WO2012040947A1 - 抗干扰按键检测系统及方法 - Google Patents

抗干扰按键检测系统及方法 Download PDF

Info

Publication number
WO2012040947A1
WO2012040947A1 PCT/CN2010/078439 CN2010078439W WO2012040947A1 WO 2012040947 A1 WO2012040947 A1 WO 2012040947A1 CN 2010078439 W CN2010078439 W CN 2010078439W WO 2012040947 A1 WO2012040947 A1 WO 2012040947A1
Authority
WO
WIPO (PCT)
Prior art keywords
frequency
button
signal
detecting
jamming
Prior art date
Application number
PCT/CN2010/078439
Other languages
English (en)
French (fr)
Inventor
龙涛
刘正东
龙江
Original Assignee
江苏惠通集团有限责任公司
Priority date (The priority date is an assumption and is not a legal conclusion. Google has not performed a legal analysis and makes no representation as to the accuracy of the date listed.)
Filing date
Publication date
Application filed by 江苏惠通集团有限责任公司 filed Critical 江苏惠通集团有限责任公司
Publication of WO2012040947A1 publication Critical patent/WO2012040947A1/zh

Links

Classifications

    • HELECTRICITY
    • H03ELECTRONIC CIRCUITRY
    • H03KPULSE TECHNIQUE
    • H03K17/00Electronic switching or gating, i.e. not by contact-making and –breaking
    • H03K17/94Electronic switching or gating, i.e. not by contact-making and –breaking characterised by the way in which the control signals are generated
    • H03K17/965Switches controlled by moving an element forming part of the switch
    • H03K17/967Switches controlled by moving an element forming part of the switch having a plurality of control members, e.g. keyboard
    • HELECTRICITY
    • H03ELECTRONIC CIRCUITRY
    • H03KPULSE TECHNIQUE
    • H03K2217/00Indexing scheme related to electronic switching or gating, i.e. not by contact-making or -breaking covered by H03K17/00
    • H03K2217/94Indexing scheme related to electronic switching or gating, i.e. not by contact-making or -breaking covered by H03K17/00 characterised by the way in which the control signal is generated
    • H03K2217/965Switches controlled by moving an element forming part of the switch
    • H03K2217/9658Safety, e.g. fail-safe switching requiring a sequence of movements

