WO2012039240A1 - Method for producing transparent electrode and organic electronic device - Google Patents

Method for producing transparent electrode and organic electronic device Download PDF

Info

Publication number
WO2012039240A1
WO2012039240A1 PCT/JP2011/069413 JP2011069413W WO2012039240A1 WO 2012039240 A1 WO2012039240 A1 WO 2012039240A1 JP 2011069413 W JP2011069413 W JP 2011069413W WO 2012039240 A1 WO2012039240 A1 WO 2012039240A1
Authority
WO
WIPO (PCT)
Prior art keywords
group
polymer
conductive layer
transparent
transparent electrode
Prior art date
Application number
PCT/JP2011/069413
Other languages
French (fr)
Japanese (ja)
Inventor
孝敏 末松
昌紀 後藤
Original Assignee
コニカミノルタホールディングス株式会社
Priority date (The priority date is an assumption and is not a legal conclusion. Google has not performed a legal analysis and makes no representation as to the accuracy of the date listed.)
Filing date
Publication date
Application filed by コニカミノルタホールディングス株式会社 filed Critical コニカミノルタホールディングス株式会社
Priority to JP2012534973A priority Critical patent/JP5983408B2/en
Publication of WO2012039240A1 publication Critical patent/WO2012039240A1/en

Links

Classifications

    • HELECTRICITY
    • H10SEMICONDUCTOR DEVICES; ELECTRIC SOLID-STATE DEVICES NOT OTHERWISE PROVIDED FOR
    • H10KORGANIC ELECTRIC SOLID-STATE DEVICES
    • H10K71/00Manufacture or treatment specially adapted for the organic devices covered by this subclass
    • H10K71/40Thermal treatment, e.g. annealing in the presence of a solvent vapour
    • HELECTRICITY
    • H10SEMICONDUCTOR DEVICES; ELECTRIC SOLID-STATE DEVICES NOT OTHERWISE PROVIDED FOR
    • H10KORGANIC ELECTRIC SOLID-STATE DEVICES
    • H10K50/00Organic light-emitting devices
    • H10K50/80Constructional details
    • H10K50/805Electrodes
    • H10K50/81Anodes
    • H10K50/814Anodes combined with auxiliary electrodes, e.g. ITO layer combined with metal lines
    • HELECTRICITY
    • H10SEMICONDUCTOR DEVICES; ELECTRIC SOLID-STATE DEVICES NOT OTHERWISE PROVIDED FOR
    • H10KORGANIC ELECTRIC SOLID-STATE DEVICES
    • H10K71/00Manufacture or treatment specially adapted for the organic devices covered by this subclass
    • H10K71/60Forming conductive regions or layers, e.g. electrodes
    • HELECTRICITY
    • H10SEMICONDUCTOR DEVICES; ELECTRIC SOLID-STATE DEVICES NOT OTHERWISE PROVIDED FOR
    • H10KORGANIC ELECTRIC SOLID-STATE DEVICES
    • H10K85/00Organic materials used in the body or electrodes of devices covered by this subclass
    • H10K85/30Coordination compounds
    • H10K85/341Transition metal complexes, e.g. Ru(II)polypyridine complexes
    • H10K85/342Transition metal complexes, e.g. Ru(II)polypyridine complexes comprising iridium
    • HELECTRICITY
    • H10SEMICONDUCTOR DEVICES; ELECTRIC SOLID-STATE DEVICES NOT OTHERWISE PROVIDED FOR
    • H10KORGANIC ELECTRIC SOLID-STATE DEVICES
    • H10K85/00Organic materials used in the body or electrodes of devices covered by this subclass
    • H10K85/60Organic compounds having low molecular weight
    • H10K85/631Amine compounds having at least two aryl rest on at least one amine-nitrogen atom, e.g. triphenylamine
    • H10K85/633Amine compounds having at least two aryl rest on at least one amine-nitrogen atom, e.g. triphenylamine comprising polycyclic condensed aromatic hydrocarbons as substituents on the nitrogen atom

Definitions

  • the present invention relates to a method for producing a transparent electrode excellent in electrical conductivity, transparency, washing resistance, and current uniformity, and excellent in driving voltage when used in an organic electronic device, and an organic electronic device using the same. It is.
  • a transparent electrode is an ITO transparent electrode in which an indium-tin composite oxide (ITO) film is formed on a transparent substrate by a vacuum deposition method or a sputtering method. From the viewpoint of performance such as conductivity and transparency, It has been mainly used. However, the transparent electrode using the vacuum evaporation method or the sputtering method has a problem that the production cost is high because of poor productivity. Furthermore, in recent years, transparent electrodes used in organic electronic devices have been required to have a large area and a low resistance value, and the resistance value of ITO transparent electrodes has become insufficient.
  • ITO indium-tin composite oxide
  • a transparent conductive layer such as a conductive polymer, is laminated on a thin metal wire formed in a pattern so that it can be used for products that require a large area and low resistance.
  • Transparent with both current surface uniformity and high conductivity An electrode has been developed (see, for example, Patent Documents 1 and 2).
  • the transparent electrode is composed of an opening made of a thin metal wire portion and a transparent conductive layer such as a conductive polymer.
  • the resistance of the transparent conductive layer is preferably as low as possible. As the resistance of the transparent conductive layer is lower, even if the area of the opening is increased, the surface uniformity of the current can be maintained, so that an electrode having a large opening and excellent transparency can be produced.
  • a method for reducing the coloring of the transparent conductive layer it is known to use a polymer obtained by mixing a conductive polymer and a hydroxyl group-containing non-conductive polymer as the transparent conductive layer.
  • a polymer obtained by mixing a conductive polymer and a hydroxyl group-containing non-conductive polymer as the transparent conductive layer.
  • a polymer selected from the group consisting of polyvinyl alcohol (PVA), polymethacrylic acid (PMAA) and the like is disclosed (for example, Patent Document 3, 4).
  • PVA polyvinyl alcohol
  • PMAA polymethacrylic acid
  • the present invention has been made in view of the above problems, and its purpose is to provide excellent conductivity, transparency, washing resistance, surface uniformity of current, and a transparent electrode excellent in driving voltage when used in an organic electronic device. And an organic electronic device using the same.
  • the patterned conductive layer is a metal oxide or a metal material
  • the contained nonconductive polymer is a polymer (A) containing a structural unit selected from the following general formula (I) and general formula (II), and the transparent conductive layer is heated in a temperature range of 150 ° C. or higher and 300 ° C. or lower.
  • R 1 and R 2 each independently represent a hydrogen atom or a methyl group
  • Q 1 and Q 2 each independently represent —C ( ⁇ O) O— or —C ( ⁇ O) NRa—.
  • Ra represents a hydrogen atom, an alkyl group
  • a 1 each independently represent a substituted or unsubstituted alkylene group
  • - (CH 2 CHRbO) x represents a -CH 2 CHRb-.
  • Rb represents a hydrogen atom or an alkyl group
  • x represents the average number of repeating units.
  • y represents 0 or 1;
  • Z represents an alkyl group, —C ( ⁇ O) —Rc, —SO 2 —Rd, —SiRe 3 .
  • Rc, Rd, and Re represent an alkyl group, a perfluoroalkyl group, and an aryl group.
  • a method for producing a transparent electrode that can be suitably used for an organic electronic device has excellent conductivity, transparency, washing resistance, and surface uniformity of current, and has excellent driving voltage when used in an organic electronic device.
  • a transparent electrode that can be suitably used for an organic electronic device, has excellent conductivity, transparency, washing resistance, and surface uniformity of current, and has excellent driving voltage when used in an organic electronic device.
  • the present inventor uses a conductive polymer and a conventional hydroxyl group-containing non-conductive polymer by using the polymer (A) as the conductive polymer and the hydroxyl group-containing non-conductive polymer.
  • the decrease in transparency due to coloring and the decrease in conductivity due to the addition of a nonconductive polymer can be suppressed.
  • a transparent conductive layer composed of a conductive polymer and a polymer (A) is formed by heat treatment, it is found that when used in an organic electronic device, a transparent electrode excellent in driving voltage can be obtained. It is up to you.
  • the transparent substrate used in the present invention is not particularly limited as long as the substrate is not deformed even if a high temperature treatment at 150 ° C. or higher is performed, and a material having a glass transition temperature (Tg) of 150 ° C. or higher is preferably used.
  • Tg glass transition temperature
  • the material, shape, structure, thickness, hardness and the like can be appropriately selected from known materials, but preferably have high transparency. Examples thereof include a glass substrate and a polyimide film, but a glass substrate is more preferable from the viewpoints of transparency, heat resistance, ease of handling, and barrier properties.
  • the transparent substrate used in the present invention can be subjected to a surface treatment or an easy adhesion layer in order to ensure the wettability and adhesiveness of the coating solution.
  • a conventionally well-known technique can be used about a surface treatment or an easily bonding layer.
  • the surface treatment includes surface activation treatment such as corona discharge treatment, flame treatment, ultraviolet treatment, high frequency treatment, glow discharge treatment, active plasma treatment, and laser treatment.
  • the easy adhesion layer include polyester, polyamide, polyurethane, vinyl copolymer, butadiene copolymer, acrylic copolymer, vinylidene copolymer, and epoxy copolymer.
  • the easy adhesion layer may be a single layer, but may be composed of two or more layers in order to improve adhesion.
  • a barrier coat layer may be formed in advance as necessary, or a hard coat layer may be formed in advance.
  • a barrier coat layer an inorganic film, an organic film or a hybrid film of both may be formed on the front surface or the back surface, and the water vapor transmission rate (25 ⁇ 0) measured by a method according to JIS K 7129-1992. 0.5 ° C.
  • relative humidity (90 ⁇ 2)% RH) is preferably a transparent substrate having a barrier property of 1 ⁇ 10 ⁇ 3 g / (m 2 ⁇ 24 h) or less, and JIS K 7126- Oxygen permeability measured by a method according to 1987 is 1 ⁇ 10 ⁇ 3 ml / (m 2 ⁇ 24 h ⁇ atm) or less, water vapor permeability (25 ⁇ 0.5 ° C., relative humidity (90 ⁇ 2)% RH) is preferably 1 ⁇ 10 ⁇ 3 g / (m 2 ⁇ 24 h) or less.
  • the material for forming the barrier layer may be any material that has a function of suppressing the intrusion of devices that cause deterioration of the device such as moisture and oxygen.
  • silicon oxide, silicon dioxide, silicon nitride, or the like can be used.
  • the conductive polymer according to the present invention is a conductive polymer having a ⁇ -conjugated conductive polymer and a polyanion.
  • a conductive polymer can be easily produced by chemical oxidative polymerization of a precursor monomer that forms a ⁇ -conjugated conductive polymer described later in the presence of an appropriate oxidizing agent, an oxidation catalyst, and a poly anion described later. .
  • the ⁇ -conjugated conductive polymer used in the present invention is not particularly limited, and includes polythiophenes (including basic polythiophenes, the same applies hereinafter), polypyrroles, polyindoles, polycarbazoles, polyanilines, polyacetylenes, polyfurans. , Polyparaphenylene vinylenes, polyazulenes, polyparaphenylenes, polyparaphenylene sulfides, polyisothianaphthenes, polythiazyl chain conductive polymers can be used. Of these, polythiophenes and polyanilines are preferable from the viewpoints of conductivity, transparency, stability, and the like. Most preferred is polyethylene dioxythiophene.
