WO2012039438A1 - Method for producing plant benzylisoquinoline alkaloid - Google Patents
Method for producing plant benzylisoquinoline alkaloid Download PDFInfo
- Publication number
- WO2012039438A1 WO2012039438A1 PCT/JP2011/071520 JP2011071520W WO2012039438A1 WO 2012039438 A1 WO2012039438 A1 WO 2012039438A1 JP 2011071520 W JP2011071520 W JP 2011071520W WO 2012039438 A1 WO2012039438 A1 WO 2012039438A1
- Authority
- WO
- WIPO (PCT)
- Prior art keywords
- methyltransferase
- host cell
- reticuline
- recombinant host
- gene
- Prior art date
Links
Images
Classifications
-
- C—CHEMISTRY; METALLURGY
- C12—BIOCHEMISTRY; BEER; SPIRITS; WINE; VINEGAR; MICROBIOLOGY; ENZYMOLOGY; MUTATION OR GENETIC ENGINEERING
- C12N—MICROORGANISMS OR ENZYMES; COMPOSITIONS THEREOF; PROPAGATING, PRESERVING, OR MAINTAINING MICROORGANISMS; MUTATION OR GENETIC ENGINEERING; CULTURE MEDIA
- C12N15/00—Mutation or genetic engineering; DNA or RNA concerning genetic engineering, vectors, e.g. plasmids, or their isolation, preparation or purification; Use of hosts therefor
- C12N15/09—Recombinant DNA-technology
- C12N15/11—DNA or RNA fragments; Modified forms thereof; Non-coding nucleic acids having a biological activity
- C12N15/52—Genes encoding for enzymes or proenzymes
-
- C—CHEMISTRY; METALLURGY
- C12—BIOCHEMISTRY; BEER; SPIRITS; WINE; VINEGAR; MICROBIOLOGY; ENZYMOLOGY; MUTATION OR GENETIC ENGINEERING
- C12P—FERMENTATION OR ENZYME-USING PROCESSES TO SYNTHESISE A DESIRED CHEMICAL COMPOUND OR COMPOSITION OR TO SEPARATE OPTICAL ISOMERS FROM A RACEMIC MIXTURE
- C12P17/00—Preparation of heterocyclic carbon compounds with only O, N, S, Se or Te as ring hetero atoms
- C12P17/10—Nitrogen as only ring hetero atom
- C12P17/12—Nitrogen as only ring hetero atom containing a six-membered hetero ring
Definitions
- the present invention relates to a method for producing plant benzylisoquinoline alkaloids.
- Isoquinoline alkaloids are a diverse group of 6,000 kinds of compounds, and contain many useful drugs such as morphine and berberine, and are important secondary metabolites produced by plants. Until now, most of its production has relied on extraction from natural products. However, it is difficult to obtain a high yield by extraction because the accumulation level of secondary metabolites in plant cells is low.
- Benzylisoquinoline alkaloids such as the analgesic compounds morphine and codeine, and the antibacterial agents berberine and palmatin, from tyrosine (S) in magnoliaceae, buttercupaceae, barberry, poppy, and many other plant species -Synthesized via reticuline.
- S tyrosine
- (S) -reticuline is a branch-point intermediate in the biosynthetic pathway of many types of benzylisoquinoline alkaloids. That is, (S) -reticuline is a pharmaceutically important non-narcotic alkaloid useful for the development of antimalarial and anticancer drugs.
- Non-Patent Documents 1 to 3 A recent report shows that berberine, an antibacterial agent, has cholesterol-lowering activity (Non-Patent Document 4).
- Non-patent Document 5 Non-patent Document 5
- enzymatic synthesis is desirable for environmentally friendly and efficient alkaloid production.
- Plant metabolic engineering has often attempted to increase the amount of alkaloid pathway end products, and selected plant cells can produce secondary metabolites in quantities sufficient for industrial use (non- Patent Document 6).
- Non- Patent Document 6 Plant metabolic engineering has often attempted to increase the amount of alkaloid pathway end products, and selected plant cells can produce secondary metabolites in quantities sufficient for industrial use.
- non- Patent Document 6 since the flow of secondary metabolism in plants is complex and strictly controlled, it is very difficult to obtain the desired product, and only a few successful examples of plant metabolic engineering have been reported.
- Non-Patent Documents 7 and 8 Transformed poppies are suitable for the production of reticuline, but the amount of the product varies greatly depending on the plant and the cultured cell, and the plant and the cultured cell take a long time to grow. In addition, these transformed poppies accumulated some methylated derivatives of reticuline.
- Non-Patent Documents 10 and 11 Recently, attempts to reconstruct the plant biosynthesis process have been investigated in microbial systems. Since the microbial system does not contain other plant metabolites, it can not only increase the amount of secondary metabolites, but also improve its quality. Microbial systems have several advantages for the biotransformation of chemicals, but especially for plant metabolites, for example, with the disadvantage of limited substrate availability. The combination of microbial and plant-derived genes is useful for establishing an efficient system for the production of various compounds.
- Patent Document 1 a method for producing reticuline in vitro or in vivo using dopamine as a starting material by reconstructing an isoquinoline alkaloid biosynthetic pathway in a microorganism by combining plant and microbial enzymes.
- This method synthesizes 3,4-dihydroxyphenylacetaldehyde (hereinafter also referred to as 3,4-DHPAA) from dopamine by using a microorganism-derived monoamine oxidase (hereinafter also referred to as MAO), and the 3,4-dihydroxy.
- 3,4-DHPAA 3,4-dihydroxyphenylacetaldehyde
- MAO microorganism-derived monoamine oxidase
- One feature is that phenylacetaldehyde and dopamine are coupled, and it is possible to efficiently synthesize reticuline only from dopamine while omitting the hydroxylation step in the reticuline biosynthesis pathway.
- Patent Document 2 the isoquinoline alkaloid biosynthetic pathway is reconstructed in microorganisms and reacted in the presence of dopamine and other amines as substrates to produce various alkaloids in addition to reticuline.
- Patent Document 2 A method has also been developed (Patent Document 2). However, also in this method, it is essential to use dopamine as a starting material, and when the reaction is performed in vivo, reticuline is obtained as a (R, S) -racemic mixture.
- the object of the present invention is to establish a system for producing benzylisoquinoline alkaloids from inexpensive and readily available substrates without using relatively expensive starting materials such as dopamine.
- the present inventor has combined a gene involved in plant and microorganism metabolism and reconstructed the biosynthetic pathway of benzylisoquinoline alkaloid in the microorganism, thereby producing a desired benzylisoquinoline alkaloid.
- the present inventor has combined a gene involved in plant and microorganism metabolism and reconstructed the biosynthetic pathway of benzylisoquinoline alkaloid in the microorganism, thereby producing a desired benzylisoquinoline alkaloid.
- the present inventors synthesize (S) -reticuline, which is important as a branching point intermediate in the biosynthetic pathway of benzylisoquinoline alkaloids, by culturing transformed microorganisms that express the enzymes necessary for the biosynthesis. Succeeded.
- the present invention relates to an isoquinoline alkaloid non-producing cell having a metabolic pathway for producing L-tyrosine, tyrosinase and its adapter protein, L-DOPA-specific decarboxylase, monoamine oxidase, norcoclaurine synthase, norcoclaurine 6.
- a method for producing (S) -reticuline comprising the step of culturing in a medium containing one or more sugars selected from the group consisting of sucrose, lactose and maltose and / or gly
- the present invention relates to a non-productive isoquinoline alkaloid-producing cell having a metabolic pathway for producing L-tyrosine, a feedback inhibitory resistant 3-deoxy-D-arabino-heptulosonate-7-phosphate synthase, a feedback inhibitory resistant chorismi.
- the present invention relates to non-quinoline alkaloid-producing cells having a metabolic pathway that produces L-tyrosine, tyrosinase and its adapter protein, L-DOPA-specific decarboxylase, monoamine oxidase, norcoclaurine synthase, norcoclaurine 6.
- a desired host benzylisoquinoline alkaloid is obtained by culturing a recombinant host cell expressing a gene required for biosynthesis of benzylisoquinoline alkaloid in a medium usually used for culturing microorganisms.
- a recombinant host cell expressing a gene required for biosynthesis of benzylisoquinoline alkaloid in a medium usually used for culturing microorganisms.
- benzylisoquinoline alkaloid can be produced from an inexpensive and readily available substrate that constitutes a microorganism medium, and there is no need to use an additional substrate as a starting material.
- the microbial system of the present invention is a simple and cost-effective system that can dramatically reduce the cost of producing rare benzylisoquinoline alkaloids.
- a foundation capable of producing a large amount of benzylisoquinoline alkaloid, which is a material for producing various useful compounds, is constructed, and a new drug discovery resource can be developed through further metabolic conversion.
- the microbial system of the present invention is also useful for developing new pathways for the production of novel isoquinoline alkaloids.
- the individual steps of the benzylisoquinoline alkaloid biosynthetic pathway reconstructed in the microbial system of the present invention are all known and controllable. Thus, it may be possible to achieve more efficient production by optimizing the expression levels of individual biosynthetic genes and improving pathway flow.
- FIG. 2 shows the biosynthetic pathway of (S) -reticuline reconstituted in a host cell in the present invention.
- the tailor-made biosynthetic pathway constructed by the present invention consists of TYR, DODCDO and MAO. Plant biosynthetic pathways after NCS have been modified to avoid CYP80B reactions.
- E4P erythrose-4-phosphate
- PEP phosphoenolpyruvate
- DAHP 3-deoxy-D-arabino-heptulosonate-7-phosphate
- H HPP 4-hydroxyphenylpyruvic acid
- 3,4 3,4-DHPAA 3,4-dihydroxyphenylacetaldehyde
- f fbr-DAHPS feedback inhibitor resistant 3-deoxy-D-arabino-heptulosonate-7-phosphate synthase
- fbr-CM / PDH feedback inhibitor resistant Chorismate mutase / prephenate dehydrogenase
- P PEPS phosphoenolpyruvate synthetase
- TK TKT transketolase
- TYR tyrosinase
- DODC L-DOPA specific decarboxylase
- MAO monoamine oxidase
- NC NCS norcoclaurine synthase
- 6OM monoamine oxidase
- Recombinant production strain A was also cultured in a medium not containing glucose (triangle mark).
- the cell growth of each strain (right axis, broken line, symbol is the same correspondence as (S) -reticuline production) is shown as absorbance at 600 nm.
- the arrow indicates the addition of IPTG (50 ⁇ M) at the time it points.
- the experiment was repeated three times with essentially the same results. Data from one representative experiment is shown in the figure.
- Selected ion monitoring (SIM) parameters: m / z 330 (reticuline).
- the biosynthetic pathway of isoquinoline alkaloids from reticuline to magnoflorin or scourelin is shown. Abbreviations are as follows: CN CNMT, coclaurine-N-methyltransferase; CYP80G2, corituberin synthase; BBE, berberine cross-linking enzyme. Analysis of stereoselectivity of reaction products for (R, S) -reticuline.
- the reaction product (b) obtained by culturing standard (R, S) -reticuline (a) and the recombinant host cell of the present invention (“recombinant production strain A”) is obtained on an Agilent HPLC system equipped with a chiral column. After separation, it was monitored using LC-MS.
- Selected ion monitoring (SIM) parameters: m / z 330 (reticuline)
- Media were collected at various time points corresponding to FIGS. 2, 3 and 9 and the concentrations of L-tyrosine (circles), L-DOPA (squares) and dopamine (triangles) were determined.
- Glycerol consumption (x) was calculated from the concentration in the medium and the amount of glycerol added at each time point. The experiment was repeated three times with essentially the same results. Data from one representative experiment is shown in the figure.
- pCOLADuet-1 contains the tyrA fbr , aroG fbr , tktA and ppsA genes.
- pET-21d contains the NCS, ORF378, TYR, DODC and optMAO genes.
- pACYC184 contains the 6OMT, 4'OMT and CNMT genes. Both genes are controlled by the T7 promoter.
- tyrA fbr -aroG fbr -tktA-ppsA / pCOLADuet-1 and 6OMT-4'OMT-CNMT / pACYC184 each have a T7 terminator sequence located downstream of the ppsA and CNMT genes, respectively.
- NCS-ORF378-TYR-DODC-optMAO / pET-21d has two T7 terminator sequences, one located downstream of NCS and the other located downstream of optMAO.
- T7p T7 promoter
- T7t T7 terminator
- Kan r kanamycin resistance gene
- Amp r ampicillin resistance gene
- Cm r chloramphenicol resistance gene.
- Change over time of (S) -reticuline production in a medium containing glycerol as a carbon source left axis, solid line).
- m / z 330 indicates a peak of (S) -reticuline.
- pET-21d contains the NCS, RsTYR, DODC and optMAO genes. Both genes are controlled by the T7 promoter.
- NCS-RsTYR-DODC-optMAO / pET-21d has two T7 terminator sequences, one located downstream of NCS and the other located downstream of optMAO.
- RsTYR, TYR derived from Ralstonia solanacearum T7p, T7 promoter
- T7t, T7 terminator Amp r , ampicillin resistance gene.
- the present invention relates to an isoquinoline alkaloid non-producing cell having a metabolic pathway for producing L-tyrosine, tyrosinase (hereinafter also referred to as TYR) and its adapter protein, L-DOPA-specific decarboxylase (hereinafter also referred to as DODC), Monoamine oxidase (MAO), norcoclaurine synthase (NCS), norcoclaurine 6-O-methyltransferase (6OMT), coclaurine-N-methyltransferase (CNMT) and 3'-hydroxy-N-methylcoclaurine-4 ' -Tyrosinase (TYR) and its adapter protein, L-DOPA-specific decarboxylase, into which at least one gene encoding at least one protein selected from the group consisting of -O-methyltransferase (4'OMT) is introduced (DODC), monoamine oxidase (MAO), norcoclaurine synthase (NCS), Re
- a recombinant host cell that expresses a specific enzyme is cultured in a medium usually used for culturing microorganisms, so that it can be obtained in vivo from an inexpensive and readily available substrate such as glucose and glycerol (S).
- S glucose and glycerol
- -Reticuline can be produced efficiently.
- the reticuline obtained by the method of the present invention is substantially free of (R) -reticuline.
- the recombinant host cell used in the method of the present invention preferably has no tyrR gene or lacks its function. Since the product of tyrR gene has a function of suppressing the expression of genes involved in the biosynthesis of aromatic amino acids, for example, by using a host cell that does not have tyrR gene or by losing the function of tyrR gene, Inhibition of ⁇ L-tyrosine biosynthesis, which is important in the biosynthetic pathway reconstructed in the method of the present invention, can be released.
- the recombinant host cell used in the method of the present invention is a feedback inhibitor-resistant 3-deoxy-D-arabino-heptulosonate-7-phosphate synthase (hereinafter also referred to as fbr-DAHPS) and / or feedback inhibitor-resistant chorismate. It preferably expresses mutase / prephenate dehydrogenase (hereinafter also referred to as fbr-CM / PDH). By expressing such an enzyme, the production efficiency of L-tyrosine is improved in the recombinant host cell, and the yield of (S) -reticuline can be increased.
- fbr-DAHPS feedback inhibitor-resistant 3-deoxy-D-arabino-heptulosonate-7-phosphate synthase
- fbr-CM / PDH feedback inhibitor-resistant chorismate
- the recombinant host cell used in the method of the present invention is preferably one that overexpresses transketolase (hereinafter also referred to as TKT) and / or phosphoenolpyruvate synthetase (hereinafter also referred to as PEPS).
- TKT transketolase
- PEPS phosphoenolpyruvate synthetase
- Overexpression of such an enzyme increases the amount of erythrose-4-phosphate (E4P) and / or phosphoenolpyruvate (PEP) that is the starting material of the shikimate pathway in the recombinant host cell, producing L-tyrosine Through increasing amounts, the yield of (S) -reticuline can be increased.
- E4P erythrose-4-phosphate
- PEP phosphoenolpyruvate
- the present invention relates to feedback inhibition resistant 3-deoxy-D-arabino-heptulosonate-7-phosphate synthase (fbr-DAHPS), feedback, and non-isoquinoline alkaloid-producing cells having a metabolic pathway that produces L-tyrosine.
- fbr-DAHPS 3-deoxy-D-arabino-heptulosonate-7-phosphate synthase
- Inhibition resistant chorismate mutase / prephenate dehydrogenase fbr-CM / PDH
- transketolase TKT
- phosphoenolpyruvate synthetase PEPS
- TERT tyrosinase
- DODC L-DOPA specific de Carboxylase
- MAO monoamine oxidase
- NCS norcoclaurine synthase
- 6OMT norcoclaurine 6-O-methyltransferase
- coclaurin-N-methyltransferase CNMT
- 3'-hydroxy-N-methyl At least selected from the group consisting of coclaurin-4'-O-methyltransferase (4'OMT)
- a recombinant host cell that is deficient in function and the recombinant host cell is selected from the group consisting of glucose, fructose, galactose, sucrose, lactose and maltose as a carbon source. Culturing in a medium containing sugar and / or glycerol; There is further provided a method for producing (S) -reticuline, comprising:
- the present invention provides an isoquinoline alkaloid non-producing cell having a metabolic pathway for producing L-tyrosine, fbr-DAHPS, fbr-CM / PDH, TYR and its adapter protein, DODC, MAO, NCS, 6OMT, CNMT and A recombinant host cell into which at least one gene encoding at least one protein selected from the group consisting of 4'OMT is introduced and into which genes encoding TKT and PEPS are introduced, fbr-DAHPS Expresses fbr-CM / PDH, TYR and its adapter proteins, DODC, MAO, NCS, 6OMT, CNMT and 4'OMT, overexpresses TKT and PEPS, and does not have tyrR gene or its function Providing a defective recombinant host cell, and using the recombinant host cell as a carbon source with glucose, fructose, galactose, sucrose, lactose and
- isoquinoline alkaloid is produced in vivo from an inexpensive and readily available substrate by further introducing into a recombinant host cell a gene encoding an isoquinoline alkaloid biosynthetic enzyme that acts using reticuline as a starting material. It is also possible to do.
- the present invention acts on isoquinoline alkaloid non-producing cells having a metabolic pathway that produces L-tyrosine, starting from TYR and its adapter proteins, DODC, MAO, NCS, 6OMT, CNMT, 4'OMT and reticuline.
- TYR and its adapter protein DODC, MAO, NCS, 6OMT, CNMT, 4'OMT, and at least one gene encoding at least one protein selected from the group consisting of isoquinoline alkaloid biosynthetic enzymes
- One or more selected sugars and Step of culturing in a medium containing / or glycerol, A method for producing isoquinoline alkaloids is provided.
- isoquinoline alkaloid biosynthetic enzymes that act using reticuline as a starting material include colituberin synthase (hereinafter also referred to as CYP80G2) and berberine cross-linking enzyme (hereinafter also referred to as BBE), and by expressing CYP80G2, Then, magnoflorin can be synthesized, and sverrelin, which is a protoberberine alkaloid, can be synthesized by expressing BBE (FIG. 5).
- CYP80G2 When CYP80G2 is expressed, it is preferable to express NADPH-cytochrome P450 reductase together.
- the present invention also provides that isoquinoline alkaloid non-producing cells having a metabolic pathway for producing L-tyrosine are selected from the group consisting of TYR and its adapter proteins, DODC, MAO, NCS, 6OMT, CNMT and 4'OMT.
- the recombinant host cell of the present invention preferably has one or more of the following properties (i) to (iii): (i) not having the tyrR gene or lacking its function; (ii) express fbr-DAHPS and / or fbr-CM / PDH, (iii) Overexpressing TKT and / or PEPS.
- properties i) to (iii): (i) not having the tyrR gene or lacking its function; (ii) express fbr-DAHPS and / or fbr-CM / PDH, (iii) Overexpressing TKT and / or PEPS.
- the present invention relates to isoquinoline alkaloid non-producing cells having a metabolic pathway that produces L-tyrosine, fbr-DAHPS, fbr-CM / PDH, TKT, PEPS, TYR and its adapter proteins, DODC, MAO, NCS, 6OMT.
- a recombinant host cell into which at least one gene encoding at least one protein selected from the group consisting of CNMT and 4'OMT is introduced comprising fbr-DAHPS, fbr-CM / PDH, TKT, PEPS Further provided are recombinant host cells that express TYR and its adapter proteins, DODC, MAO, NCS, 6OMT, CNMT and 4'OMT, and lack the tyrR gene or lack its function.
- the present invention relates to non-isoquinoline alkaloid-producing cells having a metabolic pathway that produces L-tyrosine, fbr-DAHPS, fbr-CM / PDH, TYR and its adapter proteins, DODC, MAO, NCS, 6OMT, CNMT and A recombinant host cell into which at least one gene encoding at least one protein selected from the group consisting of 4'OMT is introduced, and into which a gene encoding TKT and PEPS is introduced, fbr-DAHPS Fbr-CM / PDH, TYR and its adapter proteins, DODC, MAO, NCS, 6OMT, CNMTCN and 4'OMT are expressed, TKT and PEPS ⁇ ⁇ are overexpressed, and no tyrR gene is present or its function A defective recombinant host cell is provided.
- TYR and its adapter protein in place of the above “TYR and its adapter protein”, a TYR that does not require an adapter protein to exhibit its activity, for example, TYR derived from Ralstonia solanacearum can also be used. Accordingly, the present invention relates to isoquinoline alkaloid non-producing cells having a metabolic pathway for producing L-tyrosine, tyrosinase derived from Ralstonia solanacearum (hereinafter also referred to as RsTYR), DODC, MAO, NCS, 6OMT, CNMT and 4′OMT.
- RsTYR isoquinoline alkaloid non-producing cells having a metabolic pathway for producing L-tyrosine, tyrosinase derived from Ralstonia solanacearum
- TYR from Ralstonia solanacearum is used instead of “TYR and its adapter protein” in the various methods of producing (S) -reticuline of the invention described herein and in recombinant host cells.
- RsTYR Ralstonia solanacearum
- RsTYR means TYR derived from Ralstonia solanacearum, but when it is simply expressed as tyrosinase (TYR), all TYRs are included in the term regardless of its origin. To do.
- the biosynthetic pathway reconstructed in the method of the present invention synthesizes 3,4-DHPAA from dopamine by using MAO, and couples 3,4-DHPAA and dopamine through the action of NCS.
- the aromatic L-amino acid decarboxylase when the aromatic L-amino acid decarboxylase is present in the biosynthetic pathway reconstructed in the method of the present invention, the aromatic L-amino acid is decarboxylated by the action of the aromatic L-amino acid decarboxylase, and the aromatic L-amino acid decarboxylase is aromatic.
- An amine is formed, which is not preferable because it reacts with MAO.
- L-tyrosine when L-tyrosine is decarboxylated, tyramine is produced, and MAO has a higher selectivity for tyramine than dopamine (ie, it reacts preferentially with tyramine), so the method of the present invention is not intended. HPAA will be generated.
- the 4-HPAA is coupled with dopamine by the action of NCS to produce (S) -norcoclaurine.
- NCS NCS
- CYP80B in addition to 6OMT, CNMT and 4′OMT (FIG. 4), and the CYP80B is cytochrome P450. Because it is an enzyme, it often does not function well in microorganisms.
- L-DOPA-specific decarboxylase (DODC) is introduced into a host cell and expressed.
- the method of the present invention avoids the use of an aromatic L-amino acid decarboxylase that decarboxylates L-tyrosine in the reconstruction of (i) benzylisoquinoline alkaloid biosynthetic pathway, instead of (ii ) Tyrosinase (TYR) or tyrosinase (TYR) and its adapter protein are expressed to create a conversion pathway from L-tyrosine to L-DOPA, and (iii) L-DOPA-specific decarboxylase (DODC) is expressed It is characterized by creating a conversion path from L-DOPA to dopamine.
- the recombinant host cell of the present invention and the recombinant host cell used in the method of the present invention are those into which a gene encoding an aromatic L-amino acid decarboxylase other than L-DOPA-specific decarboxylase has not been introduced. It is preferable.
- tyramine is not generated from L-tyrosine by the enzyme encoded by the gene to be introduced into the host cell, while dopamine is produced with high efficiency by expression of TYR or TYR and its adapter protein and DODC.
- the As a result it is possible to efficiently flow metabolic flow to the pathway leading to (S) -reticuline through the production of (S) -norlaudanosoline by coupling of dopamine and 3,4-DHPAA ( FIG. 1).
- L-DOPA is synthesized mainly from tyrosine hydroxylase (TH, EC 1.14.16.2) from L-tyrosine, and such a reaction requires tetrahydrobiopterin (BH4) as a cofactor.
- BH4 tetrahydrobiopterin
- E. coli cells that are preferably used in the method of the present invention cannot synthesize the tetrahydrobiopterin. Therefore, in the method of the present invention, bacterial tyrosinase (TYR, EC 1.14.18.1) does not require a cofactor other than copper and an adapter protein (for example, ORF378) for conversion of L-tyrosine to L-DOPA. ) Is preferably used.
- TYR derived from Ralstonia solanacearum that does not require an adapter protein can also be suitably used.
- Recombinant host cells according to the present invention usually include isoquinoline alkaloid non-producing cells having a metabolic pathway that produces L-tyrosine, TYR or TYR and its adapter proteins, DODC, MAO, NCS, 6OMT, CNMT and 4 ′. It can be obtained by introducing at least one gene encoding at least one protein selected from the group consisting of OMT.
- an isoquinoline alkaloid non-producing cell having a metabolic pathway that produces L-tyrosine is selected from the group consisting of “TYR or TYR and its adapter protein, DODC, MAO, NCS, 6OMT, CNMT and 4'OMT” If you already have one or more genes encoding a protein, you can introduce “TYR or TYR and its adapter protein, DODC, MAO by introducing all the other genes in the group into the cell. , NCS, 6OMT, CNMT and 4′OMT ”can be obtained.
- non-isoquinoline alkaloid-producing cells that have metabolic pathways that produce L-tyrosine have any of the genes encoding TYR or TYR and its adapter proteins, DODC, MAO, NCS, 6OMT, CNMT and 4'OMT. If not, all of the genes encoding “TYR or TYR and its adapter protein, DODC, MAO, NCS, 6OMT, CNMT and 4′OMT” are introduced into the cells, so that the recombinant of the present invention Host cells can be obtained.
- the host cell into which the gene is introduced to obtain the recombinant host cell according to the present invention is not particularly limited as long as it is an isoquinoline alkaloid non-producing cell having a metabolic pathway for producing L-tyrosine, but more efficient (S For the production of) -reticuline, a host cell having the ability to produce L-tyrosine in large quantities is preferred.
- the ability to produce L-tyrosine in large quantities can typically be conferred to a host cell by one or more methods selected from the following (1) to (3): (1) Loss of function of tyrR gene in host cells or suppression of expression of tyrR gene (this loss of function includes complete loss of function and partial loss of function); (2) introduction of one or more genes encoding fbr-DAHPS and / or fbr-CM / PDH into a host cell and expression in the host cell; (3) Introduction of one or more genes encoding TKT and / or PEPS into the host cell and overexpression in the host cell.
- the function of the tyrR gene can be lost by means known in the art, for example, knock-in / knock-out using homologous recombination, gene disruption using transfer of a transfer factor such as a transposon, and the like.
- the expression of the tyrR gene can be suppressed by means known in the art, for example, cosuppression, antisense method, RNAi and the like.
- the recombinant host cell of the present invention which does not have the tyrR gene or lacks its function can be obtained, for example, by the following method: (1) introducing a necessary gene such as TYR into a host cell that does not have the tyrR gene or lacks its function; (2) After losing the function of the tyrR gene possessed by the host cell, introducing a necessary gene such as TYR into the host cell, or (3) After introducing the necessary gene such as TYR into the host cell, Losing the function of the tyrR gene possessed by the host cell.
- Recombinant host cells of the present invention that express "fbr-DAHPS, fbr-CM / PDH, TKT, PEPS, TYR or TYR and its adapter proteins, DODC, MAO, NCS, 6OMT, CNMT and 4'OMT" It can be obtained by the following method: (1) introducing all these genes into host cells, or (2) "fbr-DAHPS, fbr-CM / PDH, TKT, PEPS, TYR or TYR and their adapter proteins, DODC, MAO, NCS, 6OMT, All other genes included in the group are introduced into a host cell having one or more genes encoding a protein selected from the group consisting of CNMT and 4′OMT ”.
- the recombinant host cell of the present invention may be transformed into, for example, ⁇ fbr-DAHPS, fbr-CM / PDH, TKT, PEPS, TYR or TYR and its adapter protein, It can be obtained by introducing all of the genes encoding “DODC, MAO, NCS, 6OMT, CNMT and 4′OMT”.
- the recombinant host cell according to the present invention is obtained not only by the above method but also a mutant strain that has acquired the ability to produce a large amount of L-tyrosine by a naturally occurring mutation or a known mutagenesis method. Therefore, it may be used as a host cell into which a gene is introduced.
- the host cell into which the gene is introduced in the method of the present invention is not particularly limited as long as it is an isoquinoline alkaloid non-producing cell, and examples thereof include Escherichia coli, yeast, Bacillus subtilis, and filamentous fungi.
- the gene When introducing a gene into a host cell, the gene may be directly introduced, but it is preferable to introduce a vector into which the gene is incorporated into the host. All transgenes may be incorporated into the same vector, or may be incorporated into two or more separate vectors.
- a vector constructed for gene recombination from a plasmid or phage capable of autonomous replication in a host cell is suitable.
- the vector preferably contains a replication origin suitable for the host cell to be introduced, a selectable marker, an expression control sequence such as a promoter, and a terminator sequence.
- the plasmid vector include a pET vector system, a pQE vector system, and a pCold vector system when expressed in E. coli, and a pYES2 vector system and a pYEX vector system when expressed in yeast.
- selectable markers include antibiotic resistance genes such as ampicillin resistance gene, kanamycin resistance gene, and streptomycin resistance gene.
- a vector for expressing the transgene incorporated therein preferably contains an expression control sequence.
- An expression control sequence when appropriately linked to a DNA sequence, controls the expression of a gene comprising the DNA sequence in a host cell, that is, induces and / or promotes transcription of the DNA sequence to RNA. Or a sequence that can be suppressed.
- the expression control sequence includes at least a promoter.
- the promoter may be a constitutive promoter or an inducible promoter.
- the expression vector preferably contains a transcription termination signal, that is, a terminator sequence.
- the expression vector used in the present invention can be prepared by adding an appropriate restriction enzyme recognition site to the end of the above gene by a conventional method.
- a conventionally known method can be used, and examples thereof include a calcium chloride method, an electroporation method, and a heat shock method.
- the culture conditions of the recombinant host cell are such that the recombinant host cell grows well and the desired group of proteins such as “TYR or TYR and its adapter proteins, DODC, MAO, NCS, 6OMT, CNMT and 4 'OMT' and 'fbr-DAHPS, fbr-CM / PDH, TKT, PEPS, TYR or TYR and their adapter proteins, DODC, MAO, NCS, 6OMT, CNMT and 4'OMT' are all expressed and their functions or There is no particular limitation as long as the enzyme activity is exhibited.
- the culture conditions may be appropriately selected in consideration of the nutritional physiological properties of the host, and are usually performed in liquid culture.
- the carbon source of the medium used for culturing the recombinant host cell is not particularly limited as long as it is a substance that can be used by the host cell, and examples thereof include sugar and glycerol, and glycerol is particularly preferable.
- sugars include monosaccharides such as glucose, fructose, galactose, and disaccharides such as sucrose, lactose, maltose, etc. Among them, glucose is preferred.
- the production efficiency of (S) -reticuline is higher than when glucose is used.
- the nitrogen source include ammonium sulfate and casamino acid.
- salts, specific amino acids, specific vitamins and the like can be used as desired.
- the medium for culturing E. coli includes LB medium, 2 ⁇ YT medium, and M9 minimal medium
- the medium for culturing yeast includes SC medium, SD medium, and YPD medium.
- the culture temperature can be appropriately changed as long as the host cell grows, expresses the target enzyme, and exhibits its activity.
- the culture conditions of temperature 25 ° C, 80 hours, pH 7.0 ⁇ ⁇ ⁇ are used. be able to.
- culture conditions of a temperature of 30 ° C., 60 hours, and pH of 5.8 can be used.
- reaction product and the target isoquinoline alkaloid preparation can be identified by subjecting them to LC-MS and comparing the obtained spectra. It can also be confirmed by comparison of the reaction product with the target isoquinoline alkaloid preparation by NMR analysis.
- expressing means that a nucleic acid molecule constituting the gene is transcribed to at least an RNA molecule.
- the gene is constituted.
- a nucleic acid molecule is transcribed into a RNA molecule, and the RNA molecule is translated into a polypeptide.
- the gene expression level can be confirmed by methods known in the art, such as Northern blot, quantitative PCR, and the like.
- expressing means that transcription from the nucleic acid molecule encoding the polypeptide of the enzyme to the RNA molecule and translation from the RNA molecule to the polypeptide are normally performed and have an activity. It means that an enzyme protein is produced and is present inside or outside the cell.
- the expression level of the enzyme can be confirmed by assaying the enzyme activity. That is, it can be confirmed by assaying the conversion of the target enzyme from the substrate to the product. It can also be confirmed by detecting and quantifying the enzyme protein using a known method such as Western blotting or ELISA.
- “overexpression” of a specific gene or enzyme means that when the host cell has an endogenous gene or enzyme corresponding to the specific gene or enzyme, the endogenous gene or enzyme A gene or enzyme that exceeds the expression level of the endogenous gene or enzyme in the normal state of the host cell by combining the expression level of the enzyme with the expression level of the introduced specific gene or the enzyme encoded thereby. Achieving an expression level in the host cell.
- “overexpression” of the specific gene or enzyme means that the introduced specific gene or enzyme For the encoded enzyme, achieving a level of expression in the host cell that can be detected by conventional detection methods.
- a biosynthetic pathway refers to the 1 necessary to biosynthesize the compound in a host cell that does not naturally produce the desired compound so that the desired compound is obtained. Alternatively, expression of one or more enzymes that catalyze a plurality of reactions to create a metabolic pathway leading to the compound. Thus, a biosynthetic pathway that is “reconstructed” into a host cell is one that the cell does not naturally possess.
- the desired compound is an isoquinoline alkaloid, particularly (S) -reticuline, and expression of the required enzyme is achieved by introducing a gene encoding the enzyme into a host cell. be able to.
- the reticuline obtained by the method of the present invention is “substantially free of (R) -reticuline” means that the enantiomeric excess of (S) -reticuline relative to (R) -reticuline is at least 80% or more. , Preferably 90% or more, most preferably 100%.
- the tyrosinase (TYR) used in the present invention is not particularly limited as long as it has an enzyme activity that catalyzes the reaction of hydroxylating the 3-position of the benzene ring of L-tyrosine and converting it to L-DOPA.
- the origin of TYR cocoons is not particularly limited, but is preferably derived from microorganisms, and examples include those derived from Streptomyces castaneoglobisporus.
- TYR derived from S. castaneoglobisporus encoded by the nucleotide sequence shown in SEQ ID NO: 6 can be preferably used.
- Ralstonia solanacearum-derived TYR can be used as the TYR.
- RsTYR encoded by the nucleotide sequence shown in SEQ ID NO: 36 or 37 can be preferably used.
- RsTYR does not require an adapter protein to show its enzymatic activity. Therefore, when RsTYR is used as the TYR, it is not necessary to express the adapter protein described later.
- TYR usually has the ability to convert L-DOPA or dopamine into its quinone derivative (o-diphenolase activity), but RsTYR encoded by the nucleotide sequence shown in SEQ ID NO: 36 or 37 has such o-diphenolase activity.
- the tyrosinase (TYR) adapter protein used in the present invention is a protein that assists in transporting divalent copper ions (Cu (II)) to the catalytic center of TYR.
- TYR tyrosinase
- an adapter protein is required in order for the TYR to show complete catalytic activity.
- the TYR gene and ORF378 are arranged in series to constitute the melanin synthase gene operon, and TYR is active when both TYR and ORF378 proteins are expressed (K. Ikeda et al., Appl.
- TYR adapter proteins include ORF378 protein derived from S. castaneoglobisporus and ORF438 protein derived from Streptomyces antibioticus.
- ORF378 protein derived from ⁇ S. castaneoglobisporus derived from the nucleotide sequence shown in SEQ ID NO: 7 ORF378 protein can be preferably used.
- ORF378 As an example, the term ⁇ ORF378 '' means a gene or open reading frame encoding ORF378 protein, which is an adapter protein of TYR, and
- the term “adapter protein ORF378” or “ORF378 protein” is intended to mean a protein encoded by ORF378.
- L-DOPA-specific decarboxylase used in the present invention has an enzyme activity that catalyzes a reaction of eliminating a carboxyl group from L-DOPA and converting it to dopamine, and other fragrances other than L-DOPA.
- the origin of DODC is not particularly limited, and examples thereof include microorganisms such as those derived from Pseudomonas putida. In the method of the present invention, for example, DODC derived from P. putida encoded by the nucleotide sequence shown in SEQ ID NO: 8 can be preferably used.
- the monoamine oxidase (MAO) used in the present invention is not particularly limited as long as it has an enzyme activity that catalyzes a reaction of converting dopamine to 3,4-DHPAA.
- Examples of the origin of MAO include microorganisms such as Micrococcus luteus, Escherichia coli, Arthrobacter aurescens, Klebsiella aerogenes, but those derived from Micrococcus luteus are preferably used.
- MAO derived from M. luteus encoded by the nucleotide sequence shown in SEQ ID NO: 9 can be preferably used.
- Norcoclaurine synthase (NCS) used in the present invention is a reaction for obtaining 3'-hydroxynorcoclaurine (hereinafter also referred to as norlaudanosoline) from dopamine and 3,4-DHPAA, norcoclaurine 6-O- Methyltransferase (6OMT) produces 3'-hydroxycoclaurine from 3'-hydroxynorcoclaurine, and coclaurin-N-methyltransferase (CNMT) converts 3'-hydroxycoclaurine to 3'-hydroxy-N-methylcocrine.
