch gekennzeichnet, dass die Mikrofluidik-Anordnung im Spritzgussverfahren hergestellt wird, wobei die Kolben (22) in eine Spritzgussform eingelegt und mit wenigstens einem Kunststoff umspritzt werden .
14. Verfahren nach Anspruch 13,
dadurch gekennzeichnet, dass die Kolben (22) nach dem Spritzen des Substrats oder mit dem fertigen Substrat in die Spritzgussform eingelegt und dann mit dem Polymer oder Elastomer des Dichtelements umspritzt werden.
PCT/EP2011/004816 2010-09-30 2011-09-27 Mikrofluidikchip mit mehreren zylinder-kolben-anordnungen WO2012041479A1 (de)

Priority Applications (2)

Application Number Priority Date Filing Date Title
US13/824,817 US9278352B2 (en) 2010-09-30 2011-09-27 Microfluidic chip comprising several cylinder-piston arrangements
EP11779084.0A EP2621633A1 (de) 2010-09-30 2011-09-27 Mikrofluidikchip mit mehreren zylinder-kolben-anordnungen

Applications Claiming Priority (2)

Application Number Priority Date Filing Date Title
DE102010041833.1A DE102010041833B4 (de) 2010-09-30 2010-09-30 Mikrofluidikchip mit mehreren Zylinder-Kolben-Anordnungen
DE102010041833.1 2010-09-30

Publications (2)

Publication Number Publication Date
WO2012041479A1 true WO2012041479A1 (de) 2012-04-05
WO2012041479A8 WO2012041479A8 (de) 2013-08-01

Family

ID=44907778

Family Applications (1)

Application Number Title Priority Date Filing Date
PCT/EP2011/004816 WO2012041479A1 (de) 2010-09-30 2011-09-27 Mikrofluidikchip mit mehreren zylinder-kolben-anordnungen

Country Status (4)

Country Link
US (1) US9278352B2 (de)
EP (1) EP2621633A1 (de)
DE (1) DE102010041833B4 (de)
WO (1) WO2012041479A1 (de)

Cited By (1)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
WO2016062788A1 (en) 2014-10-24 2016-04-28 Ait Austrian Institute Of Technology Gmbh Microfluidic chip for biological analysis

Families Citing this family (3)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
DE102012210077A1 (de) * 2012-06-15 2013-12-19 Siemens Aktiengesellschaft Verfahren und Anordnung zur Markierung von Zellen in einer Zellsuspension
ES2732367T3 (es) * 2013-03-15 2019-11-22 Douglas Scient Llc Pipeteador de lavado
WO2016205375A1 (en) 2015-06-18 2016-12-22 The Regents Of The University Of Michigan Microfluidic actuators with integrated addressing

Citations (6)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
US3855868A (en) 1972-02-10 1974-12-24 O Sudvaniemi Multiple pipette
US20030057391A1 (en) * 2001-09-21 2003-03-27 The Regents Of The University Of California Low power integrated pumping and valving arrays for microfluidic systems
WO2005002729A1 (de) * 2003-07-04 2005-01-13 november Aktiengesellschaft Gesellschaft für Molekulare Medizin Verwendung eines einwegbehälters, mikrofluidische vorrichtung und verfahren zur bearbeitung von molekülen
US20060159564A1 (en) * 2004-12-31 2006-07-20 Industrial Technology Research Institute Microfluidic driving and speed controlling apparatus and application thereof
WO2007125468A2 (en) * 2006-05-01 2007-11-08 Koninklijke Philips Electronics N.V. Fluid sample transport device with reduced dead volume for processing, controlling and/or detecting a fluid sample
WO2008036045A1 (en) * 2006-09-19 2008-03-27 Agency For Science, Technology And Research A dispenser arrangement for fluidic dispensing control in microfluidic system

Family Cites Families (11)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
US5863801A (en) * 1996-06-14 1999-01-26 Sarnoff Corporation Automated nucleic acid isolation
US7229594B2 (en) * 2000-04-03 2007-06-12 Parabol Technologies S.A. Device for dispensing accurately-controlled small doses of liquid
US6729352B2 (en) * 2001-06-07 2004-05-04 Nanostream, Inc. Microfluidic synthesis devices and methods
JP4317816B2 (ja) * 2002-07-23 2009-08-19 プロテダイン・コーポレーション 材料取り扱い工具
US7125727B2 (en) * 2003-01-29 2006-10-24 Protedyne Corporation Sample handling tool with piezoelectric actuator
DE10319045A1 (de) * 2003-04-25 2004-12-09 november Aktiengesellschaft Gesellschaft für Molekulare Medizin Vorrichtung und Verfahren zur Aufbereitung Biopolymerhaltiger Flüssigkeiten
WO2005024436A1 (ja) * 2003-09-02 2005-03-17 Nec Corporation カスタマイズ可能なチップおよびその製造方法
DE10345817A1 (de) * 2003-09-30 2005-05-25 Boehringer Ingelheim Microparts Gmbh Verfahren und Vorrichtung zum Koppeln von Hohlfasern an ein mikrofluidisches Netzwerk
US7246551B2 (en) * 2004-07-09 2007-07-24 Protedyne Corporation Liquid handling device with surface features at a seal
US7790257B2 (en) * 2006-12-19 2010-09-07 Andrew Skigen Plastic carpule and method of manufacture
WO2009052144A2 (en) * 2007-10-16 2009-04-23 Phoenix S & T, Inc. An integrated microfluidic nozzle device for chromatographic sample preparation for mass spectrometry applications

