KR102286035B1 - Esherichia coli TRANSFORMANT AND METHOD FOR PRODUCING CUMARIN-BASED OR QUINOLINE-BASED COMPOUND USING THE SAME - Google Patents

Esherichia coli TRANSFORMANT AND METHOD FOR PRODUCING CUMARIN-BASED OR QUINOLINE-BASED COMPOUND USING THE SAME Download PDF

Info

Publication number
KR102286035B1
KR102286035B1 KR1020200029252A KR20200029252A KR102286035B1 KR 102286035 B1 KR102286035 B1 KR 102286035B1 KR 1020200029252 A KR1020200029252 A KR 1020200029252A KR 20200029252 A KR20200029252 A KR 20200029252A KR 102286035 B1 KR102286035 B1 KR 102286035B1
Authority
KR
South Korea
Prior art keywords
coli
synthesis
arog
genes
pqsa
Prior art date
Application number
KR1020200029252A
Other languages
Korean (ko)
Inventor
안중훈
추혜정
Original Assignee
건국대학교 산학협력단
Priority date (The priority date is an assumption and is not a legal conclusion. Google has not performed a legal analysis and makes no representation as to the accuracy of the date listed.)
Filing date
Publication date
Application filed by 건국대학교 산학협력단 filed Critical 건국대학교 산학협력단
Priority to KR1020200029252A priority Critical patent/KR102286035B1/en
Application granted granted Critical
Publication of KR102286035B1 publication Critical patent/KR102286035B1/en

Links

Images

Classifications

    • CCHEMISTRY; METALLURGY
    • C12BIOCHEMISTRY; BEER; SPIRITS; WINE; VINEGAR; MICROBIOLOGY; ENZYMOLOGY; MUTATION OR GENETIC ENGINEERING
    • C12NMICROORGANISMS OR ENZYMES; COMPOSITIONS THEREOF; PROPAGATING, PRESERVING, OR MAINTAINING MICROORGANISMS; MUTATION OR GENETIC ENGINEERING; CULTURE MEDIA
    • C12N15/00Mutation or genetic engineering; DNA or RNA concerning genetic engineering, vectors, e.g. plasmids, or their isolation, preparation or purification; Use of hosts therefor
    • C12N15/09Recombinant DNA-technology
    • C12N15/63Introduction of foreign genetic material using vectors; Vectors; Use of hosts therefor; Regulation of expression
    • C12N15/70Vectors or expression systems specially adapted for E. coli
    • CCHEMISTRY; METALLURGY
    • C12BIOCHEMISTRY; BEER; SPIRITS; WINE; VINEGAR; MICROBIOLOGY; ENZYMOLOGY; MUTATION OR GENETIC ENGINEERING
    • C12NMICROORGANISMS OR ENZYMES; COMPOSITIONS THEREOF; PROPAGATING, PRESERVING, OR MAINTAINING MICROORGANISMS; MUTATION OR GENETIC ENGINEERING; CULTURE MEDIA
    • C12N9/00Enzymes; Proenzymes; Compositions thereof; Processes for preparing, activating, inhibiting, separating or purifying enzymes
    • C12N9/10Transferases (2.)
    • C12N9/1025Acyltransferases (2.3)
    • C12N9/1029Acyltransferases (2.3) transferring groups other than amino-acyl groups (2.3.1)
    • CCHEMISTRY; METALLURGY
    • C12BIOCHEMISTRY; BEER; SPIRITS; WINE; VINEGAR; MICROBIOLOGY; ENZYMOLOGY; MUTATION OR GENETIC ENGINEERING
    • C12NMICROORGANISMS OR ENZYMES; COMPOSITIONS THEREOF; PROPAGATING, PRESERVING, OR MAINTAINING MICROORGANISMS; MUTATION OR GENETIC ENGINEERING; CULTURE MEDIA
    • C12N9/00Enzymes; Proenzymes; Compositions thereof; Processes for preparing, activating, inhibiting, separating or purifying enzymes
    • C12N9/93Ligases (6)
    • CCHEMISTRY; METALLURGY
    • C12BIOCHEMISTRY; BEER; SPIRITS; WINE; VINEGAR; MICROBIOLOGY; ENZYMOLOGY; MUTATION OR GENETIC ENGINEERING
    • C12PFERMENTATION OR ENZYME-USING PROCESSES TO SYNTHESISE A DESIRED CHEMICAL COMPOUND OR COMPOSITION OR TO SEPARATE OPTICAL ISOMERS FROM A RACEMIC MIXTURE
    • C12P17/00Preparation of heterocyclic carbon compounds with only O, N, S, Se or Te as ring hetero atoms
    • C12P17/02Oxygen as only ring hetero atoms
    • C12P17/06Oxygen as only ring hetero atoms containing a six-membered hetero ring, e.g. fluorescein
    • CCHEMISTRY; METALLURGY
    • C12BIOCHEMISTRY; BEER; SPIRITS; WINE; VINEGAR; MICROBIOLOGY; ENZYMOLOGY; MUTATION OR GENETIC ENGINEERING
    • C12PFERMENTATION OR ENZYME-USING PROCESSES TO SYNTHESISE A DESIRED CHEMICAL COMPOUND OR COMPOSITION OR TO SEPARATE OPTICAL ISOMERS FROM A RACEMIC MIXTURE
    • C12P17/00Preparation of heterocyclic carbon compounds with only O, N, S, Se or Te as ring hetero atoms
    • C12P17/10Nitrogen as only ring hetero atom
    • C12P17/12Nitrogen as only ring hetero atom containing a six-membered hetero ring
    • CCHEMISTRY; METALLURGY
    • C12BIOCHEMISTRY; BEER; SPIRITS; WINE; VINEGAR; MICROBIOLOGY; ENZYMOLOGY; MUTATION OR GENETIC ENGINEERING
    • C12YENZYMES
    • C12Y203/00Acyltransferases (2.3)
    • C12Y203/01Acyltransferases (2.3) transferring groups other than amino-acyl groups (2.3.1)
    • CCHEMISTRY; METALLURGY
    • C12BIOCHEMISTRY; BEER; SPIRITS; WINE; VINEGAR; MICROBIOLOGY; ENZYMOLOGY; MUTATION OR GENETIC ENGINEERING
    • C12YENZYMES
    • C12Y602/00Ligases forming carbon-sulfur bonds (6.2)
    • C12Y602/01Acid-Thiol Ligases (6.2.1)
    • C12Y602/01032Anthranilate--CoA ligase (6.2.1.32)

Abstract

The present invention relates to an E. coli transformant for producing a coumarin-based or quinol-based compound, into which P. aeruginosa-derived pqsD and P. aeruginosa-derived pqsA gene are introduced, and a method for producing a coumarin-based or quinol-based compound using the same. Since the coumarin-based or quinol-based compound can be produced at high titer, the coumarin-based or quinol-based compound can be used in various ways as a raw material for food, pharmaceuticals, and cosmetics or a precursor thereof.

Description

대장균 형질전환체 및 이를 이용한 쿠마린계 또는 퀴놀계 화합물 생성방법{Esherichia coli TRANSFORMANT AND METHOD FOR PRODUCING CUMARIN-BASED OR QUINOLINE-BASED COMPOUND USING THE SAME}E. coli transformant and coumarin-based or quinol-based compound production method using the same

본 발명은 대장균 형질전환체 및 이를 이용한 쿠마린계 또는 퀴놀계 화합물 생성방법에 관한 것이다. The present invention relates to an E. coli transformant and a method for producing a coumarin-based or quinol-based compound using the same.

미생물은 다양한 화합물을 합성하기 위한 시스템으로서 기능할 수 있다. 이러한 목적으로 사용되는 많은 종류의 미생물 중에서 대장균은 알칼로이드, 테르 페노이드 및 페놀 화합물과 같은 유용한 천연 화합물을 생성하기 위한 좋은 모델 시스템이다. 페놀 화합물은 전통적으로 화학 반응을 통해 석유와 같은 화석 연료에서 합성되었다. 그러나, 이들 공정에 요구되는 높은 비용 및 시간으로 인해, 대안적인 접근법으로서, 페놀 화합물의 생물학적 합성이 광범위하게 연구되어 왔다. 방향족 화합물은 시키메이트, 코리스메이트 또는 방향족 아미노산(페닐알라닌, 티로신 및 트립토판)으로부터 합성된다. 예를 들어, 티로신은 자연에서 발견되는 전형적인 페놀 화합물인 플라보노이드 합성의 기질이고, 4-하이드록시 벤조산은 코리스메이트에서 합성된다. 시키메이트 경로에 대한 광범위한 연구를 통해 다양한 페놀 화합물의 합성에 사용할 수 있었다. Microorganisms can function as systems for synthesizing various compounds. Among the many types of microorganisms used for this purpose, E. coli is a good model system for generating useful natural compounds such as alkaloids, terpenoids and phenolic compounds. Phenolic compounds have traditionally been synthesized from fossil fuels such as petroleum through chemical reactions. However, due to the high cost and time required for these processes, as an alternative approach, the biological synthesis of phenolic compounds has been extensively studied. Aromatic compounds are synthesized from shikimate, chorismate or aromatic amino acids (phenylalanine, tyrosine and tryptophan). For example, tyrosine is a substrate for flavonoid synthesis, a typical phenolic compound found in nature, and 4-hydroxybenzoic acid is synthesized from chorismate. Extensive studies of the shikimate pathway have made it possible to use them in the synthesis of various phenolic compounds.

방향족 아미노산 생합성 경로의 중간체는 다른 화합물을 위한 출발 물질로서 작용한다. 페닐알라닌/티로신 및 트립토판의 생성에서 분기점에 있는 코리스메이트는 미생물에서 4-하이드록시 벤조산(유비퀴논을 위한 출발 물질), 아미노벤조산(엽산 전구체) 및 살리실산(SA)을 위한 전구체이다. 이러한 코리스메이트 유도체는 화학 산업을 위한 중요한 원료이다. Intermediates in the aromatic amino acid biosynthetic pathway serve as starting materials for other compounds. Chorismate, a branching point in the production of phenylalanine/tyrosine and tryptophan, is a precursor for 4-hydroxybenzoic acid (a starting material for ubiquinone), aminobenzoic acid (a folic acid precursor) and salicylic acid (SA) in microorganisms. These chorismate derivatives are important raw materials for the chemical industry.

타입 Ⅲ 폴리케타이드 신타아제(PKS)의 그룹은 안트라닐로일-CoA, p-쿠마로 일-CoA 및 벤조일- 또는 말로닐-CoA와 같은 소위 고리형 아실-코엔자임 (Co)A를 사용하여 아크리돈, 칼콘 및 벤조페논을 각각 생성한다. 이들 타입 Ⅲ PKS는 식물뿐만 아니라 미생물에서도 발견되고, 이러한 PKS에 의해 합성된 폴리케타이드는 다양한 생물학적 활성(예컨대, 항균 및 항암 활성)을 가진다. A group of type III polyketide synthase (PKS) uses so-called cyclic acyl-Coenzymes (Co)A such as anthraniloyl-CoA, p-coumaroyl-CoA and benzoyl- or malonyl-CoA. acridone, chalcone, and benzophenone, respectively. These type III PKSs are found not only in plants but also in microorganisms, and polyketides synthesized by these PKSs have various biological activities (eg, antibacterial and anticancer activities).

E.coli에서 시키메이트 경로의 중간체는 타입 Ⅲ PKS의 기질로서 작용할 수 있다(도 1). 따라서, E.coli는 방향족 화합물 합성을 위한 우수한 시스템이다. 시키 메이트 경로의 중간체인 코리스메이트는 타입 Ⅲ PKS에 의해 4-하이드록시쿠마린(4-HC)으로 전환되는 SA의 전구체이다. 코리스메이트의 SA로의 전환은 Pseudomonas aeruginosa와 같은 일부 미생물에서 2 개 효소 단계로 또는 Yersinia enterocolitica에서 1개 효소 단계로 발생한다. SA 생합성 유전자 및 타입 Ⅲ PKS 유전자를 조합하면 4-HC의 합성이 일어난다. 시키메이트 경로에서 다른 중간체인 안트라닐레이트는 퀴놀린 합성에서 타입 Ⅲ PKS의 기질이다. 이러한 2개 방향족 화합물, 즉, 4-HC와 퀴놀린은 각각 항응고제 및 항말라리아 의약을 생산하는데 사용되었다. An intermediate of the shikimate pathway in E. coli can serve as a substrate for type III PKS (Fig. 1). Therefore, E. coli is an excellent system for the synthesis of aromatic compounds. Chorismate, an intermediate in the shikimate pathway, is a precursor of SA that is converted to 4-hydroxycoumarin (4-HC) by type III PKS. Conversion of chorismate to SA occurs in two enzymatic steps in some microorganisms such as Pseudomonas aeruginosa or in one enzymatic step in Yersinia enterocolitica . Combination of the SA biosynthesis gene and the type III PKS gene results in the synthesis of 4-HC. Anthranilates, another intermediate in the shikimate pathway, are substrates of type III PKS in quinoline synthesis. These two aromatic compounds, 4-HC and quinoline, have been used to produce anticoagulant and antimalarial drugs, respectively.

본 발명은 쿠마린계 또는 퀴놀린계 화합물을 식품, 의약품 및 화장품의 원료 또는 그 전구체 등으로서 다양하게 활용하고자, 슈도모나스 애루지노사(P. aeruginosa) 유래 pqsD 및 슈도모나스 애루지노사(P. aeruginosa) 유래 pqsA 유전자가 도입된, 쿠마린계 또는 퀴놀계 화합물 생성용 대장균 형질전환체 등을 제공하고자 한다. The present invention is to use coumarin-based or quinoline-based compounds as raw materials or precursors for food, pharmaceuticals and cosmetics in various ways, Pseudomonas aeruginosa ( P. aeruginosa ) derived pqsD and Pseudomonas aeruginosa ( P. aeruginosa ) derived pqsA It is an object of the present invention to provide an E. coli transformant into which a gene is introduced, and the like for producing a coumarin-based or quinol-based compound.

그러나, 본 발명이 이루고자 하는 기술적 과제는 이상에서 언급한 과제에 제한되지 않으며, 언급되지 않은 또 다른 과제들은 아래의 기재로부터 당업자에게 명확하게 이해될 수 있을 것이다. However, the technical problem to be achieved by the present invention is not limited to the above-mentioned problems, and other problems not mentioned will be clearly understood by those skilled in the art from the following description.

본 발명은 슈도모나스 애루지노사(P. aeruginosa) 유래 pqsD 및 슈도모나스 애루지노사(P. aeruginosa) 유래 pqsA 유전자가 도입된, 쿠마린계 또는 퀴놀계 화합물 생성용 대장균 형질전환체를 제공한다. The present invention Pseudomonas aeruginosa ( P. aeruginosa ) Derived pqsD and Pseudomonas aeruginosa ( P. aeruginosa ) Pseudomonas aeruginosa ( P. aeruginosa ) Pseudomonas aeruginosa ( P. aeruginosa ) To provide an E. coli transformant for generating a coumarin-based or quinol-based compound into which the gene is introduced.

본 발명의 일 구현예로, 상기 대장균 형질전환체 또는 상기 대장균 형질전환체의 배양물을 포함하는 쿠마린계 또는 퀴놀계 화합물 생성용 조성물을 제공한다. In one embodiment of the present invention, there is provided a composition for producing a coumarin-based or quinol-based compound comprising the E. coli transformant or a culture of the E. coli transformant.

본 발명의 다른 구현예로, 상기 대장균 형질전환체 또는 상기 대장균 형질전환체의 배양물을 이용하여, 기질로부터 쿠마린계 또는 퀴놀계 화합물을 생성하는 방법을 제공한다. 상기 기질은 글루코오스, 코리스메이트, 살리실산, 안트라닐레이트, N-메틸안트라닐레이트 및 말로닐-CoA로 이루어진 군으로부터 선택된 하나 이상을 포함할 수 있다. In another embodiment of the present invention, using the E. coli transformant or a culture of the E. coli transformant, there is provided a method for producing a coumarin-based or quinol-based compound from a substrate. The substrate may include at least one selected from the group consisting of glucose, chorismate, salicylic acid, anthranilate, N-methylanthranilate and malonyl-CoA.

본 발명에 따르면, 슈도모나스 애루지노사(P. aeruginosa) 유래 pqsD 및 슈도모나스 애루지노사(P. aeruginosa) 유래 pqsA 유전자가 도입된 대장균 형질전환체 또는 상기 대장균 형질전환체의 배양물을 이용하여, 쿠마린계 또는 퀴놀계 화합물을 높은 역가로 생성할 수 있으므로, 식품, 의약품 및 화장품의 원료 또는 그 전구체 등으로서 다양하게 활용가능하다. According to the present invention, Pseudomonas aeruginosa ( P. aeruginosa )-derived pqsD and Pseudomonas aeruginosa ( P. aeruginosa ) Using the introduced E. coli transformant or a culture of the E. coli transformant, coumarin Since the system or quinol-based compound can be produced at a high titer, it can be used in various ways as a raw material or a precursor thereof for food, medicine, and cosmetics.

도 1은 E.coli에서 3개 생물활성 방향족 화합물의 합성 개략도이다. 검은색 화살표는 E.coli의 대사 경로이다. 회색 굵은 화살표는 E.coli에서 페놀 화합물의 합성을 위한 조작된 경로를 나타낸다. 새로 도입된 유전자는 다음과 같다; entC, E. coli 유래 이소코리스메이트 신타아제; pchB, Pseudomonas aeruginosa 유래 이소코리스메이트 피루베이트 리아제; pqsA, P. aeruginosa 유래 안트라닐 레이트-CoA 리가아제; pqsD, P. aeruginosa 유래 안트라닐로일-CoA 안트라닐로일 트랜스퍼라아제; NMT, Ruta graveolens 유래 N-메틸트랜스퍼라아제; 및 acc, Photorhabdus luminescens 유래 아세틸-CoA 카르복실라아제.
도 2는 본 발명에서 사용된 주요 플라스미드 구조의 개략도이다. (A) pA-accABCD; (B) pC-aroL-aroE-aroD-aroB-aroGf-ppsA-tktA-entC-pchB; (C) pE-pqsD-pqsA; (D) pC-aroL-aroGf-ppsA-tktA-trpEG; 및 (E) pC-pqsD-pqsA.
도 3은 SA의 합성을 나타낸 것이다. (A) 표준 살리실산(S1); (B) B-SA2로부터 반응 생성물(P1); (C) 표준 4-HC(S2); 및 (D) B-4HC3으로부터 반응 생성물(P2). P3은 SA이다. 패널에 있어서(A 및 B), 초기 아세토나이트릴의 농도는 10%인 반면, 패널에 대한 아세토나이트릴의 농도는 20%였다.
도 4는 SA 및 4-HC의 합성을 나타낸 것이다. 시키 메이트 경로 유전자를 발현하도록 조작된 E.coli에 의해 (A) SA 및 (B) 4-HC를 합성하였다. 개별 E.coli 균주는 표 1에서 서술되었다. 더 많은 시키메이트 경로 유전자를 포함하는 구조로 SA의 합성을 증가시켰다. pqsD 및 pqsA 유전자가 사용될 때 4-HC의 최대 생산을 달성하였다.
도 5는 E. coli 균주 B-DHQ3에서 DHQ의 합성을 나타낸 것이다. (A) 표준 DHQ(S). (B) E. coli 균주 B-DHQ3로부터 반응 생성물(P). 합성된 화합물(P)은 표준 DHQ와 동일한 체류 시간을 가졌다. 또한, 합성된 화합물의 구조는 NMR을 이용하여 DHQ 인 것으로 결정되었다.
도 6은 다른 E. coli 균주에서 DHQ의 합성을 나타낸 것이다. 개별 E. coli 균주는 표 1에서 서술되었다. 균주 사이에 차이점은 시키메이트 경로에서 유전자의 조합이었다.
도 7은 CmQNS-pqsA를 보유하는 E. coli에서 DHQ의 합성을 나타낸 것이다. (A) 표준 NMQ(S). (B) CmQNS-pqsA를 보유하는 E. coli로부터 반응 생성물(P). 100 μM N- 메틸안트라닐레이트에 mQNS-pqsA를 보유하는 E. coli을 공급하고, 혼합물을 24 시간 동안 배양하였다. 반응 생성물(P)은 표준 NMQ와 동일한 체류 시간을 가졌다.
1 is a schematic diagram of the synthesis of three bioactive aromatic compounds in E. coli. Black arrows are metabolic pathways in E. coli. Gray bold arrows indicate engineered pathways for the synthesis of phenolic compounds in E. coli. The newly introduced genes are; entC, isochorismate synthase from E. coli; pchB, isochorismate pyruvate lyase from Pseudomonas aeruginosa; pqsA, anthranilate-CoA ligase from P. aeruginosa; pqsD, anthraniloyl-CoA anthraniloyl transferase from P. aeruginosa; NMT, Ruta graveolens- derived N-methyltransferase; and acc, an acetyl-CoA carboxylase from Photorhabdus luminescens.
Figure 2 is a schematic diagram of the main plasmid structure used in the present invention. (A) pA-accABCD; (B) pC-aroL-aroE-aroD-aroB-aroG f -ppsA-tktA-entC-pchB; (C) pE-pqsD-pqsA; (D) pC-aroL-aroG f -ppsA-tktA-trpEG; and (E) pC-pqsD-pqsA.
3 shows the synthesis of SA. (A) standard salicylic acid (S1); (B) the reaction product from B-SA2 (P1); (C) standard 4-HC(S2); and (D) the reaction product from B-4HC3 (P2). P3 is SA. For panels (A and B), the initial concentration of acetonitrile was 10%, while the concentration of acetonitrile for the panel was 20%.
4 shows the synthesis of SA and 4-HC. (A) SA and (B) 4-HC were synthesized by E. coli engineered to express shikimate pathway genes. Individual E. coli strains are described in Table 1. A construct containing more shikimate pathway genes increased the synthesis of SA. Maximal production of 4-HC was achieved when the pqsD and pqsA genes were used.
Figure 5 shows the synthesis of DHQ in E. coli strain B-DHQ3. (A) Standard DHQ(S). (B) Reaction product (P) from E. coli strain B-DHQ3. The synthesized compound (P) had the same retention time as standard DHQ. In addition, the structure of the synthesized compound was determined to be DHQ using NMR.
6 shows the synthesis of DHQ in different E. coli strains. Individual E. coli strains are described in Table 1. The difference between the strains was the combination of genes in the shikimate pathway.
7 shows the synthesis of DHQ in E. coli harboring CmQNS-pqsA. (A) Standard NMQ(S). (B) Reaction products from E. coli carrying CmQNS-pqsA (P). E. coli carrying mQNS-pqsA was fed in 100 μM N-methylanthranilate, and the mixture was incubated for 24 hours. The reaction product (P) had the same retention time as standard NMQ.

방향족 아미노산 생합성에서 중간체는 생물 활성 화합물의 합성을 위한 기질로서 작용할 수 있다. 본 발명자들은 대장균에서 시키메이트 경로, 코리스메이트 및 안트라닐레이트에서 2개 중간체를 사용하여 3개 생물 활성 화합물을 합성하였다: 4-하이드록시쿠마린(4-HC), 2,4-디하이드록시퀴놀린(DHQ) 및 4-하이드록시-1-메틸-2(1H)-퀴놀론(NMQ). 본 발명자들은 4-HC를 위한 기질을 공급하기 위한 코리메이트로부터 살리실산의 합성을 위한 유전자들과 안트라닐레이트로부터 N-메틸안트라닐레이트의 합성을 위한 N-메틸트랜스퍼라아제를 암호화하는 유전자를 도입하였다. 폴리케타이드 신타아제 및 코엔자임(Co)A 리가아제를 시험하여 각 화합물의 합성을 위한 유전자의 최적 조합을 결정하였다. 또한, 본 발명자들은 여러 구조를 시험하였고, 코리스메이트, 안트라닐레이트 및 말로닐-CoA를 위한 내인성 기질의 수준을 증가시키는 최적을 확인하였다. 이들 전략을 사용하여, 255.4 mg/L 4-HC, 753.7 mg/L DHQ 및 17.5 mg/L NMQ를 합성하였다. 본 발명은 잠재적인 의료 응용을 가지고, 다양한 쿠마린 및 퀴놀린 유도체의 합성을 위한 기초를 제공한다. Intermediates in aromatic amino acid biosynthesis can serve as substrates for the synthesis of biologically active compounds. We synthesized three biologically active compounds using two intermediates in the shikimate pathway, chorismate and anthranilate in E. coli: 4-hydroxycoumarin (4-HC), 2,4-dihydroxyquinoline (DHQ) and 4-hydroxy-1-methyl-2(1H)-quinolone (NMQ). The present inventors introduced genes for the synthesis of salicylic acid from corimate to provide a substrate for 4-HC and a gene encoding N-methyltransferase for the synthesis of N-methylanthranilate from anthranilate. did. Polyketide synthase and coenzyme (Co)A ligase were tested to determine the optimal combination of genes for the synthesis of each compound. In addition, we tested several structures and identified the optimal for increasing levels of endogenous substrates for chorismates, anthranilates and malonyl-CoA. Using these strategies, 255.4 mg/L 4-HC, 753.7 mg/L DHQ and 17.5 mg/L NMQ were synthesized. The present invention has potential medical applications and provides a basis for the synthesis of various coumarin and quinoline derivatives.

이하, 본 발명을 상세히 설명한다. Hereinafter, the present invention will be described in detail.

본 발명은 슈도모나스 애루지노사(P. aeruginosa) 유래 pqsD 및 슈도모나스 애루지노사(P. aeruginosa) 유래 pqsA 유전자가 도입된, 쿠마린계 또는 퀴놀계 화합물 생성용 대장균 형질전환체를 제공한다. The present invention Pseudomonas aeruginosa ( P. aeruginosa ) Derived pqsD and Pseudomonas aeruginosa ( P. aeruginosa ) Pseudomonas aeruginosa ( P. aeruginosa ) Pseudomonas aeruginosa ( P. aeruginosa ) To provide an E. coli transformant for generating a coumarin-based or quinol-based compound into which the gene is introduced.