  • Precursor monomers used in the formation of ⁇ -conjugated conductive polymers have a ⁇ -conjugated system in the molecule, and even when polymerized by the action of an appropriate oxidant, a ⁇ -conjugated system is formed in the main chain. It is what is done. Examples thereof include pyrroles and derivatives thereof, thiophenes and derivatives thereof, anilines and derivatives thereof, and the like.
  • the precursor monomer examples include pyrrole, 3-methylpyrrole, 3-ethylpyrrole, 3-n-propylpyrrole, 3-butylpyrrole, 3-octylpyrrole, 3-decylpyrrole, 3-dodecylpyrrole, 3, 4-dimethylpyrrole, 3,4-dibutylpyrrole, 3-carboxylpyrrole, 3-methyl-4-carboxylpyrrole, 3-methyl-4-carboxyethylpyrrole, 3-methyl-4-carboxybutylpyrrole, 3-hydroxypyrrole 3-methoxypyrrole, 3-ethoxypyrrole, 3-butoxypyrrole, 3-hexyloxypyrrole, 3-methyl-4-hexyloxypyrrole, thiophene, 3-methylthiophene, 3-ethylthiophene, 3-propylthiophene, 3 -Butylthiophene, 3-hexyl Offene, 3-heptyl
  • the polyanion used in the present invention includes a substituted or unsubstituted polyalkylene, a substituted or unsubstituted polyalkenylene, a substituted or unsubstituted polyimide, a substituted or unsubstituted polyamide, a substituted or unsubstituted polyester, and a co-polymer thereof. It is a polymer and has at least a structural unit having an anionic group.
  • This poly anion is a solubilized polymer that solubilizes the ⁇ -conjugated conductive polymer in a solvent.
  • the anion group of the polyanion functions as a dopant for the ⁇ -conjugated conductive polymer, and improves the conductivity and heat resistance of the ⁇ -conjugated conductive polymer.
  • the anion group of the polyanion may be any functional group capable of causing chemical oxidation doping to the ⁇ -conjugated conductive polymer.
  • a monosubstituted sulfate ester Group, monosubstituted phosphate group, phosphate group, carboxy group, sulfo group and the like are preferable.
  • a sulfo group, a monosubstituted sulfate group, and a carboxy group are more preferable.
  • polyanions include polyvinyl sulfonic acid, polystyrene sulfonic acid, polyallyl sulfonic acid, polyacrylic acid ethyl sulfonic acid, polyacrylic acid butyl sulfonic acid, poly-2-acrylamido-2-methylpropane sulfonic acid, poly Isoprene sulfonic acid, polyvinyl carboxylic acid, polystyrene carboxylic acid, polyallyl carboxylic acid, polyacryl carboxylic acid, polymethacryl carboxylic acid, poly-2-acrylamido-2-methylpropane carboxylic acid, polyisoprene carboxylic acid, polyacrylic acid, etc. Can be mentioned.
  • it may be a poly anion further having F (fluorine atom) in the compound.
  • F fluorine atom
  • Nafion made by Dupont
  • Flemion made by Asahi Glass Co., Ltd.
  • perfluoro vinyl ether containing a carboxylic acid group
  • polystyrene sulfonic acid polyisoprene sulfonic acid, polyacrylic acid ethyl sulfonic acid, and polybutyl acrylate sulfonic acid are preferable.
  • These poly anions have high compatibility with the hydroxyl group-containing non-conductive polymer, and can further increase the conductivity of the obtained conductive polymer.
  • the degree of polymerization of the polyanion is preferably in the range of 10 to 100,000 monomer units, and more preferably in the range of 50 to 10,000 from the viewpoint of solvent solubility and conductivity.
  • Examples of the method for producing a polyanion include a method of directly introducing an anionic group into a polymer having no anionic group using an acid, a method of sulfonating a polymer having no anionic group with a sulfonating agent, and an anionic group containing The method of manufacturing by superposition
  • Examples of the method for producing an anion group-containing polymerizable monomer by polymerization include a method for producing an anion group-containing polymerizable monomer in a solvent by oxidative polymerization or radical polymerization in the presence of an oxidizing agent and / or a polymerization catalyst. Specifically, a predetermined amount of the anionic group-containing polymerizable monomer is dissolved in a solvent, kept at a constant temperature, and a solution in which a predetermined amount of an oxidizing agent and / or a polymerization catalyst is dissolved in the solvent is added to the predetermined amount. React with time. The polymer obtained by the reaction is adjusted to a certain concentration by the solvent. In this production method, an anionic group-containing polymerizable monomer may be copolymerized with a polymerizable monomer having no anionic group.
  • the oxidizing agent, oxidation catalyst, and solvent used in the polymerization of the anionic group-containing polymerizable monomer are the same as those used in the polymerization of the precursor monomer that forms the ⁇ -conjugated conductive polymer.
  • the obtained polymer is a polyanionic salt, it is preferably transformed into a polyanionic acid.
  • the method for converting to an anionic acid include an ion exchange method using an ion exchange resin, a dialysis method, an ultrafiltration method, and the like.
  • the ultrafiltration method is preferable from the viewpoint of easy work.
  • the ratio of the ⁇ -conjugated conductive polymer and the poly anion contained in the conductive polymer, “ ⁇ -conjugated conductive polymer”: “poly anion” is preferably 1: 1 to 20 by mass ratio. From the viewpoint of conductivity and dispersibility, the range of 1: 2 to 10 is more preferable.
  • the oxidant used when the precursor monomer forming the ⁇ -conjugated conductive polymer is chemically oxidatively polymerized in the presence of the polyanion to obtain the conductive polymer according to the present invention is, for example, J. Org. Am. Soc. 85, 454 (1963), which is suitable for the oxidative polymerization of pyrrole.
  • oxidants such as iron (III) salts, eg FeCl 3 , Fe (ClO 4 ) 3 , organic acids and iron (III) salts of inorganic acids containing organic residues
  • iron (III) salts eg FeCl 3 , Fe (ClO 4 ) 3
  • organic acids and iron (III) salts of inorganic acids containing organic residues Or use hydrogen peroxide, potassium dichromate, alkali persulfate (eg potassium persulfate, sodium persulfate) or ammonium, alkali perborate, potassium permanganate and copper salts such as copper tetrafluoroborate preferable.
  • air and oxygen in the presence of catalytic amounts of metal ions such as iron, cobalt, nickel, molybdenum and vanadium ions can be used as oxidants at any time.
  • persulfates and the iron (III) salts of inorganic acids containing organic acids and organic residues has great application advantages because they are
  • iron (III) salts of inorganic acids containing organic residues include iron (III) salts of alkanol sulfate hemiesters having 1 to 20 carbon atoms, such as lauryl sulfate; alkyl sulfonic acids having 1 to 20 carbon atoms, such as Methane or dodecanesulfonic acid; carboxylic acid having 1 to 20 aliphatic carbon atoms such as 2-ethylhexyl carboxylic acid; aliphatic perfluorocarboxylic acid such as trifluoroacetic acid and perfluorooctanoic acid; aliphatic dicarboxylic acid such as oxalic acid And in particular aromatic, optionally substituted alkyl sulfonic acids having 1 to 20 carbon atoms such as benzenesulfonic acid, p-toluenesulfonic acid and dodecylbenzenesulfonic acid Fe (III) salts.
  • Such a conductive polymer is preferably a commercially available material.
  • a conductive polymer (abbreviated as PEDOT-PSS) composed of poly (3,4-ethylenedioxythiophene) and polystyrenesulfonic acid is described in H.C. C. It is commercially available from Starck as the Clevios series, from Aldrich as PEDOT-PSS 483095 and 560596, and from Nagase Chemtex as the Denatron series. Polyaniline is also commercially available from Nissan Chemical as the ORMECON series. In the present invention, such an agent can also be preferably used.
  • a water-soluble organic compound may be contained as the second dopant.
  • an oxygen containing compound is mentioned suitably.
  • the oxygen-containing compound is not particularly limited as long as it contains oxygen, and examples thereof include a hydroxyl group-containing compound, a carbonyl group-containing compound, an ether group-containing compound, and a sulfoxide group-containing compound.
  • the hydroxyl group-containing compound include ethylene glycol, diethylene glycol, propylene glycol, trimethylene glycol, 1,4-butanediol, glycerin and the like.
  • ethylene glycol and diethylene glycol are preferable.
  • the carbonyl group-containing compound include isophorone, propylene carbonate, cyclohexanone, ⁇ -butyrolactone, and the like.
  • the ether group-containing compound include diethylene glycol monoethyl ether.
  • the sulfoxide group-containing compound include dimethyl sulfoxide. These may be used alone or in combination of two or more, but at least one selected from dimethyl sulfoxide, ethylene glycol, and diethylene glycol is preferably used.
  • the hydroxyl group-containing non-conductive polymer according to the present invention is characterized by containing a certain amount of the polymer (A).
  • the present invention it is possible to improve the conductivity of the conductive polymer-containing layer by using the conductive polymer and the polymer (A) in combination with the transparent conductive layer, and the compatibility with the conductive polymer is also good. Can achieve high transparency. As a result, the thickness of the transparent conductive layer can be increased, and foreign matter adhering to the substrate surface and unevenness of the pattern conductive layer can be embedded without reducing the transparency. Can be suppressed.
  • the hydroxyl group-containing non-conductive polymer of the present invention is preferably water-soluble, and the polymer (A) is preferably dissolved in 0.001 g or more in 100 g of water at 25 ° C.
  • the solubility can be measured with a haze meter or a turbidimeter.
  • the polyanion has a sulfo group
  • the sulfo group effectively acts as a dehydration catalyst
  • the conductive polymer and the polymer (A) are densely cross-linked without using an additional agent such as a cross-linking agent.
  • a layer can be formed, and a strong transparent conductive layer can be formed. Therefore, it has high durability and is advantageous when cleaning the substrate.
  • Crosslinking can be measured by a change in glass transition temperature and nanoindentation elastic modulus of the transparent conductive layer, and a change in functional group by FTIR measurement.
  • the polymer (A) is a polymer containing a structural unit selected from the following general formula (I) and general formula (II).
  • the constituent ratio of the structural unit of the general formula (I) in the polymer (A) is m and the constituent ratio of the structural unit of the general formula (II) is n, the constituent ratio (mol%) of m + n is 50 ⁇ m + n ⁇ 100 and m / (m + n) ⁇ 0.2.
  • the total of the components of the structural unit of the general formula (I) and the general formula (II) is 50 mol% or more and 100% or less, and the component of the structural unit of the general formula (I) is 20% or more. It is a copolymer. More preferably, the sum of the components of the structural units of the general formulas (I) and (II) is 80 mol% or more and 100% or less.
  • the polymer (A) of the present invention may contain a structural unit other than the structural unit represented by the general formula (I) and the structural unit represented by the general formula (II).
  • the component of the structural unit of the general formula (I) in the polymer (A) is less than 20%, the number of hydroxyl groups decreases, the number of hydroxyl groups as crosslinking points decreases, and the stability and denseness of the film decrease. Deterioration in water resistance and lifespan.
  • R 1 and R 2 each independently represents a hydrogen atom or a methyl group.
  • Q 1 and Q 2 each independently represent —C ( ⁇ O) O— or —C ( ⁇ O) NRa—, and Ra represents a hydrogen atom or an alkyl group.
  • the alkyl group is preferably, for example, a linear or branched alkyl group having 1 to 5 carbon atoms, and more preferably a methyl group. These alkyl groups may be substituted with a substituent.
