WO2012041098A1 - 反馈信息发送方法和用户设备 - Google Patents

反馈信息发送方法和用户设备 Download PDF

Info

Publication number
WO2012041098A1
WO2012041098A1 PCT/CN2011/076678 CN2011076678W WO2012041098A1 WO 2012041098 A1 WO2012041098 A1 WO 2012041098A1 CN 2011076678 W CN2011076678 W CN 2011076678W WO 2012041098 A1 WO2012041098 A1 WO 2012041098A1
Authority
WO
WIPO (PCT)
Prior art keywords
bit data
data
information
group
sequence
Prior art date
Application number
PCT/CN2011/076678
Other languages
English (en)
French (fr)
Inventor
戴博
夏树强
梁春丽
喻斌
Original Assignee
中兴通讯股份有限公司
Priority date (The priority date is an assumption and is not a legal conclusion. Google has not performed a legal analysis and makes no representation as to the accuracy of the date listed.)
Filing date
Publication date
Application filed by 中兴通讯股份有限公司 filed Critical 中兴通讯股份有限公司
Priority to KR1020137008154A priority Critical patent/KR101551829B1/ko
Priority to EP11827994.2A priority patent/EP2608439A4/en
Priority to US13/824,085 priority patent/US9282549B2/en
Priority to JP2013530544A priority patent/JP5567219B2/ja
Priority to BR112013007644A priority patent/BR112013007644A2/pt
Priority to RU2013112503/08A priority patent/RU2540834C2/ru
Publication of WO2012041098A1 publication Critical patent/WO2012041098A1/zh

Links

Classifications

    • HELECTRICITY
    • H04ELECTRIC COMMUNICATION TECHNIQUE
    • H04LTRANSMISSION OF DIGITAL INFORMATION, e.g. TELEGRAPHIC COMMUNICATION
    • H04L1/00Arrangements for detecting or preventing errors in the information received
    • H04L1/0001Systems modifying transmission characteristics according to link quality, e.g. power backoff
    • H04L1/0023Systems modifying transmission characteristics according to link quality, e.g. power backoff characterised by the signalling
    • H04L1/0026Transmission of channel quality indication
    • HELECTRICITY
    • H04ELECTRIC COMMUNICATION TECHNIQUE
    • H04WWIRELESS COMMUNICATION NETWORKS
    • H04W72/00Local resource management
    • H04W72/20Control channels or signalling for resource management
    • H04W72/21Control channels or signalling for resource management in the uplink direction of a wireless link, i.e. towards the network
    • HELECTRICITY
    • H04ELECTRIC COMMUNICATION TECHNIQUE
    • H04LTRANSMISSION OF DIGITAL INFORMATION, e.g. TELEGRAPHIC COMMUNICATION
    • H04L1/00Arrangements for detecting or preventing errors in the information received
    • H04L1/0001Systems modifying transmission characteristics according to link quality, e.g. power backoff
    • H04L1/0023Systems modifying transmission characteristics according to link quality, e.g. power backoff characterised by the signalling
    • H04L1/0028Formatting
    • HELECTRICITY
    • H04ELECTRIC COMMUNICATION TECHNIQUE
    • H04LTRANSMISSION OF DIGITAL INFORMATION, e.g. TELEGRAPHIC COMMUNICATION
    • H04L1/00Arrangements for detecting or preventing errors in the information received
    • H04L1/12Arrangements for detecting or preventing errors in the information received by using return channel
    • H04L1/16Arrangements for detecting or preventing errors in the information received by using return channel in which the return channel carries supervisory signals, e.g. repetition request signals
    • H04L1/1607Details of the supervisory signal
    • H04L1/1671Details of the supervisory signal the supervisory signal being transmitted together with control information
    • HELECTRICITY
    • H04ELECTRIC COMMUNICATION TECHNIQUE
    • H04LTRANSMISSION OF DIGITAL INFORMATION, e.g. TELEGRAPHIC COMMUNICATION
    • H04L1/00Arrangements for detecting or preventing errors in the information received
    • H04L1/12Arrangements for detecting or preventing errors in the information received by using return channel
    • H04L1/16Arrangements for detecting or preventing errors in the information received by using return channel in which the return channel carries supervisory signals, e.g. repetition request signals
    • H04L1/18Automatic repetition systems, e.g. Van Duuren systems
    • H04L1/1829Arrangements specially adapted for the receiver end
    • H04L1/1861Physical mapping arrangements
    • HELECTRICITY
    • H04ELECTRIC COMMUNICATION TECHNIQUE
    • H04LTRANSMISSION OF DIGITAL INFORMATION, e.g. TELEGRAPHIC COMMUNICATION
    • H04L5/00Arrangements affording multiple use of the transmission path
    • H04L5/0001Arrangements for dividing the transmission path
    • H04L5/0003Two-dimensional division
    • H04L5/0005Time-frequency
    • H04L5/0007Time-frequency the frequencies being orthogonal, e.g. OFDM(A), DMT
    • H04L5/001Time-frequency the frequencies being orthogonal, e.g. OFDM(A), DMT the frequencies being arranged in component carriers
    • HELECTRICITY
    • H04ELECTRIC COMMUNICATION TECHNIQUE
    • H04LTRANSMISSION OF DIGITAL INFORMATION, e.g. TELEGRAPHIC COMMUNICATION
    • H04L5/00Arrangements affording multiple use of the transmission path
    • H04L5/003Arrangements for allocating sub-channels of the transmission path
    • H04L5/0044Arrangements for allocating sub-channels of the transmission path allocation of payload
    • HELECTRICITY
    • H04ELECTRIC COMMUNICATION TECHNIQUE
    • H04LTRANSMISSION OF DIGITAL INFORMATION, e.g. TELEGRAPHIC COMMUNICATION
    • H04L5/00Arrangements affording multiple use of the transmission path
    • H04L5/003Arrangements for allocating sub-channels of the transmission path
    • H04L5/0048Allocation of pilot signals, i.e. of signals known to the receiver
    • HELECTRICITY
    • H04ELECTRIC COMMUNICATION TECHNIQUE
    • H04LTRANSMISSION OF DIGITAL INFORMATION, e.g. TELEGRAPHIC COMMUNICATION
    • H04L5/00Arrangements affording multiple use of the transmission path
    • H04L5/003Arrangements for allocating sub-channels of the transmission path
    • H04L5/0053Allocation of signaling, i.e. of overhead other than pilot signals
    • HELECTRICITY
    • H04ELECTRIC COMMUNICATION TECHNIQUE
    • H04LTRANSMISSION OF DIGITAL INFORMATION, e.g. TELEGRAPHIC COMMUNICATION
    • H04L5/00Arrangements affording multiple use of the transmission path
    • H04L5/0001Arrangements for dividing the transmission path
    • H04L5/0014Three-dimensional division
    • H04L5/0016Time-frequency-code