Patent Citations (6)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
US3855868A (en) 1972-02-10 1974-12-24 O Sudvaniemi Multiple pipette
US20030057391A1 (en) * 2001-09-21 2003-03-27 The Regents Of The University Of California Low power integrated pumping and valving arrays for microfluidic systems
WO2005002729A1 (de) * 2003-07-04 2005-01-13 november Aktiengesellschaft Gesellschaft für Molekulare Medizin Verwendung eines einwegbehälters, mikrofluidische vorrichtung und verfahren zur bearbeitung von molekülen
US20060159564A1 (en) * 2004-12-31 2006-07-20 Industrial Technology Research Institute Microfluidic driving and speed controlling apparatus and application thereof
WO2007125468A2 (en) * 2006-05-01 2007-11-08 Koninklijke Philips Electronics N.V. Fluid sample transport device with reduced dead volume for processing, controlling and/or detecting a fluid sample
WO2008036045A1 (en) * 2006-09-19 2008-03-27 Agency For Science, Technology And Research A dispenser arrangement for fluidic dispensing control in microfluidic system

Cited By (1)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
WO2016062788A1 (en) 2014-10-24 2016-04-28 Ait Austrian Institute Of Technology Gmbh Microfluidic chip for biological analysis

Also Published As

Publication number Publication date
DE102010041833B4 (de) 2014-05-15
US20130209328A1 (en) 2013-08-15
DE102010041833A1 (de) 2012-04-05
US9278352B2 (en) 2016-03-08
EP2621633A1 (de) 2013-08-07
WO2012041479A8 (de) 2013-08-01

Similar Documents

Publication Publication Date Title
EP1440732B1 (de) Mikrofluidische Anordnung zum Dosieren von Flüssigkeiten
EP2576065B1 (de) Flusszelle mit hohlraum und diaphragma
DE60207708T2 (de) Mikrofluidik-Systeme zum Kombinieren diskreter Fluidvolumen
DE60035111T2 (de) Mikrofluidische systeme mit indizierungskomponenten
DE102008003823B4 (de) Chemische Reaktionskassette und deren Verwendung
DE102009023430B4 (de) Vorrichtung und Verfahren zum Steuern von Fluidströmen in Lab-on-a-Chip-Systemen sowie Verfahren zum Herstellen der Vorrichtung
EP2437890A1 (de) Vorrichtung zum transportieren eines fluids in einem kanalstrang eines mikrofluidelements
DE102011078770B4 (de) Mikrofluidische Vorrichtung, mikrofluidisches System und Verfahren zum Transport von Fluiden
DE102004047963B4 (de) Mikrofluidischer Chip für Hochdurchsatz-Screening und Hochdurchsatz-Assay
DE102010041833B4 (de) Mikrofluidikchip mit mehreren Zylinder-Kolben-Anordnungen
EP1843833B1 (de) Verfahren und vorrichtung zur dosierung und durchmischung kleiner flüssigkeitsmengen, apparat und verwendung
EP2552586B1 (de) Bauteil eines biosensors und verfahren zur herstellung
EP2729251B1 (de) Mikrofluidische struktur mit vertiefungen
EP2624954B1 (de) Verfahren zum waschen einer mikrofluidischen kavität
EP2522427B1 (de) Mikrofluidvorrichtung und Verfahren zum Herstellen derselben
DE102010047384B4 (de) Vorrichtung und Verfahren zur Erzeugung oder zur Ablage eines Fluidstroms aus Fluidsegmenten und ihre Verwendung
DE60007285T2 (de) Gerät zum kapillaren flüssigkeitstransfer in seinem inneren
DE102008004139B3 (de) Vorrichtung und Verfahren zum Hin- und Herbewegen einer Flüssigkeit über eine vorbestimmte Fläche
DE10055374B4 (de) Verteilerplatte für Flüssigkeiten und Gase
EP1404447B1 (de) Analysevorrichtung
DE102021207014A1 (de) Mikrofluidische Vorrichtung und Verfahren zum Betreiben einer mikrofluidischen Vorrichtung
WO2021233862A1 (de) Flusszelle mit sollbruchsperre
DE102010041972A1 (de) Mikrofluidikvorrichtung und Verfahren zur Steuerung des Fluidflusses unter Verwendung derselben
AT500433B1 (de) Analysevorrichtung

Legal Events

Date Code Title Description
121 Ep: the epo has been informed by wipo that ep was designated in this application

Ref document number: 11779084

Country of ref document: EP

Kind code of ref document: A1

WWE Wipo information: entry into national phase

Ref document number: 13824817

Country of ref document: US

WWE Wipo information: entry into national phase

Ref document number: 2011779084

Country of ref document: EP