  • substituents include alkyl groups, cycloalkyl groups, aryl groups, heterocycloalkyl groups, heteroaryl groups, hydroxyl groups, halogen atoms, alkoxy groups, alkylthio groups, arylthio groups, cycloalkoxy groups, aryloxy groups, acyls.
  • a hydroxyl group and an alkyloxy group are preferable.
  • the halogen atom includes a fluorine atom, a chlorine atom, a bromine atom and an iodine atom.
  • the alkyl group may have a branch, and the number of carbon atoms is preferably 1 to 20, more preferably 1 to 12, and more preferably 1 to 8. Further preferred.
  • the alkyl group include methyl group, ethyl group, propyl group, isopropyl group, butyl group, t-butyl group, hexyl group, octyl group and the like.
  • the number of carbon atoms of the cycloalkyl group is preferably 3 to 20, more preferably 3 to 12, and still more preferably 3 to 8.
  • Examples of the cycloalkyl group include a cyclopropyl group, a cyclobutyl group, a cyclopentyl group, and a cyclohexyl group.
  • the alkoxy group may have a branch, and the number of carbon atoms is preferably 1 to 20, more preferably 1 to 12, still more preferably 1 to 6, and further preferably 1 to 4. Most preferably.
  • alkoxy group examples include a methoxy group, an ethoxy group, a 2-methoxyethoxy group, a 2-methoxy-2-ethoxyethoxy group, a butyloxy group, a hexyloxy group and an octyloxy group, preferably an ethoxy group.
  • the alkylthio group may have a branch, and the number of carbon atoms is preferably 1 to 20, more preferably 1 to 12, and still more preferably 1 to 6, Most preferred is 1 to 4.
  • Examples of the alkylthio group include a methylthio group and an ethylthio group.
  • the arylthio group preferably has 6 to 20 carbon atoms, and more preferably 6 to 12 carbon atoms.
  • Examples of the arylthio group include a phenylthio group and a naphthylthio group.
  • the number of carbon atoms of the cycloalkoxy group is preferably 3 to 12, and more preferably 3 to 8.
  • Examples of the cycloalkoxy group include a cyclopropoxy group, a cyclobutoxy group, a cyclopentyloxy group, and a cyclohexyloxy group.
  • the aryl group preferably has 6 to 20 carbon atoms, more preferably 6 to 12 carbon atoms.
  • Examples of the aryl group include a phenyl group and a naphthyl group.
  • the aryloxy group preferably has 6 to 20 carbon atoms, and more preferably 6 to 12 carbon atoms.
  • Examples of the aryloxy group include a phenoxy group and a naphthoxy group.
  • the heterocycloalkyl group preferably has 2 to 10 carbon atoms, and more preferably 3 to 5 carbon atoms.
  • Examples of the heterocycloalkyl group include a piperidino group, a dioxanyl group, and a 2-morpholinyl group.
  • the heteroaryl group preferably has 3 to 20 carbon atoms, and more preferably 3 to 10 carbon atoms. Examples of the heteroaryl group include a thienyl group and a pyridyl group.
  • the acyl group preferably has 1 to 20 carbon atoms, more preferably 1 to 12 carbon atoms.
  • Examples of the acyl group include a formyl group, an acetyl group, and a benzoyl group.
  • the alkylcarbonamide group preferably has 1 to 20 carbon atoms, and more preferably 1 to 12 carbon atoms.
  • Examples of the alkylcarbonamide group include an acetamide group.
  • the arylcarbonamide group preferably has 1 to 20 carbon atoms, and more preferably 1 to 12 carbon atoms.
  • Examples of the arylcarbonamide group include a benzamide group and the like.
  • the alkylsulfonamide group preferably has 1 to 20 carbon atoms, and more preferably 1 to 12 carbon atoms.
  • alkylsulfonamide group examples include a methanesulfonamide group.
  • the arylsulfonamide group preferably has 1 to 20 carbon atoms, and more preferably 1 to 12 carbon atoms.
  • Examples of the arylsulfonamido group include a benzenesulfonamido group and p-toluenesulfonamido group.
  • the aralkyl group preferably has 7 to 20 carbon atoms, and more preferably 7 to 12 carbon atoms. Examples of the aralkyl group include a benzyl group, a phenethyl group, and a naphthylmethyl group.
  • the alkoxycarbonyl group preferably has 1 to 20 carbon atoms, more preferably 2 to 12 carbon atoms.
  • Examples of the alkoxycarbonyl group include a methoxycarbonyl group.
  • the aryloxycarbonyl group preferably has 7 to 20 carbon atoms, and more preferably 7 to 12 carbon atoms.
  • Examples of the aryloxycarbonyl group include a phenoxycarbonyl group.
  • the aralkyloxycarbonyl group preferably has 8 to 20 carbon atoms, and more preferably 8 to 12 carbon atoms. Examples of the aralkyloxycarbonyl group include a benzyloxycarbonyl group.
  • the acyloxy group preferably has 1 to 20 carbon atoms, more preferably 2 to 12 carbon atoms.
  • Examples of the acyloxy group include an acetoxy group and a benzoyloxy group.
  • the alkenyl group preferably has 2 to 20 carbon atoms, and more preferably 2 to 12 carbon atoms. Examples of the alkenyl group include vinyl group, allyl group and isopropenyl group.
  • the alkynyl group preferably has 2 to 20 carbon atoms, and more preferably 2 to 12 carbon atoms. Examples of the alkynyl group include an ethynyl group.
  • the alkylsulfonyl group preferably has 1 to 20 carbon atoms, and more preferably 1 to 12 carbon atoms.
  • alkylsulfonyl group examples include a methylsulfonyl group and an ethylsulfonyl group.
  • the arylsulfonyl group preferably has 6 to 20 carbon atoms, and more preferably 6 to 12 carbon atoms.
  • Examples of the arylsulfonyl group include a phenylsulfonyl group and a naphthylsulfonyl group.
  • the alkyloxysulfonyl group preferably has 1 to 20 carbon atoms, and more preferably 1 to 12 carbon atoms.
  • alkyloxysulfonyl group examples include a methoxysulfonyl group and an ethoxysulfonyl group.
  • the aryloxysulfonyl group preferably has 6 to 20 carbon atoms, and more preferably 6 to 12 carbon atoms.
  • Examples of the aryloxysulfonyl group include a phenoxysulfonyl group and a naphthoxysulfonyl group.
  • the alkylsulfonyloxy group preferably has 1 to 20 carbon atoms, and more preferably 1 to 12 carbon atoms.
  • Examples of the alkylsulfonyloxy group include a methylsulfonyloxy group and an ethylsulfonyloxy group.
  • the number of carbon atoms in the arylsulfonyloxy group is preferably 6-20, and more preferably 6-12.
  • Examples of the arylsulfonyloxy group include a phenylsulfonyloxy group and a naphthylsulfonyloxy group.
  • the substituents may be the same or different, and these substituents may be further substituted.
  • a 1 and A 2 are each independently a substituted or unsubstituted alkylene group, — (CH 2 CHRbO) x —, — (CH 2 CHRbO) x —CH 2 CHRb— is represented.
  • the alkylene group preferably has, for example, 1 to 5 carbon atoms, more preferably an ethylene group or a propylene group. These alkylene groups may be substituted with the above-described substituents.
  • Rb represents a hydrogen atom or an alkyl group.
  • the alkyl group is preferably, for example, a linear or branched alkyl group having 1 to 5 carbon atoms, and more preferably a methyl group. Further, these alkyl groups may be substituted with the above-described substituents. Further, x represents the average number of repeating units, preferably 1 to 100, more preferably 1 to 10. The number of repeating units has a distribution, the notation indicates an average value, and may be expressed by one digit after the decimal point.
  • Ra, Rb, and x have the same meaning as defined in the general formula (I).
  • y represents 0 or 1.
  • Z represents an alkyl group, —C ( ⁇ O) —Rc, —SO 2 —Rd, —SiRe 3 , and the alkyl group preferably has, for example, 1 to 12 carbon atoms, more preferably a methyl group or an ethyl group And more preferably a methyl group.
  • alkyl groups may be substituted with the substituent described above.
  • Rc, Rd and Re represent an alkyl group, a perfluoroalkyl group or an aryl group, and the alkyl group preferably has, for example, 1 to 12 carbon atoms, more preferably a methyl group or an ethyl group, and still more preferably a methyl group. .
  • These alkyl groups may be substituted with the substituent described above.
  • the perfluoroalkyl group preferably has, for example, 1 to 8 carbon atoms, more preferably a trifluoromethyl group or a pentafluoroethyl group, still more preferably a trifluoromethyl group.
  • the aryl group is preferably, for example, a phenyl group or a toluyl group, and more preferably a toluyl group. Furthermore, these alkyl groups, perfluoroalkyl groups, and aryl groups may be substituted with the above-described substituents.
  • Polymer (A) can be obtained by copolymerization of monomers (I) and (II) whose main copolymerization components form structural units represented by general formulas (I) and (II), respectively.
  • the polymer (A) of the present invention can be obtained by radical polymerization using a general-purpose polymerization catalyst.
  • the polymerization mode include bulk polymerization, solution polymerization, suspension polymerization, emulsion polymerization and the like, preferably solution polymerization.
  • the polymerization temperature varies depending on the initiator used, but is generally -10 to 250 ° C, preferably 0 to 200 ° C, more preferably 10 to 100 ° C.
  • the number average molecular weight of the polymer (A) of the present invention is preferably in the range of 3,000 to 2,000,000, more preferably 4,000 to 500,000, still more preferably in the range of 5,000 to 100,000.
  • the number average molecular weight and molecular weight distribution of the polymer (A) of the present invention can be measured by generally known gel permeation chromatography (GPC).
  • the solvent to be used is not particularly limited as long as the polymer (A) is dissolved, and THF, DMF, and CH 2 Cl 2 are preferable, THF and DMF are more preferable, and DMF is more preferable.
  • the measurement temperature is not particularly limited, but 40 ° C. is preferable.
  • the polymer (A) preferably has a number average molecular weight of 0 to 5% by mass with a molecular weight of 1000 or less.
  • the amount of the low molecular component is small, it is possible to further reduce the storage stability of the device and the behavior of having a barrier in the direction perpendicular to the layer when exchanging charges in the direction perpendicular to the conductive layer.
  • the content of the molecular weight of 1000 or less is 0 to 5% by mass or less.
  • a redispersion method or preparative GPC is synthesized by synthesizing a monodisperse polymer by living polymerization.
  • a method of removing the low molecular weight component or suppressing the generation of the low molecular weight component can be used.
  • the reprecipitation method the polymer is dissolved in a solvent in which the polymer can be dissolved and dropped into a solvent having a lower solubility than the solvent in which the polymer is dissolved, thereby precipitating the polymer and removing low molecular weight components such as monomers, catalysts, and oligomers.
  • preparative GPC can be separated by molecular weight by, for example, recycling preparative GPCLC-9100 (manufactured by Nippon Analytical Industrial Co., Ltd.), polystyrene gel column, and passing the polymer-dissolved solution through the column. It is a method that can be removed.
  • the living polymerization the generation of the starting species does not change with time, and there are few side reactions such as termination reaction, and a polymer having a uniform molecular weight can be obtained. Since the molecular weight can be adjusted by the amount of monomer added, for example, if a polymer having a molecular weight of 20,000 is synthesized, the production of low molecular weight substances can be suppressed. From the viewpoint of production suitability, reprecipitation and living polymerization are preferred.
  • the molecular weight distribution of the polymer (A) according to the present invention is preferably 1.01 to 1.30, more preferably 1.01 to 1.25.