Definitions

  • the present invention relates to the field of mobile wireless communications, and in particular, to a feedback information sending method and a user equipment.
  • the radio frame in the Long Term Evolution (LTE) system includes a Frequency Division Duplex (FDD) mode and a Time Division Duplex (TDD) mode.
  • FDD Frequency Division Duplex
  • TDD Time Division Duplex
  • Frame structure As shown in FIG. 1, in the frame structure of the FDD mode, a 10 msec (ms) radio frame is composed of twenty slots of length 0.5 ms and numbers 0 to 19, and slots 2i and 2i. +l constitutes a subframe (frame) i (where 0 i 9 ) of length 1 ms.
  • a 10 ms radio frame is composed of two half frames of 5 ms length, and one subframe includes five subframes of length 1 ms, and the subframes are included.
  • i is defined as a combination of 2 slots 2i and 2i+1 that are 0.5 ms long (where 0 i 9 ).
  • Normal Cyclic Prefix Normal CP
  • one slot contains seven symbols with a length of 66.7 microseconds (us), and the CP of the first symbol.
  • the length of the CP is 5.21us, and the length of the remaining 6 symbols is 4.69 us.
  • Extended Cyclic Prefix Extended Cyclic Prefix
  • one slot contains 6 symbols, and the CP length of each symbol is 16.67 us.
  • Table 1 The uplink and downlink configurations supported by each subframe are shown in Table 1.
  • D denotes a subframe dedicated to downlink transmission
  • U denotes a subframe dedicated for uplink transmission
  • S denotes a downlink pilot slot (DwPTS for short), guard interval A special subframe of the three domains (Guard Period, GP for short) and Uplink Pilot Time Slot (UpPTS for short).
  • Table 1 Schematic diagram of the uplink and downlink configuration supported by each sub-frame 0 5 ms DS uuu DS u UU
  • LTE TDD supports 5ms and 10ms uplink and downlink switching cycles. If the downlink to uplink transition point period is 5ms, the special subframe will exist in two fields; if the downlink to uplink transition point period is 10ms, the special subframe exists only in the first field; subframe #0 and sub Frame #5 and DwPTS are always used for downlink transmission; UpPTS and subframes immediately following the special subframe, and are dedicated to uplink transmission.
  • the LTE uplink uses Single Carrier-Frequency Division Multiple Access (SC-FDMA), and the uplink time domain symbol is the uplink SC-FDMA symbol.
  • the Physical Uplink Control Channel (PUCCH) format is divided into Format 1, Format la, Format lb, Format 2, Format 2a, and Format 2b. Up to 15 bits of original information can be transmitted.
  • Each PUCCH occupies resources of two physical resource blocks in one subframe, and occupies resources of one physical resource block in one slot.
  • the Long Term Evolution Advanced (LTE-A) system which is the LTE evolution standard, needs to support larger system bandwidth. (up to 100MHz) and need to be backward compatible with existing LTE standards.
  • CA Carrier Aggregation
  • the CA technology can improve the spectrum utilization of the IMT-Advance system, alleviate the shortage of spectrum resources, and optimize the utilization of spectrum resources.
  • the carrier-aggregated LTE system bandwidth can be regarded as a component carrier (CC), and each component carrier frequency can also be referred to as a cell (Cell), which can be aggregated by n component carrier frequencies (Cells). to make.
  • the resources of an R10 user equipment (UE) are composed of n cells (component carrier frequencies) in the frequency domain, where one cell is called a primary small The primary cell and the remaining cells are called secondary cells.
  • a Discrete Fourier Transform Spread-Orthogonal Frequency Division Multiplexing (DFT-S-OFDM) based format is introduced in the LTE-A system to support more than 4 bits.
  • the UE performs feedback of the ACK/NACK response message, and refers to the new DFT-S-OFDM-based format as the control channel format 3, and the PUCCH Format 3 uses the existing RM (32, 0) encoding method (That is, Reed Muller (32, 0) coding mode), which can transmit up to 11 bits of information.
  • RM 32, 0
  • Reed Muller (32, 0) coding mode That is, Reed Muller (32, 0) coding mode
  • Each cell may have one transport block transmission depending on the transmission mode, or two transport blocks may be transmitted. Due to carrier aggregation, when one subframe corresponds to multiple cells in the frequency domain, the UE needs to feed back downlink channel information of multiple cells. Since the current PUCCH channel feedback information bit capacity is limited, information of multiple cells corresponding to the downlink channel cannot be simultaneously fed back on one PUCCH channel, and therefore needs to be allocated to different subframes for transmission, which will cause the information feedback delay to become large. It is not conducive to the downlink dynamic scheduling of the base station, which affects system performance.
  • a primary object of the present invention is to provide a method for transmitting feedback information and a user equipment to overcome the defect that the UE cannot simultaneously feed back information of multiple cells on the corresponding downlink channel on one PUCCH channel in the prior art.
  • the present invention provides a method for transmitting feedback information, the method includes: a user equipment (UE) performs time domain expansion of bit data of the feedback information in one subframe; and the extended data and corresponding solution
  • the tone reference signals are respectively mapped to a plurality of uplink single carrier frequency division multiple access (SC-FDMA) symbols in the subframe, and the extended data and corresponding are transmitted in the same frequency domain position by means of time division multiplexing.
  • SC-FDMA uplink single carrier frequency division multiple access
  • the step of performing time domain expansion on the bit data of the feedback information includes: encoding, adding, and/or interleaving, and modulating the bit data, and then encoding, adding 4, and/or interleaving, And the modulated data is subjected to Discrete Fourier Transform (DFT), wherein the processing order of the scrambling, interleaving, and modulation is arbitrary.
  • DFT Discrete Fourier Transform
  • the step of encoding the bit data comprises: first dividing (bit data of the information to be fed back into a group of bits, and then separately encoding each group of data, the coding mode is RM (32, ( 9) coding or convolutional coding; wherein, the length of the first, group data is Z M ⁇ Z ⁇ n LQ l
  • the step of performing time domain expansion on the bit data of the feedback information in one subframe includes: the UE serially connecting the bit data obtained by each group in series, or cross-connecting together, or dividing After the block crosses are connected in series, or the UE performs a scramble modulation operation on the bit data obtained by each group of codes, and then the symbols obtained by the respective groups are connected in series, wherein the series connection is sequential connection or Cross in series.
  • the step of dividing the bit data of the information to be fed back into the group includes: starting from the first bit data in the sequence consisting of the bit data of the information to be fed back, and sequentially dividing into the group of ⁇ , In addition to the last group, the bits, the last group contains bit data that is greater than or equal to the sequence of bit data of the information.
  • the bit data of each bit data is divided into a set of bit data, and the bit data with the same modulus value is divided into a group; or, when the feedback information is channel state information, the bit data indicating the information to be fed back corresponding to each cell is correspondingly classified as a group; or, starting from the first bit data in the sequence consisting of the bit data of the information to be fed back, sequentially divided into groups, wherein the number of bits included in each group of Omody
  • the interleaving method performs interleaving according to a fixed sequence of data to be interleaved, or interleaving data to be interleaved according to a matrix manner of traveling, or interleaving according to a block interleaving method.
  • the step of performing DFT on the encoded, scrambled, and/or interleaved, and modulated data includes: performing DFT processing on all data together in the time domain, or on each physical resource block in the time domain. The data carried is subjected to DFT processing separately.
  • the sequence of the demodulation reference signal is composed of a sequence of length ⁇ ; or the sequence of the demodulation reference signal is composed of a sequence of strip lengths, where is included in one physical resource block The number of subcarriers.
  • the sequence is a Zadoff-Chu (ZC) sequence or a computer generated ZC sequence (Computer Generation Zadoff-Ch).
  • the index of the physical resource block occupied by the uplink SC-FDMA symbol in the first slot in the subframe is m, then The index of the physical resource block occupied by the uplink SC-FDMA symbol in the second slot in the subframe is N- ⁇ -m or 777.
  • the step of mapping the extended data and the corresponding demodulation reference signal to the plurality of uplink SC-FDMA symbols in the subframe includes: The extended data is respectively mapped to the uplink SC-FDMA symbols in each slot in the subframe, and the demodulation reference signals corresponding to the extended data are respectively mapped to the other slots in the slots in the subframe.
  • the uplink SC-FDMA symbol On the uplink SC-FDMA symbol; or, mapping the extended data portion to the first in the subframe
  • another part of the data is mapped onto the /uplink SC-FDMA symbols in the second slot in the subframe, and the demodulation corresponding to the mapped data of each part is performed.
  • the information to be fed back includes any one or any combination of correct response (ACK) or error response (NACK) information, channel state information, rank indication information, and scheduling request information.
  • the present invention further provides a method for transmitting feedback information, the method includes: after the user equipment divides the bit data of the information to be fed back into n groups, each group of data is correspondingly passed through a format for physical uplink control.
  • the PUCCH of the channel format (PUCCH Format) 2 or PUCCH Format 3 is sent out; where n is 2, and the PUCCH carrying the bit data occupies the same or adjacent physical resource blocks in the frequency domain.
  • the step of dividing the bit data of the information to be fed back into n groups by the user equipment comprises: starting from the first bit data in the sequence consisting of the bit data of the O-bit feedback information, and sequentially dividing into Group, except the last group, the bits, the bit data contained in the last group is greater than or equal to the bit data of the information
  • each bit of data in the sequence is modulo with n, and the bit data with the same modulus value is divided into a group; or, when the feedback information is channel state information, the bit data corresponding to the information to be fed back corresponding to each cell is correspondingly
  • the ground is grouped into a group; or, starting from the first bit data in the sequence consisting of the bit data of the information to be fed back, is sequentially divided into groups, wherein the number of bits included in each group of Omodw is
  • the information to be fed back includes: any one or any combination of correct answer (ACK) or error acknowledgement (NACK) information, channel state information, rank indication information, and scheduling request information.
  • the present invention further provides a user equipment, where the user equipment includes: a time domain expansion module and a data transmission module; the time domain extension module is configured to: the bit data of the feedback information is performed in one subframe Time domain extension; the data transmission module is configured to: map the extended data obtained by the time domain extension module and the corresponding demodulation reference signal to multiple uplink single carrier frequency division multiple access (SC) in the subframe -FDMA), transmitting the extended data and the corresponding demodulation reference signal in the same frequency domain position by means of time division multiplexing; wherein each uplink SC-FDMA symbol occupies n in the frequency domain A continuous physical resource block, where n is a positive integer.
  • SC single carrier frequency division multiple access
  • the time domain extension module is configured to perform time domain expansion on bit data of the feedback information as follows: encoding, scrambling and/or interleaving, and modulating the bit data. Then, the data subjected to the above processing is subjected to a discrete Fourier transform (DFT), wherein the processing order of the scrambling, interleaving, and modulation is arbitrary.
  • DFT discrete Fourier transform
  • the present invention further provides a user equipment, where the user equipment includes: a grouping module and a sending module; the grouping module is configured to: divide bit data of the information to be fed back into n groups; For example, each group of data is sent out through a PUCCH in a physical uplink control channel format (PUCCH Format) 2 or PUCCH Format 3; wherein, 2, the PUCCH carrying the bit data is occupied in the frequency domain.
  • PUCCH Format physical uplink control channel format
  • PUCCH Format 3 Physical uplink control channel format
  • the grouping module is configured to divide the bit data of the information to be fed back into n groups according to the following manner: the first bit data in the sequence consisting of the bit data of the to-be-received information of the O bits Initially, it is divided into n groups in sequence, except for the last group, the bit data contained in each group is a bit, and the bit data contained in the last group is greater than or equal to the bit; or, the bit data of the information to be fed back is composed.
  • the bit data of each bit in the sequence is modulo with w, and the bit data with the same modulus value is divided into a group; or, when the feedback information is channel state information, the bit data indicating the information to be fed back corresponding to each cell is correspondingly Or grouped into one group; or, the first bit data in the sequence consisting of the bit data of the information to be fed back
  • the invention increases the number of bits of the UE feedback information, improves the uplink feedback capacity, ensures the maximum throughput of the system, and reduces the feedback delay of the downlink channel information.
  • FIG. 1 is a schematic diagram of a frame structure in an FDD system in the prior art
  • FIG. 2 is a schematic diagram of a frame structure in a TDD system in the prior art
  • FIG. 3 is a downlink scheduling window corresponding to an uplink subframe in a carrier aggregation scenario in the prior art.
  • FIG. 5 is a schematic diagram of the tail-biting convolutional code in the embodiment of the present invention;
  • the method for transmitting feedback information in the embodiment of the present invention includes: the UE performs time domain expansion on the bit data of the feedback information in one subframe; wherein the information to be fed back may be a correct response (Acknowledge, ACK) Any one or any combination of Non-Acknowledge (NACK) information, channel state information, rank indication information, and scheduling request information; the number of bits to be included in the feedback information may be configured according to uplink and downlink time slots and Determining the cell configured by the UE and the corresponding transmission mode; mapping the extended data and the corresponding demodulation reference signal to multiple uplinks in the subframe respectively
  • the extended data and the corresponding demodulation reference signal are transmitted in the same frequency domain position by means of time division multiplexing; wherein each uplink SC-FDMA symbol occupies n consecutive channels in the frequency domain Physical resource block, n is a positive integer;
  • the sequence of the demodulation reference signal can be composed of a computer-generated ZC (Computer Generation-Zadoff-Chu, CG-ZC) sequence or a ZC sequence of length n xL (see Table 2 and Table).
  • 3a and 3b) may also be composed of n CG-ZC sequences or ZC sequences of length L, where is the number of subcarriers included in one physical resource block.
  • the sub-frame is The index of the physical resource block occupied by the uplink SC-FDMA symbol in the second slot in the frame may be N-1-m or m.
  • the channel resource information can be configured to the UE by using high layer signaling.
  • mapping the extended data and the corresponding demodulation reference signal to the plurality of uplink SC-FDMA symbols in the subframe means: Mapping to the uplink SC-FDMA symbols in each slot in the subframe, respectively mapping the demodulation reference signals corresponding to the extended data to the other slots in the slots in the subframe On the uplink SC-FDMA symbol, that is, the data transmitted on the two slots in the same subframe after the mapping is completed; or, the extended data portion is mapped to the uplink SC in the first slot in the subframe.
  • performing time domain expansion on the bit data of the feedback information means: using an orthogonal sequence to extend the encoded sequence to the corresponding uplink SC-FDMA symbol, and the orthogonal sequence may use a discrete Fourier transform (Discrete Fourier Transform (abbreviated as DFT) sequence; specifically includes: encoding, scrambling and/or interleaving, and modulating the data, and then performing DFT on the data processed as described above.
  • DFT Discrete Fourier Transform
  • the interleaving method performs interleaving according to the sequence ⁇ x ⁇ x ⁇ x ⁇ to be interleaved bit data, where ⁇ 1 is a positive integer sequence of 1 to 8, where ⁇ is the length of the interleaving sequence; or
  • the interleaving method is a matrix interleaving method listed according to the traveling; the encoding method may be RM (32, (9) encoding or convolutional encoding.
  • a cyclic redundancy check code is also needed ( Cyclic Redundancy Check (CRC) is encoded together with the bit data of the above-mentioned information to be fed back.
  • the bit data of the O-bit feedback information becomes " x ⁇ 2 ⁇ 2 bits (applicable to two in the same subframe)
  • Jx0x bits (applicable to the case where the data transmitted on the two time slots in the same subframe is the same)
  • represents the number of bits corresponding to one modulation symbol, which is one
  • each uplink SC-FDMA symbol occupies "continuous physical resource blocks in the frequency domain