- norcoclaurine 6-O- Methyltransferase (6OMT) produces 3'-hydroxycoclaurine from 3'-hydroxynorcoclaurine
- coclaurin-N-methyltransferase (CNMT) converts 3'-hydroxycoclaurine to 3'-hydroxy-N-methylcocrine.
- reaction to obtain laurin 3'-hydroxy-N-methylcoclaurine-4'-O-methyltransferase (4'OMT) is an enzyme activity that catalyzes the reaction to obtain reticuline from 3'-hydroxy-N-methylcoclaurine If it has, it will not specifically limit.
- NCS, 6OMT, CNMTCN and 4'OMT ⁇ ⁇ ⁇ are not particularly limited, but those derived from isoquinoline alkaloid-producing plants are preferred.
- isoquinoline alkaloid-producing plants include Poppyaceae plants such as red-bellied shrimp, poppy and engosac, Barberry plant such as barberry, Citrus plant such as yellow butterfly, magnoliaceae plant such as beetle, scorpionaceae plant such as Otsuo-rafuji, and oren
- isoquinoline alkaloid-producing plants such as buttercups such as (Coptis p japonica), and preferably olene.
- NCS, 6OMT, CNMT and 4'OMT derived from auren all encoded by the nucleotide sequences shown in SEQ ID NOs: 11, 12, 13, and 14, can be preferably used.
- the isoquinoline alkaloid biosynthetic enzyme that acts as a starting material for reticuline used in the present invention is one or a plurality of enzymes that constitute the pathway for obtaining the desired isoquinoline alkaloid using reticuline as a starting material, and catalyzes the reaction of each pathway. There is no particular limitation as long as it has enzyme activity.
- the isoquinoline alkaloid biosynthetic enzyme that acts using reticuline as a starting material is not particularly limited, but is preferably derived from an isoquinoline alkaloid-producing plant.
- NADPH-cytochrome P450 reductase which is preferably used together with ⁇ ⁇ ⁇ ⁇ CYP80G2 (Colituberin synthase), which is a kind of cytochrome P450 as an isoquinoline alkaloid biosynthetic enzyme, is not particularly limited. Mammals.
- an enzyme that catalyzes the reaction from reticuline to colituberin and an enzyme that catalyzes the reaction from colituberin to magnoflorin may be used, and have an enzyme activity that catalyzes such a reaction. If it is, it will not specifically limit.
- ⁇ CYP80G2 encoded by the nucleotide sequence shown in SEQ ID NO: 15 can be preferably used as an enzyme that catalyzes the reaction from reticuline to colituberin, and together with this, P450 reductase encoded by the nucleotide sequence shown in SEQ ID NO: 16 is used.
- P450 reductase encoded by the nucleotide sequence shown in SEQ ID NO: 16 is used.
- CNMT encoded by the nucleotide sequence shown in SEQ ID NO: 13 can be preferably used.
- an enzyme that catalyzes the reaction from reticuline to scourelin when producing scourelin, an enzyme that catalyzes the reaction from reticuline to scourelin may be used, and it is not particularly limited as long as it has an enzyme activity that catalyzes such a reaction.
- BBE encoded by the nucleotide sequence shown in SEQ ID NO: 17 can be preferably used.
- an enzyme that constitutes a pathway from reticuline to berberine via scourelin may be used, and it is not particularly limited as long as it has an enzyme activity that catalyzes the reaction at each stage.
- BBE SMT (scourelin-9-O-methyltransferase), CYP719A1 (canazine synthase) and THBO (tetrahydroberberine oxidase) may be used.
- SMT scourelin-9-O-methyltransferase
- CYP719A1 canazine synthase
- THBO tetrahydroberberine oxidase
- the tyrR gene that can be used to modify host cells in the present invention encodes a DNA-binding transcriptional regulator having a function of regulating the expression of a plurality of genes involved in aromatic amino acid biosynthesis and transport.
- the transcriptional regulator encoded by the tyrR gene encodes 3-deoxy-D-arabino-heptulosonate-7-phosphate synthase (DAHPS), which functions in the so-called shikimate pathway that biosynthesizes L-tyrosine Suppresses the expression of tyrA gene encoding aroG gene and chorismate mutase / prephenate dehydrogenase (CM / PDH) (AJ Pittard et al., Mol. Microbiol.
- the tyrR gene that can be used to modify the host cell in the present invention is not particularly limited as long as it has a function of suppressing the expression of aroG gene and / or tyrA gene.
- Whether or not the host cell used in the present invention has the tyrR gene is determined based on the known tyrR gene sequence information, for example, the tyrR gene sequence information of E. coli K-12 DH10B strain (SEQ ID NO: 1, EMBL accession number ACB02543, KEGG registration number). Based on ECDH10B_1442), it can be estimated by performing a sequence homology search on the genome sequence or the like of the host cell. When the presence of a homologous gene (so-called homolog) is estimated, the presence can be confirmed by techniques such as PCR amplification and sequencing performed based on the sequence information of the homologous gene. Alternatively, a nucleic acid molecule of the tyrR gene can be directly obtained by hybridization with a nucleic acid molecule of the tyrR gene having a known sequence.
- the homology search can be performed using a known means such as the BLAST algorithm or FASTA algorithm.
- fbr-DAHPS that can be used to modify host cells is derived from erythrose-4-phosphate (E4P) and phosphoenolpyruvate (PEP) from 3-deoxy-D-arabino-heptulosonate-
- E4P erythrose-4-phosphate
- PEP phosphoenolpyruvate
- 3-deoxy-D-arabino-heptulosonate- There is no particular limitation as long as it has an enzyme activity that catalyzes a reaction for producing 7-phosphate (DAHP) and is not subject to feedback inhibition by phenylalanine.
- fbr-DAHPS has an enzyme activity in the presence of phenylalanine that is equal to or greater than that in the absence thereof.
- fbr-DAHPS is not particularly limited, but is preferably derived from microorganisms, more preferably derived from E. coli. In the present invention, for example, ⁇ fbr-DAHPS derived from E. coli encoded by the nucleotide sequence shown in SEQ ID NO: 2 can be preferably used.
- fbr-CM / PDH that can be used to modify host cells catalyzes the reaction of producing prefenic acid from chorismic acid and the reaction of producing 4-hydroxyphenylpyruvic acid (HPP) from prefenic acid. If it has the enzyme activity which does not receive the feedback inhibition by tyrosine, it will not specifically limit.
- “not subject to feedback inhibition by tyrosine (being resistant to feedback inhibition)” means that tyrosine does not inhibit CM and / or PDH enzyme activity at all, or the degree of inhibition of enzyme activity by tyrosine is wild type This means that it is significantly smaller than CM / PDH.
- fbr-CM / PDH the enzyme activity in the presence of tyrosine is preferably equal to or greater than the enzyme activity in the absence of tyrosine.
- fbr-CM / PDH is not particularly limited, but is preferably derived from microorganisms, and more preferably derived from E. coli.
- E. coli-derived fbr-CM / PDH encoded by the nucleotide sequence shown in SEQ ID NO: 3 can be preferably used.
- TKT is not particularly limited, but is preferably derived from microorganisms, more preferably derived from E. coli. In the present invention, for example, TKT derived from E. coli encoded by the nucleotide sequence shown in SEQ ID NO: 4 can be preferably used.
- the “PEPS” that can be used to modify the host cell is not particularly limited as long as it has an enzyme activity that catalyzes a reaction for producing phosphoenolpyruvate (PEP) from pyruvate.
- PEPS is not particularly limited, but is preferably derived from microorganisms, and more preferably derived from E. coli.
- E. coli-derived PEPS encoded by the nucleotide sequence shown in SEQ ID NO: 5 can be preferably used.
- the enzymes used in the present invention include, but are not limited to, the following proteins (a) or (b): (a) from the amino acid sequence encoded by the nucleotide sequence of SEQ ID NO: 2, 3, 4, 5, 6 or 36 or 37, 7, 8, 9 or 10, 11, 12, 13, 14, 15, 16 or 17
- a protein comprising: (b) in the amino acid sequence encoded by the nucleotide sequence of SEQ ID NO: 2, 3, 4, 5, 6 or 36 or 37, 7, 8, 9 or 10, 11, 12, 13, 14, 15, 16 or 17 It consists of an amino acid sequence in which one or several amino acids are deleted, substituted or added, and fbr-DAHPS, fbr-CM / PDH, TKT, PEPS, TYR, ORF378, DODC, MAO, NCS, 6OMT, CNMT , 4'OMT, CYP80G2, P450 reductase or protein having BBE enzyme activity.
- Examples of the protein used in the present invention also include the following protein (b ′).
- ⁇ ⁇ ⁇ ⁇ ⁇ protein is ⁇ fbr-DAHPS, fbr-CM / PDH, TKT, PEPS, TYR, ORF378, DODC, MAO, NCS, 6OMT, CNMT, 4'OMT, CYP80G2, P450 reductase or 450BBE It is a protein in which an amino acid mutation (deletion, substitution, addition) has occurred to such an extent that the function of the protein (a) “having enzyme activity” is not lost.
- Such mutations include artificial mutations in addition to those occurring in nature. Examples of means for causing artificial mutation include, but are not limited to, site-directed mutagenesis (Nucleic Acids Res. 10, 6487-6500, 1982).
- the number of amino acids mutated (deleted, substituted, added) is not limited as long as the enzyme activity of the protein (a) is not lost, but is preferably within 50 amino acids, more preferably within 30 amino acids. It is.
- the protein of (b ') is also the enzyme activity of fbr-DAHPS, fbr-CM / PDH, TKT, PEPS, TYR, ORF378, DODC, MAO, NCS, 6OMT, CNMT, 4'OMT, CYP80G2, P450 reductase or BBE
- the homology is preferably 70% or more, particularly preferably 90% or more.
- homology means the degree of sequence similarity between two polypeptides or polynucleotides, and is in an optimum state over the region of the amino acid sequence or base sequence to be compared (maximum sequence match). Determined by comparing two sequences aligned to the (state). The homology value (%) determines the number of sites where identical amino acids or bases are present in both aligned (amino acid or base) sequences, and then the number of those sites is compared with the amino acids in the sequence region to be compared. Alternatively, it is calculated by dividing by the total number of bases and multiplying the obtained numerical value by 100.
- Examples of algorithms for obtaining optimal alignment and homology include various algorithms (for example, BLAST algorithm, FASTA algorithm, etc.) that are usually available to those skilled in the art.
- the homology of amino acid sequences is determined using sequence analysis software such as BLASTP and FASTA.
- the base sequence homology is determined using software such as BLASTN and FASTA.
- the protein has the enzymatic activity of fbr-DAHPS, fbr-CM / PDH, TKT, PEPS, TYR, ORF378, DODC, MAO, NCS, 6OMT, CNMT, 4'OMT, CYP80G2, P450 reductase or BBE It can be determined by adding each reaction substrate to the protein preparation and examining whether or not a reaction product of each enzyme has been generated.
- erythrose-4-phosphate (E4P) and phosphoenolpyruvate (PEP) were added to produce 3-deoxy-D-arabino-heptulosonate-7-phosphate (DAHP) -Chorismic acid was added for CM / PDH and 4-hydroxyphenylpyruvate (HPP) was produced, or ribose-5-phosphate (R5P) and xylulose-5-phosphate (Xu5P) were used for TKT5.
- GAP glyceraldehyde-3-phosphate
- S7P sedheptulose-7-phosphate
- PEPS pyruvic acid
- PEP phosphoenolpyruvate
- L-tyrosine is added for TYR (or TYR and ORF378)
- L-DOPA is produced
- L-DOPA is added for DODC
- dopamine is produced
- dopamine is added for MAO, 3
- 4-DHPAA was produced or for NCS dopamine
- 6OMT was added to 3'-hydroxynorcoclaurine
- 3'-hydroxycocolaurin was formed, or CNMT was to 3 Check whether 3'-hydroxy-N-methylcoclaurine was formed by adding '-hydroxycoclaurin, or whether reticuline was formed by adding 3'-hydroxy-N-methylcoclaurine for 4'OMT
- GAP glyceraldehyde-3-phosphate
- S7P sedheptulose-7-phosphate
- reticuline was added in the presence of them to determine whether or not colituberin was produced, and for BBE, reticuline was added to determine whether or not scourelin was produced. I can do it.
- CNMT which catalyzes the reaction of magnoflorin from colituberin
- CNMT which catalyzes the reaction of 3'-hydroxycoclaurine to 3'-hydroxy-N-methylcoclaurine
- Whether or not to catalyze the reaction to florin can be determined by adding coritsuberin and examining whether or not magnoflorin has been produced.
- fbr-DAHPS is resistant to feedback inhibition can be confirmed by measuring the enzyme activity in the presence and absence of phenylalanine and comparing with the enzyme activity of wild-type DAHPS under the same conditions.
- Kikuchi Y. et al., Appl. Environ. Microbiol. 63, 761-762 (1997).
- whether fbr-CM / PDHPD is resistant to feedback inhibition is measured by enzyme activity in the presence and absence of tyrosine and compared with the enzyme activity of wild-type CM / PDH under the same conditions.
- Lutke-Eversloh, T. and Stephanopoulos, G., Appl. Environ. Microbiol. 71, 7224-7228 (2005) See, for example, Lutke-Eversloh, T. and Stephanopoulos, G., Appl. Environ. Microbiol. 71, 7224-7228 (2005)).
- the reaction products were 3-deoxy-D-arabino-heptulosonic acid-7-phosphate (DAHP), 4-hydroxyphenylpyruvic acid (HPP), glyceraldehyde-3-phosphate (GAP), cedoheptulose-7- Phosphoric acid (S7P), phosphoenolpyruvate (PEP), L-DOPA, dopamine, 3,4-DHPAA, 3'-hydroxynorcoclaurine, 3'-hydroxycoclaurin, 3'-hydroxy-N-methylkoku Whether it is laurin, reticuline or the desired isoquinoline alkaloid (for example, magnoflorin, scourelin, berberine, etc.) can be confirmed by any means known to those skilled in the art.
- DAHP 3-deoxy-D-arabino-heptulosonic acid-7-phosphate
- HPP 4-hydroxyphenylpyruvic acid
- GAP glyceraldehyde-3-phosphate
- reaction product and 3-deoxy-D-arabino-heptulosonic acid-7-phosphate DAHP
- 4-hydroxyphenylpyruvic acid HPP
- GAP glyceraldehyde-3-phosphate
- S7P Sedoheptulose-7-phosphate
- PEP phosphoenolpyruvate
- L-DOPA dopamine
- 3,4-DHPAA 3'-hydroxynorcoclaurine
- 3'-hydroxycoclaurine 3'-hydroxycoclaurine
- 3'-hydroxy- Each sample of N-methylcoclaurine, reticuline, or the desired isoquinoline alkaloid can be identified by subjecting to LC-MS and comparing the resulting spectra. It can also be confirmed by comparison of the product with the corresponding sample by NMR analysis.
- isoquinoline alkaloid biosynthesis that can be used in the present invention, starting from fbr-DAHPS, fbr-CM / PDH, TKT, PEPS, TYR, ORF378, DODC, MAO, NCS, 6OMT, CNMT, 4'OMT or reticuline
- DODC DODC
- MAO NCS
- 6OMT 6OMT
- CNMT 4'OMT
- reticuline The gene encoding the enzyme will be described.
- fbr-DAHPS fbr-DAHPS
- fbr-CM / PDH TKT, PEPS, TYR, ORF378, DODC, MAO, NCS, 6OMT, CNMT, 4'OMT, or isoquinoline alkaloid biosynthetic enzymes preferably used in the present invention
- P450 reductase or BBE for example, SEQ ID NO: 2, 3, 4, 5, 6 or 36 or 37, 7, 8, 9 or 10, 11, 12, 13, 14, Examples thereof include a gene consisting of the nucleotide sequence shown in 15, 16 or 17.
- the gene used in the present invention is not limited to these, but is preferably a gene that is the following DNA (a) or (b): (a) DNA consisting of the nucleotide sequence of SEQ ID NO: 2, 3, 4, 5, 6 or 36 or 37, 7, 8, 9 or 10, 11, 12, 13, 14, 15, 16 or 17; (b) hybridizes with a DNA comprising a nucleotide sequence complementary to the DNA comprising the nucleotide sequence of (a) under stringent conditions, and fbr-DAHPS, fbr-CM / PDH, TKT, PEPS, TYR, DNA encoding a protein having the enzymatic activity of ORF378, DODC, MAO, NCS, 60MT, CNMT, 4'OMT, CYP80G2, P450 reductase or BBE.
- examples of the gene used in the present invention include the following genes (c): (c) 70% or more with respect to the nucleotide sequence of SEQ ID NO: 2, 3, 4, 5, 6 or 36 or 37, 7, 8, 9 or 10, 11, 12, 13, 14, 15, 16 or 17 Consisting of a nucleotide sequence having a homology of preferably 80% or more, more preferably 90% or more, and still more preferably 95% or more, and fbr-DAHPS, fbr-CM / PDH, TKT, PEPS, TYR, ORF378, DNA encoding a protein having enzyme activity of DODC, MAO, NCS, 6OMT, CNMT, 4′OMT, CYP80G2, P450 reductase or BBE.
- stringent conditions refer to conditions in which only specific hybridization occurs and non-specific hybridization does not occur. Such conditions are usually about 6M urea, 0.4% SDS, 0.5xSSC.
- the DNA obtained by hybridization preferably has a high homology of 70% or more with the DNA comprising the nucleotide sequence (a), and preferably has a homology of 80% or more.
- “homology” is as described above.
- the protein encoded by the above gene is ⁇ fbr-DAHPS, fbr-CM / PDH, TKT, PEPS, TYR, ORF378, DODC, MAO, NCS, 6OMT, CNMT, 4'OMT, CYP80G2, P450 reductase or BBE enzyme activity
- the method for confirming whether or not “has a protein” is as described above for the protein.
- the gene can be obtained by PCR or hybridization techniques well known to those skilled in the art, or may be artificially synthesized using a DNA synthesizer or the like.
- the sequence can be determined by a conventional method using a sequencer.
- tyrA fbr and aroG fbr genes cloned into pUC57 were purchased from GenScript Inc.
- tyrA fbr was adjacent to the recognition sites for NcoI and EcoRI restriction enzymes, and aroG fbr was linked to the T7 promoter.
- an EcoRI site was located upstream of the T7 promoter, and a SacI site was located downstream of aroG fbr .
- the tktA and ppsA genes were extracted from the genomic DNA of Escherichia coli K-12 MG1655 with the primer set of NdeI-tktA-F (SEQ ID NO: 18) and tktA-XhoI-R (SEQ ID NO: 19) and NdeI-ppsA-F (SEQ ID NO: 19), respectively. 20) and ppsA-XhoI-R (SEQ ID NO: 21) primer sets (Table 1).
- tktA under the control of the T7 promoter was amplified from tktA / pET-41a using primers 5Sac-T7 (SEQ ID NO: 22) and 3NottktA (SEQ ID NO: 23) (Table 1). Then the tktA and T7 promoter, cloned into tyrA fbr -aroG fbr / pCOLADuet-1 of SacI-NotI site to obtain tyrA fbr -aroG fbr -tktA / pCOLADuet- 1.
- ppsA / pCOLADuet-1 was digested with NotI and XhoI to obtain a fragment containing the ppsA gene and the T7 promoter. Then tyrA fbr -aroG fbr -tktA-ppsA / pCOLADuet-1 The resulting This fragment was cloned into tyrA fbr -aroG fbr -tktA / pCOLADuet- 1 of NotI-XhoI site (Fig. 8), and its sequence was verified.
- NCS-ORF378-TYR-DODC-optMAO / pKK223-3 To reconstruct the synthesis route of norlaudanosoline, an expression vector containing genes encoding the following four enzymes was constructed: Streptomyces castaneoglobisporus tyrosinase ( TYR) (for the full activity of TYR, co-express TYR and its adapter protein ORF378), Pseudomonas putida L-DOPA-specific decarboxylase (DODC), Micrococcus luteus monoamine oxidase (MAO) and oren (Coptis japonica ) Norcoclaurine synthase (NCS).
- TYR Streptomyces castaneoglobisporus tyrosinase
- DODC Pseudomonas putida L-DOPA-specific decarboxylase
- MAO Micrococcus luteus monoamine oxidase
- oren
- ⁇ ⁇ ⁇ MAO SEQ ID NO: 10, hereinafter referred to as optMAO
- optMAO ⁇ ⁇ ⁇ MAO
- the optMAO gene cloned into the pGS-21a plasmid was purchased from GenScript Inc., and the MAO gene contained in the NCS-MAO / pKK223-3 was replaced with the optMAO gene driven by the T7 promoter. .
- the replacement is performed from the purchased pGS-21a plasmid containing the optMAO gene by PCR using primers 5Bam-T7 (SEQ ID NO: 24) and 3oMAO (SEQ ID NO: 25) (Table 1) BamHI- containing the optMAO gene and T7 promoter. This was accomplished by generating a HindIII fragment and incorporating the fragment into the BamHI-HindIII site of NCS-MAO / pKK223-3, resulting in NCS-optMAO / pKK223-3.
- the gene for L-DOPA-specific decarboxylase (DODC; aromatic L-amino acid decarboxylase belonging to EC 4.1.1.28) of Pseudomonas putida KT2440 strain was extracted from the genomic DNA of the strain 5NdeDODC (SEQ ID NO: 26).
- 3BamDODC SEQ ID NO: 27 (Table 1).
- the PCR product was digested with NdeI-BamHI and then ligated to the NdeI-BamHI site of pET-3a (Novagen) to obtain DODC / pET-3a.
- DODC is a decarboxylase showing the L-DOPA selectivity of greater than 10 3 times as compared with the other aromatic amino acids.
- the DODC gene with the T7 promoter was amplified from the DODC / pET-3a using primers 5BamSacRVT7 (SEQ ID NO: 28) and 3BamDODC (SEQ ID NO: 27) (Table 1), and this was amplified with NCS-optMAO / pKK223-3 NCS-DODC-optMAO / pKK223-3 was obtained by cloning into the BamHI site.
- Streptomyces castaneoglobisporus TYR gene (SEQ ID NO: 6) and ORF378 (SEQ ID NO: 7) cloned in series in pGS-21a and each independently driven by the T7 promoter were purchased from GenScript Inc. In this construct, the codon usage of both genes is optimized.
- a PCR product (SacI-EcoRV fragment) containing the TYR gene and ORF378 was amplified using primers 5Sac-T7 (SEQ ID NO: 22) and 3pGSEcoRV (SEQ ID NO: 29) (Table 1).
- NCS-DODC-optMAO / pKK223 The NCS-ORF378-TYR-DODC-optMAO / pKK223-3 was obtained by ligation to the SacI-EcoRV site located between -3NCS and DODC.
- NCS-ORF378-TYR-DODC-optMAO / pET-21d A vector based on the pET-21d (Novagen) plasmid was made to compare production between host cells with plasmids of different backbones.
- NCS-MAO / pKK223-3 a fragment containing the T7 promoter bound to NCS was amplified from NCS-MAO / pKK223-3 using primers 5BglII-T7 (SEQ ID NO: 30) and 3NCSBamSacRV (SEQ ID NO: 31) (Table 1). The fragment was then ligated to the BglII-BamHI site of pET-21d. The NCS-DODC-optMAO / pKK223-3 ⁇ ⁇ SacI-HindIII fragment containing the DODC and optMAO genes was ligated to the SacI-HindIII site of NCS / pET-21d to obtain NCS-DODC-optMAO / pET-21d .
- NCS-ORF378-TYR-DODC-optMAO / pKK223-3 and NCS-ORF378-TYR-DODC-optMAO / pET-21d use the same primers
- Streptomyces castaneoglobisporus TYR gene NCS-RsTYR-DODC-optMAO / pKK223-3 and NCS-RsTYR-DODC-optMAO / pET-21d were prepared using the sequence of the RsTYR gene (SEQ ID NO: 37) instead of ORF378 (FIG. 11, the latter) Only the constructs are shown).
- NCS-ORF378-TYR-DODC-optMAO / pET-21d and NCS-RsTYR-DODC-optMAO / pET-21d as plasmids for expressing the enzymes of the norlaudanosoline synthesis pathway. did.
- Typical PCR conditions used in this example are as follows: Initial denaturation step, 94 ° C, 2 min; 94 ° C, 15 sec denaturation, 50 ° C, 30 sec annealing and 68 ° C, 90 sec DNA A cycle consisting of elongation was performed for 30 cycles; and the final elongation at 68 ° C for 5 minutes; for this, KOD-plus DNA polymerase polymerase (Toyobo) was used.
- PCR was performed by appropriately changing the conditions according to the DNA sequence used as a template, the length of the primer, the Tm value, and the like. Optimizing PCR conditions is a technique well known to those skilled in the art.
- tyrR gene was achieved by recombination with PCR products using Quick & Easy E.coli Deletion Kit (Gene Bridges). Specifically, using a plasmid having the sequence of FRT-PGK-gb2-neo-FRT included in the kit as a template, a primer d-tyrR-Sm-F having a sequence homologous to the tyrR gene at the 5 'end (sequence No.
- the Escherichia coli BL21 (DE3) was transformed with an FLP expression vector (708-FLPe; Gene Bridges), and the kanamycin resistance gene cassette was removed by the action of FLP recombinase.
- the tyrR :: null mutation was confirmed by PCR using the primers 5tyrRKOcheck (SEQ ID NO: 34) and 3tyrRKOcheck (SEQ ID NO: 35) (Table 1).
- Escherichia coli BL21 (DE3) having the tyrR :: null mutation was transformed with tyrA fbr -aroG fbr -tktA-ppsA / pCOLADuet-1 (FIG. 8) to obtain an L-tyrosine overproducing strain.
- the L-tyrosine overproducing strain was transformed with NCS-ORF378-TYR-DODC-optMAO / pET-21d and 6OMT-4′OMT-CNMT / pACYC184 (FIG. 8) to obtain a reticuline producing strain. Obtained (this strain is referred to herein as “recombinant production strain A”).
- this strain is referred to herein as “recombinant production strain A”).
- coli BL21 (DE3) strain that has not undergone the above modification (introduction of tyrR :: null mutation and tyrA fbr -aroG fbr -tktA-ppsA / pCOLADuet-1) for the production of L-tyrosine is NCS-ORF378-TYR -DODC-optMAO / pET-21d and 6OMT-4'OMT-CNMT / pACYC184 were transformed to obtain a recombinant Escherichia coli strain (this strain is referred to herein as "recombinant production strain B") ). Furthermore, the above L-tyrosine overproducing strain (E.
- coli BL21 (DE3) having a tyrR :: null mutation and transformed with tyrA fbr -aroG fbr -tktA-ppsA / pCOLADuet-1) was transformed into NCS- RsTYR-DODC-optMAO / pET-21d (FIG. 11) and 6OMT-4′OMT-CNMT / pACYC184 were transformed to obtain a reticuline producing strain (herein, such strain is referred to as “recombinant production”). Referred to as "strain C"). These recombinant production strains A, B and C were used for reticuline production.
- the pH was maintained at 7.1 by automatic addition of 28% NH 4 OH and 1M HCl.
- the stirring speed at the time of inoculation was 100 rpm, and the dissolved oxygen level was reduced to 10% oxygen saturation using continuous aeration of 1 v ⁇ v ⁇ 1 ⁇ m ⁇ 1 .
- the glucose concentration was maintained between 0.1 and 7 g / L by addition of 0.5 g / mL glucose solution.
- Glycerol concentration was maintained between 0.1 and 6 g / L by addition of 1 g / mL glycerol solution.
- OD 600 when the OD 600 reaches 10 (for culture in a medium using glucose as a carbon source) or 15 (for culture in a medium using glycerol as a carbon source), it is indicated in the instructions attached to the vector.
- Expression induction was performed by adding IPTG at the designated or specified concentration (final concentration) to the culture.
- glucose in the medium was analyzed by the mutarotase-glucose method using glucose CII-Test Wako (Wako Pure Chemical Industries, Ltd.).
- glycerol in the medium was analyzed using Glycerol Assay Kit (Cayman Chemical Co.).
- Aromatic compounds other than reticuline in the medium were analyzed by a HPLC equipped with a Discovery HS F5 column (Supelco). The compounds were separated on the column by increasing the acetonitrile concentration from 3% to 20% in 10 mM ammonium formate (pH 3.0) at a flow rate of 0.5 mL / min. Compound elution was monitored by measuring absorbance at 280 nm.
- the culture supernatant was collected at various time points, and the protein was precipitated using 2% by weight of trichloroacetic acid.
- the supernatant was separated on an Agilent HPLC system and analyzed by LC-MS (3200 QTRAP, Applied Biosystems Japan Ltd.).
- the HPLC conditions were as follows: A column, TSKgel ODS-80Ts (4.6 ⁇ 250 mm; Totosoh Corporation); A solvent system, A: 0.1% acetic acid aqueous solution, B: Acetonitrile solution containing 0.1% acetic acid; Gradient mode: 90% A (0-5 minutes), 90% to 60% A (5-20 minutes), 10% A (20-30 minutes); .
- Reticuline was identified by comparing it to standard reticuline (laboratory stock) for fragmentation spectra in LC-tandem MS (LC-MS / MS). The amount of reticuline was estimated from the calibration curve ( ⁇ mol vs. peak area) using Analyst 1.4.1 software.
- the reticuline produced was separated on an Agilent HPLC system and then subjected to LC-MS to analyze the stereoselectivity of the reticuline.
- the conditions of the HPLC column were as follows: column, CHIRALCEL OD-H (4.6 ⁇ 250 mm, Daicel Chemical Industries, Ltd.); solvent system, hexane / 2-propanol / diethylamine (72: 28: 0.1); 0.55 mL / min, temperature: 40 ° C.
- recombinant production strain B produced (S) -reticuline from glucose in the medium within a period of 80 hours with a yield of 0.53 mg per liter of medium. It was shown that the replacement production strain A produced (S) -reticuline from glucose in the medium in a yield of 2.2 mg per liter of medium within 80 hours (Fig. 2). Moreover, in the medium not containing glucose, the yield of (S) -reticuline by the recombinant production strain A was as extremely low as 80 ⁇ g / L (FIG. 2). These results indicate that (S) -reticuline was obtained from glucose, a simple carbon source.
- (S) -reticuline was produced by leak expression of the introduced biosynthetic gene without induction by IPTG (FIG. 3). This means that the production cost of (S) -reticuline according to the present invention can be substantially reduced. Furthermore, when recombinant production strain A was cultured using a medium containing glycerol as a carbon source, the yield of (S) -reticuline in 80 hours increased to 6.2 mg per liter of medium (Fig. 9). Was approximately three times higher than the production in the medium using glucose as the carbon source.
- a dopamine producing strain using RsTYR (a strain in which RsTYR and DODC have been introduced into the above L-tyrosine overproducing strain) is a dopamine producing strain using a TYR of S. castaneoglobisporus (the above L-tyrosine overproducing strain is Since the production of 1.05 ⁇ 0.05g / L (6.85 ⁇ 0.30mM) of dopamine (yield not shown) was about 4 times the yield of TYR and DODC) (data not shown), The possibility of contributing to the increase in reticuline production in the production strain C is considered.
- reticuline is produced as a racemate, whereas in the method using the above-described recombinant production strain A of the present invention, Produced only (S) -reticuline (FIG. 6). Further, during cultivation of the recombinant production strain A, L-tyrosine accumulated as an intermediate in the stationary phase, but accumulation of L-DOPA and dopamine was not observed throughout the culture period (FIG. 7). No accumulation of dopamine prevents the spontaneous condensation reaction between dopamine and 3,4-DHPAA without the catalysis of NCS, which produces (S) -body specific norlaudanosoline. . As a result, norlaudanosoline is not produced as a (R, S) -racemic mixture, and only (S) -reticuline is considered to be obtained.
- optically active (S) -reticuline is produced by culturing plant cultured cells or producing a recombinant plant (usually for a period of several months to one year). For example, in 2 to 3 days.
- a further advantage of the present invention is that (S) -reticuline with almost no contamination with unwanted metabolites (including undesired isoquinoline alkaloids) can be obtained by a simple and efficient purification procedure.
- (S) -reticuline with almost no contamination with unwanted metabolites (including undesired isoquinoline alkaloids) can be obtained by a simple and efficient purification procedure.
- HPLC high performance liquid chromatography
- more than 90% of the purified (S) -reticuline could be recovered (Fig. 10).
- Such a simple and high-yield purification operation makes the (S) -reticuline production method of the present invention economically feasible.
Landscapes
- Genetics & Genomics (AREA)
- Health & Medical Sciences (AREA)
- Life Sciences & Earth Sciences (AREA)
- Engineering & Computer Science (AREA)
- Chemical & Material Sciences (AREA)
- Organic Chemistry (AREA)
- Zoology (AREA)
- Wood Science & Technology (AREA)
- Biotechnology (AREA)
- Biomedical Technology (AREA)
- Bioinformatics & Cheminformatics (AREA)
- General Engineering & Computer Science (AREA)
- Microbiology (AREA)
- General Health & Medical Sciences (AREA)
- Molecular Biology (AREA)
- Biochemistry (AREA)
- Micro-Organisms Or Cultivation Processes Thereof (AREA)
- General Chemical & Material Sciences (AREA)
- Chemical Kinetics & Catalysis (AREA)
- Physics & Mathematics (AREA)
- Biophysics (AREA)
- Plant Pathology (AREA)
- Preparation Of Compounds By Using Micro-Organisms (AREA)
Abstract
A method for synthesizing (s)-reticulin being important as a junction intermediate in biosynthetic pathway of benzylisoquinoline alkaloid by culturing the transgenic microbes expressing the enzyme necessary for the biosynthesis.
Description
本発明は、植物ベンジルイソキノリンアルカロイドの生産方法に関する。
The present invention relates to a method for producing plant benzylisoquinoline alkaloids.
イソキノリンアルカロイドは6000種にも及ぶ多様な化合物群であり、モルヒネやベルベリン等有用医薬品を多く含んでおり、植物の生産する重要な有用二次代謝産物である。これまで、その生産のほとんどは天然物からの抽出に依存していた。しかし、植物細胞における二次代謝産物の蓄積レベルが低いため、抽出によって高い収量を得ることは困難である。
Isoquinoline alkaloids are a diverse group of 6,000 kinds of compounds, and contain many useful drugs such as morphine and berberine, and are important secondary metabolites produced by plants. Until now, most of its production has relied on extraction from natural products. However, it is difficult to obtain a high yield by extraction because the accumulation level of secondary metabolites in plant cells is low.
ベンジルイソキノリンアルカロイド、例えば、鎮痛化合物であるモルヒネおよびコデイン、および抗菌剤であるベルベリンおよびパルマチンは、モクレン科、キンポウゲ科、メギ科、ケシ科、およびその他の多くの植物種において、チロシンから(S)-レチクリンを介して合成される。(S)-レチクリンは、多くのタイプのベンジルイソキノリンアルカロイドの生合成経路における分岐点中間体である。即ち、(S)-レチクリンは抗マラリア薬および抗癌薬の開発に有用な医薬上重要な非麻薬性アルカロイドである。
Benzylisoquinoline alkaloids, such as the analgesic compounds morphine and codeine, and the antibacterial agents berberine and palmatin, from tyrosine (S) in magnoliaceae, buttercupaceae, barberry, poppy, and many other plant species -Synthesized via reticuline. (S) -reticuline is a branch-point intermediate in the biosynthetic pathway of many types of benzylisoquinoline alkaloids. That is, (S) -reticuline is a pharmaceutically important non-narcotic alkaloid useful for the development of antimalarial and anticancer drugs.
最近の研究により、これらのアルカロイドは新規な医薬として有用である可能性があることも示唆されている。例えば、アポルフィン型アルカロイドであるマグノフロリンは、動脈硬化性疾患の発症を防ぐために酸化ストレスの際に高密度リポタンパク質を保護すること、およびHIV-1によるヒトリンパ芽球様細胞殺傷を阻害することが報告されている(非特許文献1~3)。最近の報告によると抗菌剤であるベルベリンがコレステロール低下活性を有することも示されている (非特許文献4)。
Recent research also suggests that these alkaloids may be useful as new drugs. For example, an aporphine-type alkaloid, magnoflorin, protects high-density lipoproteins during oxidative stress to prevent the development of arteriosclerotic disease and inhibits human lymphoblastoid cell killing by HIV-1. It has been reported (Non-Patent Documents 1 to 3). A recent report shows that berberine, an antibacterial agent, has cholesterol-lowering activity (Non-Patent Document 4).
医薬としての使用可能性において非常に注目されているために、いくつかのベンジルイソキノリンアルカロイドは全合成によって化学合成されてきた。例えば、麻薬性鎮痛薬であるモルヒネの全合成が報告されている(非特許文献5)。しかしながら、アルカロイドが有する複雑な構造やキラリティーのため、費用効率の高い生産方法を開発することは困難である。したがって、酵素による合成が、環境に優しく効率のよいアルカロイド生産のために望ましい。
Some benzylisoquinoline alkaloids have been chemically synthesized by total synthesis because of great attention in their potential use as pharmaceuticals. For example, the total synthesis of morphine, a narcotic analgesic, has been reported (Non-patent Document 5). However, due to the complex structure and chirality of alkaloids, it is difficult to develop cost-effective production methods. Thus, enzymatic synthesis is desirable for environmentally friendly and efficient alkaloid production.
植物代謝工学ではアルカロイド経路の最終生成物の量を増加させる試みがしばしばなされてきており、選抜された植物細胞では、工業的利用に十分な量の二次代謝産物を生産することができる(非特許文献6)。しかしながら、植物における二次代謝のフローは複雑かつ厳密に制御されているため、所望の産物を得ることは非常に難しく、植物代謝工学の成功例はわずかしか報告されていない。
Plant metabolic engineering has often attempted to increase the amount of alkaloid pathway end products, and selected plant cells can produce secondary metabolites in quantities sufficient for industrial use (non- Patent Document 6). However, since the flow of secondary metabolism in plants is complex and strictly controlled, it is very difficult to obtain the desired product, and only a few successful examples of plant metabolic engineering have been reported.