Definitions

  • the invention relates to an electronic button technology, in particular to an anti-interference button detection system and a detection method.
  • buttons have been widely used in electronic products, the most commonly used of which are capacitive touch buttons.
  • the main principle of the capacitive touch button is that after the human body touches the button, it will change the amount of charge on the button capacitor. By detecting the change in the amount of charge on the button capacitor or the change in the voltage, current, etc. caused by the change in the amount of charge, Determine if a button touch action has occurred.
  • the success rate of button detection directly affects the use of electronic products.
  • Button detection usually refers to detecting the operation of the button and determining whether the button is pressed.
  • the existing button detection method mainly includes the following basic steps: detecting a button, acquiring a button signal; sampling the button signal at a fixed frequency, and sampling the number of times the button valid signal reaches or exceeds a predetermined number of times within a predetermined time range, Output control signals.
  • buttons detection process if there is interference from external environmental factors, such as noise interference caused by mobile phones and other electrical appliances, the false trigger rate or missed detection rate of the button will be increased, thereby reducing the accuracy of button detection.
  • the problem solved by the present invention is to provide an anti-jamming button detecting system, which eliminates interference of environmental noise and improves the detection precision of the button action.
  • an anti-jamming button detecting system including: a button;
  • An environment detecting unit configured to detect a background environment signal, and shield a signal from a first frequency to a second frequency range, and generate a trigger signal after detecting the signal in the first frequency to the second frequency range; Triggered by the trigger signal, detecting the button, and acquiring a button signal;
  • the control unit is triggered by the trigger signal to sample the button signal, and output a control signal when the number of times the button valid signal is sampled in the first time window reaches or exceeds a predetermined number of times.
  • the detecting unit includes:
  • a system interference detecting module configured to detect a system noise signal in a frequency range of the power supply
  • a low frequency interference detecting module configured to detect a low frequency noise signal in a third frequency to a fourth frequency range, wherein the third frequency is smaller than the first a frequency, the fourth frequency is greater than the second frequency, and after detecting the signal in the first frequency to the second frequency range, generating a trigger signal
  • a high frequency interference detecting module configured to detect a high frequency noise signal in a fifth frequency to a sixth frequency range, wherein the fifth frequency is greater than the fourth frequency
  • the detection control module is configured to control the system interference detection module, the low frequency interference detection module, and the high frequency interference detection module to sequentially cycle.
  • the button is disposed on the detecting board, and the detecting board is used as an antenna of the low frequency interference detecting module, and receives the low frequency noise signal in the third frequency to the fourth frequency range, and Transmitted to the low frequency interference detection module.
  • the detection board is further provided with a balance point, and the balance point is a metal material, and the receiving frequency range of the detection board is adjusted to the third frequency to the fourth frequency range.
  • the system interference detection module transmits the amplitude of the system noise signal to the control unit when the amplitude of the system noise signal is lower than the first preset amplitude, and the control unit adds the system to the system.
  • the system interference detecting module transmits the amplitude of the system noise signal to the control unit when the amplitude of the system noise signal is higher than the second preset amplitude, and the control unit limits the amplitude .
  • the first preset amplitude is 100 mV
  • the second preset amplitude is 500 mV.
  • the low frequency interference detection module hops to detect a low frequency noise signal in the third frequency to the fourth frequency range, where the frequency hopping detection refers to receiving only a signal having a frequency equal to a frequency hopping frequency, where The frequency hopping frequency is incremented from a third frequency to a fourth frequency, and then decremented from a fourth frequency to a third frequency, the incremental frequency hopping frequency being different from the decreasing frequency hopping frequency.
  • the increasing value and the decreasing value of the frequency hopping frequency are two frequency units.
  • control unit frequency-samples the button signal, where the frequency conversion sampling means that only the sampling frequency is equal to the frequency conversion frequency, wherein the frequency conversion frequency is increased from the first frequency to the second frequency, and then The second frequency is decremented to a first frequency, and the incrementing and decrementing processes are repeated, and the sampling duration for each of the frequency-converted frequencies is a predetermined time.
  • the incrementing and decrementing of the frequency conversion frequency is 1 frequency unit.
  • the power supply has a frequency range of 50 Hz to 75 Hz, the first frequency is 80 kHz, the second frequency is 120 kHz, the third frequency is 20 kHz, and the fourth frequency is
  • the fifth frequency is 900 MHz
  • the sixth frequency is 3 GHz.
  • the frequency range of the third frequency to the fourth frequency is divided into a continuous first frequency band, a second frequency band, and a third frequency band, where the first frequency band ranges from 20 kHz to 80 kHz, and the second frequency band ranges from 80KHz ⁇ 300KHz, the third frequency range is 300KHz ⁇ 500KHz;
  • the dwell time of the frequency hopping frequency in each of the first frequency band and the third frequency band is
  • the frequency of the frequency hopping frequency of each frequency in the second frequency band is 0.2ms.
  • the step of increasing the frequency hopping frequency from the third frequency to the fourth frequency includes:
  • the frequency hopping frequency is increased from 20KHz to 21KHz, and then increased to 499KHz at 2KHz each time, and then increased from 499KHz to 500KHz;
  • Decreasing the frequency hopping frequency from the fourth frequency to the third frequency comprises: the frequency hopping frequency is performed each time
  • 2KHz is decremented from 500KHz to 20KHz.
  • the incremental value and the decreasing value of the frequency conversion frequency are ⁇ , and the predetermined time is 5 s.
  • the duration of the first time window is 3 ms, and the predetermined number of times is 80 times.
  • the environment detecting unit enters a sleep state.
  • the control unit continues to sample the button signal in a second time window, where the duration of the second time window is greater than the duration of the first time window. And in any one of the first time windows of the second time window, when the number of times the button valid signal is sampled reaches or exceeds a predetermined number of times, the control signal is output.
  • the duration of the second time window is 3 s.
  • the environment detecting unit enters a sleep state.
  • the watchdog module is further configured to wake up the environment detecting unit after the environment detecting unit enters a preset sleep time of the sleep state.
  • the preset sleep time is 128 ms.
  • the button is a capacitive touch button
  • the button detecting unit is configured to detect a charge change amount of the button
  • the button signal is a digital signal indicating the amount of change in the charge.
  • control unit confirms the current key signal as a key valid signal when the value represented by the sampled button signal is greater than the change amount threshold.
  • control unit further acquires a background environment signal from the environment detecting unit, and if the signal of a certain frequency point always exists within the preset monitoring time, the change amount is performed according to the signal amplitude of the frequency point.
  • the threshold is adjusted for compensation.
  • the button is an air button or a contact button.
  • the present invention further provides an anti-interference button detecting method, including: detecting a background environment signal, shielding a signal from the first frequency to a second frequency range; detecting the first frequency to the second After the signal in the frequency range, the button is detected to obtain a button signal;
  • the button signal is sampled, and when the number of times the button valid signal is sampled in the first time window reaches or exceeds a predetermined number of times, the control signal is output.
  • the detecting the background environment signal includes:
  • the button is disposed on the detection board, and the low frequency noise signal in the third frequency to the fourth frequency range is detected by the detection board.
  • a balance point is set on the detecting board, and the balance point is a metal material, and the receiving frequency range of the detecting board is adjusted to the third frequency to the fourth frequency range.
  • the amplitude of the system noise signal when the amplitude of the system noise signal is lower than the first preset amplitude, it is added to the detected reference signal; when the amplitude of the system noise signal is higher than the second preset amplitude, Limiting.
  • the first preset amplitude is 100 mV
  • the second preset amplitude is 500 mV.
  • the detecting the low frequency noise signal in the third frequency to the fourth frequency range comprises: frequency hopping detecting the low frequency noise signal in the third frequency to the fourth frequency range, where the frequency hopping detection refers to receiving only a signal having a frequency equal to a frequency hopping frequency, wherein the frequency hopping frequency is incremented from a third frequency to a fourth frequency, and then decremented from a fourth frequency to a third frequency, the increasing frequency hopping frequency and the decreasing frequency hopping frequency The frequency is different.
  • the increasing value and the decreasing value of the frequency hopping frequency are two frequency units.
  • the sampling the button signal comprises: frequency-sampling the button signal, wherein the frequency sampling is that the sampling frequency is equal to the frequency of the frequency conversion, wherein the frequency of the frequency is increased from the first frequency to the second The frequency is then decremented from the second frequency to a first frequency, and the incrementing and decrementing processes are repeated, and the sampling duration for each of the frequency conversion frequencies is a predetermined time.
  • the incrementing and decrementing of the frequency conversion frequency is 1 frequency unit.
  • the power supply has a frequency range of 50 Hz to 75 Hz, and the first frequency is
  • the second frequency is 120KHz
  • the third frequency is 20KHz
  • the fourth frequency is 500KHz
  • the fifth frequency is 900MHz
  • the sixth frequency is 3GHz.
  • the frequency range of the third frequency to the fourth frequency is divided into a continuous first frequency band, a second frequency band, and a third frequency band, where the first frequency band ranges from 20 kHz to 80 kHz, and the second frequency band ranges from 80KHz ⁇ 300KHz, the third frequency range is 300KHz ⁇ 500KHz;
  • the frequency of the frequency hopping frequency of each of the first frequency band and the third frequency band is 0.1 ms, and the frequency of the frequency hopping frequency of each frequency in the second frequency band is 0.2. Ms.
  • the step of increasing the frequency hopping frequency from the third frequency to the fourth frequency includes:
  • the frequency hopping frequency is increased from 20KHz to 21KHz, and then increased to 499KHz at 2KHz each time, and then increased from 499KHz to 500KHz;
  • the decrementing of the frequency hopping frequency from the fourth frequency to the third frequency comprises: the frequency hopping frequency is decremented from 500 kHz to 20 kHz at 2 KHz each time.
  • the incremental value and the decrement value of the frequency conversion frequency are ⁇ , and the predetermined time is 5 s.
  • the duration of the first time window is 3 ms, and the predetermined number of times is 80 times.
  • detecting the background environment signal is stopped.
  • the control signal is output when the number of times the button valid signal is sampled reaches or exceeds a predetermined number of times.
  • the duration of the second time window is 3 s.
  • detecting the background environment signal is stopped.
  • detecting the background environment signal is restarted.
  • the preset sleep time is 128 ms.
  • the button is a capacitive touch button
  • the detecting the button, acquiring the button signal comprises: detecting a charge change amount of the button; acquiring a button signal, wherein the button signal is a number indicating the amount of change in the charge signal.
  • the sampling to the button valid signal comprises: when the value of the sampled button signal is greater than the threshold value of the change, the current button signal is confirmed as the button valid signal.
  • the anti-interference button detecting method further includes: if a signal of a certain frequency point in the background environment signal is always present in a preset monitoring time, the threshold of the change amount is determined according to a signal amplitude of the frequency point Make compensation adjustments.
  • the button is an air button or a contact button.
  • the technical solution of the invention first detects the background environment signal, and detects and samples the button only after detecting the signal in the first frequency to the second frequency range, thereby greatly reducing the interference of the noise signal in the background environment;
  • the number of key valid signals sampled in the first time window reaches or exceeds a predetermined number of times, the corresponding control signal is output, thereby avoiding erroneous judgment caused by noise interference.
  • FIG. 1 is a schematic structural view of an anti-jamming button detecting system according to an embodiment of the present invention
  • FIG. 2 is a schematic structural diagram of an anti-jamming button detecting system according to an embodiment of the present invention
  • FIG. 3 is a schematic flowchart of a method for detecting an anti-jamming button according to an embodiment of the present invention
  • FIG. 4 is a detailed flow chart of step S11 of Figure 3;
  • FIG. 5 is a detailed flow chart of step S13 in FIG.
  • the button signal is directly detected, and the button signal may be caused by interference of environmental noise, such as a change in the amount of charge, voltage, capacitance, etc. of the button, which is not a real human body touch action, resulting in false triggering of the button action. .
  • the technical solution first detects the background environment signal, and only detects the signal when the signal is detected in the first frequency to the second frequency range, thereby greatly reducing the interference of the environmental noise, and improving the detection precision of the button action. .
  • FIG. 1 is a schematic structural diagram of an anti-jamming button detecting system of the embodiment, including: a button 21, which may be a contact button, especially a capacitive touch button, or other buttons, such as an air button, the contact type
  • a button 21 which may be a contact button, especially a capacitive touch button, or other buttons, such as an air button, the contact type
  • the button refers to a button that the human body directly contacts the metal plate in the button.
  • the air button refers to a button that the human body does not directly contact the metal plate in the button.
  • the button 21 in the embodiment is specifically An air-type capacitive touch button;
  • the environment detecting unit 31 is configured to detect a background environment signal, and shield a signal outside the range of the first frequency (80KHz in this embodiment) to the second frequency (120KHz in this embodiment), in detecting After the signal in the first frequency to the second frequency range, a trigger signal is generated;
  • the button detecting unit 32 is triggered by the trigger signal, and the capacitive touch button 21 is detected to acquire a button signal;
  • the control unit 40 Triggered by the trigger signal, sampling the button signal, and sampling the button valid signal in the first time window When the number reaches or exceeds a predetermined number of times, it outputs a control signal.
  • the capacitive touch button 21 is distributed on the detecting board 20, and the detecting board 20 can be a printed circuit board (PCB).
  • the detecting board 20 is further provided with at least one balance point 22, which is a metal material for adjusting the frequency receiving and response range of the detecting board 20, which will be described in detail below.
  • the environment detecting unit 31 and the button detecting unit 32 may be integrated in the same detecting chip. 30 on.
  • the button detecting unit 32 is configured to detect the amount of change in the charge of the capacitive touch button 21, that is, the difference between the current amount of charge on the capacitive touch button 21 and the amount of charge of the capacitive touch button in the initial equilibrium state, and then The amount of change in charge is converted into a corresponding digital signal, that is to say the digital signal represents the amount of change in charge.
  • the control unit 40 can be implemented by a microcontroller (MCU, Micro Controller Unit).
  • MCU Microcontroller
  • the environment detecting unit 31 includes: a system interference detecting module 311 for detecting a system noise signal in a frequency range of a power supply; and a low frequency interference detecting module 312 for detecting a low frequency noise signal in a third frequency to a fourth frequency range, the third frequency is smaller than the first frequency, the fourth frequency is greater than the second frequency, and the first frequency to the second frequency are detected After the signal in the range, the trigger signal is generated; the high frequency interference detection module