상기 대장균은 대장균 BL21(DE3)이거나, trpD 및 tyrA 유전자가 동시에 결실된 대장균 BL21(DE3)일 수 있으나, 이에 한정되지 않는다. 상기 trpD 및 tyrA 유전자는 각각 서열번호 1 및 2의 염기서열을 가지는 것이 바람직하나, 이의 기능적 동등물, 즉, 상기 염기에 하나 이상의 치환, 결손 등의 돌연변이를 유발하여 본 발명의 목적을 달성하는 모든 돌연변이체를 포함하는 것을 의미한다. The E. coli may be E. coli BL21 (DE3) or E. coli BL21 (DE3) in which trpD and tyrA genes are simultaneously deleted, but is not limited thereto. The trpD and tyrA genes preferably have the nucleotide sequences of SEQ ID NOs: 1 and 2, respectively, but functional equivalents thereof, i.e., all that achieve the object of the present invention by inducing mutations such as one or more substitutions and deletions in the base It is meant to include mutants.

상기 대장균 형질전환체는 상기 대장균에 슈도모나스 애루지노사(P. aeruginosa) 유래 pqsD 및 슈도모나스 애루지노사(P. aeruginosa) 유래 pqsA 유전자를 포함하는 발현 벡터를 형질전환시킨 것일 수 있다. 본 명세서 내 "발현 벡터"는 목적한 코딩 서열과, 특정 숙주 생물에서 작동가능하게 연결된 코딩 서열을 발현하는데 필수적인 적정 핵산 서열을 포함하는 재조합 DNA 분자를 의미한다. 상기 pqsD 및 pqsA 유전자는 각각 서열번호 3 및 4의 염기서열을 가지는 것이 바람직하나, 이의 기능적 동등물, 즉, 상기 염기에 하나 이상의 치환, 결손 등의 돌연변이를 유발하여 본 발명의 목적을 달성하는 모든 돌연변이체를 포함하는 것을 의미한다. 이때, 플라스미드로 pCDFDuet 또는 pETDuet을 사용할 수 있다. The E. coli transformant may be obtained by transforming the E. coli into an expression vector containing Pseudomonas aeruginosa- derived pqsD and Pseudomonas aeruginosa-derived pqsA genes. As used herein, "expression vector" refers to a recombinant DNA molecule comprising a desired coding sequence and an appropriate nucleic acid sequence essential for expressing a coding sequence operably linked in a specific host organism. The pqsD and pqsA genes preferably have the nucleotide sequences of SEQ ID NOs: 3 and 4, respectively, but functional equivalents thereof, i.e., one or more substitutions, deletions, etc. in the base to induce mutations such as mutations to achieve the object of the present invention It is meant to include mutants. In this case, pCDFDuet or pETDuet may be used as the plasmid.

그밖에, 상기 대장균 형질전환체는 ⅰ) 포토랍두스 루미네센스(P. luminescens) 유래 accABCD 유전자가 추가 도입될 수 있는데, 다시 말해, 포토랍두스 루미네센스(P. luminescens) 유래 accABCD 유전자를 포함하는 발현 벡터를 추가로 형질전환시킨 것일 수 있다. 상기 accABCD 유전자는 accA 유전자, accBC 유전자 및 accD 유전자를 포함하는 것으로, 각각 서열번호 5 내지 7의 염기서열을 가지는 것이 바람직하나, 이의 기능적 동등물, 즉, 상기 염기에 하나 이상의 치환, 결손 등의 돌연변이를 유발하여 본 발명의 목적을 달성하는 모든 돌연변이체를 포함하는 것을 의미한다. 이때, 플라스미드로 pACYCDuet을 사용할 수 있다. In addition, in the E. coli transformant, i) Photorhabdus luminescens ( P. luminescens )-derived accABCD gene may be further introduced, that is, Photorhabdus luminescens ( P. luminescens )-derived accABCD gene. It may be one obtained by further transforming the expression vector. The accABCD gene includes an accA gene, an accBC gene and an accD gene, each preferably having the nucleotide sequence of SEQ ID NOs: 5 to 7, but a functional equivalent thereof, that is, one or more substitutions, deletions, etc. in the base It is meant to include all mutants that achieve the object of the present invention by causing In this case, pACYCDuet may be used as a plasmid.

또한, 상기 대장균 형질전환체는 ⅱ) aroL, aroE, aroD, aroB, aroGf, ppsA, tktA, entC 및 슈도모나스 애루지노사(P. aeruginosa) 유래 pchB 유전자가 추가로 도입되거나, aroL, aroGf, ppsA, tktA 및 trpEG 유전자가 추가로 도입될 수 있다. 다시 말해, aroL, aroE, aroD, aroB, aroGf, ppsA, tktA, entC 및 슈도모나스 애루지노사(P. aeruginosa) 유래 pchB 유전자를 포함하는 발현 벡터를 추가로 형질전환시키거나, aroL, aroGf, ppsA, tktA 및 trpEG 유전자를 포함하는 발현 벡터를 추가로 형질전환시킨 것일 수 있다. 상기 aroL, aroE, aroD, aroB, aroGf, ppsA, tktA, entC, 슈도모나스 애루지노사(P. aeruginosa) 유래 pchB 및 trpEG 유전자는 각각 서열번호 8 내지 17의 염기서열을 가지는 것이 바람직하나, 이의 기능적 동등물, 즉, 상기 염기에 하나 이상의 치환, 결손 등의 돌연변이를 유발하여 본 발명의 목적을 달성하는 모든 돌연변이체를 포함하는 것을 의미한다. 이때, 플라스미드로 pCDFDuet을 사용할 수 있다. In addition, the E. coli transformant is ii) aroL, aroE, aroD, aroB, aroG f , ppsA, tktA, entC and Pseudomonas aeruginosa ( P. aeruginosa ) derived pchB genes are additionally introduced, or aroL, aroG f , The ppsA, tktA and trpEG genes may be further introduced. In other words, an expression vector containing aroL, aroE, aroD, aroB, aroG f , ppsA, tktA, entC and pchB gene from Pseudomonas aeruginosa is further transformed, or aroL, aroG f , The expression vector containing the ppsA, tktA and trpEG genes may be further transformed. The aroL, aroE, aroD, aroB, aroG f , ppsA, tktA, entC, Pseudomonas aeruginosa (P. aeruginosa )-derived pchB and trpEG genes each preferably have the nucleotide sequences of SEQ ID NOs: 8 to 17, but their functionalities Equivalent, that is, it is meant to include all mutants that achieve the object of the present invention by inducing one or more substitutions, deletions, etc., mutations in the base. In this case, pCDFDuet may be used as a plasmid.

구체적으로, 상기 대장균 형질전환체는 상기 대장균에 플라스미드로 pACYCDuet을 사용하여, 포토랍두스 루미네센스(P. luminescens) 유래 accABCD 유전자를 포함하는 발현 벡터; 플라스미드로 pCDFDuet을 사용하여, aroL, aroE, aroD, aroB, aroGf, ppsA, tktA, entC 및 슈도모나스 애루지노사(P. aeruginosa) 유래 pchB 유전자를 포함하는 발현 벡터; 및 플라스미드로 pETDuet을 사용하여, 슈도모나스 애루지노사(P. aeruginosa) 유래 pqsD 및 슈도모나스 애루지노사(P. aeruginosa) 유래 pqsA 유전자를 포함하는 발현 벡터를 형질전환시킨 것일 수 있고, 이를 이용하면, 4-하이드록시쿠마린을 생성할 수 있다. Specifically, the E. coli transformant is an expression vector containing an accABCD gene derived from Photorhabdus luminescens by using pACYCDuet as a plasmid in the E. coli; Expression vectors containing the aroL, aroE, aroD, aroB, aroG f , ppsA, tktA, entC and Pseudomonas aeruginosa- derived pchB genes using pCDFDuet as a plasmid; And by using pETDuet as a plasmid, Pseudomonas aeruginosa ( P. aeruginosa ) derived pqsD and Pseudomonas aeruginosa ( P. aeruginosa ) It may be a transformed expression vector containing the derived pqsA gene, and using this, 4 -Can produce hydroxycoumarin.

또한, 상기 대장균 형질전환체는 상기 대장균에 플라스미드로 pACYCDuet을 사용하여, 포토랍두스 루미네센스(P. luminescens) 유래 accABCD 유전자를 포함하는 발현 벡터; 플라스미드로 pCDFDuet을 사용하여, aroL, aroGf, ppsA, tktA 및 trpEG 유전자를 포함하는 발현 벡터; 및 플라스미드로 pETDuet을 사용하여, 슈도모나스 애루지노사(P. aeruginosa) 유래 pqsD 및 슈도모나스 애루지노사(P. aeruginosa) 유래 pqsA 유전자를 포함하는 발현 벡터를 형질전환시킨 것일 수 있고, 이를 이용하면, 2,4-디하이드록시퀴놀린을 생성할 수 있다. In addition, the E. coli transformant is an expression vector containing the accABCD gene derived from Photorhabdus luminescens by using pACYCDuet as a plasmid in the E. coli; Expression vectors containing aroL, aroG f , ppsA, tktA and trpEG genes using pCDFDuet as a plasmid; And using pETDuet as a plasmid, Pseudomonas aeruginosa ( P. aeruginosa ) derived pqsD and Pseudomonas aeruginosa ( P. aeruginosa ) It may be a transformed expression vector containing the derived pqsA gene, and using this, 2 ,4-dihydroxyquinoline can be produced.

또한, 상기 대장균 형질전환체는 상기 대장균에 플라스미드로 pCDFDuet을 사용하여, 슈도모나스 애루지노사(P. aeruginosa) 유래 pqsD 및 슈도모나스 애루지노사(P. aeruginosa) 유래 pqsA 유전자를 포함하는 발현 벡터를 형질전환시킨 것일 수 있고, 이를 이용하면, 4-하이드록시-1-메틸-2-퀴놀론을 생성할 수 있다. In addition, the E. coli transformant uses pCDFDuet as a plasmid in the E. coli, Pseudomonas aeruginosa ( P. aeruginosa ) derived pqsD and Pseudomonas aeruginosa ( P. aeruginosa ) An expression vector containing the derived pqsA gene was transformed may be used, and by using this, 4-hydroxy-1-methyl-2-quinolone can be produced.

상기 쿠마린계 또는 퀴놀계 화합물은 하기 화학식 1 내지 3으로 이루어진 군으로부터 선택될 수 있다:The coumarin-based or quinol-based compound may be selected from the group consisting of the following Chemical Formulas 1 to 3:

[화학식 1][Formula 1]

Figure 112020024949576-pat00001
Figure 112020024949576-pat00001

[화학식 2][Formula 2]

Figure 112020024949576-pat00002
Figure 112020024949576-pat00002

[화학식 3][Formula 3]

Figure 112020024949576-pat00003
.
Figure 112020024949576-pat00003
.

본 발명의 일 구현예로, 상기 대장균 형질전환체 또는 상기 대장균 형질전환체의 배양물을 포함하는 쿠마린계 또는 퀴놀계 화합물 생성용 조성물을 제공한다. In one embodiment of the present invention, there is provided a composition for producing a coumarin-based or quinol-based compound comprising the E. coli transformant or a culture of the E. coli transformant.

본 발명의 다른 구현예로, 상기 대장균 형질전환체 또는 상기 대장균 형질전환체의 배양물을 이용하여, 기질로부터 쿠마린계 또는 퀴놀계 화합물을 생성하는 방법을 제공한다. In another embodiment of the present invention, using the E. coli transformant or a culture of the E. coli transformant, there is provided a method for producing a coumarin-based or quinol-based compound from a substrate.

상기 기질은 글루코오스, 코리스메이트, 살리실산, 안트라닐레이트, N-메틸안트라닐레이트 및 말로닐-CoA로 이루어진 군으로부터 선택된 하나 이상을 포함할 수 있다. 구체적으로, 상기 생성하고자 하는 화합물이 [화학식 1]인 경우, 상기 기질은 글루코오스, 코리스메이트, 살리실산 및 말로닐-CoA로 이루어진 군으로부터 선택된 하나 이상일 수 있고, 상기 생성하고자 하는 화합물이 [화학식 2]인 경우, 상기 기질은 글루코오스, 코리스메이트, 안트라닐레이트 및 말로닐-CoA로 이루어진 군으로부터 선택된 하나 이상일 수 있고, 상기 생성하고자 하는 화합물이 [화학식 3]인 경우, 상기 기질은 글루코오스, 코리스메이트, N-메틸안트라닐레이트 및 말로닐-CoA로 이루어진 군으로부터 선택된 하나 이상일 수 있다. The substrate may include at least one selected from the group consisting of glucose, chorismate, salicylic acid, anthranilate, N-methylanthranilate and malonyl-CoA. Specifically, when the compound to be produced is [Formula 1], the substrate may be at least one selected from the group consisting of glucose, chorismate, salicylic acid and malonyl-CoA, and the compound to be produced is [Formula 2] In the case of , the substrate may be one or more selected from the group consisting of glucose, chorismate, anthranilate and malonyl-CoA, and when the compound to be produced is [Formula 3], the substrate is glucose, chorismate, It may be at least one selected from the group consisting of N-methylanthranilate and malonyl-CoA.

이하, 본 발명의 이해를 돕기 위하여 바람직한 실시예를 제시한다. 그러나 하기의 실시예는 본 발명을 보다 쉽게 이해하기 위하여 제공되는 것일 뿐, 하기 실시예에 의해 본 발명의 내용이 한정되는 것은 아니다.Hereinafter, preferred examples are presented to help the understanding of the present invention. However, the following examples are only provided for easier understanding of the present invention, and the contents of the present invention are not limited by the following examples.

<실시예><Example>

재료 및 방법Materials and Methods

구조rescue

P. aeruginosa로부터 pchB를 제외한 모든 유전자를 중합 효소 연쇄 반응(PCR)에 의해 클로닝하였다. E. coli에 대한 코돈 최적화 후에 P. aeruginosa로부터 이소코리스메이트 피루베이트 리아제를 암호화하는 유전자(유전자 ID: 881846)를 합성하였다. E. coli로부터 EntC(유전자 ID : 945511) 및 P. aeruginosa로부터 pchA (유전자 ID : 881821)를 pCDF-Duet의 BamHI / SacI 부위에 서브클로닝하였고, pC-entC 및 pC-pchA를 각각 산출하였다. SacI 부위 및 리보솜 결합 서열(aaggagatatacca)을 포함하는 pchB를 pC-entC(pC-entC-pchB) 또는 pC-pchA(pC-pchApchB)의 SacI/NotI 부위로 서브클로닝 하였다. 구조 모두에서 유전자의 발현은 단일 프로모터에 의해 제어되었다. All genes except pchB from P. aeruginosa were cloned by polymerase chain reaction (PCR). After codon optimization for E. coli , a gene encoding isochorismate pyruvate lyase (gene ID: 881846) was synthesized from P. aeruginosa. EntC (gene ID: 945511) from E. coli and pchA (gene ID: 881821) from P. aeruginosa were subcloned into the BamHI / SacI site of pCDF-Duet, and pC-entC and pC-pchA were calculated, respectively. pchB containing the SacI site and the ribosome binding sequence (aaggagatatacca) was subcloned into the SacI/NotI site of pC-entC (pC-entC-pchB) or pC-pchA (pC-pchApchB). Expression of genes in all constructs was controlled by a single promoter.

Rhodopseudomonas palustris로부터 벤조일-CoA 리가아제를 암호화하는 badA 유전자(GenBank: L42322.1)를 pET-Duet 벡터의 NdeI/KpnI 부위에 클로닝하였다 (pE-badA). Ruta graveolens 아크리돈 신타아제 유전자(RgACS; GenBank: AJ297786.2)를 pE-badA 의 BamHI/NotI 부위에 서브클로닝하였다(pE-RgACS-badA). P. aeruginosa로부터 안트라닐로일-CoA 리가아제를 암호화하는 pqsA(GenBank: AAG04385)를 pET-Duet의 NdeI/XhoI 부위에 클로닝하였고(pE-pqsA), P. aeruginosa 퀴놀론 신호 신타아제 유전자(pqsD; GenBank: AAG04388.1)를 pE-pqsA 의 BamHI/NotI 부위에 클로닝하였다(pE-pqsD-pqsA). Citrus microcarpa로부터 퀴놀론 신타아제(QNS) 유전자(GenBank: AB823730)를 역전사 PCR에 의해 증폭시키고 pE-pqsA 의 SalI/AflII 부위에 서브 클로닝하였다(pE-CmQNSpqsA). The badA gene (GenBank: L42322.1) encoding a benzoyl-CoA ligase from Rhodopseudomonas palustris was cloned into the NdeI/KpnI site of the pET-Duet vector (pE-badA). The Ruta graveolens acridon synthase gene (RgACS; GenBank: AJ297786.2) was subcloned into the BamHI/NotI site of pE-badA (pE-RgACS-badA). pqsA (GenBank: AAG04385) encoding anthraniloyl-CoA ligase from P. aeruginosa was cloned into the NdeI/XhoI site of pET-Duet (pE-pqsA), and the P. aeruginosa quinolone signal synthase gene (pqsD; GenBank: AAG04388.1) was cloned into the BamHI/NotI site of pE-pqsA (pE-pqsD-pqsA). The quinolone synthase (QNS) gene (GenBank: AB823730) from Citrus microcarpa was amplified by reverse transcription PCR and subcloned into the SalI/AflII site of pE-pqsA (pE-CmQNSpqsA).

Photorhabdus luminescens로부터 아세틸-CoA 카르복실라아제(ACC) 유전자(accABCD)은 앞서 클로닝되었고(J. Microbiol. Biotechnol. 2014, 24, 1536-1541), aroGf, ppsA 및 tktA와 같다. tktA의 내부 EcoRI 부위 및 aroGf의 내부 XhoI 부위는 코돈의 변화 없이 부위-직접 돌연변이에 의해 삭제되었다. E.coli 게놈 DNA를 주형으로 사용하여 PCR로 aroL(CAA27696), aroE(CAA68700), aroD (CAA42091) 및 aroB(CAA27495)를 클로닝하였다. 표 1에서 구성은 아래 서술된 바와 같이 구성되었고, 본 발명에서 사용된 주요 플라스미드 구조의 개략도는 도 2에 나타내었다. The acetyl-CoA carboxylase (ACC) gene (accABCD) from Photorhabdus luminescens was previously cloned (J. Microbiol. Biotechnol. 2014, 24, 1536-1541), as aroG f , ppsA and tktA. The internal EcoRI site of tktA and the internal XhoI site of aroG f were deleted by site-direct mutation without codon change. AroL (CAA27696), aroE (CAA68700), aroD (CAA42091) and aroB (CAA27495) were cloned by PCR using E. coli genomic DNA as a template. The constructs in Table 1 were constructed as described below, and a schematic diagram of the main plasmid constructs used in the present invention is shown in FIG. 2 .

플라스미드 또는 E.coli 균주Plasmid or E. coli strain 연관 특성 또는 유전적 마커Linkage traits or genetic markers 플라스미드plasmid pC-entC-pchBpC-entC-pchB pCDFDuet + E. coli 유래 entC + P. aeruginosa 유래 pchB pCDFDuet + entC from E. coli + pchB from P. aeruginosa pC-pchA-pchBpC-pchA-pchB pCDFDuet + pchA + P. aeruginosa 유래 pchBpCDFDuet + pchA + pchB from P. aeruginosa pE-RgACS-badApE-RgACS-badA pETDuet + R. palustris 유래 badA + R. graveolens 유래 RgACS pETDuet + badA from R. palustris + RgACS from R. graveolens pE-pqsD-pqsApE-pqsD-pqsA pETDuet + pqsD + P. aeruginosa 유래 pqsA pETDuet + pqsD + pqsA from P. aeruginosa pC-pqsD-pqsApC-pqsD-pqsA pCDFDuet + pqsD + P. aeruginosa 유래 pqsApCDFDuet + pqsD + pqsA from P. aeruginosa pE-CmQNS-pqsApE-CmQNS-pqsA pETDuet + Citrus microcarpa 유래 QNS + P. aeruginosa 유래 pqsApETDuet + QNS from Citrus microcarpa + pqsA from P. aeruginosa pA-accABCDpA-accABCD pACYCDuet + Photorhabdus luminescens 유래 accABCD pACYCDuet + accABCD from Photorhabdus luminescens pC-aroGf-ppsA-tktA-entC-pchBpC-aroG f -ppsA-tktA-entC-pchB pCDFDuet + 제1 다중 클로닝 부위(MCS1)에서 aroGf, ppsA 및 E. coli 유래 tktA + MCS2에서 entC 및 pchB pCDFDuet + aroG f at the first multiple cloning site (MCS1), ppsA and tktA from E. coli + entC and pchB in MCS2 pC-aroL-aroGf-ppsA-tktA-entC-pchBpC-aroL-aroG f -ppsA-tktA-entC-pchB pCDFDuet + MCS1에서 aroL, aroGf, ppsA 및 E. coli 유래 tktA + MCS2에서 entC 및 pchB aroL, aroG f , ppsA in pCDFDuet + MCS1 and entC and pchB in tktA + MCS2 from E. coli pC-aroL-aroE-aroD-aroB-aroGf-ppsAtktA-entC-pchBpC-aroL-aroE-aroD-aroB-aroG f -ppsAtktA-entC-pchB pCDFDuet + MCS1에서 aroL, aroE, aroD, aroB, aroGf, ppsA 및 E. coli 유래 tktA + MCS2에서 entC 및 pchBaroL, aroE, aroD, aroB, aroG f , ppsA in pCDFDuet + MCS1 and tktA in E. coli + entC and pchB in MCS2 pC-trpEGpC-trpEG pCDFDuet + E. coli 유래 trpEGpCDFDuet + trpEG from E. coli pC-aroGf-ppsA-tktA-trpEGpC-aroG f -ppsA-tktA-trpEG pCDFDuet + MCS1에서 aroGf, ppsA 및 E. coli 유래 tktA + MCS2에서 trpEG pCDFDuet + aroG f in MCS1, ppsA and tktA from E. coli + trpEG in MCS2 pC-aroL-aroE-aroD-aroB-aroGf-ppsAtktA-trpEGpC-aroL-aroE-aroD-aroB-aroG f -ppsAtktA-trpEG pCDFDuet + MCS1에서 aroL, aroE, aroD, aroB, aroGf, ppsA 및 E. coli 유래 tktA + MCS2에서 trpEGpCDFDuet + aroL, aroE, aroD, aroB, aroG f in pCDFDuet + MCS1 and tktA in E. coli + trpEG in MCS2 pC-NMTpC-NMT pCDFDuet + Ruta graveolens 유래 NMTpCDFDuet + NMT from Ruta graveolens pC-NMT-trpEGpC-NMT-trpEG pCDFDuet + R. gravealens 유래 NMT + E. coli 유래 trpEG pCDFDuet + NMT from R. gravealens + trpEG from E. coli pC-aroL-aroGf-ppsA-tktA-NMT-trpEGpC-aroL-aroG f -ppsA-tktA-NMT-trpEG pCDFDuet + MCS1에서 aroL, aroGf, ppsA 및 E. coli 유래 tktA + MCS2에서 NMT 및 trpEG aroL, aroG f in pCDFDuet + MCS1, ppsA and NMT and trpEG in tktA + MCS2 from E. coli pC-aroG-trpEGpC-aroG-trpEG pCDFDuet + MCS1에서 aroG + MCS2에서 E. coli 유래 trpEG pCDFDuet + aroG in MCS1 + trpEG from E. coli in MCS2 균주strain BL21(DE3)BL21(DE3) F- ompT hsdSB(rB - mB -) gal dcm lon(DE3)F - ompT hsdS B (r B - m B - ) gal dcm lon(DE3) B-trpDB-trpD trpD의 안트나릴레이트 포스포리보실 트랜스퍼라아제 도메인에서 결실된 E. coli BL21(DE3) E. coli BL21 (DE3) deleted from the antnarylate phosphoribosyl transferase domain of trpD B-trpD/tyrAB-trpD/tyrA E. coli BL21(DE3) ΔΔ E. coli BL21 (DE3) ΔΔ B-SA1B-SA1 pC-pchA-pchB를 보유하는 E. coli BL21(DE3) E. coli BL21 (DE3) harboring pC-pchA-pchB B-SA2B-SA2 pC-entC-pchB를 보유하는 E. coli BL21(DE3) E. coli BL21 (DE3) harboring pC-entC-pchB B-SA3B-SA3 pC-aroGf-ppsA-tktA-entC-pchB를 보유하는 E. coli BL21(DE3) E. coli BL21 (DE3) carrying pC-aroG f -ppsA-tktA-entC-pchB B-SA4B-SA4 pC-aroL-aroGf-ppsA-tktA-entC-pchB를 보유하는 E. coli BL21(DE3) E. coli BL21 (DE3) carrying pC-aroL-aroG f -ppsA-tktA-entC-pchB B-SA5B-SA5 pC-aroL-aroE-aroD-aroB-aroGf-ppsA-tktA-entC-pchB를 보유하는 E. coli BL21(DE3) E. coli BL21 (DE3) carrying pC-aroL-aroE-aroD-aroB-aroG f -ppsA-tktA-entC-pchB B-4HC1B-4HC1 pC-RgACS-badA를 보유하는 E. coli BL21(DE3) E. coli BL21 (DE3) carrying pC-RgACS-badA B-4HC2B-4HC2 pC-pqsD-pqsA를 보유하는 E. coli BL21(DE3) E. coli BL21 (DE3) harboring pC-pqsD-pqsA B-4HC3B-4HC3 pC-entC-pchB 및 pE-RgACS-badA를 보유하는 E. coli BL21(DE3) E. coli BL21 (DE3) harboring pC-entC-pchB and pE-RgACS-badA B-4HC4B-4HC4 pC-aroL-aroE-aroD-aroB-aroGf-ppsA-tktA-entC-pchB 및pE-RgACS-badA를 보유하는 E. coli BL21(DE3) E. coli BL21 (DE3) carrying pC-aroL-aroE-aroD-aroB-aroG f -ppsA-tktA-entC-pchB and pE-RgACS-badA B-4HC5B-4HC5 pA-accABCD, pC-aroL-aroE-aroD-aroB-aroGf-ppsA-tktA-entC-pchB 및pE-RgACS-badA를 보유하는 E. coli BL21(DE3) E. coli BL21 (DE3) carrying pA-accABCD, pC-aroL-aroE-aroD-aroB-aroG f -ppsA-tktA-entC-pchB and pE-RgACS-badA B-4HC6B-4HC6 pA-accABCD, pC-aroL-aroE-aroD-aroB-aroGf-ppsA-tktA-entC-pchB 및pE-pqsD-pqsA를 보유하는 E. coli BL21(DE3) E. coli BL21 (DE3) carrying pA-accABCD, pC-aroL-aroE-aroD-aroB-aroG f -ppsA-tktA-entC-pchB and pE-pqsD-pqsA B-DHQ1B-DHQ1 pC-RgACS-pqsA를 보유하는 E. coli BL21(DE3) E. coli BL21 (DE3) harboring pC-RgACS-pqsA B-DHQ2B-DHQ2 pC-pqsD-pqsA를 보유하는 E. coli BL21(DE3) E. coli BL21 (DE3) harboring pC-pqsD-pqsA B-DHQ3B-DHQ3 pA-accABCD, pC-trpEG 및 pE-pqsD-pqsA를 보유하는 E. coli BL21(DE3) E. coli BL21 (DE3) carrying pA-accABCD, pC-trpEG and pE-pqsD-pqsA B-DHQ4B-DHQ4 pA-accABCD, pC-aroGf-ppsA-tktA-trpEG 및 pE-pqsD-pqsA를 보유하는 E. coli BL21(DE3) E. coli BL21 (DE3) carrying pA-accABCD, pC-aroG f -ppsA-tktA-trpEG and pE-pqsD-pqsA B-DHQ5B-DHQ5 pA-accABCD, pC-aroL-aroGf-ppsA-tktA-trpEG 및 pE-pqsD-pqsA를 보유하는 E. coli BL21(DE3) E. coli BL21 (DE3) carrying pA-accABCD, pC-aroL-aroG f -ppsA-tktA-trpEG and pE-pqsD-pqsA B-DHQ6B-DHQ6 pA-accABCD, pC-aroL-aroE-aroD-aroB-aroGf-ppsA-tktA-trpEG 및 pE-pqsD-pqsA를 보유하는 E. coli BL21(DE3) E. coli BL21 (DE3) carrying pA-accABCD, pC-aroL-aroE-aroD-aroB-aroG f -ppsA-tktA-trpEG and pE-pqsD-pqsA B-DHQ7B-DHQ7 pA-accABCD, pC-aroL-aroGf-ppsA-tktA-trpEG 및 pE-pqsD-pqsA를 보유하는 B-trpDB-trpD with pA-accABCD, pC-aroL-aroG f -ppsA-tktA-trpEG and pE-pqsD-pqsA B-DHQ8B-DHQ8 pA-accABCD, pC-aroL-aroGf-ppsA-tktA-trpEG 및 pE-pqsD-pqsA 를 보유하는 B-trpD/tyrAB-trpD/tyrA with pA-accABCD, pC-aroL-aroG f -ppsA-tktA-trpEG and pE-pqsD-pqsA B-NMQ1B-NMQ1 pA-accABCD, pC-NMT-trpEG 및 pE-CmQNS-pqsA를 보유하는 E. coli BL21(DE3) E. coli BL21 (DE3) carrying pA-accABCD, pC-NMT-trpEG and pE-CmQNS-pqsA B-NMQ2B-NMQ2 pA-accABCD, pC-NMT-trpEG 및 pE-pqsD-pqsA를 보유하는 E. coli BL21(DE3) E. coli BL21 (DE3) carrying pA-accABCD, pC-NMT-trpEG and pE-pqsD-pqsA B-NMQ3B-NMQ3 pA-accABCD, pC-aroL-aroGf-ppsA-tktA-NMT-trpEG 및 pE-CmQNS-pqsA를 보유하는 E. coli BL21(DE3) E. coli BL21 (DE3) carrying pA-accABCD, pC-aroL-aroG f -ppsA-tktA-NMT-trpEG and pE-CmQNS-pqsA B-NMQ4B-NMQ4 pA-accABCD, pC-aroL-aroGf-ppsA-tktA-NMT-trpEG 및 pE-pqsD-pqsA를 보유하는 E. coli BL21(DE3) E. coli BL21 (DE3) carrying pA-accABCD, pC-aroL-aroG f -ppsA-tktA-NMT-trpEG and pE-pqsD-pqsA B-NMQ5B-NMQ5 pC-aroG-trpEG를 보유하는 E. coli BL21(DE3) E. coli BL21 (DE3) harboring pC-aroG-trpEG B-NMQ6B-NMQ6 pC-NMT를 보유하는 E. coli BL21(DE3) E. coli BL21 (DE3) harboring pC-NMT B-NMQ7B-NMQ7 pC-pqsD-pqsA를 보유하는 E. coli BL21(DE3) E. coli BL21 (DE3) harboring pC-pqsD-pqsA