  • O represents the amount of feedback information that needs to be encoded, which is equivalent to the original number of bits.
  • the number of bits before encoding; ; ⁇ indicates the number of groups of the feedback information packet coding, which is a positive integer.
  • the bit data obtained by each group of encodings may be serially connected in sequence, such as: b°,...,b° ,b ...,b J ; or, cross-connected together, such as b 0 ,...,b ] ,,b 0 ...,b ] ; or,
  • the block crosses are connected in series, for example, the bit data in each group is divided into two blocks in order, and the blocks in the series of the intersecting series, for example, in the two sets of data, each group contains 24 bits of data, then serially The result is 6°, ..., 6° ..., b J ;
  • the grouping method can use any of the following three methods: Method 1: From the bit of the information to be fed back The first bit data in the sequence of data starts, and is divided into ⁇ groups in sequence, except for the last group, the bits, the bit data contained in the last group can be greater than or equal to "representation"
  • Method 2 dividing the position of each bit data in the sequence consisting of the bit data of the information to be fed back into the modulo, and dividing the bit data with the same modulus value into one group;
  • Method 3 When the feedback information is the channel state For information, the bit data indicating the information to be fed back corresponding to each cell is correspondingly grouped into one group;
  • Method 4 starting from the first bit data in the sequence consisting of the bit data of the information to be fed back, sequentially divided into ⁇ group, where each of the Omody groups is + 1 and the remaining ⁇ - (O mod7) groups contain the number of bits
  • performing DFT on the data processed as described above may be: performing DFT processing on all data together in the time domain, or performing DFT processing on data in each physical resource block in the time domain.
  • the total bandwidth is N
  • the physical resource block index is numbered from 0
  • the physical resource block index w occupied by the channel transmitting the feedback information in the first time slot in one subframe by using the foregoing method is
  • the physical resource block index of the second time slot in the subframe is N-1-w
  • the bit data of the original 0 information to be fed back is encoded as " ⁇ ⁇ 2 ⁇ 2 bits, and RM (32, 0) is used.
  • QPSK Quadrature Phase Shift Keying
  • the time domain length of the channel structure is one subframe, before the loop
  • the uplink SC-FDMA symbol corresponding to the extended data is 5
  • the uplink SC-FDMA symbol corresponding to the demodulation reference signal is 2, located at the 2nd and 6th of each slot.
  • the time domain spreading code is a 5th order DFT sequence, in which case the channel structure is PUCCH Format 3; in another embodiment, the total bandwidth is N,
  • the physical resource block index is numbered from 0, and the physical resource block index w occupied by the channel transmitting the feedback information in the first time slot in one subframe is occupied in the second time slot in the subframe.
  • the physical resource block index is N-1-w, and the time domain length of the channel structure is one subframe.
  • the cyclic prefix is a regular cyclic prefix
  • the uplink SC-FDMA symbol corresponding to the extended data is five
  • Adjust the uplink SC-FDMA symbol corresponding to the reference signal 2 located on the 2nd and 6th uplink SC-FDMA symbols of each time slot.
  • the cyclic prefix is an extended cyclic prefix
  • the uplink SC-FDMA symbol corresponding to the data is 5, and the demodulation reference signal corresponds to
  • the uplink SC-FDMA symbol is one, located on the third or fourth uplink SC-FDMA symbol of each slot, and the time domain spreading code is a fifth-order DFT sequence.
  • the bit data of the original O bits of the information to be fed back is divided into groups, and each group of data is separately coded by RM (32, 0).
  • interleaving or not Interleaving wherein the interleaving method is interleaving according to a fixed sequence, or a matrix interleaving method listed according to travel, or according to a block interleaving method.
  • the total bandwidth is N
  • the physical resource block index is numbered from 0
  • the physical resource block index m occupied by the channel transmitting the feedback information in the first time slot in one subframe by using the foregoing method is used.
  • the physical resource block index occupied by the second time slot in the current subframe is N-1-w
  • the time domain length of the channel structure is one subframe.
  • the extended data is The corresponding uplink SC-FDMA symbols are five, and the uplink SC-FDMA symbols corresponding to the demodulation reference signal are two, and the second and sixth uplink SC-FDMA symbols are located in each slot.
  • the uplink SC-FDMA symbol corresponding to the extended data is five, and the uplink SC-FDMA symbol corresponding to the demodulation reference signal is one, which is located at the third of each slot.
  • the time domain spreading code is a 5th order DFT sequence.
  • the interleaving method performs interleaving according to a fixed sequence. Or interleaving according to the matrix listed in the march, or interleaving according to the method of block interleaving.
  • the user equipment of the embodiment of the present invention includes: a time domain expansion module and a data transmission module; the time domain expansion module is configured to: the bit data to be fed back information is time-domain extended in one subframe; and the data transmission module is set as: The extended data obtained by the extension module and the corresponding demodulation reference signal are respectively mapped to a plurality of uplink SC-FDMA symbols in the subframe, and the extended data is transmitted in the same frequency domain position by means of time division multiplexing. And corresponding demodulation reference signals; wherein each uplink SC-FDMA symbol occupies n consecutive physical resource blocks in the frequency domain, and n is a positive integer.
  • time domain expansion module is configured to perform time domain expansion of bit data to be fed back as follows in one subframe: encoding, scrambling and/or interleaving, and modulating the bit data, and then performing the above
  • the processed data is subjected to Discrete Fourier Transform (DFT), wherein the processing order of scrambling, interleaving, and modulation is arbitrary.
  • DFT Discrete Fourier Transform
  • the present invention further provides another user equipment, the user equipment includes: a grouping module and a sending module; the grouping module is configured to: divide bit data of the information to be fed back into w groups; and send the module to: corresponding each group of data Transmitting through a PUCCH of the format PUCCH Format 2 or PUCCH Format 3; where, "2, the PUCCH carrying the bit data occupies in the frequency domain Use the same or adjacent physical resource blocks.
  • the grouping module is configured to divide the bit data of the information to be fed back into n groups according to the following manner: the first bit data opening bit in the sequence consisting of the bit data of the O-bit feedback information, Or, modulating the position of each bit data in the sequence consisting of the bit data of the information to be fed back with w, and dividing the bit data having the same modulus value into one group; or, when the feedback information is channel state information, The bit data of the information to be fed back corresponding to each cell is correspondingly grouped into one group; or, the first bit data in the sequence consisting of the bit data of the information to be fed back is opened.
  • Embodiment 1 uses PUCCH Format X to transmit feedback information.
  • PUCCH Format X uses PUCCH Format X to transmit feedback information.
  • n 2
  • the channel structure of the PUCCH Format X format is as shown in FIG. 4a and FIG.
  • RS represents a demodulation reference signal, which is described as follows: Having consecutive n physical resource blocks in the frequency domain, performing time domain expansion on data on one uplink SC-FDMA symbol, mapping time-domain extended data onto corresponding time domain uplink SC-FDMA symbols, demodulating reference signals and The data is transmitted in the same frequency domain position by means of time division multiplexing; the total bandwidth is N, the physical resource block index is numbered from 0, and the physical resource block index of the channel in the first time slot is m, then, The physical resource block index of the second time slot is Nlw.
  • the letter The time domain length of the track structure is one subframe.
  • the uplink SC-FDMA symbol corresponding to the data is five, and the uplink SC-FDMA symbol corresponding to the demodulation reference signal is used. 2, respectively located on the 2nd and 6th uplink SC-FDMA symbols of each time slot; when the cyclic prefix is an extended cyclic prefix, as shown in FIG. 4b, the uplink SC-FDMA symbol corresponding to the data is 5, the uplink SC-FDMA symbol corresponding to the demodulation reference signal is 1, and the third or fourth uplink SC-FDMA symbol is located in each slot.
  • the time domain spreading code is a 5th order DFT sequence. Table 4 DFT sequence
  • N represents the length of the basic sequence
  • M i3 ⁇ 4 represents the value of the number i in the basic sequence
  • the above interleaving process is performed by transforming the encoded sequence 6 according to a certain rule (for example, interleaving according to a fixed sequence, or interleaving according to a matrix method listed in advance, or interleaving according to a method of block interleaving);
  • the process of scrambling can be performed by scrambling the sequence C, Cl ..., C and the sequence obtained by interleaving the code, ⁇ (or the sequence bh ..., b obtained after encoding) and then modulo 2 to obtain scrambling.
  • the interlaced bits are interleaved according to the fixed sequence ⁇ x ⁇ x ⁇ x ⁇ ⁇ , which is a sequence of positive integers from 1 to B;
  • the first L 3 "bits are grouped.
  • the 2-bit bits are grouped, and the remaining bits are grouped in a group; or, the bit data having the same bit-position and the modulo-modulo value are grouped into one group; or, when the feedback information is channel state information,
  • the feedback information corresponding to each cell is one.
  • the channel in this example can be applied when the number of TDD feedback ACK/NACK information bits in the carrier aggregation is greater than 11, or when the UE needs to simultaneously feed channel state information of r downlink cells.
  • Embodiment 2 The bit data of the information to be fed back is transmitted on the adjacent or the same physical resource block by using the PUCCH Format 3, where “2; the bit data of the information to be fed back is divided into n groups, and each group of feedback information and One PUCCH Format 3 - correspondingly, each PUCCH Format 3 transmits bit data in the corresponding group; the grouping method can be used before The bits are divided into a group, and the remaining bits are divided into a group; or, the even bits are a group, and the odd bits are a group; or, when the feedback information is channel state information, the feedback information corresponding to each cell is one group.
  • the n PUCCH Format 3 channel resources are configured by the high layer signaling; the feedback information bits of the channel transmission may be one or more of ACK/NACK
  • Embodiment 3 Use n PUCCH Format 2 to transmit bit data of information to be fed back on adjacent or the same physical resource block, where n is 2.
  • the bit data of the information to be fed back may be divided into n groups, each group of feedback information corresponding to one PUCCH Format 2, and each PUCCH Format 2 transmits bit data in the corresponding group.
  • Grouping method can be used before The bits are divided into a group, and the remaining bits are divided into a group; or, the even bits are a group, and the odd bits are a group; or, when the feedback information is channel state information, the feedback information corresponding to each cell is one group.
  • the n PUCCH Format 2 channel resources may be configured by high layer signaling; the feedback information bits of the channel transmission may be one or more of ACK/NACK information, channel state information, rank indication information, and scheduling request information; Embodiment 4 In the carrier aggregation scenario, PUCCHFormatX is used to send feedback information; the channel structure with n being 1 is as shown in FIG. 7, and the following description is as follows: The frequency domain occupies consecutive n physical resource blocks, and is on an uplink SC-FDMA symbol.
  • the data is extended in the time domain, and the time domain extended data is mapped to the corresponding time domain uplink SC-FDMA symbol, and the demodulation reference signal and the data are transmitted in the same frequency domain position by means of time division multiplexing; the total bandwidth is N, the physical resource block index is numbered from 0, the physical resource block index m of the channel in the first time slot, and the physical resource block index of the second time slot is N-1-w, the channel structure
  • the length of the time domain is one subframe.
  • the cyclic prefix is a regular cyclic prefix
  • the uplink SC-FDMA symbol corresponding to the data is five
  • the uplink SC-FDMA symbol corresponding to the demodulation reference signal is two, located in each slot.
  • the uplink SC-FDMA symbol corresponding to the data is five, and the uplink SC-FDMA symbol corresponding to the demodulation reference signal is 1.
  • the time domain spreading code is a 5th order DFT sequence, as shown in Table 4;
  • the even-numbered bits are grouped into one group, and the odd-numbered bits are divided into another group of groups.
  • the specific coding method is RM (24, 0).
  • N represents the length of the basic sequence
  • M i3 ⁇ 4 represents the value of the sequence z in the basic sequence 2
  • the feedback information included in the representation group, ⁇ . indicates the number of information bits included in the group
  • the basic sequence is as shown in Table 6, and the basic sequence may be in the form of row replacement using the basic sequence of Table 6.
  • Each group of bits can be sequentially connected in series, such as b 0 ,, b 0 ,..., b ] , , b ] can also be cross-connected together, such as b 0 ,, b 0 ,...,b ] , b ] , or, the blocks are connected in series, two bits are one piece, each group is cross-connected in blocks, b°, b°, bb ..., bbbb l , or, the blocks are connected in series,
  • the interleaving method is a block interleaving method, that is, for the coding scheme 1, each group corresponds to 24 bits, and the bit data in one group is sequentially divided into two blocks, each block containing 12 bits, Each block of data is interleaved in series, assuming that the bit sequence before interleaving is 6°,...°, b .., b 3 ; then the bit sequence after interleaving is OR, the interleaving method is a block interleaving method, that is, for the coding scheme 1.
  • Each group corresponds to 24 bits, and the bit data in one group is divided into six blocks in order, each block contains 2 bits, and each block of data is interleaved in series, assuming that the bit sequence before interleaving is b 0 . , b 0 , D 23 ; then the bit sequence after interleaving is
  • the process of scrambling is to use the scrambling code sequence and the coded interleaved sequence b 0 ', b,...
  • the scrambling code sequence is composed of pseudo-random sequences; the modulation method uses QPSK,
  • the time domain extension means that the coded sequence is extended to the occupied symbol by using an orthogonal sequence, and the orthogonal sequence can use the DFT sequence; wherein the DFT transform refers to performing DFT operation on the modulation sequence on the symbol; or As shown in FIG. 8b, the bit data is encoded, scrambled, modulated, and/or interleaved, and then subjected to discrete Fourier transform (DFT) on the processed data.
  • DFT discrete Fourier transform
  • the bit is interleaved as a sequence of 1 to a positive integer, or the interleaving method is a matrix interleaving method listed according to the travel; for example, when the number of modulation symbols to be interleaved is 24, the sequence is ⁇ 1, 2, 3, 4, 5, 6, 13, 14, 15, 16, 17, 18, 7, 8, 9, 10, 11, 12, 19, 20, 21, 22, 23, 24 ⁇ or ⁇ 1, 3, 5, 7, 9, 11, 13, 15, 17, 19, 21, 23, 2, 4, 6, 8, 10, 12, 14, 16, 18, 20, 22, 24 ⁇ , rearrange the to-be-interlaced in the above order Bit, complete interleaving.
  • the interleaving method is block interleaving.
  • each group corresponds to 12 modulation symbols, and one group is sequentially divided into two blocks, each block includes 6 modulation symbols, and each block is interleaved in series, before interleaving.
  • the modulation symbol sequence is, Q, ... 0 23
  • the intermodulation modulation symbols are, ..., ⁇ ,..., ⁇ , ⁇ ..., ⁇ , ⁇ ,..., ⁇ ;
  • the extension means that the coded sequence is extended to the occupied symbol by using an orthogonal sequence, and the orthogonal sequence can use the DFT sequence; wherein the DFT transform refers to performing a DFT operation on the modulation sequence on the symbol.
  • the bit data of the feedback information subjected to the group division is respectively encoded, scrambled, modulated, and connected in series, and then the discrete Fourier transform (DFT) is performed on the data processed as described above.
  • DFT discrete Fourier transform
  • time domain expansion refers to the use of orthogonal sequences to encode
  • the sequence is extended to the occupied symbols, and the orthogonal sequence can use the DFT sequence; wherein the DFT transform refers to performing DFT operations on the modulation sequence on the symbol;
  • the feedback information bit data of the channel transmission may be one or more of ACK/NACK information, channel state information, rank indication information, and scheduling request information.
  • the number of feedback information is determined according to the cell configured by the UE and the corresponding transmission mode.
  • the channel resource is configured to the target UE by using high layer signaling.
  • the channel in this embodiment may be used when the number of TDD feedback ACK/NACK information is greater than 11, or when the UE feeds back channel state information of r downlink cells.
  • the present invention increases the number of bits of feedback information of the UE, improves the uplink feedback capacity, ensures the maximum throughput of the system, and reduces the feedback delay of the downlink channel information.