  • the high frequency noise signal is detected in the fifth frequency to the sixth frequency range, where the fifth frequency is greater than the fourth frequency.
  • the detection control module 314 is configured to control the system interference detection module 311 and low frequency interference.
  • the detection module 312 and the high frequency interference detection module 313 are cyclically operated in sequence.
  • the system interference detection module 311 is mainly used to detect noise generated by the power supply and other noises within the power supply frequency range.
  • the power supply used is generated after the lighting power source is transformed, and the detection range of the corresponding system noise signal is 50 Hz to 75 Hz.
  • the low frequency interference detecting module 312 is mainly used for detecting a low frequency noise signal, and the frequency range is from the third frequency to the fourth frequency, and is specifically 20 kHz to 500 kHz in this embodiment.
  • the capacitive reactance and the inductive reactance of the entire detecting board 20 are adjusted by adjusting the shape and size of the detecting board 20 and balancing points 22 of one or more metal materials thereon.
  • the frequency response of the signal and the receiving range of the signal can include the frequency range of the third frequency to the fourth frequency, that is, capable of receiving a low frequency of 20 kHz to 500 kHz.
  • the capacitive reactance of the detecting plate 20 is about 0.5 pF
  • the inductive reactance is from O.lmH to 0.8 mH. Since the button 21 and the detecting board 20 are integrally used as the antenna of the low-frequency interference detecting module 312, and no special low-frequency antenna is required, the integration degree of the system is improved, and the volume of the final product is reduced.
  • the high frequency interference detecting module 313 is configured to detect the frequency range from the fifth frequency to the sixth frequency.
  • High frequency noise signal specifically 900MHz to 3GHz.
  • the reception of its signal is achieved by a separate antenna 312a.
  • FIG. 3 is a schematic flow chart showing the method for detecting an anti-interference capacitive touch button of the embodiment, including:
  • Step S11 detecting a background environment signal, and shielding the signal from the first frequency to the second frequency range;
  • Step S12 after detecting the signal in the first frequency to the second frequency range, detecting the capacitive touch button to obtain a button signal;
  • Step S13 is executed to sample the button signal, and when the number of times the button valid signal is sampled in the first time window reaches or exceeds a predetermined number of times, the control signal is output.
  • the anti-jamming capacitive touch button detecting system first initializes after the power-on is turned on, and the initializing includes initializing the detecting chip 30, that is, initializing the environment detecting unit 31 and the button detecting unit 32; and further comprising the pair control unit
  • the initialization of 40, etc., the initialization process is about 20ms.
  • the environment detecting unit 31 starts detecting the background environment signal, and shields the signal from the first frequency to the second frequency range, and generates a signal when the first frequency to the second frequency range is detected.
  • Trigger signal In this embodiment, the following is specifically: when a signal in the range of 80 kHz to 120 kHz is detected, a trigger signal is generated, and a background environment signal in other frequency ranges is masked. It should be understood that the detection of signals in the range of 80 kHz to 120 kHz refers to the presence of a signal having an amplitude greater than a certain amplitude threshold from 80 kHz to 120 kHz.
  • the detection process of the background environment signal is also the step S1 in Fig. 3.
  • FIG 4 shows the detailed flow of step S11 in Figure 3, including:
  • Step S111 is performed to detect a system noise signal in a frequency range of the power supply
  • Step S112 detecting a low frequency noise signal in a third frequency to a fourth frequency range, the third frequency is smaller than the first frequency, and the fourth frequency is greater than the second frequency;
  • Step S113 detecting a high frequency noise signal in a fifth frequency to a sixth frequency range, the fifth frequency being greater than the fourth frequency;
  • Step S114 is executed to repeat the above steps in sequence.
  • the system interference detecting module 311 detects a system noise signal in a frequency range of the power supply, specifically system noise in a range of 50 Hz to 75 Hz, and detects a signal within the range, and does not trigger the button detecting unit 32 to perform The button is detected, and the control unit 40 does not perform button determination.
  • the amplitude of the system noise signal is transmitted to the control unit 40, the control unit 40 adds it to the reference signal of the system, and deducts the amplitude of the system noise signal during the subsequent determination process of the button valid signal, thereby avoiding the influence of the power supply ripple interference on the determination result.
  • the amplitude of the system noise signal is higher than the second predetermined amplitude (500 mV in this embodiment), such as 800 mV.
  • the amplitude of the system noise signal is transmitted to the control unit 40, and the control unit 40 performs limiting processing on the button, that is, in the process of determining the subsequent button valid signal, it is considered that the system noise is excessive beyond the amplitude, and is not a button. action.
  • the detection control module 314 controls the low frequency interference detection module 312 to detect the low frequency noise signal in the third frequency to the fourth frequency range, specifically 20 kHz to Low frequency noise signal detection in the 500KHz range.
  • the reception of the low frequency noise signal is effected by the detection board 20.
  • the specific detection process is implemented by frequency hopping detection, where the frequency hopping detection refers to receiving only a signal whose frequency is equal to the frequency hopping frequency, wherein the frequency hopping frequency is increased from the third frequency (20KHz) to the fourth frequency (500KHz).
  • the frequency hopping frequency is increased from 20KHz to 500KHz, and the odd frequency hopping frequency is increased, including: the frequency hopping frequency is increased from 20KHz to 21KHz, and then increased to 499KHz every time 2KHz, and then increased from 499KHz to 500KHz;
  • the frequency hopping frequency is decremented from 500KHz to 20KHz for even-numbered equal-hopping, including: The frequency hopping frequency is decremented from 500KHz to 20KHz at 2KHz each time.
  • dividing the frequency range of the third frequency to the fourth frequency into consecutive first frequency bands, second frequency bands, and third frequency bands, where the first frequency band ranges from 20 kHz to 80 kHz, and the second frequency band ranges from 80 kHz to 300 kHz.
  • the third frequency band ranges from 300 kHz to 500 kHz; the frequency hopping frequency is at the first
  • the dwell time of each frequency band in the frequency band and the third frequency band ie, the frequency hopping frequency is the hold time of the frequency
  • the time is 0.2ms.
  • the dwell time in the second frequency range is relatively long, so the band has higher resolution. Since the second frequency range includes the frequency range of the trigger button detection (80KHz to 120KHz), the band is higher. The resolution can avoid false negatives on keystrokes.
  • each frequency hopping frequency is an odd number, which can effectively avoid the harmonic interference problem and further improve the detection accuracy.
  • the detection control module 314 controls the high frequency interference detecting module 313 to the high frequency in the range of the fifth frequency (900 MHz) to the sixth frequency (3 GHz).
  • the noise signal is detected. If there is a high frequency noise signal in the frequency band, it is shielded, that is, the button detecting unit 32 and the control unit 40 are not triggered, thereby avoiding the misjudgment of the button action caused by the high frequency noise signal.
  • the detection control module 314 controls the system interference detection module 311, the low frequency interference detection module 312, and the high frequency interference detection module 313 to sequentially cycle, and repeatedly perform the system noise signal, the low frequency noise signal, and the high frequency noise signal. Test.
  • the low frequency interference detecting module 312 detects a signal in the range of the first frequency (80KHz) to the second frequency (120KHz), a trigger signal is generated, triggering the button detecting unit 32 and the control unit 40 to start working, wherein
  • the button detecting unit 32 detects the capacitive touch button to acquire a button signal; the control unit 40 samples the button signal, and outputs the number of times when the button valid signal is sampled in the first time window reaches or exceeds a predetermined number of times. control signal.
  • This process also corresponds to step S13 in Fig. 3.
  • FIG. 5 shows a detailed flow chart of step S13 in Figure 3, including:
  • Step S131 is executed to sample the button signal, that is, the digital signal indicating the amount of charge change acquired by the button detecting unit 32 is sampled, and the sampling frequency is a frequency conversion frequency, that is, in each sampling process.
  • the sampled signal is incremented from a first frequency (80 KHz) to a second frequency (120 KHz), and then decremented from the second frequency to the first frequency, and the incrementing and decrementing processes are repeated, and the sampling duration for each of the variable frequency is performed.
  • the sampling frequency resides at each frequency for a predetermined time.
  • Step S132 it is determined whether the sampled button signal is a button valid signal; if the button signal is a button valid signal, step S133 is performed, the count value is incremented by 1, and then step S134 is performed;
  • step S134 is directly performed to detect whether the current time is within the first time window
  • step S135 is performed;
  • Step S135 determining whether the count value is greater than or equal to a predetermined number of times, if greater than or equal to the predetermined number of times, executing step S136, determining that the button operation is truly valid, outputting a control signal; if the count value is less than a predetermined number of times, executing In step S137, it is determined that the external interference.
  • the sampling frequency is cyclically changed in the range of the first frequency to the second frequency (including the first frequency and the second frequency), and the increasing value of the sampling frequency (from the first frequency to the second frequency, each time
  • the increase in the sub-frequency) or the decrement is one frequency unit, that is, the increase in the equal difference or the decrease in the equal difference.
  • the sampling frequency is first increased from the first frequency to the second frequency, and one frequency unit is added each time (ie, the unit of the first frequency and the second frequency, such as a unit of kilohertz (KHz), then the IKHz is added each time) And maintaining a predetermined time at each frequency, that is, increasing the sampling frequency by one frequency unit every predetermined time; then, the sampling frequency is further decremented from the second frequency to the first frequency, one frequency unit is reduced each time, and Maintaining a predetermined time at each frequency, that is, the sampling frequency is decreased by 1 frequency unit every predetermined time; then the sampling frequency is further increased from the first frequency to the second frequency, and then decremented from the second frequency to the first frequency, repeatedly.
  • KHz kilohertz
  • the sampling frequency increment value or decrement value is 1 ⁇ .
  • the predetermined time is determined according to the predetermined time range and a predetermined number of times (which may be an empirical value), that is, the predetermined time may determine that a button signal greater than a predetermined number of times is sampled within a predetermined time range, for the duration of the first time window
  • the time is 3 ms
  • the predetermined number of times is 80
  • the predetermined time may be 5 s.
  • the sampling frequency starts from 80KHz, increases to 81KHz after 5s, and increases to 82 ⁇ after 5s, the sampling frequency increases to 120KHz, the time of this increment process is 200 ⁇ 8; then, after 5s, the sampling frequency is from 120KHz.
  • One rounding process includes an incrementing process and a decreasing process, which is 400 ⁇ 8, at each frequency point
  • a key signal can be sampled, that is, one cycle can sample 80 times, and 3ms includes 7.5 rounds, so 600 digital signals can be sampled. If 80 or more of the 600 digital signals are key valid signals, that is, if the value represented by the sampled button signal is greater than 80 times, the current detected key action is considered to be true and effective. Output control signals.
  • the frequency conversion sampling Through the frequency conversion sampling, the forward and reverse traversal of the first frequency to the second frequency is realized, which ensures that each frequency point can be detected, and the detection precision is improved.
  • the sampling frequency is a regular frequency conversion frequency, and the external interference signal is generally irregular, the noise interference is further avoided, and the detection precision is improved.
  • the environment detecting unit 31 is still continuously detecting the background environment noise.
  • the environment detecting unit 31 enters the sleep state and stops detecting the background environment signal.
  • the first time window is greater than or equal to the predetermined number of times, that is, in the first time window, when the button action is detected, and the corresponding control signal is output
  • the first The duration of the second time window is greater than the first time window.
  • the duration of the second time window in this embodiment is 3 s.
  • the button signal is continuously sampled in the second time window, and in any of the first time windows in the second time window, the control signal is output when the number of times the button valid signal is sampled reaches or exceeds a predetermined number of times.
  • the detection of the button signal is still performed in units of the first time window, and if the number of valid signals of the button is greater than or equal to the predetermined number of times in a certain first time window in the second time window (80) Then, the control signal is output again. If the number of times the button valid signal is sampled in the second time window is less than the predetermined number of times, that is, the true effective key action is not detected in the entire second time window, the environment detecting unit 31 enters a sleep state, and stops Detection of background environmental signals. Entering the sleep state helps to reduce the power consumption of the entire system.
  • the button action is often continuous, such as the user's continuous button to adjust the volume, switch channels, etc., therefore, after confirming the button action in the first time window, open
  • the second time window with a longer duration is used to capture other keystrokes that follow, which can effectively improve the detection accuracy of the continuous button motion.
  • the anti-jamming capacitive touch button detection system further includes a watchdog module, after the preset sleep time (specifically 128 ms in this embodiment) of the environment monitoring unit 31 entering the sleep state
  • the environment detecting unit 31 is awakened to continue detecting the system noise signal, the low frequency noise signal, and the high frequency noise signal.
  • the duration of the button press of the person is much longer than 128 ms. Therefore, the time when the environment monitoring unit 31 enters the sleep state does not miss the button action, thereby ensuring the detection accuracy while reducing the power consumption.
  • the control unit 40 further acquires a background environment signal from the environment detecting unit 31, and scans the system noise signal, the low frequency noise signal, and the high with the environment detecting unit 31 within a preset monitoring time.
  • the frequency noise signal is one round each time. If the time is 500 times (the time corresponding to the 500 detection rounds is the preset monitoring time, of course, the number can be adjusted according to the actual application), a certain frequency point The signal is always present, and the change threshold is compensated according to the signal amplitude of the frequency. For example, a metal component is placed in the vicinity of the capacitive touch button 21 for a long time, causing a disturbance of a fixed frequency of 30 kHz.
  • the control unit 40 adjusts the threshold of the change amount according to the signal amplitude of the frequency point. If the external interference of 30KHz causes the amount of charge of the capacitive touch button to decrease in the balanced state, when the button signal is detected, The change threshold is adjusted such that the adjusted change threshold is adapted to it. Therefore, through the above adjustment, the anti-jamming capacitive touch button detection system is adaptive to the environment, and after the fixed interference disappears, the threshold value is changed back to the initial value, thereby realizing the memory and recovery of the environment. Function, guarantee the accuracy of detection.
  • the technical solution of the present invention first detects the background environment signal, and detects and samples the capacitive touch button only after detecting the signal in the first frequency to the second frequency range, thereby greatly reducing the noise of the background environment. Signal interference; and when the number of key valid signals sampled in the first time window reaches or exceeds a predetermined number of times, the corresponding control signal is output, thereby avoiding misjudgment caused by noise interference.