aroE를 BamHI 부위를 포함하는 정방향 프라이머 및 SalI 부위를 포함하는 역방향 프라이머로 증폭시키고 pACYC-Duet의 BamHI/SalI 부위로 서브 클로닝하였다. aroD를 XhoI 부위 및 리보솜-결합 부위 (RBS; aggaggccatcc)를 포함하는 정방향 프라이머 및 SalI 및 NotI 부위를 포함하는 역방향 프라이머로 증폭시키고; 앰플리콘을 XhoI/NotI로 분해하고 aroE를 보유하는 pACYC-Duet의 SalI/NotI 부위로 서브 클로닝하였다. aroB를 XhoI 부위 및 RBS를 포함하는 정방향 프라이머 및 EcoRI 및 NotI 부위를 포함하는 역방향 프라이머로 증폭시키고; 앰플리콘을 XhoI/NotI로 분해하고 pA-aroE-aroD의 SalI/NotI 부위로 서브 클로닝하였다(pA-aroE-aroD-aroB). aroE-aroD-aroB를 BamHI, SalI 부위 및 RBS를 포함하는 정방향 프라이머 및 EcoRI 및 NotI 부위를 포함하는 역방향 프라이머로 재증폭시켰다. 앰플리콘을 pACYCDuet의 BamHI/NotI 부위로 서브 클로닝 하였다. aroL을 BamHI 부위를 포함하는 정방향 프라이머 및 XhoI 부위를 포함하는 역방향 프라이머로 증폭시켰다. 앰플리콘을 BamHI/XhoI로 분해하고 pA-RBS-aroE-aroD-aroB의 BamHI/SalI 부위로 서브 클로닝하였다. 그 결과, 구조를 pA-aroL-aroE-aroD-aroB로 명명하였다.aroE was amplified with a forward primer containing a BamHI site and a reverse primer containing a SalI site, and subcloned into the BamHI/SalI site of pACYC-Duet. aroD was amplified with a forward primer comprising an XhoI site and a ribosome-binding site (RBS; aggaggccatcc) and a reverse primer comprising SalI and NotI sites; The amplicon was digested with XhoI/NotI and subcloned into the SalI/NotI site of pACYC-Duet harboring aroE. aroB was amplified with a forward primer containing an XhoI site and RBS and a reverse primer containing an EcoRI and NotI site; The amplicon was digested with XhoI/NotI and subcloned into the SalI/NotI site of pA-aroE-aroD (pA-aroE-aroD-aroB). aroE-aroD-aroB was re-amplified with forward primers containing BamHI, SalI sites and RBS and reverse primers containing EcoRI and NotI sites. The amplicon was subcloned into the BamHI/NotI site of pACYCDuet. aroL was amplified with a forward primer containing a BamHI site and a reverse primer containing an XhoI site. The amplicon was digested with BamHI/XhoI and subcloned into the BamHI/SalI site of pA-RBS-aroE-aroD-aroB. As a result, the structure was named pA-aroL-aroE-aroD-aroB.

유사한 접근을 사용하여, aroGf, ppsA 및 tktA를 pACYC-Duet 의 EcoRI/NotI 부위로 재증폭하고 서브 클로닝하였다(pA-RBS-aroGf-ppsA-tktA). aroL을 BamHI 부위를 포함하는 정방향 프라이머 및 EcoRI 부위를 포함하는 역방향 프라이머로 재 증폭시키고, 앰플리콘을 pA-aroGf-ppsA-tktA의 BamHI / EcoRI 부위로 서브 클로닝 하였다. aroL, aroE, aroD, aroB, aroGf, ppsA 및 tktA 를 포함하는 구조(pA-aroL-aroE-aroD-aroB-aroGf-ppsA-tktA)를 생성하기 위해 pA-aroL-aroE-aroD-aroB를 EcoRI 및 NotI로 분해하였고, aroGf, ppsA 및 tktA를 포함하는 EcoRI / NotI 단편과 라이게이션되었다. 본 발명에서 사용된 프라이머 리스트는 표 2에서 확인된다. Using a similar approach, aroG f , ppsA and tktA were re-amplified and subcloned into the EcoRI/NotI site of pACYC-Duet (pA-RBS-aroG f -ppsA-tktA). aroL was re-amplified with a forward primer containing a BamHI site and a reverse primer containing an EcoRI site, and the amplicon was subcloned into the BamHI/EcoRI site of pA-aroG f-ppsA-tktA. pA-aroL-aroE-aroD-aroB to generate a structure (pA-aroL-aroE-aroD-aroB-aroG f -ppsA-tktA) containing aroL, aroE, aroD, aroB, aroG f , ppsA and tktA It was digested with EcoRI and NotI and ligated with EcoRI/NotI fragments containing aroG f , ppsA and tktA. A list of primers used in the present invention is confirmed in Table 2.

유전자gene 프라이머 이름Primer name 서열(5' → 3')sequence (5' → 3') aroGaroG F; EcoRI-RBS-GF; EcoRI-RBS-G atgaattc AGGAGGCCATCCATGAATTATCAGAACGACGATat gaattc AGGAGGCCATCC ATGAATTATCAGAACGACGAT tktAtktA R; NotI-TR; NotI-T catgcggccgcTTACAGCAGTTCTTTTGCTTTCcat gcggccgc TTACAGCAGTTCTTTTGCTTTC aroLaroL F; BamHI-LF; BamHI-L atggatccaATGACACAACCTCTTTTTCTGATCat ggatcc aATGACACAACCTCTTTTTCTGATC R; EcoRI-LR; EcoRI-L aagaattcTCAACAATTGATCGTCTGTGCaa gaattc TCAACAATTGATCGTCTGTGC R; XhoI-LR; XhoI-L aactcgagTCAACAATTGATCGTCTGTGCaa ctcgag TCAACAATTGATCGTCTGTGC aroEaroE F; BamHI-EF; BamHI-E aaggatccaATGGAAACCTATGCTGTTTTTaa ggatcc aATGGAAACCTATGCTGTTTTT F; BamHI-SalI-RBS-EF; BamHI-SalI-RBS-E aaggatccagctgtcgac AGGAGGCCATCCATGGAAACCTATGCTGTTTTTaa ggatcc agct gtcgac AGGAGGCCATCC ATGGAAACCTATGCTGTTTTT R; SalI-ER; SalI-E atgtcgacCACGCGGACAATTCCTat gtcgac CACGCGGACAATTCCT aroDaroD F; XhoI-RBS-DF; XhoI-RBS-D aactcgag AGGAGGCCATCCATGAAAACCGTAACTGTAAAAGATaa ctcgag AGGAGGCCATCC ATGAAAACCGTAACTGTAAAAGAT R; NotI-SalI-DR; NotI-SalI-D atgcggccgcgctgtcgacTTATGCCTGGTGTAAAATAGTTAAat gcggccgc gct gtcgac TTATGCCTGGTGTAAAATAGTTAA aroBaroB F; XhoI-RBS-BF; XhoI-RBS-B aactcgag AGGAGGCCATCCATGGAGAGGATTGTCGTTACTCTaa ctcgag AGGAGGCCATCC ATGGAGAGGATTGTCGTTACTCT R; NotI-EcoRI-BR; NotI-EcoRI-B atgcggccgcgctgaattcTTACGCTGATTGACAATCGGat gcggccgc gct gaattc TTACGCTGATTGACAATCGG

* F 및 R은 각각 정방향 및 역방향 프라이머를 나타낸다. * F and R represent forward and reverse primers, respectively.

* 소문자는 제한 효소 부위이다. RBS 부위는 밑줄쳐져 있다. * Lowercase letters are restriction enzyme sites. The RBS region is underlined.

그 결과, 구조(pA-aroL-aroGf-ppsA-tktA 및 pA-aroL-aroE-aroD-aroB-aroGf-ppsA-tktA)을 각각 소화하고 pC-entC-pchB 및 pC-trpEG의 BamHI/NotI로 서브 클로닝하였다.As a result, the structures (pA-aroL-aroG f -ppsA-tktA and pA-aroL-aroE-aroD-aroB-aroG f -ppsA-tktA) were digested, respectively, and BamHI/NotI of pC-entC-pchB and pC-trpEG subcloned into

기존 보고에 근거하여, E. coli trpEG 유전자를 클로닝하였다. 간단히, PCR을 사용하여 trpEG 유전자를 클로닝하였다. E. coli trpD의 Glu250에 정지 코돈을 도입하기 위해, 다음 2개 프라이머가 사용되었다: 정방향 프라이머로서, 5'-ATGAATTCGATGCAAACACAAAAACCGACT-3'(밑줄은 EcoRI 효소 부위를 나타냄) 및 역방향 프라이머로서, 5'-CATGCGGCCGCttaCAGAATCGGTTGCAGC-3'(밑줄은 NotI 효소 부위를 나타내고, 소문자는 코돈 삽입을 의미함). trpD의 안트라닐레이트 포스 포리보실 트랜스퍼라아제 도메인(APTD)에서만 결실된 E. coli 돌연변이체를 생성하기 위해, Quick & Easy E. coli 유전자 결실 키트(Gene Bridges, Heidelberg, Germany)를 사용하였다. 간단히, Red/ET 재조합 효소 유전자를 포함하는 pRedET 플라스미드를 BL21(DE3)(Novagen)로 형질전환시키고 글루타민아미도트랜스퍼라아제 도메인 (GAD)의 손실없이 trpD의 APTD의 결실에 사용하였다. FRT-플랭크 PGK-gb2-neocassette는 2 개 프라이머인, 정방향 프라이머로서, 5'-CTGGGCGCAGCAGAAACTAGAGCCAGCCAACACGCTGCAACCGATTCTGTaattaaccctcactaaagggcg-3'(밑줄친 "T"는 trpD의 GAD를 유지하기 위한 정지 코돈을 생성하기 위해 삽입됨) 및 역방향 프라이머로서 5'-TTACCCTCGTGCCGCCAGTGCGGTAACTCTGTCGTAAGCGGAACCACTGCtaatacgactcactatagggctc-3' 를 사용하여 PCR에 의해 제조되었고, 겔은 trpD-APTD 유전자 삭제에 사용하기 위해 정제되었다. BL21 (DE3) 컴피턴트 세포는 10% 아라비노오스 용액을 첨가하여 Red/ET 재조합 효소를 유도함으로써 제조되었다. trpD-APTD를 표적으로 하는 FRT-플랭크 PGK-gb2-neocassette는 Eppendorf Electroporator 2510을 사용하여 1350 V, 10 μF 및 600 Ω에서 전기천공법에 의해 도입되었다. 37℃에서 밤새 카나마이신(50 ㎍/mL)이 보충된 LB-플레이트 상에 돌연변이를 선택하였다. 유전자 삭제는 2개 프라이머인, 정방향 프라이머로서, 5′-AATCGCCTTGTCTGCGACGA-3′ 및 역방향 프라이머로서, 5′-CACTCGCTGGTTGGCAGTAA-3′를 사용하여 PCR에 의해 확인되었다. Based on previous reports, the E. coli trpEG gene was cloned. Briefly, PCR was used to clone the trpEG gene. To introduce a stop codon into Glu250 of E. coli trpD, the following two primers were used: 5'-AT GAATTC GATGCAAACACAAAAACCGACT-3' (underlined indicates EcoRI enzyme site) as forward primer and 5 as reverse primer. ' -CA TGCGGCCGC ttaCAGAATCGGTTGCAGC-3' (underline indicates NotI enzyme site, lowercase indicates codon insertion). To generate E. coli mutants deleted only in the anthranilate phosphoribosyl transferase domain (APTD) of trpD, the Quick & Easy E. coli gene deletion kit (Gene Bridges, Heidelberg, Germany) was used. Briefly, the pRedET plasmid containing the Red/ET recombinase gene was transformed into BL21(DE3) (Novagen) and used for deletion of the APTD of trpD without loss of the glutamineamidotransferase domain (GAD). The FRT-flank PGK-gb2-neocassette is a forward primer, with two primers, 5'-CTGGGCGCAGCAGAAACTAGAGCCAGCCAACACGCTGCAACCGATTCTG T aattaaccctcactaaagggcg-3' (underlined "T" is an inserted stop codon to maintain the GAD of trpD) to create a stop codon and 5'-TTACCCTCGTGCCGCCAGTGCGGTAACTCTGTCGTAAGCGGAACCACTGCtaatacgactcactatagggctc-3' as reverse primer, and the gel was purified for use in trpD-APTD gene deletion. BL21 (DE3) competent cells were prepared by inducing Red/ET recombinase by adding 10% arabinose solution. The FRT-flank PGK-gb2-neocassette targeting trpD-APTD was introduced by electroporation at 1350 V, 10 μF and 600 Ω using an Eppendorf Electroporator 2510. Mutations were selected on LB-plates supplemented with kanamycin (50 μg/mL) overnight at 37°C. Gene deletion was confirmed by PCR using two primers, 5'-AATCGCCTTGTCTGCGACGA-3' as forward primer and 5'-CACTCGCTGGTTGGCAGTAA-3' as reverse primer.

배양 조건culture conditions

E. coli는 앞서 서술한 바와 같이 단백질 발현을 위해 성장 및 유도되었다. 글루코오스로부터 SA, 4-HC, DHQ, 또는 NMQ의 합성을 위해, 시험관(15 X 145 mm)에서 2% 글루코오스 및 1 % 효모 추출물을 포함하는 1 mL M9 배지를 사용하여 600 nm (OD600)=1.0에서 광학 밀도로 세포 농도를 조정하였다. 30℃에서 24 시간 동안 유도를 수행하였다. 배양물에 기질을 첨가하기 전에, 18℃에서 18 시간 동안 단백질 발현을 유도하였다. 세포를 수거하고 OD600 = 3.0의 세포 밀도에서 1mL의 M9(2% 글루코오스 포함) 또는 YM9(2% 글루코오스 및 1% 효모 추출물 포함 M9) 배지로 재현탁시키고, 필요한 경우 100μM 기질을 첨가하였다. E. coli was grown and induced for protein expression as previously described. For the synthesis of SA, 4-HC, DHQ, or NMQ from glucose, use 1 mL M9 medium containing 2% glucose and 1% yeast extract in a test tube (15 X 145 mm) at 600 nm (OD 600 ) = Cell concentration was adjusted to optical density at 1.0. Induction was carried out at 30° C. for 24 hours. Protein expression was induced at 18° C. for 18 hours before the addition of substrate to the culture. Cells were harvested and resuspended in 1 mL of M9 (with 2% glucose) or YM9 (M9 with 2% glucose and 1% yeast extract) medium at a cell density of OD 600 = 3.0, and 100 μM substrate was added if necessary.

반응 생성물의 분석Analysis of reaction products

배양물(200 μL)을 에틸아세테이트(600 μL)로 추출하였다. 유기층을 원심 분리 후 수집하고, 건조시키고, 디메톡시설폭사이드(DMSO)에 용해시킨 다음, 광다이오드 어레이 검출기 및 C18 역상 칼럼(4.60 X 250 mm, 3.5-μm 입자 크기; Varian, Palo Alto, CA, USA)가 장착된 UltiMate 3000 HPLC(고성능 액체 크로마토 그래피) 시스템 (Thermo Fisher Scientific, MA, USA, MA)에서 분석하였다. 이동상은 물 및 아세토 니트릴 내 0.1 % 포름산으로 구성되었다. 프로그램은 다음과 같았다: 0분에 20% 아세토나이트릴, 8분에 60%, 12분에 90%, 15분에 90%, 15.1분에 20%, 20분에 20%. 유속은 1 min/mL이고, 4-HC, DHQ 및 NMQ의 경우 270nm에서, SA 및 안트라닐레이트의 경우 320nm에서, N-메틸안트라닐레이트의 경우 340nm에서 자외선 검출을 수행하였다. 반응 생성물의 정량화를 위해, 상업적으로 구매한 SA, 4-HC 및 DHQ(Sigma-Aldrich, Yongin, Korea)가 표준으로 사용되었다. 실험은 삼중으로 준비된 샘플로 수행되었으며, 결과는 평균 ± 표준 편차로 보고되었다.The culture (200 μL) was extracted with ethyl acetate (600 μL). The organic layer was collected after centrifugation, dried, dissolved in dimethoxysulfoxide (DMSO), followed by a photodiode array detector and a C18 reversed-phase column (4.60 X 250 mm, 3.5-μm particle size; Varian, Palo Alto, CA). , USA) equipped with an UltiMate 3000 HPLC (High Performance Liquid Chromatography) system (Thermo Fisher Scientific, MA, USA, MA). The mobile phase consisted of 0.1% formic acid in water and acetonitrile. The program was as follows: 20% acetonitrile at 0 min, 60% at 8 min, 90% at 12 min, 90% at 15 min, 20% at 15.1 min, 20% at 20 min. UV detection was performed at a flow rate of 1 min/mL, at 270 nm for 4-HC, DHQ and NMQ, at 320 nm for SA and anthranilate, and at 340 nm for N-methylanthranilate. For quantification of reaction products, commercially purchased SA, 4-HC and DHQ (Sigma-Aldrich, Yongin, Korea) were used as standards. Experiments were performed with samples prepared in triplicate, and results were reported as mean ± standard deviation.

합성된 화합물의 1H NMR (핵자기 공명 분광법) 분석은 앞서 서술한 바와 같이 수행되었다. 1 H NMR (nuclear magnetic resonance spectroscopy) analysis of the synthesized compound was performed as described above.

4-HC (1H NMR, in MeOD): 5.63 (s, H-3), 7.33 (d, J = 8.7, H-8), 7.34 (t, J = 8.5, H-7), 7.65 (t, J = 7.9, H-6), 7.92 (d, J = 8.0, H-5). 4-HC ( 1 H NMR, in MeOD): 5.63 (s, H-3), 7.33 (d, J = 8.7, H-8), 7.34 (t, J = 8.5, H-7), 7.65 (t) , J = 7.9, H-6), 7.92 (d, J = 8.0, H-5).

DHQ [1H NMR (400 MHz, DMSO-d6)]: δ 5.70 (1H, s, H-3), 7.12 (1H, dd, J = 7.8, 7.5 Hz, H-7), 7.24 (1H, d, J = 8.2 Hz, H-5), 7.47 (1H, dd, J = 8.2, 7.5 Hz, H-6), 7.77 (1H, d, J = 7.8 Hz, H-8). DHQ [ 1 H NMR (400 MHz, DMSO-d6)]: δ 5.70 (1H, s, H-3), 7.12 (1H, dd, J = 7.8, 7.5 Hz, H-7), 7.24 (1H, d , J = 8.2 Hz, H-5), 7.47 (1H, dd, J = 8.2, 7.5 Hz, H-6), 7.77 (1H, d, J = 7.8 Hz, H-8).

NMQ [1H NMR (400 MHz, DMSO-d6]: δ 3.53 (3H, s, CH3), 5.85 (1H, s, H-3), 7.23 (1H, dd, J = 8.5, 7.9 Hz, H-6), 7.45 (1H, d, J = 8.4 Hz, H-8), 7.62 (1H, dd, J = 8.5, 8.4 Hz, H-7), 7.90 (1H, d, J = 7.9 Hz, H-5).NMQ [ 1 H NMR (400 MHz, DMSO-d6]: δ 3.53 (3H, s, CH3), 5.85 (1H, s, H-3), 7.23 (1H, dd, J = 8.5, 7.9 Hz, H- 6), 7.45 (1H, d, J = 8.4 Hz, H-8), 7.62 (1H, dd, J = 8.5, 8.4 Hz, H-7), 7.90 (1H, d, J = 7.9 Hz, H- 5).

결과result

E. coliE. coli 에서 글루코오스로부터 4-HC의 합성Synthesis of 4-HC from Glucose in

살리실로일(salicyloyl)-CoA 및 말로닐(malonyl)-CoA의 축합에 의해 4-하이드록시쿠마린(4-HC)을 합성하였다. SA 합성을 위한 유전자를 발현하도록 E. coli를 제조하였다. 2개 효소에 의해 코리스메이트(chorismate)로부터 SA의 미생물 합성을 매개하였다. 먼저, 이소코리스메이트 신타아제(isochorismate synthase)(P. aeuginosa로부터 PchA 또는 E. coli로부터 EntC)에 의해 코리스메이트를 이소코리스메이트(isochorismate)로 하였고; 이어서, E. coli에 존재하지 않는, 이소코리스메이트 피루베이트 리아제(isochorismate pyruvate lyase)(PchB from P. aeuginosa)에 의해 이소코리스메이트를 SA로 전환하였다. 본 발명자들은 2개 유전자인, pchA 및 pchB 또는 entC 및 pchB를 E. coli 발현 벡터로 서브클로닝하였다. 그 결과, E. coli 균주 B-SA1 및 B-SA2는 B-SA1(5.1 mg/L) 보다 B-SA2(58.7 mg/L)로 획득된 더 높은 역가를 가지고, SA를 합성하는 것으로 확인된다(도 3B).4-hydroxycoumarin (4-HC) was synthesized by condensation of salicyloyl-CoA and malonyl-CoA. E. coli was prepared to express a gene for SA synthesis. The microbial synthesis of SA from chorismate was mediated by two enzymes. First, chorismate was converted to isochorismate by isochorismate synthase ( PchA from P. aeuginosa or EntC from E. coli ); Then, isochorismate was converted to SA by isochorismate pyruvate lyase (PchB from P. aeuginosa ), which is not present in E. coli. We subcloned two genes, pchA and pchB or entC and pchB, into an E. coli expression vector. As a result, it is confirmed that E. coli strains B-SA1 and B-SA2 synthesize SA with a higher titer obtained with B-SA2 (58.7 mg/L) than B-SA1 (5.1 mg/L). (Fig. 3B).