これまで、コデイノンレダクターゼにRNAiを施した形質転換ケシ(opium poppy)植物およびベルベリン架橋酵素(BBE)にRNAiを施した形質転換ハナビシソウ(California poppy)細胞がレチクリンを生産するものとして報告されている(非特許文献7および8)。形質転換ケシはレチクリンの生産に好適であるが、植物および培養細胞によって生成物の量が非常に変動しやすく、かつ、植物および培養細胞は成育に長い時間がかかる(非特許文献9)。さらに、これら形質転換ケシはレチクリンのメチル化誘導体をいくらか蓄積した。形質転換アプローチは代謝工学に非常に強力なツールであり得るが、RNAiを含むこの技術には、所望の代謝産物生産に利用するにはいまださらなる改善の余地がある。
So far, transformed poppy (opium poppy) plants that have been treated with RNAi on codeinone reductase and transformed California 細胞 poppy cells with RNAi on berberine bridging enzyme (BBE) have been reported to produce reticuline. (Non-Patent Documents 7 and 8). Transformed poppies are suitable for the production of reticuline, but the amount of the product varies greatly depending on the plant and the cultured cell, and the plant and the cultured cell take a long time to grow (Non-patent Document 9). In addition, these transformed poppies accumulated some methylated derivatives of reticuline. Although the transformation approach can be a very powerful tool for metabolic engineering, this technology, including RNAi, still has room for further improvement for use in producing the desired metabolite.
最近、植物全生合成工程を再構成する試みが微生物系において調べられるようになった(非特許文献10および11)。微生物系はその他の植物代謝産物を含まないため、二次代謝産物の量を増加させるのみならず、その質も改善させることが出来る。微生物系には化学物質の生体内変換についていくつかの有利な点があるが、特に植物代謝産物については、例えば、基質入手可能性が制限されていることといった不利な点も有する。微生物および植物由来遺伝子の組合せは、様々な化合物の生産のための効率的な系の確立に有用である。
Recently, attempts to reconstruct the plant biosynthesis process have been investigated in microbial systems (Non-Patent Documents 10 and 11). Since the microbial system does not contain other plant metabolites, it can not only increase the amount of secondary metabolites, but also improve its quality. Microbial systems have several advantages for the biotransformation of chemicals, but especially for plant metabolites, for example, with the disadvantage of limited substrate availability. The combination of microbial and plant-derived genes is useful for establishing an efficient system for the production of various compounds.
ベンジルイソキノリンアルカロイド経路においては、ノルコクラウリンからベルベリンまでのほぼすべての生合成遺伝子が単離されており、それらの活性は微生物システムにおいて示されている(非特許文献12および13)。ベンジルイソキノリンアルカロイド経路において、ノルコクラウリンシンターゼ(以下、NCSとも称する)によってドーパミンと4-ヒドロキシフェニルアセトアルデヒド(以下、4-HPAAとも称する)とをカップリングすることから、(S)-ノルコクラウリンを介して(S)-レチクリンが産生されることが明らかとなっている。(S)-ノルコクラウリンは次いでノルコクラウリン 6-O-メチルトランスフェラーゼ(以下、6OMTとも称する)によってコクラウリンに変換され、コクラウリンは、コクラウリン-N-メチルトランスフェラーゼ(以下、CNMTとも称する)によってN-メチルコクラウリンに変換され、N-メチルコクラウリンは、P450ヒドロキシラーゼ(CYP80B)によって3'-ヒドロキシ-N-メチルコクラウリン(以下、6-O-メチルラウダノソリンとも称する)に変換され、そして3'-ヒドロキシ-N-メチルコクラウリンは、3'-ヒドロキシ-N-メチルコクラウリン-4'-O-メチルトランスフェラーゼ(以下、4'OMTとも称する)によって、(S)-レチクリンに変換される(図4)。
In the benzylisoquinoline alkaloid pathway, almost all biosynthetic genes from norcoclaurine to berberine have been isolated and their activity has been shown in microbial systems (Non-patent Documents 12 and 13). In the benzylisoquinoline alkaloid pathway, dopamine and 4-hydroxyphenylacetaldehyde (hereinafter also referred to as 4-HPAA) are coupled by norcoclaurine synthase (hereinafter also referred to as NCS), so that (S) -norcoclaurine is It is clear that (S) -reticuline is produced through (S) -Norcoclaurine is then converted to coclaurin by norcoclaurine 6-O-methyltransferase (hereinafter also referred to as 6OMT), which is N-linked by coclaurin-N-methyltransferase (hereinafter also referred to as CNMT). Converted to methylcoclaurine, which is converted to 3′-hydroxy-N-methylcoclaurine (hereinafter also referred to as 6-O-methyllaudanosoline) by P450 hydroxylase (CYP80B), and 3'-hydroxy-N-methylcoclaurine is converted to (S) -reticuline by 3'-hydroxy-N-methylcoclaurine-4'-O-methyltransferase (hereinafter also referred to as 4'OMT) (Figure 4).
本発明者らはこれまでに、微生物において、植物および微生物の酵素を組み合わせてイソキノリンアルカロイド生合成経路を再構築し、インビトロまたはインビボで、ドーパミンを出発物質としてレチクリンを生産する方法を開発してきた(特許文献1)。かかる方法は、微生物由来のモノアミンオキシダーゼ(以下、MAO とも称する)を用いることによってドーパミンから 3,4-ジヒドロキシフェニルアセトアルデヒド(以下、3,4-DHPAAとも称する)を合成し、該 3,4-ジヒドロキシフェニルアセトアルデヒドとドーパミンをカップリングさせることを一つの特徴としており、レチクリン生合成経路におけるヒドロキシル化のステップを省略しつつ、ドーパミンのみから効率的にレチクリンを合成することを可能にするものである。
The present inventors have so far developed a method for producing reticuline in vitro or in vivo using dopamine as a starting material by reconstructing an isoquinoline alkaloid biosynthetic pathway in a microorganism by combining plant and microbial enzymes ( Patent Document 1). This method synthesizes 3,4-dihydroxyphenylacetaldehyde (hereinafter also referred to as 3,4-DHPAA) from dopamine by using a microorganism-derived monoamine oxidase (hereinafter also referred to as MAO), and the 3,4-dihydroxy. One feature is that phenylacetaldehyde and dopamine are coupled, and it is possible to efficiently synthesize reticuline only from dopamine while omitting the hydroxylation step in the reticuline biosynthesis pathway.
しかしながら、かかる方法においては、出発物質としてドーパミンを添加することが必須である。また、インビボで反応を行う場合には、(R,S)-ラセミ混合物としてレチクリンが得られるため、多くのベンジルイソキノリンアルカロイドの生合成経路における分岐点中間体である(S)-レチクリンのみを得るためには、キラルカラムによる光学分割等を行う必要がある。
However, in such a method, it is essential to add dopamine as a starting material. In addition, when the reaction is performed in vivo, since reticuline is obtained as a (R, S) -racemic mixture, only (S) -reticuline, which is a branch point intermediate in the biosynthetic pathway of many benzylisoquinoline alkaloids, is obtained. For this purpose, it is necessary to perform optical resolution using a chiral column.
また、上記特許文献1の方法と同様に、イソキノリンアルカロイド生合成経路を微生物において再構築し、ドーパミンと他のアミンを基質として共存させて反応を行うことにより、レチクリンに加えて様々なアルカロイドを生産する方法も開発されている(特許文献2)。しかしながら、当該方法においても、出発物質としてドーパミンを用いることが必須であり、インビボで反応を行う場合には(R,S)-ラセミ混合物としてレチクリンが得られる。
In addition, similar to the method of Patent Document 1, the isoquinoline alkaloid biosynthetic pathway is reconstructed in microorganisms and reacted in the presence of dopamine and other amines as substrates to produce various alkaloids in addition to reticuline. A method has also been developed (Patent Document 2). However, also in this method, it is essential to use dopamine as a starting material, and when the reaction is performed in vivo, reticuline is obtained as a (R, S) -racemic mixture.
一方、Hawkins および Smolke は、ノルラウダノソリンのラセミ混合物を出発物質として用い、組換え酵母細胞によって(R,S)-レチクリンおよびその誘導体を生産することに成功している(非特許文献14)。
On the other hand, Hawkins and Smolke have succeeded in producing (R, S) -reticuline and its derivatives by recombinant yeast cells using a racemic mixture of norlaudanosoline as a starting material (Non-patent Document 14). .
しかしながら、上記特許文献1および2ならびに非特許文献14に記載される方法において出発物質として用いられるドーパミンならびにノルラウダノソリンは比較的高価であり、培養の間に容易に酸化されて褐色の不溶性ポリマーを形成する性質を有する。そのため、かかる化合物を出発物質として用いる上記のアルカロイド生産方法を経済的なシステムとすることは困難である。
However, dopamine and norlaudanosoline used as starting materials in the methods described in Patent Documents 1 and 2 and Non-Patent Document 14 are relatively expensive, and are easily oxidized during culturing, resulting in a brown insoluble polymer. Has the property of forming Therefore, it is difficult to make the above alkaloid production method using such a compound as a starting material an economical system.
このような背景から、上記ドーパミンおよびノルラウダノソリンのような出発物質を用いず、安価で入手しやすい基質からベンジルイソキノリンアルカロイドを効率的に生産することが可能なシステムを確立することが望まれていた。
Against this background, it is desirable to establish a system that can efficiently produce benzylisoquinoline alkaloids from inexpensive and readily available substrates without using the starting materials such as dopamine and norlaudanosoline. It was.
本発明の目的は、ドーパミン等の比較的高価な出発物質を用いず、安価で入手しやすい基質からベンジルイソキノリンアルカロイドを生産するシステムを確立することにある。
The object of the present invention is to establish a system for producing benzylisoquinoline alkaloids from inexpensive and readily available substrates without using relatively expensive starting materials such as dopamine.
このたび、本発明者は、植物および微生物の代謝に関わる遺伝子を組み合わせて、ベンジルイソキノリンアルカロイドの生合成経路を微生物において再構築することにより、所望のベンジルイソキノリンアルカロイドを生産することが可能な微生物系を確立した。
This time, the present inventor has combined a gene involved in plant and microorganism metabolism and reconstructed the biosynthetic pathway of benzylisoquinoline alkaloid in the microorganism, thereby producing a desired benzylisoquinoline alkaloid. Established.
具体的には、本発明者は、ベンジルイソキノリンアルカロイドの生合成経路における分岐点中間体として重要な(S)-レチクリンを、その生合成に必要な酵素を発現する形質転換微生物の培養によって合成することに成功した。
Specifically, the present inventors synthesize (S) -reticuline, which is important as a branching point intermediate in the biosynthetic pathway of benzylisoquinoline alkaloids, by culturing transformed microorganisms that express the enzymes necessary for the biosynthesis. Succeeded.
すなわち、本発明は、L-チロシンを生産する代謝経路を有するイソキノリンアルカロイド非生産性細胞に、チロシナーゼおよびそのアダプタータンパク質、L-DOPA特異的デカルボキシラーゼ、モノアミンオキシダーゼ、ノルコクラウリンシンターゼ、ノルコクラウリン 6-O-メチルトランスフェラーゼ、コクラウリン-N-メチルトランスフェラーゼならびに3'-ヒドロキシ-N-メチルコクラウリン-4'-O-メチルトランスフェラーゼからなる群より選択される少なくとも1つのタンパク質をコードする少なくとも1つの遺伝子が導入されてなる、チロシナーゼおよびそのアダプタータンパク質、L-DOPA特異的デカルボキシラーゼ、モノアミンオキシダーゼ、ノルコクラウリンシンターゼ、ノルコクラウリン 6-O-メチルトランスフェラーゼ、コクラウリン-N-メチルトランスフェラーゼならびに3'-ヒドロキシ-N-メチルコクラウリン-4'-O-メチルトランスフェラーゼを発現する組換え宿主細胞を提供する工程、および該組換え宿主細胞を、炭素源としてグルコース、フルクトース、ガラクトース、スクロース、ラクトースおよびマルトースからなる群より選択される1種以上の糖および/またはグリセロールを含む培地において培養する工程を含む、(S)-レチクリンを生産する方法を提供する。
That is, the present invention relates to an isoquinoline alkaloid non-producing cell having a metabolic pathway for producing L-tyrosine, tyrosinase and its adapter protein, L-DOPA-specific decarboxylase, monoamine oxidase, norcoclaurine synthase, norcoclaurine 6. At least one gene encoding at least one protein selected from the group consisting of -O-methyltransferase, coclaurin-N-methyltransferase and 3'-hydroxy-N-methylcoclaurin-4'-O-methyltransferase Tyrosinase and its adapter protein, L-DOPA specific decarboxylase, monoamine oxidase, norcoclaurine synthase, norcoclaurine 6-O-methyltransferase, coclaurin-N-me And a recombinant host cell expressing 3′-hydroxy-N-methylcoclaurine-4′-O-methyltransferase, and using the recombinant host cell as a carbon source with glucose, fructose, galactose, A method for producing (S) -reticuline comprising the step of culturing in a medium containing one or more sugars selected from the group consisting of sucrose, lactose and maltose and / or glycerol.
また、本発明は、L-チロシンを生産する代謝経路を有するイソキノリンアルカロイド非生産性細胞に、フィードバック阻害耐性の3-デオキシ-D-アラビノ-ヘプツロソン酸-7-リン酸シンターゼ、フィードバック阻害耐性のコリスミ酸ムターゼ/プレフェナートデヒドロゲナーゼ、トランスケトラーゼ、ホスホエノールピルビン酸シンテターゼ、チロシナーゼおよびそのアダプタータンパク質、L-DOPA特異的デカルボキシラーゼ、モノアミンオキシダーゼ、ノルコクラウリンシンターゼ、ノルコクラウリン 6-O-メチルトランスフェラーゼ、コクラウリン-N-メチルトランスフェラーゼならびに3'-ヒドロキシ-N-メチルコクラウリン-4'-O-メチルトランスフェラーゼからなる群より選択される少なくとも1つのタンパク質をコードする少なくとも1つの遺伝子が導入されてなる組換え宿主細胞であって、フィードバック阻害耐性の3-デオキシ-D-アラビノ-ヘプツロソン酸-7-リン酸シンターゼ、フィードバック阻害耐性のコリスミ酸ムターゼ/プレフェナートデヒドロゲナーゼ、トランスケトラーゼ、ホスホエノールピルビン酸シンテターゼ、チロシナーゼおよびそのアダプタータンパク質、L-DOPA特異的デカルボキシラーゼ、モノアミンオキシダーゼ、ノルコクラウリンシンターゼ、ノルコクラウリン 6-O-メチルトランスフェラーゼ、コクラウリン-N-メチルトランスフェラーゼならびに3'-ヒドロキシ-N-メチルコクラウリン-4'-O-メチルトランスフェラーゼを発現し、かつ、tyrR遺伝子を有しないかまたはその機能が欠損している組換え宿主細胞を提供する工程、および該組換え宿主細胞を、炭素源としてグルコース、フルクトース、ガラクトース、スクロース、ラクトースおよびマルトースからなる群より選択される1種以上の糖および/またはグリセロールを含む培地において培養する工程を含む、(S)-レチクリンを生産する方法を提供する。
In addition, the present invention relates to a non-productive isoquinoline alkaloid-producing cell having a metabolic pathway for producing L-tyrosine, a feedback inhibitory resistant 3-deoxy-D-arabino-heptulosonate-7-phosphate synthase, a feedback inhibitory resistant chorismi. Acid mutase / prephenate dehydrogenase, transketolase, phosphoenolpyruvate synthetase, tyrosinase and its adapter protein, L-DOPA-specific decarboxylase, monoamine oxidase, norcoclaurine synthase, norcoclaurine 6-O-methyltransferase, At least one gene encoding at least one protein selected from the group consisting of coclaurine-N-methyltransferase and 3′-hydroxy-N-methylcoclaurine-4′-O-methyltransferase A recombinant host cell into which feedback inhibition resistance 3-deoxy-D-arabino-heptulosonate-7-phosphate synthase, feedback inhibition resistance chorismate mutase / prephenate dehydrogenase, transketolase, Phosphoenolpyruvate synthetase, tyrosinase and its adapter protein, L-DOPA specific decarboxylase, monoamine oxidase, norcoclaurine synthase, norcoclaurine 6-O-methyltransferase, coclaurine-N-methyltransferase and 3'-hydroxy- Providing a recombinant host cell that expresses N-methylcoclaurine-4'-O-methyltransferase and does not have the tyrR gene or is deficient in its function; and Glucose as a carbon source A method for producing (S) -reticuline comprising the step of culturing in a medium containing one or more sugars and / or glycerol selected from the group consisting of sucrose, fructose, galactose, sucrose, lactose and maltose .
さらに、本発明は、L-チロシンを生産する代謝経路を有するイソキノリンアルカロイド非生産性細胞に、チロシナーゼおよびそのアダプタータンパク質、L-DOPA特異的デカルボキシラーゼ、モノアミンオキシダーゼ、ノルコクラウリンシンターゼ、ノルコクラウリン 6-O-メチルトランスフェラーゼ、コクラウリン-N-メチルトランスフェラーゼならびに3'-ヒドロキシ-N-メチルコクラウリン-4'-O-メチルトランスフェラーゼからなる群より選択される少なくとも1つのタンパク質をコードする少なくとも1つの遺伝子が導入されてなる、チロシナーゼおよびそのアダプタータンパク質、L-DOPA特異的デカルボキシラーゼ、モノアミンオキシダーゼ、ノルコクラウリンシンターゼ、ノルコクラウリン 6-O-メチルトランスフェラーゼ、コクラウリン-N-メチルトランスフェラーゼならびに3'-ヒドロキシ-N-メチルコクラウリン-4'-O-メチルトランスフェラーゼを発現する組換え宿主細胞を提供する。
Furthermore, the present invention relates to non-quinoline alkaloid-producing cells having a metabolic pathway that produces L-tyrosine, tyrosinase and its adapter protein, L-DOPA-specific decarboxylase, monoamine oxidase, norcoclaurine synthase, norcoclaurine 6. At least one gene encoding at least one protein selected from the group consisting of -O-methyltransferase, coclaurin-N-methyltransferase and 3'-hydroxy-N-methylcoclaurin-4'-O-methyltransferase Tyrosinase and its adapter protein, L-DOPA-specific decarboxylase, monoamine oxidase, norcoclaurine synthase, norcoclaurine 6-O-methyltransferase, coclaurin-N-methyl It provides recombinant host cells expressing transferase and 3'-hydroxy -N- methylcoclaurine cloud phosphorus-4'-O-methyl transferase.
本発明によると、ベンジルイソキノリンアルカロイドの生合成に必要な遺伝子を発現させた組換え宿主細胞を、微生物の培養に通常用いられる培地中で培養することにより、目的のベンジルイソキノリンアルカロイド、特に(S)-レチクリンを高効率で生産することができる。すなわち、本発明によれば、微生物用の培地を構成する安価かつ容易に入手可能な基質からベンジルイソキノリンアルカロイドを生産することができ、出発物質として追加の基質を用いる必要がない。したがって、本発明の微生物系は、希少なベンジルイソキノリンアルカロイドを生産するコストを劇的に減少させることが可能な、簡便かつ費用効率の高いシステムである。
According to the present invention, a desired host benzylisoquinoline alkaloid, particularly (S) is obtained by culturing a recombinant host cell expressing a gene required for biosynthesis of benzylisoquinoline alkaloid in a medium usually used for culturing microorganisms. -Highly efficient production of reticuline. That is, according to the present invention, benzylisoquinoline alkaloid can be produced from an inexpensive and readily available substrate that constitutes a microorganism medium, and there is no need to use an additional substrate as a starting material. Thus, the microbial system of the present invention is a simple and cost-effective system that can dramatically reduce the cost of producing rare benzylisoquinoline alkaloids.
本発明により、多様な有用化合物生産のための素材であるベンジルイソキノリンアルカロイドが大量に生産できる基盤が構築されるとともに、さらなる代謝変換により、新たなる創薬資源の開発が可能となる。さらに、本発明の微生物系は、新規なイソキノリンアルカロイドの生産のための新規経路を開発するためにも有用である。
DETAILED DESCRIPTION OF THE INVENTION According to the present invention, a foundation capable of producing a large amount of benzylisoquinoline alkaloid, which is a material for producing various useful compounds, is constructed, and a new drug discovery resource can be developed through further metabolic conversion. Furthermore, the microbial system of the present invention is also useful for developing new pathways for the production of novel isoquinoline alkaloids.
また、本発明の微生物系において再構築されるベンジルイソキノリンアルカロイド生合成経路の個々のステップは、いずれも既知かつ制御可能なものである。したがって、個々の生合成遺伝子の発現レベルを最適化することおよび経路の流れを改良することによって、さらに効率的な生産を達成することが可能となりうる。
Also, the individual steps of the benzylisoquinoline alkaloid biosynthetic pathway reconstructed in the microbial system of the present invention are all known and controllable. Thus, it may be possible to achieve more efficient production by optimizing the expression levels of individual biosynthetic genes and improving pathway flow.
本発明は、L-チロシンを生産する代謝経路を有するイソキノリンアルカロイド非生産性細胞に、チロシナーゼ(以下、TYR とも称する)およびそのアダプタータンパク質、L-DOPA特異的デカルボキシラーゼ(以下、DODC とも称する)、モノアミンオキシダーゼ(MAO)、ノルコクラウリンシンターゼ(NCS)、ノルコクラウリン 6-O-メチルトランスフェラーゼ(6OMT)、コクラウリン-N-メチルトランスフェラーゼ(CNMT)ならびに 3'-ヒドロキシ-N-メチルコクラウリン-4'-O-メチルトランスフェラーゼ(4'OMT)からなる群より選択される少なくとも1つのタンパク質をコードする少なくとも1つの遺伝子が導入されてなる、チロシナーゼ(TYR)およびそのアダプタータンパク質、L-DOPA特異的デカルボキシラーゼ(DODC)、モノアミンオキシダーゼ(MAO)、ノルコクラウリンシンターゼ(NCS)、ノルコクラウリン 6-O-メチルトランスフェラーゼ(6OMT)、コクラウリン-N-メチルトランスフェラーゼ(CNMT)ならびに 3'-ヒドロキシ-N-メチルコクラウリン-4'-O-メチルトランスフェラーゼ(4'OMT)を発現する組換え宿主細胞を提供する工程、および
該組換え宿主細胞を、炭素源としてグルコース、フルクトース、ガラクトース、スクロース、ラクトースおよびマルトースからなる群より選択される1種以上の糖および/またはグリセロールを含む培地において培養する工程、
を含む、(S)-レチクリンを生産する方法を提供する。 The present invention relates to an isoquinoline alkaloid non-producing cell having a metabolic pathway for producing L-tyrosine, tyrosinase (hereinafter also referred to as TYR) and its adapter protein, L-DOPA-specific decarboxylase (hereinafter also referred to as DODC), Monoamine oxidase (MAO), norcoclaurine synthase (NCS), norcoclaurine 6-O-methyltransferase (6OMT), coclaurine-N-methyltransferase (CNMT) and 3'-hydroxy-N-methylcoclaurine-4 ' -Tyrosinase (TYR) and its adapter protein, L-DOPA-specific decarboxylase, into which at least one gene encoding at least one protein selected from the group consisting of -O-methyltransferase (4'OMT) is introduced (DODC), monoamine oxidase (MAO), norcoclaurine synthase (NCS), Recombinant hosts that express lucoclaurine 6-O-methyltransferase (6OMT), coclaurin-N-methyltransferase (CNMT) and 3'-hydroxy-N-methylcoclaurine-4'-O-methyltransferase (4'OMT) Providing a cell, and culturing the recombinant host cell in a medium comprising one or more sugars and / or glycerol selected from the group consisting of glucose, fructose, galactose, sucrose, lactose and maltose as a carbon source. Process,
A method for producing (S) -reticuline is provided.
該組換え宿主細胞を、炭素源としてグルコース、フルクトース、ガラクトース、スクロース、ラクトースおよびマルトースからなる群より選択される1種以上の糖および/またはグリセロールを含む培地において培養する工程、
を含む、(S)-レチクリンを生産する方法を提供する。 The present invention relates to an isoquinoline alkaloid non-producing cell having a metabolic pathway for producing L-tyrosine, tyrosinase (hereinafter also referred to as TYR) and its adapter protein, L-DOPA-specific decarboxylase (hereinafter also referred to as DODC), Monoamine oxidase (MAO), norcoclaurine synthase (NCS), norcoclaurine 6-O-methyltransferase (6OMT), coclaurine-N-methyltransferase (CNMT) and 3'-hydroxy-N-methylcoclaurine-4 ' -Tyrosinase (TYR) and its adapter protein, L-DOPA-specific decarboxylase, into which at least one gene encoding at least one protein selected from the group consisting of -O-methyltransferase (4'OMT) is introduced (DODC), monoamine oxidase (MAO), norcoclaurine synthase (NCS), Recombinant hosts that express lucoclaurine 6-O-methyltransferase (6OMT), coclaurin-N-methyltransferase (CNMT) and 3'-hydroxy-N-methylcoclaurine-4'-O-methyltransferase (4'OMT) Providing a cell, and culturing the recombinant host cell in a medium comprising one or more sugars and / or glycerol selected from the group consisting of glucose, fructose, galactose, sucrose, lactose and maltose as a carbon source. Process,
A method for producing (S) -reticuline is provided.
かかる方法によれば、特定の酵素を発現する組換え宿主細胞を、微生物の培養に通常用いられる培地において培養することにより、グルコースおよびグリセロール等の安価で入手容易な基質から、インビボにおいて(S)-レチクリンを効率的に生産することが可能となる。好ましくは、本発明の方法によって得られるレチクリンは、実質的に(R)-レチクリンを含まないものである。
According to such a method, a recombinant host cell that expresses a specific enzyme is cultured in a medium usually used for culturing microorganisms, so that it can be obtained in vivo from an inexpensive and readily available substrate such as glucose and glycerol (S). -Reticuline can be produced efficiently. Preferably, the reticuline obtained by the method of the present invention is substantially free of (R) -reticuline.
本発明の方法において用いる組換え宿主細胞は、tyrR遺伝子を有しないかまたはその機能が欠損しているものであることが好ましい。tyrR遺伝子の産物は芳香族アミノ酸の生合成に関与する遺伝子の発現を抑制する機能を有しているため、例えばtyrR遺伝子を有しない宿主細胞を用いることやtyrR遺伝子の機能を喪失させることにより、本発明の方法において再構築される生合成経路において重要な L-チロシンの生合成に対する抑制を解除することができる。
The recombinant host cell used in the method of the present invention preferably has no tyrR gene or lacks its function. Since the product of tyrR gene has a function of suppressing the expression of genes involved in the biosynthesis of aromatic amino acids, for example, by using a host cell that does not have tyrR gene or by losing the function of tyrR gene, Inhibition of 抑制 L-tyrosine biosynthesis, which is important in the biosynthetic pathway reconstructed in the method of the present invention, can be released.
本発明の方法において用いる組換え宿主細胞は、フィードバック阻害耐性の 3-デオキシ-D-アラビノ-ヘプツロソン酸-7-リン酸シンターゼ(以下、fbr-DAHPS とも称する)および/またはフィードバック阻害耐性のコリスミ酸ムターゼ/プレフェナートデヒドロゲナーゼ(以下、fbr-CM/PDH とも称する)を発現するものであることが好ましい。かかる酵素の発現により、該組換え宿主細胞において L-チロシンの生産効率が向上し、(S)-レチクリンの収量を増大させることができる。
The recombinant host cell used in the method of the present invention is a feedback inhibitor-resistant 3-deoxy-D-arabino-heptulosonate-7-phosphate synthase (hereinafter also referred to as fbr-DAHPS) and / or feedback inhibitor-resistant chorismate. It preferably expresses mutase / prephenate dehydrogenase (hereinafter also referred to as fbr-CM / PDH). By expressing such an enzyme, the production efficiency of L-tyrosine is improved in the recombinant host cell, and the yield of (S) -reticuline can be increased.
本発明の方法において用いる組換え宿主細胞は、トランスケトラーゼ(以下、TKT とも称する)および/またはホスホエノールピルビン酸シンテターゼ(以下、PEPS とも称する)を過剰発現するものであることが好ましい。かかる酵素の過剰発現により、該組換え宿主細胞においてシキミ酸経路の出発物質であるエリトロース-4-リン酸(E4P)および/またはホスホエノールピルビン酸(PEP)の量が増加し、L-チロシン生産量の増大を経て、(S)-レチクリンの収量を増大させることができる。
The recombinant host cell used in the method of the present invention is preferably one that overexpresses transketolase (hereinafter also referred to as TKT) and / or phosphoenolpyruvate synthetase (hereinafter also referred to as PEPS). Overexpression of such an enzyme increases the amount of erythrose-4-phosphate (E4P) and / or phosphoenolpyruvate (PEP) that is the starting material of the shikimate pathway in the recombinant host cell, producing L-tyrosine Through increasing amounts, the yield of (S) -reticuline can be increased.
したがって本発明は、L-チロシンを生産する代謝経路を有するイソキノリンアルカロイド非生産性細胞に、フィードバック阻害耐性の 3-デオキシ-D-アラビノ-ヘプツロソン酸-7-リン酸シンターゼ(fbr-DAHPS)、フィードバック阻害耐性のコリスミ酸ムターゼ/プレフェナートデヒドロゲナーゼ(fbr-CM/PDH)、トランスケトラーゼ(TKT)、ホスホエノールピルビン酸シンテターゼ(PEPS)、チロシナーゼ(TYR)およびそのアダプタータンパク質、L-DOPA特異的デカルボキシラーゼ(DODC)、モノアミンオキシダーゼ(MAO)、ノルコクラウリンシンターゼ(NCS)、ノルコクラウリン 6-O-メチルトランスフェラーゼ(6OMT)、コクラウリン-N-メチルトランスフェラーゼ(CNMT)ならびに 3'-ヒドロキシ-N-メチルコクラウリン-4'-O-メチルトランスフェラーゼ(4'OMT)からなる群より選択される少なくとも1つのタンパク質をコードする少なくとも1つの遺伝子が導入されてなる組換え宿主細胞であって、フィードバック阻害耐性の 3-デオキシ-D-アラビノ-ヘプツロソン酸-7-リン酸シンターゼ(fbr-DAHPS)、フィードバック阻害耐性のコリスミ酸ムターゼ/プレフェナートデヒドロゲナーゼ(fbr-CM/PDH)、トランスケトラーゼ(TKT)、ホスホエノールピルビン酸シンテターゼ(PEPS)、チロシナーゼ(TYR)およびそのアダプタータンパク質、L-DOPA特異的デカルボキシラーゼ(DODC)、モノアミンオキシダーゼ(MAO)、ノルコクラウリンシンターゼ(NCS)、ノルコクラウリン 6-O-メチルトランスフェラーゼ(6OMT)、コクラウリン-N-メチルトランスフェラーゼ(CNMT)ならびに 3'-ヒドロキシ-N-メチルコクラウリン-4'-O-メチルトランスフェラーゼ(4'OMT)を発現し、かつ、tyrR遺伝子を有しないかまたはその機能が欠損している組換え宿主細胞を提供する工程、および
該組換え宿主細胞を、炭素源としてグルコース、フルクトース、ガラクトース、スクロース、ラクトースおよびマルトースからなる群より選択される1種以上の糖および/またはグリセロールを含む培地において培養する工程、
を含む、(S)-レチクリンを生産する方法をさらに提供する。 Therefore, the present invention relates to feedback inhibition resistant 3-deoxy-D-arabino-heptulosonate-7-phosphate synthase (fbr-DAHPS), feedback, and non-isoquinoline alkaloid-producing cells having a metabolic pathway that produces L-tyrosine. Inhibition resistant chorismate mutase / prephenate dehydrogenase (fbr-CM / PDH), transketolase (TKT), phosphoenolpyruvate synthetase (PEPS), tyrosinase (TYR) and its adapter protein, L-DOPA specific de Carboxylase (DODC), monoamine oxidase (MAO), norcoclaurine synthase (NCS), norcoclaurine 6-O-methyltransferase (6OMT), coclaurin-N-methyltransferase (CNMT) and 3'-hydroxy-N-methyl At least selected from the group consisting of coclaurin-4'-O-methyltransferase (4'OMT) A recombinant host cell into which at least one gene encoding one protein has been introduced, comprising 3-deoxy-D-arabino-heptulosonate-7-phosphate synthase (fbr-DAHPS) resistant to feedback inhibition, feedback Inhibition resistant chorismate mutase / prephenate dehydrogenase (fbr-CM / PDH), transketolase (TKT), phosphoenolpyruvate synthetase (PEPS), tyrosinase (TYR) and its adapter protein, L-DOPA specific de Carboxylase (DODC), monoamine oxidase (MAO), norcoclaurine synthase (NCS), norcoclaurine 6-O-methyltransferase (6OMT), coclaurin-N-methyltransferase (CNMT) and 3'-hydroxy-N-methyl Does it express coclaurin-4'-O-methyltransferase (4'OMT) and does not have a tyrR gene? Or providing a recombinant host cell that is deficient in function, and the recombinant host cell is selected from the group consisting of glucose, fructose, galactose, sucrose, lactose and maltose as a carbon source. Culturing in a medium containing sugar and / or glycerol;
There is further provided a method for producing (S) -reticuline, comprising:
該組換え宿主細胞を、炭素源としてグルコース、フルクトース、ガラクトース、スクロース、ラクトースおよびマルトースからなる群より選択される1種以上の糖および/またはグリセロールを含む培地において培養する工程、
を含む、(S)-レチクリンを生産する方法をさらに提供する。 Therefore, the present invention relates to feedback inhibition resistant 3-deoxy-D-arabino-heptulosonate-7-phosphate synthase (fbr-DAHPS), feedback, and non-isoquinoline alkaloid-producing cells having a metabolic pathway that produces L-tyrosine. Inhibition resistant chorismate mutase / prephenate dehydrogenase (fbr-CM / PDH), transketolase (TKT), phosphoenolpyruvate synthetase (PEPS), tyrosinase (TYR) and its adapter protein, L-DOPA specific de Carboxylase (DODC), monoamine oxidase (MAO), norcoclaurine synthase (NCS), norcoclaurine 6-O-methyltransferase (6OMT), coclaurin-N-methyltransferase (CNMT) and 3'-hydroxy-N-methyl At least selected from the group consisting of coclaurin-4'-O-methyltransferase (4'OMT) A recombinant host cell into which at least one gene encoding one protein has been introduced, comprising 3-deoxy-D-arabino-heptulosonate-7-phosphate synthase (fbr-DAHPS) resistant to feedback inhibition, feedback Inhibition resistant chorismate mutase / prephenate dehydrogenase (fbr-CM / PDH), transketolase (TKT), phosphoenolpyruvate synthetase (PEPS), tyrosinase (TYR) and its adapter protein, L-DOPA specific de Carboxylase (DODC), monoamine oxidase (MAO), norcoclaurine synthase (NCS), norcoclaurine 6-O-methyltransferase (6OMT), coclaurin-N-methyltransferase (CNMT) and 3'-hydroxy-N-methyl Does it express coclaurin-4'-O-methyltransferase (4'OMT) and does not have a tyrR gene? Or providing a recombinant host cell that is deficient in function, and the recombinant host cell is selected from the group consisting of glucose, fructose, galactose, sucrose, lactose and maltose as a carbon source. Culturing in a medium containing sugar and / or glycerol;
There is further provided a method for producing (S) -reticuline, comprising:
また、本発明は、L-チロシンを生産する代謝経路を有するイソキノリンアルカロイド非生産性細胞に、fbr-DAHPS、fbr-CM/PDH、TYRおよびそのアダプタータンパク質、DODC、MAO、NCS、6OMT、CNMT ならびに 4'OMT からなる群より選択される少なくとも1つのタンパク質をコードする少なくとも1つの遺伝子が導入され、かつ、TKTおよび PEPS をコードする遺伝子が導入されてなる組換え宿主細胞であって、fbr-DAHPS、fbr-CM/PDH、TYRおよびそのアダプタータンパク質、DODC、MAO、NCS、6OMT、CNMT ならびに 4'OMT を発現し、TKTおよび PEPS を過剰発現し、かつ、tyrR遺伝子を有しないかまたはその機能が欠損している組換え宿主細胞を提供する工程、および
該組換え宿主細胞を、炭素源としてグルコース、フルクトース、ガラクトース、スクロース、ラクトースおよびマルトースからなる群より選択される1種以上の糖および/またはグリセロールを含む培地において培養する工程、
を含む、(S)-レチクリンを生産する方法を提供する。 In addition, the present invention provides an isoquinoline alkaloid non-producing cell having a metabolic pathway for producing L-tyrosine, fbr-DAHPS, fbr-CM / PDH, TYR and its adapter protein, DODC, MAO, NCS, 6OMT, CNMT and A recombinant host cell into which at least one gene encoding at least one protein selected from the group consisting of 4'OMT is introduced and into which genes encoding TKT and PEPS are introduced, fbr-DAHPS Expresses fbr-CM / PDH, TYR and its adapter proteins, DODC, MAO, NCS, 6OMT, CNMT and 4'OMT, overexpresses TKT and PEPS, and does not have tyrR gene or its function Providing a defective recombinant host cell, and using the recombinant host cell as a carbon source with glucose, fructose, galactose, sucrose, lactose and maltose Culturing in a medium containing one or more sugars and / or glycerol selected from the group consisting of
A method for producing (S) -reticuline is provided.