  • the molecular weight distribution is represented by a ratio of (weight average molecular weight / number average molecular weight).
  • Content with molecular weight of 1000 or less was converted to a ratio by integrating the area of molecular weight of 1000 or less and dividing by the area of the entire distribution in the distribution obtained by GPC.
  • the ratio of the conductive polymer to the polymer (A) is preferably from 30 to 900 parts by mass of the polymer (A) when the conductive polymer is 100 parts by mass. From the viewpoint of properties, the polymer (A) is more preferably 100 to 900 parts by mass.
  • the heat treatment in the present invention is performed at 150 ° C. or higher and 300 ° C. or lower.
  • the transparent conductive layer containing the conductive polymer and the polymer (A) is formed by heat treatment in a temperature range of 150 ° C. or more and 300 ° C. or less, the drive voltage is lowered when used for an organic electronic device.
  • the details of the principle about lowering the driving voltage are unknown, by treating the transparent conductive layer made of the polymer (A) and the conductive polymer at a high temperature, the polymer between the polymer in the transparent conductive layer and the patterned conductive layer is removed. This is thought to be because some kind of reaction occurs, making it easier to make contacts at the molecular level and creating a conductive path.
  • the film structure of the transparent conductive layer is stabilized, and becomes a dense film, so that it becomes strong, has an excellent cleaning resistance, and has an electrode with little deterioration under a high temperature environment.
  • the heat treatment temperature is less than 150 ° C.
  • the drive voltage does not decrease because the reaction between the transparent conductive layer and the patterned conductive layer is insufficient. Furthermore, moisture remains in the transparent conductive layer, deteriorating the life of the organic electronic device and the storage stability at high temperatures.
  • heat treatment is performed at a temperature higher than 300 ° C., a part of the bond of the conductive polymer starts to break and the resistance increases, so that it cannot be suitably used for an organic electronic device.
  • the heat treatment method is not particularly limited as long as it can be performed at 150 ° C. or more and 300 ° C. or less, and a known treatment method can be used. For example, a heater, an IR heater, vacuum heating, etc. can be mentioned, but it is not limited to this.
  • the heat treatment time is preferably 10 seconds or longer and 30 minutes or shorter, and more preferably 10 seconds or longer and 10 minutes or shorter. When the heat treatment time is 10 seconds or more, the moisture in the transparent conductive layer can be sufficiently reduced, and deterioration of the lifetime of the organic electronic device can be prevented. On the other hand, when the heat treatment is performed for 30 minutes or less, it is possible to prevent partial bond of the transparent conductive layer from starting to be broken and to prevent the resistance from being affected.
  • the patterned conductive layer according to the present invention is characterized in that a metal material or a metal oxide is formed in a pattern on a substrate.
  • a known metal oxide such as ITO or IZO may be used for the pattern conductive layer, or a metal material may be used.
  • a metal oxide is used, the transparency is superior to that using a metal material, but inferior to a metal material from the viewpoint of the resistance of the transparent electrode. Therefore, a metal material is more preferable for producing a large-area transparent electrode.
  • the metal material When a metal material is used for the pattern conductive layer, it becomes a substrate having both a light-impermeable conductive portion made of a metal material and a light-transmitting window portion, and an electrode substrate excellent in conductivity can be manufactured.
  • the metal material is not particularly limited as long as it is excellent in conductivity.
  • the metal material may be an alloy other than a metal such as gold, silver, copper, iron, nickel, and chromium.
  • the shape of the metal material is preferably metal fine particles or metal nanowires from the viewpoint of ease of pattern formation as described later, and the metal material is preferably silver from the viewpoint of conductivity.
  • the pattern shape is not particularly limited.
  • the conductive portion may be a stripe shape, a mesh shape, or a random network shape, but the aperture ratio is preferably 80% or more from the viewpoint of transparency.
  • the aperture ratio is the ratio of the light-impermeable conductive portion to the whole.
  • the aperture ratio of the stripe pattern having a line width of 100 ⁇ m and a line interval of 1 mm is about 90%.
  • the line width of the pattern is preferably 10 to 200 ⁇ m.
  • Desirable conductivity is obtained by setting the line width of the fine wire to 10 ⁇ m or more, and transparency is improved by setting the line width to 200 ⁇ m or less.
  • the height of the fine wire is preferably 0.1 to 10 ⁇ m. If the height of the fine wire is 0.1 ⁇ m or more, desired conductivity can be obtained, and if it is 10 ⁇ m or less, it causes current leakage and poor function layer thickness distribution in the formation of organic electronic devices. Can be prevented.
  • a metal layer can be formed on the entire surface of the substrate and formed by a known photolithography method.
  • a conductor layer is formed on the entire surface using one or more physical or chemical forming methods such as printing, vapor deposition, sputtering, plating, etc., or a metal foil is used as an adhesive.
  • the film After being laminated on the base material, the film can be processed into a desired stripe shape or mesh shape by etching using a known photolithography method.
  • a method of printing an ink containing metal fine particles in a desired shape by screen printing, or applying a plating catalyst ink to a desired shape by gravure printing or an ink jet method, followed by plating treatment As another method, a method using silver salt photographic technology can also be used.
  • a method using silver salt photographic technology can be carried out, for example, referring to paragraphs 0076 to 0112 of JP2009-140750A and examples.
  • the method for carrying out the plating process by gravure printing of the catalyst ink can be carried out with reference to, for example, JP-A-2007-281290.
  • a method for spontaneously forming a disordered network structure of conductive fine particles by applying and drying a liquid containing metal fine particles as described in JP-T-2005-530005 can be used.
  • a method for forming a random network structure of metal nanowires by applying and drying a coating solution containing metal nanowires as described in JP-T-2009-505358 can be used.
  • Metal nanowire refers to a fibrous structure having a metal element as a main component.
  • the metal nanowire in the present invention means a large number of fibrous structures having a minor axis from the atomic scale to the nm size.
  • the average length is preferably 3 ⁇ m or more, more preferably 3 to 500 ⁇ m, and particularly preferably 3 to 300 ⁇ m.
  • the relative standard deviation of the length is preferably 40% or less.
  • the average minor axis of the metal nanowire is preferably 10 to 300 nm, and more preferably 30 to 200 nm.
  • the relative standard deviation of the minor axis is preferably 20% or less.
  • the basis weight of the metal nanowire is preferably 0.005 to 0.5 g / m 2 , and more preferably 0.01 to 0.2 g / m 2 .
  • metal used for the metal nanowire copper, iron, cobalt, gold, silver or the like can be used, but silver is preferable from the viewpoint of conductivity.
  • a single metal may be used, in order to achieve both conductivity and stability (sulfurization, oxidation resistance, and migration resistance of metal nanowires), the main metal and one or more other metals May be included in any proportion.
  • the method for producing the metal nanowire is not particularly limited, and for example, known means such as a liquid phase method and a gas phase method can be used. Moreover, there is no restriction
  • a method for producing silver nanowires Adv. Mater. , 2002, 14, 833-837, Chem. Mater. 2002, 14, 4736-4745
  • a method for producing gold nanowires is disclosed in Japanese Patent Application Laid-Open No. 2006-233252
  • a method for producing copper nanowires is disclosed in Japanese Patent Application Laid-Open No. 2002-266007, and the like. Reference can be made to 2004-149871.
  • the above-described method for producing silver nanowires can be preferably applied because silver nanowires can be easily produced in an aqueous solution, and the conductivity of silver is maximum in metals.
  • the surface specific resistance of the thin line portion of the pattern conductive layer is preferably 100 ⁇ / ⁇ or less, and more preferably 20 ⁇ / ⁇ or less for increasing the area.
  • the surface specific resistance can be measured, for example, according to JIS K6911, ASTM D257, etc., and can be easily measured using a commercially available surface resistivity meter.
  • the heating temperature is preferably 150 ° C. or higher and 500 ° C. or lower, and more preferably 200 ° C. or higher and 350 ° C. or lower, if it is metal fine particles.
  • the transparent conductive layer may completely cover the patterned patterned conductive layer, or may partially cover or contact it.
  • the transparent conductive layer is formed into a film by applying and drying a dispersion containing a conductive polymer and polymer (A).
  • the application of the transparent conductive layer is performed by roll coating method, bar coating method, dip coating method, spin coating method, casting method, die coating method, Coating methods such as blade coating, bar coating, gravure coating, curtain coating, spray coating, doctor coating, and ink jet can be used.
  • a pattern conductive layer may be formed and transcribe
  • the pattern conductive layer is formed on the transfer film by the above-described method, and the transparent conductive layer is further formed by the above-described method.
  • the method etc. which form a transparent conductive layer by the well-known method by the inkjet method etc. in the nonelectroconductive part of a pattern conductive layer are mentioned.
  • the transparent conductive layer is further characterized by containing a polymer (A).
  • A a polymer
  • the conductive layer of the present invention By forming the conductive layer of the present invention having such a structure, high conductivity that cannot be obtained with a metal or metal oxide fine wire or a conductive polymer layer alone can be obtained uniformly in the electrode plane. .
  • the dry film thickness of the transparent conductive layer is preferably 30 to 2000 nm. From the viewpoint of conductivity, the thickness is more preferably 100 nm or more, and from the viewpoint of the surface smoothness of the electrode, it is further preferably 200 nm or more. Moreover, it is more preferable that it is 1000 nm or less from the point of transparency.
  • the transparent conductive layer After applying the transparent conductive layer, it can be appropriately dried. It is preferable to heat at a temperature equal to or lower than the heat treatment temperature as a drying treatment condition. For example, a drying treatment at 80 to 120 ° C. for 1 minute or more and 10 minutes or less can be performed.
  • a drying treatment at 80 to 120 ° C. for 1 minute or more and 10 minutes or less can be performed.
  • the resistance of a transparent conductive layer can be lowered
  • the film structure of the transparent conductive layer is stabilized and strengthened by processing at a high temperature. In addition, the resistance is remarkably improved by heating the electrode. With these effects, particularly in the case of an organic EL element, effects such as improvement of life and improvement of storage stability of the element under a high temperature environment can be obtained.
  • the dispersion containing the conductive polymer and the polymer (A) according to the present invention is a transparent non-conductive polymer, additive or cross-linking agent as long as the conductivity, transparency and smoothness of the conductive layer are simultaneously satisfied. It may contain.
  • the transparent non-conductive polymer a wide variety of natural polymer resins or synthetic polymer resins can be used, and a water-soluble polymer or an aqueous polymer emulsion is particularly preferable.
  • water-soluble polymers include natural polymers such as starch, gelatin, and agar, semi-synthetic polymers such as hydroxypropylmethylcellulose, carboxymethylcellulose, and hydroxyethylcellulose, cellulose derivatives, synthetic polymers such as polyvinyl alcohol, and polyacrylic acid polymers.
  • Polyacrylamide, polyethylene oxide, polyvinylpyrrolidone, etc., and aqueous polymer emulsions include acrylic resins (acrylic silicone modified resins, fluorine modified acrylic resins, urethane modified acrylic resins, epoxy modified acrylic resins, etc.), polyester resins, urethane Resin, vinyl acetate resin and the like can be used.
  • Synthetic polymer resins include transparent thermoplastic resins (for example, polyvinyl chloride, vinyl chloride-vinyl acetate copolymer, polymethyl methacrylate, nitrocellulose, chlorinated polyethylene, chlorinated polypropylene, vinylidene fluoride), A transparent curable resin (for example, a melamine acrylate, urethane acrylate, epoxy resin, polyimide resin, or a silicone resin such as an acrylic-modified silicate) that can be cured by heat, light, electron beam, or radiation can be used.