다음으로, SA로부터 4-HC의 합성을 위한 유전자를 스크리닝하였고, 이는 2단계로 발생하였다. CoA의 부착에 의해 SA를 활성화하였고, 살리실로일-CoA는 말로닐-CoA와 반응하여 4-HC를 생성하였다. 본 발명자들은 2개 CoA 리가아제(BadA 및 PqsA) 및 2개 4-HC 신타아제(RgACS 및 PqsD)를 시험하였다. badA 및 RgACS 모두를 pCDF-Duet 벡터로 클로닝하고(pC-RgACS-badA), pqsA 및 pqsD 모두를 동일한 벡터로 클로닝하여(pC-pqsD-pqsA) 2개 구조를 생성하였다. SA가 공급될때, pC-RgACS-badA(B-4HC1) 또는 pC-pqsDpqsA(B-4HC2)를 보유한 E. coli 형질전환체는 4-HC를 합성하였고, 2개 E. coli 균주 사이의 전환 반응에는 차이가 없었다.Next, a gene for the synthesis of 4-HC from SA was screened, which occurred in two steps. SA was activated by attachment of CoA, and salicylyl-CoA reacted with malonyl-CoA to generate 4-HC. We tested two CoA ligases (BadA and PqsA) and two 4-HC synthases (RgACS and PqsD). Both badA and RgACS were cloned into the pCDF-Duet vector (pC-RgACS-badA), and both pqsA and pqsD were cloned into the same vector (pC-pqsD-pqsA) to generate two constructs. When fed with SA, E. coli transformants harboring either pC-RgACS-badA (B-4HC1) or pC-pqsDpqsA (B-4HC2) synthesized 4-HC, and a transformation reaction between the two E. coli strains There was no difference in

본 발명자들은 SA 및 4-HC 합성 경로를 결합하여 글루코오스로부터 4-HC를 합성하였다. E. coli로 pC-entC-pchB 및 pERgACS-badA 모두를 형질전환시켰고, 4-HC 합성을 위해 형질전환체(B-4HC3)를 평가하였으며, 4-HC와 동일한 체류 시간을 갖는 생성물을 생성하는 것으로 확인된다(도 3D). 1H NMR 데이터는 합성된 화합물이 4-HC임을 확인하였고, E. coli로 4개 유전자를 도입함으로써 4-HC의 성공적인 합성을 입증하였다.We synthesized 4-HC from glucose by combining the SA and 4-HC synthesis pathways. E. coli was transformed with both pC-entC-pchB and pERgACS-badA and the transformant (B-4HC3) was evaluated for 4-HC synthesis, producing a product with the same retention time as 4-HC. confirmed to be (Fig. 3D). 1 H NMR data confirmed that the synthesized compound was 4-HC, and demonstrated successful synthesis of 4-HC by introducing 4 genes into E. coli.

4-HC 생성 증가시키기 위한 시키메이트(Shikimate) 경로의 조작Manipulation of the Shikimate Pathway to Increase 4-HC Production

SA 및 말로닐(malonyl)-CoA는 4-HC의 합성을 위한 기질이다. E. coli에서 4-HC 생성을 증가시키기 위해, 먼저, 본 발명자들은 E. coli 시키메이트(Shikimate) 경로 유전자, 즉, ppsA, tktA, aroG, aroB, aroD, aroE 및 aroL을 조작하였고, 이는 2개 기질인 포스포에놀피루베이트(phosphoenolpyruvate) 및 에리트로오스 4-포스페이트(erythrose 4-phosphate)로부터 시키메이트 3-포스페이트(shikimate 3-phosphate)를 합성하는데 관여하였다. 본 발명자들은 3개 구조를 생성하였다: 첫번째는 3개 유전자를 포함하였고[aroGf; aroG D146N의 피드백 억제-프리 버전(GAT 내지 AAT); ppsA; 및 tktA], 두번째는 4개 유전자를 포함하였으며(첫번째 구조에서 3개 유전자에 aroL 추가), 세번째는 7개 유전자를 포함하였다(두번째 구조에서 4개 유전자에 aroE, aroD, aroB 추가). 유전자는 역순으로 구조에 배열되었고, 즉, 시키메이트 경로에서 하류로 작용하는 유전자들은 상류 유전자 앞에 두었다. 구조에서 모든 유전자를 단일 프로모터에 의해 제어하였고, RBS를 각각의 유전자 앞에 두었다. E. coli로 pC-entC-pchB를 형질전환시킴으로써 SA 합성을 위해 이들 구조를 시험하였다. 그 결과, E. coli 균주(B-SA3, B-SA4 및 B-SA5) and B-SA2를 사용하여 SA 생성을 평가하였다. B-SA5는 가장 많은 양의 SA(421.4 mg/L)를 생성하였고, 다음은 B-SA4 (192.6 mg/L), B-SA3(123.2 mg/L) 및 B-SA2(76.0 mg/L) 순이었다(도 4A). 이러한 결과는 대장균에 시키메이트 경로 유전자의 도입이 코리메이트 합성을 향상시켰고, 결과적으로 SA 생성을 향상시킴을 입증하였다. SA and malonyl-CoA are substrates for the synthesis of 4-HC. To increase 4-HC production in E. coli , first, the present inventors used E. coli Shikimate The pathway genes, namely ppsA, tktA, aroG, aroB, aroD, aroE and aroL, were engineered from two substrates, phosphoenolpyruvate and erythrose 4-phosphate. Involved in the synthesis of mate 3-phosphate (shikimate 3-phosphate). We generated three constructs: the first contained three genes [aroGf; feedback inhibition-free versions of aroG D146N (GAT to AAT); ppsA; and tktA], the second contained 4 genes (added aroL to 3 genes in the first structure), and the third contained 7 genes (added aroE, aroD, aroB to 4 genes in the second structure). The genes were arranged in the structure in reverse order, that is, genes acting downstream in the shikimate pathway were placed before upstream genes. All genes in the construct were controlled by a single promoter and RBS preceded each gene. These constructs were tested for SA synthesis by transforming pC-entC-pchB with E. coli. As a result, SA production was evaluated using E. coli strains (B-SA3, B-SA4 and B-SA5) and B-SA2. B-SA5 produced the highest amount of SA (421.4 mg/L), followed by B-SA4 (192.6 mg/L), B-SA3 (123.2 mg/L) and B-SA2 (76.0 mg/L). followed (Fig. 4A). These results demonstrated that the introduction of the shikimate pathway gene into E. coli improved corimate synthesis and, as a result, enhanced SA production.

다음으로, E. coli 균주로 pE-RgACSbadA를 도입하여 4-HC를 합성하였다. 그 결과, 균주 B-4HC4는 작은 양의 4-HC만을 합성한 반면, SA의 대부분은 4-HC로 전환되지 않았고(도 4B), B-4HC4가 충분한 양의 말로닐-CoA를 공급하지 않았기 때문에, 4-HC 합성을 위해 두번째 기질이 필요하였다. 다양한 말로닐-CoA 농도는 방향족 화합물의 최종 역가를 변경시켰다. 말로닐-CoA의 공급을 증가시키기 위해, 본 발명자들은 아세틸(acetyl)-CoA를 말로닐-CoA로 전환시키는, P. luminescens (pA-accABCD)의 ACC 복합체를 도입하였다. 그 결과, 균주(B-4HC5)는 약 100.5 mg/L 4-HC를 합성하였고, 이는 균주 B-4-HC4(6.6 mg/L)보다 훨씬 더 많았다. 그러나, 81.3 mg/L 미반응 SA가 남아 있었다. SA의 축적은 PKS의 두번째 효소 반응에 기인 한 것으로 보인다. 4-HC 합성의 마지막 2단계에서 CoA 리가아제 및 4-HC 신타아제에 의해 촉매 된 반응은 속도를 제한할 수 있으므로, 본 발명자들은 badA 및 RgACS를 각각 pqsA 및 pqsD로 대체하였다. 그 결과, 균주 B-4HC6은 약 178.0 mg/L의 역가로 대부분의 SA를 4-HC로 전환시켰고, 이는 균주 B-4HC3의 것보다 10.4배 더 높았다(도 4B). 균주 B-4HC6을 사용하여 44 시간 동안 4-HC 합성을 모니터링하였고; 38 시간에, 255.4 mg/L 4-HC를 생성하였다.Next, 4-HC was synthesized by introducing pE-RgACSbadA into an E. coli strain. As a result, strain B-4HC4 synthesized only a small amount of 4-HC, whereas most of the SA was not converted to 4-HC (Fig. 4B), and B-4HC4 did not supply a sufficient amount of malonyl-CoA. Therefore, a second substrate was required for 4-HC synthesis. Various malonyl-CoA concentrations altered the final titers of aromatic compounds. To increase the supply of malonyl-CoA, we introduced the ACC complex of P. luminescens (pA-accABCD), which converts acetyl-CoA to malonyl-CoA. As a result, strain (B-4HC5) synthesized about 100.5 mg/L 4-HC, which was much higher than strain B-4-HC4 (6.6 mg/L). However, 81.3 mg/L unreacted SA remained. The accumulation of SA appears to be due to a second enzymatic reaction of PKS. Since the reactions catalyzed by CoA ligase and 4-HC synthase in the last two steps of 4-HC synthesis can be rate-limiting, we replaced badA and RgACS with pqsA and pqsD, respectively. As a result, strain B-4HC6 converted most of the SA to 4-HC with a titer of about 178.0 mg/L, which was 10.4 times higher than that of strain B-4HC3 (Fig. 4B). 4-HC synthesis was monitored for 44 h using strain B-4HC6; At 38 hours, 255.4 mg/L 4-HC was produced.

DHQ의 합성Synthesis of DHQ

폴리케타이드(polyketide) 합성 경로를 통해 안트라닐레이트(anthranilate)로부터 2,4-디하이드록시퀴놀린(DHQ)을 합성하였다(도 1). 본 발명자들은 안트라닐레이트(anthranilate) CoA-리가아제를 암호화하는 pqsA와 함께, 2개 PKS 유전자, RgACS 및 pqsD를 시험하였다. 배양물에 안트라닐레이트(anthranilate)를 공급한 후, 본 발명자들은 2개 형질전환체가 DHQ를 합성함을 발견하였으나; pqsD를 보유한 B-DHQ2(B-DHQ2)는 RgACS를 보유한 B-DHQ1 보다 더 높은 역가를 가졌다. 합성된 화합물은 1H NMR에 의해 DHQ로 확인되었다.2,4-dihydroxyquinoline (DHQ) was synthesized from anthranilate through a polyketide synthesis route ( FIG. 1 ). We tested two PKS genes, RgACS and pqsD, along with pqsA, which encodes an anthranilate CoA-ligase. After feeding the cultures with anthranilate, we found that two transformants synthesize DHQ; B-DHQ2 with pqsD (B-DHQ2) had higher titers than B-DHQ1 with RgACS. The synthesized compound was identified as DHQ by 1 H NMR.

본 발명자들은 외부 안트라닐레이트(anthranilate)를 공급하지 않고 DHQ의 합성을 시험하였다. 구조, pC-trpEG 및 pA-accABCD를 각각 기질, 안트라닐레이트(anthranilate) 및 말로닐-CoA에 제공하였다. E. coli 균주 B-DHQ3는 DHQ를 합성하였다(도 5). E. coli로부터 trpEG 유전자는 아미나아제를 암호화하는 trpE 및 아미도트랜스퍼라아제 활성을 암호화하는 trpD의 5'-영역(이 영역은 trpG로 불림)을 포함하는 안트라닐레이트 신타아제를 암호화하였고, trpEG에 의해 암호화된 단백질은 코리스메이트를 안트라닐레이트로 변환하였다.We tested the synthesis of DHQ without supplying an external anthranilate. The structures, pC-trpEG and pA-accABCD, were provided to the substrates, anthranilate and malonyl-CoA, respectively. E. coli strain B-DHQ3 synthesized DHQ (FIG. 5). The trpEG gene from E. coli encodes an anthranilate synthase comprising trpE encoding an aminase and a 5'-region of trpD encoding amidotransferase activity (this region is called trpG), and trpEG The protein encoded by , converted chorismate to anthranilate.

본 발명자들은 E. coli를 조작하여, 증가된 세포내 안트라닐레이트 수준을 합성하였다. 본 발명자들은 4개 E. coli 균주(B-DHQ3, B-DHQ4, B-DHQ5 및 B-DHQ6)를 시험하였고, 각각은 말로닐-CoA를 위한 pA-accABCD 및 안트라닐레이트(anthranilate)의 축적에 대한 시키메이트(Shikimate) 경로 유전자를 포함하였다. 코리스메이트를 안트라닐레이트로 전환시키는, trpEG 만을 보유하는 균주는 소량의 DHQ를 합성하였고(<10 mg/L; 도 6), 이는 코리스메이트 합성의 상류에 있는 유전자의 과발현이 필요함을 나타내었다. 실제로, trpEG 이외의 유전자의 발현은 DHQ 역가를 현저하게 증가시켰다: aroL, aroGf, ppsA 및 tktA 를 보유하는 균주(BDHQ5)는 가장 많은 양의 DHQ를 합성하였고(약 457.2mg/L), 다음은 B-DHQ4(436.4 mg/L), B-DHQ6(355.3 mg/L) 순이었다(도 6).We engineered E. coli to synthesize increased intracellular anthranilate levels. We tested four E. coli strains (B-DHQ3, B-DHQ4, B-DHQ5 and B-DHQ6), each with accumulation of pA-accABCD and anthranilate for malonyl-CoA. Shikimate pathway genes for The strain carrying only trpEG, which converts chorismate to anthranilate, synthesized small amounts of DHQ (<10 mg/L; FIG. 6), indicating that overexpression of genes upstream of chorismate synthesis is required. Indeed, expression of genes other than trpEG significantly increased DHQ titers: the strain carrying aroL, aroGf, ppsA and tktA (BDHQ5) synthesized the highest amount of DHQ (about 457.2 mg/L), followed by B-DHQ4 (436.4 mg/L) followed by B-DHQ6 (355.3 mg/L) ( FIG. 6 ).

본 발명자들은 DHQ 합성에 대한 안트라닐레이트의 영향을 추가로 조사하였다. trpE 및 trpD의 5'-영역에 의해 암호화된 안트라닐레이트신타아제에 의해 코리스메이트 및 글루타메이트로부터 안트라닐레이트를 합성하였다. 안트라닐레이트를 축적하기 위해, 본 발명자들은 trpD의 N-말단 도메인(GAD)을 유지하면서 APTD를 포함하는 trpD의 C-말단 부분을 삭제하였다. trpE 및 trpD의 GAD는 코리스메이트를 안트라닐레이트로 전환시켰다. 돌연변이체는 안트라닐 레이트의 축적을 초래하였다. 또한, 코리스메이트 뮤타아제(tyrA에 의해 암호화됨)에 의한 프리페네이트(prephenate)의 합성을 위해 안트라닐레이트의 기질인 코리스메이트를 사용하였다(도 1). 코리스메이트 축적을 강화하기 위해, 본 발명자들은 tyrA를 삭제하였다. 따라서, 본 발명자들은 2개 돌연변이체인, trpD 및 trpD/tyrA(균주 B-DHQ7 및 B-DHQ8)를 시험하였고, 모두 야생형 E. coli 보다 더 많은 DHQ를 생성하는 것을 발견하였다(각각 491.6 및 502.8 mg/L)(도 6). 본 발명자들은 플라스크에서 B-DHQ8에 의한 DHQ 합성을 모니터링하였고, 24 시간에, 753.7 mg/L의 최대 DHQ 역가를 가지며, DHQ 합성 및 세포 성장이 지속적으로 증가하는 것을 관찰하였다.We further investigated the effect of anthranilates on DHQ synthesis. Anthranilates were synthesized from chorismate and glutamate by anthranilate synthase encoded by the 5'-regions of trpE and trpD. To accumulate anthranilate, we deleted the C-terminal portion of trpD, including the APTD, while retaining the N-terminal domain (GAD) of trpD. GAD of trpE and trpD converted chorismate to anthranilate. The mutant resulted in accumulation of anthranilates. In addition, chorismate, a substrate of anthranilate, was used for the synthesis of prephenate by chorismate mutase (encoded by tyrA) ( FIG. 1 ). To enhance chorismate accumulation, we deleted tyrA. Therefore, we tested two mutants, trpD and trpD/tyrA (strains B-DHQ7 and B-DHQ8), and found that both produced more DHQ than wild-type E. coli (491.6 and 502.8 mg, respectively). /L) (Figure 6). We monitored DHQ synthesis by B-DHQ8 in flasks and observed that at 24 h, with a maximum DHQ titer of 753.7 mg/L, DHQ synthesis and cell growth continued to increase.

NMQ의 합성Synthesis of NMQ

N-메틸안트라닐레이트(N-methylanthranilate) 및 말로닐-CoA로부터 4-하이드록시-1-메틸-2(1H)-퀴놀론(NMQ)을 합성하였다. 본 발명자들은 2개 PKS (pqsD 및 CmQNS)와 1개 N-메틸안트라닐로일-CoA 리가아제(pqsA)를 시험하였다. CmQNS가 NMQ를 합성하는 반면, pqsD는 원래 DHQ의 합성에 관여하는 효소로 확인되었다. 안트라닐레이트 및 N-메틸안트라닐레이트의 구조적 유사성으로 인해, 본 발명자들은 PKS가 모두 NMQ 합성에 사용될 수 있는지 여부를 조사하였다. CmQNS-pqsA 또는 pqsD-pqsA를 보유한 E. coli 형질전환체는 NMQ의 분자량으로 예측되는, 175.0703 Da의 질량을 가진, 신규 생성물을 생성하였다(도 7). 1H NMR은 합성된 화합물이 실제로 NMQ임을 확인하였다.4-hydroxy-1-methyl-2(1H)-quinolone (NMQ) was synthesized from N-methylanthranilate and malonyl-CoA. We tested two PKSs (pqsD and CmQNS) and one N-methylanthraniloyl-CoA ligase (pqsA). While CmQNS synthesizes NMQ, pqsD was originally identified as an enzyme involved in the synthesis of DHQ. Due to the structural similarity of anthranilate and N-methylanthranilate, we investigated whether both PKS could be used for NMQ synthesis. E. coli transformants harboring either CmQNS-pqsA or pqsD-pqsA produced a novel product, with a mass of 175.0703 Da, predicted by the molecular weight of NMQ ( FIG. 7 ). 1 H NMR confirmed that the synthesized compound was actually NMQ.

NMQ의 합성은 DHQ의 것과 비교하여 1개 추가 단계, 즉, 안트라닐레이트의 메틸화가 요구되었다. R. graveolens로부터 N-메틸트랜스퍼라아제(NMT)는 안트라닐 레이트를 N-메틸안트라닐레이트로 전환시키는 것으로 알려져 있다. 2개 E. coli 형질전환체(B-NMQ1 및 B-NMQ2)를 사용하여 글루코스로부터 NMQ 합성을 조사하였다. B-NMQ1은 4.9 mg/L NMQ 및 1.0 mg/L DHQ를 합성하였고, B-NMQ2는 6.4 mg/L DHQ 및 3.6 mg/L NMQ를 합성하였다. 이는 CmQNS를 보유한 E. coli가 안트라닐로일-CoA 보다 N- 메틸안트라닐로일 -CoA를 더 잘 사용하고, pqsD를 보유하는 E. coli는 그 반대인 것을 나타내었다. 본 발명자들은 pCCmQNS-pqsA를 보유한 E. coli 및 pC-pqsD-pqsA를 보유한 E. coli에 동일한 농도(200 μM)의 안트라닐레이트 및 N- 메틸 안트라 닐 레이트를 각각 공급함으로써 이를 시험하였고, pC-pqsD-pqsA를 보유한 균주가 NMQ 보다 더 많은 DHQ를 생성하는 반면, pC-CmQNS-pqsA를 보유하는 균주는 아마도 2개 기질의 보다 높은 농도(200 μM)로 인해, DHQ 또는 NMQ를 생성하지 않았음을 발견하였다. The synthesis of NMQ required one additional step compared to that of DHQ, namely the methylation of the anthranilate. N-methyltransferase (NMT) from R. graveolens is known to convert anthranilates to N-methylanthranilates. NMQ synthesis from glucose was investigated using two E. coli transformants (B-NMQ1 and B-NMQ2). B-NMQ1 synthesized 4.9 mg/L NMQ and 1.0 mg/L DHQ, and B-NMQ2 synthesized 6.4 mg/L DHQ and 3.6 mg/L NMQ. This indicated that E. coli with CmQNS used N-methylanthraniloyl-CoA better than anthraniloyl-CoA, and E. coli with pqsD did the opposite. The present inventors have tested this by the rate anthranilate and methyl anthranilate N- rate of the same concentration (200 μM) in E. coli have the E. coli and pC-pqsD-pqsA holds the pCCmQNS-pqsA supply respectively, pC- The strain carrying pqsD-pqsA produced more DHQ than NMQ, whereas the strain carrying pC-CmQNS-pqsA did not produce either DHQ or NMQ, presumably due to the higher concentration (200 μM) of the two substrates. found

생성물의 양을 증가시키기 위해, 2개 균주에서 시키메이트 경로 유전자를 포함하는 구조를 공동발현하였다(산출 균주 B-NMQ3 및 B-NMQ4). 공급 연구에서 예상한 바와 같이, B-NMQ3는 여과액에서 검출된 많은 양의 안트라닐레이트(225.0 mg/L) 및 N-메틸안트라닐레이트(68.9 mg/L)와 함께, NMQ를 생성하지 않았다. 이는 고농도의 안트라닐레이트, 안트라닐로일-CoA, N- 메틸안트라닐레이트 또는 N-메틸 안트라닐로일 -CoA에 의한 CmQNS의 억제 때문인 것으로 보았다.To increase the amount of product, constructs containing the shikimate pathway genes were co-expressed in two strains (producing strains B-NMQ3 and B-NMQ4). As expected from the feeding study, B-NMQ3 did not produce NMQ, with high amounts of anthranilate (225.0 mg/L) and N-methylanthranilate (68.9 mg/L) detected in the filtrate. . This was considered to be due to the inhibition of CmQNS by high concentrations of anthranilate, anthraniloyl-CoA, N-methylanthranilate or N-methylanthraniloyl-CoA.

B-NMQ4는 B-NMQ2보다 더 많은 NMQ를 생성하였지만, NMQ(26.1 mg/L) 보다 더 많은 DHQ(316.2 mg/L)를 합성하였다. 이는 pqsD가 E. coli 균주에서 합성된 안트라닐 레이트의 농도에 의해 억제되지 않을 수 있고, NMT에 의한 안트라닐 레이트의 N-메틸안트라닐레이트로의 전환은 안트라닐레이트의 합성보다 느릴 가능성이 있으며, 이는 N- 메틸안트라닐레이트보다 더 높은 농도의 안트라닐레이트로 인해, NMQ보다 DHQ의 더 많은 합성을 초래하였다. 종합하면, CmQNS는 2 개 기질의 저농도에서 안트라닐레이트 보다 N-메틸 안트라닐레이트를 보다 효율적으로 사용하였으나 고농도에 의해 억제되었던 반면, pqsD는 N-메틸안트라닐레이트를 전환시키는데 CmQNS 보다 우수하였지만 N-메틸 안트라닐레이트보다 안트라닐레이트에 더 높은 친화도를 가졌다. CmQNS 및 pqsD가 고농도의 N-메틸안트라닐레이트에 의해 억제됨을 확인하기 위해, 다른 양의 N- 메틸안트라닐레이트로 pC-pqsD-pqsA를 보유하는 E. coli를 공급하였고, NMQ의 합성을 조사하였다. pC-pqsDpqsA를 보유하는 E. coli은 20.7 mg/L (118.3 μM) NMQ를 합성하였으며, 이는 30 mg/L(200 μM) N-메틸안트라닐레이트가 배양물에 첨가될 때 최대였다. 45 및 60 mg/L(각각 300 및 400 μM) N-메틸안트라닐 레이트에서, 역가는 각각 16.3(92.4 μM) 및 14.5 (83.0 μM) mg/L이었다. CmQNS를 보유하는 E. coli를 사용한 NMQ 합성은 N-메틸안트라닐레이트의 더 낮은 농도(15.0 mg/L, 즉 100 μM)에서 최대에 도달하였다. 이러한 결과에 근거하여, 본 발명자들은 NMQ의 합성에 pqsD를 사용하였다. B-NMQ4 produced more NMQ than B-NMQ2, but synthesized more DHQ (316.2 mg/L) than NMQ (26.1 mg/L). This suggests that pqsD may not be inhibited by the concentration of anthranilate synthesized in E. coli strains, and the conversion of anthranilate to N-methylanthranilate by NMT is likely to be slower than the synthesis of anthranilate. , which resulted in more synthesis of DHQ than NMQ, due to the higher concentration of anthranilate than N-methylanthranilate. Taken together, CmQNS used N-methyl anthranilate more efficiently than anthranilate at low concentrations of the two substrates, but was inhibited by high concentrations, whereas pqsD was superior to CmQNS in converting N-methylanthranilate, but N -Has a higher affinity for anthranilate than for methyl anthranilate. To confirm that CmQNS and pqsD were inhibited by high concentrations of N-methylanthranilate, E. coli carrying pC-pqsD-pqsA with different amounts of N-methylanthranilate was fed, and the synthesis of NMQ was investigated. did. E. coli harboring pC-pqsDpqsA synthesized 20.7 mg/L (118.3 μM) NMQ, which was maximal when 30 mg/L (200 μM) N-methylanthranilate was added to the culture. At 45 and 60 mg/L (300 and 400 μM, respectively) N-methylanthranilate, the titers were 16.3 (92.4 μM) and 14.5 (83.0 μM) mg/L, respectively. NMQ synthesis using E. coli carrying CmQNS reached a maximum at a lower concentration of N-methylanthranilate (15.0 mg/L, ie 100 μM). Based on these results, we used pqsD for the synthesis of NMQ.

pqsD를 사용하여 DHQ의 합성을 최소화하고 NMQ의 합성을 최대화하기 위해, 본 발명자들은 반응을 3단계로 나누었다: 첫째, 글루코오스로부터 안트라닐레이트의 합성; 둘째, 안트라닐레이트로부터 N-메틸안트라닐레이트의 합성; 셋째, N-메틸안트라닐레이트의 NMQ로의 전환. 1단계 및 2단계에 대한 균주는 단일 배양에서 조합되었지만, 각 단계는 다른 E.coli 균주에서 수행되었다. 안트라닐레이트 축적을 최소화하고 최적량의 N-메틸안트라닐레이트를 수득하기 위해, 본 발명자들은 글루코오스로부터 안트라닐레이트를 생성하기 위한 pC-aroG-trpEG를 보유하는 E.coli 및 안트라닐레이트로부터 N-메틸안트라닐 레이트를 생성하기 위해 pC-NMT를 보유하는 E.coli를 사용하였다. 본 발명자들은 3가지 비율의 안트라닐레이트 대 N-메틸안트라닐레이트 합성 세포를 시험하였다: 1:1, 1:2 및 1:3, 이는 각각 162.4, 62.3 및 32.1 mg/L (1081.9, 415.1 및 213.8 μM)의 N- 메틸안트라닐레이트를 수득하였다. 1:1 비가 가장 높은 역가를 초래하였지만, 약 9.3 mg/L(67.6 μM) 안트라닐 레이트는 반응하지 않은 채로 남아 있었다. 추가적으로, N-메틸안트라닐레이트의 양은 NMQ 합성에 비해 너무 높았는데, 이는 200 μM의 N-메틸안트라닐레이트 보다 높은 농도가 NMQ의 최종 역가를 감소 시켰음을 나타내기 때문이다. 따라서, 본 발명자들은 글루코스로부터 N- 메틸안트라닐레이트 합성을 위해 1:2 세포 비를 사용하였다. 약 200 μM에서 N-메틸안트라닐레이트 농도를 조정하기 위해, 상기로부터 N- 메틸안트라닐레이트를 포함하는 배양 여과액을 pC-pqsDpqsA를 보유하는 E. coli 를 포함하는 세포 현탁액과 혼합하였다. 그 결과, 혼합물은 24시간 동안 인큐베이션하여 NMQ를 합성하였다. 약 17.5 mg/L(99.8 μM) NMQ가 합성되었고 DHQ는 검출되지 않는 것으로 확인된다. To minimize the synthesis of DHQ and maximize the synthesis of NMQ using pqsD, we divided the reaction into three steps: first, synthesis of anthranilate from glucose; Second, the synthesis of N-methylanthranilate from anthranilate; Third, conversion of N-methylanthranilate to NMQ. The strains for steps 1 and 2 were combined in a single culture, but each step was performed on a different E. coli strain. In order to minimize anthranilate accumulation and obtain an optimal amount of N-methylanthranilate, we developed N from E. coli and anthranilate with pC-aroG-trpEG to generate anthranilate from glucose. E. coli carrying pC-NMT was used to produce -methylanthranilate. We tested three ratios of anthranilate to N-methylanthranilate synthesizing cells: 1:1, 1:2 and 1:3, which were 162.4, 62.3 and 32.1 mg/L (1081.9, 415.1 and 213.8 μM) of N-methylanthranilate was obtained. Although the 1:1 ratio resulted in the highest titers, about 9.3 mg/L (67.6 μM) anthranilate remained unreacted. Additionally, the amount of N-methylanthranilate was too high for NMQ synthesis, as it indicated that concentrations higher than 200 μM of N-methylanthranilate decreased the final titer of NMQ. Therefore, we used a 1:2 cell ratio for the synthesis of N-methylanthranilate from glucose. To adjust the N-methylanthranilate concentration at about 200 μM, the culture filtrate containing N-methylanthranilate from above was mixed with a cell suspension containing E. coli containing pC-pqsDpqsA. As a result, the mixture was incubated for 24 hours to synthesize NMQ. It is confirmed that about 17.5 mg/L (99.8 μM) NMQ was synthesized and no DHQ was detected.