Landscapes

  • Push-Button Switches (AREA)
  • Geophysics And Detection Of Objects (AREA)

Description

抗干扰按鍵检测系统及方法
本申请要求于 2010 年 9 月 30 日提交中国专利局、 申请号为 201010514746.6、 发明名称为 "抗干扰按键检测系统及方法"的中国专利申请 的优先权, 其全部内容通过引用结合在本申请中。
技术领域
本发明涉及电子按键技术, 特别涉及一种抗干扰按键检测系统及检测方 法。
背景技术
目前,各种类型的按键已广泛应用于电子产品中, 其中最常用的为电容式 触摸按键。 电容触摸按键的主要原理是人体触摸按键后,会改变按键电容上的 电荷量, 通过检测按键电容上的电荷量的改变或是由电荷量改变引发的电压、 电流等电信号的改变, 就可以确定是否有按键触摸动作发生。按键检测的成功 率直接影响了电子产品的使用,按键检测通常是指检测对按键进行的操作, 确 定该按键是否被按下。
现有的按键检测方法主要包括下述基本步骤: 检测按键, 获取按键信号; 以固定频率采样所述按键信号,在预定的时间范围内采样到按键有效信号的次 数达到或超过预定的次数时, 输出控制信号。
上述按键检测过程中, 如果有外界环境因素干扰, 如有手机、 其他电器等 产生的噪声干扰, 则会使按键的误触发率或漏检率升高, 由此降低按键检测的 精度。
发明内容
本发明解决的问题是提供一种抗干扰按键检测系统, 排除环境噪声的干 扰, 提高按键动作的检测精度。
为解决上述问题, 本发明提供了一种抗干扰按键检测系统, 包括: 按键;
环境检测单元, 用于检测背景环境信号,屏蔽第一频率至第二频率范围外 的信号, 在检测到所述第一频率至第二频率范围内的信号后, 产生触发信号; 按键检测单元, 由所述触发信号触发, 对所述按键进行检测, 获取按键信 号; 控制单元, 由所述触发信号触发, 对所述按键信号进行采样, 在第一时间 窗口中采样到按键有效信号的次数达到或超过预定次数时, 输出控制信号。
可选的, 所述检测单元包括:
系统干扰检测模块, 用于检测供电电源的频率范围内的系统噪声信号; 低频干扰检测模块, 用于检测第三频率至第四频率范围内的低频噪声信 号, 所述第三频率小于所述第一频率, 所述第四频率大于所述第二频率, 在检 测到所述第一频率至第二频率范围内的信号后, 产生触发信号;
高频干扰检测模块, 用于检测第五频率至第六频率范围内的高频噪声信 号, 所述第五频率大于所述第四频率;
检测控制模块, 用于控制所述系统干扰检测模块、低频干扰检测模块和高 频干扰检测模块依次循环工作。
可选的, 所述按键设置于侦测板上, 所述侦测板用作所述低频干扰检测模 块的天线,接收所述第三频率至第四频率范围内的低频噪声信号, 并将其传输 至所述低频干扰检测模块。
可选的, 所述侦测板上还设置有平衡点, 所述平衡点为金属材料, 将所述 侦测板的接收频率范围调节至所述第三频率至第四频率范围内。
可选的,所述系统干扰检测模块在所述系统噪声信号的幅度低于第一预设 幅度时,将该系统噪声信号的幅度传输至所述控制单元, 所述控制单元将其加 入系统的基准信号中;所述系统干扰检测模块在所述系统噪声信号的幅度高于 第二预设幅度时,将该系统噪声信号的幅度传输至所述控制单元, 所述控制单 元对其进行限幅。
可选的, 所述第一预设幅度为 lOOmV, 所述第二预设幅度为 500mV。 可选的,所述低频干扰检测模块跳频检测所述第三频率至第四频率范围内 的低频噪声信号, 所述跳频检测是指仅接收频率等于跳频频率的信号, 其中, 所述跳频频率从第三频率递增至第四频率,再从第四频率递减至第三频率, 所 述递增的跳频频率与所述递减的跳频频率不同。
可选的, 所述跳频频率的递增值和递减值为 2个频率单位。
可选的, 所述控制单元变频采样所述按键信号, 所述变频采样是指仅采样 频率等于变频频率, 其中, 所述变频频率从所述第一频率递增至第二频率, 再 从所述第二频率递减至第一频率, 并重复所述递增和递减过程,且对每一变频 频率的采样持续时间为预定时间。
可选的, 所述变频频率的递增和递减值为 1个频率单位。
可选的, 所述供电电源的频率范围为 50Hz 至 75Hz, 所述第一频率为 80KHz, 所述第二频率为 120KHz, 所述第三频率为 20KHz, 所述第四频率为
500KHz, 所述第五频率为 900MHz, 所述第六频率为 3GHz。
可选的, 所述第三频率至第四频率的频率范围划分为连续的第一频段、第 二频段和第三频段, 所述第一频段范围为 20KHz ~ 80KHz, 所述第二频段范围 为 80KHz ~ 300KHz, 所述第三频段范围为 300KHz ~ 500KHz;
所述跳频频率在所述第一频段、 第三频段内的每个频率的驻留时间为
0.1ms, 所述跳频频率在所述第二频段内的每个频率的驻留时间为 0.2ms。
可选的, 所述跳频频率从第三频率递增至第四频率包括:
所述跳频频率从 20KHz增至 21KHz, 然后以每次 2KHz递增至 499KHz, 接着从 499KHz递增至 500KHz;
所述跳频频率从第四频率递减至第三频率包括: 所述跳频频率以每次
2KHz从 500KHz递减至 20KHz。
可选的, 所述变频频率的递增值和递减值为 ΙΚΗζ, 所述预定时间为 5 s。 可选的, 所述第一时间窗口的持续时间为 3ms, 所述预定次数为 80次。 可选的,在所述第一时间窗口中采样到按键有效信号的次数小于所述预定 次数时, 所述环境检测单元进入休眠状态。
可选的, 所述控制单元在输出所述控制信号后,在第二时间窗口内继续对 所述按键信号进行采样,所述第二时间窗口的持续时间大于所述第一时间窗口 的持续时间,在所述第二时间窗口中的任一第一时间窗口中, 采样到按键有效 信号的次数达到或超过预定次数时, 输出控制信号。
可选的, 所述第二时间窗口的持续时间为 3s。
可选的,在所述第二时间窗口中采样到按键有效信号的次数小于所述预定 次数时, 所述环境检测单元进入休眠状态。
可选的,还包括看门狗模块,在所述环境检测单元进入休眠状态的预设休 眠时间后, 唤醒所述环境检测单元。 可选的, 所述预设休眠时间为 128ms。
可选的, 所述按键为电容触摸按键, 所述按键检测单元用于检测所述按键 的电荷变化量; 所述按键信号为表示所述电荷变化量的数字信号。
可选的,所述控制单元在采样所得的按键信号所表示的数值大于变化量阈 值时, 将当前的按键信号确认为按键有效信号。
可选的, 所述控制单元还从所述环境检测单元中获取背景环境信号,在预 设监控时间内, 若某频点的信号始终存在, 则根据该频点的信号幅度对所述变 化量阈值进行补偿调整。
可选的, 所述按键为空气式按键或接触式按键。
为了解决上述问题, 本发明还提供了一种抗干扰按键检测方法, 包括: 检测背景环境信号, 屏蔽所述第一频率至第二频率范围外的信号; 检测到所述第一频率至第二频率范围内的信号后,检测所述按键, 获取按 键信号;
对所述按键信号进行采样,在第一时间窗口中采样到按键有效信号的次数 达到或超过预定次数时, 输出控制信号。
可选的, 所述检测背景环境信号包括:
检测供电电源的频率范围内的系统噪声信号;
检测第三频率至第四频率范围内的低频噪声信号,所述第三频率小于所述 第一频率, 所述第四频率大于所述第二频率;
检测第五频率至第六频率范围内的高频噪声信号,所述第五频率大于所述 第四频率;
依次循环重复上述步骤。
可选的, 所述按键设置于侦测板上,通过所述侦测板检测所述第三频率至 第四频率范围内的低频噪声信号。
可选的, 在所述侦测板上设置平衡点, 所述平衡点为金属材料, 将所述侦 测板的接收频率范围调节至所述第三频率至第四频率范围内。
可选的,在所述系统噪声信号的幅度低于第一预设幅度时,将其加入检测 的基准信号中; 在所述系统噪声信号的幅度高于第二预设幅度时,对其进行限 幅。 可选的, 所述第一预设幅度为 lOOmV, 所述第二预设幅度为 500mV。 可选的, 所述检测第三频率至第四频率范围内的低频噪声信号包括: 跳频 检测所述第三频率至第四频率范围内的低频噪声信号,所述跳频检测是指仅接 收频率等于跳频频率的信号,其中,所述跳频频率从第三频率递增至第四频率, 再从第四频率递减至第三频率,所述递增的跳频频率与所述递减的跳频频率不 同。
可选的, 所述跳频频率的递增值和递减值为 2个频率单位。
可选的, 所述对所述按键信号进行采样包括: 变频采样所述按键信号, 所 述变频采样是指采样频率等于变频频率, 其中, 所述变频频率从所述第一频率 递增至第二频率,再从所述第二频率递减至第一频率, 并重复所述递增和递减 过程, 且对每一变频频率的采样持续时间为预定时间。
可选的, 所述变频频率的递增和递减值为 1个频率单位。
可选的, 所述供电电源的频率范围为 50Hz 至 75Hz, 所述第一频率为
80KHz, 所述第二频率为 120KHz, 所述第三频率为 20KHz, 所述第四频率为 500KHz, 所述第五频率为 900MHz, 所述第六频率为 3GHz。
可选的, 所述第三频率至第四频率的频率范围划分为连续的第一频段、第 二频段和第三频段, 所述第一频段范围为 20KHz ~ 80KHz, 所述第二频段范围 为 80KHz ~ 300KHz, 所述第三频段范围为 300KHz ~ 500KHz;
所述跳频频率在所述第一频段、 第三频段内的每个频率的驻留时间为 0.1ms, 所述跳频频率在所述第二频段内的每个频率的驻留时间为 0.2ms。
可选的, 所述跳频频率从第三频率递增至第四频率包括:
所述跳频频率从 20KHz增至 21KHz, 然后以每次 2KHz递增至 499KHz, 接着从 499KHz递增至 500KHz;
所述跳频频率从第四频率递减至第三频率包括: 所述跳频频率以每次 2KHz从 500KHz递减至 20KHz。
可选的, 所述变频频率的递增值和递减值为 ΙΚΗζ, 所述预定时间为 5 s。 可选的, 所述第一时间窗口的持续时间为 3ms, 所述预定次数为 80次。 可选的,在所述第一时间窗口中采样到按键有效信号的次数小于所述预定 次数时, 停止检测所述背景环境信号。 可选的,在输出所述控制信号后,在第二时间窗口内继续对所述按键信号 进行采样, 所述第二时间窗口的持续时间大于所述第一时间窗口的持续时间, 在所述第二时间窗口中的任一第一时间窗口中,采样到按键有效信号的次数达 到或超过预定次数时, 输出控制信号。