該組換え宿主細胞を、炭素源としてグルコース、フルクトース、ガラクトース、スクロース、ラクトースおよびマルトースからなる群より選択される1種以上の糖および/またはグリセロールを含む培地において培養する工程、
を含む、(S)-レチクリンを生産する方法を提供する。 In addition, the present invention provides an isoquinoline alkaloid non-producing cell having a metabolic pathway for producing L-tyrosine, fbr-DAHPS, fbr-CM / PDH, TYR and its adapter protein, DODC, MAO, NCS, 6OMT, CNMT and A recombinant host cell into which at least one gene encoding at least one protein selected from the group consisting of 4'OMT is introduced and into which genes encoding TKT and PEPS are introduced, fbr-DAHPS Expresses fbr-CM / PDH, TYR and its adapter proteins, DODC, MAO, NCS, 6OMT, CNMT and 4'OMT, overexpresses TKT and PEPS, and does not have tyrR gene or its function Providing a defective recombinant host cell, and using the recombinant host cell as a carbon source with glucose, fructose, galactose, sucrose, lactose and maltose Culturing in a medium containing one or more sugars and / or glycerol selected from the group consisting of
A method for producing (S) -reticuline is provided.
また、本発明によれば、レチクリンを出発物質として作用するイソキノリンアルカロイド生合成酵素をコードする遺伝子を組換え宿主細胞にさらに導入することによって、安価で入手容易な基質から、インビボにおいてイソキノリンアルカロイドを生産することも可能である。
Further, according to the present invention, isoquinoline alkaloid is produced in vivo from an inexpensive and readily available substrate by further introducing into a recombinant host cell a gene encoding an isoquinoline alkaloid biosynthetic enzyme that acts using reticuline as a starting material. It is also possible to do.
すなわち、本発明は、L-チロシンを生産する代謝経路を有するイソキノリンアルカロイド非生産性細胞に、TYRおよびそのアダプタータンパク質、DODC、MAO、NCS、6OMT、CNMT、4'OMT ならびにレチクリンを出発物質として作用するイソキノリンアルカロイド生合成酵素からなる群より選択される少なくとも1つのタンパク質をコードする少なくとも1つの遺伝子が導入されてなる、TYRおよびそのアダプタータンパク質、DODC、MAO、NCS、6OMT、CNMT、4'OMT ならびにレチクリンを出発物質として作用するイソキノリンアルカロイド生合成酵素を発現する組換え宿主細胞を提供する工程、および
該組換え宿主細胞を、炭素源としてグルコース、フルクトース、ガラクトース、スクロース、ラクトースおよびマルトースからなる群より選択される1種以上の糖および/またはグリセロールを含む培地において培養する工程、
を含む、イソキノリンアルカロイドを生産する方法を提供する。 That is, the present invention acts on isoquinoline alkaloid non-producing cells having a metabolic pathway that produces L-tyrosine, starting from TYR and its adapter proteins, DODC, MAO, NCS, 6OMT, CNMT, 4'OMT and reticuline. TYR and its adapter protein, DODC, MAO, NCS, 6OMT, CNMT, 4'OMT, and at least one gene encoding at least one protein selected from the group consisting of isoquinoline alkaloid biosynthetic enzymes Providing a recombinant host cell expressing an isoquinoline alkaloid biosynthetic enzyme that acts as a starting material, and the recombinant host cell is selected from the group consisting of glucose, fructose, galactose, sucrose, lactose and maltose as a carbon source. One or more selected sugars and Step of culturing in a medium containing / or glycerol,
A method for producing isoquinoline alkaloids is provided.
該組換え宿主細胞を、炭素源としてグルコース、フルクトース、ガラクトース、スクロース、ラクトースおよびマルトースからなる群より選択される1種以上の糖および/またはグリセロールを含む培地において培養する工程、
を含む、イソキノリンアルカロイドを生産する方法を提供する。 That is, the present invention acts on isoquinoline alkaloid non-producing cells having a metabolic pathway that produces L-tyrosine, starting from TYR and its adapter proteins, DODC, MAO, NCS, 6OMT, CNMT, 4'OMT and reticuline. TYR and its adapter protein, DODC, MAO, NCS, 6OMT, CNMT, 4'OMT, and at least one gene encoding at least one protein selected from the group consisting of isoquinoline alkaloid biosynthetic enzymes Providing a recombinant host cell expressing an isoquinoline alkaloid biosynthetic enzyme that acts as a starting material, and the recombinant host cell is selected from the group consisting of glucose, fructose, galactose, sucrose, lactose and maltose as a carbon source. One or more selected sugars and Step of culturing in a medium containing / or glycerol,
A method for producing isoquinoline alkaloids is provided.
レチクリンを出発物質として作用するイソキノリンアルカロイド生合成酵素の例としてはコリツベリンシンターゼ(以下、CYP80G2 とも称する)およびベルベリン架橋酵素(以下、BBE とも称する) が挙げられ、CYP80G2 を発現させることによりコリツベリンを介してマグノフロリンを合成することができ、BBE を発現させることによりプロトベルベリンアルカロイドであるスコウレリンを合成することができる(図5)。また、CYP80G2 を発現させる場合には、NADPH-シトクロームP450レダクターゼを共に発現させるのが好ましい。
Examples of isoquinoline alkaloid biosynthetic enzymes that act using reticuline as a starting material include colituberin synthase (hereinafter also referred to as CYP80G2) and berberine cross-linking enzyme (hereinafter also referred to as BBE), and by expressing CYP80G2, Then, magnoflorin can be synthesized, and sverrelin, which is a protoberberine alkaloid, can be synthesized by expressing BBE (FIG. 5). When CYP80G2 is expressed, it is preferable to express NADPH-cytochrome P450 reductase together.
また、本発明は、L-チロシンを生産する代謝経路を有するイソキノリンアルカロイド非生産性細胞に、TYRおよびそのアダプタータンパク質、DODC、MAO、NCS、6OMT、CNMT ならびに 4'OMT からなる群より選択される少なくとも1つのタンパク質をコードする少なくとも1つの遺伝子が導入されてなる、TYRおよびそのアダプタータンパク質、DODC、MAO、NCS、6OMT、CNMT ならびに 4'OMT を発現する組換え宿主細胞を提供する。
The present invention also provides that isoquinoline alkaloid non-producing cells having a metabolic pathway for producing L-tyrosine are selected from the group consisting of TYR and its adapter proteins, DODC, MAO, NCS, 6OMT, CNMT and 4'OMT. Recombinant host cells expressing TYR and its adapter proteins, DODC, MAO, NCS, 6OMT, CNMT and 4'OMT, into which at least one gene encoding at least one protein has been introduced.
本発明の組換え宿主細胞は、以下の(i)から(iii)のうち1以上の性質を有していることが好ましい:
(i) tyrR遺伝子を有しないかまたはその機能が欠損しているものであること、
(ii) fbr-DAHPS および/または fbr-CM/PDH を発現するものであること、
(iii) TKT および/または PEPS を過剰発現するものであること。
これらの性質を有することにより、該組換え宿主細胞における L-チロシンの生産性が向上し、(S)-レチクリンないし他のイソキノリンアルカロイドの収量を増大させることができる。 The recombinant host cell of the present invention preferably has one or more of the following properties (i) to (iii):
(i) not having the tyrR gene or lacking its function;
(ii) express fbr-DAHPS and / or fbr-CM / PDH,
(iii) Overexpressing TKT and / or PEPS.
By having these properties, the productivity of L-tyrosine in the recombinant host cell can be improved, and the yield of (S) -reticuline or other isoquinoline alkaloids can be increased.
(i) tyrR遺伝子を有しないかまたはその機能が欠損しているものであること、
(ii) fbr-DAHPS および/または fbr-CM/PDH を発現するものであること、
(iii) TKT および/または PEPS を過剰発現するものであること。
これらの性質を有することにより、該組換え宿主細胞における L-チロシンの生産性が向上し、(S)-レチクリンないし他のイソキノリンアルカロイドの収量を増大させることができる。 The recombinant host cell of the present invention preferably has one or more of the following properties (i) to (iii):
(i) not having the tyrR gene or lacking its function;
(ii) express fbr-DAHPS and / or fbr-CM / PDH,
(iii) Overexpressing TKT and / or PEPS.
By having these properties, the productivity of L-tyrosine in the recombinant host cell can be improved, and the yield of (S) -reticuline or other isoquinoline alkaloids can be increased.
したがって本発明は、L-チロシンを生産する代謝経路を有するイソキノリンアルカロイド非生産性細胞に、fbr-DAHPS、fbr-CM/PDH、TKT、PEPS、TYRおよびそのアダプタータンパク質、DODC、MAO、NCS、6OMT、CNMT ならびに 4'OMT からなる群より選択される少なくとも1つのタンパク質をコードする少なくとも1つの遺伝子が導入されてなる組換え宿主細胞であって、fbr-DAHPS、fbr-CM/PDH、TKT、PEPS、TYRおよびそのアダプタータンパク質、DODC、MAO、NCS、6OMT、CNMT ならびに 4'OMT を発現し、かつ、tyrR遺伝子を有しないかまたはその機能が欠損している組換え宿主細胞をさらに提供する。
Therefore, the present invention relates to isoquinoline alkaloid non-producing cells having a metabolic pathway that produces L-tyrosine, fbr-DAHPS, fbr-CM / PDH, TKT, PEPS, TYR and its adapter proteins, DODC, MAO, NCS, 6OMT. A recombinant host cell into which at least one gene encoding at least one protein selected from the group consisting of CNMT and 4'OMT is introduced, comprising fbr-DAHPS, fbr-CM / PDH, TKT, PEPS Further provided are recombinant host cells that express TYR and its adapter proteins, DODC, MAO, NCS, 6OMT, CNMT and 4'OMT, and lack the tyrR gene or lack its function.
また、本発明は、L-チロシンを生産する代謝経路を有するイソキノリンアルカロイド非生産性細胞に、fbr-DAHPS、fbr-CM/PDH、TYRおよびそのアダプタータンパク質、DODC、MAO、NCS、6OMT、CNMT ならびに 4'OMT からなる群より選択される少なくとも1つのタンパク質をコードする少なくとも1つの遺伝子が導入され、かつ、TKTおよび PEPS をコードする遺伝子が導入されてなる組換え宿主細胞であって、fbr-DAHPS、fbr-CM/PDH、TYRおよびそのアダプタータンパク質、DODC、MAO、NCS、6OMT、CNMT ならびに 4'OMT を発現し、TKTおよび PEPS を過剰発現し、かつ、tyrR遺伝子を有しないかまたはその機能が欠損している組換え宿主細胞を提供する。
In addition, the present invention relates to non-isoquinoline alkaloid-producing cells having a metabolic pathway that produces L-tyrosine, fbr-DAHPS, fbr-CM / PDH, TYR and its adapter proteins, DODC, MAO, NCS, 6OMT, CNMT and A recombinant host cell into which at least one gene encoding at least one protein selected from the group consisting of 4'OMT is introduced, and into which a gene encoding TKT and PEPS is introduced, fbr-DAHPS Fbr-CM / PDH, TYR and its adapter proteins, DODC, MAO, NCS, 6OMT, CNMTCN and 4'OMT are expressed, TKT and PEPS 過 剰 are overexpressed, and no tyrR gene is present or its function A defective recombinant host cell is provided.
また、本発明においては、上記の「TYRおよびそのアダプタータンパク質」に代えて、その活性を示すためにアダプタータンパク質を必要としないTYR、例えばRalstonia solanacearum由来のTYRを用いることもできる。したがって、本発明は、L-チロシンを生産する代謝経路を有するイソキノリンアルカロイド非生産性細胞に、Ralstonia solanacearum由来のチロシナーゼ(以下、RsTYR とも称する)、DODC、MAO、NCS、6OMT、CNMTならびに4'OMTからなる群より選択される少なくとも1つのタンパク質をコードする少なくとも1つの遺伝子が導入されてなる、RsTYR、DODC、MAO、NCS、6OMT、CNMTならびに4'OMTを発現する組換え宿主細胞を提供する工程、および
該組換え宿主細胞を、炭素源としてグルコース、フルクトース、ガラクトース、スクロース、ラクトースおよびマルトースからなる群より選択される1種以上の糖および/またはグリセロールを含む培地において培養する工程、
を含む、(S)-レチクリンを生産する方法をさらに提供する。 In the present invention, in place of the above “TYR and its adapter protein”, a TYR that does not require an adapter protein to exhibit its activity, for example, TYR derived from Ralstonia solanacearum can also be used. Accordingly, the present invention relates to isoquinoline alkaloid non-producing cells having a metabolic pathway for producing L-tyrosine, tyrosinase derived from Ralstonia solanacearum (hereinafter also referred to as RsTYR), DODC, MAO, NCS, 6OMT, CNMT and 4′OMT. Providing a recombinant host cell expressing RsTYR, DODC, MAO, NCS, 6OMT, CNMT and 4'OMT, into which at least one gene encoding at least one protein selected from the group consisting of: And culturing the recombinant host cell in a medium containing one or more sugars and / or glycerol selected from the group consisting of glucose, fructose, galactose, sucrose, lactose and maltose as a carbon source,
There is further provided a method for producing (S) -reticuline, comprising:
該組換え宿主細胞を、炭素源としてグルコース、フルクトース、ガラクトース、スクロース、ラクトースおよびマルトースからなる群より選択される1種以上の糖および/またはグリセロールを含む培地において培養する工程、
を含む、(S)-レチクリンを生産する方法をさらに提供する。 In the present invention, in place of the above “TYR and its adapter protein”, a TYR that does not require an adapter protein to exhibit its activity, for example, TYR derived from Ralstonia solanacearum can also be used. Accordingly, the present invention relates to isoquinoline alkaloid non-producing cells having a metabolic pathway for producing L-tyrosine, tyrosinase derived from Ralstonia solanacearum (hereinafter also referred to as RsTYR), DODC, MAO, NCS, 6OMT, CNMT and 4′OMT. Providing a recombinant host cell expressing RsTYR, DODC, MAO, NCS, 6OMT, CNMT and 4'OMT, into which at least one gene encoding at least one protein selected from the group consisting of: And culturing the recombinant host cell in a medium containing one or more sugars and / or glycerol selected from the group consisting of glucose, fructose, galactose, sucrose, lactose and maltose as a carbon source,
There is further provided a method for producing (S) -reticuline, comprising:
同様に、本明細書に記載される様々な本発明の(S)-レチクリンを生産する方法および組換え宿主細胞において「TYRおよびそのアダプタータンパク質」に代えてRalstonia solanacearum由来のTYR(RsTYR)を用いる態様も、本発明の好ましい態様として提供される。
Similarly, TYR from Ralstonia solanacearum (RsTYR) is used instead of “TYR and its adapter protein” in the various methods of producing (S) -reticuline of the invention described herein and in recombinant host cells. Embodiments are also provided as preferred embodiments of the present invention.
なお、本明細書において、RsTYRとの用語はRalstonia solanacearum由来のTYRを意味するが、単にチロシナーゼ(TYR)と表記した場合には、その由来に関わらずあらゆるTYRが該用語に包含されるものとする。
In the present specification, the term RsTYR means TYR derived from Ralstonia solanacearum, but when it is simply expressed as tyrosinase (TYR), all TYRs are included in the term regardless of its origin. To do.
ここで、ベンジルイソキノリンアルカロイドを生産する植物における、L-チロシンから(S)-レチクリンに至る生合成経路を図4に示す。
Here, the biosynthetic pathway from L-tyrosine to (S) -reticuline in a plant producing benzylisoquinoline alkaloid is shown in FIG.
一方、本発明の方法において再構築される生合成経路は、MAO を用いることによってドーパミンから 3,4-DHPAA を合成し、該 3,4-DHPAA とドーパミンを NCS の作用を介してカップリングさせることにより (S)-ノルラウダノソリンを生成させるものである(図1)。これにより、植物の生合成経路における N-メチルコクラウリン 3'-ヒドロキシラーゼ(以下、CYP80B とも称する)による水酸化の工程(図4参照)を省略することができる。
On the other hand, the biosynthetic pathway reconstructed in the method of the present invention synthesizes 3,4-DHPAA from dopamine by using MAO, and couples 3,4-DHPAA and dopamine through the action of NCS. This produces (S) -norlaudanosoline (Fig. 1). This eliminates the step of hydroxylation (see FIG. 4) by N-methylcoclaurine 3′-hydroxylase (hereinafter also referred to as CYP80B) in the plant biosynthetic pathway.
しかし、芳香族L-アミノ酸デカルボキシラーゼが本発明の方法において再構築される生合成経路中に存在すると、該芳香族L-アミノ酸デカルボキシラーゼの作用によって芳香族L-アミノ酸が脱炭酸されて芳香族アミンが生成し、これが MAO と反応してしまうため好ましくない。特に、L-チロシンが脱炭酸されるとチラミンが生成し、MAO はドーパミンよりもチラミンに対し高い選択性を示す(すなわちチラミンと優先的に反応する)ため、本発明の方法が意図しない 4-HPAA が生成されてしまう。該 4-HPAA は NCS の作用によりドーパミンとカップリングし、(S)-ノルコクラウリンが生成される。この場合、該(S)-ノルコクラウリンから(S)-レチクリンを得るためには、6OMT、CNMT、4'OMT に加えて CYP80B を用いる必要があるが(図4)、該 CYP80B はチトクロームP450酵素であるため、微生物内ではうまく機能しないことが多い。
However, when the aromatic L-amino acid decarboxylase is present in the biosynthetic pathway reconstructed in the method of the present invention, the aromatic L-amino acid is decarboxylated by the action of the aromatic L-amino acid decarboxylase, and the aromatic L-amino acid decarboxylase is aromatic. An amine is formed, which is not preferable because it reacts with MAO. In particular, when L-tyrosine is decarboxylated, tyramine is produced, and MAO has a higher selectivity for tyramine than dopamine (ie, it reacts preferentially with tyramine), so the method of the present invention is not intended. HPAA will be generated. The 4-HPAA is coupled with dopamine by the action of NCS to produce (S) -norcoclaurine. In this case, in order to obtain (S) -reticuline from the (S) -norcoclaurin, it is necessary to use CYP80B in addition to 6OMT, CNMT and 4′OMT (FIG. 4), and the CYP80B is cytochrome P450. Because it is an enzyme, it often does not function well in microorganisms.
そこで、本発明の方法においては、L-DOPA特異的デカルボキシラーゼ(DODC)を宿主細胞に導入して発現させる。具体的には、本発明の方法は、(i) ベンジルイソキノリンアルカロイド生合成経路の再構築において、L-チロシンを脱炭酸する芳香族L-アミノ酸デカルボキシラーゼを用いることを避け、その代わりに (ii) チロシナーゼ(TYR)またはチロシナーゼ(TYR)およびそのアダプタータンパク質を発現させて L-チロシンから L-DOPA への変換経路を作り、さらに (iii) L-DOPA特異的デカルボキシラーゼ(DODC)を発現させて L-DOPA からドーパミンへの変換経路を作ることを特徴とする。
Therefore, in the method of the present invention, L-DOPA-specific decarboxylase (DODC) is introduced into a host cell and expressed. Specifically, the method of the present invention avoids the use of an aromatic L-amino acid decarboxylase that decarboxylates L-tyrosine in the reconstruction of (i) benzylisoquinoline alkaloid biosynthetic pathway, instead of (ii ) Tyrosinase (TYR) or tyrosinase (TYR) and its adapter protein are expressed to create a conversion pathway from L-tyrosine to L-DOPA, and (iii) L-DOPA-specific decarboxylase (DODC) is expressed It is characterized by creating a conversion path from L-DOPA to dopamine.
したがって、本発明の組換え宿主細胞および本発明の方法において用いる組換え宿主細胞は、L-DOPA特異的デカルボキシラーゼ以外の芳香族L-アミノ酸デカルボキシラーゼをコードする遺伝子が導入されていないものであることが好ましい。
Therefore, the recombinant host cell of the present invention and the recombinant host cell used in the method of the present invention are those into which a gene encoding an aromatic L-amino acid decarboxylase other than L-DOPA-specific decarboxylase has not been introduced. It is preferable.
これにより、宿主細胞へ導入する遺伝子にコードされる酵素によって L-チロシンからチラミンが生成されることは無く、その一方で TYRまたはTYR およびそのアダプタータンパク質ならびに DODC の発現によってドーパミンが高い効率で生産される。その結果、ドーパミンと 3,4-DHPAA とのカップリングによる(S)-ノルラウダノソリンの生成を経て(S)-レチクリンに至る経路へと代謝フローを効率的に流すことが可能となる(図1)。
As a result, tyramine is not generated from L-tyrosine by the enzyme encoded by the gene to be introduced into the host cell, while dopamine is produced with high efficiency by expression of TYR or TYR and its adapter protein and DODC. The As a result, it is possible to efficiently flow metabolic flow to the pathway leading to (S) -reticuline through the production of (S) -norlaudanosoline by coupling of dopamine and 3,4-DHPAA ( FIG. 1).
なお、植物および動物においては、L-DOPA は主にチロシンヒドロキシラーゼ(TH、EC 1.14.16.2)によって L-チロシンから合成され、かかる反応には補因子としてテトラヒドロビオプテリン(BH4)が必要である。しかし、本発明の方法において好適に用いられる大腸菌細胞は、該テトラヒドロビオプテリンを合成することができない。そこで、本発明の方法においては、L-チロシンから L-DOPA への変換のために、銅およびアダプタータンパク質(例えばORF378)以外の補因子を必要としない、細菌のチロシナーゼ(TYR、EC 1.14.18.1)を用いることが好ましい。また、アダプタータンパク質を必要としないRalstonia solanacearum由来のTYRも好適に用いることができる。
In plants and animals, L-DOPA is synthesized mainly from tyrosine hydroxylase (TH, EC 1.14.16.2) from L-tyrosine, and such a reaction requires tetrahydrobiopterin (BH4) as a cofactor. However, E. coli cells that are preferably used in the method of the present invention cannot synthesize the tetrahydrobiopterin. Therefore, in the method of the present invention, bacterial tyrosinase (TYR, EC 1.14.18.1) does not require a cofactor other than copper and an adapter protein (for example, ORF378) for conversion of L-tyrosine to L-DOPA. ) Is preferably used. Moreover, TYR derived from Ralstonia solanacearum that does not require an adapter protein can also be suitably used.
本発明に係る組換え宿主細胞は、通常、L-チロシンを生産する代謝経路を有するイソキノリンアルカロイド非生産性細胞に、TYRまたはTYRおよびそのアダプタータンパク質、DODC、MAO、NCS、6OMT、CNMT ならびに 4'OMT からなる群より選択される少なくとも1つのタンパク質をコードする少なくとも1つの遺伝子を導入することによって得ることができる。
Recombinant host cells according to the present invention usually include isoquinoline alkaloid non-producing cells having a metabolic pathway that produces L-tyrosine, TYR or TYR and its adapter proteins, DODC, MAO, NCS, 6OMT, CNMT and 4 ′. It can be obtained by introducing at least one gene encoding at least one protein selected from the group consisting of OMT.
例えば、L-チロシンを生産する代謝経路を有するイソキノリンアルカロイド非生産性細胞が、「TYRまたはTYRおよびそのアダプタータンパク質、DODC、MAO、NCS、6OMT、CNMT ならびに 4'OMT」からなる群より選択されるタンパク質をコードする1つ以上の遺伝子を既に有している場合には、当該群に含まれる他の全ての遺伝子を該細胞に導入することにより、「TYRまたはTYRおよびそのアダプタータンパク質、DODC、MAO、NCS、6OMT、CNMT ならびに 4'OMT」の全てを発現する本発明の組換え宿主細胞を得ることができる。また、L-チロシンを生産する代謝経路を有するイソキノリンアルカロイド非生産性細胞が「TYRまたはTYRおよびそのアダプタータンパク質、DODC、MAO、NCS、6OMT、CNMT ならびに 4'OMT」をコードする遺伝子のいずれも有していない場合には、「TYRまたはTYRおよびそのアダプタータンパク質、DODC、MAO、NCS、6OMT、CNMT ならびに 4'OMT」をコードする遺伝子の全てを該細胞に導入することにより、本発明の組換え宿主細胞を得ることができる。
For example, an isoquinoline alkaloid non-producing cell having a metabolic pathway that produces L-tyrosine is selected from the group consisting of “TYR or TYR and its adapter protein, DODC, MAO, NCS, 6OMT, CNMT and 4'OMT” If you already have one or more genes encoding a protein, you can introduce “TYR or TYR and its adapter protein, DODC, MAO by introducing all the other genes in the group into the cell. , NCS, 6OMT, CNMT and 4′OMT ”can be obtained. Also, non-isoquinoline alkaloid-producing cells that have metabolic pathways that produce L-tyrosine have any of the genes encoding TYR or TYR and its adapter proteins, DODC, MAO, NCS, 6OMT, CNMT and 4'OMT. If not, all of the genes encoding “TYR or TYR and its adapter protein, DODC, MAO, NCS, 6OMT, CNMT and 4′OMT” are introduced into the cells, so that the recombinant of the present invention Host cells can be obtained.
本発明に係る組換え宿主細胞を得るために遺伝子を導入する宿主細胞は、L-チロシンを生産する代謝経路を有するイソキノリンアルカロイド非生産性細胞であれば特に限定されないが、より効率的な(S)-レチクリン生産のためには、L-チロシンを大量に生産する能力を有する宿主細胞であることが好ましい。
The host cell into which the gene is introduced to obtain the recombinant host cell according to the present invention is not particularly limited as long as it is an isoquinoline alkaloid non-producing cell having a metabolic pathway for producing L-tyrosine, but more efficient (S For the production of) -reticuline, a host cell having the ability to produce L-tyrosine in large quantities is preferred.
L-チロシンを大量に生産する能力は、典型的には、以下の(1)~(3)から選択される1以上の方法によって宿主細胞に付与することができる:
(1) 宿主細胞が有する tyrR遺伝子の機能喪失(loss of function)または tyrR遺伝子の発現抑制(ここにいう機能喪失には、完全な機能喪失と部分的な機能喪失が含まれる);
(2) fbr-DAHPS および/または fbr-CM/PDH をコードする1以上の遺伝子の宿主細胞への導入および宿主細胞における発現;
(3) TKT および/または PEPS をコードする1以上の遺伝子の宿主細胞への導入および宿主細胞における過剰発現。
ここで、tyrR遺伝子の機能は、当該技術分野における公知の手段、例えば相同組換えを利用したノックイン/ノックアウト、トランスポゾン等の転移因子の転移を利用した遺伝子破壊等によって喪失させることができる。また、tyrR遺伝子の発現は、当該技術分野における公知の手段、例えばコサプレッション、アンチセンス法、RNAiなどによって抑制することができる。 The ability to produce L-tyrosine in large quantities can typically be conferred to a host cell by one or more methods selected from the following (1) to (3):
(1) Loss of function of tyrR gene in host cells or suppression of expression of tyrR gene (this loss of function includes complete loss of function and partial loss of function);
(2) introduction of one or more genes encoding fbr-DAHPS and / or fbr-CM / PDH into a host cell and expression in the host cell;
(3) Introduction of one or more genes encoding TKT and / or PEPS into the host cell and overexpression in the host cell.
Here, the function of the tyrR gene can be lost by means known in the art, for example, knock-in / knock-out using homologous recombination, gene disruption using transfer of a transfer factor such as a transposon, and the like. In addition, the expression of the tyrR gene can be suppressed by means known in the art, for example, cosuppression, antisense method, RNAi and the like.
(1) 宿主細胞が有する tyrR遺伝子の機能喪失(loss of function)または tyrR遺伝子の発現抑制(ここにいう機能喪失には、完全な機能喪失と部分的な機能喪失が含まれる);
(2) fbr-DAHPS および/または fbr-CM/PDH をコードする1以上の遺伝子の宿主細胞への導入および宿主細胞における発現;
(3) TKT および/または PEPS をコードする1以上の遺伝子の宿主細胞への導入および宿主細胞における過剰発現。
ここで、tyrR遺伝子の機能は、当該技術分野における公知の手段、例えば相同組換えを利用したノックイン/ノックアウト、トランスポゾン等の転移因子の転移を利用した遺伝子破壊等によって喪失させることができる。また、tyrR遺伝子の発現は、当該技術分野における公知の手段、例えばコサプレッション、アンチセンス法、RNAiなどによって抑制することができる。 The ability to produce L-tyrosine in large quantities can typically be conferred to a host cell by one or more methods selected from the following (1) to (3):
(1) Loss of function of tyrR gene in host cells or suppression of expression of tyrR gene (this loss of function includes complete loss of function and partial loss of function);
(2) introduction of one or more genes encoding fbr-DAHPS and / or fbr-CM / PDH into a host cell and expression in the host cell;
(3) Introduction of one or more genes encoding TKT and / or PEPS into the host cell and overexpression in the host cell.
Here, the function of the tyrR gene can be lost by means known in the art, for example, knock-in / knock-out using homologous recombination, gene disruption using transfer of a transfer factor such as a transposon, and the like. In addition, the expression of the tyrR gene can be suppressed by means known in the art, for example, cosuppression, antisense method, RNAi and the like.
tyrR遺伝子を有しないかまたはその機能が欠損している本発明の組換え宿主細胞は、例えば以下の方法によって得ることが可能である:
(1) tyrR遺伝子を有しないかまたはその機能が欠損している宿主細胞に、TYR等の必要な遺伝子を導入すること、
(2) 宿主細胞が有するtyrR遺伝子の機能を喪失させた後、該宿主細胞にTYR等の必要な遺伝子を導入すること、または
(3) 宿主細胞にTYR等の必要な遺伝子を導入した後、該宿主細胞が有するtyrR遺伝子の機能を喪失させること。 The recombinant host cell of the present invention which does not have the tyrR gene or lacks its function can be obtained, for example, by the following method:
(1) introducing a necessary gene such as TYR into a host cell that does not have the tyrR gene or lacks its function;
(2) After losing the function of the tyrR gene possessed by the host cell, introducing a necessary gene such as TYR into the host cell, or (3) After introducing the necessary gene such as TYR into the host cell, Losing the function of the tyrR gene possessed by the host cell.
(1) tyrR遺伝子を有しないかまたはその機能が欠損している宿主細胞に、TYR等の必要な遺伝子を導入すること、
(2) 宿主細胞が有するtyrR遺伝子の機能を喪失させた後、該宿主細胞にTYR等の必要な遺伝子を導入すること、または
(3) 宿主細胞にTYR等の必要な遺伝子を導入した後、該宿主細胞が有するtyrR遺伝子の機能を喪失させること。 The recombinant host cell of the present invention which does not have the tyrR gene or lacks its function can be obtained, for example, by the following method:
(1) introducing a necessary gene such as TYR into a host cell that does not have the tyrR gene or lacks its function;
(2) After losing the function of the tyrR gene possessed by the host cell, introducing a necessary gene such as TYR into the host cell, or (3) After introducing the necessary gene such as TYR into the host cell, Losing the function of the tyrR gene possessed by the host cell.
fbr-DAHPS および/または fbr-CM/PDHを発現している細胞や、TKT および/または PEPSを高レベルで発現している細胞等を、本発明に係る組換え宿主細胞を得るために遺伝子を導入する宿主細胞として用いてもよい。
In order to obtain a recombinant host cell according to the present invention, a gene expressing fbr-DAHPS and / or fbr-CM / PDH, a cell expressing TKT and / or PEPS at a high level, etc. It may be used as a host cell to be introduced.
「fbr-DAHPS、fbr-CM/PDH、TKT、PEPS、TYRまたはTYRおよびそのアダプタータンパク質、DODC、MAO、NCS、6OMT、CNMT ならびに 4'OMT」を発現する本発明の組換え宿主細胞は、例えば以下の方法によって得ることが可能である:
(1) これら全ての遺伝子を宿主細胞に導入すること、または
(2) 「fbr-DAHPS、fbr-CM/PDH、TKT、PEPS、TYRまたはTYRおよびそのアダプタータンパク質、DODC、MAO、NCS、6OMT、CNMT ならびに 4'OMT」からなる群より選択されるタンパク質をコードする1つ以上の遺伝子を有している宿主細胞に、当該群に含まれる他の全ての遺伝子を導入すること。 Recombinant host cells of the present invention that express "fbr-DAHPS, fbr-CM / PDH, TKT, PEPS, TYR or TYR and its adapter proteins, DODC, MAO, NCS, 6OMT, CNMT and 4'OMT" It can be obtained by the following method:
(1) introducing all these genes into host cells, or (2) "fbr-DAHPS, fbr-CM / PDH, TKT, PEPS, TYR or TYR and their adapter proteins, DODC, MAO, NCS, 6OMT, All other genes included in the group are introduced into a host cell having one or more genes encoding a protein selected from the group consisting of CNMT and 4′OMT ”.
(1) これら全ての遺伝子を宿主細胞に導入すること、または
(2) 「fbr-DAHPS、fbr-CM/PDH、TKT、PEPS、TYRまたはTYRおよびそのアダプタータンパク質、DODC、MAO、NCS、6OMT、CNMT ならびに 4'OMT」からなる群より選択されるタンパク質をコードする1つ以上の遺伝子を有している宿主細胞に、当該群に含まれる他の全ての遺伝子を導入すること。 Recombinant host cells of the present invention that express "fbr-DAHPS, fbr-CM / PDH, TKT, PEPS, TYR or TYR and its adapter proteins, DODC, MAO, NCS, 6OMT, CNMT and 4'OMT" It can be obtained by the following method:
(1) introducing all these genes into host cells, or (2) "fbr-DAHPS, fbr-CM / PDH, TKT, PEPS, TYR or TYR and their adapter proteins, DODC, MAO, NCS, 6OMT, All other genes included in the group are introduced into a host cell having one or more genes encoding a protein selected from the group consisting of CNMT and 4′OMT ”.
好ましい態様において、本発明の組換え宿主細胞は、例えば、tyrR遺伝子の機能を喪失させた宿主細胞に、「fbr-DAHPS、fbr-CM/PDH、TKT、PEPS、TYRまたはTYRおよびそのアダプタータンパク質、DODC、MAO、NCS、6OMT、CNMT ならびに 4'OMT」をコードする遺伝子の全てを導入することによって得ることができる。
In a preferred embodiment, the recombinant host cell of the present invention may be transformed into, for example, `` fbr-DAHPS, fbr-CM / PDH, TKT, PEPS, TYR or TYR and its adapter protein, It can be obtained by introducing all of the genes encoding “DODC, MAO, NCS, 6OMT, CNMT and 4′OMT”.
また、上記の方法に限らず、自然に生じる突然変異または公知の突然変異誘発法などによって L-チロシンを大量に生産する能力を獲得した突然変異株を、本発明に係る組換え宿主細胞を得るために遺伝子を導入する宿主細胞として用いてもよい。
In addition, the recombinant host cell according to the present invention is obtained not only by the above method but also a mutant strain that has acquired the ability to produce a large amount of L-tyrosine by a naturally occurring mutation or a known mutagenesis method. Therefore, it may be used as a host cell into which a gene is introduced.
本発明の方法において遺伝子を導入する宿主細胞としては、イソキノリンアルカロイド非生産性細胞であれば特に限定されないが、例えば大腸菌、酵母、枯草菌および糸状菌などが挙げられ、中でも大腸菌が特に好ましい。
The host cell into which the gene is introduced in the method of the present invention is not particularly limited as long as it is an isoquinoline alkaloid non-producing cell, and examples thereof include Escherichia coli, yeast, Bacillus subtilis, and filamentous fungi.
宿主細胞に遺伝子を導入する場合、遺伝子を直接導入してもよいが、遺伝子が組み込まれたベクターを宿主に導入するのが好ましい。導入遺伝子はすべて同一のベクターに組み込んでもよいし、2以上の別々のベクターに分けて組み込んでもよい。
When introducing a gene into a host cell, the gene may be directly introduced, but it is preferable to introduce a vector into which the gene is incorporated into the host. All transgenes may be incorporated into the same vector, or may be incorporated into two or more separate vectors.
導入遺伝子を組み込むベクターとしては、宿主細胞内で自律的に複製しうるプラスミドまたはファージから遺伝子組換え用として構築されたものが適している。ベクターは、導入される宿主細胞に適合した複製開始起点、選択可能なマーカー、プロモーター等の発現制御配列、およびターミネーター配列を含むものが好ましい。プラスミドベクターとしては、例えば大腸菌で発現させる場合は、pETベクター系、pQEベクター系、pColdベクター系などが挙げられ、酵母で発現させる場合は、pYES2ベクター系、pYEXベクター系などが挙げられる。
As the vector into which the transgene is incorporated, a vector constructed for gene recombination from a plasmid or phage capable of autonomous replication in a host cell is suitable. The vector preferably contains a replication origin suitable for the host cell to be introduced, a selectable marker, an expression control sequence such as a promoter, and a terminator sequence. Examples of the plasmid vector include a pET vector system, a pQE vector system, and a pCold vector system when expressed in E. coli, and a pYES2 vector system and a pYEX vector system when expressed in yeast.
選択可能なマーカーとしては、アンピシリン耐性遺伝子、カナマイシン耐性遺伝子、ストレプトマイシン耐性遺伝子などの抗生物質耐性遺伝子が挙げられる。
Examples of selectable markers include antibiotic resistance genes such as ampicillin resistance gene, kanamycin resistance gene, and streptomycin resistance gene.
その内部に組み込まれた導入遺伝子を発現させるベクター(以下において、発現ベクターと称する)は、発現制御配列を含むものが好ましい。発現制御配列とは、DNA配列に適切に連結した場合、宿主細胞において、そのDNA配列からなる遺伝子の発現を制御すること、すなわち、該DNA配列のRNAへの転写を誘導および/または促進すること、あるいは抑制することができる配列を意味する。発現制御配列には少なくともプロモーターが含まれる。プロモーターは構成的プロモーターであっても誘導可能なプロモーターであってもよい。さらに該発現ベクターには転写終結シグナル、即ちターミネーター配列が含まれることが好ましい。
A vector for expressing the transgene incorporated therein (hereinafter referred to as an expression vector) preferably contains an expression control sequence. An expression control sequence, when appropriately linked to a DNA sequence, controls the expression of a gene comprising the DNA sequence in a host cell, that is, induces and / or promotes transcription of the DNA sequence to RNA. Or a sequence that can be suppressed. The expression control sequence includes at least a promoter. The promoter may be a constitutive promoter or an inducible promoter. Furthermore, the expression vector preferably contains a transcription termination signal, that is, a terminator sequence.