본 발명자들은 기질을 제공하고, 개별 기질의 수준을 증가시키는 경로를 설계하고, 반응이 진행되도록 하며, 그리고, 이러한 과정을 반복함으로써 4-HC, DHQ 및 NMQ 합성의 각 단계에서 이상적인 유전자를 선택하였다. 본 발명자들은 병목 현상을 확인하였고, 각 대사 산물의 플럭스를 조절하여 생성물의 합성을 극대화하였다. 이러한 전략을 사용하여, 본 발명자들은 목표 화합물의 최종 역가를 높이는 데 성공하였다. 일부 연구에 따르면, 프로모터 강도를 조작하면 합성 반응을 최적화 할 수 있는 것으로 나타났다. 이러한 접근은 경로의 각 단계에서 기질 생산의 균형을 맞추는 데 유용하였다. 또한, 본 발명자들은 최적의 농도를 제공하기 위해 다른 유전자 조합을 도입하였고, 다른 카피수를 가지는 플라스미드를 사용하였다. 본 결과는 이러한 2개 접근(즉, 프로모터 강도 조절, 유전자 조합 최적화 및 다른 카피수의 플라스미드 사용)을 결합하여 생성품 역가를 최대화할 수 있음을 보여주었다. We selected ideal genes for each step of 4-HC, DHQ, and NMQ synthesis by providing substrates, designing pathways to increase levels of individual substrates, allowing the reaction to proceed, and repeating this process. . The present inventors confirmed the bottleneck, and maximized the synthesis of the product by controlling the flux of each metabolite. Using this strategy, we succeeded in increasing the final titer of the target compound. Some studies have shown that manipulating promoter strength can optimize synthetic reactions. This approach was useful in balancing substrate production at each step of the pathway. In addition, we introduced different gene combinations to provide optimal concentrations and used plasmids with different copy numbers. The present results showed that these two approaches (i.e., promoter strength regulation, gene combination optimization and use of different copy number plasmids) can be combined to maximize product titer.

다배양 시스템은 천연 화합물을 합성하는 효율적인 방법이다. 본 발명자들은 N-메틸안트라닐레이트를 합성하기 위한 이러한 시스템을 채택하였고, 생성물을 포함하는 배양 여과액을 N-메틸안트라닐레이트로부터 NMQ 합성의 후속 단계에 관여하는 효소를 암호화하는 유전자를 발현하는 세포와 혼합하였다. 2개 배양 시스템으로 알려진 이러한 접근은 경로에서 대사 산물이 이후 단계에서 대사 산물의 합성을 억제하고/하거나 하류 효소가 하류 대사산물 보다 상류 대사산물을 위한 보다 높은 친화도를 가졌다. 이러한 방법을 사용하여, 본 발명자들은 pqsD 및 안트라닐로일-CoA 사이의 접촉을 방지함으로써 부산물인, DHQ의 합성을 최소화함으로써 훨씬 더 순수한 NMQ를 합성하였다.Multiculture systems are an efficient way to synthesize natural compounds. The present inventors have adopted this system for synthesizing N-methylanthranilate and extracting the culture filtrate containing the product from N-methylanthranilate to express a gene encoding an enzyme involved in the subsequent step of NMQ synthesis. mixed with cells. This approach, known as a two-culture system, is that metabolites in the pathway inhibit the synthesis of metabolites at later steps and/or downstream enzymes have higher affinity for upstream metabolites than downstream metabolites. Using this method, we synthesized much purer NMQ by preventing the contact between pqsD and anthraniloyl-CoA, thereby minimizing the synthesis of the by-product, DHQ.

시키메이트 경로에서 4개 유전자(aroL, aroGf, ppsA 및 tktA)를 포함하는 구성은 DHQ 합성에 이상적인 반면, 3개 추가 유전자(aroE, aroD 및 aroB)를 보유하는 것은 SA의 합성에 우수하였다. 이러한 유전자는 더 많은 코리스메이트의 축적으로 이어질 수 있다. 본 발명자들은 2개 구성에 의해 합성된 코리스메이트의 양을 측정하지는 않았지만, 이는 각각의 구성을 보유하는 E.coli 사이에서 다를 수 있다. 경로에서 각각의 중간체의 균형을 맞추는 것은 최종 생성물 역가에 중요하다. 코리스메이트의 효소 하류[SA 생합성을 위한 이소크로메이트 신타아제(entC) 및 안트라닐레이트 생합성을 위한 안트라닐레이트 신타아제(trpEG)]는 상응하는 생성물의 합성을 위해 코리스메이트의 다른 전환율을 가진다. 따라서, 코리스메이트 합성을 위한 다른 유전자 조합이 SA 및 DHQ의 합성을 위해 요구될 가능성이 있기 때문에, 각각의 경로는 다른 양의 코리스메이트를 요구한다.A construct containing four genes in the shikimate pathway (aroL, aroG f , ppsA and tktA) was ideal for DHQ synthesis, whereas one with three additional genes (aroE, aroD and aroB) was superior to the synthesis of SA. These genes can lead to the accumulation of more chorismates. Although we did not measure the amount of corismate synthesized by the two constructs, this may vary between E. coli carrying each construct. Balancing each intermediate in the pathway is critical to the final product titer. Enzymes downstream of chorismate [isochromate synthase (entC) for SA biosynthesis and anthranilate synthase (trpEG) for anthranilate biosynthesis] have different conversions of chorismate for the synthesis of the corresponding products. Thus, each pathway requires different amounts of chorismate, as different gene combinations for chorismate synthesis are likely required for the synthesis of SA and DHQ.

결과적으로, 이러한 결과는 화석 연료 및 기타 자원의 의존뿐만 아니라, 시간 및 비용을 절감할 수 있는 가치있는 천연 화합물을 합성하기 위한 생물학적 접근을 사용하는 것이 가능함을 증명하였다. Consequently, these results demonstrate that it is possible to use biological approaches to synthesize valuable natural compounds that can save time and money, as well as dependence on fossil fuels and other resources.

전술한 본 발명의 설명은 예시를 위한 것이며, 본 발명이 속하는 기술분야의 통상의 지식을 가진 자는 본 발명의 기술적 사상이나 필수적인 특징을 변경하지 않고서 다른 구체적인 형태로 쉽게 변형이 가능하다는 것을 이해할 수 있을 것이다. 그러므로 이상에서 기술한 실시예들은 모든 면에서 예시적인 것이며 한정적이 아닌 것으로 이해해야만 한다. The above description of the present invention is for illustration, and those of ordinary skill in the art to which the present invention pertains can understand that it can be easily modified into other specific forms without changing the technical spirit or essential features of the present invention. will be. Therefore, it should be understood that the embodiments described above are illustrative in all respects and not restrictive.