Landscapes

  • Engineering & Computer Science (AREA)
  • Signal Processing (AREA)
  • Computer Networks & Wireless Communication (AREA)
  • Quality & Reliability (AREA)
  • Mobile Radio Communication Systems (AREA)
  • Detection And Prevention Of Errors In Transmission (AREA)

Abstract

本发明公开了反馈信息发送方法和用户设备,其中一种方法包括用户设备(UE)对待反馈信息的比特数据在一个子帧内进行时域扩展;以及将扩展后数据及对应的解调参考信号分别映射到该子帧内的多个上行单载波频分多址(SC-FDMA)符号上,采用时分复用的方式,在相同频域位置上传输所述扩展后数据及对应的解调参考信号;其中,每个上行SC-FDMA符号在频域上占用n个连续的物理资源块,n为正整数。本发明增加了UE反馈信息的比特数量,提高了上行反馈容量。

Description

反馈信息发送方法和用户设备
技术领域 本发明涉及移动无线通信领域,尤其涉及反馈信息发送方法和用户设备。
背景技术
长期演进( Long Term Evolution , 简称为 LTE ) 系统中的无线帧( Radio Frame ) 包括频分双工 ( Frequency Division Duplex, 简称为 FDD )模式和时 分双工 (Time Division Duplex, 简称为 TDD )模式的帧结构。 如图 1所示, 在 FDD模式的帧结构中,一个 10毫秒(ms )的无线帧由二十个长度为 0.5ms、 编号为 0~19的时隙 (slot )组成, 时隙 2i和 2i+l组成长度为 1ms的子帧 ( subframe ) i (其中, 0 i 9 ) 。 如图 2所示, 在 TDD模式的帧结构中, 一个 10ms的无线帧由两个长为 5ms的半帧 (half frame )组成, 一个半帧中 包括 5个长度为 1ms的子帧,子帧 i定义为 2个长为 0.5ms的时隙 2i和 2i+l 的组合(其中, 0 i 9 ) 。 在上述两种帧结构中, 釆用标准循环前缀(Normal Cyclic Prefix, 简称 为 Normal CP ) 时, 一个时隙中包含 7个长度为 66.7微秒( us ) 的符号, 其 中第一个符号的 CP长度为 5.21us ,其余 6个符号的 CP长度为 4.69 us; 釆用 扩展循环前缀( Extended Cyclic Prefix, 简称为 Extended CP ) 时, 一个时隙 中包含 6个符号, 每个符号的 CP长度均为 16.67 us。 各子帧支持的上下行配置如表 1 所示。 其中, "D" 表示专用于下行传 输的子帧, "U" 表示专用于上行传输的子帧, "S" 表示用于下行导频时隙 ( Downlink Pilot Time Slot, 简称为 DwPTS ) , 保护间隔( Guard Period, 简 称为 GP )和上行导频时隙 ( Uplink Pilot Time Slot, 简称为 UpPTS )这三个 域的特殊子帧。 表 1 各子帧支持的上下行配置示意表
Figure imgf000003_0001
0 5 ms D S u u u D S u U U
1 5 ms D S u u D D S u U D
2 5 ms D s u D D D s u D D
3 10 ms D s u u U D D D D D
4 10 ms D s u u D D D D D D
5 10 ms D s u D D D D D D D
6 5 ms D s u U U D S U U D 从上表可以看出, LTE TDD支持 5ms和 10ms的上下行切换周期。 如果 下行到上行转换点周期为 5ms, 特殊子帧会存在于两个半帧中; 如果下行到 上行转换点周期为 10ms, 特殊子帧只存在于第一个半帧中; 子帧 #0和子帧 #5以及 DwPTS总是用于下行传输; UpPTS和紧跟于特殊子帧后的子帧, 且 专用于上行传输。
LTE 上行釆用单载波频分多址 ( Single Carrier-Frequency Division Multiple Access, 简称为 SC-FDMA ) 方式, 上行时域符号为上行 SC-FDMA 符号。 物理上行控制信道( Physical Uplink Control Channel, 简称为 PUCCH ) 的格式分为 Format 1、 Format la、 Format lb、 Format 2、 Format 2a和 Format 2b六种, 最多可以传输 15比特原始信息。 每个 PUCCH在一个子帧中占用 两个物理资源块的资源, 在一个时隙内占用一个物理资源块的资源。 为 了 满足高级国 际电信联盟 ( International Telecommunication Union- Advanced, 简称为 ITU- Advanced ) 的要求, 作为 LTE演进标准的高 级长期演进 ( Long Term Evolution Advanced, 简称为 LTE-A ) 系统需要支持 更大的系统带宽 (最高可达 100MHz ) , 并需要后向兼容 LTE现有的标准。 在现有 LTE系统的基础上, 可以通过将 LTE系统的带宽进行合并来获得更 大的带宽, 这种技术称为载波聚合(Carrier Aggregation, 简称为 CA )技术。 该 CA技术能够提高 IMT-Advance系统的频谱利用率、 緩解频谱资源紧缺, 进而优化频谱资源的利用。所述载波聚合的 LTE系统带宽可以看作分量载频 ( Component Carrier,简称为 CC ) ,每个分量载频也可以称为一个小区( Cell ), 可以由 n个分量载频( Cell )聚合而成。一个 R10用户设备 ( User Equipment, UE )的资源由频域的 n个小区(分量载频)构成, 其中, 一个小区称为主小 区 ( Primary cell ) , 其余小区称为辅小区 ( Secondary cell ) 。 在 LTE-A 系统中引入一种基于离散傅立叶变换扩展正交频分复用 ( Discrete Fourier Transform Spread-Orthogonal Frequency Division Multiplexing, 简称为 DFT-S-OFDM ) 的格式, 用于能够支持多于 4 比特的 UE来进行 ACK/NACK应答消息的反馈, 并将这种新的基于 DFT- S-OFDM 的格式称为控制信道格式 3 , PUCCH Format 3釆用现有 RM ( 32 , 0 ) 的编 码方式(即 Reed Muller ( 32 , 0 )编码方式) , 最多可以传输 11比特信息。 在 TDD 系统中, 一个上行子帧会对应多个下行子帧, 并且, 每个下行 子帧上有 n个小区, 如图 3所示。 每个小区根据传输模式不同可以有一个传 输块传输, 也可以有两个传输块传输。 由于载波聚合, 一个子帧在频域上对 应多个小区时, UE需要反馈多个小区的下行信道信息。 由于目前 PUCCH信 道反馈信息比特容量受限, 不能在一个 PUCCH信道上同时反馈对应下行信 道的多个小区的信息, 因此需要分配到不同子帧上进行传输, 这将导致信息 反馈时延变大, 不利于基站的下行动态调度, 影响系统性能。
发明内容 本发明的主要目的在于提供反馈信息发送方法和用户设备, 以克服现有 技术中 UE不能在一个 PUCCH信道上同时反馈对应的下行信道上多个小区 的信息的缺陷。 为解决上述问题, 本发明提供了一种反馈信息发送方法, 该方法包括: 用户设备 ( UE )对待反馈信息的比特数据在一个子帧内进行时域扩展; 以及 将扩展后数据及对应的解调参考信号分别映射到该子帧内的多个上行单 载波频分多址(SC-FDMA )符号上, 釆用时分复用的方式, 在相同频域位置 上传输所述扩展后数据及对应的解调参考信号; 其中,每个上行 SC-FDMA符号在频域上占用《个连续的物理资源块, n 为正整数。 上述方法中, 对待反馈信息的比特数据进行时域扩展的步骤包括: 对所述比特数据进 行编码、 加 4尤和 /或交织、 及调制, 再对经过编码、 加 4尤和 /或交织、 及调制 后的数据进行离散傅里叶变换(DFT ) , 其中, 所述加扰、 交织及调制的处 理顺序为任意。 上述方法中, 对所述比特数据进行编码的步骤包括: 先将 ( 比特的待反馈信息的比特 数据划分为 Γ组, 然后对各组数据分别进行编码, 所述编码方式为 RM ( 32 , (9 )编码或者卷积编码;其中,第 ,组数据编码后长度为 Z M ^ Z^ n L Q l
i=
或 z,. = WxJx2 , 其中, ρ表示一个调制符号对应的比特数, 为一个物理 i=
资源块中包含的子载波数量, ; Γ为正整数。 上述方法中, 对待反馈信息的比特数据在一个子帧内进行时域扩展的步 骤包括: 所述 UE将各组编码后得到的比特数据按顺序串联在一起、 或者交叉地 串联在一起、 或者分块交叉串联在一起、 或者所述 UE对各组编码后得到的 比特数据分别进行加扰调制操作后, 再将各组调制后得到的符号串联起来, 其中, 所述串联的方式为顺序串联或者交叉串联。 上述方法中, 将 ( 比特的待反馈信息的比特数据划分为 Γ组的步骤包括:从由所述待 反馈信息的比特数据组成的序列中第一个比特数据开始, 顺次划分为 Γ组, 除最后一组外, 比特, 最后一组内包含的比特 数据大于等于 信息的比特数据组成的序列中
Figure imgf000006_0001
各比特数据所在位置与 Γ取模, 将模值相同的比特数据划分为一组; 或者, 当反馈信息为信道状态信息时, 将表示每一小区对应的待反馈信息的比特数 据相应地划为一组; 或者, 从由所述待反馈信息的比特数据组成的序列中第 一个比特数据开始, 顺次划分为 Γ组, 其中 Omody个中各组包含的比特数量
Figure imgf000007_0001
上述方法中, 所述交织方式为按照固定序列对待交织数据进行交织, 或者按照行进列 出的矩阵方式对待交织数据进行交织, 或者按照分块交织法进行交织。 上述方法中, 对经过编码、 加扰和 /或交织、 及调制后的数据进行 DFT的步骤包括: 在时域上对所有数据一同进行 DFT处理,或者在时域上对每个物理资源块上 承载的数据分别进行 DFT处理。 上述方法中, 所述解调参考信号的序列由长度为《χ 的序列构成; 或者, 所述解调参 考信号的序列由《条长度为 的序列构成, 其中, 为一个物理资源块中包 含的子载波数量。 上述方法中, 所述序列为 Zadoff-Chu ( ZC )序列或者计算机产生的 ZC序列( Computer Generation Zadoff-Ch ) 。 上述方法中, 当总带宽为 N, 物理资源块索引从 0开始编号时, 若所述子帧中第一个 时隙内的上行 SC-FDMA符号所占用的物理资源块的索引为 m , 则在该子帧 中第二个时隙内的上行 SC-FDMA符号所占用的物理资源块的索引为 N-\ -m 或 777。 上述方法中, 当一个时隙内包含 2个上行 SC-FDMA符号时, 将扩展后数据及对应的 解调参考信号映射到该子帧内的多个上行 SC-FDMA符号上的步骤包括: 将 扩展后数据分别映射到该子帧中各时隙内的/个上行 SC-FDMA符号上, 将 与上述扩展后数据对应的解调参考信号分别映射到该子帧中各时隙内的另外 g个上行 SC-FDMA符号上; 或者, 将扩展后数据部分映射到该子帧中第一 个时隙内的/个上行 SC-FDMA符号上, 将另一部分数据映射到子帧中第二 个时隙内的/个上行 SC-FDMA符号上, 将与各部分已映射数据对应的解调 参考信号相应地映射到该子帧中对应时隙内的另外 g个上行 SC-FDMA符号 上; 其中, h=f+g, /为时域扩展序列的长度。 上述方法中, 当所述时隙中釆用常规循环前缀时, 2=7 ,戶 5 , g=2; 当所述时隙中釆用 扩展循环前缀时, h=6 , f=5 , g=l。 上述方法中, 所述待反馈信息包括正确应答(ACK )或错误应答(NACK )信息、 信 道状态信息、 秩指示信息及调度请求信息中的任意一种或任意组合。 为解决上述问题,本发明还提供了一种反馈信息发送方法,该方法包括: 用户设备将待反馈信息的比特数据划分为 n组后, 将每一组数据对应地 通过一个格式为物理上行控制信道格式 (PUCCH Format ) 2 或 PUCCH Format 3的 PUCCH发送出去; 其中, n为 2 , 承载所述比特数据的 PUCCH 在频域上占用相同或相邻的物理资源块。 上述方法中, 用户设备将待反馈信息的比特数据划分为 n组的步骤包括: 从由所述 O 比特的待反馈信息的比特数据组成的序列中第一个比特数据开始, 顺次划分 为《组, 除最后一组外, 比特, 最后一组内包 含的比特数据大于等于 信息的比特数据组成
Figure imgf000008_0001
的序列中各比特数据所在位置与 n取模,将模值相同的比特数据划分为一组; 或者, 当反馈信息为信道状态信息时, 将表示每一小区对应的待反馈信息的 比特数据相应地划为一组; 或者, 从由上述待反馈信息的比特数据组成的序 列中第一个比特数据开始, 顺次划分为《组, 其中 Omodw个中各组包含的比 特数量为
Figure imgf000008_0002
上述方法中, 所述待反馈信息包括: 正确应答(ACK )或错误应答(NACK )信息、 信道状态信息、 秩指示信息及调度请求信息中的任意一种或任意组合。 为解决上述问题, 本发明还提供了一种用户设备, 该用户设备包括: 时 域扩展模块及数据传输模块; 所述时域扩展模块设置为: 对待反馈信息的比特数据在一个子帧内进行 时域扩展; 所述数据传输模块设置为: 将所述时域扩展模块得到的扩展后数据及对 应的解调参考信号分别映射到该子帧内的多个上行单载波频分多址 ( SC-FDMA )符号上, 釆用时分复用的方式, 在相同频域位置上传输所述扩 展后数据及对应的解调参考信号; 其中, 每个上行 SC-FDMA符号在频域上 占用 n个连续的物理资源块, n为正整数。 上述用户设备中, 所述时域扩展模块是设置为按如下方式对待反馈信息的比特数据在一个 子帧内进行时域扩展: 对所述比特数据进行编码、 加扰和 /或交织、 及调制, 然后再对经过上述处理的数据进行离散傅里叶变换(DFT ) , 其中, 所述加 扰、 交织及调制的处理顺序为任意。 为解决上述问题, 本发明还提供了一种用户设备, 该用户设备包括: 分 组模块及发送模块; 所述分组模块设置为: 将待反馈信息的比特数据划分为 n组; 所述发送模块设置为: 将每一组数据对应地通过一个格式为物理上行控 制信道格式( PUCCH Format ) 2或 PUCCH Format 3的 PUCCH发送出去; 其中,《为 2,承载所述比特数据的 PUCCH在频域上占用相同或相邻的物理 资源块。 上述用户设备中, 所述分组模块是设置为按如下方式将待反馈信息的比特数据划分为 n 组: 从由所述 O比特的待反馈信息的比特数据组成的序列中第一个比特数据 开始, 顺次划分为 η组, 除最后一组外, 每组内包含的比特数据为 比特, 最后一组内包含的比特数据大于等于 比特; 或者, 将由所述待反馈信息的比特数据组成的序列中各比特数据所在位 置与 w取模, 将模值相同的比特数据划分为一组; 或者, 当反馈信息为信道状态信息时, 将表示每一小区对应的待反馈信 息的比特数据相应地划为一组; 或者, 从由上述待反馈信息的比特数据组成的序列中第一个比特数据开
+ 1 , 剩余
Figure imgf000010_0001
本发明增加了 UE反馈信息的比特数量, 提高了上行反馈容量, 保证了 系统的最大吞吐量, 并且减少了下行信道信息的反馈时延。
附图概述 图 1为现有技术中 FDD系统中帧结构示意图; 图 2为现有技术中 TDD系统中帧结构示意图; 图 3 为现有技术中载波聚合场景下一个上行子帧对应下行调度窗示意 图;
图 4a和图 4b分别为 n=2时 PUCCH Format X在常规循环前缀和扩展循 环前缀情况下的信道结构示意图; 图 5为本发明实施例中咬尾卷积码的示意图; 图 6a和图 6b分别为 n=3时 PUCCH Format X在常规循环前缀和扩展循 环前缀情况下的信道结构示意图; 图 7a和图 7b分别为 n=l时 PUCCH Format X在常规循环前缀和扩展循 环前缀情况下的信道结构示意图; 图 8a、 图 8b和图 8c分别为 n=l时 PUCCH Format X编码调制映射过程 的三个示意图; 以及 图 9为本发明实施例反馈信息的发送方法的流程图。