可选的, 所述第二时间窗口的持续时间为 3s。
可选的,在所述第二时间窗口中采样到按键有效信号的次数小于所述预定 次数时, 停止检测所述背景环境信号。
可选的,在停止检测所述背景环境信号的预设休眠时间后, 重新开始检测 所述背景环境信号。
可选的, 所述预设休眠时间为 128ms。
可选的, 所述按键为电容触摸按键, 所述检测所述按键, 获取按键信号包 括: 检测所述按键的电荷变化量; 获取按键信号, 所述按键信号为表示所述电 荷变化量的数字信号。
可选的, 所述采样到按键有效信号包括: 在采样所得的按键信号所述表示 的数值大于变化量阈值时, 将当前的按键信号确认为按键有效信号。
可选的, 所述抗干扰按键检测方法还包括: 在预设监控时间内, 若所述背 景环境信号中某频点的信号始终存在,则根据该频点的信号幅度对所述变化量 阈值进行补偿调整。
可选的, 所述按键为空气式按键或接触式按键。
与现有技术相比, 上述技术方案具有以下优点:
本发明技术方案首先对背景环境信号进行检测,仅在检测到第一频率至第 二频率范围内的信号后才对所述按键进行检测和采样,大大减少了背景环境的 噪声信号的干扰;而且在第一时间窗口中采样到的按键有效信号的次数达到或 超过预定次数时, 才输出相应的控制信号, 避免了噪声干扰导致的误判断。
附图说明
图 1是本发明实施例的抗干扰按键检测系统的结构示意图;
图 2是本发明实施例的抗干扰按键检测系统的详细结构示意图; 图 3是本发明实施例的抗干扰按键检测方法的流程示意图;
图 4是图 3中步骤 S11的详细流程示意图; 图 5是图 3中步骤 S13的详细流程示意图。
具体实施方式
现有技术中对按键信号直接进行检测,而按键信号可能是环境噪声的干扰 导致按键的电荷量、 电压、 电容等电信号改变而产生, 并非真实的人体的触摸 动作, 导致按键动作的误触发。
本技术方案首先对背景环境信号进行检测,仅在第一频率至第二频率范围 内检测到信号时, 才开始对按键进行检测, 从而大大减少了环境噪声的干扰, 利于提高按键动作的检测精度。
为使本发明的上述目的、特征和优点能够更为明显易懂, 下面结合附图对 本发明的具体实施方式做详细的说明。
在以下描述中阐述了具体细节以便于充分理解本发明。但是本发明能够以 多种不同于在此描述的其它方式来实施,本领域技术人员可以在不违背本发明 内涵的情况下做类似推广。 因此本发明不受下面公开的具体实施方式的限制。
图 1 示出了本实施例的抗干扰按键检测系统的结构示意图, 包括: 按键 21 , 可以为接触式按键, 尤其是电容触摸按键, 也可以为其它按键, 比如空气 式按键, 所述接触式按键是指人体会与按键中的金属极板直接接触的按键, 所 述空气式按键是指人体不会直接与按键中的金属极板直接接触的按键,本实施 例中所述按键 21具体为空气式的电容触摸按键; 环境检测单元 31 , 用于检测 背景环境信号, 屏蔽第一频率(本实施例中为 80KHz ) 至第二频率 (本实施 例中为 120KHz ) 范围外的信号, 在检测到所述第一频率至第二频率范围内的 信号后, 产生触发信号; 按键检测单元 32, 由所述触发信号触发, 对所述电 容触摸按键 21进行检测,获取按键信号;控制单元 40, 由所述触发信号触发, 对所述按键信号进行采样,在第一时间窗口中采样到按键有效信号的次数达到 或超过预定次数时, 输出控制信号。
其中, 电容触摸按键 21分布设置在侦测板 20上, 所述侦测板 20可以为 一块印刷电路板(PCB )。 所述侦测板 20上还设置有至少一个平衡点 22 , 所 述平衡点 22为金属材料, 用于调节所述侦测板 20的频率接收和响应范围, 下 文将进行详细描述。
此外,所述环境检测单元 31和按键检测单元 32可以集成在同一检测芯片 30上。 所述按键检测单元 32用于检测电容触摸按键 21的电荷变化量, 也即 电容触摸按键 21上当前的电荷量与电容触摸按键在初始平衡状态下的电荷量 之间的差值, 之后, 将所述电荷变化量转化为相应的数字信号, 也就是说所述 数字信号表示出了所述电荷变化量。
所述控制单元 40可以通过一微控制器( MCU, Micro Controller Unit ) 实 现。
图 2示为图 1的详细结构示意图, 其中, 所述环境检测单元 31包括: 系 统干扰检测模块 311 , 用于检测供电电源的频率范围内的系统噪声信号; 低频 干扰检测模块 312, 用于检测第三频率至第四频率范围内的低频噪声信号, 所 述第三频率小于所述第一频率, 所述第四频率大于所述第二频率,在检测到所 述第一频率至第二频率范围内的信号后, 产生触发信号; 高频干扰检测模块
313 , 用于检测第五频率至第六频率范围内的高频噪声信号, 所述第五频率大 于所述第四频率; 检测控制模块 314, 用于控制所述系统干扰检测模块 311、 低频干扰检测模块 312和高频干扰检测模块 313依次循环工作。
其中, 所述系统干扰检测模块 311主要用于检测供电电源产生的噪声, 以 及供电电源频率范围内的其他噪声。本实施例中, 所使用的供电电源为照明电 源变压后产生, 相应的系统噪声信号的检测范围为 50Hz至 75Hz。 一般的, 可 所述低频干扰检测模块 312主要用于检测低频噪声信号,其频率范围为第 三频率至第四频率, 本实施例中具体为 20KHz至 500KHz。 为了匹配接收该频 天线, 通过调整所述侦测板 20的形状、 尺寸, 并在其上甚至一个或多个金属 材料的平衡点 22, 对整个侦测板 20的容抗和感抗进行调整, 使其的频响和信 号的接收范围能够包括所述第三频率至第四频率的频段范围, 即能够接收 20KHz至 500KHz的低频频率。 本实施例中, 所述侦测板 20的容抗为 0.5pF 左右, 感抗为 O.lmH至 0.8mH。 由于将所述按键 21以及侦测板 20整体作为 低频干扰检测模块 312的天线, 而不需要配置专门的低频天线, 因而提高了系 统的集成度, 利于减小最终产品的体积。
所述高频干扰检测模块 313 用于检测频率范围为第五频率至第六频率的 高频噪声信号, 具体为 900MHz至 3GHz。 其信号的接收通过单独的天线 312a 实现。
图 3 示出了本实施例的抗干扰电容触摸按键检测方法的流程示意图, 包 括:
执行步骤 S11 , 检测背景环境信号, 屏蔽所述第一频率至第二频率范围外 的信号;
执行步骤 S12, 检测到所述第一频率至第二频率范围内的信号后, 检测所 述电容触摸按键, 获取按键信号;
执行步骤 S13 , 对所述按键信号进行采样, 在第一时间窗口中采样到按键 有效信号的次数达到或超过预定次数时, 输出控制信号。
下面结合图 2 对本实施例的抗干扰电容触摸按键检测系统以及其工作过 程中的检测方法进行详细描述。
所述抗干扰电容触摸按键检测系统在上电开启后, 首先进行初始化, 所述 初始化包括对检测芯片 30进行初始化, 也即对环境检测单元 31、 按键检测单 元 32进行初始化; 还包括对控制单元 40的初始化等, 所述初始化过程约为 20ms左右。
在完成初始化之后,所述环境检测单元 31开始对背景环境信号进行检测, 将第一频率至第二频率范围外的信号屏蔽,在检测到第一频率至第二频率范围 内的信号时, 产生触发信号。 本实施例中具体为: 在检测到 80KHz至 120KHz 范围内的信号时,产生触发信号, 而将其他频率范围内的背景环境信号进行屏 蔽。 应该理解的是, 所述检测到 80KHz 至 120KHz 范围内的信号指的是在 80KHz至 120KHz存在一个幅度大于某一幅度阈值的信号。所述背景环境信号 的检测过程也即为图 3中的步骤 Sl l。
图 4示出了图 3中步骤 S11的详细流程, 包括:
执行步骤 S111 , 检测供电电源的频率范围内的系统噪声信号;
执行步骤 S112 , 检测第三频率至第四频率范围内的低频噪声信号, 所述 第三频率小于所述第一频率, 所述第四频率大于所述第二频率;
执行步骤 S113 , 检测第五频率至第六频率范围内的高频噪声信号, 所述 第五频率大于所述第四频率; 执行步骤 S114, 依次循环重复上述步骤。
下面结合图 2和图 4对背景环境噪声的检测过程进行详细说明。 首先, 系 统干扰检测模块 311对供电电源的频率范围内的系统噪声信号进行检测,具体 为 50Hz至 75Hz范围内的系统噪声, 在此范围内检测到信号, 并不触发所述 按键检测单元 32进行按键检测, 所述控制单元 40也不进行按键判断。作为一 个优选的实施例, 若所述系统噪声信号的幅度低于第一预设幅度(本实施例为 lOOmV )时, 如为 50mV, 将该系统噪声信号的幅度传输至控制单元 40, 所述 控制单元 40将其加入系统的基准信号中, 在后续的按键有效信号的判断过程 中, 将该系统噪声信号的幅度扣除, 避免了电源纹波干扰对判定结果的影响。 若所述系统噪声信号的幅度高于第二预设幅度(本实施例中为 500mV ), 如 800mV。 则将该系统噪声信号的幅度传输至所述控制单元 40, 所述控制单元 40 对其进行限幅处理, 即在后续的按键有效信号的判定过程中, 认为超过此 幅度极为系统噪声, 并非按键动作。
在所述系统干扰检测模块完成系统噪声信号的检测之后,所述检测控制模 块 314控制所述低频干扰检测模块 312进行第三频率至第四频率范围内的低频 噪声信号的检测, 具体为 20KHz至 500KHz范围内的低频噪声信号检测。 所 述低频噪声信号的接收通过所述侦测板 20实现。 具体检测过程通过跳频检测 实现, 所述跳频检测是指同一时刻仅接收频率等于跳频频率的信号, 其中, 所 述跳频频率从第三频率( 20KHz )递增至第四频率( 500KHz ), 再从第四频率 ( 500KHz )递减至第三频率(20KHz ), 所述递增的跳频频率与所述递减的跳 频频率不同, 其中, 所述跳频频率的递增值和递减值为 2个频率单位, 即为等 差递增或递减。