本発明に用いる発現ベクターは、上記遺伝子の末端に、常法により適当な制限酵素認識部位を付加することにより作成することが出来る。
The expression vector used in the present invention can be prepared by adding an appropriate restriction enzyme recognition site to the end of the above gene by a conventional method.
発現ベクターの宿主細胞への形質転換方法としては、従来公知の方法を用いることが出来、例えば、塩化カルシウム法、エレクトロポレーション法、ヒートショック法などが挙げられる。
As a method for transforming an expression vector into a host cell, a conventionally known method can be used, and examples thereof include a calcium chloride method, an electroporation method, and a heat shock method.
組換え宿主細胞の培養条件は、該組換え宿主細胞が良好に生育し、かつ、目的とする一群のタンパク質、例えば「TYRまたはTYRおよびそのアダプタータンパク質、DODC、MAO、NCS、6OMT、CNMT ならびに 4'OMT」や「fbr-DAHPS、fbr-CM/PDH、TKT、PEPS、TYRまたはTYRおよびそのアダプタータンパク質、DODC、MAO、NCS、6OMT、CNMT ならびに 4'OMT」が全て発現し、それぞれの機能または酵素活性が発揮される条件であれば特に限定されない。具体的には、培養条件は、宿主の栄養生理学的性質を考慮して適宜選択すればよく、通常、液体培養で行われる。
The culture conditions of the recombinant host cell are such that the recombinant host cell grows well and the desired group of proteins such as “TYR or TYR and its adapter proteins, DODC, MAO, NCS, 6OMT, CNMT and 4 'OMT' and 'fbr-DAHPS, fbr-CM / PDH, TKT, PEPS, TYR or TYR and their adapter proteins, DODC, MAO, NCS, 6OMT, CNMT and 4'OMT' are all expressed and their functions or There is no particular limitation as long as the enzyme activity is exhibited. Specifically, the culture conditions may be appropriately selected in consideration of the nutritional physiological properties of the host, and are usually performed in liquid culture.
組換え宿主細胞の培養に用いる培地の炭素源としては、宿主細胞が利用できる物質であれば特に限定されないが、糖およびグリセロールが挙げられ、特に好ましくはグリセロールである。糖の例としては、単糖、例えばグルコース、フルクトース、ガラクトース等、および二糖、例えばスクロース、ラクトース、マルトース等が挙げられ、その中でもグルコースが好ましい。また、グリセロールを炭素源として用いて培養すると、グルコースを用いる場合よりも(S)-レチクリンの生産効率が高くなる。また、窒素源としては硫酸アンモニウム、カザミノ酸などが挙げられる。その他、塩類、特定のアミノ酸、特定のビタミンなどを所望により使用できる。
The carbon source of the medium used for culturing the recombinant host cell is not particularly limited as long as it is a substance that can be used by the host cell, and examples thereof include sugar and glycerol, and glycerol is particularly preferable. Examples of sugars include monosaccharides such as glucose, fructose, galactose, and disaccharides such as sucrose, lactose, maltose, etc. Among them, glucose is preferred. In addition, when glycerol is used as a carbon source, the production efficiency of (S) -reticuline is higher than when glucose is used. Examples of the nitrogen source include ammonium sulfate and casamino acid. In addition, salts, specific amino acids, specific vitamins and the like can be used as desired.
例えば、大腸菌を培養する培地としては、LB培地、2×YT培地、M9最少培地が挙げられ、酵母を培養する培地としては、SC培地、SD培地、YPD培地が挙げられる。
For example, the medium for culturing E. coli includes LB medium, 2 × YT medium, and M9 minimal medium, and the medium for culturing yeast includes SC medium, SD medium, and YPD medium.
培養温度は、宿主細胞が成育し、目的の酵素を発現し、その活性が発揮される範囲で適宜変更できるが、例えば、大腸菌の場合、温度 25℃、80時間、pH 7.0 の培養条件を用いることができる。酵母の場合、例えば、温度 30℃、60時間、pH 5.8 の培養条件を用いることができる。
The culture temperature can be appropriately changed as long as the host cell grows, expresses the target enzyme, and exhibits its activity. For example, in the case of Escherichia coli, the culture conditions of temperature 25 ° C, 80 hours, pH 7.0 用 い る are used. be able to. In the case of yeast, for example, culture conditions of a temperature of 30 ° C., 60 hours, and pH of 5.8 can be used.
(S)-レチクリンを含む目的のイソキノリンアルカロイドの生産は、当業者に周知のあらゆる手段によって確認することが出来る。具体的には、反応生成物と目的のイソキノリンアルカロイド標品とを、LC-MS に供し、得られるスペクトルを比較することによって同定することが出来る。また、反応生成物と目的のイソキノリンアルカロイド標品との NMR分析による比較によっても確認することが出来る。
Production of the desired isoquinoline alkaloid containing (S) -reticuline can be confirmed by any means known to those skilled in the art. Specifically, the reaction product and the target isoquinoline alkaloid preparation can be identified by subjecting them to LC-MS and comparing the obtained spectra. It can also be confirmed by comparison of the reaction product with the target isoquinoline alkaloid preparation by NMR analysis.
本明細書において、特定の遺伝子を「発現」するとは、該遺伝子を構成する核酸分子が少なくとも RNA分子へ転写されることをいい、ポリペプチドをコードする遺伝子の場合には、該遺伝子を構成する核酸分子が RNA分子へ転写され、該 RNA分子がポリペプチドに翻訳されることをいう。
In the present specification, “expressing” a specific gene means that a nucleic acid molecule constituting the gene is transcribed to at least an RNA molecule. In the case of a gene encoding a polypeptide, the gene is constituted. A nucleic acid molecule is transcribed into a RNA molecule, and the RNA molecule is translated into a polypeptide.
遺伝子の発現レベルは、当該技術分野における公知の方法、例えばノーザンブロット、定量的PCR などによって確認することができる。
The gene expression level can be confirmed by methods known in the art, such as Northern blot, quantitative PCR, and the like.
本明細書において、特定の酵素を「発現」するとは、該酵素のポリペプチドをコードする核酸分子から RNA分子への転写および該 RNA分子からポリペプチドへの翻訳が正常に行われ、活性を有する酵素タンパク質が生み出されて細胞内または細胞外に存在する状態となることをいう。
In this specification, “expressing” a specific enzyme means that transcription from the nucleic acid molecule encoding the polypeptide of the enzyme to the RNA molecule and translation from the RNA molecule to the polypeptide are normally performed and have an activity. It means that an enzyme protein is produced and is present inside or outside the cell.
酵素の発現レベルは、その酵素活性のアッセイにより確認できる。即ち、目的酵素の基質から生成物への変換をアッセイすることにより確認することが出来る。また、ウエスタンブロット、ELISA など公知の手法を用いて酵素タンパク質を検出および定量することによっても確認することができる。
The expression level of the enzyme can be confirmed by assaying the enzyme activity. That is, it can be confirmed by assaying the conversion of the target enzyme from the substrate to the product. It can also be confirmed by detecting and quantifying the enzyme protein using a known method such as Western blotting or ELISA.
本明細書において、特定の遺伝子または酵素を「過剰発現」するとは、該特定の遺伝子または酵素に相当する内在性の遺伝子または酵素を宿主細胞が有している場合には、該内在性遺伝子または酵素の発現レベルと、導入された該特定の遺伝子またはそれにコードされる酵素の発現レベルとを合わせて、該宿主細胞の通常の状態における該内在性遺伝子または酵素の発現レベルを超える遺伝子または酵素の発現レベルを該宿主細胞内において達成することをいう。また、特定の遺伝子または酵素に相当する内在性遺伝子または酵素を宿主細胞が有していない場合には、該特定の遺伝子または酵素を「過剰発現」するとは、導入された該特定の遺伝子またはそれにコードされる酵素について、常套の検出方法によって検出できるレベルの発現を該宿主細胞内において達成することをいう。
In the present specification, “overexpression” of a specific gene or enzyme means that when the host cell has an endogenous gene or enzyme corresponding to the specific gene or enzyme, the endogenous gene or enzyme A gene or enzyme that exceeds the expression level of the endogenous gene or enzyme in the normal state of the host cell by combining the expression level of the enzyme with the expression level of the introduced specific gene or the enzyme encoded thereby. Achieving an expression level in the host cell. In addition, when the host cell does not have an endogenous gene or enzyme corresponding to a specific gene or enzyme, “overexpression” of the specific gene or enzyme means that the introduced specific gene or enzyme For the encoded enzyme, achieving a level of expression in the host cell that can be detected by conventional detection methods.
本明細書において、生合成経路を「再構築」するとは、所望の化合物を天然には生産しない宿主細胞中において、該所望の化合物が得られるよう、該化合物を生合成するために必要な1または複数の反応を触媒する1または複数の酵素を発現させて、該化合物へと繋がる代謝経路を作り出すことをいう。かくして宿主細胞内に「再構築」される生合成経路は、該細胞が天然には有していないものである。本発明の方法において、典型的には、所望の化合物はイソキノリンアルカロイド、特に(S)-レチクリンであり、必要な酵素の発現は、該酵素をコードする遺伝子を宿主細胞に導入することによって達成することができる。
As used herein, “reconstructing” a biosynthetic pathway refers to the 1 necessary to biosynthesize the compound in a host cell that does not naturally produce the desired compound so that the desired compound is obtained. Alternatively, expression of one or more enzymes that catalyze a plurality of reactions to create a metabolic pathway leading to the compound. Thus, a biosynthetic pathway that is “reconstructed” into a host cell is one that the cell does not naturally possess. In the methods of the present invention, typically the desired compound is an isoquinoline alkaloid, particularly (S) -reticuline, and expression of the required enzyme is achieved by introducing a gene encoding the enzyme into a host cell. be able to.
本明細書において、本発明の方法によって得られるレチクリンが「実質的に(R)-レチクリンを含まない」とは、(R)-レチクリンに対する(S)-レチクリンのエナンチオマー過剰率が少なくとも80%以上、好ましくは90%以上、最も好ましくは100%であることをいう。
In this specification, the reticuline obtained by the method of the present invention is “substantially free of (R) -reticuline” means that the enantiomeric excess of (S) -reticuline relative to (R) -reticuline is at least 80% or more. , Preferably 90% or more, most preferably 100%.
本発明において用いられるチロシナーゼ(TYR)は、L-チロシンのベンゼン環の3位を水酸化して L-DOPA に変換する反応を触媒する酵素活性を有するものであれば特に限定されない。また、TYR の由来は特に限定されないが、微生物由来のものであることが好ましく、例えば Streptomyces castaneoglobisporus 由来のものが挙げられる。本発明の方法においては、例えば、配列番号6に示すヌクレオチド配列にコードされる S. castaneoglobisporus 由来の TYRを好適に用いることができる。
The tyrosinase (TYR) used in the present invention is not particularly limited as long as it has an enzyme activity that catalyzes the reaction of hydroxylating the 3-position of the benzene ring of L-tyrosine and converting it to L-DOPA. The origin of TYR cocoons is not particularly limited, but is preferably derived from microorganisms, and examples include those derived from Streptomyces castaneoglobisporus. In the method of the present invention, for example, TYR derived from S. castaneoglobisporus encoded by the nucleotide sequence shown in SEQ ID NO: 6 can be preferably used.
また、TYRとしてRalstonia solanacearum由来のTYR(RsTYR)を用いることもでき、本発明においては、例えば配列番号36または37に示すヌクレオチド配列にコードされるRsTYRを好適に用いることができる。RsTYRは、その酵素活性を示すのにアダプタータンパク質を必要としない。したがって、TYRとして RsTYR を用いる場合には、後述のアダプタータンパク質を発現させる必要はない。また、TYRは通常、L-DOPAまたはドーパミンをそのキノン誘導体に変換する能力(o-ジフェノラーゼ活性)を有するが、配列番号36または37に示すヌクレオチド配列にコードされる RsTYR は、かかる o-ジフェノラーゼ活性が低い(Hernandez-Romero, D. et al, FEBS Journal 273 (2006), 257-270)。したがって、配列番号36または37に示すヌクレオチド配列にコードされるRsTYRを用いることにより、ドーパミンの生産量を増大させ、(S)-レチクリンの生産効率を向上させることができる。
Also, Ralstonia solanacearum-derived TYR (RsTYR) can be used as the TYR. In the present invention, for example, RsTYR encoded by the nucleotide sequence shown in SEQ ID NO: 36 or 37 can be preferably used. RsTYR does not require an adapter protein to show its enzymatic activity. Therefore, when RsTYR is used as the TYR, it is not necessary to express the adapter protein described later. TYR usually has the ability to convert L-DOPA or dopamine into its quinone derivative (o-diphenolase activity), but RsTYR encoded by the nucleotide sequence shown in SEQ ID NO: 36 or 37 has such o-diphenolase activity. (Hernandez-Romero, D. et al, FEBS Journal 273 (2006), 257-270). Therefore, by using RsTYR encoded by the nucleotide sequence shown in SEQ ID NO: 36 or 37, the production amount of dopamine can be increased and the production efficiency of (S) -reticuline can be improved.
本発明において用いられるチロシナーゼ(TYR)のアダプタータンパク質、例えばORF378タンパク質は、TYR の触媒中心への2価の銅イオン(Cu(II))の輸送を補助するタンパク質である。少なくとも、Streptomyces属の細菌に由来するTYRについては、該TYR が完全な触媒活性を示すためにアダプタータンパク質が必要とされる。例えば、S. castaneoglobisporus の染色体上においては、TYR遺伝子と ORF378 が直列に並んでメラニン合成酵素遺伝子オペロンを構成しており、TYR および ORF378タンパク質の両方が発現することによって TYR が活性を示す(K. Ikeda et al., Appl. Microbiol. Biotechnol. 45, 80-85 (1996); Y. Matoba et al., J. Biol. Chem. Vol.281, No.13, pp.8981-8990 (2006))。TYRのアダプタータンパク質の例としては、S. castaneoglobisporus 由来のORF378タンパク質や Streptomyces antibioticus 由来のORF438タンパク質が挙げられ、本発明においては、例えば、配列番号7に示すヌクレオチド配列にコードされる S. castaneoglobisporus 由来の ORF378タンパク質を好適に用いることができる。
The tyrosinase (TYR) adapter protein used in the present invention, for example, ORF378 protein, is a protein that assists in transporting divalent copper ions (Cu (II)) to the catalytic center of TYR. At least for TYR derived from bacteria of the genus Streptomyces, an adapter protein is required in order for the TYR to show complete catalytic activity. For example, on the chromosome of S. castaneoglobisporus TY, the TYR gene and ORF378 are arranged in series to constitute the melanin synthase gene operon, and TYR is active when both TYR and ORF378 proteins are expressed (K. Ikeda et al., Appl. Microbiol. Biotechnol. 45, 80-85 (1996); Y. Matoba et al., J. Biol. Chem. Vol.281, No.13, pp.8981-8990 (2006)) . Examples of TYR adapter proteins include ORF378 protein derived from S. castaneoglobisporus and ORF438 protein derived from Streptomyces antibioticus. In the present invention, for example, derived from の S. castaneoglobisporus derived from the nucleotide sequence shown in SEQ ID NO: 7 ORF378 protein can be preferably used.
本明細書中でTYRのアダプタータンパク質について用いる用語に関し、ORF378を例にとると、「ORF378」との用語は、TYRのアダプタータンパク質であるORF378タンパク質をコードする遺伝子またはオープンリーディングフレームを意味し、「アダプタータンパク質ORF378」または「ORF378タンパク質」との用語は、ORF378によりコードされるタンパク質を意味するものとする。
Regarding the terminology used for the adapter protein of TYR in this specification, taking ORF378 as an example, the term `` ORF378 '' means a gene or open reading frame encoding ORF378 protein, which is an adapter protein of TYR, and The term “adapter protein ORF378” or “ORF378 protein” is intended to mean a protein encoded by ORF378.
本発明において用いられる L-DOPA特異的デカルボキシラーゼ(DODC)は、L-DOPA からカルボキシル基を脱離させてドーパミンに変換する反応を触媒する酵素活性を有し、L-DOPA 以外の他の芳香族L-アミノ酸に比して少なくとも10倍、好ましくは100倍、より好ましくは1000倍以上の L-DOPA選択性を示す、芳香族L-アミノ酸脱炭酸酵素をいう。DODC の由来は特に限定されないが、例えば微生物、例えば Pseudomonas putida 由来のものが挙げられる。本発明の方法においては、例えば、配列番号8に示すヌクレオチド配列にコードされる P. putida 由来の DODC を好適に用いることができる。
L-DOPA-specific decarboxylase (DODC) used in the present invention has an enzyme activity that catalyzes a reaction of eliminating a carboxyl group from L-DOPA and converting it to dopamine, and other fragrances other than L-DOPA. An aromatic L-amino acid decarboxylase that exhibits a selectivity of L-DOPA of at least 10 times, preferably 100 times, more preferably 1000 times or more compared to a family L-amino acid. The origin of DODC is not particularly limited, and examples thereof include microorganisms such as those derived from Pseudomonas putida. In the method of the present invention, for example, DODC derived from P. putida encoded by the nucleotide sequence shown in SEQ ID NO: 8 can be preferably used.
本発明において用いられるモノアミンオキシダーゼ(MAO)は、ドーパミンを 3,4-DHPAA に変換する反応を触媒する酵素活性を有するものであれば特に限定されない。MAO の由来としては、例えば微生物、例えば Micrococcus luteus、Escherichia coli、Arthrobacter aurescens、Klebsiella aerogenes が挙げられるが、Micrococcus luteus 由来のものを用いるのが好ましい。本発明の方法においては、例えば、配列番号9に示すヌクレオチド配列にコードされる M. luteus 由来の MAO を好適に用いることができる。
The monoamine oxidase (MAO) used in the present invention is not particularly limited as long as it has an enzyme activity that catalyzes a reaction of converting dopamine to 3,4-DHPAA. Examples of the origin of MAO include microorganisms such as Micrococcus luteus, Escherichia coli, Arthrobacter aurescens, Klebsiella aerogenes, but those derived from Micrococcus luteus are preferably used. In the method of the present invention, for example, MAO derived from M. luteus encoded by the nucleotide sequence shown in SEQ ID NO: 9 can be preferably used.
本発明において用いられる、ノルコクラウリンシンターゼ(NCS)はドーパミンと 3,4-DHPAA から 3'-ヒドロキシノルコクラウリン(以下、ノルラウダノソリンとも称する)を得る反応、ノルコクラウリン 6-O-メチルトランスフェラーゼ(6OMT)は 3'-ヒドロキシノルコクラウリンから 3'-ヒドロキシコクラウリンを得る反応、コクラウリン-N-メチルトランスフェラーゼ(CNMT)は 3'-ヒドロキシコクラウリンから 3'-ヒドロキシ-N-メチルコクラウリンを得る反応、3'-ヒドロキシ-N-メチルコクラウリン-4'-O-メチルトランスフェラーゼ(4'OMT)は 3'-ヒドロキシ-N-メチルコクラウリンからレチクリンを得る反応をそれぞれ触媒する酵素活性を有するものであれば特に限定されない。
Norcoclaurine synthase (NCS) used in the present invention is a reaction for obtaining 3'-hydroxynorcoclaurine (hereinafter also referred to as norlaudanosoline) from dopamine and 3,4-DHPAA, norcoclaurine 6-O- Methyltransferase (6OMT) produces 3'-hydroxycoclaurine from 3'-hydroxynorcoclaurine, and coclaurin-N-methyltransferase (CNMT) converts 3'-hydroxycoclaurine to 3'-hydroxy-N-methylcocrine. The reaction to obtain laurin, 3'-hydroxy-N-methylcoclaurine-4'-O-methyltransferase (4'OMT) is an enzyme activity that catalyzes the reaction to obtain reticuline from 3'-hydroxy-N-methylcoclaurine If it has, it will not specifically limit.
また、NCS、6OMT、CNMT および 4'OMT は、特に限定されないが、イソキノリンアルカロイド生産性植物由来のものが好ましい。イソキノリンアルカロイド生産性植物としては、ハナビシソウ、ケシ、エンゴサク等のケシ科植物、メギ等のメギ科植物、キハダ等のミカン科植物、コブシ等のモクレン科植物、オオツヅラフジなどのツヅラフジ科植物、ならびにオウレン(Coptis japonica)等のキンポウゲ科植物などのイソキノリンアルカロイド産生植物などが挙げられ、好ましくはオウレンである。本発明の方法においては、例えば、配列番号11、12、13および14に示すヌクレオチド配列にコードされる、いずれもオウレン由来の NCS、6OMT、CNMT および 4'OMT を好適に用いることが出来る。
NCS, 6OMT, CNMTCN and 4'OMT の も の are not particularly limited, but those derived from isoquinoline alkaloid-producing plants are preferred. Examples of isoquinoline alkaloid-producing plants include Poppyaceae plants such as red-bellied shrimp, poppy and engosac, Barberry plant such as barberry, Citrus plant such as yellow butterfly, magnoliaceae plant such as beetle, scorpionaceae plant such as Otsuo-rafuji, and oren Examples include isoquinoline alkaloid-producing plants such as buttercups such as (Coptis p japonica), and preferably olene. In the method of the present invention, for example, NCS, 6OMT, CNMT and 4'OMT derived from auren, all encoded by the nucleotide sequences shown in SEQ ID NOs: 11, 12, 13, and 14, can be preferably used.
本発明において用いられるレチクリンを出発物質として作用するイソキノリンアルカロイド生合成酵素は、レチクリンを出発物質として目的のイソキノリンアルカロイドを得る経路を構成する1または複数の酵素であり、それぞれの経路の反応を触媒する酵素活性を有するものであれば特に限定されない。また、レチクリンを出発物質として作用するイソキノリンアルカロイド生合成酵素は、特に限定されないが、イソキノリンアルカロイド生産性植物由来のものであるのが好ましい。
The isoquinoline alkaloid biosynthetic enzyme that acts as a starting material for reticuline used in the present invention is one or a plurality of enzymes that constitute the pathway for obtaining the desired isoquinoline alkaloid using reticuline as a starting material, and catalyzes the reaction of each pathway. There is no particular limitation as long as it has enzyme activity. The isoquinoline alkaloid biosynthetic enzyme that acts using reticuline as a starting material is not particularly limited, but is preferably derived from an isoquinoline alkaloid-producing plant.
一方、イソキノリンアルカロイド生合成酵素としてシトクロームP450の1種である CYP80G2(コリツベリンシンターゼ)を用いる場合に、共に用いるのが好ましい、NADPH-シトクロームP450レダクターゼの由来は、特に限定されないが、酵母、植物、哺乳類が挙げられる。
On the other hand, the origin of NADPH-cytochrome P450 reductase, which is preferably used together with 好 ま し い CYP80G2 (Colituberin synthase), which is a kind of cytochrome P450 as an isoquinoline alkaloid biosynthetic enzyme, is not particularly limited. Mammals.
本発明の方法においてマグノフロリンを生産する場合、レチクリンからコリツベリンへの反応を触媒する酵素、およびコリツベリンからマグノフロリンへの反応を触媒する酵素を用いればよく、かかる反応を触媒する酵素活性を有するものであれば特に限定されない。例えば、レチクリンからコリツベリンへの反応を触媒する酵素として、配列番号15に示すヌクレオチド配列にコードされる CYP80G2 を好適に用いることができ、これと共に配列番号16に示すヌクレオチド配列にコードされるP450レダクターゼを用いることができる。また、コリツベリンからマグノフロリンへの反応を触媒する酵素として、例えば、配列番号13に示すヌクレオチド配列にコードされる CNMT を好適に用いることができる。
When producing magnoflorin in the method of the present invention, an enzyme that catalyzes the reaction from reticuline to colituberin and an enzyme that catalyzes the reaction from colituberin to magnoflorin may be used, and have an enzyme activity that catalyzes such a reaction. If it is, it will not specifically limit. For example, 酵素 CYP80G2 encoded by the nucleotide sequence shown in SEQ ID NO: 15 can be preferably used as an enzyme that catalyzes the reaction from reticuline to colituberin, and together with this, P450 reductase encoded by the nucleotide sequence shown in SEQ ID NO: 16 is used. Can be used. Moreover, as an enzyme that catalyzes the reaction from colituberin to magnoflorin, for example, “CNMT” encoded by the nucleotide sequence shown in SEQ ID NO: 13 can be preferably used.
本発明の方法においてスコウレリンを生産する場合、レチクリンからスコウレリンへの反応を触媒する酵素を用いればよく、かかる反応を触媒する酵素活性を有するものであれば特に限定されない。具体例として、配列番号17に示すヌクレオチド配列にコードされる BBE を好適に用いることが出来る。
In the method of the present invention, when producing scourelin, an enzyme that catalyzes the reaction from reticuline to scourelin may be used, and it is not particularly limited as long as it has an enzyme activity that catalyzes such a reaction. As a specific example, BBE encoded by the nucleotide sequence shown in SEQ ID NO: 17 can be preferably used.
さらに、ベルベリンを生産する場合、レチクリンからスコウレリンを介してベルベリンに至る経路を構成する酵素を用いればよく、各段階の反応を触媒する酵素活性を有するものであれば特に限定されない。例えば、BBE、SMT(スコウレリン-9-O-メチルトランスフェラーゼ)、CYP719A1(カナジンシンターゼ)および THBO(テトラヒドロベルベリンオキシダーゼ)を用いるとよい。BBE としては、配列番号17に示すヌクレオチド配列にコードされるものが好適に用いられる。SMT、CYP719A1、THBO の配列情報については、NCBI:National Center for Biotechnology Information の提供する GenBank (http://www.ncbi.nlm.nih.gov/)から得ることが出来る。
Furthermore, when producing berberine, an enzyme that constitutes a pathway from reticuline to berberine via scourelin may be used, and it is not particularly limited as long as it has an enzyme activity that catalyzes the reaction at each stage. For example, BBE, SMT (scourelin-9-O-methyltransferase), CYP719A1 (canazine synthase) and THBO (tetrahydroberberine oxidase) may be used. As BBE, those encoded by the nucleotide sequence shown in SEQ ID NO: 17 are preferably used. The sequence information of SMT, CYP719A1, and THBO® can be obtained from “GenBank” (http://www.ncbi.nlm.nih.gov/) provided by NCBI: National Center for Biotechnology Information.
本発明において宿主細胞を改変するために用いることができる tyrR遺伝子は、芳香族アミノ酸の生合成や輸送に関わる複数の遺伝子の発現を調節する機能を有する DNA結合性転写調節因子をコードしており、該 tyrR遺伝子にコードされる転写調節因子は、L-チロシンを生合成するいわゆるシキミ酸経路において機能する、3-デオキシ-D-アラビノ-ヘプツロソン酸-7-リン酸シンターゼ(DAHPS)をコードする aroG遺伝子およびコリスミ酸ムターゼ/プレフェナートデヒドロゲナーゼ(CM/PDH)をコードする tyrA遺伝子の発現を抑制する(A.J. Pittard et al., Mol. Microbiol. 5(7), 1585-1592 (1991))。したがって、本発明において宿主細胞を改変するために利用することができる tyrR遺伝子は、少なくとも aroG遺伝子および/または tyrA遺伝子の発現を抑制する機能を有するものであれば特に限定されない。
The tyrR gene that can be used to modify host cells in the present invention encodes a DNA-binding transcriptional regulator having a function of regulating the expression of a plurality of genes involved in aromatic amino acid biosynthesis and transport. The transcriptional regulator encoded by the tyrR gene encodes 3-deoxy-D-arabino-heptulosonate-7-phosphate synthase (DAHPS), which functions in the so-called shikimate pathway that biosynthesizes L-tyrosine Suppresses the expression of tyrA gene encoding aroG gene and chorismate mutase / prephenate dehydrogenase (CM / PDH) (AJ Pittard et al., Mol. Microbiol. 5 (7), 1585-1592 (1991)). Therefore, the tyrR gene that can be used to modify the host cell in the present invention is not particularly limited as long as it has a function of suppressing the expression of aroG gene and / or tyrA gene.
本発明において用いる宿主細胞が tyrR遺伝子を有するか否かは、既知の tyrR遺伝子の配列情報、例えば大腸菌 K-12 DH10B株の tyrR遺伝子の配列情報(配列番号1、EMBL受入番号 ACB02543、KEGG登録番号 ECDH10B_1442)をもとに、該宿主細胞のゲノム配列等に対して配列相同性検索を行うことによって推定できる。相同な遺伝子(いわゆるホモログ)の存在が推定される場合、当該相同な遺伝子の配列情報をもとに行う PCR増幅および配列決定等の手法によってその存在を確認できる。あるいは、既知配列からなる tyrR遺伝子の核酸分子とのハイブリダイゼーションによって、直接的に tyrR遺伝子の核酸分子を取得することも可能である。
Whether or not the host cell used in the present invention has the tyrR gene is determined based on the known tyrR gene sequence information, for example, the tyrR gene sequence information of E. coli K-12 DH10B strain (SEQ ID NO: 1, EMBL accession number ACB02543, KEGG registration number). Based on ECDH10B_1442), it can be estimated by performing a sequence homology search on the genome sequence or the like of the host cell. When the presence of a homologous gene (so-called homolog) is estimated, the presence can be confirmed by techniques such as PCR amplification and sequencing performed based on the sequence information of the homologous gene. Alternatively, a nucleic acid molecule of the tyrR gene can be directly obtained by hybridization with a nucleic acid molecule of the tyrR gene having a known sequence.
宿主細胞に tyrR遺伝子が存在する場合、取得した tyrR遺伝子の配列情報あるいは核酸分子をもとに、人工的核酸合成あるいはクローニング後の突然変異導入などの手法によって、遺伝子破壊または発現抑制用の核酸を取得することができ、該核酸を用いて、相同組換えや RNAiなど公知の手段によって宿主細胞が有する tyrR遺伝子の機能を喪失させるかまたは tyrR遺伝子の発現を抑制することが可能である。
If the host cell contains the tyrR gene, the nucleic acid for gene disruption or expression suppression can be obtained by artificial nucleic acid synthesis or mutagenesis after cloning based on the obtained sequence information or nucleic acid molecule of the tyrR gene. The nucleic acid can be used, and the function of the tyrR gene possessed by the host cell can be lost or the expression of the tyrR gene can be suppressed by known means such as homologous recombination or RNAi.
相同性検索は、公知の手段、例えば BLASTアルゴリズム、FASTAアルゴリズムなどを利用して行うことができる。
The homology search can be performed using a known means such as the BLAST algorithm or FASTA algorithm.
本発明において、宿主細胞を改変するために用いることができる fbr-DAHPS は、エリトロース-4-リン酸(E4P)とホスホエノールピルビン酸(PEP)から、3-デオキシ-D-アラビノ-ヘプツロソン酸-7-リン酸(DAHP)を生成する反応を触媒する酵素活性を有し、フェニルアラニンによるフィードバック阻害を受けないものであれば特に限定されない。ここで、「フェニルアラニンによるフィードバック阻害を受けない(フィードバック阻害耐性である)」とは、フェニルアラニンによって DAHPS の酵素活性が全く阻害されないか、またはフェニルアラニンによる酵素活性の阻害の程度が野生型の DAHPS と比較して有意に小さいことをいう。fbr-DAHPS は、フェニルアラニン存在下での酵素活性が同非存在下での酵素活性と同等またはそれ以上であることが好ましい。また、fbr-DAHPS は、特に限定されないが、微生物由来のものであるのが好ましく、大腸菌由来のものであるのがより好ましい。本発明において、例えば、配列番号2に示すヌクレオチド配列にコードされる、大腸菌由来の fbr-DAHPS を好適に用いることが出来る。
In the present invention, fbr-DAHPS that can be used to modify host cells is derived from erythrose-4-phosphate (E4P) and phosphoenolpyruvate (PEP) from 3-deoxy-D-arabino-heptulosonate- There is no particular limitation as long as it has an enzyme activity that catalyzes a reaction for producing 7-phosphate (DAHP) and is not subject to feedback inhibition by phenylalanine. Here, “does not receive feedback inhibition by phenylalanine (is resistant to feedback inhibition)” means that phenylalanine does not inhibit the enzyme activity of DAHPS at all, or the degree of inhibition of enzyme activity by phenylalanine is compared with wild-type DAHPS It is significantly smaller. It is preferable that fbr-DAHPS has an enzyme activity in the presence of phenylalanine that is equal to or greater than that in the absence thereof. Further, fbr-DAHPS is not particularly limited, but is preferably derived from microorganisms, more preferably derived from E. coli. In the present invention, for example, 大腸菌 fbr-DAHPS derived from E. coli encoded by the nucleotide sequence shown in SEQ ID NO: 2 can be preferably used.
本発明において、宿主細胞を改変するために用いることができる fbr-CM/PDH は、コリスミ酸からプレフェン酸を生成する反応およびプレフェン酸から 4-ヒドロキシフェニルピルビン酸(HPP)を生成する反応を触媒する酵素活性を有し、チロシンによるフィードバック阻害を受けないものであれば特に限定されない。ここで、「チロシンによるフィードバック阻害を受けない(フィードバック阻害耐性である)」とは、チロシンによって CM および/または PDH の酵素活性が全く阻害されないか、またはチロシンによる酵素活性の阻害の程度が野生型の CM/PDH と比較して有意に小さいことをいう。fbr-CM/PDHは、チロシン存在下での酵素活性が同非存在下での酵素活性と同等またはそれ以上であることが好ましい。また、fbr-CM/PDH は、特に限定されないが、微生物由来のものであるのが好ましく、大腸菌由来のものであるのがより好ましい。本発明において、例えば、配列番号3に示すヌクレオチド配列にコードされる、大腸菌由来の fbr-CM/PDH を好適に用いることが出来る。
In the present invention, fbr-CM / PDH that can be used to modify host cells catalyzes the reaction of producing prefenic acid from chorismic acid and the reaction of producing 4-hydroxyphenylpyruvic acid (HPP) from prefenic acid. If it has the enzyme activity which does not receive the feedback inhibition by tyrosine, it will not specifically limit. Here, “not subject to feedback inhibition by tyrosine (being resistant to feedback inhibition)” means that tyrosine does not inhibit CM and / or PDH enzyme activity at all, or the degree of inhibition of enzyme activity by tyrosine is wild type This means that it is significantly smaller than CM / PDH. In fbr-CM / PDH, the enzyme activity in the presence of tyrosine is preferably equal to or greater than the enzyme activity in the absence of tyrosine. Further, fbr-CM / PDH is not particularly limited, but is preferably derived from microorganisms, and more preferably derived from E. coli. In the present invention, for example, E. coli-derived fbr-CM / PDH encoded by the nucleotide sequence shown in SEQ ID NO: 3 can be preferably used.
本発明において、宿主細胞を改変するために用いることができる TKT は、カルボニル基を含む構造、例えば -C(=O)CH2OH で表される構造を、ある糖から別の糖へ転移させる反応を触媒する酵素活性を有するものであれば特に限定されない。また、TKT は、特に限定されないが、微生物由来のものであるのが好ましく、大腸菌由来のものであるのがより好ましい。本発明において、例えば、配列番号4に示すヌクレオチド配列にコードされる、大腸菌由来の TKT を好適に用いることが出来る。
In the present invention, TKT that can be used to modify a host cell transfers a structure containing a carbonyl group, for example, a structure represented by -C (= O) CH 2 OH from one sugar to another. It does not specifically limit if it has the enzyme activity which catalyzes reaction. TKT is not particularly limited, but is preferably derived from microorganisms, more preferably derived from E. coli. In the present invention, for example, TKT derived from E. coli encoded by the nucleotide sequence shown in SEQ ID NO: 4 can be preferably used.
本発明において、宿主細胞を改変するために用いることができる PEPS は、ピルビン酸からホスホエノールピルビン酸(PEP)を生成する反応を触媒する酵素活性を有するものであれば特に限定されない。また、PEPS は、特に限定されないが、微生物由来のものであるのが好ましく、大腸菌由来のものであるのがより好ましい。本発明において、例えば、配列番号5に示すヌクレオチド配列にコードされる、大腸菌由来の PEPS を好適に用いることが出来る。
In the present invention, the “PEPS” that can be used to modify the host cell is not particularly limited as long as it has an enzyme activity that catalyzes a reaction for producing phosphoenolpyruvate (PEP) from pyruvate. Further, PEPS is not particularly limited, but is preferably derived from microorganisms, and more preferably derived from E. coli. In the present invention, for example, E. coli-derived PEPS encoded by the nucleotide sequence shown in SEQ ID NO: 5 can be preferably used.
即ち、本発明に使用される酵素としては、これらに限定されないが、以下の(a)または(b)のタンパク質が挙げられる:
(a) 配列番号2、3、4、5、6もしくは36もしくは37、7、8、9もしくは10、11、12、13、14、15、16または17のヌクレオチド配列にコードされるアミノ酸配列からなるタンパク質;
(b) 配列番号2、3、4、5、6もしくは36もしくは37、7、8、9もしくは10、11、12、13、14、15、16または17のヌクレオチド配列にコードされるアミノ酸配列において、1若しくは数個のアミノ酸が欠失、置換若しくは付加されたアミノ酸配列からなり、かつ、fbr-DAHPS、fbr-CM/PDH、TKT、PEPS、TYR、ORF378、DODC、MAO、NCS、6OMT、CNMT、4'OMT、CYP80G2、P450レダクターゼまたは BBE の酵素活性を有するタンパク質。 That is, the enzymes used in the present invention include, but are not limited to, the following proteins (a) or (b):
(a) from the amino acid sequence encoded by the nucleotide sequence of SEQ ID NO: 2, 3, 4, 5, 6 or 36 or 37, 7, 8, 9 or 10, 11, 12, 13, 14, 15, 16 or 17 A protein comprising:
(b) in the amino acid sequence encoded by the nucleotide sequence of SEQ ID NO: 2, 3, 4, 5, 6 or 36 or 37, 7, 8, 9 or 10, 11, 12, 13, 14, 15, 16 or 17 It consists of an amino acid sequence in which one or several amino acids are deleted, substituted or added, and fbr-DAHPS, fbr-CM / PDH, TKT, PEPS, TYR, ORF378, DODC, MAO, NCS, 6OMT, CNMT , 4'OMT, CYP80G2, P450 reductase or protein having BBE enzyme activity.