本发明的较佳实施方式 为使本发明的目的、 技术方案和优点更加清楚明白, 下文中将结合附图 对本发明的实施例进行详细说明。 需要说明的是, 在不冲突的情况下, 本申 请中的实施例及实施例中的特征可以相互任意组合。 本发明实施例的反馈信息的发送方法如图 9所示, 该方法包括: UE对待反馈信息的比特数据在一个子帧内进行时域扩展; 其中, 待反 馈信息可以是正确应答( Acknowledge, ACK ) /错误应答( Non- Acknowledge , NACK )信息、 信道状态信息、 秩指示信息及调度请求信息中的任意一种或 任意组合; 待反馈信息包含的比特数可根据上下行时隙配置以及为该 UE配 置的小区和相应的传输模式来确定; 将扩展后数据及对应的解调参考信号分别映射到该子帧内的多个上行
SC-FDMA符号上, 釆用时分复用的方式, 在相同频域位置上传输该扩展后 数据及对应的解调参考信号; 其中, 每个上行 SC-FDMA符号在频域上占用 n个连续的物理资源块, n为正整数;解调参考信号的序列可以由长度为 n xL 的计算机产生的 ZC ( Computer Generation-Zadoff-Chu, CG-ZC )序列或者 ZC序列构成(如表 2和表 3a和表 3b所示 ),还可以由 n条长度为 L的 CG-ZC 序列或者 ZC序列构成, 其中, 为一个物理资源块中包含的子载波数量。
30条 12长的 CG-ZC序列
U φ(οχ . ., φ(11)
0 -1 1 3 -3 3 3 1 1 3 1 -3 3
1 1 1 3 3 3 -1 1 -3 -3 1 -3 3
2 1 1 -3 -3 -3 -1 -3 -3 1 -3 1 -1
3 -1 1 1 1 1 -1 -3 -3 1 -3 3 -1
Figure imgf000012_0001
.99.0/ll0ZN3/X3d 860Ϊ爾 ΪΟΖ OAV 3 -3 -3 -1 -1 -3 -1 3 -3 3 1 -1
30条 24长的 CG-ZC序列中前 12位取值
^(0), •^(11)
-1 3 1 -3 3 -1 1 3 -3 3 1 3
-3 3 -3 -3 -3 1 -3 -3 3 -1 1 1
3 -1 3 3 1 1 -3 3 3 3 3 1
-1 -3 1 1 3 -3 1 1 -3 -1 -1 1
-1 -1 -1 -3 -3 -1 1 1 3 3 -1 3
-3 1 1 3 -1 1 3 1 -3 1 -3 1
1 1 -1 -1 3 -3 -3 3 -3 1 -1 -1
-3 3 3 -1 -1 -3 -1 3 1 3 1 3
-3 1 3 -3 1 -1 -3 3 -3 3 -1 -1
1 1 -3 3 3 -1 -3 -1 3 -3 3 3
-1 1 -3 -3 3 -1 3 -1 -1 -3 -3 -3
1 3 3 -3 -3 1 3 1 -1 -3 -3 -3
1 3 3 1 1 1 -1 -1 1 -3 3 -1
3 -1 -1 -1 -1 -3 -1 3 3 1 -1 1
-3 -3 3 1 3 1 -3 3 1 3 1 1
-1 -1 1 -3 1 3 -3 -1 -3 -1 3
-1 -3 3 -1 -1 -1 -1 1 -3 3 1
1 3 -1 3 3 -1 -3 -1 -3 3 3
1 1 1 1 1 -1 3 -3 1 1 3
1 3 3 1 -1 -3 3 .! 3 3 3 -3
-1 -3 3 -3 -3 -3 -1 .! -3 -1 -3 3 -3 -3 1 1 -1 1 -1 1 -1 3 1 -3
-3 .! -3 3 1 -1 -3 -1 -3 -3 3 -3
-1 A -1 -1 3 3 3 1 3 3 -3 1
1 A 3 3 -1 -3 3 -3 -1 -1 3 -1
1 A 1 -1 3 -1 3 1 1 -1 -1 -3
-3 A 1 3 1 1 -3 -1 -1 -3 3 -3
-1 -3 3 3 1 1 3 -1 -3 -1 -1 -1
-1 -3 -1 -1 1 -3 -1 -1 1 -1 -3 1
1 1 -1 -1 -3 -1 3 -1 3 -1 1 3 表 3b 30条 24长的 CG-ZC序列中后 12位取值
^(12), ., ^23)
-3 3 1 1 -1 1 3 -3 3 -3 -1 -3
1 3 1 -1 3 -3 -3 1 3 1 1 -3
-1 3 -1 1 1 -1 -3 -1 -1 1 3 3
3 1 3 1 -1 3 1 1 -3 -1 -3 -1
-1 1 -1 -3 1 -1 -3 -3 1 -3 -1 -1
1 -1 -1 3 -1 -3 3 -3 -3 -3 1 1
1 -1 1 1 -1 -3 -1 1 -1 3 -1 -3
1 1 -1 3 1 -1 1 3 -3 -1 -1 1
-1 -1 1 -3 -3 -3 1 -3 -3 -3 1 -3
3 -1 1 1 -3 1 -1 1 1 -3 1 1
-1 -3 -3 1 -1 1 3 3 -1 1 -1 3
3 3 -3 3 3 -1 -3 3 -1 1 -3 1
1 1 -3 3 3 -1 -3 3 -3 -1 -3 -1 13 3 3 3 .! 1 1 -3 1 3 -1 -3 3
14 3 3 -1 .! -3 1 -3 -1 3 1 1 3
15 1 3 1 -3 -3 -1 -1 -3 -3 -3 -1
16 3 3 1 A 1 -3 1 -3 1 1 -3 -1
17 3 -1 1 ! 3 -1 -3 -1 3 -1 -1 -1
18 -3 1 -3 .! 1 1 -3 -3 3 1 1 -3
19 1 -1 1 .! -3 -1 1 3 -1 3 -3 -3
20 1 3 -3 .! 3 -1 1 -1 3 -3 1 -1
21 -1 1 -1 ! -1 -1 3 3 -3 -1 1 -3
22 3 -3 -1 ! 3 1 -3 1 3 3 -1 -3
23 3 -1 3 .! 3 3 -3 3 1 -1 3 3
24 3 -1 -1 ! 1 1 1 -1 -1 -3 -1 3
25 1 1 -3 ! 3 -3 1 1 -3 -3 -1 -1
26 3 1 -3 3 -3 1 -1 1 -3 1 1 1
27 3 1 -3 -3 -1 3 -3 -1 -3 -1 -3 -1
28 1 -3 1 -3 -3 3 1 1 -1 3 -1 -1
29 1 -1 3 1 3 -3 -3 1 -1 -1 1 3
假设, 总带宽为 N, 物理资源块索引从 0开始编号, 则当上述子帧中第 一个时隙内的上行 SC-FDMA符号所占用的物理资源块的索引为 m时, 则在 该子帧中第二个时隙内的上行 SC-FDMA符号所占用的物理资源块的索引为 N-1-m或 m均可。 该信道资源信息可通过高层信令配置给上述 UE。 当一个时隙内包含 2个上行 SC-FDMA符号时, 上述将扩展后数据及对 应的解调参考信号映射到该子帧内的多个上行 SC-FDMA符号上是指: 将扩 展后数据分别映射到该子帧中各时隙内的/个上行 SC-FDMA符号上, 将与 上述扩展后数据对应的解调参考信号分别映射到该子帧中各时隙内的另外 g 个上行 SC-FDMA符号上, 即完成映射后同一子帧内两个时隙上传输的数据 相同; 或者, 将扩展后数据部分映射到该子帧中第一个时隙内的 /个上行 SC-FDMA符号上, 将另一部分数据映射到子帧中第二个时隙内的/个上行 SC-FDMA符号上, 将与各部分已映射数据对应的解调参考信号相应地映射 到该子帧中对应时隙内的另外 g个上行 SC-FDMA符号上, 即完成映射同一 子帧内两个时隙上传输的数据不同。 其中, h=f+g, 时域扩展码的长度为 /。 在具体实施中, 对待反馈信息的比特数据进行时域扩展是指: 使用正交 序列将编码后的序列扩展到对应的上行 SC-FDMA符号上, 正交序列可以釆 用离散傅里叶变换( Discrete Fourier Transform, 简称为 DFT )序列; 具体包 括: 对该数据进行编码、 加扰和 /或交织、 及调制, 然后再对经过上述处理的 数据进行 DFT。 其中, 加扰、 交织及调制的顺序可以任意改变。
其中, 所述交织方法为根据序列 { x^x^x^ }对待交织比特数据进行交 织, ,^ ...^ 1为 1到:8的正整数序列, 其中 Β为交织序列长度; 或者, 所述 交织方法为按照行进列出的矩阵交织方法; 编码方法可以为 RM ( 32, (9 )编码或者卷积编码。 当釆用卷积编码方 式时, 还需要将循环冗余校验码(Cyclic Redundancy Check, 简称为 CRC ) 连同上述待反馈信息的比特数据一起进行编码。 经过编码后, O比特的待反 馈信息的比特数据变为 "x χ2χ2比特 (适用于同一子帧内的两个时隙上传输 的数据不同的情况)或 Jx0x«比特(适用于同一子帧内的两个时隙上传输的 数据相同的情况) , 其中, ρ表示一个调制符号对应的比特数, 为一个物 理资源块中包含的子载波数量, 每个上行 SC-FDMA符号在频域上占用《个 连续的物理资源块, O表示需要编码的反馈信息数量,相当于原始比特数量, 即: 编码前比特数量; ; Γ表示反馈信息分组编码的组数, 为一正整数。 在进行编码时, 可以先将上述 O比特的待反馈信息的比特数据划分为 Γ 组, 然后对各组数据分别进行编码。 4艮设, 第 ,组数据编码后长度为 Z 则 ∑∑,. = nxLxQx 2 (适用于同一子帧内的两个时隙上传输的数据不同的情况) i=
(适用于同一子帧内的两个时隙上传输的数据相同的情况)。
Figure imgf000016_0001
在编码完成后, 可以将各组编码后得到的比特数据按顺序串联在一起, 如: b°,...,b° ,b ...,bJ ; 或者, 交叉地串联在一起, 如 b0,...,b],,b0 ...,b] ; 或者, 分 块交叉串联在一起, 如将每个组中的比特数据分别按照顺序分为两个块, 交 叉的串联各组中的块, 如, 两组数据中, 每组包含 24个比特数据, 则串联后 结果为 6°, ...,6° ...,bJ ; 较优地, 分组方法可以釆用下述三种方式中的任意一种: 方式一: 从由上述待反馈信息的比特数据组成的序列中第一个比特数据 开始, 顺次划分为 Γ组, 除最后一组外, 比特, 最后一组内包含的比特数据可以大于等于 " 表示
Figure imgf000017_0001
向下取整; 方式二: 将由上述待反馈信息的比特数据组成的序列中各比特数据所在 位置与 取模, 将模值相同的比特数据划分为一组; 方式三: 当反馈信息为信道状态信息时, 将表示每一小区对应的待反馈 信息的比特数据相应地划为一组; 方式四: 从由上述待反馈信息的比特数据组成的序列中第一个比特数据 开始, 顺次划分为 Γ组, 其中 Omody个组中各 + 1 , 剩余 Γ - (O mod7)个组中各组包含的比特数量为
Figure imgf000017_0002
此外, 上述对经过上述处理的数据进行 DFT可以是: 在时域上对所有数 据一同进行 DFT处理, 或者,在时域上对每个物理资源块上的数据分别进行 DFT处理。
在一实施例中, 总带宽为 N, 物理资源块索引从 0开始编号, 釆用上述 方法传输上述反馈信息的信道在一个子帧中第一个时隙上占用的物理资源块 索引 w , 在该子帧中第二个时隙的物理资源块索引为 N-1-w , 且, 将原始 0 个待反馈信息的比特数据编码为" χ χ2χ 2比特, 釆用 RM ( 32 , 0 )编码方 式,其中, "=1 , L=12 , Q=2 ,使用正交相移键控( Quadrature Phase Shift Keying, 简称为 QPSK )调制方式。 所述信道结构的时域长度为一个子帧, 在循环前 缀为常规循环前缀的时候, 扩展后数据对应的上行 SC-FDMA符号为 5个, 解调参考信号对应的上行 SC-FDMA符号为 2个, 位于每个时隙的第 2个和 第 6个上行 SC-FDMA符号上; 在循环前缀为扩展循环前缀的时候, 扩展后 数据对应的上行 SC-FDMA符号为 5个,解调参考信号对应的上行 SC-FDMA 符号为 1个, 位于每个时隙的第 3个或第 4个上行 SC-FDMA符号上, 时域 扩展码为 5阶 DFT序列, 此时, 所述信道结构为 PUCCH Format 3 ; 在另一实施例中, 总带宽为 N, 物理资源块索引从 0开始编号, 釆用上 述方法传输上述反馈信息的信道在一个子帧中第一个时隙上占用的物理资源 块索引 w , 在该子帧中第二个时隙上占用的物理资源块索引为 N-1-w , 所述 信道结构的时域长度为一个子帧, 在循环前缀为常规循环前缀的时候, 扩展 后数据对应的上行 SC-FDMA 符号为 5 个, 解调参考信号对应的上行 SC-FDMA符号为 2个, 位于每个时隙的第 2个和第 6个上行 SC-FDMA符 号上, 在循环前缀为扩展循环前缀的时候, 数据对应的上行 SC-FDMA符号 为 5个, 解调参考信号对应的上行 SC-FDMA符号为 1个, 位于每个时隙的 第 3个或第 4个上行 SC-FDMA符号上, 时域扩展码为 5阶 DFT序列。将原 始 O个比特的待反馈信息的比特数据划分为 Γ组, 对每组数据分别进行 RM ( 32 , 0 )编码, 第 ,组数据编码后长度为 Jxg , 其中, ; Γ=2 , =12 , Q=2 , 使用 QPSK调制方式; 或者, 将原始 O个比特的待反馈信息的比特数据进行 卷积编码, 编码后长度为 Jx2x«x2 , 其中, ; Γ=2 , η=1 , =12 , Q=2 , 使用 QPSK调制方式; 对该数据进行编码后, 再进行加扰和 /或交织、 及调制 (或 对该数据进行编码后, 再进行加扰、 调制。 最后进行交织或不进行交织) , 其中, 所述交织方法为按照固定序列进行交织, 或者按照行进列出的矩阵交 织方法, 或者按照分块交织方法。 在另一实施例中, 总带宽为 N, 物理资源块索引从 0开始编号, 釆用上 述方法传输上述反馈信息的信道在一个子帧中的第一个时隙上占用的物理资 源块索引 m , 在本子帧中第二个时隙上占用的物理资源块索引为 N-1-w , 所 述信道结构的时域长度为一个子帧, 在循环前缀为常规循环前缀的时候, 扩 展后数据对应的上行 SC-FDMA符号为 5 个, 解调参考信号对应的上行 SC-FDMA符号为 2个, 位于每个时隙的第 2个和第 6个上行 SC-FDMA符 号上,在循环前缀为扩展循环前缀的时候,扩展后数据对应的上行 SC-FDMA 符号为 5个, 解调参考信号对应的上行 SC-FDMA符号为 1个, 位于每个时 隙的第 3个或第 4个上行 SC-FDMA符号上, 时域扩展码为 5阶 DFT序列。 将原始 O个比特待反馈信息的比特数据划分为 Γ组, 对每组数据分别进行 RM ( 32 , 0 )编码, 第 z组数据编码后长度为 χ2χ 2或 ^2 , 其中, ; Γ=2 , η=2 , =12 , Q=2 , 使用 QPSK调制方式, 或者, 将原始( 个比特进行卷积 编码, 编码后长度为 x2x2x"或 Jx x" , 其中, =2, n =2 , =12 , Q=2 , 使用 QPSK调制方式。 釆用 QPSK调制方式时, Q=l , 釆用 16QAM调制方 式时, β=4 , 釆用 64QAM调制方式时, β=6; 对该数据进行编码后, 再进行 加扰和 /或交织、 及调制 (或者, 对该数据进行编码后, 再进行加扰、 调制、 和 /或交织), 其中所述交织方法为按照固定序列进行交织, 或者按照行进列 出的矩阵进行交织, 或者按照分块交织的方法进行交织。
本发明实施例的用户设备包括: 时域扩展模块及数据传输模块; 时域扩 展模块设置为: 对待反馈信息的比特数据在一个子帧内进行时域扩展; 数据 传输模块设置为: 将时域扩展模块得到的扩展后数据及对应的解调参考信号 分别映射到该子帧内的多个上行 SC-FDMA符号上, 釆用时分复用的方式, 在相同频域位置上传输上述扩展后数据及对应的解调参考信号; 其中, 每个 上行 SC-FDMA符号在频域上占用 n个连续的物理资源块, n为正整数。 此外, 时域扩展模块是设置为按如下方式对待反馈信息的比特数据在一 个子帧内进行时域扩展:对上述比特数据进行编码、加扰和 /或交织、及调制, 然后再对经过上述处理的数据进行离散傅里叶变换(DFT ) , 其中, 加扰、 交织及调制的处理顺序为任意。