  • transparent thermoplastic resins for example, polyvinyl chloride, vinyl chloride-vinyl acetate copolymer, polymethyl methacrylate, nitrocellulose, chlorinated polyethylene, chlorinated polypropylene, vinylidene fluoride
  • a transparent curable resin for example, a melamine acrylate, urethane acrylate, epoxy resin, polyimide resin, or a silicone resin such as an acrylic-modified silicate
  • additives examples include plasticizers, stabilizers such as antioxidants and sulfurization inhibitors, surfactants, dissolution accelerators, polymerization inhibitors, and colorants such as dyes and pigments.
  • solvents for example, organic solvents such as water, alcohols, glycols, cellosolves, ketones, esters, ethers, amides, hydrocarbons, etc. are used. May be included.
  • crosslinking agent for the polymer (A) for example, an oxazoline crosslinking agent, a carbodiimide crosslinking agent, a blocked isocyanate crosslinking agent, an epoxy crosslinking agent, a melamine crosslinking agent, an aldehyde crosslinking agent, or the like is used alone or in combination. be able to.
  • the transparent electrode of the present invention can be used for various organic electronic devices.
  • An organic electronic device has an anode electrode and a cathode electrode on a support, and has at least one organic functional layer between the electrodes.
  • the organic functional layer include, but are not particularly limited to, an organic light emitting layer, an organic photoelectric conversion layer, and a liquid crystal polymer layer.
  • INDUSTRIAL APPLICABILITY The present invention is particularly effective when the functional layer is a thin film and is an organic light emitting layer or an organic photoelectric conversion layer that is a current-driven device, and can be applied to organic electronic devices such as organic EL devices and solar cells.
  • Preparation of conductive layer The following coating liquids A to I are applied onto a glass substrate by adjusting the slit gap of the extrusion head so as to have a dry film thickness of 300 nm using an extrusion method, and heated at 100 ° C. for 1 minute to form a conductive layer A. ⁇ I.
  • Synthesis Example 3 (Synthesis of P-3 as polymer (A)) After adding 100 ml of THF to a 200 ml three-necked flask and heating to reflux for 10 minutes, the mixture was cooled to room temperature under nitrogen. 2-hydroxyethyl acrylate (4.1 g, 35 mmol, molecular weight: 116.05), Bremmer PME-900 (7.4 g, 15 mmol, molecular weight: 496.29), AIBN (0.8 g, 5 mmol, molecular weight: 164.11) ) And heated to reflux for 5 hours. After cooling to room temperature, the reaction solution was dropped into 3000 ml of MEK and stirred for 1 hour.
  • Synthesis Example 4 (Synthesis of P-4) After adding 100 ml of THF to a 200 ml three-necked flask and heating to reflux for 10 minutes, the mixture was cooled to room temperature under nitrogen. 2-hydroxyethyl acrylate (0.6 g, 5 mmol, molecular weight: 116.05), Bremer PME-900 (21 g, 45 mmol, molecular weight: 496.29), AIBN (0.8 g, 5 mmol, molecular weight: 164.11). The mixture was heated to reflux for 5 hours. After cooling to room temperature, the reaction solution was dropped into 3000 ml of MEK and stirred for 1 hour.
  • Conductive layers A to I were heat-treated at the following temperatures to prepare electrodes 1 to 24, respectively. The heating time was 2 minutes.
  • the conductive layer A was heated at 150 ° C. and 200 ° C. to form electrodes 1 and 2.
  • Conductive layer B was heated at 130 ° C., 150 ° C., 200 ° C., 250 ° C., 300 ° C., and 330 ° C. to form electrodes 3-8.
  • the conductive layer C was heated at 200 ° C. and 250 ° C. to form electrodes 9 and 10.
  • the conductive layer D was heated at 200 ° C. and 250 ° C. to form electrodes 11 and 12.
  • the conductive layer E was heated at 150 ° C., 200 ° C., and 250 ° C. to form electrodes 13 to 15.
  • the conductive layer F was heated at 150 ° C., 200 ° C., and 250 ° C. to form electrodes 16 to 18.
  • the conductive layer G was heated at 200 ° C. and 250 ° C. to form electrodes 19 and 20.
  • the conductive layer H was heated at 200 ° C. and 250 ° C. to form electrodes 21 and 22.
  • the conductive layer I was heated at 200 ° C. and 250 ° C. to form electrodes 23 and 24.
  • Total light transmittance was measured using a HAZE METER NDH5000 manufactured by Tokyo Denshoku Co., Ltd., and evaluated according to the following criteria. Since it is used for an organic electronic device, it is preferably 80% or more.
  • the surface resistance was measured using a resistivity meter (Loresta GP (MCP-T610 type): manufactured by Mitsubishi Chemical Analytech Co., Ltd.).
  • the surface resistance is preferably 1500 ⁇ / ⁇ or less, and more preferably 1000 ⁇ / ⁇ or less in order to increase the area of the organic electronic device.
  • the cleaning liquid is ultra-pure water prepared using Milli-Q water production equipment Milli-Q Advantage (Nippon Millipore Corporation). A substrate is attached to the cleaning liquid for 10 minutes, and the surface of the transparent conductive layer is not visually disturbed. The following criteria evaluated.
  • the organic EL devices 1 to 14 were formed by using the organic EL electrodes 1 to 14 by the following method so as to have a combination of the composition of the substrate and the conductive layer shown in Table 2 and the heat treatment temperature. Details of the production will be described below.
  • a thin wire grid was created in the center of a 3 cm square glass substrate with a size of 1.5 cm ⁇ 1.5 cm.
  • the fine wire lattice metal material was produced by the inkjet method shown below.
  • a silver nanoparticle ink (Harima NPS-J manufactured by Harima Kasei Co., Ltd.) is used as an ink jet recording head, and has a pressure applying means and an electric field applying means, and has a nozzle diameter of 25 ⁇ m, a driving frequency of 12 kHz, a number of nozzles of 128, a nozzle density of 180 dpi Is an ink jet printing apparatus equipped with a piezo head of 1 inch, that is, 2.54 cm), and the line width is within a range of 1.5 cm ⁇ 1.5 cm at the center of a 3 cm square glass substrate.
  • a drying process was performed at 220 ° C. for 60 minutes.
  • the silver nanowire dispersion liquid is applied using a bar coating method so that the basis weight of the silver nanowires is 0.06 g / m 2 , dried at 110 ° C. for 5 minutes, and heated to form a silver nanowire substrate. Produced. The excess part was wiped off.
  • Silver nanowire dispersions are available from Adv. Mater. , 2002, 14, 833 to 837 with reference to the method described in PVP K30 (molecular weight 50,000; manufactured by ISP), silver nanowires having an average minor axis of 75 nm and an average length of 35 ⁇ m were produced. Silver nanowires are filtered off using a filtration membrane, washed, and then redispersed in an aqueous solution containing 25% by mass of hydroxypropylmethylcellulose 60SH-50 (manufactured by Shin-Etsu Chemical Co., Ltd.) to prepare a silver nanowire dispersion. did.
  • ITO substrate An ITO (indium tin oxide) film having a thickness of 150 nm was formed on a 3 cm square glass substrate by a sputtering method to form an ITO substrate, and was patterned by a photolithographic method so that the ITO remained in a central area of 15 mm ⁇ 15 mm.
  • organic EL devices were produced as anode electrodes by the following procedure.
  • the hole transport layer and subsequent layers were formed by vapor deposition.
  • the electrodes 1 and 2 laminated with the conductive polymer were not cleaned because a part of the conductive layer was peeled off by cleaning. After cleaning, the organic EL electrodes 1 to 14 were subjected to the same treatment to produce organic EL devices 1 to 14, respectively.
  • Each of the deposition crucibles in a commercially available vacuum deposition apparatus was filled with a constituent material for each layer in a necessary amount for device fabrication.
  • the evaporation crucible used was made of a resistance heating material made of molybdenum or tungsten.
  • an organic EL layer composed of a hole transport layer, an organic light emitting layer, a hole blocking layer, and an electron transport layer was sequentially formed in a range of a central portion of 17 mm ⁇ 17 mm.
  • each light emitting layer was provided in the following procedures.
  • Compound 2 is 13.0% by mass, Compound 3 is 3.7% by mass, and Compound 5 is 83.3% by mass.
  • Co-evaporation was performed in the same region as the hole transport layer at a rate of 0.1 nm / second to form a green-red phosphorescent organic light emitting layer having a maximum emission wavelength of 622 nm and a thickness of 10 nm.
  • compound 4 and compound 5 are deposited in the same region as the organic light-emitting layer emitting green-red phosphorescence at a deposition rate of 0.1 nm / second so that compound 4 is 10.0% by mass and compound 5 is 90.0% by mass.
  • Co-evaporation was performed to form a blue phosphorescent organic light emitting layer having an emission maximum wavelength of 471 nm and a thickness of 15 nm.
  • a hole blocking layer was formed by depositing compound 6 in a thickness of 5 nm on the same region as the formed organic light emitting layer.
  • CsF was co-evaporated with compound 6 so as to have a film thickness ratio of 10% to form an electron transport layer having a thickness of 45 nm.
  • a flexible seal in which an adhesive is applied around the anode except for the end portion, and polyethylene terephthalate is used as a base material and Al 2 O 3 is deposited in a thickness of 300 nm so that external terminals for the cathode and anode can be formed.
  • the adhesive was cured by heat treatment to form a sealing film, and an organic EL device having a light emitting area of 15 mm ⁇ 15 mm was produced.
  • the surface uniformity of the current was determined by evaluating the light emission uniformity. Using a source measure unit type 2400 manufactured by KEITHLEY, a direct current voltage was applied to each organic EL element to emit light so that the luminance became 1000 cd / m 2 , and the light emission state was visually evaluated according to the following criteria.
  • Uniform light emission, no problem
  • Light emission unevenness is partially observed (drive voltage)
  • An organic EL device made of ITO instead of a transparent electrode for organic EL prepared as an anode electrode was prepared by the same method as described above, with the voltage when light was emitted at an initial luminance of 5000 cd / m 2 as a drive voltage, and the ratio to this was evaluated using the following indicators. It is preferably less than 95% and more preferably less than 90%.
  • the obtained organic EL device was continuously emitted at an initial luminance of 5000 cd / m 2 , the voltage was fixed, and the time until the luminance was reduced by half was determined.
  • An organic EL device made of ITO instead of the transparent electrode for organic EL prepared as the anode electrode was prepared by the same method as described above, the ratio to this was determined, and evaluated according to the following criteria. 100% or more is preferable, and 150% or more is more preferable.
  • An organic EL device made of ITO instead of the organic EL transparent electrode prepared as the anode electrode was prepared in the same manner as described above, the ratio to this was determined, and the following indicators were evaluated. 100% or more is preferable, and 120% or more is more preferable.

Abstract

The purpose of the present invention is to provide a method for producing a transparent electrode having superior conductivity, transparency, resistance to washing, and surface uniformity, and having superior drive voltage when used in an organic electronic device. The purpose is also to provide an organic electronic device using the same. This method for producing a transparent electrode is a method for producing a transparent electrode that has a patterned conductive layer on a transparent substrate and a transparent conductive layer containing at least a conductive polymer and a nonconductive polymer that contains a hydroxyl group. The method is characterized by the patterned conductive layer being a metal oxide or a metal material. The method is also characterized by the nonconductive polymer that contains a hydroxyl group being a polymer (A) containing a structural unit selected from general formula (I) and general formula (II) and the transparent conductive layer being formed by heat treatment in a temperature range of 150°C - 300°C.