<110> Konkuk University Industrial Cooperation Corp <120> Esherichia coli TRANSFORMANT AND METHOD FOR PRODUCING CUMARIN-BASED OR QUINOLINE-BASED COMPOUND USING THE SAME <130> 1066964 <160> 17 <170> KoPatentIn 3.0 <210> 1 <211> 1595 <212> DNA <213> Escherichia coli <400> 1 tggctgacat tctgctgctc gataatatcg actcttttac gtacaacctg gcagatcagt 60 tgcgcagcaa tgggcataat gtggtgattt accgcaacca tattccggcg cagaccttaa 120 ttgaacgcct ggcgacgatg agcaatccgg tactgatgct ttctcctggc cccggtgtgc 180 cgagcgaagc cggttgtatg ccggaactcc tcacccgctt gcgtggcaag ctgcccatta 240 ttggcatttg cctcggacat caggcaattg tcgaagctta cgggggctat gtcggtcagg 300 cgggcgaaat tcttcacggt aaagcgtcga gcattgaaca tgacggtcag gcgatgtttg 360 ccggattaac aaacccgctg ccggtggcgc gttatcactc gctggttggc agtaacattc 420 cggccggttt aaccatcaac gcccatttta atggcatggt gatggcagta cgtcacgatg 480 cggatcgcgt ttgtggattc cagttccatc cggaatccat tctcaccacc cagggcgctc 540 gcctgctgga acaaacgctg gcctgggcgc agcagaaact agagccagcc aacacgctgc 600 aaccgattct ggaaaaactg tatcaggcgc agacgcttag ccaacaagaa agccaccagc 660 tgttttcagc ggtggtgcgt ggcgagctga agccggaaca actggcggcg gcgctggtga 720 gcatgaaaat tcgcggtgag cacccgaacg agatcgccgg agcagcaacc gcgctactgg 780 aaaacgccgc gccgttcccg cgcccggatt atctgtttgc tgatatcgtc ggtactggcg 840 gtgacggcag caacagtatc aatatttcta ccgccagtgc gtttgtcgcc gcggcctgtg 900 ggctgaaagt ggcgaaacac ggcaaccgta gcgtctccag taaatctggt tcgtccgatc 960 tgctggcggc gttcggtatt aatcttgata tgaacgccga taaatcgcgc caggcgctgg 1020 atgagttagg tgtatgtttc ctctttgcgc cgaagtatca caccggattc cgccacgcga 1080 tgccggttcg ccagcaactg aaaacccgca ccctgttcaa tgtgctgggg ccattgatta 1140 acccggcgca tccgccgctg gcgttaattg gtgtttatag tccggaactg gtgctgccga 1200 ttgccgaaac cttgcgcgtg ctggggtatc aacgcgcggc ggtggtgcac agcggcggga 1260 tggatgaagt ttcattacac gcgccgacaa tcgttgccga gctgcatgac ggcgaaatta 1320 agagctatca attgaccgct gaagattttg gcctgactcc ctaccaccag gagcaactgg 1380 caggcggaac accggaagaa aaccgtgaca ttttaacacg cttgttacaa ggtaaaggcg 1440 acgccgccca tgaagcagcc gtcgctgcga acgtcgccat gttaatgcgc ctgcatggcc 1500 atgaagatct gcaagccaat gcgcaaaccg ttcttgaggt actgcgcagt ggttccgctt 1560 acgacagagt taccgcactg gcggcacgag ggtaa 1595 <210> 2 <211> 1143 <212> DNA <213> Escherichia coli <400> 2 atggttgctg aattgaccgc attacgcgat caaattgatg aagtcgataa agcgctgctg 60 aatttattag cgaagcgtct ggaactggtt gctgaagtgg gcgaggtgaa aagccgcttt 120 ggactgccta tttatgttcc ggagcgcgag gcatctatgt tggcctcgcg tcgtgcagag 180 gcggaagctc tgggtgtacc gccagatctg attgaggatg ttttgcgtcg ggtgatgcgt 240 gaatcttact ccagtgaaaa cgacaaagga tttaaaacac tttgtccgtc actgcgtccg 300 gtggttatcg tcggcggtgg cggtcagatg ggacgcctgt tcgagaagat gctgaccctc 360 tcgggttatc aggtgcggat tctggagcaa catgactggg atcgagcggc tgatattgtt 420 gccgatgccg gaatggtgat tgttagtgtg ccaatccacg ttactgagca agttattggc 480 aaattaccgc ctttaccgaa agattgtatt ctggtcgatc tggcatcagt gaaaaatggg 540 ccattacagg ccatgctggt ggcgcatgat ggtccggtgc tggggctaca cccgatgttc 600 ggtccggaca gcggtagcct ggcaaagcaa gttgtggtct ggtgtgatgg acgtaaaccg 660 gaagcatacc aatggtttct ggagcaaatt caggtctggg gcgctcggct gcatcgtatt 720 agcgccgtcg agcacgatca gaatatggcg tttattcagg cactgcgcca ctttgctact 780 tttgcttacg ggctgcacct ggcagaagaa aatgttcagc ttgagcaact tctggcgctc 840 tcttcgccga tttaccgcct tgagctggcg atggtcgggc gactgtttgc tcaggatccg 900 cagctttatg ccgacatcat tatgtcgtca gagcgtaatc tggcgttaat caaacgttac 960 tataagcgtt tcggcgaggc gattgagttg ctggagcagg gcgataagca ggcgtttatt 1020 gacagtttcc gcaaggtgga gcactggttc ggcgattacg cacagcgttt tcagagtgaa 1080 agccgcgtgt tattgcgtca ggcgaatgac aatcgccagt aagcgaatga caaccgccag 1140 taa 1143 <210> 3 <211> 1014 <212> DNA <213> Pseudomonas aeruginosa <400> 3 atgggtaatc cgatcctggc cgggctgggt ttcagcctgc cgaaacgcca ggtcagcaat 60 catgacctgg tagggcgcat caatacgtcg gacgagttca tcgtcgaacg taccggcgtg 120 cgcacccgct atcacgtcga gccggaacag gcggtcagcg cgctgatggt gccggcggcg 180 cgccaggcca tcgaggctgc cgggctgctg ccggaggaca tcgacctgtt gctggtgaac 240 accctgtcgc cggaccacca cgacccgtcc caggcctgcc tgatccagcc gctgctgggc 300 ctgcggcaca tcccggtact ggatatccgg gcacagtgca gcgggttgct gtacggcttg 360 cagatggctc gcgggcagat cctcgccggg ctggcacggc atgtcctggt ggtctgcggc 420 gaggtgctgt ccaagcgcat ggactgttcg gaccgcggcc gcaacctgtc gatcctgctc 480 ggcgacggtg ccggcgcagt ggtggtcagc gccggcgaga gtctcgaaga cggactgctg 540 gacctgcgcc tgggcgccga cggcaactac ttcgacctgc tgatgaccgc ggcgccgggt 600 agtgcctcgc cgaccttcct cgacgagaat gtcctgcgcg agggcggggg cgagttcctc 660 atgcgcggcc ggccgatgtt cgagcatgcc agccagaccc tggtacggat cgccggcgaa 720 atgctcgcgg cccatgagct gaccctggac gacatcgacc atgtgatctg ccatcaaccg 780 aacctgcgca tcctcgatgc ggtgcaggag caactgggca ttccccagca caagttcgcg 840 gtgaccgtgg atcgtctggg caacatggct tcggcctcga ccccggtcac gctggcgatg 900 ttctggccgg acatccagcc gggacagcgg gtgctggtcc tgacctacgg ctccggcgcg 960 acctggggcg cggcgctgta ccgcaaacct gaggaggtga accggccatg ttga 1014 <210> 4 <211> 1554 <212> DNA <213> Pseudomonas aeruginosa <400> 4 atgtccacat tggccaacct gaccgaggtt ctgttccgcc tcgatttcga tcccgatacc 60 gccgtttatc actatcgggg ccagactctc agccggctgc aatgccggac ctacattctc 120 tcccaggcca gccaactggc ccgcctgctc aagcccggcg atcgcgtggt gctggcgttg 180 aacgactcgc cttcgctggc ctgcctgttc ctggcctgca tcgcggtcgg cgccattccc 240 gccgtgatca atcccaagtc ccgcgagcag gccctggccg atatcgctgc cgactgccag 300 gccagcctgg tggtgcgtga agccgatgca ccgtcgctga gcggtccttt ggcgccgttg 360 accctgcgtg cggccgccgg acgccctttg ctcgacgatt tctcgctgga cgcgctggtc 420 ggccctgcgg acctcgattg gagtgccttc catcgccagg acccggcggc agcctgtttc 480 ctgcaataca cctcgggttc caccggggcg cccaaggggg tgatgcacag cctgcgcaac 540 acgctcggtt tctgccgggc gttcgctacg gagttgctgg cattgcaggc gggagaccgg 600 ctgtattcga ttcccaagat gttcttcggc tatggcatgg gcaacagcct gttctttccc 660 tggttcagcg gagcctcggc gctgctcgac gatacctggc cgagcccgga gcgggttctg 720 gagaacctgg tcgccttccg cccccgggtc ctgtttgggg tgccggccat ctatgcctcg 780 ctgcgtccgc aggccaggga gctgttgagc agcgtgcgcc tggcgttttc cgccggctcg 840 ccgctgccgc gcggcgagtt cgaattctgg gccgcgcacg ggctggagat ctgcgacggc 900 atcggggcta ccgaggtcgg ccatgtgttc ctcgccaacc gcccgggcca ggcgcgtgcc 960 gacagcaccg ggctgccgtt gcctggctat gagtgccggc tggtggaccg cgaaggacac 1020 actatcgagg aagcgggccg gcaaggcgtg ctgttggtgc gtggcccagg gctgagtccg 1080 ggttactggc gggccagcga agagcagcag gcgcgcttcg caggtggctg gtaccgcacc 1140 ggcgacctgt tcgagcgcga cgagtcgggt gcctaccgtc actgtgggcg ggaagacgat 1200 ctgttcaagg tgaatggccg ctgggtggtg ccgacccagg tcgagcaggc gatctgccgt 1260 catctgccgg aagtgagcga ggcggttctg gttcctacct gccggctgca cgacggcttg 1320 cgtccgaccc tgttcgtcac cctggccact ccgctggacg acaaccagat cctgctggcg 1380 cagcgcatcg accagcatct cgccgaacag attccctcgc acatgctgcc cagccaattg 1440 catgtgctgc cggccttgcc gcgcaacgac aacggcaagt tggcgcgcgc cgagctgcgc 1500 cacctggccg acacccttta tcacgacaac cttccggagg aacgggcatg ttga 1554 <210> 5 <211> 960 <212> DNA <213> Photorhabdus luminescens <400> 5 atgagtctga attttcttga atttgaacag ccgattgccg agctggaagc gaaaattgat 60 tcgctaaccg cagttagccg tcaaggtgaa aaattagata taaatctgga tgaagaagta 120 caacgtttgc gggaaaaaag tctggaattg actcgcaaaa tcttttcaga tttaggtgcc 180 tggcaaattg ctcagcttgc tcgtcaccca cgtcgtcctt atacgttgga ctatattcag 240 catattttta ctgattttga agagcttgct ggtgatcgtg cttatgctga tgacaaagca 300 attgtgggtg gtctggctcg tattgatgga cgtccagtga tggtgattgg tcaccaaaaa 360 ggccgtgaaa ccaaagaaaa aattcgccgt aatttcggta tgccagcgcc agaaggttat 420 cgtaaagctt tgcgcctgat ggaaatggca gagcgtttta aactgccaat tattactttc 480 attgatactc ctggtgcata tcctggggtt ggtgcagaag aacgtggtca atctgaggcg 540 atagctcgca acttgcgtga aatgtcccgc ctgtctgtgc ctgttatttg tactgtgatt 600 ggtgaaggtg gctctggtgg tgcattggcg attggtgttg gtgataaagt gaatatgctg 660 caatatagta cttattctgt tatctcccca gaaggttgtg cctcaatttt gtggaaaagc 720 gcggaaaaag cacctttggc ggcagaagct atggggatca ctgctcctcg tttgaaagag 780 ttggagttgg tcgatactgt gatttcagag ccattaggtg gtgctcatcg tgactatgaa 840 gcaatatcca cgtcgttgaa agctcagttg ttgattgacc tggcagagct tgatcatttg 900 acatctgaag aattagtcaa ccgccgatat cagcgcttga tgcaatatgg ttattgctga 960 960 <210> 6 <211> 1833 <212> DNA <213> Photorhabdus luminescens <400> 6 atggatattc gtaagataaa aaaactgatc gagctggttg aagaatctgg catttctgaa 60 ctggaaattt ctgaagggga agagtcagtg cgcatcagcc gcgcattagc tccccagagt 120 tttccggcag ctcaacaata tattcccgtt caagcacaac aacctgcgct ggctaatgtt 180 gttgcgcctt ctcaagctct accagaagcg atcagcagca gatcggctgc aatcgacggt 240 cacgttgttc gttccccaat ggtaggtacc ttctatcgta cacctagccc agatgcgaaa 300 ccatttatcg aaatcggcca gcgtgtcaat gtgggtgaca ccctatgcat cgttgaagca 360 atgaaaatga tgaatcagat cgaagccgac aaagcaggtg tggttaaaaa gattcttgtg 420 gaaagcggtc aacccgttga atttgacgag ccattagtcg tcatcgaata acgaggcgtt 480 cccatgcttg ataaaattgt aattgctaac cgtggtgaaa ttgccctgcg tatcctacga 540 gcttgtaaag agttggggat caaaaccgtt gcggtacatt cctccgcgga tcgtgactta 600 aaacacgtac tgctggcaga cgaaactatc tgtattggcc cggcagcttc tgcaaaaagc 660 tacctgaata tcccggcaat tatttctgcg gcagaaatca cgggtgctgt ggctattcac 720 cctggctacg gttttctatc tgaaaatgca gattttgctg aacaggttga gcgttctggc 780 tttattttta tcggcccaaa agcagaaacg atccgcctga tgggtgataa agtttctgct 840 atcaatgcga tgaaaaaagc aggcgttcct tgtgtacctg gctctgatgg cccattgtct 900 gatgacacgg agaaaaacaa agccttcgct aaacgcattg gctatcctgt catcatcaaa 960 gcatccggcg gcggcggcgg tcgcggtatg cgcgtcgtcc gcagtgataa agatctggaa 1020 caatcaatca atatgacccg tgcggaagca aaagctgctt tcaataacga tatggtttac 1080 atggaaaaat tccttgagaa tccacgtcat attgagatcc aagtattggc tgacggccaa 1140 ggtcaagcaa tttatctggc tgagcgtgat tgctccatgc aacgccgtca ccagaaagtt 1200 gtcgaagaag cccctgcacc aggaatcacg ccagaaatgc gtcgcagtat tggtgaacgc 1260 tgtgctaacg catgtatcga aattggctat cgtggtgccg gtactttcga attcctgtat 1320 gaaaacggtg aattctattt cattgagatg aatacccgta ttcaggttga acatccagtt 1380 acggaaatga ttaccggtgt tgatctgatt aaagagcagt tgcggattgc cgcaggtatg 1440 ccactttcaa ttaagcagaa agatgttgtt attcgtggtc acgctattga atgtcgtatc 1500 aatgccgaag atccgaacac attcctgcca agcccaggta aaattacccg cttccactcg 1560 ccgggtggat ttggtgtgcg ttgggaatcg catatttatg ctggctacac cgttccccct 1620 tactatgatt caatgattgg taagctgatt acttacggtg aaaatcgtga caatgccatt 1680 gcccgcatga aaaatgcatt ggcagaattg atcattgatg gcatcaagac aaatatcgag 1740 cttcaacagg cgataatgaa tgatgaaaac tttcagaatg gcggtactaa tatccactat 1800 ctggagaaaa aactggggtt acaggaaact taa 1833 <210> 7 <211> 945 <212> DNA <213> Photorhabdus luminescens <400> 7 atgagctgga ttgaaaaaat tcttaataaa agcaacatta cccaaacgcg taaagcgaat 60 atcccagaag gggtttggac taaatgtgat agttgcagtc aggtgctcta ccgtgctgag 120 ctagagcgca atcttgaggt ttgccctaaa tgtgatcatc acatgcgtat ttcggcgcgt 180 acccgattgg ctacattcct tgatgaagga gcaacgacgg aattaggggg ggaattagag 240 ccaaaagata ttcttaaatt ccgcgattcc aaaaagtata aagatcgtat atcagcggcg 300 cagaagcaaa cccaagaaaa agatgcgtta gtcgtgatga aaggtaccct gagtggtatg 360 tcagttgttg ctgctgcttt tgaatttgca tttatgggcg gttctatggc ttcggttgtt 420 ggtgcccgtt ttgtccgtgc cgtagaacag gcgttggcag acaattgtcc tctgatttgt 480 ttttcttcca gtggtggcgc tcgtatgcaa gaagcattga tgtcactgat gcagatggcg 540 aaaaccagtg ctgctttagc aaaaatgcag gaacgtggtt tgccttatat ctctatcatg 600 accgatccga caatgggcgg tgtttcagca agtctggcga tgttgggtga tatcaatatt 660 gctgaaccaa aagcattgat tggttttgcc gggccacgag tgattgagca gactgttcgt 720 gaaaaattac cgtccggttt ccagcgtagt gagtttttgc tggcaaaggg agcgattgac 780 atgattgttc gtcgtcctga aatgcgtgac acacttgcaa gtttactttc taaactaact 840 catcagtcgc agccaggtac taagccaatt gttgctgaat ttgtggcaga acccgctgat 900 gttgaggcgg atattcaaat aagtaccaat aaagaagatg cctga 945 <210> 8 <211> 525 <212> DNA <213> Escherichia coli <400> 8 atgacacaac ctctttttct gatcgggcct cggggctgtg gtaaaacaac ggtcggaatg 60 gcccttgccg attcgcttaa ccgtcggttt gtcgataccg atcagtggtt gcaatcacag 120 ctcaatatga cggtcgcgga gatcgtcgaa agggaagagt gggcgggatt tcgcgccaga 180 gaaacggcgg cgctggaagc ggtaactgcg ccatccaccg ttatcgctac aggcggcggc 240 attattctga cggaatttaa tcgtcacttc atgcaaaata acgggatcgt ggtttatttg 300 tgtgcgccag tatcagtcct ggttaaccga ctgcaagctg caccggaaga agatttacgg 360 ccaaccttaa cgggaaaacc gctgagcgaa gaagttcagg aagtgctgga agaacgcgat 420 gcgctatatc gcgaagttgc gcatattatc atcgacgcaa caaacgaacc cagccaggtg 480 atttctgaaa ttcgcagcgc cctggcacag acgatcaatt gttga 525 <210> 9 <211> 819 <212> DNA <213> Escherichia coli <400> 9 atggaaacct atgctgtttt tggtaatccg atagcccaca gcaaatcgcc attcattcat 60 cagcaatttg ctcagcaact gaatattgaa catccctatg ggcgcgtgtt ggcacccatc 120 aatgatttca tcaacacact gaacgctttc tttagtgctg gtggtaaagg tgcgaatgtg 180 acggtgcctt ttaaagaaga ggcttttgcc agagcggatg agcttactga acgggcagcg 240 ttggctggtg ctgttaatac cctcatgcgg ttagaagatg gacgcctgct gggtgacaat 300 accgatggtg taggcttgtt aagcgatctg gaacgtctgt cttttatccg ccctggttta 360 cgtattctgc ttatcggcgc tggtggagca tctcgcggcg tactactgcc actcctttcc 420 ctggactgtg cggtgacaat aactaatcgg acggtatccc gcgcggaaga gttggctaaa 480 ttgtttgcgc acactggcag tattcaggcg ttgagtatgg acgaactgga aggtcatgag 540 tttgatctca ttattaatgc aacatccagt ggcatcagtg gtgatattcc ggcgatcccg 600 tcatcgctca ttcatccagg catttattgc tatgacatgt tctatcagaa aggaaaaact 660 ccttttctgg catggtgtga gcagcgaggc tcaaagcgta atgctgatgg tttaggaatg 720 ctggtggcac aggcggctca tgcctttctt ctctggcacg gtgttctgcc tgacgtagaa 780 ccagttataa agcaattgca ggaggaattg tccgcgtga 819 <210> 10 <211> 759 <212> DNA <213> Escherichia coli <400> 10 atgaaaaccg taactgtaaa agatctcgtc attggtacgg gcgcacctaa aatcatcgtc 60 tcgctgatgg cgaaagatat cgccagcgtg aaatccgaag ctctcgccta tcgtgaagcg 120 gactttgata ttctggaatg gcgtgtggac cactatgccg acctctccaa tgtggagtct 180 gtcatggcgg cagcaaaaat tctccgtgag accatgccag aaaaaccgct gctgtttacc 240 ttccgcagtg ccaaagaagg cggcgagcag gcgatttcca ccgaggctta tattgcactc 300 aatcgtgcag ccatcgacag cggcctggtt gatatgatcg atctggagtt atttaccggt 360 gatgatcagg ttaaagaaac cgtcgcctac gcccacgcgc atgatgtgaa agtagtcatg 420 tccaaccatg acttccataa aacgccggaa gccgaagaaa tcattgcccg tctgcgcaaa 480 atgcaatcct tcgacgccga tattcctaag attgcgctga tgccgcaaag taccagcgat 540 gtgctgacgt tgcttgccgc gaccctggag atgcaggagc agtatgccga tcgtccaatt 600 atcacgatgt cgatggcaaa aactggcgta atttctcgtc tggctggtga agtatttggc 660 tcggcggcaa cttttggtgc ggtaaaaaaa gcgtctgcgc cagggcaaat ctcggtaaat 720 gatttgcgca cggtattaac tattttacac caggcataa 759 <210> 11 <211> 1089 <212> DNA <213> Escherichia coli <400> 11 atggagagga ttgtcgttac tctcggggaa cgtagttacc caattaccat cgcatctggt 60 ttgtttaatg aaccagcttc attcttaccg ctgaaatcgg gcgagcaggt catgttggtc 120 accaacgaaa ccctggctcc tctgtatctc gataaggtcc gcggcgtact tgaacaggcg 180 ggtgttaacg tcgatagcgt tatcctccct gacggcgagc agtataaaag cctggctgta 240 ctcgataccg tctttacggc gttgttacaa aaaccgcatg gtcgcgatac tacgctggtg 300 gcgcttggcg gcggcgtagt gggcgatctg accggcttcg cggcggcgag ttatcagcgc 360 ggtgtccgtt tcattcaagt cccgacgacg ttactgtcgc aggtcgattc ctccgttggc 420 ggcaaaactg cggtcaacca tcccctcggt aaaaacatga ttggcgcgtt ctaccaacct 480 gcttcagtgg tggtggatct cgactgtctg aaaacgcttc ccccgcgtga gttagcgtcg 540 gggctggcag aagtcatcaa atacggcatt attcttgacg gtgcgttttt taactggctg 600 gaagagaatc tggatgcgtt gttgcgtctg gacggtccgg caatggcgta ctgtattcgc 660 cgttgttgtg aactgaaggc agaagttgtc gccgccgacg agcgcgaaac cgggttacgt 720 gctttactga atctgggaca cacctttggt catgccattg aagctgaaat ggggtatggc 780 aattggttac atggtgaagc ggtcgctgcg ggtatggtga tggcggcgcg gacgtcggaa 840 cgtctcgggc agtttagttc tgccgaaacg cagcgtatta taaccctgct caagcgggct 900 gggttaccgg tcaatgggcc gcgcgaaatg tccgcgcagg cgtatttacc gcatatgctg 960 cgtgacaaga aagtccttgc gggagagatg cgcttaattc ttccgttggc aattggtaag 1020 agtgaagttc gcagcggcgt ttcgcacgag cttgttctta acgccattgc cgattgtcaa 1080 tcagcgtaa 1089 <210> 12 <211> 1053 <212> DNA <213> Escherichia coli <400> 12 atgaattatc agaacgacga tttacgcatc aaagaaatca aagagttact tcctcctgtc 60 gcattgctgg aaaaattccc cgctactgaa aatgccgcga atacggttgc ccatgcccga 120 aaagcgatcc ataagatcct gaaaggtaat gatgatcgcc tgttggttgt gattggccca 180 tgctcaattc atgatcctgt cgcggcaaaa gagtatgcca ctcgcttgct ggcgctgcgt 240 gaagagctga aagatgagct ggaaatcgta atgcgcgtct attttgaaaa gccgcgtacc 300 acggtgggct ggaaagggct gattaacgat ccgcatatgg ataatagctt ccagatcaac 360 gacggtctgc gtatagcccg taaattgctg cttgatatta acgacagcgg tctgccagcg 420 gcaggtgagt ttctcaatat gatcacccca caatatctcg ctgacctgat gagctggggc 480 gcaattggcg cacgtaccac cgaatcgcag gtgcaccgcg aactggcatc agggctttct 540 tgtccggtcg gcttcaaaaa tggcaccgac ggtacgatta aagtggctat cgatgccatt 600 aatgccgccg gtgcgccgca ctgcttcctg tccgtaacga aatgggggca ttcggcgatt 660 gtgaatacca gcggtaacgg cgattgccat atcattctgc gcggcggtaa agagcctaac 720 tacagcgcga agcacgttgc tgaagtgaaa gaagggctga acaaagcagg cctgccagca 780 caggtgatga tcgatttcag ccatgctaac tcgtccaaac aattcaaaaa gcagatggat 840 gtttgtgctg acgtttgcca gcagattgcc ggtggcgaaa aggccattat tggcgtgatg 900 gtggaaagcc atctggtgga aggcaatcag agcctcgaga gcggggagcc gctggcctac 960 ggtaagagca tcaccgatgc ctgcatcggc tgggaagata ccgatgctct gttacgtcaa 1020 ctggcgaatg cagtaaaagc gcgtcgcggg taa 1053 <210> 13 <211> 2379 <212> DNA <213> Escherichia coli <400> 13 atgtccaaca atggctcgtc accgctggtg ctttggtata accaactcgg catgaatgat 60 gtagacaggg ttgggggcaa aaatgcctcc ctgggtgaaa tgattactaa tctttccgga 120 atgggtgttt ccgttccgaa tggtttcgcc acaaccgccg acgcgtttaa ccagtttctg 180 gaccaaagcg gcgtaaacca gcgcatttat gaactgctgg ataaaacgga tattgacgat 240 gttactcagc ttgcgaaagc gggcgcgcaa atccgccagt ggattatcga cactcccttc 300 cagcctgagc tggaaaacgc catccgcgaa gcctatgcac agctttccgc cgatgacgaa 360 aacgcctctt ttgcggtgcg ctcctccgcc accgcagaag atatgccgga cgcttctttt 420 gccggtcagc aggaaacctt cctcaacgtt cagggttttg acgccgttct cgtggcagtg 480 aaacatgtat ttgcttctct gtttaacgat cgcgccatct cttatcgtgt gcaccagggt 540 tacgatcacc gtggtgtggc gctctccgcc ggtgttcaac ggatggtgcg ctctgacctc 600 gcatcatctg gcgtgatgtt ctccattgat accgaatccg gctttgacca ggtggtgttt 660 atcacttccg catggggcct tggtgagatg gtcgtgcagg gtgcggttaa cccggatgag 720 ttttacgtgc ataaaccgac actggcggcg aatcgcccgg ctatcgtgcg ccgcaccatg 780 gggtcgaaaa aaatccgcat ggtttacgcg ccgacccagg agcacggcaa gcaggttaaa 840 atcgaagacg taccgcagga acagcgtgac atcttctcgc tgaccaacga agaagtgcag 900 gaactggcaa aacaggccgt acaaattgag aaacactacg gtcgcccgat ggatattgag 960 tgggcgaaag atggccacac cggtaaactg ttcattgtgc aggcgcgtcc ggaaaccgtg 1020 cgctcacgcg gtcaggtcat ggagcgttat acgctgcatt cacagggtaa gattatcgcc 1080 gaaggccgtg ctatcggtca tcgcatcggt gcgggtccgg tgaaagtcat ccatgacatc 1140 agcgaaatga accgcatcga acctggcgac gtgctggtta ctgacatgac cgacccggac 1200 tgggaaccga tcatgaagaa agcatctgcc atcgtcacca accgtggcgg tcgtacctgt 1260 cacgcggcga tcatcgctcg tgaactgggc attccggcgg tagtgggctg tggagatgca 1320 acagaacgga tgaaagacgg tgagaacgtc actgtttctt gtgccgaagg tgataccggt 1380 tacgtctatg cggagttgct ggaatttagc gtgaaaagct ccagcgtaga aacgatgccg 1440 gatctgccgt tgaaagtgat gatgaacgtc ggtaacccgg accgtgcttt cgacttcgcc 1500 tgcctaccga acgaaggcgt gggccttgcg cgtctggaat ttatcatcaa ccgtatgatt 1560 ggcgtccacc cacgcgcact gcttgagttt gacgatcagg aaccgcagtt gcaaaacgaa 1620 atccgcgaga tgatgaaagg ttttgattct ccgcgtgaat tttacgttgg tcgtctgact 1680 gaagggatcg cgacgctggg tgccgcgttt tatccgaagc gcgtcattgt ccgtctctct 1740 gattttaaat cgaacgaata tgccaacctg gtcggtggtg agcgttacga gccagatgaa 1800 gagaacccga tgctcggctt ccgtggcgcg ggccgctatg tttccgacag cttccgcgac 1860 tgtttcgcgc tggagtgtga agcagtgaaa cgtgtgcgca acgacatggg actgaccaac 1920 gttgagatca tgatcccgtt cgtgcgtacc gtagatcagg cgaaagcggt ggttgaagaa 1980 ctggcgcgtc aggggctgaa acgtggcgag aacgggctga aaatcatcat gatgtgtgaa 2040 atcccgtcca acgccttgct ggccgagcag ttcctcgaat atttcgacgg cttctcaatt 2100 ggctcaaacg atatgacgca gctggcgctc ggtctggacc gtgactccgg cgtggtgtct 2160 gaattgttcg atgagcgcaa cgatgcggtg aaagcactgc tgtcgatggc tatccgtgcc 2220 gcgaagaaac agggcaaata tgtcgggatt tgcggtcagg gtccgtccga ccacgaagac 2280 tttgccgcat ggttgatgga agaggggatc gatagcctgt ctctgaaccc ggacaccgtg 2340 gtgcaaacct ggttaagcct ggctgaactg aagaaataa 2379 <210> 14 <211> 1992 <212> DNA <213> Escherichia coli <400> 14 atgtcctcac gtaaagagct tgccaatgct attcgtgcgc tgagcatgga cgcagtacag 60 aaagccaaat ccggtcaccc gggtgcccct atgggtatgg ctgacattgc cgaagtcctg 120 tggcgtgatt tcctgaaaca caacccgcag aatccgtcct gggctgaccg tgaccgcttc 180 gtgctgtcca acggccacgg ctccatgctg atctacagcc tgctgcacct caccggttac 240 gatctgccga tggaagaact gaaaaacttc cgtcagctgc actctaaaac tccgggtcac 300 ccggaagtgg gttacaccgc tggtgtggaa accaccaccg gtccgctggg tcagggtatt 360 gccaacgcag tcggtatggc gattgcagaa aaaacgctgg cggcgcagtt taaccgtccg 420 ggccacgaca ttgtcgacca ctacacctac gccttcatgg gcgacggctg catgatggaa 480 ggcatctccc acgaagtttg ctctctggcg ggtacgctga agctgggtaa actgattgca 540 ttctacgatg acaacggtat ttctatcgat ggtcacgttg aaggctggtt caccgacgac 600 accgcaatgc gtttcgaagc ttacggctgg cacgttattc gcgacatcga cggtcatgac 660 gcggcatcta tcaaacgcgc agtagaagaa gcgcgcgcag tgactgacaa accttccctg 720 ctgatgtgca aaaccatcat cggtttcggt tccccgaaca aagccggtac ccacgactcc 780 cacggtgcgc cgctgggcga cgctgaaatt gccctgaccc gcgaacaact gggctggaaa 840 tatgcgccgt tcgaaatccc gtctgaaatc tatgctcagt gggatgcgaa agaagcaggc 900 caggcgaaag aatccgcatg gaacgagaaa ttcgctgctt acgcgaaagc ttatccgcag 960 gaagccgctg aatttacccg ccgtatgaaa ggcgaaatgc cgtctgactt cgacgctaaa 1020 gcgaaagagt tcatcgctaa actgcaggct aatccggcga aaatcgccag ccgtaaagcg 1080 tctcagaatg ctatcgaagc gttcggtccg ctgttgccgg aattcctcgg cggttctgct 1140 gacctggcgc cgtctaacct gaccctgtgg tctggttcta aagcaatcaa cgaagatgct 1200 gcgggtaact acatccacta cggtgttcgc gagttcggta tgaccgcgat tgctaacggt 1260 atctccctgc acggtggctt cctgccgtac acctccacct tcctgatgtt cgtggaatac 1320 gcacgtaacg ccgtacgtat ggctgcgctg atgaaacagc gtcaggtgat ggtttacacc 1380 cacgactcca tcggtctggg cgaagacggc ccgactcacc agccggttga gcaggtcgct 1440 tctctgcgcg taaccccgaa catgtctaca tggcgtccgt gtgaccaggt tgaatccgcg 1500 gtcgcgtgga aatacggtgt tgagcgtcag gacggcccga ccgcactgat cctctcccgt 1560 cagaacctgg cgcagcagga acgaactgaa gagcaactgg caaacatcgc gcgcggtggt 1620 tatgtgctga aagactgcgc cggtcagccg gaactgattt tcatcgctac cggttcagaa 1680 gttgaactgg ctgttgctgc ctacgaaaaa ctgactgccg aaggcgtgaa agcgcgcgtg 1740 gtgtccatgc cgtctaccga cgcatttgac aagcaggatg ctgcttaccg tgaatccgta 1800 ctgccgaaag cggttactgc acgcgttgct gtagaagcgg gtattgctga ctactggtac 1860 aagtatgttg gcctgaacgg tgctatcgtc ggtatgacca ccttcggtga atctgctccg 1920 gcagagctgc tgtttgaaga gttcggcttc actgttgata acgttgttgc gaaagcaaaa 1980 gaactgctgt aa 1992 <210> 15 <211> 1176 <212> DNA <213> Escherichia coli <400> 15 atggatacgt cactggctga ggaagtacag cagaccatgg caacacttgc gcccaatcgc 60 tttttcttta tgtcgccgta ccgcagtttt acgacgtcag gatgtttcgc ccgcttcgat 120 gaaccggctg tgaacgggga ttcgcccgac agtcccttcc agcaaaaact cgccgcgctg 180 tttgccgatg ccaaagcgca gggcatcaaa aatccggtga tggtcggggc gattcccttc 240 gatccacgtc agccttcgtc gctgtatatt cctgaatcct ggcagtcgtt ctcccgtcag 300 gaaaaacaag cttccgcacg ccgtttcacc cgcagccagt cgctgaatgt ggtggaacgc 360 caggcaattc cggagcaaac cacgtttgaa cagatggttg cccgcgccgc cgcacttacc 420 gccacgccgc aggtcgacaa agtggtgttg tcacggttga ttgatatcac cactgacgcc 480 gccattgata gtggcgtatt gctggaacgg ttgattgcgc aaaacccggt tagttacaac 540 ttccatgttc cgctggctga tggtggcgtc ctgctggggg ccagcccgga actgctgcta 600 cgtaaagacg gcgagcgttt tagctccatt ccgttagccg gttccgcgcg tcgtcagccg 660 gatgaagtgc tcgatcgcga agcaggtaat cgtctgctgg cgtcagaaaa agatcgccat 720 gaacatgaac tggtgactca ggcgatgaaa gaggtactgc gcgaacgcag tagtgagtta 780 cacgttcctt cttctccaca gctgatcacc acgccgacgc tgtggcatct cgcaactccc 840 tttgaaggta aagcgaattc gcaagaaaac gcactgactc tggcctgtct gctgcatccg 900 acccccgcgc tgagcggttt cccgcatcag gccgcgaccc aggttattgc tgaactggaa 960 ccgttcgacc gcgaactgtt tggcggcatt gtgggttggt gtgacagcga aggtaacggc 1020 gaatgggtgg tgaccatccg ctgcgcgaag ctgcgggaaa atcaggtgcg tctgtttgcc 1080 ggagcgggga ttgtgcctgc gtcgtcaccg ttgggtgagt ggcgcgaaac aggcgtcaaa 1140 ctttctacca tgttgaacgt ttttggattg cattaa 1176 <210> 16 <211> 1443 <212> DNA <213> Pseudomonas aeruginosa <400> 16 atgaccgtga acgcgagtat tttttggtac gactacgaaa ccaccggcat cgaccctcgc 60 cgcgaccggc cgttgcagat cgccgggatc cgcacggacg aggcgctgaa cgagatcggc 120 gagccgatga acctgtattg ccgtcccagc gacgatatcc tgccccaccc tatggcttgc 180 ctgatcaccg gcatcactcc ccagcggctg gccgagcggg ggctgtccga ggccgacttc 240 atgacccggg tacacgccca gctggcgcag ccggcgacct gcgtggccgg ctacaactcc 300 ctgcgcttcg acgacgaagt gacgcgctac agcctgtacc gcaacttctt cgatccctac 360 gcccgcgagt ggcaaggcgg caatagccgc tgggacctga tcgacatggt ccgtaccgcc 420 tatgccctgc gcccggaggg catccagtgg ccgcagctgg acggccggct gtcgctgaag 480 ctggaaatgc tcaccgcggc gaacggcctg gagcatgggc aggcccacga cgcgctttcc 540 gatgtccgcg ccaccattgc cctggcccgc ctgatccgtc agcgccagcc gcgcctgtac 600 gattacctct accagttgcg cagcaagcac aaggtgctcg accaggtgcg cctgctgcag 660 ccgctggtgc atgtctccgg acgcttttcc gcggagcgcc atttcctctc ggtggtcctg 720 ccgctggcct ggcacccgcg caaccgcaat gctctgatcg tctgcgacct ctgcgccgat 780 cccgcgccgc tgctggagtt gtcggccgaa gacttgcgca ggcgcctgta tacccgtcgc 840 gacgaactgg ccgagggcga gttgccggtg ccgctgaagc agatccaggt caaccgttgc 900 ccggtggtgg cgccgctgtc ggtattgcgc gccgaggatc gccagcgaac cggcatcgaa 960 ctcgatgagt gccagcaaaa agccgagctg ttgcgccagc atcaaaccgt ctgggcggac 1020 aaactgacag cgctatatgg cgaagaaagt ttctccgcca gcgacgaccc cgagcaacag 1080 ttgtatgacg gatttattgg cgatcgggat cgacgccttt gtgaacagct gcgccttgcc 1140 gaaccggagc aattggccaa agaacaatgg cccttcgacg atgcccgttt gcaggagttg 1200 ttctttcgct atcgtgcgcg aaatttcccg gaaactttaa atgtggccga gcgccaacaa 1260 tgggaaagct tctgccgcaa tcgtttgtcc catgaagaat acggcgcacc gaatactttg 1320 ccggccttcg aggcggcgct ggaggcttgt cggcaagagc agggcggcac actgccggcg 1380 gtacttgcgg cctggcgcga ttacgccgcg gaactgcgtc aacgctattc gctggagact 1440 tga 1443 <210> 17 <211> 2177 <212> DNA <213> Escherichia coli <400> 17 atgcaaacac aaaaaccgac tctcgaactg ctaacctgcg aaggcgctta tcgcgacaat 60 cccaccgcgc tttttcacca gttgtgtggg gatcgtccgg caacgctgct gctggaatcc 120 gcagatatcg acagcaaaga tgatttaaaa agcctgctgc tggtagacag tgcgctgcgc 180 attacagctt taggtgacac tgtcacaatc caggcacttt ccggcaacgg cgaagccctc 240 ctggcactac tggataacgc cctgcctgcg ggtgtggaaa gtgaacaatc accaaactgc 300 cgtgtgctgc gcttcccccc tgtcagtcca ctgctggatg aagacgcccg cttatgctcc 360 ctttcggttt ttgacgcttt ccgtttattg cagaatctgt tgaatgtacc gaaggaagaa 420 cgagaagcca tgttcttcgg cggcctgttc tcttatgacc ttgtggcggg atttgaagat 480 ttaccgcaac tgtcagcgga aaataactgc cctgatttct gtttttatct cgctgaaacg 540 ctgatggtga ttgaccatca gaaaaaaagc acccgtattc aggccagcct gtttgctccg 600 aatgaagaag aaaaacaacg tctcactgct cgcctgaacg aactacgtca gcaactgacc 660 gaagccgcgc cgccgctgcc agtggtttcc gtgccgcata tgcgttgtga atgtaatcag 720 agcgatgaag agttcggtgg cgtagtgcgt ttgttgcaaa aagcgattcg cgctggagaa 780 attttccagg tggtgccatc tcgccgtttc tctctgccct gcccgtcacc gctggcggcc 840 tattacgtgc tgaaaaagag taatcccagc ccgtacatgt tttttatgca ggataatgat 900 ttcaccctat ttggcgcgtc gccggaaagc tcgctcaagt atgatgccac cagccgccag 960 attgagatct acccgattgc cggaacacgc ccacgcggtc gtcgcgccga tggttcactg 1020 gacagagatc tcgacagccg tattgaactg gaaatgcgta ccgatcataa agagctgtct 1080 gaacatctga tgctggttga tctcgcccgt aatgatctgg cacgcatttg cacccccggc 1140 agccgctacg tcgccgatct caccaaagtt gaccgttatt cctatgtgat gcacctcgtc 1200 tctcgcgtag tcggcgaact gcgtcacgat cttgacgccc tgcacgctta tcgcgcctgt 1260 atgaatatgg ggacgttaag cggtgcgccg aaagtacgcg ctatgcagtt aattgccgag 1320 gcggaaggtc gtcgccgcgg cagctacggc ggcgcggtag gttatttcac cgcgcatggc 1380 gatctcgaca cctgcattgt gatccgctcg gcgctggtgg aaaacggtat cgccaccgtg 1440 caagcgggtg ctggtgtagt ccttgattct gttccgcagt cggaagccga cgaaacccgt 1500 aacaaagccc gcgctgtact gcgcgctatt gccaccgcgc atcatgcaca ggagactttc 1560 tgatggctga cattctgctg ctcgataata tcgactcttt tacgtacaac ctggcagatc 1620 agttgcgcag caatgggcat aacgtggtga tttaccgcaa ccatattccg gcgcaaacct 1680 taattgaacg cctggcgacc atgagcaatc cggtgctgat gctttctcct ggccccggtg 1740 tgccgagcga agccggttgt atgccggaac tcctcacccg cttgcgtggc aagctgccca 1800 ttattggcat ttgcctcgga catcaggcga ttgtcgaagc ttacgggggc tatgtcggtc 1860 aggcgggcga aattctccac ggtaaagcct ccagcattga acatgacggt caggcgatgt 1920 ttgccggatt aacaaacccg ctgccggtgg cgcgttatca ctcgctggtt ggcagtaaca 1980 ttccggccgg tttaaccatc aacgcccatt ttaatggcat ggtgatggca gtacgtcacg 2040 atgcggatcg cgtttgtgga ttccagttcc atccggaatc cattctcacc acccagggcg 2100 ctcgcctgct ggaacaaacg ctggcctggg cgcagcagaa actagagcca gccaacacgc 2160 tgcaaccgat tctgtaa 2177 <110> Konkuk University Industrial Cooperation Corp <120> Esherichia coli TRANSFORMANT AND METHOD FOR PRODUCING CUMARIN-BASED OR QUINOLINE-BASED COMPOUND USING THE SAME <130> 1066964 <160> 17 <170> KoPatentIn 3.0 <210> 1 <211> 1595 <212> DNA <213> Escherichia coli <400> 1 tggctgacat tctgctgctc gataatatcg actcttttac gtacaacctg gcagatcagt 60 tgcgcagcaa tgggcataat gtggtgattt accgcaacca tattccggcg cagaccttaa 120 ttgaacgcct ggcgacgatg agcaatccgg tactgatgct ttctcctggc cccggtgtgc 180 cgagcgaagc cggttgtatg ccggaactcc tcacccgctt gcgtggcaag ctgcccatta 240 ttggcatttg cctcggacat caggcaattg tcgaagctta cgggggctat gtcggtcagg 300 cgggcgaaat tcttcacggt aaagcgtcga gcattgaaca tgacggtcag gcgatgtttg 360 ccggattaac aaacccgctg ccggtggcgc gttatcactc gctggttggc agtaacattc 420 cggccggttt aaccatcaac gcccatttta atggcatggt gatggcagta cgtcacgatg 480 cggatcgcgt ttgtggattc cagttccatc cggaatccat tctcaccacc cagggcgctc 540 gcctgctgga acaaacgctg gcctgggcgc agcagaaact agagccagcc aacacgctgc 600 aaccgattct ggaaaaactg tatcaggcgc agacgcttag ccaacaagaa agccaccagc 660 tgttttcagc ggtggtgcgt ggcgagctga agccggaaca actggcggcg gcgctggtga 720 gcatgaaaat tcgcggtgag cacccgaacg agatcgccgg agcagcaacc gcgctactgg 780 aaaacgccgc gccgttcccg cgcccggatt atctgtttgc tgatatcgtc ggtactggcg 840 gtgacggcag caacagtatc aatatttcta ccgccagtgc gtttgtcgcc gcggcctgtg 900 ggctgaaagt ggcgaaacac ggcaaccgta gcgtctccag taaatctggt tcgtccgatc 960 tgctggcggc gttcggtatt aatcttgata tgaacgccga taaatcgcgc caggcgctgg 1020 atgagttagg tgtatgtttc ctctttgcgc cgaagtatca caccggattc cgccacgcga 1080 tgccggttcg ccagcaactg aaaacccgca ccctgttcaa tgtgctgggg ccattgatta 1140 acccggcgca tccgccgctg gcgttaattg gtgtttatag tccggaactg gtgctgccga 1200 ttgccgaaac cttgcgcgtg ctggggtatc aacgcgcggc ggtggtgcac agcggcggga 1260 tggatgaagt ttcattacac gcgccgacaa tcgttgccga gctgcatgac ggcgaaatta 1320 agagctatca attgaccgct gaagattttg gcctgactcc ctaccaccag gagcaactgg 1380 caggcggaac accggaagaa aaccgtgaca ttttaacacg cttgttacaa ggtaaaggcg 1440 acgccgccca tgaagcagcc gtcgctgcga acgtcgccat gttaatgcgc ctgcatggcc 1500 atgaagatct gcaagccaat gcgcaaaccg ttcttgaggt actgcgcagt ggttccgctt 1560 acgacagagt taccgcactg gcggcacgag ggtaa 1595 <210> 2 <211> 1143 <212> DNA <213> Escherichia coli <400> 2 atggttgctg aattgaccgc attacgcgat caaattgatg aagtcgataa agcgctgctg 60 aatttattag cgaagcgtct ggaactggtt gctgaagtgg gcgaggtgaa aagccgcttt 120 ggactgccta tttatgttcc ggagcgcgag gcatctatgt tggcctcgcg tcgtgcagag 180 gcggaagctc tgggtgtacc gccagatctg attgaggatg ttttgcgtcg ggtgatgcgt 240 gaatcttact ccagtgaaaa cgacaaagga tttaaaacac tttgtccgtc actgcgtccg 300 gtggttatcg tcggcggtgg cggtcagatg ggacgcctgt tcgagaagat gctgaccctc 360 tcgggttatc aggtgcggat tctggagcaa catgactggg atcgagcggc tgatattgtt 420 gccgatgccg gaatggtgat tgttagtgtg ccaatccacg ttactgagca agttattggc 480 aaattaccgc ctttaccgaa agattgtatt ctggtcgatc tggcatcagt gaaaaatggg 540 ccattacagg ccatgctggt ggcgcatgat ggtccggtgc tggggctaca cccgatgttc 600 ggtccggaca gcggtagcct ggcaaagcaa gttgtggtct ggtgtgatgg acgtaaaccg 660 gaagcatacc aatggtttct ggagcaaatt caggtctggg gcgctcggct gcatcgtatt 720 agcgccgtcg agcacgatca gaatatggcg tttattcagg cactgcgcca ctttgctact 780 tttgcttacg ggctgcacct ggcagaagaa aatgttcagc ttgagcaact tctggcgctc 840 tcttcgccga tttaccgcct tgagctggcg atggtcgggc gactgtttgc tcaggatccg 900 cagctttatg ccgacatcat tatgtcgtca gagcgtaatc tggcgttaat caaacgttac 960 tataagcgtt tcggcgaggc gattgagttg ctggagcagg gcgataagca ggcgtttatt 1020 gacagtttcc gcaaggtgga gcactggttc ggcgattacg cacagcgttt tcagagtgaa 1080 agccgcgtgt tattgcgtca ggcgaatgac aatcgccagt aagcgaatga caaccgccag 1140 taa 1143 <210> 3 <211> 1014 <212> DNA <213> Pseudomonas aeruginosa <400> 3 atgggtaatc cgatcctggc cgggctgggt ttcagcctgc cgaaacgcca ggtcagcaat 60 catgacctgg tagggcgcat caatacgtcg gacgagttca tcgtcgaacg taccggcgtg 120 cgcacccgct atcacgtcga gccggaacag gcggtcagcg cgctgatggt gccggcggcg 180 cgccaggcca tcgaggctgc cgggctgctg ccggaggaca tcgacctgtt gctggtgaac 240 accctgtcgc cggaccacca cgacccgtcc caggcctgcc tgatccagcc gctgctgggc 300 ctgcggcaca tcccggtact ggatatccgg gcacagtgca gcgggttgct gtacggcttg 360 cagatggctc gcgggcagat cctcgccggg ctggcacggc atgtcctggt ggtctgcggc 420 gaggtgctgt ccaagcgcat ggactgttcg gaccgcggcc gcaacctgtc gatcctgctc 480 ggcgacggtg ccggcgcagt ggtggtcagc gccggcgaga gtctcgaaga cggactgctg 540 gacctgcgcc tgggcgccga cggcaactac ttcgacctgc tgatgaccgc ggcgccgggt 600 agtgcctcgc cgaccttcct cgacgagaat gtcctgcgcg agggcggggg cgagttcctc 660 atgcgcggcc ggccgatgtt cgagcatgcc agccagaccc tggtacggat cgccggcgaa 720 atgctcgcgg cccatgagct gaccctggac gacatcgacc atgtgatctg ccatcaaccg 780 aacctgcgca tcctcgatgc ggtgcaggag caactgggca ttccccagca caagttcgcg 840 gtgaccgtgg atcgtctggg caacatggct tcggcctcga ccccggtcac gctggcgatg 900 ttctggccgg acatccagcc gggacagcgg gtgctggtcc tgacctacgg ctccggcgcg 960 acctggggcg cggcgctgta ccgcaaacct gaggaggtga accggccatg ttga 1014 <210> 4 <211> 1554 <212> DNA <213> Pseudomonas aeruginosa <400> 4 atgtccacat tggccaacct gaccgaggtt ctgttccgcc tcgatttcga tcccgatacc 60 gccgtttatc actatcgggg ccagactctc agccggctgc aatgccggac ctacattctc 120 tcccaggcca gccaactggc ccgcctgctc aagcccggcg atcgcgtggt gctggcgttg 180 aacgactcgc cttcgctggc ctgcctgttc ctggcctgca tcgcggtcgg cgccattccc 240 gccgtgatca atcccaagtc ccgcgagcag gccctggccg atatcgctgc cgactgccag 300 gccagcctgg tggtgcgtga agccgatgca ccgtcgctga gcggtccttt ggcgccgttg 360 accctgcgtg cggccgccgg acgccctttg ctcgacgatt tctcgctgga cgcgctggtc 420 ggccctgcgg acctcgattg gagtgccttc catcgccagg acccggcggc agcctgtttc 480 ctgcaataca cctcgggttc caccggggcg cccaaggggg tgatgcacag cctgcgcaac 540 acgctcggtt tctgccgggc gttcgctacg gagttgctgg cattgcaggc gggagaccgg 600 ctgtattcga ttcccaagat gttcttcggc tatggcatgg gcaacagcct gttctttccc 660 tggttcagcg gagcctcggc gctgctcgac gatacctggc cgagcccgga gcgggttctg 720 gagaacctgg tcgccttccg cccccgggtc ctgtttgggg tgccggccat ctatgcctcg 780 ctgcgtccgc aggccaggga gctgttgagc agcgtgcgcc tggcgttttc cgccggctcg 840 ccgctgccgc gcggcgagtt cgaattctgg gccgcgcacg ggctggagat ctgcgacggc 900 atcggggcta ccgaggtcgg ccatgtgttc ctcgccaacc gcccgggcca ggcgcgtgcc 960 gacagcaccg ggctgccgtt gcctggctat gagtgccggc tggtggaccg cgaaggacac 1020 actatcgagg aagcgggccg gcaaggcgtg ctgttggtgc gtggcccagg gctgagtccg 1080 ggttactggc gggccagcga agagcagcag gcgcgcttcg caggtggctg gtaccgcacc 1140 ggcgacctgt tcgagcgcga cgagtcgggt gcctaccgtc actgtgggcg ggaagacgat 1200 ctgttcaagg tgaatggccg ctgggtggtg ccgacccagg tcgagcaggc gatctgccgt 1260 catctgccgg aagtgagcga ggcggttctg gttcctacct gccggctgca cgacggcttg 1320 cgtccgaccc tgttcgtcac cctggccact ccgctggacg acaaccagat cctgctggcg 1380 cagcgcatcg accagcatct cgccgaacag attccctcgc acagctgcc cagccaattg 1440 catgtgctgc cggccttgcc gcgcaacgac aacggcaagt tggcgcgcgc cgagctgcgc 1500 cacctggccg acacccttta tcacgacaac cttccggagg aacgggcatg ttga 1554 <210> 5 <211> 960 <212> DNA <213> Photorhabdus luminescens <400> 5 atgagtctga attttcttga atttgaacag ccgattgccg agctggaagc gaaaattgat 60 tcgctaaccg cagttagccg tcaaggtgaa aaattagata taaatctgga tgaagaagta 120 caacgtttgc gggaaaaaag tctggaattg actcgcaaaa tcttttcaga tttaggtgcc 180 tggcaaattg ctcagcttgc tcgtcaccca cgtcgtcctt atacgttgga ctatattcag 240 catattttta ctgattttga agagcttgct ggtgatcgtg cttatgctga tgacaaagca 300 attgtgggtg gtctggctcg tattgatgga cgtccagtga tggtgattgg tcaccaaaaa 360 ggccgtgaaa ccaaagaaaa aattcgccgt aatttcggta tgccagcgcc agaaggttat 420 cgtaaagctt tgcgcctgat ggaaatggca gagcgtttta aactgccaat tattactttc 480 attgatactc ctggtgcata tcctggggtt ggtgcagaag aacgtggtca atctgaggcg 540 atagctcgca acttgcgtga aatgtcccgc ctgtctgtgc ctgttatttg tactgtgatt 600 ggtgaaggtg gctctggtgg tgcattggcg attggtgttg gtgataaagt gaatatgctg 660 caatatagta cttattctgt tatctcccca gaaggttgtg cctcaatttt gtggaaaagc 720 gcggaaaaag cacctttggc ggcagaagct atggggatca ctgctcctcg tttgaaagag 780 ttggagttgg tcgatactgt gatttcagag ccattaggtg gtgctcatcg tgactatgaa 840 gcaatatcca cgtcgttgaa agctcagttg ttgattgacc tggcagagct tgatcatttg 900 acatctgaag aattagtcaa ccgccgatat cagcgcttga tgcaatatgg ttattgctga 960 960 <210> 6 <211> 1833 <212> DNA <213> Photorhabdus luminescens <400> 6 atggatattc gtaagataaa aaaactgatc gagctggttg aagaatctgg catttctgaa 60 ctggaaattt ctgaagggga agagtcagtg cgcatcagcc gcgcattagc tccccagagt 120 tttccggcag ctcaacaata tattcccgtt caagcacaac aacctgcgct ggctaatgtt 180 gttgcgcctt ctcaagctct accagaagcg atcagcagca gatcggctgc aatcgacggt 240 cacgttgttc gttccccaat ggtaggtacc ttctatcgta cacctagccc agatgcgaaa 300 ccatttatcg aaatcggcca gcgtgtcaat gtgggtgaca ccctatgcat cgttgaagca 360 atgaaaatga tgaatcagat cgaagccgac aaagcaggtg tggttaaaaa gattcttgtg 420 gaaagcggtc aacccgttga atttgacgag ccattagtcg tcatcgaata acgaggcgtt 480 cccatgcttg ataaaattgt aattgctaac cgtggtgaaa ttgccctgcg tatcctacga 540 gcttgtaaag agttggggat caaaaccgtt gcggtacatt cctccgcgga tcgtgactta 600 aaacacgtac tgctggcaga cgaaactatc tgtattggcc cggcagcttc tgcaaaaagc 660 tacctgaata tcccggcaat tatttctgcg gcagaaatca cgggtgctgt ggctattcac 720 cctggctacg gttttctatc tgaaaatgca gattttgctg aacaggttga gcgttctggc 780 tttattttta tcggcccaaa agcagaaacg atccgcctga tgggtgataa agtttctgct 840 atcaatgcga tgaaaaaagc aggcgttcct tgtgtacctg gctctgatgg cccattgtct 900 gatgacacgg agaaaaacaa agccttcgct aaacgcattg gctatcctgt catcatcaaa 960 gcatccggcg gcggcggcgg tcgcggtatg cgcgtcgtcc gcagtgataa agatctggaa 1020 caatcaatca atatgacccg tgcggaagca aaagctgctt tcaataacga tatggtttac 1080 atggaaaaat tccttgagaa tccacgtcat attgagatcc aagtattggc tgacggccaa 1140 ggtcaagcaa tttatctggc tgagcgtgat tgctccatgc aacgccgtca ccagaaagtt 1200 gtcgaagaag cccctgcacc aggaatcacg ccagaaatgc gtcgcagtat tggtgaacgc 1260 tgtgctaacg catgtatcga aattggctat cgtggtgccg gtactttcga attcctgtat 1320 gaaaacggtg aattctattt cattgagatg aatacccgta ttcaggttga acatccagtt 1380 acggaaatga ttaccggtgt tgatctgatt aaagagcagt tgcggattgc cgcaggtatg 1440 ccactttcaa ttaagcagaa agatgttgtt attcgtggtc acgctattga atgtcgtatc 1500 aatgccgaag atccgaacac attcctgcca agcccaggta aaattacccg cttccactcg 1560 ccgggtggat ttggtgtgcg ttgggaatcg catatttatg ctggctacac cgttccccct 1620 tactatgatt caatgattgg taagctgatt acttacggtg aaaatcgtga caatgccatt 1680 gcccgcatga aaaatgcatt ggcagaattg atcattgatg gcatcaagac aaatatcgag 1740 cttcaacagg cgataatgaa tgatgaaaac tttcagaatg gcggtactaa tatccactat 1800 ctggagaaaa aactggggtt acaggaaact taa 1833 <210> 7 <211> 945 <212> DNA <213> Photorhabdus luminescens <400> 7 atgagctgga ttgaaaaaat tcttaataaa agcaacatta cccaaacgcg taaagcgaat 60 atcccagaag gggtttggac taaatgtgat agttgcagtc aggtgctcta ccgtgctgag 120 ctagagcgca atcttgaggt ttgccctaaa tgtgatcatc acatgcgtat ttcggcgcgt 180 acccgattgg ctacattcct tgatgaagga gcaacgacgg aattaggggg ggaattagag 240 ccaaaagata ttcttaaatt ccgcgattcc aaaaagtata aagatcgtat atcagcggcg 300 cagaagcaaa cccaagaaaa agatgcgtta gtcgtgatga aaggtaccct gagtggtatg 360 tcagttgttg ctgctgcttt tgaatttgca tttatgggcg gttctatggc ttcggttgtt 420 ggtgcccgtt ttgtccgtgc cgtagaacag gcgttggcag acaattgtcc tctgatttgt 480 ttttcttcca gtggtggcgc tcgtatgcaa gaagcattga tgtcactgat gcagatggcg 540 aaaaccagtg ctgctttagc aaaaatgcag gaacgtggtt tgccttatat ctctatcatg 600 accgatccga caatgggcgg tgtttcagca agtctggcga tgttgggtga tatcaatatt 660 gctgaaccaa aagcattgat tggttttgcc gggccacgag tgattgagca gactgttcgt 720 gaaaaattac cgtccggttt ccagcgtagt gagtttttgc tggcaaaggg agcgattgac 780 atgattgttc gtcgtcctga aatgcgtgac acacttgcaa gtttactttc taaactaact 840 catcagtcgc agccaggtac taagccaatt gttgctgaat ttgtggcaga acccgctgat 900 gttgaggcgg atattcaaat aagtaccaat aaagaagatg cctga 945 <210> 8 <211> 525 <212> DNA <213> Escherichia coli <400> 8 atgacacaac ctctttttct gatcgggcct cggggctgtg gtaaaacaac ggtcggaatg 60 gcccttgccg attcgcttaa ccgtcggttt gtcgataccg atcagtggtt gcaatcacag 120 ctcaatatga cggtcgcgga gatcgtcgaa agggaagagt gggcgggatt tcgcgccaga 180 gaaacggcgg cgctggaagc ggtaactgcg ccatccaccg ttatcgctac aggcggcggc 240 attattctga cggaatttaa tcgtcacttc atgcaaaata acgggatcgt ggtttatttg 300 tgtgcgccag tatcagtcct ggttaaccga ctgcaagctg caccggaaga agatttacgg 360 ccaaccttaa cgggaaaacc gctgagcgaa gaagttcagg aagtgctgga agaacgcgat 420 gcgctatatc gcgaagttgc gcatattatc atcgacgcaa caaacgaacc cagccaggtg 480 atttctgaaa ttcgcagcgc cctggcacag acgatcaatt gttga 525 <210> 9 <211> 819 <212> DNA <213> Escherichia coli <400> 9 atggaaacct atgctgtttt tggtaatccg atagcccaca gcaaatcgcc attcattcat 60 cagcaatttg ctcagcaact gaatattgaa catccctatg ggcgcgtgtt ggcacccatc 120 aatgatttca tcaacacact gaacgctttc tttagtgctg gtggtaaagg tgcgaatgtg 180 acggtgcctt ttaaagaaga ggcttttgcc agagcggatg agcttactga acgggcagcg 240 ttggctggtg ctgttaatac cctcatgcgg ttagaagatg gacgcctgct gggtgacaat 300 accgatggtg taggcttgtt aagcgatctg gaacgtctgt cttttatccg ccctggttta 360 cgtattctgc ttatcggcgc tggtggagca tctcgcggcg tactactgcc actcctttcc 420 ctggactgtg cggtgacaat aactaatcgg acggtatccc gcgcggaaga gttggctaaa 480 ttgtttgcgc acactggcag tattcaggcg ttgagtatgg acgaactgga aggtcatgag 540 tttgatctca ttattaatgc aacatccagt ggcatcagtg gtgatattcc ggcgatcccg 600 tcatcgctca ttcatccagg catttattgc tatgacatgt tctatcagaa aggaaaaact 660 ccttttctgg catggtgtga gcagcgaggc tcaaagcgta atgctgatgg tttaggaatg 720 ctggtggcac aggcggctca tgcctttctt ctctggcacg gtgttctgcc tgacgtagaa 780 ccagttataa agcaattgca ggaggaattg tccgcgtga 819 <210> 10 <211> 759 <212> DNA <213> Escherichia coli <400> 10 atgaaaaccg taactgtaaa agatctcgtc attggtacgg gcgcacctaa aatcatcgtc 60 tcgctgatgg cgaaagatat cgccagcgtg aaatccgaag ctctcgccta tcgtgaagcg 120 gactttgata ttctggaatg gcgtgtggac cactatgccg acctctccaa tgtggagtct 180 gtcatggcgg cagcaaaaat tctccgtgag accatgccag aaaaaccgct gctgtttacc 240 ttccgcagtg ccaaagaagg cggcgagcag gcgatttcca ccgaggctta tattgcactc 300 aatcgtgcag ccatcgacag cggcctggtt gatatgatcg atctggagtt atttaccggt 360 gatgatcagg ttaaagaaac cgtcgcctac gcccacgcgc atgatgtgaa agtagtcatg 420 tccaaccatg acttccataa aacgccggaa gccgaagaaa tcattgcccg tctgcgcaaa 480 atgcaatcct tcgacgccga tattcctaag attgcgctga tgccgcaaag taccagcgat 540 gtgctgacgt tgcttgccgc gaccctggag atgcaggagc agtatgccga tcgtccaatt 600 atcacgatgt cgatggcaaa aactggcgta atttctcgtc tggctggtga agtatttggc 660 tcggcggcaa cttttggtgc ggtaaaaaaa gcgtctgcgc cagggcaaat ctcggtaaat 720 gatttgcgca cggtattaac tattttacac caggcataa 759 <210> 11 <211> 1089 <212> DNA <213> Escherichia coli <400> 11 atggagagga ttgtcgttac tctcggggaa cgtagttacc caattaccat cgcatctggt 60 ttgtttaatg aaccagcttc attcttaccg ctgaaatcgg gcgagcaggt catgttggtc 120 accaacgaaa ccctggctcc tctgtatctc gataaggtcc gcggcgtact tgaacaggcg 180 ggtgttaacg tcgatagcgt tatcctccct gacggcgagc agtataaaag cctggctgta 240 ctcgataccg tctttacggc gttgttacaa aaaccgcatg gtcgcgatac tacgctggtg 300 gcgcttggcg gcggcgtagt gggcgatctg accggcttcg cggcggcgag ttatcagcgc 360 ggtgtccgtt tcattcaagt cccgacgacg ttactgtcgc aggtcgattc ctccgttggc 420 ggcaaaactg cggtcaacca tcccctcggt aaaaacatga ttggcgcgtt ctaccaacct 480 gcttcagtgg tggtggatct cgactgtctg aaaacgcttc ccccgcgtga gttagcgtcg 540 gggctggcag aagtcatcaa atacggcatt attcttgacg gtgcgttttt taactggctg 600 gaagagaatc tggatgcgtt gttgcgtctg gacggtccgg caatggcgta ctgtattcgc 660 cgttgttgtg aactgaaggc agaagttgtc gccgccgacg agcgcgaaac cgggttacgt 720 gctttactga atctgggaca cacctttggt catgccattg aagctgaaat ggggtatggc 780 aattggttac atggtgaagc ggtcgctgcg ggtatggtga tggcggcgcg gacgtcggaa 840 cgtctcgggc agtttagttc tgccgaaacg cagcgtatta taaccctgct caagcgggct 900 gggttaccgg tcaatgggcc gcgcgaaatg tccgcgcagg cgtatttacc gcatatgctg 960 cgtgacaaga aagtccttgc gggagagatg cgcttaattc ttccgttggc aattggtaag 1020 agtgaagttc gcagcggcgt ttcgcacgag cttgttctta acgccattgc cgattgtcaa 1080 tcagcgtaa 1089 <210> 12 <211> 1053 <212> DNA <213> Escherichia coli <400> 12 atgaattatc agaacgacga tttacgcatc aaagaaatca aagagttact tcctcctgtc 60 gcattgctgg aaaaattccc cgctactgaa aatgccgcga atacggttgc ccatgcccga 120 aaagcgatcc ataagatcct gaaaggtaat gatgatcgcc tgttggttgt gattggccca 180 tgctcaattc atgatcctgt cgcggcaaaa gagtatgcca ctcgcttgct ggcgctgcgt 240 gaagagctga aagatgagct ggaaatcgta atgcgcgtct attttgaaaa gccgcgtacc 300 acggtgggct ggaaagggct gattaacgat ccgcatatgg ataatagctt ccagatcaac 360 gacggtctgc gtatagcccg taaattgctg cttgatatta acgacagcgg tctgccagcg 420 gcaggtgagt ttctcaatat gatcacccca caatatctcg ctgacctgat gagctggggc 480 gcaattggcg cacgtaccac cgaatcgcag gtgcaccgcg aactggcatc agggctttct 540 tgtccggtcg gcttcaaaaa tggcaccgac ggtacgatta aagtggctat cgatgccatt 600 aatgccgccg gtgcgccgca ctgcttcctg tccgtaacga aatgggggca ttcggcgatt 660 gtgaatacca gcggtaacgg cgattgccat atcattctgc gcggcggtaa agagcctaac 720 tacagcgcga agcacgttgc tgaagtgaaa gaagggctga acaaagcagg cctgccagca 780 caggtgatga tcgatttcag ccatgctaac tcgtccaaac aattcaaaaa gcagatggat 840 gtttgtgctg acgtttgcca gcagattgcc ggtggcgaaa aggccattat tggcgtgatg 900 gtggaaagcc atctggtgga aggcaatcag agcctcgaga gcggggagcc gctggcctac 960 ggtaagagca tcaccgatgc ctgcatcggc tgggaagata ccgatgctct gttacgtcaa 1020 ctggcgaatg cagtaaaagc gcgtcgcggg taa 1053 <210> 13 <211> 2379 <212> DNA <213> Escherichia coli <400> 13 atgtccaaca atggctcgtc accgctggtg ctttggtata accaactcgg catgaatgat 60 gtagacaggg ttgggggcaa aaatgcctcc ctgggtgaaa tgattactaa tctttccgga 120 atgggtgttt ccgttccgaa tggtttcgcc acaaccgccg acgcgtttaa ccagtttctg 180 gaccaaagcg gcgtaaacca gcgcatttat gaactgctgg ataaaacgga tattgacgat 240 gttactcagc ttgcgaaagc gggcgcgcaa atccgccagt ggattatcga cactcccttc 300 cagcctgagc tggaaaacgc catccgcgaa gcctatgcac agctttccgc cgatgacgaa 360 aacgcctctt ttgcggtgcg ctcctccgcc accgcagaag atatgccgga cgcttctttt 420 gccggtcagc aggaaacctt cctcaacgtt cagggttttg acgccgttct cgtggcagtg 480 aaacatgtat ttgcttctct gtttaacgat cgcgccatct cttatcgtgt gcaccagggt 540 tacgatcacc gtggtgtggc gctctccgcc ggtgttcaac ggatggtgcg ctctgacctc 600 gcatcatctg gcgtgatgtt ctccattgat accgaatccg gctttgacca ggtggtgttt 660 atcacttccg catggggcct tggtgagatg gtcgtgcagg gtgcggttaa cccggatgag 720 ttttacgtgc ataaaccgac actggcggcg aatcgcccgg ctatcgtgcg ccgcaccatg 780 gggtcgaaaa aaatccgcat ggtttacgcg ccgacccagg agcacggcaa gcaggttaaa 840 atcgaagacg taccgcagga acagcgtgac atcttctcgc tgaccaacga agaagtgcag 900 gaactggcaa aacaggccgt acaaattgag aaacactacg gtcgcccgat ggatattgag 960 tgggcgaaag atggccacac cggtaaactg ttcattgtgc aggcgcgtcc ggaaaccgtg 1020 cgctcacgcg gtcaggtcat ggagcgttat acgctgcatt cacagggtaa gattatcgcc 1080 gaaggccgtg ctatcggtca tcgcatcggt gcgggtccgg tgaaagtcat ccatgacatc 1140 agcgaaatga accgcatcga acctggcgac gtgctggtta ctgacatgac cgacccggac 1200 tgggaaccga tcatgaagaa agcatctgcc atcgtcacca accgtggcgg tcgtacctgt 1260 cacgcggcga tcatcgctcg tgaactgggc attccggcgg tagtgggctg tggagatgca 1320 acagaacgga tgaaagacgg tgagaacgtc actgtttctt gtgccgaagg tgataccggt 1380 tacgtctatg cggagttgct ggaatttagc gtgaaaagct ccagcgtaga aacgatgccg 1440 gatctgccgt tgaaagtgat gatgaacgtc ggtaacccgg accgtgcttt cgacttcgcc 1500 tgcctaccga acgaaggcgt gggccttgcg cgtctggaat ttatcatcaa ccgtatgatt 1560 ggcgtccacc cacgcgcact gcttgagttt gacgatcagg aaccgcagtt gcaaaacgaa 1620 atccgcgaga tgatgaaagg ttttgattct ccgcgtgaat tttacgttgg tcgtctgact 1680 gaagggatcg cgacgctggg tgccgcgttt tatccgaagc gcgtcattgt ccgtctctct 1740 gattttaaat cgaacgaata tgccaacctg gtcggtggtg agcgttacga gccagatgaa 1800 gagaacccga tgctcggctt ccgtggcgcg ggccgctatg tttccgacag cttccgcgac 1860 tgtttcgcgc tggagtgtga agcagtgaaa cgtgtgcgca acgacatggg actgaccaac 1920 gttgagatca tgatcccgtt cgtgcgtacc gtagatcagg cgaaagcggt ggttgaagaa 1980 ctggcgcgtc aggggctgaa acgtggcgag aacgggctga aaatcatcat gatgtgtgaa 2040 atcccgtcca acgccttgct ggccgagcag ttcctcgaat atttcgacgg cttctcaatt 2100 ggctcaaacg atatgacgca gctggcgctc ggtctggacc gtgactccgg cgtggtgtct 2160 gaattgttcg atgagcgcaa cgatgcggtg aaagcactgc tgtcgatggc tatccgtgcc 2220 gcgaagaaac agggcaaata tgtcgggatt tgcggtcagg gtccgtccga ccacgaagac 2280 tttgccgcat ggttgatgga agaggggatc gatagcctgt ctctgaaccc ggacaccgtg 2340 gtgcaaacct ggttaagcct ggctgaactg aagaaataa 2379 <210> 14 <211> 1992 <212> DNA <213> Escherichia coli <400> 14 atgtcctcac gtaaagagct tgccaatgct attcgtgcgc tgagcatgga cgcagtacag 60 aaagccaaat ccggtcaccc gggtgcccct atgggtatgg ctgacattgc cgaagtcctg 120 tggcgtgatt tcctgaaaca caacccgcag aatccgtcct gggctgaccg tgaccgcttc 180 gtgctgtcca acggccacgg ctccatgctg atctacagcc tgctgcacct caccggttac 240 gatctgccga tggaagaact gaaaaacttc cgtcagctgc actctaaaac tccgggtcac 300 ccggaagtgg gttacaccgc tggtgtggaa accaccaccg gtccgctggg tcagggtatt 360 gccaacgcag tcggtatggc gattgcagaa aaaacgctgg cggcgcagtt taaccgtccg 420 ggccacgaca ttgtcgacca ctacacctac gccttcatgg gcgacggctg catgatggaa 480 ggcatctccc acgaagtttg ctctctggcg ggtacgctga agctgggtaa actgattgca 540 ttctacgatg acaacggtat ttctatcgat ggtcacgttg aaggctggtt caccgacgac 600 accgcaatgc gtttcgaagc ttacggctgg cacgttattc gcgacatcga cggtcatgac 660 gcggcatcta tcaaacgcgc agtagaagaa gcgcgcgcag tgactgacaa accttccctg 720 ctgatgtgca aaaccatcat cggtttcggt tccccgaaca aagccggtac ccacgactcc 780 cacggtgcgc cgctgggcga cgctgaaatt gccctgaccc gcgaacaact gggctggaaa 840 tatgcgccgt tcgaaatccc gtctgaaatc tatgctcagt gggatgcgaa agaagcaggc 900 caggcgaaag aatccgcatg gaacgagaaa ttcgctgctt acgcgaaagc ttatccgcag 960 gaagccgctg aatttacccg ccgtatgaaa ggcgaaatgc cgtctgactt cgacgctaaa 1020 gcgaaagagt tcatcgctaa actgcaggct aatccggcga aaatcgccag ccgtaaagcg 1080 tctcagaatg ctatcgaagc gttcggtccg ctgttgccgg aattcctcgg cggttctgct 1140 gacctggcgc cgtctaacct gaccctgtgg tctggttcta aagcaatcaa cgaagatgct 1200 gcgggtaact acatccacta cggtgttcgc gagttcggta tgaccgcgat tgctaacggt 1260 atctccctgc acggtggctt cctgccgtac acctccacct tcctgatgtt cgtggaatac 1320 gcacgtaacg ccgtacgtat ggctgcgctg atgaaacagc gtcaggtgat ggtttacacc 1380 cacgactcca tcggtctggg cgaagacggc ccgactcacc agccggttga gcaggtcgct 1440 tctctgcgcg taaccccgaa catgtctaca tggcgtccgt gtgaccaggt tgaatccgcg 1500 gtcgcgtgga aatacggtgt tgagcgtcag gacggcccga ccgcactgat cctctcccgt 1560 cagaacctgg cgcagcagga acgaactgaa gagcaactgg caaacatcgc gcgcggtggt 1620 tatgtgctga aagactgcgc cggtcagccg gaactgattt tcatcgctac cggttcagaa 1680 gttgaactgg ctgttgctgc ctacgaaaaa ctgactgccg aaggcgtgaa agcgcgcgtg 1740 gtgtccatgc cgtctaccga cgcatttgac aagcaggatg ctgcttaccg tgaatccgta 1800 ctgccgaaag cggttactgc acgcgttgct gtagaagcgg gtattgctga ctactggtac 1860 aagtatgttg gcctgaacgg tgctatcgtc ggtatgacca ccttcggtga atctgctccg 1920 gcagagctgc tgtttgaaga gttcggcttc actgttgata acgttgttgc gaaagcaaaa 1980 gaactgctgt aa 1992 <210> 15 <211> 1176 <212> DNA <213> Escherichia coli <400> 15 atggatacgt cactggctga ggaagtacag cagaccatgg caacacttgc gcccaatcgc 60 tttttcttta tgtcgccgta ccgcagtttt acgacgtcag gatgtttcgc ccgcttcgat 120 gaaccggctg tgaacgggga ttcgcccgac agtcccttcc agcaaaaact cgccgcgctg 180 tttgccgatg ccaaagcgca gggcatcaaa aatccggtga tggtcggggc gattcccttc 240 gatccacgtc agccttcgtc gctgtatatt cctgaatcct ggcagtcgtt ctcccgtcag 300 gaaaaacaag cttccgcacg ccgtttcacc cgcagccagt cgctgaatgt ggtggaacgc 360 caggcaattc cggagcaaac cacgtttgaa cagatggttg cccgcgccgc cgcacttacc 420 gccacgccgc aggtcgacaa agtggtgttg tcacggttga ttgatatcac cactgacgcc 480 gccattgata gtggcgtatt gctggaacgg ttgattgcgc aaaacccggt tagttacaac 540 ttccatgttc cgctggctga tggtggcgtc ctgctggggg ccagcccgga actgctgcta 600 cgtaaagacg gcgagcgttt tagctccatt ccgttagccg gttccgcgcg tcgtcagccg 660 gatgaagtgc tcgatcgcga agcaggtaat cgtctgctgg cgtcagaaaa agatcgccat 720 gaacatgaac tggtgactca ggcgatgaaa gaggtactgc gcgaacgcag tagtgagtta 780 cacgttcctt cttctccaca gctgatcacc acgccgacgc tgtggcatct cgcaactccc 840 tttgaaggta aagcgaattc gcaagaaaac gcactgactc tggcctgtct gctgcatccg 900 acccccgcgc tgagcggttt cccgcatcag gccgcgaccc aggttattgc tgaactggaa 960 ccgttcgacc gcgaactgtt tggcggcatt gtgggttggt gtgacagcga aggtaacggc 1020 gaatgggtgg tgaccatccg ctgcgcgaag ctgcgggaaa atcaggtgcg tctgtttgcc 1080 ggagcgggga ttgtgcctgc gtcgtcaccg ttgggtgagt ggcgcgaaac aggcgtcaaa 1140 ctttctacca tgttgaacgt ttttggattg cattaa 1176 <210> 16 <211> 1443 <212> DNA <213> Pseudomonas aeruginosa <400> 16 atgaccgtga acgcgagtat tttttggtac gactacgaaa ccaccggcat cgaccctcgc 60 cgcgaccggc cgttgcagat cgccgggatc cgcacggacg aggcgctgaa cgagatcggc 120 gagccgatga acctgtattg ccgtcccagc gacgatatcc tgccccaccc tatggcttgc 180 ctgatcaccg gcatcactcc ccagcggctg gccgagcggg ggctgtccga ggccgacttc 240 atgacccggg tacacgccca gctggcgcag ccggcgacct gcgtggccgg ctacaactcc 300 ctgcgcttcg acgacgaagt gacgcgctac agcctgtacc gcaacttctt cgatccctac 360 gcccgcgagt ggcaaggcgg caatagccgc tgggacctga tcgacatggt ccgtaccgcc 420 tatgccctgc gcccggaggg catccagtgg ccgcagctgg acggccggct gtcgctgaag 480 ctggaaatgc tcaccgcggc gaacggcctg gagcatgggc aggcccacga cgcgctttcc 540 gatgtccgcg ccaccattgc cctggcccgc ctgatccgtc agcgccagcc gcgcctgtac 600 gattacctct accagttgcg cagcaagcac aaggtgctcg accaggtgcg cctgctgcag 660 ccgctggtgc atgtctccgg acgcttttcc gcggagcgcc atttcctctc ggtggtcctg 720 ccgctggcct ggcacccgcg caaccgcaat gctctgatcg tctgcgacct ctgcgccgat 780 cccgcgccgc tgctggagtt gtcggccgaa gacttgcgca ggcgcctgta tacccgtcgc 840 gacgaactgg ccgagggcga gttgccggtg ccgctgaagc agatccaggt caaccgttgc 900 ccggtggtgg cgccgctgtc ggtattgcgc gccgaggatc gccagcgaac cggcatcgaa 960 ctcgatgagt gccagcaaaa agccgagctg ttgcgccagc atcaaaccgt ctgggcggac 1020 aaactgacag cgctatatgg cgaagaaagt ttctccgcca gcgacgaccc cgagcaacag 1080 ttgtatgacg gatttattgg cgatcgggat cgacgccttt gtgaacagct gcgccttgcc 1140 gaaccggagc aattggccaa agaacaatgg cccttcgacg atgcccgttt gcaggagttg 1200 ttctttcgct atcgtgcgcg aaatttcccg gaaactttaa atgtggccga gcgccaacaa 1260 tgggaaagct tctgccgcaa tcgtttgtcc catgaagaat acggcgcacc gaatactttg 1320 ccggccttcg aggcggcgct ggaggcttgt cggcaagagc agggcggcac actgccggcg 1380 gtacttgcgg cctggcgcga ttacgccgcg gaactgcgtc aacgctattc gctggagact 1440 tga 1443 <210> 17 <211> 2177 <212> DNA <213> Escherichia coli <400> 17 atgcaaacac aaaaaccgac tctcgaactg ctaacctgcg aaggcgctta tcgcgacaat 60 cccaccgcgc tttttcacca gttgtgtggg gatcgtccgg caacgctgct gctggaatcc 120 gcagatatcg acagcaaaga tgatttaaaa agcctgctgc tggtagacag tgcgctgcgc 180 attacagctt taggtgacac tgtcacaatc caggcacttt ccggcaacgg cgaagccctc 240 ctggcactac tggataacgc cctgcctgcg ggtgtggaaa gtgaacaatc accaaactgc 300 cgtgtgctgc gcttcccccc tgtcagtcca ctgctggatg aagacgcccg cttatgctcc 360 ctttcggttt ttgacgcttt ccgtttattg cagaatctgt tgaatgtacc gaaggaagaa 420 cgagaagcca tgttcttcgg cggcctgttc tcttatgacc ttgtggcggg atttgaagat 480 ttaccgcaac tgtcagcgga aaataactgc cctgatttct gtttttatct cgctgaaacg 540 ctgatggtga ttgaccatca gaaaaaaagc acccgtattc aggccagcct gtttgctccg 600 aatgaagaag aaaaacaacg tctcactgct cgcctgaacg aactacgtca gcaactgacc 660 gaagccgcgc cgccgctgcc agtggtttcc gtgccgcata tgcgttgtga atgtaatcag 720 agcgatgaag agttcggtgg cgtagtgcgt ttgttgcaaa aagcgattcg cgctggagaa 780 attttccagg tggtgccatc tcgccgtttc tctctgccct gcccgtcacc gctggcggcc 840 tattacgtgc tgaaaaagag taatcccagc ccgtacatgt tttttatgca ggataatgat 900 ttcaccctat ttggcgcgtc gccggaaagc tcgctcaagt atgatgccac cagccgccag 960 attgagatct acccgattgc cggaacacgc ccacgcggtc gtcgcgccga tggttcactg 1020 gacagagatc tcgacagccg tattgaactg gaaatgcgta ccgatcataa agagctgtct 1080 gaacatctga tgctggttga tctcgcccgt aatgatctgg cacgcatttg cacccccggc 1140 agccgctacg tcgccgatct caccaaagtt gaccgttatt cctatgtgat gcacctcgtc 1200 tctcgcgtag tcggcgaact gcgtcacgat cttgacgccc tgcacgctta tcgcgcctgt 1260 atgaatatgg ggacgttaag cggtgcgccg aaagtacgcg ctatgcagtt aattgccgag 1320 gcggaaggtc gtcgccgcgg cagctacggc ggcgcggtag gttatttcac cgcgcatggc 1380 gatctcgaca cctgcattgt gatccgctcg gcgctggtgg aaaacggtat cgccaccgtg 1440 caagcgggtg ctggtgtagt ccttgattct gttccgcagt cggaagccga cgaaacccgt 1500 aacaaagccc gcgctgtact gcgcgctatt gccaccgcgc atcatgcaca ggagactttc 1560 tgatggctga cattctgctg ctcgataata tcgactcttt tacgtacaac ctggcagatc 1620 agttgcgcag caatgggcat aacgtggtga tttaccgcaa ccatattccg gcgcaaacct 1680 taattgaacg cctggcgacc atgagcaatc cggtgctgat gctttctcct ggccccggtg 1740 tgccgagcga agccggttgt atgccggaac tcctcacccg cttgcgtggc aagctgccca 1800 ttattggcat ttgcctcgga catcaggcga ttgtcgaagc ttacgggggc tatgtcggtc 1860 aggcgggcga aattctccac ggtaaagcct ccagcattga acatgacggt caggcgatgt 1920 ttgccggatt aacaaacccg ctgccggtgg cgcgttatca ctcgctggtt ggcagtaaca 1980 ttccggccgg tttaaccatc aacgcccatt ttaatggcat ggtgatggca gtacgtcacg 2040 atgcggatcg cgtttgtgga ttccagttcc atccggaatc cattctcacc acccagggcg 2100 ctcgcctgct ggaacaaacg ctggcctggg cgcagcagaa actagagcca gccaacacgc 2160 tgcaaccgat tctgtaa 2177