(a) 配列番号2、3、4、5、6もしくは36もしくは37、7、8、9もしくは10、11、12、13、14、15、16または17のヌクレオチド配列にコードされるアミノ酸配列からなるタンパク質;
(b) 配列番号2、3、4、5、6もしくは36もしくは37、7、8、9もしくは10、11、12、13、14、15、16または17のヌクレオチド配列にコードされるアミノ酸配列において、1若しくは数個のアミノ酸が欠失、置換若しくは付加されたアミノ酸配列からなり、かつ、fbr-DAHPS、fbr-CM/PDH、TKT、PEPS、TYR、ORF378、DODC、MAO、NCS、6OMT、CNMT、4'OMT、CYP80G2、P450レダクターゼまたは BBE の酵素活性を有するタンパク質。 That is, the enzymes used in the present invention include, but are not limited to, the following proteins (a) or (b):
(a) from the amino acid sequence encoded by the nucleotide sequence of SEQ ID NO: 2, 3, 4, 5, 6 or 36 or 37, 7, 8, 9 or 10, 11, 12, 13, 14, 15, 16 or 17 A protein comprising:
(b) in the amino acid sequence encoded by the nucleotide sequence of SEQ ID NO: 2, 3, 4, 5, 6 or 36 or 37, 7, 8, 9 or 10, 11, 12, 13, 14, 15, 16 or 17 It consists of an amino acid sequence in which one or several amino acids are deleted, substituted or added, and fbr-DAHPS, fbr-CM / PDH, TKT, PEPS, TYR, ORF378, DODC, MAO, NCS, 6OMT, CNMT , 4'OMT, CYP80G2, P450 reductase or protein having BBE enzyme activity.
本発明に使用されるタンパク質としては、以下の(b')のタンパク質も挙げられる。
(b') 配列番号2、3、4、5、6もしくは36もしくは37、7、8、9もしくは10、11、12、13、14、15、16または17のヌクレオチド配列にコードされるアミノ酸配列に対して、70%以上、好ましくは80%以上、より好ましくは90%以上、さらに好ましくは95%以上の相同性を有するアミノ酸配列からなり、かつ、fbr-DAHPS、fbr-CM/PDH、TKT、PEPS、TYR、ORF378、DODC、MAO、NCS、6OMT、CNMT、4'OMT、CYP80G2、P450レダクターゼまたは BBE の酵素活性を有するタンパク質。 Examples of the protein used in the present invention also include the following protein (b ′).
(b ′) the amino acid sequence encoded by the nucleotide sequence of SEQ ID NO: 2, 3, 4, 5, 6 or 36 or 37, 7, 8, 9 or 10, 11, 12, 13, 14, 15, 16 or 17 70% or more, preferably 80% or more, more preferably 90% or more, and even more preferably 95% or more of the amino acid sequence, and fbr-DAHPS, fbr-CM / PDH, TKT , PEPS, TYR, ORF378, DODC, MAO, NCS, 6OMT, CNMT, 4'OMT, CYP80G2, P450 reductase or protein having BBE enzyme activity.
(b') 配列番号2、3、4、5、6もしくは36もしくは37、7、8、9もしくは10、11、12、13、14、15、16または17のヌクレオチド配列にコードされるアミノ酸配列に対して、70%以上、好ましくは80%以上、より好ましくは90%以上、さらに好ましくは95%以上の相同性を有するアミノ酸配列からなり、かつ、fbr-DAHPS、fbr-CM/PDH、TKT、PEPS、TYR、ORF378、DODC、MAO、NCS、6OMT、CNMT、4'OMT、CYP80G2、P450レダクターゼまたは BBE の酵素活性を有するタンパク質。 Examples of the protein used in the present invention also include the following protein (b ′).
(b ′) the amino acid sequence encoded by the nucleotide sequence of SEQ ID NO: 2, 3, 4, 5, 6 or 36 or 37, 7, 8, 9 or 10, 11, 12, 13, 14, 15, 16 or 17 70% or more, preferably 80% or more, more preferably 90% or more, and even more preferably 95% or more of the amino acid sequence, and fbr-DAHPS, fbr-CM / PDH, TKT , PEPS, TYR, ORF378, DODC, MAO, NCS, 6OMT, CNMT, 4'OMT, CYP80G2, P450 reductase or protein having BBE enzyme activity.
上記の、(b) のタンパク質は、「fbr-DAHPS、fbr-CM/PDH、TKT、PEPS、TYR、ORF378、DODC、MAO、NCS、6OMT、CNMT、4'OMT、CYP80G2、P450レダクターゼまたは BBE の酵素活性を有する」という(a)のタンパク質の機能が失われない程度にアミノ酸変異(欠失、置換、付加)が起こっているタンパク質である。このような変異には、自然界において生じる変異の他に、人為的な変異も含まれる。人為的な変異を生じさせる手段としては、部位特異的突然変異誘発法(Nucleic Acids Res. 10, 6487-6500, 1982)が挙げられるがこれに限定されるわけではない。変異(欠失、置換、付加)したアミノ酸の数は、上記(a)のタンパク質の酵素活性が失われない限りその個数は制限されないが、好ましくは50アミノ酸以内であり、さらに好ましくは30アミノ酸以内である。
The above (b) タ ン パ ク 質 protein is `` fbr-DAHPS, fbr-CM / PDH, TKT, PEPS, TYR, ORF378, DODC, MAO, NCS, 6OMT, CNMT, 4'OMT, CYP80G2, P450 reductase or 450BBE It is a protein in which an amino acid mutation (deletion, substitution, addition) has occurred to such an extent that the function of the protein (a) “having enzyme activity” is not lost. Such mutations include artificial mutations in addition to those occurring in nature. Examples of means for causing artificial mutation include, but are not limited to, site-directed mutagenesis (Nucleic Acids Res. 10, 6487-6500, 1982). The number of amino acids mutated (deleted, substituted, added) is not limited as long as the enzyme activity of the protein (a) is not lost, but is preferably within 50 amino acids, more preferably within 30 amino acids. It is.
(b')のタンパク質も、「fbr-DAHPS、fbr-CM/PDH、TKT、PEPS、TYR、ORF378、DODC、MAO、NCS、6OMT、CNMT、4'OMT、CYP80G2、P450レダクターゼまたは BBE の酵素活性を有する」という(a)のタンパク質の機能が失われない程度の(a)のタンパク質に対する相同性を有するタンパク質である。相同性は、70%以上が好ましく、90%以上が特に好ましい。
The protein of (b ') is also the enzyme activity of fbr-DAHPS, fbr-CM / PDH, TKT, PEPS, TYR, ORF378, DODC, MAO, NCS, 6OMT, CNMT, 4'OMT, CYP80G2, P450 reductase or BBE A protein having homology to the protein of (a) to the extent that the function of the protein of (a) is not lost. The homology is preferably 70% or more, particularly preferably 90% or more.
本発明において「相同性」とは、2つのポリペプチドあるいはポリヌクレオチド間の配列の類似の程度を意味し、比較対象のアミノ酸配列または塩基配列の領域にわたって最適な状態(配列の一致が最大となる状態)にアラインメントされた2つの配列を比較することにより決定される。相同性の数値(%)は、アラインメントされた両方の(アミノ酸または塩基)配列において同一のアミノ酸または塩基が存在する部位の数を決定し、次いで当該部位の数を比較対象の配列領域内のアミノ酸または塩基の総数で割り、得られた数値に100をかけることにより算出される。最適なアラインメントおよび相同性を得るためのアルゴリズムとしては当業者が通常利用可能な種々のアルゴリズム(例えば、BLASTアルゴリズム、FASTAアルゴリズムなど)が挙げられる。アミノ酸配列の相同性は、例えばBLASTP、FASTAなどの配列解析ソフトウェアを用いて決定される。塩基配列の相同性は、BLASTN、FASTAなどのソフトウェアを用いて決定される。
In the present invention, “homology” means the degree of sequence similarity between two polypeptides or polynucleotides, and is in an optimum state over the region of the amino acid sequence or base sequence to be compared (maximum sequence match). Determined by comparing two sequences aligned to the (state). The homology value (%) determines the number of sites where identical amino acids or bases are present in both aligned (amino acid or base) sequences, and then the number of those sites is compared with the amino acids in the sequence region to be compared. Alternatively, it is calculated by dividing by the total number of bases and multiplying the obtained numerical value by 100. Examples of algorithms for obtaining optimal alignment and homology include various algorithms (for example, BLAST algorithm, FASTA algorithm, etc.) that are usually available to those skilled in the art. The homology of amino acid sequences is determined using sequence analysis software such as BLASTP and FASTA. The base sequence homology is determined using software such as BLASTN and FASTA.
タンパク質が fbr-DAHPS、fbr-CM/PDH、TKT、PEPS、TYR、ORF378、DODC、MAO、NCS、6OMT、CNMT、4'OMT、CYP80G2、P450レダクターゼまたは BBE の酵素活性を有するか否かは、該タンパク質調製物にそれぞれの反応基質を添加し、それぞれの酵素の反応生成物が生成したか否かを調べることにより判定することが出来る。fbr-DAHPS についてはエリトロース-4-リン酸(E4P)およびホスホエノールピルビン酸(PEP)を添加し、3-デオキシ-D-アラビノ-ヘプツロソン酸-7-リン酸(DAHP)が生成したか、fbr-CM/PDH についてはコリスミ酸を添加し、4-ヒドロキシフェニルピルビン酸(HPP)が生成したか、TKT については例えばリボース-5-リン酸(R5P)およびキシルロース-5-リン酸(Xu5P)を添加し、グリセルアルデヒド-3-リン酸(GAP)およびセドヘプツロース-7-リン酸(S7P)が生成したか、PEPS についてはピルビン酸を添加し、ホスホエノールピルビン酸(PEP)が生成したか、TYR(またはTYR および ORF378)については L-チロシンを添加し、L-DOPAが生成したか、DODC については L-DOPAを添加し、ドーパミンが生成したか、MAO についてはドーパミンを添加し、3,4-DHPAA が生成したか、NCS についてはドーパミンと 3,4-DHPAA を添加し、3'-ヒドロキシノルコクラウリンが生成したか、6OMT については 3'-ヒドロキシノルコクラウリンを添加し、3'-ヒドロキシコクラウリンが生成したか、CNMT については 3'-ヒドロキシコクラウリンを添加し、3'-ヒドロキシ-N-メチルコクラウリンが生成したか、4'OMT については 3'-ヒドロキシ-N-メチルコクラウリンを添加し、レチクリンが生成したかを調べることにより、その活性の有無を判定することが出来る。また、CYP80G2 および P450レダクターゼについては、それらの共存下でレチクリンを添加し、コリツベリンが生成したか、そして BBE については、レチクリンを添加し、スコウレリンが生成したかを調べることによりその活性の有無を判定することが出来る。なお、コリツベリンからマグノフロリンの反応を触媒する CNMT は、3'-ヒドロキシコクラウリンから 3'-ヒドロキシ-N-メチルコクラウリンの反応を触媒する CNMT と同じものを用いることが出来るが、コリツベリンからマグノフロリンへの反応を触媒するか否かを、コリツベリンを添加し、マグノフロリンが生成したかを調べることによりその活性の有無を判定するとよい。
Whether the protein has the enzymatic activity of fbr-DAHPS, fbr-CM / PDH, TKT, PEPS, TYR, ORF378, DODC, MAO, NCS, 6OMT, CNMT, 4'OMT, CYP80G2, P450 reductase or BBE It can be determined by adding each reaction substrate to the protein preparation and examining whether or not a reaction product of each enzyme has been generated. For fbr-DAHPS, erythrose-4-phosphate (E4P) and phosphoenolpyruvate (PEP) were added to produce 3-deoxy-D-arabino-heptulosonate-7-phosphate (DAHP) -Chorismic acid was added for CM / PDH and 4-hydroxyphenylpyruvate (HPP) was produced, or ribose-5-phosphate (R5P) and xylulose-5-phosphate (Xu5P) were used for TKT5. Added, glyceraldehyde-3-phosphate (GAP) and sedheptulose-7-phosphate (S7P) were produced, or for PEPS, pyruvic acid was added, and phosphoenolpyruvate (PEP) was produced, L-tyrosine is added for TYR (or TYR and ORF378), L-DOPA is produced, L-DOPA is added for DODC, dopamine is produced, dopamine is added for MAO, 3, Whether 4-DHPAA was produced or for NCS dopamine 3,4-DHPAA was added to produce 3'-hydroxynorcoclaurine, 6OMT was added to 3'-hydroxynorcoclaurine, 3'-hydroxycocolaurin was formed, or CNMT was to 3 Check whether 3'-hydroxy-N-methylcoclaurine was formed by adding '-hydroxycoclaurin, or whether reticuline was formed by adding 3'-hydroxy-N-methylcoclaurine for 4'OMT Thus, the presence or absence of the activity can be determined. In addition, for CYP80G2 and P450 reductase, reticuline was added in the presence of them to determine whether or not colituberin was produced, and for BBE, reticuline was added to determine whether or not scourelin was produced. I can do it. As CNMT, which catalyzes the reaction of magnoflorin from colituberin, the same one as CNMT, which catalyzes the reaction of 3'-hydroxycoclaurine to 3'-hydroxy-N-methylcoclaurine, can be used. Whether or not to catalyze the reaction to florin can be determined by adding coritsuberin and examining whether or not magnoflorin has been produced.
fbr-DAHPS がフィードバック阻害耐性であるか否かは、フェニルアラニンの存在下および非存在下それぞれにおいて酵素活性を測定し、同条件における野生型の DAHPS の酵素活性と比較することによって確認することができる(例えば、Kikuchi, Y. et al., Appl. Environ. Microbiol. 63, 761-762 (1997) 参照)。同様に、fbr-CM/PDH がフィードバック阻害耐性であるか否かは、チロシンの存在下および非存在下それぞれにおいて酵素活性を測定し、同条件における野生型の CM/PDH の酵素活性と比較することによって確認することができる(例えば、Lutke-Eversloh, T. and Stephanopoulos, G., Appl. Environ. Microbiol. 71, 7224-7228 (2005) 参照)。
Whether fbr-DAHPS is resistant to feedback inhibition can be confirmed by measuring the enzyme activity in the presence and absence of phenylalanine and comparing with the enzyme activity of wild-type DAHPS under the same conditions. (See, for example, Kikuchi, Y. et al., Appl. Environ. Microbiol. 63, 761-762 (1997)). Similarly, whether fbr-CM / PDHPD is resistant to feedback inhibition is measured by enzyme activity in the presence and absence of tyrosine and compared with the enzyme activity of wild-type CM / PDH under the same conditions. (See, for example, Lutke-Eversloh, T. and Stephanopoulos, G., Appl. Environ. Microbiol. 71, 7224-7228 (2005)).
反応生成物が、3-デオキシ-D-アラビノ-ヘプツロソン酸-7-リン酸(DAHP)、4-ヒドロキシフェニルピルビン酸(HPP)、グリセルアルデヒド-3-リン酸(GAP)、セドヘプツロース-7-リン酸(S7P)、ホスホエノールピルビン酸(PEP)、L-DOPA、ドーパミン、3,4-DHPAA、3'-ヒドロキシノルコクラウリン、3'-ヒドロキシコクラウリン、3'-ヒドロキシ-N-メチルコクラウリン、レチクリンあるいは目的のイソキノリンアルカロイド(例えば、マグノフロリン、スコウレリン、ベルベリン等)であるか否かは、当業者に周知のあらゆる手段によって確認することが出来る。具体的には、反応生成物と 3-デオキシ-D-アラビノ-ヘプツロソン酸-7-リン酸(DAHP)、4-ヒドロキシフェニルピルビン酸(HPP)、グリセルアルデヒド-3-リン酸(GAP)、セドヘプツロース-7-リン酸(S7P)、ホスホエノールピルビン酸(PEP)、L-DOPA、ドーパミン、3,4-DHPAA、3'-ヒドロキシノルコクラウリン、3'-ヒドロキシコクラウリン、3'-ヒドロキシ-N-メチルコクラウリン、レチクリンまたは目的のイソキノリンアルカロイドのそれぞれの標品とを、LC-MS に供し、得られるスペクトルを比較することによって同定することが出来る。また、生成物と対応する標品との NMR分析による比較によっても確認することが出来る。
The reaction products were 3-deoxy-D-arabino-heptulosonic acid-7-phosphate (DAHP), 4-hydroxyphenylpyruvic acid (HPP), glyceraldehyde-3-phosphate (GAP), cedoheptulose-7- Phosphoric acid (S7P), phosphoenolpyruvate (PEP), L-DOPA, dopamine, 3,4-DHPAA, 3'-hydroxynorcoclaurine, 3'-hydroxycoclaurin, 3'-hydroxy-N-methylkoku Whether it is laurin, reticuline or the desired isoquinoline alkaloid (for example, magnoflorin, scourelin, berberine, etc.) can be confirmed by any means known to those skilled in the art. Specifically, the reaction product and 3-deoxy-D-arabino-heptulosonic acid-7-phosphate (DAHP), 4-hydroxyphenylpyruvic acid (HPP), glyceraldehyde-3-phosphate (GAP), Sedoheptulose-7-phosphate (S7P), phosphoenolpyruvate (PEP), L-DOPA, dopamine, 3,4-DHPAA, 3'-hydroxynorcoclaurine, 3'-hydroxycoclaurine, 3'-hydroxy- Each sample of N-methylcoclaurine, reticuline, or the desired isoquinoline alkaloid can be identified by subjecting to LC-MS and comparing the resulting spectra. It can also be confirmed by comparison of the product with the corresponding sample by NMR analysis.
次いで、本発明に利用できる fbr-DAHPS、fbr-CM/PDH、TKT、PEPS、TYR、ORF378、DODC、MAO、NCS、6OMT、CNMT、4'OMT またはレチクリンを出発物質として作用するイソキノリンアルカロイド生合成酵素をコードする遺伝子について説明する。
Then, isoquinoline alkaloid biosynthesis that can be used in the present invention, starting from fbr-DAHPS, fbr-CM / PDH, TKT, PEPS, TYR, ORF378, DODC, MAO, NCS, 6OMT, CNMT, 4'OMT or reticuline The gene encoding the enzyme will be described.
本発明において好適に使用される、fbr-DAHPS、fbr-CM/PDH、TKT、PEPS、TYR、ORF378、DODC、MAO、NCS、6OMT、CNMT、4'OMT、またはイソキノリンアルカロイド生合成酵素の具体例である CYP80G2、P450レダクターゼもしくは BBE をコードする遺伝子としては、例えば、それぞれ配列番号2、3、4、5、6もしくは36もしくは37、7、8、9もしくは10、11、12、13、14、15、16または17に示すヌクレオチド配列からなる遺伝子が挙げられる。
Specific examples of fbr-DAHPS, fbr-CM / PDH, TKT, PEPS, TYR, ORF378, DODC, MAO, NCS, 6OMT, CNMT, 4'OMT, or isoquinoline alkaloid biosynthetic enzymes preferably used in the present invention As a gene encoding CYP80G2, P450 reductase or BBE, for example, SEQ ID NO: 2, 3, 4, 5, 6 or 36 or 37, 7, 8, 9 or 10, 11, 12, 13, 14, Examples thereof include a gene consisting of the nucleotide sequence shown in 15, 16 or 17.
即ち、本発明に使用される遺伝子は、これらに限定されないが、好ましくは、以下の(a)または(b)のDNAである遺伝子である:
(a) 配列番号2、3、4、5、6もしくは36もしくは37、7、8、9もしくは10、11、12、13、14、15、16または17のヌクレオチド配列からなるDNA;
(b)(a)のヌクレオチド配列からなるDNAと相補的なヌクレオチド配列からなるDNAとストリンジェントな条件下でハイブリダイズし、かつ、fbr-DAHPS、fbr-CM/PDH、TKT、PEPS、TYR、ORF378、DODC、MAO、NCS、6OMT、CNMT、4'OMT、CYP80G2、P450レダクターゼまたは BBE の酵素活性を有するタンパク質をコードするDNA。 That is, the gene used in the present invention is not limited to these, but is preferably a gene that is the following DNA (a) or (b):
(a) DNA consisting of the nucleotide sequence of SEQ ID NO: 2, 3, 4, 5, 6 or 36 or 37, 7, 8, 9 or 10, 11, 12, 13, 14, 15, 16 or 17;
(b) hybridizes with a DNA comprising a nucleotide sequence complementary to the DNA comprising the nucleotide sequence of (a) under stringent conditions, and fbr-DAHPS, fbr-CM / PDH, TKT, PEPS, TYR, DNA encoding a protein having the enzymatic activity of ORF378, DODC, MAO, NCS, 60MT, CNMT, 4'OMT, CYP80G2, P450 reductase or BBE.
(a) 配列番号2、3、4、5、6もしくは36もしくは37、7、8、9もしくは10、11、12、13、14、15、16または17のヌクレオチド配列からなるDNA;
(b)(a)のヌクレオチド配列からなるDNAと相補的なヌクレオチド配列からなるDNAとストリンジェントな条件下でハイブリダイズし、かつ、fbr-DAHPS、fbr-CM/PDH、TKT、PEPS、TYR、ORF378、DODC、MAO、NCS、6OMT、CNMT、4'OMT、CYP80G2、P450レダクターゼまたは BBE の酵素活性を有するタンパク質をコードするDNA。 That is, the gene used in the present invention is not limited to these, but is preferably a gene that is the following DNA (a) or (b):
(a) DNA consisting of the nucleotide sequence of SEQ ID NO: 2, 3, 4, 5, 6 or 36 or 37, 7, 8, 9 or 10, 11, 12, 13, 14, 15, 16 or 17;
(b) hybridizes with a DNA comprising a nucleotide sequence complementary to the DNA comprising the nucleotide sequence of (a) under stringent conditions, and fbr-DAHPS, fbr-CM / PDH, TKT, PEPS, TYR, DNA encoding a protein having the enzymatic activity of ORF378, DODC, MAO, NCS, 60MT, CNMT, 4'OMT, CYP80G2, P450 reductase or BBE.
さらに、本発明に使用される遺伝子としては、以下の(c)のDNAである遺伝子も挙げられる:
(c) 配列番号2、3、4、5、6もしくは36もしくは37、7、8、9もしくは10、11、12、13、14、15、16または17のヌクレオチド配列に対して、70%以上、好ましくは80%以上、より好ましくは90%以上、さらに好ましくは95%以上の相同性を有するヌクレオチド配列からなり、かつ、fbr-DAHPS、fbr-CM/PDH、TKT、PEPS、TYR、ORF378、DODC、MAO、NCS、6OMT、CNMT、4'OMT、CYP80G2、P450レダクターゼまたは BBE の酵素活性を有するタンパク質をコードするDNA。 Furthermore, examples of the gene used in the present invention include the following genes (c):
(c) 70% or more with respect to the nucleotide sequence of SEQ ID NO: 2, 3, 4, 5, 6 or 36 or 37, 7, 8, 9 or 10, 11, 12, 13, 14, 15, 16 or 17 Consisting of a nucleotide sequence having a homology of preferably 80% or more, more preferably 90% or more, and still more preferably 95% or more, and fbr-DAHPS, fbr-CM / PDH, TKT, PEPS, TYR, ORF378, DNA encoding a protein having enzyme activity of DODC, MAO, NCS, 6OMT, CNMT, 4′OMT, CYP80G2, P450 reductase or BBE.
(c) 配列番号2、3、4、5、6もしくは36もしくは37、7、8、9もしくは10、11、12、13、14、15、16または17のヌクレオチド配列に対して、70%以上、好ましくは80%以上、より好ましくは90%以上、さらに好ましくは95%以上の相同性を有するヌクレオチド配列からなり、かつ、fbr-DAHPS、fbr-CM/PDH、TKT、PEPS、TYR、ORF378、DODC、MAO、NCS、6OMT、CNMT、4'OMT、CYP80G2、P450レダクターゼまたは BBE の酵素活性を有するタンパク質をコードするDNA。 Furthermore, examples of the gene used in the present invention include the following genes (c):
(c) 70% or more with respect to the nucleotide sequence of SEQ ID NO: 2, 3, 4, 5, 6 or 36 or 37, 7, 8, 9 or 10, 11, 12, 13, 14, 15, 16 or 17 Consisting of a nucleotide sequence having a homology of preferably 80% or more, more preferably 90% or more, and still more preferably 95% or more, and fbr-DAHPS, fbr-CM / PDH, TKT, PEPS, TYR, ORF378, DNA encoding a protein having enzyme activity of DODC, MAO, NCS, 6OMT, CNMT, 4′OMT, CYP80G2, P450 reductase or BBE.
ここで、ストリンジェントな条件とは、特異的なハイブリダイゼーションのみが起こり、非特異的なハイブリダイゼーションが起きないような条件をいう。このような条件は、通常、6M尿素、0.4% SDS、0.5xSSC程度である。ハイブリダイゼーションにより得られるDNAは(a)のヌクレオチド配列からなるDNAと70%以上の高い相同性を有することが望ましく、さらに80%以上の相同性を有することが好ましい。ここで「相同性」については上記したとおりである。
Here, stringent conditions refer to conditions in which only specific hybridization occurs and non-specific hybridization does not occur. Such conditions are usually about 6M urea, 0.4% SDS, 0.5xSSC. The DNA obtained by hybridization preferably has a high homology of 70% or more with the DNA comprising the nucleotide sequence (a), and preferably has a homology of 80% or more. Here, “homology” is as described above.
上記遺伝子によってコードされるタンパク質が「fbr-DAHPS、fbr-CM/PDH、TKT、PEPS、TYR、ORF378、DODC、MAO、NCS、6OMT、CNMT、4'OMT、CYP80G2、P450レダクターゼまたは BBE の酵素活性を有する」か否かの確認方法は、タンパク質について上記したとおりである。
The protein encoded by the above gene is `` fbr-DAHPS, fbr-CM / PDH, TKT, PEPS, TYR, ORF378, DODC, MAO, NCS, 6OMT, CNMT, 4'OMT, CYP80G2, P450 reductase or BBE enzyme activity The method for confirming whether or not “has a protein” is as described above for the protein.
上記遺伝子は、当業者に周知の PCR またはハイブリダイゼーション技術によって取得することが可能であり、あるいは DNA合成機などを用いて人工的に合成してもよい。配列の決定は常套方法により配列決定機を用いて行うことが出来る。
The gene can be obtained by PCR or hybridization techniques well known to those skilled in the art, or may be artificially synthesized using a DNA synthesizer or the like. The sequence can be determined by a conventional method using a sequencer.
材料
全ての合成遺伝子は、GenScript Inc. から入手した。(R,S)-ノルラウダノソリンは、Acros Organics から購入した。L-チロシン、L-DOPAおよびドーパミンは、Sigma-Aldrich から購入した。(R,S)-レチクリンは、三井化学株式会社から寄贈されたものを使用した。 Materials All synthetic genes were obtained from GenScript Inc. (R, S) -norlaudanosoline was purchased from Acros Organics. L-tyrosine, L-DOPA and dopamine were purchased from Sigma-Aldrich. (R, S) -reticuline used was donated by Mitsui Chemicals.
全ての合成遺伝子は、GenScript Inc. から入手した。(R,S)-ノルラウダノソリンは、Acros Organics から購入した。L-チロシン、L-DOPAおよびドーパミンは、Sigma-Aldrich から購入した。(R,S)-レチクリンは、三井化学株式会社から寄贈されたものを使用した。 Materials All synthetic genes were obtained from GenScript Inc. (R, S) -norlaudanosoline was purchased from Acros Organics. L-tyrosine, L-DOPA and dopamine were purchased from Sigma-Aldrich. (R, S) -reticuline used was donated by Mitsui Chemicals.
発現ベクターの構築
tyrAfbr-aroGfbr-tktA-ppsA/pCOLADuet-1 の構築
L-チロシンを過剰生産する宿主細胞を作出するために、以下の4つの遺伝子を含む発現ベクターを構築した:tyrAfbr(fbr-CM/PDH)、aroGfbr(fbr-DAHPS)、tktA(TKT)および ppsA(PEPS)。 Construction of expression vector
Construction of tyrA fbr -aroG fbr -tktA-ppsA / pCOLADuet-1 To create a host cell that overproduces L-tyrosine, an expression vector containing the following four genes was constructed: tyrA fbr (fbr-CM / PDH), aroG fbr (fbr-DAHPS), tktA (TKT) and ppsA (PEPS).
tyrAfbr-aroGfbr-tktA-ppsA/pCOLADuet-1 の構築
L-チロシンを過剰生産する宿主細胞を作出するために、以下の4つの遺伝子を含む発現ベクターを構築した:tyrAfbr(fbr-CM/PDH)、aroGfbr(fbr-DAHPS)、tktA(TKT)および ppsA(PEPS)。 Construction of expression vector
Construction of tyrA fbr -aroG fbr -tktA-ppsA / pCOLADuet-1 To create a host cell that overproduces L-tyrosine, an expression vector containing the following four genes was constructed: tyrA fbr (fbr-CM / PDH), aroG fbr (fbr-DAHPS), tktA (TKT) and ppsA (PEPS).
まず、pUC57 にクローニングされた tyrAfbr および aroGfbr 遺伝子を、GenScript Inc. から購入した。該プラスミドにおいて、tyrAfbr は NcoI および EcoRI 制限酵素の認識サイトに隣接しており、aroGfbr は、T7プロモーターに連結していた。また、EcoRI 部位が該T7プロモーターの上流に位置しており、SacI 部位が aroGfbr の下流に位置していた。
tktA および ppsA 遺伝子を、大腸菌 K-12 MG1655 のゲノムDNAから、それぞれ NdeI-tktA-F(配列番号18)と tktA-XhoI-R(配列番号19)のプライマーセットおよび NdeI-ppsA-F(配列番号20)と ppsA-XhoI-R(配列番号21)のプライマーセット(表1)を用いて増幅した。NdeI-XhoI を用いた制限酵素消化の後、tktA および ppsA 遺伝子を個別に、それぞれ pET-41a(Novagen)および pCOLADuet-1(Merck)の NdeI-XhoI 部位へクローニングした。 First, the tyrA fbr and aroG fbr genes cloned into pUC57 were purchased from GenScript Inc. In the plasmid, tyrA fbr was adjacent to the recognition sites for NcoI and EcoRI restriction enzymes, and aroG fbr was linked to the T7 promoter. In addition, an EcoRI site was located upstream of the T7 promoter, and a SacI site was located downstream of aroG fbr .
The tktA and ppsA genes were extracted from the genomic DNA of Escherichia coli K-12 MG1655 with the primer set of NdeI-tktA-F (SEQ ID NO: 18) and tktA-XhoI-R (SEQ ID NO: 19) and NdeI-ppsA-F (SEQ ID NO: 19), respectively. 20) and ppsA-XhoI-R (SEQ ID NO: 21) primer sets (Table 1). After restriction enzyme digestion with NdeI-XhoI, the tktA and ppsA genes were individually cloned into the NdeI-XhoI sites of pET-41a (Novagen) and pCOLADuet-1 (Merck), respectively.
tktA および ppsA 遺伝子を、大腸菌 K-12 MG1655 のゲノムDNAから、それぞれ NdeI-tktA-F(配列番号18)と tktA-XhoI-R(配列番号19)のプライマーセットおよび NdeI-ppsA-F(配列番号20)と ppsA-XhoI-R(配列番号21)のプライマーセット(表1)を用いて増幅した。NdeI-XhoI を用いた制限酵素消化の後、tktA および ppsA 遺伝子を個別に、それぞれ pET-41a(Novagen)および pCOLADuet-1(Merck)の NdeI-XhoI 部位へクローニングした。 First, the tyrA fbr and aroG fbr genes cloned into pUC57 were purchased from GenScript Inc. In the plasmid, tyrA fbr was adjacent to the recognition sites for NcoI and EcoRI restriction enzymes, and aroG fbr was linked to the T7 promoter. In addition, an EcoRI site was located upstream of the T7 promoter, and a SacI site was located downstream of aroG fbr .
The tktA and ppsA genes were extracted from the genomic DNA of Escherichia coli K-12 MG1655 with the primer set of NdeI-tktA-F (SEQ ID NO: 18) and tktA-XhoI-R (SEQ ID NO: 19) and NdeI-ppsA-F (SEQ ID NO: 19), respectively. 20) and ppsA-XhoI-R (SEQ ID NO: 21) primer sets (Table 1). After restriction enzyme digestion with NdeI-XhoI, the tktA and ppsA genes were individually cloned into the NdeI-XhoI sites of pET-41a (Novagen) and pCOLADuet-1 (Merck), respectively.
上記4つの遺伝子を含む発現プラスミドを構築するため、tyrAfbr 遺伝子を含む DNA断片を NcoI および EcoRI を用いて tyrAfbr/pUC57 から切り出し、その後、pCOLADuet-1 の NcoI-EcoRI 部位へクローニングした。次に、aroGfbr/pUC57 の EcoRI-SacI 断片(T7プロモーターに結合した aroGfbr 遺伝子を含む)を、tyrAfbr/pCOLADuet-1 の EcoRI-SacI 部位へクローニングした。かくして、tyrAfbr-aroGfbr の発現ベクター(tyrAfbr-aroGfbr/pCOLADuet-1)を得た。
In order to construct an expression plasmid containing the above four genes, a DNA fragment containing the tyrA fbr gene was excised from tyrA fbr / pUC57 using NcoI and EcoRI, and then cloned into the NcoI-EcoRI site of pCOLADuet-1. Next, the aroG fbr / pUC57 EcoRI-SacI fragment (including the aroG fbr gene linked to the T7 promoter) was cloned into the EcoRI-SacI site of tyrA fbr / pCOLADuet-1. Thus, to obtain an expression vector of tyrA fbr -aroG fbr (tyrA fbr -aroG fbr / pCOLADuet-1).
次いで、T7プロモーターの制御下にある tktA を、tktA/pET-41a から、プライマー 5Sac-T7(配列番号22)および 3NottktA(配列番号23)(表1)を用いて増幅した。次いで、該 tktA および T7プロモーターを、tyrAfbr-aroGfbr/pCOLADuet-1 の SacI-NotI 部位へクローニングし、tyrAfbr-aroGfbr-tktA/pCOLADuet-1 を得た。
Next, tktA under the control of the T7 promoter was amplified from tktA / pET-41a using primers 5Sac-T7 (SEQ ID NO: 22) and 3NottktA (SEQ ID NO: 23) (Table 1). Then the tktA and T7 promoter, cloned into tyrA fbr -aroG fbr / pCOLADuet-1 of SacI-NotI site to obtain tyrA fbr -aroG fbr -tktA / pCOLADuet- 1.
最後に、NotI および XhoI を用いて ppsA/pCOLADuet-1 を消化し、ppsA 遺伝子および T7プロモーターを含む断片を得た。次いでこの断片を tyrAfbr-aroGfbr-tktA/pCOLADuet-1 の NotI-XhoI 部位へクローニングして tyrAfbr-aroGfbr-tktA-ppsA/pCOLADuet-1 を得(図8)、その配列を確認した。
Finally, ppsA / pCOLADuet-1 was digested with NotI and XhoI to obtain a fragment containing the ppsA gene and the T7 promoter. Then tyrA fbr -aroG fbr -tktA-ppsA / pCOLADuet-1 The resulting This fragment was cloned into tyrA fbr -aroG fbr -tktA / pCOLADuet- 1 of NotI-XhoI site (Fig. 8), and its sequence was verified.
NCS-ORF378-TYR-DODC-optMAO/pKK223-3 の構築
ノルラウダノソリンの合成経路を再構築するため、以下の4つの酵素をコードする遺伝子を含む発現ベクターを構築した: Streptomyces castaneoglobisporus のチロシナーゼ(TYR)(TYRの完全な活性のため、TYRおよびそのアダプタータンパク質ORF378を共発現させる)、Pseudomonas putida の L-DOPA特異的デカルボキシラーゼ(DODC)、Micrococcus luteus のモノアミンオキシダーゼ(MAO)およびオウレン(Coptis japonica)のノルコクラウリンシンターゼ(NCS)。 Construction of NCS-ORF378-TYR-DODC-optMAO / pKK223-3 To reconstruct the synthesis route of norlaudanosoline, an expression vector containing genes encoding the following four enzymes was constructed: Streptomyces castaneoglobisporus tyrosinase ( TYR) (for the full activity of TYR, co-express TYR and its adapter protein ORF378), Pseudomonas putida L-DOPA-specific decarboxylase (DODC), Micrococcus luteus monoamine oxidase (MAO) and oren (Coptis japonica ) Norcoclaurine synthase (NCS).
ノルラウダノソリンの合成経路を再構築するため、以下の4つの酵素をコードする遺伝子を含む発現ベクターを構築した: Streptomyces castaneoglobisporus のチロシナーゼ(TYR)(TYRの完全な活性のため、TYRおよびそのアダプタータンパク質ORF378を共発現させる)、Pseudomonas putida の L-DOPA特異的デカルボキシラーゼ(DODC)、Micrococcus luteus のモノアミンオキシダーゼ(MAO)およびオウレン(Coptis japonica)のノルコクラウリンシンターゼ(NCS)。 Construction of NCS-ORF378-TYR-DODC-optMAO / pKK223-3 To reconstruct the synthesis route of norlaudanosoline, an expression vector containing genes encoding the following four enzymes was constructed: Streptomyces castaneoglobisporus tyrosinase ( TYR) (for the full activity of TYR, co-express TYR and its adapter protein ORF378), Pseudomonas putida L-DOPA-specific decarboxylase (DODC), Micrococcus luteus monoamine oxidase (MAO) and oren (Coptis japonica ) Norcoclaurine synthase (NCS).