具体的, 所述跳频频率从 20KHz递增至 500KHz为奇数等差跳频, 包括: 所述跳频频率从 20KHz增至 21KHz, 然后以每次 2KHz递增至 499KHz,接着 从 499KHz递增至 500KHz; 所述跳频频率从 500KHz递减至 20KHz为偶数等 差跳频, 包括: 所述跳频频率以每次 2KHz从 500KHz递减至 20KHz。 将所述 第三频率至第四频率的频率范围划分为连续的第一频段、 第二频段和第三频 段, 所述第一频段范围为 20KHz ~ 80KHz, 所述第二频段范围为 80KHz ~ 300KHz, 所述第三频段范围为 300KHz ~ 500KHz; 所述跳频频率在所述第一 频段、第三频段内的每个频率的驻留时间(即跳频频率为该频率的保持保持时 间)为 0.1ms,所述跳频频率在所述第二频段内的每个频率的驻留时间为 0.2ms。 在第二频段范围内的驻留时间比较长, 因而对该频段具有更高的分辨率, 由于 第二频段范围包括了触发按键检测的频率范围 (80KHz至 120KHz ), 因而对 该频段的较高的分辨率能够避免对按键动作的漏报。
通过偶数等差跳频和奇数等差跳频,可以覆盖所述第三频率至第四频率范 围内的各个频点, 保证了低频噪声信号的检测精度。 另一方面, 奇数等差跳频 中, 每一跳频频率为奇数, 可以有效的避免谐波干扰问题, 进一步提高检测精 度。
若在 80KHz至 120KHz范围之外存在低频噪声信号, 则对其进行屏蔽, 也即并不去触发所述按键检测单元 32和控制单元 40, 从而避免了低频噪声信 号导致的按键动作的误判。
在所述低频干扰检测模块 312对低频噪声信号检测完成之后,所述检测控 制模块 314控制所述高频干扰检测模块 313对第五频率 (900MHz ) 至第六频 率(3GHz ) 范围内的高频噪声信号进行检测。 若该频段内存在高频噪声信号 则对其进行屏蔽, 也即并不去触发所述按键检测单元 32和控制单元 40, 从而 避免了高频噪声信号导致的按键动作的误判。
之后, 所述检测控制模块 314控制所述系统干扰检测模块 311、 低频干扰 检测模块 312和高频干扰检测模块 313依次循环工作,反复的对所述系统噪声 信号、 低频噪声信号和高频噪声信号进行检测。
若所述低频干扰检测模块 312检测到所述第一频率( 80KHz )至第二频率 ( 120KHz )范围内有信号, 则产生触发信号, 触发所述按键检测单元 32和控 制单元 40开始工作, 其中, 按键检测单元 32对所述电容触摸按键进行检测, 获取按键信号; 控制单元 40对所述按键信号进行采样, 在第一时间窗口中采 样到按键有效信号的次数达到或超过预定次数时,输出控制信号。该过程也即 对应与图 3中的步骤 S13。
图 5示出了图 3中的步骤 S13的详细流程图, 包括:
执行步骤 S131 , 采样所述按键信号, 即对所述按键检测单元 32获取的表 示电荷变化量的数字信号进行采样, 采样频率为变频频率, 即在每次采样过程 中, 采样信号从第一频率(80KHz )递增至第二频率(120KHz ), 再从第二频 率递减至第一频率, 并重复所述递增和递减过程,且对每一变频频率的采样持 续时间为预定时间, 即所述采样频率在每个频率驻留预定时间。
执行步骤 S132 , 判断所述采样到的按键信号是否为按键有效信号; 若所述按键信号为按键有效信号, 则执行步骤 S133 , 计数值加 1 , 之后执 行步骤 S 134;
若所述按键信号不是按键有效信号, 则直接执行步骤 S134, 检测当前时 刻是否在所述第一时间窗口内;
若仍然在第一时间窗口内, 则继续执行步骤 S132, 否则, 表明第一时间 窗口已经结束, 则执行步骤 S135;
步骤 S135 , 判断所述计数值是否大于或等于预定次数, 若大于或等于预 定次数, 则执行步骤 S136, 判定为真实有效的按键动作, 输出控制信号; 若 所述计数值小于预定次数, 则执行步骤 S137, 判定为外界干扰。
本实施例中, 采样频率在第一频率至第二频率的范围(包括第一频率和第 二频率)轮回变化, 所述采样频率的递增值(从第一频率递增至第二频率时, 每次频率的增加量)或递减值(从第二频率递减至第一频率时, 每次频率的减 小量)为 1个频率单位, 即为等差递增或等差递减。 具体地, 采样频率先从第 一频率递增至第二频率,每次增加 1个频率单位(即第一频率和第二频率的单 位, 如单位为千赫兹 (KHz ), 则每次增加 IKHz ), 且在每个频率保持预定时 间, 也就是说每隔预定时间采样频率增加 1个频率单位; 然后, 采样频率再从 第二频率递减至第一频率,每次减小 1个频率单位,且在每个频率保持预定时 间,也就是说每隔预定时间采样频率减小 1个频率单位;接着采样频率再从第 一频率递增至第二频率, 再从第二频率递减至第一频率, 如此反复。
本实施例中, 所述采样频率递增值或递减值为 1ΚΗζ。 所述预定时间根据 所述预定时间范围和预定次数(可以为经验值 )而确定, 即预定时间可以确定 在预定时间范围内采样到大于预定次数的按键信号,以所述第一时间窗口的持 续时间为 3ms, 所述预定次数为 80为例, 所述预定时间可以为 5 s。 采样频率 从 80KHz开始, 5 s后增至 81KHz, 再过 5 s增至 82ΚΗζ, , 采样频率 增至 120KHz,这个递增过程的时间为 200μ8;然后, 5 s后采样频率从 120KHz 减至 119KHz, 再过 5 s减至 118KHz, , 采样频率减至 80ΚΗζ, 这个递 减过程的时间为 200μ8; —个轮回过程包括一个递增过程和一个递减过程, 为 400μ8, 在每一个频点上都可以采样到一个按键信号, 即一个轮回可以采样 80 次, 3ms包括 7.5个轮回过程, 因此可以采样到 600次数字信号。 若 600次数 字信号中有 80次或超过 80次为按键有效信号,即采样所得的按键信号所表示 的数值有 80次大于变化量阈值时, 则认为当前检测到的为真实有效的按键动 作, 输出控制信号。
通过变频采样, 实现了第一频率至第二频率的正向和反向遍历,保证了每 一频点都能检测到, 提高了检测精度。 另外, 由于采样频率是有规律的变频频 率, 而外界的干扰信号一般是无规律的, 因而进一步避免了噪声干扰, 提高了 检测精度。
需要说明的是, 所述控制单元 40在对按键信号采样的过程中, 所述环境 检测单元 31仍然在不断的对背景环境噪声进行检测。
若在所述第一时间窗口中采样到按键有效信号的次数小于所述预定次数 时, 即在第一时间窗口中, 都没有检测到按键动作时, 没有输出控制信号, 则 所述环境检测单元 31进入休眠(sleep )状态, 停止对背景环境信号的检测。
若在所述第一时间窗口中采样到按键有效信号的次数大于或等于所述预 定次数时, 即在第一时间窗口中, 有检测到按键动作, 并产生输出相应的控制 信号,则开启第二时间窗口,所述第二时间窗口的持续时间大于第一时间窗口, 本实施例中第二时间窗口的持续时间为 3s。 在第二时间窗口内继续对所述按 键信号进行采样,在所述第二时间窗口中的任一第一时间窗口中, 采样到按键 有效信号的次数达到或超过预定次数时,输出控制信号。即在第二时间窗口中, 仍然以第一时间窗口为单位进行按键信号的检测,若在第二时间窗口中的某一 第一时间窗口内, 按键有效信号的次数大于或等于预定次数(80次), 则再次 输出控制信号。若第二时间窗口中采样到按键有效信号的次数小于所述预定次 数时, 即整个第二时间窗口中都没有检测到真实有效的按键动作, 则所述环境 检测单元 31进入休眠状态, 停止对背景环境信号的检测。 进入休眠状态有利 于减小整个系统的功耗。 在实际的使用中, 按键动作往往是连续的, 如用户连 续的按键调整音量、 切换频道等, 因此, 在第一时间窗口确认按键动作后, 开 启持续时间更长的第二时间窗口以捕捉紧随其后的其他按键动作,能够有效的 提高对连续按键动作的检测精度。
本实施例中, 所述抗干扰电容触摸按键检测系统还包括看门狗 (Watch Dog )模块, 在所述环境监测单元 31 进入休眠状态的预设休眠时间 (本实施 例中具体为 128ms )后, 唤醒所述环境检测单元 31 , 使其继续对系统噪声信 号、 低频噪声信号、 高频噪声信号进行检测。 一般来说, 人的按键动作的持续 时间远大于 128ms, 因此, 所述环境监测单元 31进入休眠状态的时间并不会 错过按键动作, 从而在降低功耗的同时, 保证了检测精度。
作为一个优选的实施例,所述控制单元 40还从所述环境检测单元 31中获 取背景环境信号, 在预设监控时间内, 以所述环境检测单元 31扫描系统噪声 信号、 低频噪声信号、 高频噪声信号各一次为一轮回, 若在 500次轮回 (500 次检测轮回所对应的时间即为所述预设监控时间, 当然, 该数字可以根据实际 应用进行相应的调整)中, 某频点的信号始终存在, 则根据该频点的信号幅度 对所述变化量阈值进行补偿调整。 例如, 所述电容触摸按键 21附近长时间放 置了一金属部件, 造成了固定频率为 30KHz的干扰, 则在 500个轮回的背景 环境信号的检测中, 在 30KHz的频点上都存在干扰信号, 则控制单元 40将根 据该频点的信号幅度对所述变化量阈值进行补偿调整, 如 30KHz的外界干扰 导致电容触摸按键在平衡状态时的电荷量减少, 则对所述按键信号进行检测 时,对所述变化量阈值进行调整,使得调整后的变化量阈值与之相适应。因此, 通过上述调整, 实现了抗干扰电容触摸按键检测系统对环境的自适应,在所述 固定干扰消失后,再将所述变化量阈值调回初始值,从而实现了对环境的记忆 和恢复功能, 保证检测的精度。
综上, 本发明技术方案首先对背景环境信号进行检测,仅在检测到第一频 率至第二频率范围内的信号后才对所述电容触摸按键进行检测和采样,大大减 少了背景环境的噪声信号的干扰;而且在第一时间窗口中采样到的按键有效信 号的次数达到或超过预定次数时, 才输出相应的控制信号,避免了噪声干扰导 致的误判断。
本发明虽然已以较佳实施例公开如上,但其并不是用来限定本发明,任何 本领域技术人员在不脱离本发明的精神和范围内,都可以利用上述揭示的方法 和技术内容对本发明技术方案做出可能的变动和修改, 因此, 凡是未脱离本发 改、 等同变化及修饰, 均属于本发明技术方案的保护范围。