Claims (7)

trpD 및 tyrA 유전자가 동시에 결실된 대장균 BL21(DE3)에 슈도모나스 애루지노사(P. aeruginosa) 유래 pqsD 및 슈도모나스 애루지노사(P. aeruginosa) 유래 pqsA 유전자가 도입된, 쿠마린계 또는 퀴놀계 화합물 생성용 대장균 형질전환체.
Pseudomonas aeruginosa- derived pqsD and Pseudomonas aeruginosa- derived pqsA genes are introduced into Escherichia coli BL21 (DE3) in which trpD and tyrA genes are simultaneously deleted, coumarin-based or quinol-based compound production E. coli transformants.
삭제delete 제1항에 있어서,
상기 대장균 형질전환체는
ⅰ) 포토랍두스 루미네센스(P. luminescens) 유래 accABCD 유전자가 추가 도입되고,
ⅱ) aroL, aroE, aroD, aroB, aroGf, ppsA, tktA, entC 및 슈도모나스 애루지노사(P. aeruginosa) 유래 pchB 유전자가 추가로 도입되거나, aroL, aroGf, ppsA, tktA 및 trpEG 유전자가 추가로 도입된, 대장균 형질전환체.
According to claim 1,
The E. coli transformant is
I ) Photorhabdus luminescens (P. luminescens) derived accABCD gene is additionally introduced,
ii) aroL, aroE, aroD, aroB, aroG f , ppsA, tktA, entC and Pseudomonas aeruginosa ( P. aeruginosa )-derived pchB genes are additionally introduced, or aroL, aroG f , ppsA, trpEG genes are added Introduced into E. coli transformants.
제1항에 있어서,
상기 쿠마린계 또는 퀴놀계 화합물은 하기 화학식 1 내지 3으로 이루어진 군으로부터 선택된 것인, 대장균 형질전환체:
[화학식 1]
Figure 112020024949576-pat00004

[화학식 2]
Figure 112020024949576-pat00005

[화학식 3]
Figure 112020024949576-pat00006
.
According to claim 1,
The coumarin-based or quinol-based compound is selected from the group consisting of the following Chemical Formulas 1 to 3, E. coli transformants:
[Formula 1]
Figure 112020024949576-pat00004

[Formula 2]
Figure 112020024949576-pat00005

[Formula 3]
Figure 112020024949576-pat00006
.
제1항, 제3항 및 제4항 중 어느한 항에 따른 대장균 형질전환체 또는 상기 대장균 형질전환체 배양물을 포함하는 쿠마린계 또는 퀴놀계 화합물 생성용 조성물.
A composition for producing a coumarin-based or quinol-based compound comprising the E. coli transformant or the E. coli transformant culture according to any one of claims 1, 3 and 4.
제1항, 제3항 및 제4항 중 어느한 항에 따른 대장균 형질전환체 또는 상기 대장균 형질전환체의 배양물을 이용하여, 기질로부터 쿠마린계 또는 퀴놀계 화합물을 생성하는 방법.
A method for producing a coumarin-based or quinol-based compound from a substrate by using the E. coli transformant according to any one of claims 1, 3 and 4 or a culture of the E. coli transformant.
제6항에 있어서,
상기 기질은 글루코오스, 코리스메이트, 살리실산, 안트라닐레이트, N-메틸안트라닐레이트 및 말로닐-CoA로 이루어진 군으로부터 선택된 하나 이상을 포함하는, 기질로부터 쿠마린계 또는 퀴놀계 화합물을 생성하는 방법.
7. The method of claim 6,
Wherein the substrate comprises at least one selected from the group consisting of glucose, chorismate, salicylic acid, anthranilate, N-methylanthranilate and malonyl-CoA.
KR1020200029252A 2020-03-09 2020-03-09 Esherichia coli TRANSFORMANT AND METHOD FOR PRODUCING CUMARIN-BASED OR QUINOLINE-BASED COMPOUND USING THE SAME KR102286035B1 (en)

Priority Applications (1)

Application Number Priority Date Filing Date Title
KR1020200029252A KR102286035B1 (en) 2020-03-09 2020-03-09 Esherichia coli TRANSFORMANT AND METHOD FOR PRODUCING CUMARIN-BASED OR QUINOLINE-BASED COMPOUND USING THE SAME

Applications Claiming Priority (1)

Application Number Priority Date Filing Date Title
KR1020200029252A KR102286035B1 (en) 2020-03-09 2020-03-09 Esherichia coli TRANSFORMANT AND METHOD FOR PRODUCING CUMARIN-BASED OR QUINOLINE-BASED COMPOUND USING THE SAME

Publications (1)

Publication Number Publication Date
KR102286035B1 true KR102286035B1 (en) 2021-08-03

Family

ID=77314244

Family Applications (1)

Application Number Title Priority Date Filing Date
KR1020200029252A KR102286035B1 (en) 2020-03-09 2020-03-09 Esherichia coli TRANSFORMANT AND METHOD FOR PRODUCING CUMARIN-BASED OR QUINOLINE-BASED COMPOUND USING THE SAME

Country Status (1)

Country Link
KR (1) KR102286035B1 (en)

Citations (1)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
US20140370557A1 (en) * 2013-06-13 2014-12-18 University Of Georgia Research Foundation, Inc. Genetically engineered microbes and methods for producing 4-hydroxycoumarin

Patent Citations (1)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
US20140370557A1 (en) * 2013-06-13 2014-12-18 University Of Georgia Research Foundation, Inc. Genetically engineered microbes and methods for producing 4-hydroxycoumarin

Non-Patent Citations (1)

* Cited by examiner, † Cited by third party
Title
J Biol Chem Vol.283 No.43 pp.28788-28794* *

Similar Documents

Publication Publication Date Title
Gross et al. Bacterial type III polyketide synthases: phylogenetic analysis and potential for the production of novel secondary metabolites by heterologous expression in pseudomonads
US9181539B2 (en) Strains for the production of flavonoids from glucose
JP5761723B2 (en) Method for producing plant benzylisoquinoline alkaloids
Wehrmann et al. Different modes of diaminopimelate synthesis and their role in cell wall integrity: a study with Corynebacterium glutamicum
KR20160123351A (en) Recombinant strain producing o-aminobenzoate and fermentative production of aniline from renewable resources via 2-aminobenzoic acid
JP2010207094A (en) Method for producing protocatechuic acid
CN107771214A (en) For with the microorganism modified caused by 2,4 dihydroxy butyric acid of the optimization of row&#39;s thing outside increased 2,4 dihydroxy butyric acid
Prell et al. Adaptive laboratory evolution accelerated glutarate production by Corynebacterium glutamicum
Ozaki et al. Identification of the common biosynthetic gene cluster for both antimicrobial streptoaminals and antifungal 5-alkyl-1, 2, 3, 4-tetrahydroquinolines
EP1957640B1 (en) Modified transketolase and use thereof
KR20220012847A (en) Production of chemicals from renewable sources
JP2012000059A (en) FERMENTATIVE PRODUCTION OF MUCONOLACTONE, β-KETOADIPIC ACID AND/OR LEVULINIC ACID
JP2002512802A (en) Aromatic metabolism / Microbial production of substance III
CN113355300B (en) Aromatic isopentenyl transferase mutant, construction method of recombinant bacterium for expression of mutant and recombinant bacterium constructed by mutant
KR102286035B1 (en) Esherichia coli TRANSFORMANT AND METHOD FOR PRODUCING CUMARIN-BASED OR QUINOLINE-BASED COMPOUND USING THE SAME
AU2017280163A1 (en) Host cells and methods for producing hydroxytyrosol
CN114008211A (en) Method for producing high value-added compounds from polyethylene terephthalate
AU2017218598A1 (en) Process
CA2322105A1 (en) Antibiotic production (ii)
US20220186231A1 (en) Recombinant acyl activating enzyme (aae) genes for enhanced biosynthesis of cannabinoids and cannabinoid precursors
WO2022148377A1 (en) Host cell of heterologous synthetic flavonoid compound, and use thereof
EP1846555A1 (en) Alcohol dehydrogenase gene from gluconobacter oxydans
US20040241799A1 (en) Methods of directing C-O bond formation utilizing a type II polyketide synthase system
WO2007028609A1 (en) Gene sms 27
US20110045552A1 (en) Novel gene sms 43

Legal Events

Date Code Title Description
E701 Decision to grant or registration of patent right
GRNT Written decision to grant