本发明还提供了另一种用户设备, 该用户设备包括: 分组模块及发送模 块; 分组模块设置为: 将待反馈信息的比特数据划分为 w组; 发送模块设置 为:将每一组数据对应地通过一个格式为 PUCCH Format 2或 PUCCH Format 3的 PUCCH发送出去; 其中, "为 2, 承载比特数据的 PUCCH在频域上占 用相同或相邻的物理资源块。 其中, 所述分组模块是设置为按如下方式将待反馈信息的比特数据划分 为 n组: 从由 O 比特的待反馈信息的比特数据组成的序列中第一个比特数据开 比特,
Figure imgf000020_0001
或者, 将由所述待反馈信息的比特数据组成的序列中各比特数据所在位 置与 w取模, 将模值相同的比特数据划分为一组; 或者, 当反馈信息为信道状态信息时, 将表示每一小区对应的待反馈信 息的比特数据相应地划为一组; 或者, 从由上述待反馈信息的比特数据组成的序列中第一个比特数据开
+ 1 , 剩余
Figure imgf000020_0002
下面用四个实施例对本发明进行进一步说明。 实施例 1 使用 PUCCH Format X发送反馈信息; 在载波聚合场景下, 当 n=2时 PUCCH Format X格式的信道结构如图 4a 和图 4b所示, 其中 RS表示解调参考信号, 具体描述如下: 在频域上占有连续 n个物理资源块, 对一个上行 SC-FDMA符号上的数 据进行时域扩展,将时域扩展后数据映射到相应时域上行 SC-FDMA符号上, 解调参考信号和数据釆用时分复用的方式, 在相同频域位置上传输; 总带宽为 N, 物理资源块索引从 0开始编号, 所述信道在第一个时隙的 物理资源块索引 m , 则, 在第二个时隙的物理资源块索引为 N-l-w。 所述信 道结构的时域长度为一个子帧, 在循环前缀为常规循环前缀的时候, 如图 4a 所示, 数据对应的上行 SC-FDMA符号为 5 个, 解调参考信号对应的上行 SC-FDMA符号为 2个,分别位于每个时隙的第 2个和第 6个上行 SC-FDMA 符号上; 在循环前缀为扩展循环前缀的时候, 如图 4b所示,数据对应的上行 SC-FDMA符号为 5个, 解调参考信号对应的上行 SC-FDMA符号为 1个, 位于每个时隙的第 3个或第 4个上行 SC-FDMA符号。 如表 4所示, 时域扩 展码为 5阶 DFT序列。 表 4 DFT序列
Figure imgf000021_0002
编码方案 1 : 将原始 o个比特的待反馈信息比特数据划分为 y组,对每组数据分别进 行 RM( 32, C 编码,第 ,组数据编码后长度为 χ2χ2χ2 ,其中,; Γ=«=2, =12, Q=2, 使用 QPSK调制方式; 或者, 将原始 O个比特待反馈信息比特 数据进行卷积编码, 编码后长度为 LxQx2x"或 LxQx" ,其中, ; Γ=«=2, =12, Q=2, 使用 QPSK调制方式。 在上述编码方案中, 可釆用将前
Figure imgf000021_0001
个比特数据为一组, 剩余比特数据 为一组的分组方式; 或者, 釆用偶数位比特数据为一组, 奇数位比特数据为 一组的分组方式。 在具体实现时, 釆用 RM ( 32, (9 )编码的具体编码方式是: 基本序列 的长度对多个反馈信息进行编码具体包括: =∑ (θη - mo . )mod 2, 其中, =0、 1、 2、 、 5, - l , wo 表示第 _/组编码后得到的比特序列, 表 示第 组比特数据经编码后的长度, 如果一个子帧内两个时隙承载的信息相 同,则 B} =LXQ;如果一个子帧内两个时隙 载的信息不同,则 . =2x χρ。
N表示基本序列的长度, M表示基本序列 中编号为 i的值,
表示第 j组比特数据包括的待反馈信息比特序列, Λ^.表示第 j组比特数据包 含的比特数量, 基本序列如表 5所示, 基本序列也可以釆用表 5的基本序列 进行行置换后的形式。
表 5 基本序列
Figure imgf000022_0001
18 ! 1 0 1 1 1 1 1 0 0 0
19 ! 0 0 0 0 1 1 0 0 0 0
20 ! 0 1 0 0 0 1 0 0 0 1
21 ! 1 0 1 0 0 0 0 0 1 1
22 ! 0 0 0 1 0 0 1 ! 0 1
23 ! 1 1 0 1 0 0 0 ! 1 1
24 ! 1 1 1 1 0 1 1 ! 1 0
25 ! 1 0 0 0 ! 1 1 0 1
26 ! 0 1 1 0 ! 0 0 ! 1 0
27 ! 1 1 1 0 ! 0 1 ! 1 0
28 ! 0 1 0 1 ! 1 0 ! 0 0
29 ! 0 1 1 1 ! 1 1 ! 0 0
30 ! 1 1 1 1 ! 1 1 ! 1 1
31 ! 0 0 0 0 0 0 0 0 0 0
各组经编码后输出的编码比特序列为 ...,bB l ,其中, β表示编码后的 比特数量, 如果同一子帧内两个时隙承载的信息相同, 则 5 = «xJx ; 如果 同一子帧内两个时隙 载的信息不同, 则 5 = 2 X « X J X ρ;
联在一起, b0,,b0 ,...,b],,b] 也可以交叉串联在
Figure imgf000023_0001
编码方案 2: 将反馈消息 … -!釆用图 5所示的约束长度为 7、码率为 1/3的咬尾 卷积码编码; 其中, Ά' ·· ·' -ι表示编码后的比特序列, B表示编码后的长度, 如果同一子帧内两个时隙承载的信息相同, 则 5 = «χ χρ , 如果同一子帧内 两个时隙 载的信息不同, 则 5 = 2x«xJx2;
上述交织的过程是将编码后的序列 6 按照一定的规则 (如按照固 定序列进行交织, 或者按照行进列出的矩阵方法进行交织, 或者按照分块交 织的方法进行交织)进行变换得到 ; 其中加扰的过程可以用扰码序 列 C ,Cl ...,C 和编码交织后得到的序列 ,υ (或编码后得到的序列 b h ...,b ) 相加后对 2 取模, 得到加扰后的序歹' J q ,qx ...,q , 即 ¾=mod((Ci+*;),2), 其中, z=0, 1, ..·, B-\, 扰码序列是可由伪随机序列构 成。 该交织过程为可选过程。
例如, 待交织比特数量为 48 的时候, 根据固定序列 {x^x^x^ }对待交 织比特进行交织, 为 1到 B的正整数序列;
釆用 QPSK调制方式, 调制后的序列为 , Q,... s , 其中, Qm=2。
同样结构和编码过程下, n=3的时候所述信道结构如图 6a和图 6b所示;
0_
对待反馈信息的比特数据进行分组编码的时候, 按照前 L 3」个比特为一组,
Figure imgf000024_0002
2位比特为一组, 剩余比特为一组的方式进行分组; 或者, 把比特位置与 3取模后模值相同的比特数据分为一组; 或者, 当反馈信息为信道状态信息时, 将每个小区对应的反馈信息为一
+ 1, -(01^(^)个组的比特数量
Figure imgf000024_0001
该实例中的信道可应用于载波聚合下 TDD反馈 ACK/NACK信息比特数 量大于 11时, 或者 UE需同时反馈 r个下行小区的信道状态信息时。 实施例 2 用《个 PUCCH Format 3在相邻或者同一个物理资源块上传输待反馈信 息的比特数据, 其中, 《为 2; 将待反馈信息的比特数据划分为 n组, 每组反馈信息与一个 PUCCH Format 3——对应, 每个 PUCCH Format 3传输对应组内的比特数据; 分组方法可釆用将前
Figure imgf000025_0001
个比特划分为一组, 剩余比特划分为一组; 或 者, 偶数位比特为一组, 奇数位比特为一组; 或者, 当反馈信息为信道状态 信息时, 每个小区对应的反馈信息为一组。 所述 n个 PUCCH Format 3信道资源由高层信令配置; 所述信道传输的反馈信息比特可以是 ACK/NACK信息,信道状态信息, 秩指示信息, 调度请求信息中一个种或多种;
实施例 3 使用 n个 PUCCH Format 2在相邻或者同一个物理资源块上传输待反馈 信息的比特数据, 其中, n为 2。 可以将待反馈信息的比特数据划分为 n组,每组反馈信息与一个 PUCCH Format 2对应, 每个 PUCCH Format 2传输相应组内的比特数据。 分组方法可釆用将前
Figure imgf000025_0002
个比特划分为一组, 剩余比特划分为一组; 或 者, 偶数位比特为一组, 奇数位比特为一组; 或者, 当反馈信息为信道状态 信息时, 每个小区对应的反馈信息为一组。 所述 n个 PUCCH Format 2信道资源可由高层信令配置; 所述信道传输的反馈信息比特可以是 ACK/NACK信息,信道状态信息, 秩指示信息, 调度请求信息中一个种或多种; 实施例 4 在载波聚合场景下, 使用 PUCCHFormatX发送反馈信息; n为 1的信道结构如图 7所示, 具体描述如下: 频域上占有连续 n个物理资源块, 对一个上行 SC-FDMA符号上的数据 进行时域扩展, 将时域扩展后数据映射到相应时域上行 SC-FDMA符号上, 解调参考信号和数据釆用时分复用的方式, 在相同频域位置上传输; 总带宽为 N, 物理资源块索引从 0开始编号, 所述信道在第一个时隙的 物理资源块索引 m, 在第二个时隙的物理资源块索引为 N-1-w, 所述信道结 构的时域长度为一个子帧, 在循环前缀为常规循环前缀的时候, 数据对应的 上行 SC-FDMA符号为 5个, 解调参考信号对应的上行 SC-FDMA符号为 2 个, 位于每个时隙的第 2个和第 6个上行 SC-FDMA符号上, 在循环前缀为 扩展循环前缀的时候, 数据对应的上行 SC-FDMA符号为 5个, 解调参考信 号对应的上行 SC-FDMA符号为 1个, 位于每个时隙的第 3个或第 4个上行 SC-FDMA符号上, 时域扩展码为 5阶 DFT序列, 如表 4所示; 编码方案 1: 将原始( 个比特数据划分为 Γ组, 对每组数据分别进行 RM (24, 0) 编码, 如表 5所示, 第 z组编码后长度为 2, 其中, ; F=2, L=12, Q=2, 使 用 QPSK调制方式; 或者, 将原始 O个比特数据划分为 Γ组, 对每组数据分 别进行卷积编码, 编码后长度为 χ2 , 其中, ; Γ=2, =η=1, =12, Q=2, 使 用 QPSK调制方式; 在编码前, 可釆用将前 个比特为一组, 剩余比特为一组的分组方式;
Figure imgf000026_0001
或者釆用将偶数位比特划为一组, 将奇数位比特划分为另一组的分组方式。 釆用 RM (24, 0)编码具体编码方式是: 基本序列的长度对多个反馈 信息进行编码, 具体包括: A = (O„'Mmd(,. ¾)m0d2, 其中, Z=0、 1、 2
Bt -l , b] ,b(...,b] 表示编码后的比特序列, B,束示 _/组编码后的长度, B' =LxQ ,
N表示基本序列的长度, M表示基本序列 2中编号为 z的值, 表示 ·组包括的反馈信息, Λ^.表示 ·组包含的信息比特数量, 基本序列如表 6所示, 基本序列也可以釆用表 6的基本序列进行行置换后的形式。
各组编码后输出的编码比特序列为 6 , β表示编码后的长度, B=2xLxQ;
各组比特可以顺序串联在一起, 如 b0,,b0 ,...,b],,b] 也可以交叉串联 在一起, 如 b0,,b0 ,...,b],,b] , 或者, 分块串联在一起, 两个比特为一块, 各组以块为单位交叉串联, b°,b°,b b ...,b b b bl , 或者, 分块串联在一起,
12个比特为一块,各组以块为单位交叉串联, W,...^^...,^,^,...,^,^,...,^^ 表 6基本序列
Figure imgf000027_0001
Figure imgf000028_0002
Figure imgf000028_0001
40, 41, 42, 43, 44, 45, 46, 47, 48}, 按照上述顺序重新排列待交织比特, 完成交织。 或者, 所述交织方法为分块交织法, 即对于编码方案 1, 每个组 对应 24 个比特, 将一个组内的比特数据按顺序划分为两个块, 每个块包含 12个比特,对各块数据进行交织串联,假设交织前比特序列为 6°,... ° ,b ..,b3; 则交织后比特序列为 或者, 所述交织方法为 分块交织法, 即对于编码方案 1, 每个组对应 24个比特, 将一个组内的比特 数据按顺序划分为六个块,每个块包含 2个比特,对各块数据进行交织串联, 假设交织前比特序列 为 b0 .,b0,D23 ; 则 交织后 比特序列 为
其中加扰的过程是用扰码序列 和编码交织后的序列 b0',b,…
(或编码后的序列 W. ) 相加后对 2 取模, 得到加扰后的序列
- 1; 即 qt = mod((s. + b; ), 2)i = 0,1,...5-1) ,扰码序列是由伪随机序列构成; 其中调制方式釆用 QPSK,
Figure imgf000029_0001
其中时域扩展是指使用正交序列将编码后的序列扩展到所占的符号上, 正交序列可以釆用 DFT序列; 其中 DFT变换是指对符号上的调制序列进行 DFT操作; 或者, 如图 8b所示, 对所述比特数据进行编码、 加扰、 调制和 /或交织, 然后 再对经过上述处理的数据进行离散傅里叶变换(DFT)
其中加扰的过程是用扰码序列 和编码后的序列 相加 后对 2取模,得到加扰后的序列 ' ' ···' - 1 ; 即 A =m。d((C!+ :)'2)( = 0'l' j_l), 扰码序列是由伪随机序列构成;
其中调制方式釆用 QPSK, (Qm = 2) , 调制后的序列为 ρ。,β,...υ 其中交织的过程是将调制后的序列 , …^^^按照一定的规则进行变换 得到 ; (可选) 所述交织方法为根据序列 { ,χ,.,.,χ^ }对待交织 比特进行交织, 为 1到 正整数序列, 或者, 所述交织方法为 按照行进列出的矩阵交织方法; 例如, 待交织调制符号数量为 24的时候, 所 述序列为 { 1, 2, 3, 4, 5, 6, 13, 14, 15, 16, 17, 18, 7, 8, 9, 10, 11, 12, 19, 20, 21, 22, 23, 24}或者 { 1, 3, 5, 7, 9, 11, 13, 15, 17, 19, 21, 23, 2, 4, 6, 8, 10, 12, 14, 16, 18, 20, 22, 24}, 按照上述顺序重 新排列待交织比特, 完成交织。 或者, 所述交织方法为分块交织, 对于编码 方案 1, 每个组对应 12个调制符号, 一个组顺序划分为两个块, 每个块包含 6个调制符号, 各块交织串联, 交织前调制符号序列为 , Q,...023, 交织后调 制符号为 ,...,^^,...,^,^...,^,^,...,^; 其中时域扩展是指使用正交序列将编码后的序列扩展到所占的符号上, 正交序列可以釆用 DFT序列; 其中 DFT变换是指对符号上的调制序列进行 DFT操作。 或者, 如图 8c 所示, 对进行过组划分的反馈信息的比特数据分别按组进行编 码、 加扰、 调制, 串联, 然后再对经过上述处理的数据进行离散傅里叶变换 (DFT)
其中加扰的过程是用扰码序列 和编码后的序列 相加 后对 2取模,得到加扰后的序列 ' ' ···' - 1;即 =m。d((C!+ :)'2)( = 0'l' j_l), 扰码序列是由伪随机序列构成; 其中调制方式釆用 QPSK, ^ = ^ , 调制后的序列为 ρ。,β,...υ 其中, 对于编码方案 1, 每个组对应 12个调制符号, 各组调制符号序列 为 将两个组调制后的符号交叉串联起来, 串联后调制 符号为 β。,...,β,β12,...,β156,...,β„,β16,...,β23; 其中时域扩展是指使用正交序列将编码后的序列扩展到所占的符号上, 正交序列可以釆用 DFT序列; 其中 DFT变换是指对符号上的调制序列进行 DFT操作; 所述信道传输的反馈信息比特数据可以是 ACK/NACK信息, 信道状态 信息, 秩指示信息, 调度请求信息中一个种或多种; 根据 UE配置的小区和 相应的传输模式, 确定反馈信息的数量; 所述信道资源通过高层信令配置给 目标 UE。 本实施例所述信道可应用于载波聚合下 TDD反馈 ACK/NACK信息数量 大于 11时, 或者, UE反馈 r个下行小区的信道状态信息时。
本领域普通技术人员可以理解上述方法中的全部或部分步骤可通过程序 来指令相关硬件完成, 所述程序可以存储于计算机可读存储介质中, 如只读 存储器、 磁盘或光盘等。 可选地, 上述实施例的全部或部分步骤也可以使用 一个或多个集成电路来实现。 相应地, 上述实施例中的各模块 /单元可以釆用 硬件的形式实现, 也可以釆用软件功能模块的形式实现。 本发明不限制于任 何特定形式的硬件和软件的结合。
工业实用性 本发明增加了 UE反馈信息的比特数量, 提高了上行反馈容量, 保证了 系统的最大吞吐量, 并且减少了下行信道信息的反馈时延。