Claims

权 利 要 求
1. 一种抗干扰按键检测系统, 其特征在于, 包括:
按键;
环境检测单元, 用于检测背景环境信号,屏蔽第一频率至第二频率范围外 的信号, 在检测到所述第一频率至第二频率范围内的信号后, 产生触发信号; 按键检测单元, 由所述触发信号触发, 对所述按键进行检测, 获取按键信 号;
控制单元, 由所述触发信号触发, 对所述按键信号进行采样, 在第一时间 窗口中采样到按键有效信号的次数达到或超过预定次数时, 输出控制信号。
2. 根据权利要求 1所述的抗干扰按键检测系统,其特征在于,所述检测单元 包括:
系统干扰检测模块, 用于检测供电电源的频率范围内的系统噪声信号; 低频干扰检测模块, 用于检测第三频率至第四频率范围内的低频噪声信 号, 所述第三频率小于所述第一频率, 所述第四频率大于所述第二频率, 在检 测到所述第一频率至第二频率范围内的信号后, 产生触发信号;
高频干扰检测模块, 用于检测第五频率至第六频率范围内的高频噪声信 号, 所述第五频率大于所述第四频率;
检测控制模块, 用于控制所述系统干扰检测模块、低频干扰检测模块和高 频干扰检测模块依次循环工作。
3. 根据权利要求 2所述的抗干扰按键检测系统,其特征在于,所述按键设置 于侦测板上, 所述侦测板用作所述低频干扰检测模块的天线,接收所述第三频 率至第四频率范围内的低频噪声信号, 并将其传输至所述低频干扰检测模块。
4. 根据权利要求 3所述的抗干扰按键检测系统,其特征在于,所述侦测板上 还设置有平衡点, 所述平衡点为金属材料,将所述侦测板的接收频率范围调节 至所述第三频率至第四频率范围内。
5. 根据权利要求 2所述的抗干扰按键检测系统,其特征在于,所述系统干扰 检测模块在所述系统噪声信号的幅度低于第一预设幅度时,将该系统噪声信号 的幅度传输至所述控制单元, 所述控制单元将其加入系统的基准信号中; 所述 系统干扰检测模块在所述系统噪声信号的幅度高于第二预设幅度时,将该系统 噪声信号的幅度传输至所述控制单元, 所述控制单元对其进行限幅。
6. 根据权利要求 5所述的抗干扰按键检测系统,其特征在于,所述第一预设 幅度为 lOOmV, 所述第二预设幅度为 500mV。
7. 根据权利要求 2所述的抗干扰按键检测系统,其特征在于,所述低频干扰 检测模块跳频检测所述第三频率至第四频率范围内的低频噪声信号,所述跳频 检测是指仅接收频率等于跳频频率的信号, 其中, 所述跳频频率从第三频率递 增至第四频率,再从第四频率递减至第三频率, 所述递增的跳频频率与所述递 减的跳频频率不同。
8. 根据权利要求 7所述的抗干扰按键检测系统,其特征在于,所述跳频频率 的递增值和递减值为 2个频率单位。
9. 根据权利要求 8所述的抗干扰按键检测系统,其特征在于,所述控制单元 变频采样所述按键信号, 所述变频采样是指仅采样频率等于变频频率, 其中, 所述变频频率从所述第一频率递增至第二频率,再从所述第二频率递减至第一 频率, 并重复所述递增和递减过程,且对每一变频频率的采样持续时间为预定 时间。
10. 根据权利要求 9所述的抗干扰按键检测系统,其特征在于,所述变频频率 的递增和递减值为 1个频率单位。
11. 根据权利要求 10所述的抗干扰按键检测系统, 其特征在于, 所述供电电 源的频率范围为 50Hz 至 75Hz, 所述第一频率为 80KHz, 所述第二频率为 120KHz, 所述第三频率为 20KHz, 所述第四频率为 500KHz, 所述第五频率 为 900MHz, 所述第六频率为 3GHz。
12. 根据权利要求 11所述的抗干扰按键检测系统, 其特征在于, 所述第三频 率至第四频率的频率范围划分为连续的第一频段、第二频段和第三频段, 所述 第一频段范围为 20KHz ~ 80KHz, 所述第二频段范围为 80KHz ~ 300KHz, 所 述第三频段范围为 300KHz ~ 500KHz;
所述跳频频率在所述第一频段、 第三频段内的每个频率的驻留时间为 0.1ms, 所述跳频频率在所述第二频段内的每个频率的驻留时间为 0.2ms。
13. 根据权利要求 11所述的抗干扰按键检测系统, 其特征在于, 所述跳频频 率从第三频率递增至第四频率包括: 所述跳频频率从 20KHz增至 21KHz, 然后以每次 2KHz递增至 499KHz, 接着从 499KHz递增至 500KHz;
所述跳频频率从第四频率递减至第三频率包括: 所述跳频频率以每次 2KHz从 500KHz递减至 20KHz。
14. 根据权利要求 11所述的抗干扰按键检测系统, 其特征在于, 所述变频频 率的递增值和递减值为 ΙΚΗζ, 所述预定时间为 5 s。
15. 根据权利要求 14所述的抗干扰按键检测系统, 其特征在于, 所述第一时 间窗口的持续时间为 3ms, 所述预定次数为 80次。
16. 根据权利要求 15所述的抗干扰按键检测系统, 其特征在于, 在所述第一 时间窗口中采样到按键有效信号的次数小于所述预定次数时,所述环境检测单 元进入休眠状态。
17. 根据权利要求 16所述的抗干扰按键检测系统, 其特征在于, 所述控制单 元在输出所述控制信号后, 在第二时间窗口内继续对所述按键信号进行采样, 所述第二时间窗口的持续时间大于所述第一时间窗口的持续时间,在所述第二 时间窗口中的任一第一时间窗口中,采样到按键有效信号的次数达到或超过预 定次数时, 输出控制信号。
18. 根据权利要求 17所述的抗干扰按键检测系统, 其特征在于, 所述第二时 间窗口的持续时间为 3s。
19. 根据权利要求 18所述的抗干扰按键检测系统, 其特征在于, 在所述第二 时间窗口中采样到按键有效信号的次数小于所述预定次数时,所述环境检测单 元进入休眠状态。
20. 根据权利要求 19所述的抗干扰按键检测系统, 其特征在于, 还包括看门 狗模块,在所述环境检测单元进入休眠状态的预设休眠时间后, 唤醒所述环境 检测单元。
21. 根据权利要求 20所述的抗干扰按键检测系统, 其特征在于, 所述预设休 眠时间为 128ms。
22. 根据权利要求 1所述的抗干扰按键检测系统,其特征在于,所述按键为电 容触摸按键, 所述按键检测单元用于检测所述按键的电荷变化量; 所述按键信 号为表示所述电荷变化量的数字信号。
23. 根据权利要求 22所述的抗干扰按键检测系统, 其特征在于, 所述控制单 元在采样所得的按键信号所表示的数值大于变化量阈值时,将当前的按键信号 确认为按键有效信号。
24. 根据权利要求 23所述的抗干扰按键检测系统, 其特征在于, 所述控制单 元还从所述环境检测单元中获取背景环境信号,在预设监控时间内, 若某频点 的信号始终存在, 则根据该频点的信号幅度对所述变化量阈值进行补偿调整。
25. 根据权利要求 1所述的抗干扰按键检测系统,其特征在于,所述按键为空 气式按键或接触式按键。
26. 一种抗干扰按键检测方法, 其特征在于, 包括:
检测背景环境信号, 屏蔽第一频率至第二频率范围外的信号;
检测到所述第一频率至第二频率范围内的信号后,检测所述按键, 获取按 键信号;
对所述按键信号进行采样,在第一时间窗口中采样到按键有效信号的次数 达到或超过预定次数时, 输出控制信号。
27. 根据权利要求 26所述的抗干扰按键检测方法, 其特征在于, 所述检测背 景环境信号包括:
检测供电电源的频率范围内的系统噪声信号;
检测第三频率至第四频率范围内的低频噪声信号,所述第三频率小于所述 第一频率, 所述第四频率大于所述第二频率;
检测第五频率至第六频率范围内的高频噪声信号,所述第五频率大于所述 第四频率;
依次循环重复上述步骤。
28. 根据权利要求 27所述的抗干扰按键检测方法, 其特征在于, 所述按键设 置于侦测板上,通过所述侦测板检测所述第三频率至第四频率范围内的低频噪 声信号。
29. 根据权利要求 28所述的抗干扰按键检测方法, 其特征在于, 在所述侦测 板上设置平衡点, 所述平衡点为金属材料,将所述侦测板的接收频率范围调节 至所述第三频率至第四频率范围内。
30. 根据权利要求 27所述的抗干扰按键检测方法, 其特征在于, 在所述系统 噪声信号的幅度低于第一预设幅度时, 将其加入检测的基准信号中; 在所述系 统噪声信号的幅度高于第二预设幅度时, 对其进行限幅。
31. 根据权利要求 30所述的抗干扰按键检测方法, 其特征在于, 所述第一预 设幅度为 lOOmV, 所述第二预设幅度为 500mV。
32. 根据权利要求 27所述的抗干扰按键检测方法, 其特征在于, 所述检测第 三频率至第四频率范围内的低频噪声信号包括:跳频检测所述第三频率至第四 频率范围内的低频噪声信号,所述跳频检测是指仅接收频率等于跳频频率的信 号, 其中, 所述跳频频率从第三频率递增至第四频率, 再从第四频率递减至第 三频率, 所述递增的跳频频率与所述递减的跳频频率不同。
33. 根据权利要求 32所述的抗干扰按键检测方法, 其特征在于, 所述跳频频 率的递增值和递减值为 2个频率单位。
34. 根据权利要求 33所述的抗干扰按键检测方法, 其特征在于, 所述对所述 按键信号进行采样包括: 变频采样所述按键信号, 所述变频采样是指采样频率 等于变频频率, 其中, 所述变频频率从所述第一频率递增至第二频率, 再从所 述第二频率递减至第一频率, 并重复所述递增和递减过程,且对每一变频频率 的采样持续时间为预定时间。
35. 根据权利要求 34所述的抗干扰按键检测方法, 其特征在于, 所述变频频 率的递增和递减值为 1个频率单位。
36. 根据权利要求 35所述的抗干扰按键检测方法, 其特征在于, 所述供电电 源的频率范围为 50Hz 至 75Hz, 所述第一频率为 80KHz, 所述第二频率为
120KHz, 所述第三频率为 20KHz, 所述第四频率为 500KHz, 所述第五频率 为 900MHz, 所述第六频率为 3GHz。
37. 根据权利要求 36所述的抗干扰按键检测方法, 其特征在于, 所述第三频 率至第四频率的频率范围划分为连续的第一频段、第二频段和第三频段, 所述 第一频段范围为 20KHz ~ 80KHz, 所述第二频段范围为 80KHz ~ 300KHz, 所 述第三频段范围为 300KHz ~ 500KHz;
所述跳频频率在所述第一频段、 第三频段内的每个频率的驻留时间为 0.1ms, 所述跳频频率在所述第二频段内的每个频率的驻留时间为 0.2ms。
38. 根据权利要求 36所述的抗干扰按键检测方法, 其特征在于, 所述跳频频 率从第三频率递增至第四频率包括:
所述跳频频率从 20KHz增至 21KHz, 然后以每次 2KHz递增至 499KHz, 接着从 499KHz递增至 500KHz;
所述跳频频率从第四频率递减至第三频率包括: 所述跳频频率以每次 2KHz从 500KHz递减至 20KHz。
39. 根据权利要求 36所述的抗干扰按键检测方法, 其特征在于, 所述变频频 率的递增值和递减值为 ΙΚΗζ, 所述预定时间为 5 s。
40. 根据权利要求 39所述的抗干扰按键检测方法, 其特征在于, 所述第一时 间窗口的持续时间为 3ms, 所述预定次数为 80次。
41. 根据权利要求 40所述的抗干扰按键检测方法, 其特征在于, 在所述第一 时间窗口中采样到按键有效信号的次数小于所述预定次数时,停止检测所述背 景环境信号。
42. 根据权利要求 41所述的抗干扰按键检测方法, 其特征在于, 在输出所述 控制信号后,在第二时间窗口内继续对所述按键信号进行采样, 所述第二时间 窗口的持续时间大于所述第一时间窗口的持续时间 ,在所述第二时间窗口中的 任一第一时间窗口中, 采样到按键有效信号的次数达到或超过预定次数时,输 出控制信号。
43. 根据权利要求 42所述的抗干扰按键检测方法, 其特征在于, 所述第二时 间窗口的持续时间为 3s。
44. 根据权利要求 43所述的抗干扰按键检测方法, 其特征在于, 在所述第二 时间窗口中采样到按键有效信号的次数小于所述预定次数时,停止检测所述背 景环境信号。
45. 根据权利要求 44所述的抗干扰按键检测方法, 其特征在于, 在停止检测 所述背景环境信号的预设休眠时间后, 重新开始检测所述背景环境信号。
46. 根据权利要求 45所述的抗干扰按键检测方法, 其特征在于, 所述预设休 眠时间为 128ms。
47. 根据权利要求 26所述的抗干扰按键检测方法, 其特征在于, 所述按键为 电容触摸按键, 所述检测所述按键, 获取按键信号包括: 检测所述按键的电荷 变化量; 获取按键信号, 所述按键信号为表示所述电荷变化量的数字信号。
48. 根据权利要求 47所述的抗干扰按键检测方法, 其特征在于, 所述采样到 按键有效信号包括: 在采样所得的按键信号所述表示的数值大于变化量阈值 时, 将当前的按键信号确认为按键有效信号。
49. 根据权利要求 48所述的抗干扰按键检测方法, 其特征在于, 还包括: 在 预设监控时间内, 若所述背景环境信号中某频点的信号始终存在, 则 ^据该频 点的信号幅度对所述变化量阈值进行补偿调整。
50. 根据权利要求 26所述的抗干扰按键检测方法, 其特征在于, 所述按键为 空气式按键或接触式按键。
PCT/CN2010/078439 2010-09-30 2010-11-05 抗干扰按键检测系统及方法 WO2012040947A1 (zh)