Description

透明電極の製造方法及び有機電子デバイスMethod for producing transparent electrode and organic electronic device
 本発明は、導電性、透明性、洗浄耐性、電流の面均一性に優れ、有機電子デバイスに用いた場合、駆動電圧に優れた透明電極の製造方法、及びそれを用いた有機電子デバイスに関するものである。 TECHNICAL FIELD The present invention relates to a method for producing a transparent electrode excellent in electrical conductivity, transparency, washing resistance, and current uniformity, and excellent in driving voltage when used in an organic electronic device, and an organic electronic device using the same. It is.
 近年、有機ELや有機太陽電池といった有機電子デバイスが注目されており、このようなデバイスにおいて、透明電極は必須の構成技術となっている。従来、透明電極は、透明基板上に、インジウム-スズの複合酸化物(ITO)膜を真空蒸着法やスパッタリング法で製膜したITO透明電極が、その導電性や透明性といった性能の点から、主に使用されてきた。しかし、真空蒸着法やスパッタリング法を用いた透明電極は生産性が悪いため製造コストが高いという問題があった。さらに、近年、有機電子デバイスに使用される透明電極には、大面積かつ低抵抗値が要求されており、ITO透明電極の抵抗値では不十分となってきている。 In recent years, organic electronic devices such as organic EL and organic solar cells have attracted attention. In such devices, transparent electrodes have become an indispensable constituent technology. Conventionally, a transparent electrode is an ITO transparent electrode in which an indium-tin composite oxide (ITO) film is formed on a transparent substrate by a vacuum deposition method or a sputtering method. From the viewpoint of performance such as conductivity and transparency, It has been mainly used. However, the transparent electrode using the vacuum evaporation method or the sputtering method has a problem that the production cost is high because of poor productivity. Furthermore, in recent years, transparent electrodes used in organic electronic devices have been required to have a large area and a low resistance value, and the resistance value of ITO transparent electrodes has become insufficient.
 大面積かつ低抵抗値が要求される製品にも対応できるよう、パターン状に形成された金属細線に導電性ポリマー等の透明導電層を積層し、電流の面均一性と高い導電性を併せ持つ透明電極が開発されている(例えば、特許文献1、2参照)。このような構成では、透明電極は金属細線部と導電性ポリマー等の透明導電層からなる開口部からなり、電流の面均一性の観点から、透明導電層の抵抗は低いほど望ましい。透明導電層の抵抗が低いほど、開口部の面積を大きしても、電流の面均一性が保持できるため、開口部の大きい透明性に優れた電極が作成できる。また、このような構成では有機電子デバイスのリークの原因となる金属細線の凹凸を、導電性ポリマー等の透明導電層で平滑にする必要がある。そのため、導電性ポリマー等の透明導電層の厚膜化が必須となる。このとき透明導電層に導電性ポリマーを用い厚膜化すると、導電性ポリマーの着色により、透明電極の透明性が著しく低下し、有機電子デバイスの性能を劣化させてしまうという課題があった。 A transparent conductive layer, such as a conductive polymer, is laminated on a thin metal wire formed in a pattern so that it can be used for products that require a large area and low resistance. Transparent with both current surface uniformity and high conductivity An electrode has been developed (see, for example, Patent Documents 1 and 2). In such a configuration, the transparent electrode is composed of an opening made of a thin metal wire portion and a transparent conductive layer such as a conductive polymer. From the viewpoint of current surface uniformity, the resistance of the transparent conductive layer is preferably as low as possible. As the resistance of the transparent conductive layer is lower, even if the area of the opening is increased, the surface uniformity of the current can be maintained, so that an electrode having a large opening and excellent transparency can be produced. Moreover, in such a structure, it is necessary to smooth the unevenness | corrugation of the metal fine wire which causes the leak of an organic electronic device with transparent conductive layers, such as a conductive polymer. Therefore, it is essential to increase the thickness of the transparent conductive layer such as a conductive polymer. At this time, if the transparent conductive layer is made thick by using a conductive polymer, there is a problem that the transparency of the transparent electrode is remarkably lowered due to coloring of the conductive polymer and the performance of the organic electronic device is deteriorated.
 透明導電層の着色を低減する方法として、導電性ポリマーと水酸基含有非導電性ポリマーを混合したポリマーを透明導電層として用いることが知られている。導電性ポリマーと相溶性のある水酸基含有非導電性ポリマーとしては、ポリビニルアルコール(PVA)、ポリメタクリル酸(PMAA)などからなる群から選択されたポリマーが開示されている(例えば、特許文献3、4)。しかし、これらを透明導電層として用いた場合、非導電性ポリマーの添加により、導電性ポリマーの比率以上に導電性が低下するという課題があった。また、これらを金属細線と併用した透明電極では、有機電子デバイスにおいて駆動電圧が高くなるという課題があった。さらに、水酸基含有非導電性ポリマーの一部は加熱すると非導電性ポリマーが着色し、透明電極の透明性が低下するという課題があった。 As a method for reducing the coloring of the transparent conductive layer, it is known to use a polymer obtained by mixing a conductive polymer and a hydroxyl group-containing non-conductive polymer as the transparent conductive layer. As the hydroxyl group-containing non-conductive polymer compatible with the conductive polymer, a polymer selected from the group consisting of polyvinyl alcohol (PVA), polymethacrylic acid (PMAA) and the like is disclosed (for example, Patent Document 3, 4). However, when these were used as a transparent conductive layer, there was a problem that the conductivity decreased more than the ratio of the conductive polymer due to the addition of the nonconductive polymer. Moreover, in the transparent electrode which used these together with the metal fine wire, there existed a subject that a drive voltage became high in an organic electronic device. Furthermore, when a part of the hydroxyl group-containing non-conductive polymer is heated, the non-conductive polymer is colored, and there is a problem that the transparency of the transparent electrode is lowered.
特開2005-302508号公報JP 2005-302508 A 特開2009-87843号公報JP 2009-87843 A 特開2001-115098号公報Japanese Patent Laid-Open No. 2001-115098 特許第3716167号公報Japanese Patent No. 3716167
 本発明は、上記課題に鑑みなされたものであり、その目的は、導電性、透明性、洗浄耐性、電流の面均一性に優れ、有機電子デバイスに用いた場合、駆動電圧に優れた透明電極の製造方法、及びそれを用いた有機電子デバイスを提供することにある。 The present invention has been made in view of the above problems, and its purpose is to provide excellent conductivity, transparency, washing resistance, surface uniformity of current, and a transparent electrode excellent in driving voltage when used in an organic electronic device. And an organic electronic device using the same.
 本発明の上記目的は、以下の構成により達成される。 The above object of the present invention is achieved by the following configuration.
 1.透明基板上にパターン導電層と少なくとも導電性ポリマーと水酸基含有非導電性ポリマーを含む透明導電層とを有する透明電極の製造方法において、パターン導電層が金属酸化物または金属材料であり、且つ前記水酸基含有非導電性ポリマーが下記一般式(I)及び一般式(II)から選ばれる構造単位を含むポリマー(A)であり、且つ前記透明導電層が、150℃以上300℃以下の温度範囲で加熱処理されて形成されたことを特徴とする透明電極の製造方法。 1. In the method for producing a transparent electrode having a patterned conductive layer and a transparent conductive layer containing at least a conductive polymer and a hydroxyl group-containing non-conductive polymer on a transparent substrate, the patterned conductive layer is a metal oxide or a metal material, and the hydroxyl group The contained nonconductive polymer is a polymer (A) containing a structural unit selected from the following general formula (I) and general formula (II), and the transparent conductive layer is heated in a temperature range of 150 ° C. or higher and 300 ° C. or lower. A method for producing a transparent electrode, characterized by being formed by processing.
Figure JPOXMLDOC01-appb-C000002
Figure JPOXMLDOC01-appb-C000002
 〔式中、R、Rはそれぞれ独立に水素原子、メチル基を表し、Q、Qはそれぞれ独立に-C(=O)O-、-C(=O)NRa-を表す。Raは水素原子、アルキル基を表し、A、Aはそれぞれ独立に置換或いは無置換アルキレン基、-(CHCHRbO)-、-(CHCHRbO)-CHCHRb-を表す。Rbは水素原子、アルキル基を示し、xは平均繰り返しユニット数を表す。yは0、1を表す。Zはアルキル基、-C(=O)-Rc、-SO-Rd、-SiReを表す。Rc、Rd、Reはアルキル基、パーフルオロアルキル基、アリール基を表す。ポリマー(A)内の一般式(I)の構造単位の構成率をm、一般式(II)の構造単位の構成率をnとすると、m+nの構成率(mol%)は、50≦m+n≦100であり、m/(m+n)≧0.2である。〕
 2.前記金属材料が金属微粒子または金属ナノワイヤであることを特徴とする前記1に記載の透明電極の製造方法。
[Wherein, R 1 and R 2 each independently represent a hydrogen atom or a methyl group, and Q 1 and Q 2 each independently represent —C (═O) O— or —C (═O) NRa—. Ra represents a hydrogen atom, an alkyl group, A 1, A 2 each independently represent a substituted or unsubstituted alkylene group, - (CH 2 CHRbO) x -, - (CH 2 CHRbO) x represents a -CH 2 CHRb-. Rb represents a hydrogen atom or an alkyl group, and x represents the average number of repeating units. y represents 0 or 1; Z represents an alkyl group, —C (═O) —Rc, —SO 2 —Rd, —SiRe 3 . Rc, Rd, and Re represent an alkyl group, a perfluoroalkyl group, and an aryl group. When the constituent ratio of the structural unit of the general formula (I) in the polymer (A) is m and the constituent ratio of the structural unit of the general formula (II) is n, the constituent ratio (mol%) of m + n is 50 ≦ m + n ≦ 100 and m / (m + n) ≧ 0.2. ]
2. 2. The method for producing a transparent electrode according to 1 above, wherein the metal material is metal fine particles or metal nanowires.
 3.前記1または2に記載の製造方法で製造された透明電極を用いたことを特徴とする有機電子デバイス。 3. An organic electronic device using the transparent electrode manufactured by the manufacturing method according to 1 or 2 above.
 本発明により、有機電子デバイスに好適に用いることができ、導電性、透明性、洗浄耐性、電流の面均一性に優れ、有機電子デバイスに用いた場合、駆動電圧に優れた透明電極の製造方法を提供することができた。 INDUSTRIAL APPLICABILITY According to the present invention, a method for producing a transparent electrode that can be suitably used for an organic electronic device, has excellent conductivity, transparency, washing resistance, and surface uniformity of current, and has excellent driving voltage when used in an organic electronic device. Could be provided.
 以下、本発明を実施するための形態について詳細に説明する。 Hereinafter, embodiments for carrying out the present invention will be described in detail.
 本発明者は、上記課題に鑑み鋭意検討を行った結果、導電性ポリマーと水酸基含有非導電性ポリマーとしてポリマー(A)を用いることで、導電性ポリマーと従来の水酸基含有非導電性ポリマーを用いたとき課題となる着色による透明性の低下と非導電性ポリマーの添加による導電性の低下を抑えることができる。さらに導電性ポリマーとポリマー(A)からなる透明導電層が加熱処理されて形成されることにより、有機電子デバイスに用いた場合、駆動電圧に優れた透明電極が得られることを見出し、本発明に至った次第である。 As a result of intensive studies in view of the above problems, the present inventor uses a conductive polymer and a conventional hydroxyl group-containing non-conductive polymer by using the polymer (A) as the conductive polymer and the hydroxyl group-containing non-conductive polymer. In this case, the decrease in transparency due to coloring and the decrease in conductivity due to the addition of a nonconductive polymer can be suppressed. Furthermore, when a transparent conductive layer composed of a conductive polymer and a polymer (A) is formed by heat treatment, it is found that when used in an organic electronic device, a transparent electrode excellent in driving voltage can be obtained. It is up to you.