Claims

权 利 要 求 书
1、 一种反馈信息发送方法, 该方法包括: 用户设备 (UE)对待反馈信息的比特数据在一个子帧内进行时域扩展; 以及 将扩展后数据及对应的解调参考信号分别映射到该子帧内的多个上行单 载波频分多址(SC-FDMA)符号上, 釆用时分复用的方式, 在相同频域位置 上传输所述扩展后数据及对应的解调参考信号; 其中,每个上行 SC-FDMA符号在频域上占用《个连续的物理资源块, n 为正整数。
2、 如权利要求 1所述的方法, 其中: 对待反馈信息的比特数据进行时域扩展的步骤包括: 对所述比特数据进 行编码、 加 4尤和 /或交织、 及调制, 再对经过编码、 加 4尤和 /或交织、 及调制 后的数据进行离散傅里叶变换(DFT) , 其中, 所述加扰、 交织及调制的处 理顺序为任意。
3、 如权利要求 1或 2所述的方法, 其中: 对所述比特数据进行编码的步骤包括: 先将 ( 比特的待反馈信息的比特 数据划分为 Γ组, 然后对各组数据分别进行编码, 所述编码方式为 RM( 32, (9)编码或者卷积编码;其中,第 ,组数据编码后长度为 Z M^Z^n L Q l
i=
或 z,.=WxJx2, 其中, ρ表示一个调制符号对应的比特数, 为一个物理 i=
资源块中包含的子载波数量, ; Γ为正整数。
4、如权利要求 1所述的方法, 其中,对待反馈信息的比特数据在一个子 帧内进行时域扩展的步骤包括: 所述 UE将各组编码后得到的比特数据按顺序串联在一起、 或者交叉地 串联在一起、 或者分块交叉串联在一起、 或者所述 UE对各组编码后得到的 比特数据分别进行加扰调制操作后, 再将各组调制后得到的符号串联起来, 其中, 所述串联的方式为顺序串联或者交叉串联。
5、 如权利要求 3所述的方法, 其中: 将 ( 比特的待反馈信息的比特数据划分为 Γ组的步骤包括:从由所述待 反馈信息的比特数据组成的序列中第一个比特数据开始, 顺次划分为 Γ组, 除最后一组外, 比特, 最后一组内包含的比特 数据大于等于 信息的比特数据组成的序列中
Figure imgf000033_0001
各比特数据所在位置与 Γ取模, 将模值相同的比特数据划分为一组; 或者, 当反馈信息为信道状态信息时, 将表示每一小区对应的待反馈信息的比特数 据相应地划为一组; 或者, 从由所述待反馈信息的比特数据组成的序列中第 一个比特数据开始, 顺次划分为 Γ组, 其中 O mod y个中各组包含的比特数量
Figure imgf000033_0002
6、 如权利要求 2所述的方法, 其中: 所述交织方式为按照固定序列对待交织数据进行交织, 或者按照行进列 出的矩阵方式对待交织数据进行交织, 或者按照分块交织法进行交织。
7、 如权利要求 2所述的方法, 其中: 对经过编码、 加扰和 /或交织、 及调制后的数据进行 DFT的步骤包括: 在时域上对所有数据一同进行 DFT处理,或者在时域上对每个物理资源块上 承载的数据分别进行 DFT处理。
8、 如权利要求 1所述的方法, 其中: 所述解调参考信号的序列由长度为《x 的序列构成; 或者, 所述解调参 考信号的序列由《条长度为 的序列构成, 其中, 为一个物理资源块中包 含的子载波数量。
9、 如权利要求 8所述的方法, 其中: 所述序列为 Zadoff-Chu( ZC )序列或者计算机产生的 ZC序列( Computer Generation Zadoff-Ch ) 。
10、 如权利要求 1所述的方法, 其中: 当总带宽为 N, 物理资源块索引从 0开始编号时, 若所述子帧中第一个 时隙内的上行 SC-FDMA符号所占用的物理资源块的索引为 m , 则在该子帧 中第二个时隙内的上行 SC-FDMA符号所占用的物理资源块的索引为 N-\-m 或 m。
11、 如权利要求 1所述的方法, 其中: 当一个时隙内包含 2个上行 SC-FDMA符号时, 将扩展后数据及对应的 解调参考信号映射到该子帧内的多个上行 SC-FDMA符号上的步骤包括: 将 扩展后数据分别映射到该子帧中各时隙内的/个上行 SC-FDMA符号上, 将 与上述扩展后数据对应的解调参考信号分别映射到该子帧中各时隙内的另外 g个上行 SC-FDMA符号上; 或者, 将扩展后数据部分映射到该子帧中第一 个时隙内的/个上行 SC-FDMA符号上, 将另一部分数据映射到子帧中第二 个时隙内的/个上行 SC-FDMA符号上, 将与各部分已映射数据对应的解调 参考信号相应地映射到该子帧中对应时隙内的另外 g个上行 SC-FDMA符号 上; 其中, h=f+g, /为时域扩展序列的长度。
12、 如权利要求 11所述的方法, 其中: 当所述时隙中釆用常规循环前缀时, 2=7 ,戶 5 , g=2; 当所述时隙中釆用 扩展循环前缀时, h=6 , f=5 , g=l。
13、 如权利要求 1所述的方法, 其中: 所述待反馈信息包括正确应答(ACK )或错误应答(NACK )信息、 信 道状态信息、 秩指示信息及调度请求信息中的任意一种或任意组合。
14、 一种反馈信息发送方法, 该方法包括: 用户设备将待反馈信息的比特数据划分为 n组后, 将每一组数据对应地 通过一个格式为物理上行控制信道格式 (PUCCH Format ) 2 或 PUCCH Format 3的 PUCCH发送出去; 其中, n为 2 , 承载所述比特数据的 PUCCH 在频域上占用相同或相邻的物理资源块。
15、 如权利要求 14所述的方法, 其中: 用户设备将待反馈信息的比特数据划分为 n组的步骤包括: 从由所述 O 比特的待反馈信息的比特数据组成的序列中第一个比特数据开始, 顺次划分 为《组, 除最后一组外, 比特, 最后一组内包 含的比特数据大于等于 信息的比特数据组成
Figure imgf000035_0001
的序列中各比特数据所在位置与 n取模,将模值相同的比特数据划分为一组; 或者, 当反馈信息为信道状态信息时, 将表示每一小区对应的待反馈信息的 比特数据相应地划为一组; 或者, 从由上述待反馈信息的比特数据组成的序 列中第一个比特数据开始, 顺次划分为《组, 其中 Omodw个中各组包含的比 特数量为
Figure imgf000035_0002
16、 如权利要求 14或 15所述的方法, 其中: 所述待反馈信息包括: 正确应答(ACK )或错误应答(NACK )信息、 信道状态信息、 秩指示信息及调度请求信息中的任意一种或任意组合。
17、 一种用户设备, 该用户设备包括: 时域扩展模块及数据传输模块; 所述时域扩展模块设置为: 对待反馈信息的比特数据在一个子帧内进行 时域扩展; 所述数据传输模块设置为: 将所述时域扩展模块得到的扩展后数据及对 应的解调参考信号分别映射到该子帧内的多个上行单载波频分多址 ( SC-FDMA )符号上, 釆用时分复用的方式, 在相同频域位置上传输所述扩 展后数据及对应的解调参考信号; 其中, 每个上行 SC-FDMA符号在频域上 占用 n个连续的物理资源块, n为正整数。
18、 如权利要求 17所述的用户设备, 其中: 所述时域扩展模块是设置为按如下方式对待反馈信息的比特数据在一个 子帧内进行时域扩展: 对所述比特数据进行编码、 加扰和 /或交织、 及调制, 然后再对经过上述处理的数据进行离散傅里叶变换(DFT ) , 其中, 所述加 扰、 交织及调制的处理顺序为任意。
19、 一种用户设备, 该用户设备包括: 分组模块及发送模块; 所述分组模块设置为: 将待反馈信息的比特数据划分为 n组; 所述发送模块设置为: 将每一组数据对应地通过一个格式为物理上行控 制信道格式( PUCCH Format ) 2或 PUCCH Format 3的 PUCCH发送出去; 其中,《为 2,承载所述比特数据的 PUCCH在频域上占用相同或相邻的物理 资源块。
20、 如权利要求 19所述的用户设备, 其中: 所述分组模块是设置为按如下方式将待反馈信息的比特数据划分为 《
从由所述 O比特的待反馈信息的比特数据组成的序列中第一个比特数据
0 开始, 顺次划分为 n组, 除最后一组外, 每组内包含的比特数据为 比特, 最后一组内包含的比特数据大于等于 比特;
n 或者, 将由所述待反馈信息的比特数据组成的序列中各比特数据所在位 置与 w取模, 将模值相同的比特数据划分为一组;
或者, 当反馈信息为信道状态信息时, 将表示每一小区对应的待反馈信 息的比特数据相应地划为一组; 或者, 从由上述待反馈信息的比特数据组成的序列中第一个比特数据开
+ 1 , 剩余
Figure imgf000036_0001
PCT/CN2011/076678 2010-09-30 2011-06-30 反馈信息发送方法和用户设备 WO2012041098A1 (zh)