Applications Claiming Priority (2)

Application Number Priority Date Filing Date Title
CN2010105147466A CN102006038B (zh) 2010-09-30 2010-09-30 抗干扰按键检测系统及检测方法
CN201010514746.6 2010-09-30

Publications (1)

Publication Number Publication Date
WO2012040947A1 true WO2012040947A1 (zh) 2012-04-05

Family

ID=43813157

Family Applications (1)

Application Number Title Priority Date Filing Date
PCT/CN2010/078439 WO2012040947A1 (zh) 2010-09-30 2010-11-05 抗干扰按键检测系统及方法

Country Status (2)

Country Link
CN (1) CN102006038B (zh)
WO (1) WO2012040947A1 (zh)

Families Citing this family (9)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
CN103034348A (zh) * 2011-09-30 2013-04-10 鸿富锦精密工业(深圳)有限公司 腕带式电子装置及腕带式电子装置调整参数方法
CN102571049B (zh) * 2011-12-20 2013-12-04 利尔达科技集团股份有限公司 一种电磁炉用触摸按键抗干扰电路及抗干扰方法
CN103888572B (zh) * 2014-03-26 2018-08-31 努比亚技术有限公司 一种移动终端及其检测危害噪声的方法
CN104917508B (zh) * 2015-06-11 2017-12-08 福建联迪商用设备有限公司 电容式按键灵敏度调整的方法及系统
CN107682101B (zh) * 2017-09-25 2021-09-21 北京小米移动软件有限公司 噪声检测方法、装置及电子设备
CN107621990B (zh) * 2017-09-25 2021-02-09 北京小米移动软件有限公司 终端按键的控制方法、装置及终端
CN112019232B (zh) * 2020-02-28 2023-01-31 加特兰微电子科技(上海)有限公司 信号发收装置、电子器件和设备
CN112764596B (zh) * 2021-01-18 2023-04-21 四川中微芯成科技有限公司 一种电容式触摸抗干扰检测装置、系统及方法
CN113110120B (zh) * 2021-02-24 2022-09-23 福建星网锐捷通讯股份有限公司 一种zigbee智能面板防误踢网方法及系统

Citations (3)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
CN2126481U (zh) * 1992-04-29 1992-12-30 张家口市低压电器厂 超声波遥控开关
CN201319593Y (zh) * 2008-10-22 2009-09-30 九阳股份有限公司 电容式感应按键电路
CN201584957U (zh) * 2009-12-29 2010-09-15 深圳创维-Rgb电子有限公司 一种触摸键电路、触摸控制装置、触摸屏及电子设备

Family Cites Families (3)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
US6097374A (en) * 1997-03-06 2000-08-01 Howard; Robert Bruce Wrist-pendent wireless optical keyboard
CA2463032A1 (en) * 2001-10-12 2003-06-05 Hi-Key Limited A method and apparatus for analysing a signal from a movement detector for determining if movement has been detected in an area under surveillance, and an anti-theft system
CN101419522B (zh) * 2008-11-28 2010-12-15 深圳市汇顶科技有限公司 电容式触摸检测装置及其检测方法

Patent Citations (3)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
CN2126481U (zh) * 1992-04-29 1992-12-30 张家口市低压电器厂 超声波遥控开关
CN201319593Y (zh) * 2008-10-22 2009-09-30 九阳股份有限公司 电容式感应按键电路
CN201584957U (zh) * 2009-12-29 2010-09-15 深圳创维-Rgb电子有限公司 一种触摸键电路、触摸控制装置、触摸屏及电子设备

Also Published As

Publication number Publication date
CN102006038B (zh) 2012-06-27
CN102006038A (zh) 2011-04-06

Similar Documents

Publication Publication Date Title
WO2012040947A1 (zh) 抗干扰按键检测系统及方法
WO2012040973A1 (zh) 按键检测方法及装置
JP5460815B2 (ja) センサ
CN104104375B (zh) 增强电容式触摸按键抗手机干扰的方法及电路
US10394349B2 (en) System and method for improved synchronization between devices
WO2015109562A1 (zh) 一种触摸屏的干扰抑制方法、装置及终端设备
CN109412704A (zh) 电磁干扰控制方法及相关产品
CN109782937B (zh) 触摸驱动方法、装置和显示终端
KR20150131083A (ko) 센서 신호의 에너지 효율적 측정 시스템 및 방법
WO2016138966A1 (en) Method of controlling a mobile device
JP2007157371A (ja) 静電容量型デジタル式タッチパネル
CN101995550B (zh) 按键检测的触发方法及装置、按键检测方法
CN115840390B (zh) 一种低成本红外手势识别电路及控制方法
CN105320875A (zh) 控制方法及移动终端
JP2014107866A (ja) 電子装置及びrf信号受信方法
CN111103999B (zh) 触控检测装置
WO2013067723A1 (zh) 触摸装置及其自适应方法
TWM448022U (zh) 觸控面板的控制系統
CN102053224A (zh) 按键检测方法及装置
KR20150010738A (ko) 센서 신호들의 에너지 효율 측정을 위한 방법 및 시스템
TW201405439A (zh) 自學習校正觸摸按鍵電路
WO2017156768A1 (zh) 移动终端及其智能闹钟的实现方法、装置
TW201249739A (en) Distance sensing circuit and touch electronic device
CN111103998B (zh) 触控检测装置
TWM448854U (zh) 自學習校正觸摸按鍵電路

Legal Events

Date Code Title Description
121 Ep: the epo has been informed by wipo that ep was designated in this application

Ref document number: 10857710

Country of ref document: EP

Kind code of ref document: A1

NENP Non-entry into the national phase

Ref country code: DE

122 Ep: pct application non-entry in european phase

Ref document number: 10857710

Country of ref document: EP

Kind code of ref document: A1