まず、特開2009-225669号公報および Minami, H. et al. Proc. Natl. Acad. Sci. USA 105, 7393-7398 (2008) に記載される方法に従って、Micrococcus luteus の MAO 遺伝子(配列番号9)およびオウレン(C. japonica)の NCS 遺伝子(配列番号11)を含む発現ベクター pKK223-3(NCS-MAO/pKK223-3)を作成した。
First, according to the method described in Japanese Patent Application Laid-Open No. 2009-225669 and Minami, H. et al. Proc. Natl. Acad. Sci. USA 105, 7393-7398 (2008), the MAO gene (SEQ ID NO: 9) of Micrococcus luteus And an expression vector pKK223-3 (NCS-MAO / pKK223-3) containing the NCS gene (SEQ ID NO: 11) of C. japonica.
ここで、天然の MAO は大腸菌における発現レベルが低いため、本発明者らはコドンを最適化した MAO(配列番号10、以下、optMAO と称する)を用いることとした。具体的には、pGS-21a プラスミドにクローニングされた optMAO 遺伝子を GenScript Inc.から購入し、上記 NCS-MAO/pKK223-3 中に含まれる MAO 遺伝子を、T7プロモーターに駆動される optMAO 遺伝子によって置き換えた。当該置換は、上記購入した optMAO 遺伝子を含む pGS-21a プラスミドから、プライマー 5Bam-T7(配列番号24)および 3oMAO(配列番号25)(表1)を用いる PCR によって optMAO 遺伝子および T7プロモーターを含む BamHI-HindIII 断片を生成し、該断片を NCS-MAO/pKK223-3の BamHI-HindIII 部位へ組み込むことによって達成され、その結果 NCS-optMAO/pKK223-3 を得た。
Here, since natural MAO has a low expression level in E. coli, we decided to use 用 い る MAO (SEQ ID NO: 10, hereinafter referred to as optMAO) with optimized codons. Specifically, the optMAO gene cloned into the pGS-21a plasmid was purchased from GenScript Inc., and the MAO gene contained in the NCS-MAO / pKK223-3 was replaced with the optMAO gene driven by the T7 promoter. . The replacement is performed from the purchased pGS-21a plasmid containing the optMAO gene by PCR using primers 5Bam-T7 (SEQ ID NO: 24) and 3oMAO (SEQ ID NO: 25) (Table 1) BamHI- containing the optMAO gene and T7 promoter. This was accomplished by generating a HindIII fragment and incorporating the fragment into the BamHI-HindIII site of NCS-MAO / pKK223-3, resulting in NCS-optMAO / pKK223-3.
Pseudomonas putida KT2440 株のL-DOPA特異的デカルボキシラーゼ(DODC; EC 4.1.1.28 に属する芳香族 L-アミノ酸デカルボキシラーゼ)の遺伝子(配列番号8)を、同株のゲノムDNAからプライマー 5NdeDODC(配列番号26)および 3BamDODC(配列番号27)(表1)を用いて PCRにより増幅した。当該 PCR産物を NdeI-BamHI で消化した後、pET-3a(Novagen)の NdeI-BamHI 部位へ連結することにより、DODC/pET-3a を得た。かかるDODCは、他の芳香族アミノ酸に比して103倍を超える L-DOPA選択性を示すデカルボキシラーゼである。次いで、T7プロモーターを伴う DODC遺伝子を、該 DODC/pET-3a からプライマー 5BamSacRVT7(配列番号28)および 3BamDODC(配列番号27)(表1)を用いて増幅し、これを NCS-optMAO/pKK223-3 の BamHI 部位へクローニングして NCS-DODC-optMAO/pKK223-3 を得た。
The gene for L-DOPA-specific decarboxylase (DODC; aromatic L-amino acid decarboxylase belonging to EC 4.1.1.28) of Pseudomonas putida KT2440 strain (SEQ ID NO: 8) was extracted from the genomic DNA of the strain 5NdeDODC (SEQ ID NO: 26). ) And 3BamDODC (SEQ ID NO: 27) (Table 1). The PCR product was digested with NdeI-BamHI and then ligated to the NdeI-BamHI site of pET-3a (Novagen) to obtain DODC / pET-3a. Such DODC is a decarboxylase showing the L-DOPA selectivity of greater than 10 3 times as compared with the other aromatic amino acids. Next, the DODC gene with the T7 promoter was amplified from the DODC / pET-3a using primers 5BamSacRVT7 (SEQ ID NO: 28) and 3BamDODC (SEQ ID NO: 27) (Table 1), and this was amplified with NCS-optMAO / pKK223-3 NCS-DODC-optMAO / pKK223-3 was obtained by cloning into the BamHI site.
pGS-21a 中に直列にクローニングされ、各々が独立して T7プロモーターに駆動されている、Streptomyces castaneoglobisporus の TYR遺伝子(配列番号6)および ORF378(配列番号7)を、GenScript Inc.から購入した。このコンストラクトにおいては、両遺伝子のコドン使用頻度が最適化されている。プライマー 5Sac-T7(配列番号22)および 3pGSEcoRV(配列番号29)(表1)を用いて増幅された、TYR遺伝子および ORF378 を含む PCR産物(SacI-EcoRV 断片)を、NCS-DODC-optMAO/pKK223-3 の NCS と DODC の間に位置する SacI-EcoRV 部位に連結し、NCS-ORF378-TYR-DODC-optMAO/pKK223-3を得た。
The Streptomyces castaneoglobisporus TYR gene (SEQ ID NO: 6) and ORF378 (SEQ ID NO: 7) cloned in series in pGS-21a and each independently driven by the T7 promoter were purchased from GenScript Inc. In this construct, the codon usage of both genes is optimized. A PCR product (SacI-EcoRV fragment) containing the TYR gene and ORF378 was amplified using primers 5Sac-T7 (SEQ ID NO: 22) and 3pGSEcoRV (SEQ ID NO: 29) (Table 1). NCS-DODC-optMAO / pKK223 The NCS-ORF378-TYR-DODC-optMAO / pKK223-3 was obtained by ligation to the SacI-EcoRV site located between -3NCS and DODC.
NCS-ORF378-TYR-DODC-optMAO/pET-21d の構築
骨格の異なるプラスミドを有する宿主細胞の間で生産を比較するために、pET-21d(Novagen)プラスミドに基づくベクターを作成した。 Construction of NCS-ORF378-TYR-DODC-optMAO / pET-21d A vector based on the pET-21d (Novagen) plasmid was made to compare production between host cells with plasmids of different backbones.
骨格の異なるプラスミドを有する宿主細胞の間で生産を比較するために、pET-21d(Novagen)プラスミドに基づくベクターを作成した。 Construction of NCS-ORF378-TYR-DODC-optMAO / pET-21d A vector based on the pET-21d (Novagen) plasmid was made to compare production between host cells with plasmids of different backbones.
まず、NCS に結合した T7プロモーターを含む断片を、NCS-MAO/pKK223-3から、プライマー 5BglII-T7(配列番号30)および 3NCSBamSacRV(配列番号31)(表1)を用いて増幅した。次いで、該断片を、pET-21d の BglII-BamHI 部位へ連結した。DODC および optMAO遺伝子を含む、NCS-DODC-optMAO/pKK223-3 の SacI-HindIII 断片を、NCS/pET-21d の SacI-HindIII 部位へ連結して、NCS-DODC-optMAO/pET-21dを得た。最後に、TYR遺伝子および ORF378 を含む上記のPCR産物(SacI-EcoRV 断片)を、NCS-DODC-optMAO/pET-21d の SacI-EcoRV 部位に連結して、NCS-ORF378-TYR-DODC-optMAO/pET-21dを得た(図8)。
First, a fragment containing the T7 promoter bound to NCS was amplified from NCS-MAO / pKK223-3 using primers 5BglII-T7 (SEQ ID NO: 30) and 3NCSBamSacRV (SEQ ID NO: 31) (Table 1). The fragment was then ligated to the BglII-BamHI site of pET-21d. The NCS-DODC-optMAO / pKK223-3 し て SacI-HindIII fragment containing the DODC and optMAO genes was ligated to the SacI-HindIII site of NCS / pET-21d to obtain NCS-DODC-optMAO / pET-21d . Finally, the above PCR product (SacI-EcoRV F fragment) containing the TYR gene and ORF378 is ligated to the SacI-EcoRV site of NCS-DODC-optMAO / pET-21d pET-21d was obtained (FIG. 8).
NCS-RsTYR-DODC-optMAO/pKK223-3 および NCS-RsTYR-DODC-optMAO/pET-21d の構築
pGS-21a 中にクローニングされた、Ralstonia solanacearumのTYR(RsTYR)遺伝子(配列番号37)を、GenScript Inc.から購入した。このコンストラクトにおいては、RsTYR遺伝子のコドン使用頻度が最適化されている。上記の NCS-ORF378-TYR-DODC-optMAO/pKK223-3 および NCS-ORF378-TYR-DODC-optMAO/pET-21d の構築と同じ手順に従い(プライマーも同一のものを使用)、Streptomyces castaneoglobisporusのTYR遺伝子およびORF378の代わりに該RsTYR遺伝子(配列番号37)の配列を用いて、NCS-RsTYR-DODC-optMAO/pKK223-3 および NCS-RsTYR-DODC-optMAO/pET-21d を作成した(図11、後者のコンストラクトのみを示す)。 Construction of NCS-RsTYR-DODC-optMAO / pKK223-3 and NCS-RsTYR-DODC-optMAO / pET-21d Ralstonia solanacearum TYR (RsTYR) gene (SEQ ID NO: 37) cloned in pGS-21a Purchased from Inc. In this construct, the codon usage frequency of the RsTYR gene is optimized. Follow the same procedure as above for constructing NCS-ORF378-TYR-DODC-optMAO / pKK223-3 and NCS-ORF378-TYR-DODC-optMAO / pET-21d (use the same primers), and use Streptomyces castaneoglobisporus TYR gene NCS-RsTYR-DODC-optMAO / pKK223-3 and NCS-RsTYR-DODC-optMAO / pET-21d were prepared using the sequence of the RsTYR gene (SEQ ID NO: 37) instead of ORF378 (FIG. 11, the latter) Only the constructs are shown).
pGS-21a 中にクローニングされた、Ralstonia solanacearumのTYR(RsTYR)遺伝子(配列番号37)を、GenScript Inc.から購入した。このコンストラクトにおいては、RsTYR遺伝子のコドン使用頻度が最適化されている。上記の NCS-ORF378-TYR-DODC-optMAO/pKK223-3 および NCS-ORF378-TYR-DODC-optMAO/pET-21d の構築と同じ手順に従い(プライマーも同一のものを使用)、Streptomyces castaneoglobisporusのTYR遺伝子およびORF378の代わりに該RsTYR遺伝子(配列番号37)の配列を用いて、NCS-RsTYR-DODC-optMAO/pKK223-3 および NCS-RsTYR-DODC-optMAO/pET-21d を作成した(図11、後者のコンストラクトのみを示す)。 Construction of NCS-RsTYR-DODC-optMAO / pKK223-3 and NCS-RsTYR-DODC-optMAO / pET-21d Ralstonia solanacearum TYR (RsTYR) gene (SEQ ID NO: 37) cloned in pGS-21a Purchased from Inc. In this construct, the codon usage frequency of the RsTYR gene is optimized. Follow the same procedure as above for constructing NCS-ORF378-TYR-DODC-optMAO / pKK223-3 and NCS-ORF378-TYR-DODC-optMAO / pET-21d (use the same primers), and use Streptomyces castaneoglobisporus TYR gene NCS-RsTYR-DODC-optMAO / pKK223-3 and NCS-RsTYR-DODC-optMAO / pET-21d were prepared using the sequence of the RsTYR gene (SEQ ID NO: 37) instead of ORF378 (FIG. 11, the latter) Only the constructs are shown).
振盪フラスコ培養を用い、pET-21d および pKK223-3 プラスミドコンストラクトを有する組換え宿主細胞の間で生産性を比較したところ、pKK223-3 よりも pET-21d に基づくプラスミドを有する組換え宿主細胞の方が、わずかにレチクリンの生産レベルが高いという結果を得た(データ示さず)。したがって、本発明者らは NCS-ORF378-TYR-DODC-optMAO/pET-21d および NCS-RsTYR-DODC-optMAO/pET-21d を、ノルラウダノソリン合成経路の酵素を発現させるためのプラスミドとして選択した。
Using shake flask culture to compare productivity between recombinant host cells with pET-21d and pKK223-3 plasmid constructs, recombinant host cells with a plasmid based on pET-21d rather than pKK223-3 However, a slightly higher reticuline production level was obtained (data not shown). Therefore, we selected NCS-ORF378-TYR-DODC-optMAO / pET-21d and NCS-RsTYR-DODC-optMAO / pET-21d as plasmids for expressing the enzymes of the norlaudanosoline synthesis pathway. did.
6OMT-4'OMT-CNMT/pACYC184 の構築
ノルラウダノソリンからレチクリンを合成する経路を再構築するため、前述の特開2009-225669号公報および Minami, H. et al. Proc. Natl. Acad. Sci. USA 105, 7393-7398 (2008) に記載される方法に従って、オウレン(C. japonica)の 6OMT、4'OMT および CNMT 遺伝子を含む発現ベクター pACYC184(6OMT-4'OMT-CNMT/pACYC184)を構築した(図8)。 Construction of 6OMT-4'OMT-CNMT / pACYC184 In order to reconstruct the pathway for synthesizing reticuline from norlaudanosoline, the aforementioned JP 2009-225669 and Minami, H. et al. Proc. Natl. Acad. According to the method described in Sci. USA 105, 7393-7398 (2008), the expression vector pACYC184 (6OMT-4'OMT-CNMT / pACYC184) containing the 6OMT, 4'OMT and CNMT genes of C. japonica was obtained. (Fig. 8).
ノルラウダノソリンからレチクリンを合成する経路を再構築するため、前述の特開2009-225669号公報および Minami, H. et al. Proc. Natl. Acad. Sci. USA 105, 7393-7398 (2008) に記載される方法に従って、オウレン(C. japonica)の 6OMT、4'OMT および CNMT 遺伝子を含む発現ベクター pACYC184(6OMT-4'OMT-CNMT/pACYC184)を構築した(図8)。 Construction of 6OMT-4'OMT-CNMT / pACYC184 In order to reconstruct the pathway for synthesizing reticuline from norlaudanosoline, the aforementioned JP 2009-225669 and Minami, H. et al. Proc. Natl. Acad. According to the method described in Sci. USA 105, 7393-7398 (2008), the expression vector pACYC184 (6OMT-4'OMT-CNMT / pACYC184) containing the 6OMT, 4'OMT and CNMT genes of C. japonica was obtained. (Fig. 8).
本実施例において用いた代表的な PCR 条件を以下に示す: 最初の変性工程、94℃、2 分; 94℃、15 秒の変性、50℃、30 秒のアニーリング および 68℃、90 秒の DNA 伸長からなるサイクルを 30 サイクル; そして最後の 68℃、5 分の伸長; これには KOD-plus DNA ポリメラーゼ (東洋紡) を用いた。本実施例において、PCR は、鋳型とする DNA配列およびプライマーの長さ、Tm値などに応じて適宜条件を変更して行った。PCR 条件を最適化することは、当業者に周知の手法である。
Typical PCR conditions used in this example are as follows: Initial denaturation step, 94 ° C, 2 min; 94 ° C, 15 sec denaturation, 50 ° C, 30 sec annealing and 68 ° C, 90 sec DNA A cycle consisting of elongation was performed for 30 cycles; and the final elongation at 68 ° C for 5 minutes; for this, KOD-plus DNA polymerase polymerase (Toyobo) was used. In this example, PCR was performed by appropriately changing the conditions according to the DNA sequence used as a template, the length of the primer, the Tm value, and the like. Optimizing PCR conditions is a technique well known to those skilled in the art.
レチクリン生産株の作出
まず、L-チロシンを過剰生産する宿主細胞を作出するため、Lutke-Eversloh, T., and Gregory Stephanopoulos, G., Appl. Microbiol. Biotechnol. (2007) 75:103-110 に記載されている L-チロシンを過剰生産する大腸菌株の遺伝的構成を採用した。具体的には、tyrR遺伝子中にノックアウト突然変異を有し、tyrAfbr、aroGfbr、tktA および ppsA を発現するプラスミドを有する大腸菌株を作出した。 Creation of Reticuline Production Strains First, in order to create host cells that overproduce L-tyrosine, Lutke-Eversloh, T., and Gregory Stephanopoulos, G., Appl. Microbiol. Biotechnol. (2007) 75: 103-110 The described genetic construction of the E. coli strain overproducing L-tyrosine was employed. Specifically, an E. coli strain having a knockout mutation in the tyrR gene and having a plasmid expressing tyrA fbr , aroG fbr , tktA and ppsA was created.
まず、L-チロシンを過剰生産する宿主細胞を作出するため、Lutke-Eversloh, T., and Gregory Stephanopoulos, G., Appl. Microbiol. Biotechnol. (2007) 75:103-110 に記載されている L-チロシンを過剰生産する大腸菌株の遺伝的構成を採用した。具体的には、tyrR遺伝子中にノックアウト突然変異を有し、tyrAfbr、aroGfbr、tktA および ppsA を発現するプラスミドを有する大腸菌株を作出した。 Creation of Reticuline Production Strains First, in order to create host cells that overproduce L-tyrosine, Lutke-Eversloh, T., and Gregory Stephanopoulos, G., Appl. Microbiol. Biotechnol. (2007) 75: 103-110 The described genetic construction of the E. coli strain overproducing L-tyrosine was employed. Specifically, an E. coli strain having a knockout mutation in the tyrR gene and having a plasmid expressing tyrA fbr , aroG fbr , tktA and ppsA was created.
tyrR遺伝子の欠失は、Quick & Easy E.coli Gene Deletion Kit(Gene Bridges)を用いて、PCR産物との組換えによって達成した。具体的には、該キットに含まれる FRT-PGK-gb2-neo-FRT の配列を有するプラスミドを鋳型とし、tyrR遺伝子と相同な配列を 5'末端に有するプライマー d-tyrR-Sm-F(配列番号32)および d-tyrR-Sm-R(配列番号33)(表1)を用いて FRT配列を有するカナマイシン耐性遺伝子カセットを PCR増幅することにより、FRT配列を有するカナマイシン耐性遺伝子カセットの両端に tyrR遺伝子と相同な配列を有する DNA断片を得た。次いで、該断片を用いて大腸菌 BL21(DE3)を形質転換し、相同組換えによって FRT配列を有するカナマイシン耐性遺伝子カセットを tyrR遺伝子内部に導入した。その後、FLP発現ベクター(708-FLPe; Gene Bridges)を用いて該大腸菌 BL21(DE3)を形質転換し、FLPリコンビナーゼの作用によってカナマイシン耐性遺伝子カセットを除去した。最後に、tyrR::null 変異を、プライマー 5tyrRKOcheck(配列番号34)および 3tyrRKOcheck(配列番号35)(表1)を用いて、PCR によって確認した。
Deletion of the tyrR gene was achieved by recombination with PCR products using Quick & Easy E.coli Deletion Kit (Gene Bridges). Specifically, using a plasmid having the sequence of FRT-PGK-gb2-neo-FRT included in the kit as a template, a primer d-tyrR-Sm-F having a sequence homologous to the tyrR gene at the 5 'end (sequence No. 32) and d-tyrR-Sm-R (SEQ ID NO: 33) (Table 1) were used to PCR-amplify the kanamycin resistance gene cassette having the FRT sequence, so that tyrR A sputum DNA fragment having a sequence homologous to the gene was obtained. Subsequently, Escherichia coli BL21 (DE3) was transformed with the fragment, and a kanamycin resistance gene cassette having a FRT sequence was introduced into the tyrR gene by homologous recombination. Thereafter, the Escherichia coli BL21 (DE3) was transformed with an FLP expression vector (708-FLPe; Gene Bridges), and the kanamycin resistance gene cassette was removed by the action of FLP recombinase. Finally, the tyrR :: null mutation was confirmed by PCR using the primers 5tyrRKOcheck (SEQ ID NO: 34) and 3tyrRKOcheck (SEQ ID NO: 35) (Table 1).
上記 tyrR::null 変異を有する大腸菌 BL21(DE3)を、tyrAfbr-aroGfbr-tktA-ppsA/pCOLADuet-1(図8)を用いて形質転換し、L-チロシン過剰生産株を得た。次いで、該 L-チロシン過剰生産株を、NCS-ORF378-TYR-DODC-optMAO/pET-21d および 6OMT-4'OMT-CNMT/pACYC184(図8)を用いて形質転換して、レチクリン生産株を得た(本明細書において、かかる株を「組換え生産株A」と称する)。また、L-チロシンの生産に関して上記の改変(tyrR::null 変異および tyrAfbr-aroGfbr-tktA-ppsA/pCOLADuet-1 の導入)がなされていない大腸菌 BL21(DE3)株を NCS-ORF378-TYR-DODC-optMAO/pET-21d および 6OMT-4'OMT-CNMT/pACYC184 を用いて形質転換して組換え大腸菌株を得た(本明細書において、かかる株を「組換え生産株B」と称する)。さらに、上記L-チロシン過剰生産株(tyrR::null変異を有し、かつ、tyrAfbr-aroGfbr-tktA-ppsA/pCOLADuet-1で形質転換されている大腸菌BL21(DE3))を、NCS-RsTYR-DODC-optMAO/pET-21d(図11)および 6OMT-4'OMT-CNMT/pACYC184 を用いて形質転換して、レチクリン生産株を得た(本明細書において、かかる株を「組換え生産株C」と称する)。これら組換え生産株A、BおよびCを、レチクリン生産のために使用した。
Escherichia coli BL21 (DE3) having the tyrR :: null mutation was transformed with tyrA fbr -aroG fbr -tktA-ppsA / pCOLADuet-1 (FIG. 8) to obtain an L-tyrosine overproducing strain. Next, the L-tyrosine overproducing strain was transformed with NCS-ORF378-TYR-DODC-optMAO / pET-21d and 6OMT-4′OMT-CNMT / pACYC184 (FIG. 8) to obtain a reticuline producing strain. Obtained (this strain is referred to herein as “recombinant production strain A”). In addition, the E. coli BL21 (DE3) strain that has not undergone the above modification (introduction of tyrR :: null mutation and tyrA fbr -aroG fbr -tktA-ppsA / pCOLADuet-1) for the production of L-tyrosine is NCS-ORF378-TYR -DODC-optMAO / pET-21d and 6OMT-4'OMT-CNMT / pACYC184 were transformed to obtain a recombinant Escherichia coli strain (this strain is referred to herein as "recombinant production strain B") ). Furthermore, the above L-tyrosine overproducing strain (E. coli BL21 (DE3) having a tyrR :: null mutation and transformed with tyrA fbr -aroG fbr -tktA-ppsA / pCOLADuet-1) was transformed into NCS- RsTYR-DODC-optMAO / pET-21d (FIG. 11) and 6OMT-4′OMT-CNMT / pACYC184 were transformed to obtain a reticuline producing strain (herein, such strain is referred to as “recombinant production”). Referred to as "strain C"). These recombinant production strains A, B and C were used for reticuline production.
培養条件
宿主細胞を液体 LB培地中において 37℃で終夜培養し、10 mL の細胞培養物を、1 Lの改変した常套の培地(3 Lのジャーファーメンター(BMS-03PI、ABLE)中において、1リットルあたり以下を含む: 47.6 g の Turbo Broth(商標)(Athena Enzyme System)、1.6 g の NH4Cl、2.49 mg の CuSO4・5H2O、3 g のグルコースまたは 5 g のグリセロール、50 mg のアンピシリン、25 mg のカナマイシン、および 50 mg のクロラムフェニコール)に接種した。 Culture conditions Host cells are cultured overnight in liquid LB medium at 37 ° C, and 10 mL of cell culture is cultured in 1 L of modified conventional medium (3 L of jar fermenter (BMS-03PI, ABLE)) Per liter contains: 47.6 g Turbo Broth ™ (Athena Enzyme System), 1.6 g NH 4 Cl, 2.49 mg CuSO 4 · 5H 2 O, 3 g glucose or 5 g glycerol, 50 mg Ampicillin, 25 mg kanamycin, and 50 mg chloramphenicol).
宿主細胞を液体 LB培地中において 37℃で終夜培養し、10 mL の細胞培養物を、1 Lの改変した常套の培地(3 Lのジャーファーメンター(BMS-03PI、ABLE)中において、1リットルあたり以下を含む: 47.6 g の Turbo Broth(商標)(Athena Enzyme System)、1.6 g の NH4Cl、2.49 mg の CuSO4・5H2O、3 g のグルコースまたは 5 g のグリセロール、50 mg のアンピシリン、25 mg のカナマイシン、および 50 mg のクロラムフェニコール)に接種した。 Culture conditions Host cells are cultured overnight in liquid LB medium at 37 ° C, and 10 mL of cell culture is cultured in 1 L of modified conventional medium (3 L of jar fermenter (BMS-03PI, ABLE)) Per liter contains: 47.6 g Turbo Broth ™ (Athena Enzyme System), 1.6 g NH 4 Cl, 2.49 mg CuSO 4 · 5H 2 O, 3 g glucose or 5 g glycerol, 50 mg Ampicillin, 25 mg kanamycin, and 50 mg chloramphenicol).
28 % の NH4OH および 1M の HCl を自動添加することにより、pH を 7.1 に維持した。接種時における撹拌速度は 100 r.p.m.であり、溶存酸素レベルは、1 v・v-1・m-1 の連続的通気を用いて、酸素飽和度 10 % まで低下させた。グルコース濃度は、0.5 g/mL のグルコース溶液の添加によって、0.1 から 7 g/L の間に維持した。グリセロール濃度は、1 g/mL のグリセロール溶液の添加によって、0.1 から 6 g/L の間に維持した。必要に応じ、OD600 が 10(炭素源としてグルコースを用いる培地における培養の場合)または 15(炭素源としてグリセロールを用いる培地における培養の場合)に達した時点で、ベクター付属の説明書等において示された、あるいは指定された濃度(最終濃度)の IPTG を培養物に添加して発現誘導を行った。
The pH was maintained at 7.1 by automatic addition of 28% NH 4 OH and 1M HCl. The stirring speed at the time of inoculation was 100 rpm, and the dissolved oxygen level was reduced to 10% oxygen saturation using continuous aeration of 1 v · v −1 · m −1 . The glucose concentration was maintained between 0.1 and 7 g / L by addition of 0.5 g / mL glucose solution. Glycerol concentration was maintained between 0.1 and 6 g / L by addition of 1 g / mL glycerol solution. If necessary, when the OD 600 reaches 10 (for culture in a medium using glucose as a carbon source) or 15 (for culture in a medium using glycerol as a carbon source), it is indicated in the instructions attached to the vector. Expression induction was performed by adding IPTG at the designated or specified concentration (final concentration) to the culture.
化合物の検出および定量
製造元の説明書に従い、グルコースCII-テストワコー(和光純薬工業株式会社)を用いてムタロターゼ-グルコース法によって培地中のグルコースを解析した。製造元の説明書に従い、Glycerol Assay Kit(Cayman Chemical Co.)を用いて培地中のグリセロールを解析した。 Detection and quantification of compounds According to the manufacturer's instructions, glucose in the medium was analyzed by the mutarotase-glucose method using glucose CII-Test Wako (Wako Pure Chemical Industries, Ltd.). According to the manufacturer's instructions, glycerol in the medium was analyzed using Glycerol Assay Kit (Cayman Chemical Co.).
製造元の説明書に従い、グルコースCII-テストワコー(和光純薬工業株式会社)を用いてムタロターゼ-グルコース法によって培地中のグルコースを解析した。製造元の説明書に従い、Glycerol Assay Kit(Cayman Chemical Co.)を用いて培地中のグリセロールを解析した。 Detection and quantification of compounds According to the manufacturer's instructions, glucose in the medium was analyzed by the mutarotase-glucose method using glucose CII-Test Wako (Wako Pure Chemical Industries, Ltd.). According to the manufacturer's instructions, glycerol in the medium was analyzed using Glycerol Assay Kit (Cayman Chemical Co.).
培地中におけるレチクリン以外の芳香族化合物は、Discovery HS F5カラム(Supelco)を備える HPLC によって解析した。0.5 mL/分の流速で、10 mM のギ酸アンモニウム(pH 3.0)中におけるアセトニトリル濃度を 3 % から 20% まで増大させることにより、化合物をカラム上で分離した。280 nmにおける吸光度を測定することにより、化合物の溶出をモニターした。
Aromatic compounds other than reticuline in the medium were analyzed by a HPLC equipped with a Discovery HS F5 column (Supelco). The compounds were separated on the column by increasing the acetonitrile concentration from 3% to 20% in 10 mM ammonium formate (pH 3.0) at a flow rate of 0.5 mL / min. Compound elution was monitored by measuring absorbance at 280 nm.
生産されたレチクリンを測定するため、様々な時点で培養上清を回収し、2 % のトリクロロ酢酸を用いてタンパク質を沈殿させた。上清を、Agilent HPLC system 上で分離した後、LC-MS(3200 Q TRAP、Applied Biosystems Japan Ltd.)によって解析した。HPLC の条件は以下の通りであった: カラム、TSKgel ODS-80Ts(4.6×250 mm; 東ソー株式会社); 溶媒系、A:0.1 % 酢酸水溶液、B:0.1 % の酢酸を含有するアセトニトリル溶液; グラジエントモード: 90 % の A(0-5分)、90 % から 60 % の A(5-20分)、10 % の A(20-30分); 流速、0.5 mL/分、温度:40℃。レチクリンを、LC-タンデムMS(LC-MS/MS)における断片化スペクトルについて標準レチクリン(研究室ストック)と比較することによって同定した。Analyst 1.4.1 ソフトウェアを用いて、検量線(μmol対ピーク面積)からレチクリンの量を推定した。
In order to measure the produced reticuline, the culture supernatant was collected at various time points, and the protein was precipitated using 2% by weight of trichloroacetic acid. The supernatant was separated on an Agilent HPLC system and analyzed by LC-MS (3200 QTRAP, Applied Biosystems Japan Ltd.). The HPLC conditions were as follows: A column, TSKgel ODS-80Ts (4.6 × 250 mm; Totosoh Corporation); A solvent system, A: 0.1% acetic acid aqueous solution, B: Acetonitrile solution containing 0.1% acetic acid; Gradient mode: 90% A (0-5 minutes), 90% to 60% A (5-20 minutes), 10% A (20-30 minutes); . Reticuline was identified by comparing it to standard reticuline (laboratory stock) for fragmentation spectra in LC-tandem MS (LC-MS / MS). The amount of reticuline was estimated from the calibration curve (μmol vs. peak area) using Analyst 1.4.1 software.
生産されたレチクリンを、Agilent HPLC system 上で分離した後、LC-MS に供することによって、該レチクリンの立体選択性を解析した。HPLC の条件は以下の通りであった: カラム、CHIRALCEL OD-H(4.6×250 mm、ダイセル化学工業株式会社); 溶媒系、ヘキサン/2-プロパノール/ジエチルアミン(72:28:0.1); 流速、0.55 mL/分、温度:40℃。
The reticuline produced was separated on an Agilent HPLC system and then subjected to LC-MS to analyze the stereoselectivity of the reticuline. The conditions of the HPLC column were as follows: column, CHIRALCEL OD-H (4.6 × 250 mm, Daicel Chemical Industries, Ltd.); solvent system, hexane / 2-propanol / diethylamine (72: 28: 0.1); 0.55 mL / min, temperature: 40 ° C.
(S)-レチクリンの精製
Oasis HLB 固相抽出カートリッジ(Waters)および HPLC により、培養上清から(S)-レチクリンを精製した。培養上清をロードする前に、該カートリッジを水で前平衡化した。カートリッジを 5% のメタノールで洗浄し、その後 100% のメタノールを用いて(S)-レチクリンを溶出した。溶出液を、上記の条件において、TSKgel ODS-80Ts カラムを備える HPLC に供試した。(S)-レチクリンに相当するピーク画分を回収し、その後、精製の程度を MS 解析によって確認した。 Purification of (S) -reticuline (S) -reticuline was purified from the culture supernatant by Oasis HLB solid phase extraction cartridge (Waters) and HPLC. The cartridge was pre-equilibrated with water before loading the culture supernatant. The cartridge was washed with 5% methanol and then (S) -reticuline was eluted with 100% methanol. The eluate was subjected to HPLC equipped with a TSKgel ODS-80Ts column under the above conditions. The peak fraction corresponding to (S) -reticuline was collected, and then the degree of purification was confirmed by MS analysis.
Oasis HLB 固相抽出カートリッジ(Waters)および HPLC により、培養上清から(S)-レチクリンを精製した。培養上清をロードする前に、該カートリッジを水で前平衡化した。カートリッジを 5% のメタノールで洗浄し、その後 100% のメタノールを用いて(S)-レチクリンを溶出した。溶出液を、上記の条件において、TSKgel ODS-80Ts カラムを備える HPLC に供試した。(S)-レチクリンに相当するピーク画分を回収し、その後、精製の程度を MS 解析によって確認した。 Purification of (S) -reticuline (S) -reticuline was purified from the culture supernatant by Oasis HLB solid phase extraction cartridge (Waters) and HPLC. The cartridge was pre-equilibrated with water before loading the culture supernatant. The cartridge was washed with 5% methanol and then (S) -reticuline was eluted with 100% methanol. The eluate was subjected to HPLC equipped with a TSKgel ODS-80Ts column under the above conditions. The peak fraction corresponding to (S) -reticuline was collected, and then the degree of purification was confirmed by MS analysis.
結果
組換え宿主細胞による(S)-レチクリンの生産
上記の通りに作出した2種の組換え大腸菌株(tyrR::null 変異を有し、発現プラスミド tyrAfbr-aroGfbr-tktA-ppsA/pCOLADuet-1、NCS-ORF378-TYR-DODC-optMAO/pET-21d および 6OMT-4'OMT-CNMT/pACYC184 を有する「組換え生産株A」、および、L-チロシンの生産に関わる代謝経路が改変されておらず、発現プラスミド NCS-ORF378-TYR-DODC-optMAO/pET-21d および 6OMT-4'OMT-CNMT/pACYC184 を有する「組換え生産株B」)を、炭素源としてグルコースを含む培地を用いてジャーファーメンター中において培養し、レチクリンの生産を測定するために培地を様々な時点において回収した。 Results (S) -Reticuline Production by Recombinant Host Cells The two recombinant E. coli strains (tyrR :: null mutations produced as described above) and the expression plasmid tyrA fbr -aroG fbr -tktA-ppsA / pCOLADuet- 1. Recombinant production strain A with NCS-ORF378-TYR-DODC-optMAO / pET-21d and 6OMT-4'OMT-CNMT / pACYC184, and metabolic pathways involved in L-tyrosine production have been modified Without the expression plasmids NCS-ORF378-TYR-DODC-optMAO / pET-21d and 6OMT-4′OMT-CNMT / pACYC184 using a medium containing glucose as a carbon source. Cultured in a jar fermenter, media was collected at various time points to measure reticuline production.
組換え宿主細胞による(S)-レチクリンの生産
上記の通りに作出した2種の組換え大腸菌株(tyrR::null 変異を有し、発現プラスミド tyrAfbr-aroGfbr-tktA-ppsA/pCOLADuet-1、NCS-ORF378-TYR-DODC-optMAO/pET-21d および 6OMT-4'OMT-CNMT/pACYC184 を有する「組換え生産株A」、および、L-チロシンの生産に関わる代謝経路が改変されておらず、発現プラスミド NCS-ORF378-TYR-DODC-optMAO/pET-21d および 6OMT-4'OMT-CNMT/pACYC184 を有する「組換え生産株B」)を、炭素源としてグルコースを含む培地を用いてジャーファーメンター中において培養し、レチクリンの生産を測定するために培地を様々な時点において回収した。 Results (S) -Reticuline Production by Recombinant Host Cells The two recombinant E. coli strains (tyrR :: null mutations produced as described above) and the expression plasmid tyrA fbr -aroG fbr -tktA-ppsA / pCOLADuet- 1. Recombinant production strain A with NCS-ORF378-TYR-DODC-optMAO / pET-21d and 6OMT-4'OMT-CNMT / pACYC184, and metabolic pathways involved in L-tyrosine production have been modified Without the expression plasmids NCS-ORF378-TYR-DODC-optMAO / pET-21d and 6OMT-4′OMT-CNMT / pACYC184 using a medium containing glucose as a carbon source. Cultured in a jar fermenter, media was collected at various time points to measure reticuline production.
液体クロマトグラフィー-質量分析(LC-MS)の結果、組換え生産株Bは 80時間のうちに培地中のグルコースから(S)-レチクリンを培地 1L あたり 0.53 mg の収量で生産し、一方、組換え生産株Aは、80時間のうちに培地中のグルコースから (S)-レチクリンを培地 1L あたり 2.2 mg の収量で生産したことが示された(図2)。また、グルコースを含まない培地においては、組換え生産株Aによる(S)-レチクリンの収量は80μg/Lと極めて低かった(図2)。これらの結果は、単純な炭素源であるグルコースから(S)-レチクリンが得られたことを示す。
As a result of liquid chromatography-mass spectrometry (LC-MS), recombinant production strain B produced (S) -reticuline from glucose in the medium within a period of 80 hours with a yield of 0.53 mg per liter of medium. It was shown that the replacement production strain A produced (S) -reticuline from glucose in the medium in a yield of 2.2 mg per liter of medium within 80 hours (Fig. 2). Moreover, in the medium not containing glucose, the yield of (S) -reticuline by the recombinant production strain A was as extremely low as 80 μg / L (FIG. 2). These results indicate that (S) -reticuline was obtained from glucose, a simple carbon source.