Priority Applications (6)

Application Number Priority Date Filing Date Title
KR1020137008154A KR101551829B1 (ko) 2010-09-30 2011-06-30 피드백 정보 송신 방법 및 사용자 장비
EP11827994.2A EP2608439A4 (en) 2010-09-30 2011-06-30 Method and user equipment for transmitting feedback information
US13/824,085 US9282549B2 (en) 2010-09-30 2011-06-30 Method and user equipment for transmitting feedback information
JP2013530544A JP5567219B2 (ja) 2010-09-30 2011-06-30 フィードバック情報送信方法及びユーザ機器
BR112013007644A BR112013007644A2 (pt) 2010-09-30 2011-06-30 método para a transmissão de informação de retorno e equipamento de usuário
RU2013112503/08A RU2540834C2 (ru) 2010-09-30 2011-06-30 Способ и пользовательское устройство для передачи информации обратной связи

Applications Claiming Priority (2)

Application Number Priority Date Filing Date Title
CN201010503424.1 2010-09-30
CN201010503424.1A CN101958774B (zh) 2010-09-30 2010-09-30 一种反馈信息发送方法和用户设备

Publications (1)

Publication Number Publication Date
WO2012041098A1 true WO2012041098A1 (zh) 2012-04-05

Family

ID=43485899

Family Applications (1)

Application Number Title Priority Date Filing Date
PCT/CN2011/076678 WO2012041098A1 (zh) 2010-09-30 2011-06-30 反馈信息发送方法和用户设备

Country Status (8)

Country Link
US (1) US9282549B2 (zh)
EP (1) EP2608439A4 (zh)
JP (1) JP5567219B2 (zh)
KR (1) KR101551829B1 (zh)
CN (1) CN101958774B (zh)
BR (1) BR112013007644A2 (zh)
RU (1) RU2540834C2 (zh)
WO (1) WO2012041098A1 (zh)

Families Citing this family (33)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
WO2011034392A2 (ko) * 2009-09-18 2011-03-24 한국전자통신연구원 클러스터드 디에프티 스프레드 오에프디엠 전송에 있어서 상향링크 복조용 레퍼런스 시그널의 생성 및 전송 방법
US8750269B2 (en) 2009-10-23 2014-06-10 Electronics And Telecommunications Research Institute Method and apparatus for controlling transmission power in WLAN system
JP5073779B2 (ja) * 2010-04-30 2012-11-14 株式会社エヌ・ティ・ティ・ドコモ 基地局装置及びユーザ端末
EP2421188A3 (en) 2010-08-20 2014-11-26 LG Electronics Inc. Method for transmitting control information in a wireless communication system and apparatus therefor
CN101958774B (zh) 2010-09-30 2015-10-21 中兴通讯股份有限公司 一种反馈信息发送方法和用户设备
US9673945B2 (en) * 2011-02-18 2017-06-06 Qualcomm Incorporated Implicitly linking aperiodic channel state information (A-CSI) reports to CSI-reference signal (CSI-RS) resources
CN102739374B (zh) * 2011-04-12 2017-02-01 中兴通讯股份有限公司 一种载波聚合下确认信息的反馈方法、用户设备和系统
CN102377535A (zh) 2011-09-30 2012-03-14 中兴通讯股份有限公司 上行控制信息的发送方法及装置、终端
CN103037514B (zh) * 2011-09-30 2017-02-22 上海贝尔股份有限公司 一种通信网络中用于传输解调参考信号的方法和装置
CN103166880A (zh) * 2011-12-15 2013-06-19 中国移动通信集团公司 上行解调导频的发送方法、接收方法、基站及移动中继
JP5873708B2 (ja) * 2011-12-19 2016-03-01 シャープ株式会社 移動局装置、方法および集積回路
CN103209060B (zh) * 2012-01-16 2016-09-21 普天信息技术研究院有限公司 一种物理上行链路控制信道的资源分配方法和装置
CN103384188B (zh) * 2012-05-04 2017-03-01 电信科学技术研究院 载波聚合反馈方法、装置及系统
JP2016519484A (ja) 2013-03-29 2016-06-30 エヌイーシー(チャイナ)カンパニー, リミテッドNEC(China)Co.,Ltd. 無線通信システムにおけるデータ伝送のための方法及び装置
JP6403871B2 (ja) 2014-08-07 2018-10-10 華為技術有限公司Huawei Technologies Co.,Ltd. 物理ダウンリンク・データ・チャネル送信方法、基地局、及びユーザ機器
US10171202B2 (en) * 2014-11-11 2019-01-01 Qualcomm Incorporated Diversity repetition in mixed-rate wireless communication networks
JP6462001B2 (ja) 2014-12-08 2019-01-30 エルジー エレクトロニクス インコーポレイティド 放送信号送信装置、放送信号受信装置、放送信号送信方法及び放送信号受信方法
EP3232613B1 (en) * 2014-12-31 2019-05-29 Huawei Technologies Co., Ltd. Downlink control channel transmission method and device
CN104883238B (zh) * 2015-03-31 2018-05-01 重庆邮电大学 一种多载波时分复用调制/解调方法及系统
CN106559202B (zh) * 2015-09-29 2019-09-10 上海朗帛通信技术有限公司 一种支持低空口延迟的方法、用户设备和基站设备
CN107231690B (zh) * 2016-03-25 2023-07-04 中兴通讯股份有限公司 信息发送方法及装置
JP6772271B2 (ja) * 2016-03-25 2020-10-21 オッポ広東移動通信有限公司Guangdong Oppo Mobile Telecommunications Corp., Ltd. フィードバック情報の伝送方法及び装置
EP3442283B1 (en) 2016-05-12 2023-10-04 Huawei Technologies Co., Ltd. Information transmission method and user equipment
US10574425B2 (en) * 2016-06-28 2020-02-25 Lg Electronics Inc. Method for receiving downlink signal and user equipment, and method for transmitting downlink signal and base station
WO2018113045A1 (zh) * 2016-12-19 2018-06-28 华为技术有限公司 一种上行信息传输方法及设备
CN108365922B (zh) * 2017-01-26 2021-03-30 华为技术有限公司 用于反馈的方法、设备和系统
CN108633053B (zh) * 2017-03-24 2023-04-28 中兴通讯股份有限公司 一种信息传输方法及装置
CN108631902B (zh) * 2017-03-24 2024-06-11 中兴通讯股份有限公司 一种配置方法及装置
US11219025B2 (en) * 2017-04-24 2022-01-04 Lg Electronics Inc. Method by which D2D terminal transmits RS for PDoA in wireless communication system and device therefor
CN108833070B (zh) * 2017-09-08 2020-01-03 华为技术有限公司 基于序列的信号处理方法及装置
CN112511285B (zh) 2017-09-08 2021-11-19 华为技术有限公司 基于序列的信号处理方法及装置
CN109962763B (zh) * 2017-12-26 2021-09-14 中国移动通信有限公司研究院 一种多用户数据的传输方法及装置、设备
CN112003677B (zh) * 2020-08-25 2022-03-25 深圳职业技术学院 物联网中的数据传输方法及系统

Citations (5)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
US20100098012A1 (en) * 2008-10-20 2010-04-22 Interdigital Patent Holdings, Inc. Uplink control information transmission methods for carrier aggregation
CN101771502A (zh) * 2009-01-07 2010-07-07 中兴通讯股份有限公司 一种信息复用的方法、系统和用户终端
CN101779403A (zh) * 2007-08-15 2010-07-14 高通股份有限公司 上行链路控制信道格式
CN101783718A (zh) * 2010-02-10 2010-07-21 中兴通讯股份有限公司 调度请求消息和正确错误应答消息的复用方法
CN101958774A (zh) * 2010-09-30 2011-01-26 中兴通讯股份有限公司 一种反馈信息发送方法和用户设备

Family Cites Families (4)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
RU2392752C2 (ru) * 2006-01-05 2010-06-20 ЭлДжи ЭЛЕКТРОНИКС ИНК. Способ передачи данных и способ повторной передачи данных
US8369860B2 (en) * 2006-08-18 2013-02-05 Interdigital Technology Corporation Sending and reducing uplink feedback signaling for transmission of MBMS data
KR101597573B1 (ko) * 2008-08-11 2016-02-25 엘지전자 주식회사 제어정보의 상향링크 전송 방법
US8509155B2 (en) * 2010-07-16 2013-08-13 Samsung Electronics Co., Ltd. Method and system for multiplexing acknowledgement signals and sounding reference signals

Patent Citations (5)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
CN101779403A (zh) * 2007-08-15 2010-07-14 高通股份有限公司 上行链路控制信道格式
US20100098012A1 (en) * 2008-10-20 2010-04-22 Interdigital Patent Holdings, Inc. Uplink control information transmission methods for carrier aggregation
CN101771502A (zh) * 2009-01-07 2010-07-07 中兴通讯股份有限公司 一种信息复用的方法、系统和用户终端
CN101783718A (zh) * 2010-02-10 2010-07-21 中兴通讯股份有限公司 调度请求消息和正确错误应答消息的复用方法
CN101958774A (zh) * 2010-09-30 2011-01-26 中兴通讯股份有限公司 一种反馈信息发送方法和用户设备

Non-Patent Citations (1)

* Cited by examiner, † Cited by third party
Title
See also references of EP2608439A4 *

Also Published As

Publication number Publication date
BR112013007644A2 (pt) 2017-09-26
KR101551829B1 (ko) 2015-09-09
US9282549B2 (en) 2016-03-08
JP2013543685A (ja) 2013-12-05
CN101958774B (zh) 2015-10-21
RU2013112503A (ru) 2014-11-10
CN101958774A (zh) 2011-01-26
US20130182692A1 (en) 2013-07-18
EP2608439A1 (en) 2013-06-26
KR20130064795A (ko) 2013-06-18
JP5567219B2 (ja) 2014-08-06
RU2540834C2 (ru) 2015-02-10
EP2608439A4 (en) 2018-02-14

Similar Documents

Publication Publication Date Title
WO2012041098A1 (zh) 反馈信息发送方法和用户设备
JP7442853B2 (ja) 無線通信システムにおけるデータチャネル及び制御チャネルの送受信方法、装置、及びシステム
CN102742205B (zh) 在无线通信系统中发射控制信息的方法和设备
CN102742206B (zh) 在无线通信系统中发射控制信息的方法和设备
JP6441129B2 (ja) 移動通信システムにおけるデータインターリービング方法及び装置
CN103053129B (zh) 在无线通信系统中传输控制信息的方法和设备
CN102714646B (zh) 在无线通信系统中发射控制信息的方法和设备
JP5820532B2 (ja) 無線通信システムにおけるアップリンク制御情報送信方法及び装置
CN102870363B (zh) 在无线通信系统中发送控制信息的方法和设备
KR101298799B1 (ko) 무선 통신 시스템에서 상향링크 제어 정보 전송 방법 및 장치
CN102804723B (zh) 在无线通信系统中发射控制信息的方法和设备
WO2018008744A1 (ja) 基地局装置、端末装置、通信方法、および、集積回路
CN102959917A (zh) 在无线通信系统中发射控制信息的方法和设备
CN109417527A (zh) 基站装置、终端装置、通信方法及集成电路
CN102812654B (zh) 在无线通信系统中使用重复编码传送信号的方法和装置
CN102377536B (zh) 反馈信息的传输方法及设备
WO2017121416A1 (zh) 上行控制信息的发送方法及装置
KR20120085045A (ko) Harq ack/nack 신호 처리 방법 및 장치

Legal Events

Date Code Title Description
121 Ep: the epo has been informed by wipo that ep was designated in this application

Ref document number: 11827994

Country of ref document: EP

Kind code of ref document: A1

WWE Wipo information: entry into national phase

Ref document number: 13824085

Country of ref document: US

WWE Wipo information: entry into national phase

Ref document number: 2011827994

Country of ref document: EP

ENP Entry into the national phase

Ref document number: 2013530544

Country of ref document: JP

Kind code of ref document: A

ENP Entry into the national phase

Ref document number: 20137008154

Country of ref document: KR

Kind code of ref document: A

NENP Non-entry into the national phase

Ref country code: DE

ENP Entry into the national phase

Ref document number: 2013112503

Country of ref document: RU

Kind code of ref document: A

REG Reference to national code

Ref country code: BR

Ref legal event code: B01A

Ref document number: 112013007644

Country of ref document: BR

REG Reference to national code

Ref country code: BR

Ref legal event code: B01E

Ref document number: 112013007644

Country of ref document: BR

ENP Entry into the national phase

Ref document number: 112013007644

Country of ref document: BR

Kind code of ref document: A2

Effective date: 20130328