 (透明基板)
 本発明に用いられる透明基板としては、150℃以上の高温処理を行っても基板の変形などがなければ特に制限はなく、ガラス転移温度(Tg)が150℃以上の材料が好適に用いられる。また、材料、形状、構造、厚み、硬度等については公知のものの中から適宜選択することができるが、高い透明性を有していることが好ましい。例えばガラス基板やポリイミドフィルムなどが挙げられるが、透明性、耐熱性、取り扱いやすさ、バリア性の点から、ガラス基板がより好ましい。
(Transparent substrate)
The transparent substrate used in the present invention is not particularly limited as long as the substrate is not deformed even if a high temperature treatment at 150 ° C. or higher is performed, and a material having a glass transition temperature (Tg) of 150 ° C. or higher is preferably used. The material, shape, structure, thickness, hardness and the like can be appropriately selected from known materials, but preferably have high transparency. Examples thereof include a glass substrate and a polyimide film, but a glass substrate is more preferable from the viewpoints of transparency, heat resistance, ease of handling, and barrier properties.
 本発明に用いられる透明基板には、塗布液の濡れ性や接着性を確保するために、表面処理を施すことや易接着層を設けることができる。表面処理や易接着層については従来公知の技術を使用できる。例えば、表面処理としては、コロナ放電処理、火炎処理、紫外線処理、高周波処理、グロー放電処理、活性プラズマ処理、レーザー処理等の表面活性化処理を挙げることができる。また、易接着層としては、ポリエステル、ポリアミド、ポリウレタン、ビニル系共重合体、ブタジエン系共重合体、アクリル系共重合体、ビニリデン系共重合体、エポキシ系共重合体等を挙げることができる。易接着層は単層でもよいが、接着性を向上させるためには2層以上の構成にしてもよい。また、透明基板がフィルムの場合には必要に応じてバリアコート層が予め形成されていてもよいし、ハードコート層が予め形成されていてもよい。バリアコート層としては表面または裏面には、無機物、有機物の被膜またはその両者のハイブリッド被膜が形成されていてもよく、JIS K 7129-1992に準拠した方法で測定された水蒸気透過度(25±0.5℃、相対湿度(90±2)%RH)が、1×10-3g/(m・24h)以下のバリア性を持つ透明基板であることが好ましく、さらには、JIS K 7126-1987に準拠した方法で測定された酸素透過度が、1×10-3ml/(m・24h・atm)以下、水蒸気透過度(25±0.5℃、相対湿度(90±2)%RH)が、1×10-3g/(m・24h)以下であることが好ましい。 The transparent substrate used in the present invention can be subjected to a surface treatment or an easy adhesion layer in order to ensure the wettability and adhesiveness of the coating solution. A conventionally well-known technique can be used about a surface treatment or an easily bonding layer. For example, the surface treatment includes surface activation treatment such as corona discharge treatment, flame treatment, ultraviolet treatment, high frequency treatment, glow discharge treatment, active plasma treatment, and laser treatment. Examples of the easy adhesion layer include polyester, polyamide, polyurethane, vinyl copolymer, butadiene copolymer, acrylic copolymer, vinylidene copolymer, and epoxy copolymer. The easy adhesion layer may be a single layer, but may be composed of two or more layers in order to improve adhesion. Further, when the transparent substrate is a film, a barrier coat layer may be formed in advance as necessary, or a hard coat layer may be formed in advance. As the barrier coat layer, an inorganic film, an organic film or a hybrid film of both may be formed on the front surface or the back surface, and the water vapor transmission rate (25 ± 0) measured by a method according to JIS K 7129-1992. 0.5 ° C. and relative humidity (90 ± 2)% RH) is preferably a transparent substrate having a barrier property of 1 × 10 −3 g / (m 2 · 24 h) or less, and JIS K 7126- Oxygen permeability measured by a method according to 1987 is 1 × 10 −3 ml / (m 2 · 24 h · atm) or less, water vapor permeability (25 ± 0.5 ° C., relative humidity (90 ± 2)% RH) is preferably 1 × 10 −3 g / (m 2 · 24 h) or less.
 バリア層を形成する材料としては、水分や酸素等デバイスの劣化をもたらすものの浸入を抑制する機能を有する材料であればよく、例えば、酸化珪素、二酸化珪素、窒化珪素等を用いることができる。さらに該膜の脆弱性を改良するためにこれら無機層と有機材料からなる層の積層構造を持たせることがより好ましい。無機層と有機層の積層順については特に制限はないが、両者を交互に複数回積層させることが好ましい。 The material for forming the barrier layer may be any material that has a function of suppressing the intrusion of devices that cause deterioration of the device such as moisture and oxygen. For example, silicon oxide, silicon dioxide, silicon nitride, or the like can be used. Further, in order to improve the brittleness of the film, it is more preferable to have a laminated structure of these inorganic layers and organic material layers. Although there is no restriction | limiting in particular about the lamination | stacking order of an inorganic layer and an organic layer, It is preferable to laminate | stack both alternately several times.
 (導電性ポリマー)
 本発明に係る導電性ポリマーは、π共役系導電性高分子とポリ陰イオンとを有してなる導電性ポリマーである。こうした導電性ポリマーは、後述するπ共役系導電性高分子を形成する前駆体モノマーを、適切な酸化剤と酸化触媒と後述のポリ陰イオンの存在下で化学酸化重合することによって容易に製造できる。
(Conductive polymer)
The conductive polymer according to the present invention is a conductive polymer having a π-conjugated conductive polymer and a polyanion. Such a conductive polymer can be easily produced by chemical oxidative polymerization of a precursor monomer that forms a π-conjugated conductive polymer described later in the presence of an appropriate oxidizing agent, an oxidation catalyst, and a poly anion described later. .
 (π共役系導電性高分子)
 本発明に用いるπ共役系導電性高分子としては、特に限定されず、ポリチオフェン(基本のポリチオフェンを含む、以下同様)類、ポリピロール類、ポリインドール類、ポリカルバゾール類、ポリアニリン類、ポリアセチレン類、ポリフラン類、ポリパラフェニレンビニレン類、ポリアズレン類、ポリパラフェニレン類、ポリパラフェニレンサルファイド類、ポリイソチアナフテン類、ポリチアジル類、の鎖状導電性ポリマーを利用することができる。中でも、導電性、透明性、安定性等の観点からポリチオフェン類やポリアニリン類が好ましい。ポリエチレンジオキシチオフェンが最も好ましい。
(Π-conjugated conductive polymer)
The π-conjugated conductive polymer used in the present invention is not particularly limited, and includes polythiophenes (including basic polythiophenes, the same applies hereinafter), polypyrroles, polyindoles, polycarbazoles, polyanilines, polyacetylenes, polyfurans. , Polyparaphenylene vinylenes, polyazulenes, polyparaphenylenes, polyparaphenylene sulfides, polyisothianaphthenes, polythiazyl chain conductive polymers can be used. Of these, polythiophenes and polyanilines are preferable from the viewpoints of conductivity, transparency, stability, and the like. Most preferred is polyethylene dioxythiophene.
 (π共役系導電性高分子前駆体モノマー)
 π共役系導電性高分子の形成に用いられる前駆体モノマーは、分子内にπ共役系を有し、適切な酸化剤の作用によって高分子化した際にもその主鎖にπ共役系が形成されるものである。例えば、ピロール類及びその誘導体、チオフェン類及びその誘導体、アニリン類及びその誘導体等が挙げられる。
(Π-conjugated conductive polymer precursor monomer)
Precursor monomers used in the formation of π-conjugated conductive polymers have a π-conjugated system in the molecule, and even when polymerized by the action of an appropriate oxidant, a π-conjugated system is formed in the main chain. It is what is done. Examples thereof include pyrroles and derivatives thereof, thiophenes and derivatives thereof, anilines and derivatives thereof, and the like.
 前駆体モノマーの具体例としては、ピロール、3-メチルピロール、3-エチルピロール、3-n-プロピルピロール、3-ブチルピロール、3-オクチルピロール、3-デシルピロール、3-ドデシルピロール、3,4-ジメチルピロール、3,4-ジブチルピロール、3-カルボキシルピロール、3-メチル-4-カルボキシルピロール、3-メチル-4-カルボキシエチルピロール、3-メチル-4-カルボキシブチルピロール、3-ヒドロキシピロール、3-メトキシピロール、3-エトキシピロール、3-ブトキシピロール、3-ヘキシルオキシピロール、3-メチル-4-ヘキシルオキシピロール、チオフェン、3-メチルチオフェン、3-エチルチオフェン、3-プロピルチオフェン、3-ブチルチオフェン、3-ヘキシルチオフェン、3-ヘプチルチオフェン、3-オクチルチオフェン、3-デシルチオフェン、3-ドデシルチオフェン、3-オクタデシルチオフェン、3-ブロモチオフェン、3-クロロチオフェン、3-ヨードチオフェン、3-シアノチオフェン、3-フェニルチオフェン、3,4-ジメチルチオフェン、3,4-ジブチルチオフェン、3-ヒドロキシチオフェン、3-メトキシチオフェン、3-エトキシチオフェン、3-ブトキシチオフェン、3-ヘキシルオキシチオフェン、3-ヘプチルオキシチオフェン、3-オクチルオキシチオフェン、3-デシルオキシチオフェン、3-ドデシルオキシチオフェン、3-オクタデシルオキシチオフェン、3,4-ジヒドロキシチオフェン、3,4-ジメトキシチオフェン、3,4-ジエトキシチオフェン、3,4-ジプロポキシチオフェン、3,4-ジブトキシチオフェン、3,4-ジヘキシルオキシチオフェン、3,4-ジヘプチルオキシチオフェン、3,4-ジオクチルオキシチオフェン、3,4-ジデシルオキシチオフェン、3,4-ジドデシルオキシチオフェン、3,4-エチレンジオキシチオフェン、3,4-プロピレンジオキシチオフェン、3,4-ブテンジオキシチオフェン、3-メチル-4-メトキシチオフェン、3-メチル-4-エトキシチオフェン、3-カルボキシチオフェン、3-メチル-4-カルボキシチオフェン、3-メチル-4-カルボキシエチルチオフェン、3-メチル-4-カルボキシブチルチオフェン、アニリン、2-メチルアニリン、3-イソブチルアニリン、2-アニリンスルホン酸、3-アニリンスルホン酸等が挙げられる。 Specific examples of the precursor monomer include pyrrole, 3-methylpyrrole, 3-ethylpyrrole, 3-n-propylpyrrole, 3-butylpyrrole, 3-octylpyrrole, 3-decylpyrrole, 3-dodecylpyrrole, 3, 4-dimethylpyrrole, 3,4-dibutylpyrrole, 3-carboxylpyrrole, 3-methyl-4-carboxylpyrrole, 3-methyl-4-carboxyethylpyrrole, 3-methyl-4-carboxybutylpyrrole, 3-hydroxypyrrole 3-methoxypyrrole, 3-ethoxypyrrole, 3-butoxypyrrole, 3-hexyloxypyrrole, 3-methyl-4-hexyloxypyrrole, thiophene, 3-methylthiophene, 3-ethylthiophene, 3-propylthiophene, 3 -Butylthiophene, 3-hexyl Offene, 3-heptylthiophene, 3-octylthiophene, 3-decylthiophene, 3-dodecylthiophene, 3-octadecylthiophene, 3-bromothiophene, 3-chlorothiophene, 3-iodothiophene, 3-cyanothiophene, 3-phenyl Thiophene, 3,4-dimethylthiophene, 3,4-dibutylthiophene, 3-hydroxythiophene, 3-methoxythiophene, 3-ethoxythiophene, 3-butoxythiophene, 3-hexyloxythiophene, 3-heptyloxythiophene, 3- Octyloxythiophene, 3-decyloxythiophene, 3-dodecyloxythiophene, 3-octadecyloxythiophene, 3,4-dihydroxythiophene, 3,4-dimethoxythiophene, 3,4-diethoxythio , 3,4-dipropoxythiophene, 3,4-dibutoxythiophene, 3,4-dihexyloxythiophene, 3,4-diheptyloxythiophene, 3,4-dioctyloxythiophene, 3,4-didecyl Oxythiophene, 3,4-didodecyloxythiophene, 3,4-ethylenedioxythiophene, 3,4-propylenedioxythiophene, 3,4-butenedioxythiophene, 3-methyl-4-methoxythiophene, 3- Methyl-4-ethoxythiophene, 3-carboxythiophene, 3-methyl-4-carboxythiophene, 3-methyl-4-carboxyethylthiophene, 3-methyl-4-carboxybutylthiophene, aniline, 2-methylaniline, 3- Isobutylaniline, 2-anilinesulfonic acid, 3-anili Sulfonic acid and the like.