また、上記組換え生産株Aにおいては、IPTG による誘導がなくとも、導入した生合成遺伝子のリーク発現によって(S)-レチクリンが生産された(図3)。これは本発明による(S)-レチクリンの生産コストを実質的に減少させることが可能であることを意味する。さらに、炭素源としてグリセロールを含む培地を用いて組換え生産株Aを培養した場合には、80時間における (S)-レチクリンの収量は培地 1L あたり 6.2mg にまで増大し(図9)、これは炭素源としてグルコースを用いた培地における生産量よりもおよそ3倍高いものであった。
In the recombinant production strain A, (S) -reticuline was produced by leak expression of the introduced biosynthetic gene without induction by IPTG (FIG. 3). This means that the production cost of (S) -reticuline according to the present invention can be substantially reduced. Furthermore, when recombinant production strain A was cultured using a medium containing glycerol as a carbon source, the yield of (S) -reticuline in 80 hours increased to 6.2 mg per liter of medium (Fig. 9). Was approximately three times higher than the production in the medium using glucose as the carbon source.
別の実験として、上記組換え生産株AおよびCを、炭素源としてグリセロールを含む培地において培養し、レチクリン生産量を測定した。その結果、組換え生産株Cにおいては、同条件において組換え生産株Aを用いた場合の収量のおよそ7倍にあたる、培地 1L あたり最大 46mg(3回の独立した実験の平均として 40.5±4.8mg/L)の (S)-レチクリンが生産された(図12)。かかる結果は、RsTYRの採用によってアダプタータンパク質を用いることなくレチクリンの生産を達成でき、かつ、レチクリン生産量を増大させ得ることを実証したものと言える。
As another experiment, the above recombinant production strains A and C were cultured in a medium containing glycerol as a carbon source, and the amount of reticuline produced was measured. As a result, in the recombinant production strain C, the maximum yield of 46 mg per 1 L of medium, which is approximately 7 times the yield of the recombinant production strain A under the same conditions (40.5 ± 4.8 mg as the average of three independent experiments). / L) (S) -reticuline was produced (FIG. 12). Such a result can be said to demonstrate that the use of RsTYR can achieve the production of reticuline without using an adapter protein and can increase the production of reticuline.
RsTYRを用いたドーパミン生産株(上記L-チロシン過剰生産株にRsTYRおよびDODCを導入した株)が、S. castaneoglobisporusのTYRを用いたドーパミン生産株(上記L-チロシン過剰生産株にS. castaneoglobisporusのTYRおよびDODCを導入した株)のほぼ4倍の収量にあたる 1.05±0.05g/L(6.85±0.30mM)のドーパミンを生産したことから(データ示さず)、ドーパミンの生産能力の増大が、組換え生産株Cにおけるレチクリン生産の増大に寄与している可能性が考えられる。
A dopamine producing strain using RsTYR (a strain in which RsTYR and DODC have been introduced into the above L-tyrosine overproducing strain) is a dopamine producing strain using a TYR of S. castaneoglobisporus (the above L-tyrosine overproducing strain is Since the production of 1.05 ± 0.05g / L (6.85 ± 0.30mM) of dopamine (yield not shown) was about 4 times the yield of TYR and DODC) (data not shown), The possibility of contributing to the increase in reticuline production in the production strain C is considered.
インビボでレチクリンを生産するための公知の方法(特許文献1および2、非特許文献14)においてはラセミ体としてレチクリンが生産されるのに対し、本発明の上記組換え生産株Aを用いる方法においては、(S)-レチクリンのみが生産された(図6)。また、該組換え生産株Aの培養中、静止期においては中間体として L-チロシンが蓄積したが、培養期間全体において L-DOPA およびドーパミンの蓄積は観察されなかった(図7)。ドーパミンが全く蓄積しないことにより、(S)-体特異的にノルラウダノソリンを生成する NCS の触媒作用によらないでドーパミンと 3,4-DHPAA とが自発的縮合反応を起こすことが妨げられる。その結果、(R,S)-ラセミ混合物としてノルラウダノソリンが生成されることはなく、(S)-レチクリンのみが得られるものと考えられる。
In known methods for producing reticuline in vivo ( patent documents 1 and 2, non-patent document 14), reticuline is produced as a racemate, whereas in the method using the above-described recombinant production strain A of the present invention, Produced only (S) -reticuline (FIG. 6). Further, during cultivation of the recombinant production strain A, L-tyrosine accumulated as an intermediate in the stationary phase, but accumulation of L-DOPA and dopamine was not observed throughout the culture period (FIG. 7). No accumulation of dopamine prevents the spontaneous condensation reaction between dopamine and 3,4-DHPAA without the catalysis of NCS, which produces (S) -body specific norlaudanosoline. . As a result, norlaudanosoline is not produced as a (R, S) -racemic mixture, and only (S) -reticuline is considered to be obtained.
本発明の組換え宿主細胞を用いるレチクリンの生産方法は、光学的に活性な(S)-レチクリンを、植物培養細胞の培養または遺伝子組換え植物による生産(通常、数ヶ月から1年程度の期間を要する)よりもずっと速く、例えば2~3日で生産することを可能にするものである。
In the method for producing reticuline using the recombinant host cell of the present invention, optically active (S) -reticuline is produced by culturing plant cultured cells or producing a recombinant plant (usually for a period of several months to one year). For example, in 2 to 3 days.
ドーパミンやノルラウダノソリンなどの出発物質と比較して、本発明の方法において炭素源として用い得るグルコースやグリセロール等の物質は安価かつ入手が容易である。したがって、例えば特許文献1および2ならびに非特許文献14に開示される、従来の微生物による生産方法と比較して、本発明の方法による(S)-レチクリンの生産コストは非常に低いものとなる。
Compared with starting materials such as dopamine and norlaudanosoline, substances such as glucose and glycerol that can be used as a carbon source in the method of the present invention are inexpensive and readily available. Therefore, for example, the production cost of (S) -reticuline by the method of the present invention is very low as compared with the conventional production method using microorganisms disclosed in Patent Documents 1 and 2 and Non-Patent Document 14.
本発明のさらなる利点は、単純かつ効率的な精製操作によって、望まない代謝産物(目的としないイソキノリンアルカロイドを含む)の混入がほとんど無い(S)-レチクリンを得ることができる点である。例えば、固相抽出および高速液体クロマトグラフィー(HPLC)を用いて培地から(S)-レチクリンを精製した結果、精製された(S)-レチクリンを90%よりも多く回収することができた(図10)。かかる単純かつ高収率の精製操作により、本発明の(S)-レチクリン生産方法は経済的に実現可能なものとなる。
A further advantage of the present invention is that (S) -reticuline with almost no contamination with unwanted metabolites (including undesired isoquinoline alkaloids) can be obtained by a simple and efficient purification procedure. For example, as a result of purifying (S) -reticuline from the medium using solid phase extraction and high performance liquid chromatography (HPLC), more than 90% of the purified (S) -reticuline could be recovered (Fig. 10). Such a simple and high-yield purification operation makes the (S) -reticuline production method of the present invention economically feasible.
Claims (15)
- L-チロシンを生産する代謝経路を有するイソキノリンアルカロイド非生産性細胞に、チロシナーゼまたはチロシナーゼおよびそのアダプタータンパク質、L-DOPA特異的デカルボキシラーゼ、モノアミンオキシダーゼ、ノルコクラウリンシンターゼ、ノルコクラウリン 6-O-メチルトランスフェラーゼ、コクラウリン-N-メチルトランスフェラーゼならびに3'-ヒドロキシ-N-メチルコクラウリン-4'-O-メチルトランスフェラーゼからなる群より選択される少なくとも1つのタンパク質をコードする少なくとも1つの遺伝子が導入されてなる、チロシナーゼまたはチロシナーゼおよびそのアダプタータンパク質、L-DOPA特異的デカルボキシラーゼ、モノアミンオキシダーゼ、ノルコクラウリンシンターゼ、ノルコクラウリン 6-O-メチルトランスフェラーゼ、コクラウリン-N-メチルトランスフェラーゼならびに3'-ヒドロキシ-N-メチルコクラウリン-4'-O-メチルトランスフェラーゼを発現する組換え宿主細胞を提供する工程、および
該組換え宿主細胞を、炭素源としてグルコース、フルクトース、ガラクトース、スクロース、ラクトースおよびマルトースからなる群より選択される1種以上の糖および/またはグリセロールを含む培地において培養する工程、
を含む、(S)-レチクリンを生産する方法。 Non-isoquinoline alkaloid-producing cells with metabolic pathways that produce L-tyrosine, and tyrosinase or tyrosinase and its adapter protein, L-DOPA-specific decarboxylase, monoamine oxidase, norcoclaurine synthase, norcoclaurine 6-O-methyl At least one gene encoding at least one protein selected from the group consisting of transferase, coclaurin-N-methyltransferase and 3′-hydroxy-N-methylcoclaurine-4′-O-methyltransferase is introduced. Tyrosinase or its tyrosinase and its adapter protein, L-DOPA specific decarboxylase, monoamine oxidase, norcoclaurine synthase, norcoclaurine 6-O-methyltransferase, rich Providing a recombinant host cell expressing urin-N-methyltransferase and 3′-hydroxy-N-methylcoclaurine-4′-O-methyltransferase, and using the recombinant host cell as a carbon source with glucose, Culturing in a medium containing one or more sugars and / or glycerol selected from the group consisting of fructose, galactose, sucrose, lactose and maltose;
A method for producing (S) -reticuline, comprising: - 組換え宿主細胞が、tyrR遺伝子を有しないかまたはその機能が欠損しているものである、請求項1に記載の方法。 The method according to claim 1, wherein the recombinant host cell does not have a tyrR gene or lacks its function.
- 組換え宿主細胞が、さらにフィードバック阻害耐性の3-デオキシ-D-アラビノ-ヘプツロソン酸-7-リン酸シンターゼおよび/またはフィードバック阻害耐性のコリスミ酸ムターゼ/プレフェナートデヒドロゲナーゼを発現するものである、請求項1または2に記載の方法。 The recombinant host cell is further one which expresses feedback inhibition resistant 3-deoxy-D-arabino-heptulosonate-7-phosphate synthase and / or feedback inhibition resistant chorismate mutase / prephenate dehydrogenase. Item 3. The method according to Item 1 or 2.
- 組換え宿主細胞が、さらにトランスケトラーゼおよび/またはホスホエノールピルビン酸シンテターゼを過剰発現するものである、請求項1~3のいずれかに記載の方法。 The method according to any one of claims 1 to 3, wherein the recombinant host cell further overexpresses transketolase and / or phosphoenolpyruvate synthetase.
- L-チロシンを生産する代謝経路を有するイソキノリンアルカロイド非生産性細胞に、フィードバック阻害耐性の3-デオキシ-D-アラビノ-ヘプツロソン酸-7-リン酸シンターゼ、フィードバック阻害耐性のコリスミ酸ムターゼ/プレフェナートデヒドロゲナーゼ、トランスケトラーゼ、ホスホエノールピルビン酸シンテターゼ、チロシナーゼまたはチロシナーゼおよびそのアダプタータンパク質、L-DOPA特異的デカルボキシラーゼ、モノアミンオキシダーゼ、ノルコクラウリンシンターゼ、ノルコクラウリン 6-O-メチルトランスフェラーゼ、コクラウリン-N-メチルトランスフェラーゼならびに3'-ヒドロキシ-N-メチルコクラウリン-4'-O-メチルトランスフェラーゼからなる群より選択される少なくとも1つのタンパク質をコードする少なくとも1つの遺伝子が導入されてなる組換え宿主細胞であって、フィードバック阻害耐性の3-デオキシ-D-アラビノ-ヘプツロソン酸-7-リン酸シンターゼ、フィードバック阻害耐性のコリスミ酸ムターゼ/プレフェナートデヒドロゲナーゼ、トランスケトラーゼ、ホスホエノールピルビン酸シンテターゼ、チロシナーゼまたはチロシナーゼおよびそのアダプタータンパク質、L-DOPA特異的デカルボキシラーゼ、モノアミンオキシダーゼ、ノルコクラウリンシンターゼ、ノルコクラウリン 6-O-メチルトランスフェラーゼ、コクラウリン-N-メチルトランスフェラーゼならびに3'-ヒドロキシ-N-メチルコクラウリン-4'-O-メチルトランスフェラーゼを発現し、かつ、tyrR遺伝子を有しないかまたはその機能が欠損している組換え宿主細胞を提供する工程、および
該組換え宿主細胞を、炭素源としてグルコース、フルクトース、ガラクトース、スクロース、ラクトースおよびマルトースからなる群より選択される1種以上の糖および/またはグリセロールを含む培地において培養する工程、
を含む、(S)-レチクリンを生産する方法。 3-Deoxy-D-arabino-heptulosonate-7-phosphate synthase resistant to feedback inhibition and chorismate mutase / prefenate resistant to feedback inhibition in non-isoquinoline alkaloid-producing cells with metabolic pathways that produce L-tyrosine Dehydrogenase, transketolase, phosphoenolpyruvate synthetase, tyrosinase or tyrosinase and its adapter proteins, L-DOPA specific decarboxylase, monoamine oxidase, norcoclaurine synthase, norcoclaurine 6-O-methyltransferase, coclaurin-N- Methyltransferase and at least one gene encoding at least one protein selected from the group consisting of 3'-hydroxy-N-methylcoclaurine-4'-O-methyltransferase Recombinant host cells introduced, which are 3-hydroxy-deoxy-D-arabino-heptulosonate-7-phosphate synthase resistant to feedback inhibition, chorismate mutase / prephenate dehydrogenase, transketolase resistant to feedback inhibition, Phosphoenolpyruvate synthetase, tyrosinase or its tyrosinase and its adapter protein, L-DOPA specific decarboxylase, monoamine oxidase, norcoclaurine synthase, norcoclaurine 6-O-methyltransferase, coclaurine-N-methyltransferase and 3'- Providing a recombinant host cell that expresses hydroxy-N-methylcoclaurine-4'-O-methyltransferase and does not have the tyrR gene or lacks its function; and The Culturing glucose, fructose, galactose, sucrose, in a medium containing one or more sugars and / or glycerol selected from the group consisting of lactose and maltose as Motogen,
A method for producing (S) -reticuline, comprising: - 得られるレチクリンが、実質的に(R)-レチクリンを含まないものであることを特徴とする、請求項1~5のいずれかに記載の方法。 The method according to any one of claims 1 to 5, wherein the obtained reticuline is substantially free of (R) -reticuline.
- イソキノリンアルカロイド非生産性細胞が、大腸菌、酵母、枯草菌および糸状菌からなる群より選択される、請求項1~6のいずれかに記載の方法。 The method according to any one of claims 1 to 6, wherein the isoquinoline alkaloid non-producing cells are selected from the group consisting of Escherichia coli, yeast, Bacillus subtilis and filamentous fungi.
- 組換え宿主細胞に、L-DOPA特異的デカルボキシラーゼ以外の芳香族L-アミノ酸デカルボキシラーゼをコードする遺伝子が導入されていないことを特徴とする、請求項1~7のいずれかに記載の方法。 The method according to any one of claims 1 to 7, wherein a gene encoding an aromatic L-amino acid decarboxylase other than L-DOPA-specific decarboxylase has not been introduced into the recombinant host cell.
- L-チロシンを生産する代謝経路を有するイソキノリンアルカロイド非生産性細胞に、チロシナーゼまたはチロシナーゼおよびそのアダプタータンパク質、L-DOPA特異的デカルボキシラーゼ、モノアミンオキシダーゼ、ノルコクラウリンシンターゼ、ノルコクラウリン 6-O-メチルトランスフェラーゼ、コクラウリン-N-メチルトランスフェラーゼならびに3'-ヒドロキシ-N-メチルコクラウリン-4'-O-メチルトランスフェラーゼからなる群より選択される少なくとも1つのタンパク質をコードする少なくとも1つの遺伝子が導入されてなる、チロシナーゼまたはチロシナーゼおよびそのアダプタータンパク質、L-DOPA特異的デカルボキシラーゼ、モノアミンオキシダーゼ、ノルコクラウリンシンターゼ、ノルコクラウリン 6-O-メチルトランスフェラーゼ、コクラウリン-N-メチルトランスフェラーゼならびに3'-ヒドロキシ-N-メチルコクラウリン-4'-O-メチルトランスフェラーゼを発現する組換え宿主細胞。 Non-isoquinoline alkaloid-producing cells with metabolic pathways that produce L-tyrosine, tyrosinase or tyrosinase and its adapter protein, L-DOPA-specific decarboxylase, monoamine oxidase, norcoclaurine synthase, norcoclaurine 6-O-methyl At least one gene encoding at least one protein selected from the group consisting of transferase, coclaurin-N-methyltransferase and 3′-hydroxy-N-methylcoclaurine-4′-O-methyltransferase is introduced. Tyrosinase or tyrosinase and its adapter protein, L-DOPA specific decarboxylase, monoamine oxidase, norcoclaurine synthase, norcoclaurine 6-O-methyltransferase, Kuraurin -N- methyltransferase and 3'-hydroxy -N- methylcoclaurine cloud phosphorus-4'-O-methyl transferase recombinant host cells expressing.
- tyrR遺伝子を有しないかまたはその機能が欠損しているものである、請求項9に記載の組換え宿主細胞。 The recombinant host cell according to claim 9, which has no tyrR gene or lacks its function.
- さらにフィードバック阻害耐性の3-デオキシ-D-アラビノ-ヘプツロソン酸-7-リン酸シンターゼおよび/またはフィードバック阻害耐性のコリスミ酸ムターゼ/プレフェナートデヒドロゲナーゼを発現するものである、請求項9または10に記載の組換え宿主細胞。 Furthermore, it expresses feedback inhibition resistant 3-deoxy-D-arabino-heptulosonate-7-phosphate synthase and / or feedback inhibition resistant chorismate mutase / prephenate dehydrogenase. Recombinant host cell.
- さらにトランスケトラーゼおよび/またはホスホエノールピルビン酸シンテターゼを過剰発現するものである、請求項9~11のいずれかに記載の組換え宿主細胞。 The recombinant host cell according to any one of claims 9 to 11, which further overexpresses transketolase and / or phosphoenolpyruvate synthetase.
- L-チロシンを生産する代謝経路を有するイソキノリンアルカロイド非生産性細胞に、フィードバック阻害耐性の3-デオキシ-D-アラビノ-ヘプツロソン酸-7-リン酸シンターゼ、フィードバック阻害耐性のコリスミ酸ムターゼ/プレフェナートデヒドロゲナーゼ、トランスケトラーゼ、ホスホエノールピルビン酸シンテターゼ、チロシナーゼまたはチロシナーゼおよびそのアダプタータンパク質、L-DOPA特異的デカルボキシラーゼ、モノアミンオキシダーゼ、ノルコクラウリンシンターゼ、ノルコクラウリン 6-O-メチルトランスフェラーゼ、コクラウリン-N-メチルトランスフェラーゼならびに3'-ヒドロキシ-N-メチルコクラウリン-4'-O-メチルトランスフェラーゼからなる群より選択される少なくとも1つのタンパク質をコードする少なくとも1つの遺伝子が導入されてなる組換え宿主細胞であって、フィードバック阻害耐性の3-デオキシ-D-アラビノ-ヘプツロソン酸-7-リン酸シンターゼ、フィードバック阻害耐性のコリスミ酸ムターゼ/プレフェナートデヒドロゲナーゼ、トランスケトラーゼ、ホスホエノールピルビン酸シンテターゼ、チロシナーゼまたはチロシナーゼおよびそのアダプタータンパク質、L-DOPA特異的デカルボキシラーゼ、モノアミンオキシダーゼ、ノルコクラウリンシンターゼ、ノルコクラウリン 6-O-メチルトランスフェラーゼ、コクラウリン-N-メチルトランスフェラーゼならびに3'-ヒドロキシ-N-メチルコクラウリン-4'-O-メチルトランスフェラーゼを発現し、かつ、tyrR遺伝子を有しないかまたはその機能が欠損している、組換え宿主細胞。 3-Deoxy-D-arabino-heptulosonate-7-phosphate synthase resistant to feedback inhibition and chorismate mutase / prefenate resistant to feedback inhibition in non-isoquinoline alkaloid-producing cells with metabolic pathways that produce L-tyrosine Dehydrogenase, transketolase, phosphoenolpyruvate synthetase, tyrosinase or tyrosinase and its adapter protein, L-DOPA specific decarboxylase, monoamine oxidase, norcoclaurine synthase, norcoclaurine 6-O-methyltransferase, coclaurin-N- At least one gene encoding a methyltransferase and at least one protein selected from the group consisting of 3'-hydroxy-N-methylcoclaurine-4'-O-methyltransferase Recombinant host cells into which feedback inhibition resistance 3-deoxy-D-arabino-hepturosonate-7-phosphate synthase, feedback inhibition resistance chorismate mutase / prephenate dehydrogenase, transketolase , Phosphoenolpyruvate synthetase, tyrosinase or tyrosinase and its adapter protein, L-DOPA specific decarboxylase, monoamine oxidase, norcoclaurine synthase, norcoclaurine 6-O-methyltransferase, coclaurin-N-methyltransferase and 3 ' A recombinant host cell that expresses hydroxy-N-methylcoclaurine-4'-O-methyltransferase and does not have the tyrR gene or is deficient in its function.
- 大腸菌、酵母、枯草菌および糸状菌からなる群より選択される、請求項9~13のいずれかに記載の組換え宿主細胞。 The recombinant host cell according to any one of claims 9 to 13, which is selected from the group consisting of Escherichia coli, yeast, Bacillus subtilis and filamentous fungi.
- L-DOPA特異的デカルボキシラーゼ以外の芳香族L-アミノ酸デカルボキシラーゼをコードする遺伝子が導入されていないことを特徴とする、請求項9~14のいずれかに記載の組換え宿主細胞。 The recombinant host cell according to any one of claims 9 to 14, wherein a gene encoding an aromatic L-amino acid decarboxylase other than L-DOPA-specific decarboxylase has not been introduced.
Priority Applications (1)
Application Number | Priority Date | Filing Date | Title |
---|---|---|---|
JP2012535056A JP5761723B2 (en) | 2010-09-22 | 2011-09-21 | Method for producing plant benzylisoquinoline alkaloids |
Applications Claiming Priority (2)
Application Number | Priority Date | Filing Date | Title |
---|---|---|---|
JP2010-212261 | 2010-09-22 | ||
JP2010212261 | 2010-09-22 |
Publications (1)
Publication Number | Publication Date |
---|---|
WO2012039438A1 true WO2012039438A1 (en) | 2012-03-29 |
Family
ID=45873922
Family Applications (1)
Application Number | Title | Priority Date | Filing Date |
---|---|---|---|
PCT/JP2011/071520 WO2012039438A1 (en) | 2010-09-22 | 2011-09-21 | Method for producing plant benzylisoquinoline alkaloid |
Country Status (2)
Country | Link |
---|---|
JP (1) | JP5761723B2 (en) |
WO (1) | WO2012039438A1 (en) |
Cited By (13)
Publication number | Priority date | Publication date | Assignee | Title |
---|---|---|---|---|
WO2015066642A1 (en) * | 2013-11-04 | 2015-05-07 | The Board Of Trustees Of The Leland Stanford Junior University | Benzylisoquinoline alkaloid (bia) precursor producing microbes, and methods of making and using the same |
JP2015192669A (en) * | 2014-03-26 | 2015-11-05 | 三菱化学株式会社 | Microorganism and culture method of microorganisms |
WO2016081371A1 (en) | 2014-11-17 | 2016-05-26 | The Board Of Trustees Of The Leland Stanford Junior University | Noscapinoid-producing microbes and methods of making and using the same |
US9376696B1 (en) | 2006-10-19 | 2016-06-28 | California Institute Of Technology | Compositions and methods for producing benzylisoquinoline alkaloids |
JP2016182044A (en) * | 2015-03-25 | 2016-10-20 | 三菱化学株式会社 | Method for manufacturing betacyanins |
US9534241B2 (en) | 2013-03-15 | 2017-01-03 | The Board Of Trustees Of The Leland Stanford Junior University | Benzylisoquinoline alkaloids (BIA) producing microbes, and methods of making and using the same |
CN107614688A (en) * | 2015-05-04 | 2018-01-19 | 小利兰·斯坦福大学托管委员会 | Produce the microorganism and its preparation and application of benzyl isoquinoline alkaloid (BIA) precursor |
US10544420B2 (en) | 2017-08-03 | 2020-01-28 | Antheia, Inc. | Engineered benzylisoquinoline alkaloid epimerases and methods of producing benzylisoquinoline alkaloids |
WO2020090940A1 (en) * | 2018-10-30 | 2020-05-07 | 国立大学法人神戸大学 | Recombinant host cell for producing benzylisoquinoline alkaloid (bia) and novel method for producing benzylisoquinoline alkaloid (bia) |
US10738335B2 (en) | 2016-10-18 | 2020-08-11 | Antheia, Inc. | Methods of producing nor-opioid and nal-opioid benzylisoquinoline alkaloids |
WO2020262107A1 (en) | 2019-06-24 | 2020-12-30 | 石川県公立大学法人 | Production method of (r)-reticulin |
CN114262681A (en) * | 2020-09-16 | 2022-04-01 | 中国科学院分子植物科学卓越创新中心 | Berberine producing strain, and establishing method and application thereof |
US11859225B2 (en) | 2015-05-08 | 2024-01-02 | The Board Of Trustees Of The Leland Stanford Junior University | Methods of producing epimerases and benzylisoquinoline alkaloids |
Families Citing this family (1)
Publication number | Priority date | Publication date | Assignee | Title |
---|---|---|---|---|
TWI724839B (en) | 2019-04-16 | 2021-04-11 | 謝佳璋 | Manufacturing method of electric conductor wire |
Citations (2)
Publication number | Priority date | Publication date | Assignee | Title |
---|---|---|---|---|
WO2006091676A2 (en) * | 2005-02-22 | 2006-08-31 | Ceres Inc. | Modulating plant alkaloids |
WO2008153094A1 (en) * | 2007-06-12 | 2008-12-18 | Kyoto University | Method for production of alkaloid |
-
2011
- 2011-09-21 JP JP2012535056A patent/JP5761723B2/en active Active
- 2011-09-21 WO PCT/JP2011/071520 patent/WO2012039438A1/en active Application Filing
Patent Citations (2)
Publication number | Priority date | Publication date | Assignee | Title |
---|---|---|---|---|
WO2006091676A2 (en) * | 2005-02-22 | 2006-08-31 | Ceres Inc. | Modulating plant alkaloids |
WO2008153094A1 (en) * | 2007-06-12 | 2008-12-18 | Kyoto University | Method for production of alkaloid |
Non-Patent Citations (5)
Title |
---|
FACCHINI, P.J. ET AL.: "Differential and tissue- specific expression of a gene family for tyrosine/dopa decarboxylase in opium poppy.", J BIOL CHEM., vol. 269, 1994, pages 26684 - 26690 * |
HIROMICHI MINAMI ET AL.: "Biseibutsu ni yoru Koto Shokubutsu Alkaloid no Seisan", KAGAKU TO SEIBUTSU, vol. 47, 2009, pages 528 - 530 * |
KEGG PATHWAY, TYROSINE METABOLISM-ESCHERICHIA COLI K-12 MG1655 * |
LOEFFLER, S. ET AL.: "The hydroxylation step in the biosynthetic pathway leading from norcoclaurine to reticuline.", PHYTOCHEMISTRY, vol. 29, 1990, pages 3499 - 3503, XP026615890, DOI: doi:10.1016/0031-9422(90)85264-G * |
LUTKE-EVERSLOH, T. ET AL.: "L-tyrosine production by deregulated strains of Escherichia coli.", APPL MICROBIOL BIOTECHNOL., vol. 75, 2007, pages 103 - 110, XP019513622, DOI: doi:10.1007/s00253-006-0792-9 * |
Cited By (37)
Publication number | Priority date | Publication date | Assignee | Title |
---|---|---|---|---|
US10240175B2 (en) | 2006-10-19 | 2019-03-26 | California Institute Of Technology | Compositions and methods for producing benzylisoquinoline alkaloids |
US9376696B1 (en) | 2006-10-19 | 2016-06-28 | California Institute Of Technology | Compositions and methods for producing benzylisoquinoline alkaloids |
US10240176B2 (en) | 2006-10-19 | 2019-03-26 | California Institute Of Technology | Compositions and methods for producing benzylisoquinoline alkaloids |
US20160304923A1 (en) | 2006-10-19 | 2016-10-20 | California Institute Of Technology | Compositions and methods for producing benzylisoquinoline alkaloids |
US9534241B2 (en) | 2013-03-15 | 2017-01-03 | The Board Of Trustees Of The Leland Stanford Junior University | Benzylisoquinoline alkaloids (BIA) producing microbes, and methods of making and using the same |
US10988787B2 (en) | 2013-03-15 | 2021-04-27 | The Board Of Trustees Of The Leland Stanford Junior University | Benzylisoquinoline alkaloids (BIA) producing microbes, and methods of making and using the same |
US10017799B2 (en) | 2013-03-15 | 2018-07-10 | The Board Of Trustees Of The Leland Stanford Junior University | Benzylisoquinoline alkaloids (BIA) producing microbes, and methods of making and using the same |
US10858681B2 (en) | 2013-03-15 | 2020-12-08 | The Board Of Trustees Of The Leland Stanford Junior University | Benzylisoquinoline alkaloids (BIA) producing microbes, and methods of making and using the same |
US11214819B2 (en) | 2013-03-15 | 2022-01-04 | The Board Of Trustees Of The Leland Stanford Junior University | Benzylisoquinoline alkaloids (BIA) producing microbes, and methods of making and using the same |
US11124814B2 (en) | 2013-11-04 | 2021-09-21 | The Board Of Trustees Of The Leland Stanford Junior University | Benzylisoquinoline alkaloid (BIA) precursor producing microbes, and methods of making and using the same |
EP3066207A1 (en) * | 2013-11-04 | 2016-09-14 | The Board Of Trustees Of The University Of the Leland Stanford Junior University | Benzylisoquinoline alkaloid (bia) precursor producing microbes, and methods of making and using the same |
US20160251688A1 (en) | 2013-11-04 | 2016-09-01 | The Board Of Trustees Of The Leland Stanford Junior University | Benzylisoquinoline alkaloid (bia) precursor producing microbes, and methods of making and using the same |
CN105829541A (en) * | 2013-11-04 | 2016-08-03 | 小利兰·斯坦福大学托管委员会 | Benzylisoquinoline alkaloid (bia) precursor producing microbes, and methods of making and using the same |
CN112410379A (en) * | 2013-11-04 | 2021-02-26 | 小利兰·斯坦福大学托管委员会 | Microorganisms producing benzylisoquinoline alkaloid (BIA) precursors and methods of making and using the same |
WO2015066642A1 (en) * | 2013-11-04 | 2015-05-07 | The Board Of Trustees Of The Leland Stanford Junior University | Benzylisoquinoline alkaloid (bia) precursor producing microbes, and methods of making and using the same |
EP3770267A1 (en) * | 2013-11-04 | 2021-01-27 | The Board of Trustees of the Leland Stanford Junior University | Benzylisoquinoline alkaloid (bia) precursor producing microbes, and methods of making and using the same |
US12018304B2 (en) | 2013-11-04 | 2024-06-25 | The Board Of Trustees Of The Leland Stanford Junior University | Benzylisoquinoline alkaloid (BIA) precursor producing microbes, and methods of making and using the same |
JP2015192669A (en) * | 2014-03-26 | 2015-11-05 | 三菱化学株式会社 | Microorganism and culture method of microorganisms |
JP2018500002A (en) * | 2014-11-17 | 2018-01-11 | ザ ボード オブ トラスティーズ オブ ザ レランド スタンフォード ジュニア ユニバーシティー | Noscapinoid-producing microorganism and method for producing and using the same |
WO2016081371A1 (en) | 2014-11-17 | 2016-05-26 | The Board Of Trustees Of The Leland Stanford Junior University | Noscapinoid-producing microbes and methods of making and using the same |
JP7236214B2 (en) | 2014-11-17 | 2023-03-09 | ザ ボード オブ トラスティーズ オブ ザ レランド スタンフォード ジュニア ユニバーシティー | Noscapinoid-producing microorganisms and methods for producing and using the same |
JP2016182044A (en) * | 2015-03-25 | 2016-10-20 | 三菱化学株式会社 | Method for manufacturing betacyanins |
US10752903B2 (en) | 2015-05-04 | 2020-08-25 | The Board Of Trustees Of The Leland Stanford Junior University | Benzylisoquinoline alkaloid (BIA) precursor producing microbes, and methods of making and using the same |
CN107614688A (en) * | 2015-05-04 | 2018-01-19 | 小利兰·斯坦福大学托管委员会 | Produce the microorganism and its preparation and application of benzyl isoquinoline alkaloid (BIA) precursor |
US10519453B2 (en) | 2015-05-04 | 2019-12-31 | The Board Of Trustees Of The Leland Stanford Junior University | Benzylisoquinoline alkaloid (BIA) precursor producing microbes, and methods of making and using the same |
CN107614688B (en) * | 2015-05-04 | 2023-02-28 | 小利兰·斯坦福大学托管委员会 | Microorganisms producing benzylisoquinoline alkaloid (BIA) precursors and methods of making and using same |
EP3292203A4 (en) * | 2015-05-04 | 2019-10-09 | The Board of Trustees of the Leland Stanford Junior University | Benzylisoquinoline alkaloid (bia) precursor producing microbes, and methods of making and using the same |
US11859225B2 (en) | 2015-05-08 | 2024-01-02 | The Board Of Trustees Of The Leland Stanford Junior University | Methods of producing epimerases and benzylisoquinoline alkaloids |
US10738335B2 (en) | 2016-10-18 | 2020-08-11 | Antheia, Inc. | Methods of producing nor-opioid and nal-opioid benzylisoquinoline alkaloids |
US10544420B2 (en) | 2017-08-03 | 2020-01-28 | Antheia, Inc. | Engineered benzylisoquinoline alkaloid epimerases and methods of producing benzylisoquinoline alkaloids |
US11427827B2 (en) | 2017-08-03 | 2022-08-30 | Antheia, Inc. | Engineered benzylisoquinoline alkaloid epimerases and methods of producing benzylisoquinoline alkaloids |
WO2020090940A1 (en) * | 2018-10-30 | 2020-05-07 | 国立大学法人神戸大学 | Recombinant host cell for producing benzylisoquinoline alkaloid (bia) and novel method for producing benzylisoquinoline alkaloid (bia) |
JPWO2020090940A1 (en) * | 2018-10-30 | 2021-09-30 | 国立大学法人神戸大学 | Recombinant host cell for benzylisoquinoline alkaloid (BIA) production and new method for producing benzylisoquinoline alkaloid (BIA) |
JP7497047B2 (en) | 2018-10-30 | 2024-06-10 | 国立大学法人東京農工大学 | Recombinant host cells for the production of benzylisoquinoline alkaloids (BIA) and novel methods for producing benzylisoquinoline alkaloids (BIA) |
WO2020262107A1 (en) | 2019-06-24 | 2020-12-30 | 石川県公立大学法人 | Production method of (r)-reticulin |
CN114262681A (en) * | 2020-09-16 | 2022-04-01 | 中国科学院分子植物科学卓越创新中心 | Berberine producing strain, and establishing method and application thereof |
CN114262681B (en) * | 2020-09-16 | 2023-11-21 | 中国科学院分子植物科学卓越创新中心 | Berberine production strain, establishment method and application thereof |
Also Published As
Publication number | Publication date |
---|---|
JP5761723B2 (en) | 2015-08-12 |
JPWO2012039438A1 (en) | 2014-02-03 |
Similar Documents
Publication | Publication Date | Title |
---|---|---|
JP5761723B2 (en) | Method for producing plant benzylisoquinoline alkaloids | |
US11136293B2 (en) | Processes for the production of tryptamines | |
US9121044B2 (en) | Biosynthesis of caffeic acid and caffeic acid derivatives by recombinant microorganisms | |
Nakagawa et al. | A bacterial platform for fermentative production of plant alkaloids | |
US10597685B2 (en) | Host cells and methods for oxidizing aromatic amino acids | |
JP4829117B2 (en) | Production of monatin and monatin precursor | |
CN107771214B (en) | Modified microorganisms for optimized 2,4-dihydroxybutyric acid production with increased 2,4-dihydroxybutyric acid excrements | |
CN109937257B (en) | Method for producing target substance | |
CN109890972B (en) | Method for producing target substance | |
CN109890960A (en) | Method for producing aldehyde | |
US20240132921A1 (en) | Microbial production of tyrosol and salidroside | |
JP2012000059A (en) | FERMENTATIVE PRODUCTION OF MUCONOLACTONE, β-KETOADIPIC ACID AND/OR LEVULINIC ACID | |
KR102149044B1 (en) | Method of producing 2-hydroxy gamma butyrolactone or 2,4-dihydroxybutanoic acid | |
JP7067706B2 (en) | Transformed microorganisms and their utilization | |
JP2009225669A (en) | Method for producing plant benzylisoquinoline alkaloid | |
US20180037917A1 (en) | Protecting group chemistry for clean, reductant-free dyeing | |
CN112877349B (en) | Recombinant expression vector, genetically engineered bacterium containing recombinant expression vector and application of genetically engineered bacterium | |
WO2019059337A1 (en) | Nootkatone production method | |
KR102286035B1 (en) | Esherichia coli TRANSFORMANT AND METHOD FOR PRODUCING CUMARIN-BASED OR QUINOLINE-BASED COMPOUND USING THE SAME | |
KR102688712B1 (en) | Recombinant E.coli strains for high production of anthranilate and uses thereof | |
JP2024517485A (en) | Biosynthesis of phenylpropanoid compounds | |
JP5866604B2 (en) | Novel microorganism and method for producing 2,3-dihydroxybenzoic acid and salicylic acid using the same |
Legal Events
Date | Code | Title | Description |
---|---|---|---|
121 | Ep: the epo has been informed by wipo that ep was designated in this application |
Ref document number: 11826883 Country of ref document: EP Kind code of ref document: A1 |
|
ENP | Entry into the national phase |
Ref document number: 2012535056 Country of ref document: JP Kind code of ref document: A |
|
NENP | Non-entry into the national phase |
Ref country code: DE |
|
122 | Ep: pct application non-entry in european phase |
Ref document number: 11826883 Country of ref document: EP Kind code of ref document: A1 |