 (ポリ陰イオン)
 本発明に用いられるポリ陰イオンは、置換もしくは未置換のポリアルキレン、置換もしくは未置換のポリアルケニレン、置換もしくは未置換のポリイミド、置換もしくは未置換のポリアミド、置換もしくは未置換のポリエステル及びこれらの共重合体であって、少なくともアニオン基を有する構成単位を有している。
(Poly anion)
The polyanion used in the present invention includes a substituted or unsubstituted polyalkylene, a substituted or unsubstituted polyalkenylene, a substituted or unsubstituted polyimide, a substituted or unsubstituted polyamide, a substituted or unsubstituted polyester, and a co-polymer thereof. It is a polymer and has at least a structural unit having an anionic group.
 このポリ陰イオンは、π共役系導電性高分子を溶媒に可溶化させる可溶化高分子である。また、ポリ陰イオンのアニオン基は、π共役系導電性高分子に対するドーパントとして機能して、π共役系導電性高分子の導電性と耐熱性を向上させる。 This poly anion is a solubilized polymer that solubilizes the π-conjugated conductive polymer in a solvent. The anion group of the polyanion functions as a dopant for the π-conjugated conductive polymer, and improves the conductivity and heat resistance of the π-conjugated conductive polymer.
 ポリ陰イオンのアニオン基としては、π共役系導電性高分子への化学酸化ドープが起こりうる官能基であればよいが、中でも、製造の容易さ及び安定性の観点からは、一置換硫酸エステル基、一置換リン酸エステル基、リン酸基、カルボキシ基、スルホ基等が好ましい。さらに、官能基のπ共役系導電性高分子へのドープ効果の観点より、スルホ基、一置換硫酸エステル基、カルボキシ基がより好ましい。 The anion group of the polyanion may be any functional group capable of causing chemical oxidation doping to the π-conjugated conductive polymer. Among them, from the viewpoint of ease of production and stability, a monosubstituted sulfate ester Group, monosubstituted phosphate group, phosphate group, carboxy group, sulfo group and the like are preferable. Furthermore, from the viewpoint of the doping effect of the functional group on the π-conjugated conductive polymer, a sulfo group, a monosubstituted sulfate group, and a carboxy group are more preferable.
 ポリ陰イオンの具体例としては、ポリビニルスルホン酸、ポリスチレンスルホン酸、ポリアリルスルホン酸、ポリアクリル酸エチルスルホン酸、ポリアクリル酸ブチルスルホン酸、ポリ-2-アクリルアミド-2-メチルプロパンスルホン酸、ポリイソプレンスルホン酸、ポリビニルカルボン酸、ポリスチレンカルボン酸、ポリアリルカルボン酸、ポリアクリルカルボン酸、ポリメタクリルカルボン酸、ポリ-2-アクリルアミド-2-メチルプロパンカルボン酸、ポリイソプレンカルボン酸、ポリアクリル酸等が挙げられる。 Specific examples of polyanions include polyvinyl sulfonic acid, polystyrene sulfonic acid, polyallyl sulfonic acid, polyacrylic acid ethyl sulfonic acid, polyacrylic acid butyl sulfonic acid, poly-2-acrylamido-2-methylpropane sulfonic acid, poly Isoprene sulfonic acid, polyvinyl carboxylic acid, polystyrene carboxylic acid, polyallyl carboxylic acid, polyacryl carboxylic acid, polymethacryl carboxylic acid, poly-2-acrylamido-2-methylpropane carboxylic acid, polyisoprene carboxylic acid, polyacrylic acid, etc. Can be mentioned.
 また、化合物内にさらにF(フッ素原子)を有するポリ陰イオンであってもよい。具体的には、パーフルオロスルホン酸基を含有するナフィオン(Dupont社製)、カルボン酸基を含有するパーフルオロ型ビニルエーテルからなるフレミオン(旭硝子社製)等を挙げることができる。 Further, it may be a poly anion further having F (fluorine atom) in the compound. Specifically, Nafion (made by Dupont) containing a perfluorosulfonic acid group, Flemion (made by Asahi Glass Co., Ltd.) made of perfluoro vinyl ether containing a carboxylic acid group, and the like can be mentioned.
 さらに、これらの中でも、ポリスチレンスルホン酸、ポリイソプレンスルホン酸、ポリアクリル酸エチルスルホン酸、ポリアクリル酸ブチルスルホン酸が好ましい。これらのポリ陰イオンは、水酸基含有非導電性ポリマーとの相溶性が高く、また、得られる導電性ポリマーの導電性をより高くできる。 Further, among these, polystyrene sulfonic acid, polyisoprene sulfonic acid, polyacrylic acid ethyl sulfonic acid, and polybutyl acrylate sulfonic acid are preferable. These poly anions have high compatibility with the hydroxyl group-containing non-conductive polymer, and can further increase the conductivity of the obtained conductive polymer.
 ポリ陰イオンの重合度は、モノマー単位が10~100000個の範囲であることが好ましく、溶媒溶解性及び導電性の点からは、50~10000個の範囲がより好ましい。 The degree of polymerization of the polyanion is preferably in the range of 10 to 100,000 monomer units, and more preferably in the range of 50 to 10,000 from the viewpoint of solvent solubility and conductivity.
 ポリ陰イオンの製造方法としては、例えば、酸を用いてアニオン基を有さないポリマーにアニオン基を直接導入する方法、アニオン基を有しないポリマーをスルホ化剤によりスルホン酸化する方法、アニオン基含有重合性モノマーの重合により製造する方法が挙げられる。 Examples of the method for producing a polyanion include a method of directly introducing an anionic group into a polymer having no anionic group using an acid, a method of sulfonating a polymer having no anionic group with a sulfonating agent, and an anionic group containing The method of manufacturing by superposition | polymerization of a polymerizable monomer is mentioned.
 アニオン基含有重合性モノマーの重合により製造する方法は、溶媒中、アニオン基含有重合性モノマーを、酸化剤及び/または重合触媒の存在下で、酸化重合またはラジカル重合によって製造する方法が挙げられる。具体的には、所定量のアニオン基含有重合性モノマーを溶媒に溶解させ、これを一定温度に保ち、それに予め溶媒に所定量の酸化剤及び/または重合触媒を溶解した溶液を添加し、所定時間で反応させる。その反応により得られたポリマーは溶媒によって一定の濃度に調整される。この製造方法において、アニオン基含有重合性モノマーにアニオン基を有さない重合性モノマーを共重合させてもよい。 Examples of the method for producing an anion group-containing polymerizable monomer by polymerization include a method for producing an anion group-containing polymerizable monomer in a solvent by oxidative polymerization or radical polymerization in the presence of an oxidizing agent and / or a polymerization catalyst. Specifically, a predetermined amount of the anionic group-containing polymerizable monomer is dissolved in a solvent, kept at a constant temperature, and a solution in which a predetermined amount of an oxidizing agent and / or a polymerization catalyst is dissolved in the solvent is added to the predetermined amount. React with time. The polymer obtained by the reaction is adjusted to a certain concentration by the solvent. In this production method, an anionic group-containing polymerizable monomer may be copolymerized with a polymerizable monomer having no anionic group.
 アニオン基含有重合性モノマーの重合に際して使用する酸化剤及び酸化触媒、溶媒は、π共役系導電性高分子を形成する前駆体モノマーを重合する際に使用するものと同様である。 The oxidizing agent, oxidation catalyst, and solvent used in the polymerization of the anionic group-containing polymerizable monomer are the same as those used in the polymerization of the precursor monomer that forms the π-conjugated conductive polymer.
 得られたポリマーがポリ陰イオン塩である場合には、ポリ陰イオン酸に変質させることが好ましい。アニオン酸に変質させる方法としては、イオン交換樹脂を用いたイオン交換法、透析法、限外ろ過法等が挙げられ、これらの中でも、作業が容易な点から限外ろ過法が好ましい。 When the obtained polymer is a polyanionic salt, it is preferably transformed into a polyanionic acid. Examples of the method for converting to an anionic acid include an ion exchange method using an ion exchange resin, a dialysis method, an ultrafiltration method, and the like. Among these, the ultrafiltration method is preferable from the viewpoint of easy work.
 導電性ポリマーに含まれるπ共役系導電性高分子とポリ陰イオンの比率、「π共役系導電性高分子」:「ポリ陰イオン」は質量比で1:1~20が好ましい。導電性、分散性の観点からより好ましくは1:2~10の範囲である。 The ratio of the π-conjugated conductive polymer and the poly anion contained in the conductive polymer, “π-conjugated conductive polymer”: “poly anion” is preferably 1: 1 to 20 by mass ratio. From the viewpoint of conductivity and dispersibility, the range of 1: 2 to 10 is more preferable.
 π共役系導電性高分子を形成する前駆体モノマーをポリ陰イオンの存在下で化学酸化重合して、本発明に係る導電性ポリマーを得る際に使用される酸化剤は、例えばJ.Am.Soc.,85、454(1963)に記載されるピロールの酸化重合に適する、いずれかの酸化剤である。実際的な理由のために、安価でかつ取扱い易い酸化剤、例えば鉄(III)塩、例えばFeCl、Fe(ClO、有機酸及び有機残基を含む無機酸の鉄(III)塩、または過酸化水素、重クロム酸カリウム、過硫酸アルカリ(例えば過硫酸カリウム、過硫酸ナトリウム)またはアンモニウム、過ホウ酸アルカリ、過マンガン酸カリウム及び銅塩例えば四フッ化ホウ酸銅を用いることが好ましい。加えて、酸化剤として随時触媒量の金属イオン例えば鉄、コバルト、ニッケル、モリブデン及びバナジウムイオンの存在下における空気及び酸素も使用することができる。過硫酸塩並びに有機酸及び有機残基を含む無機酸の鉄(III)塩の使用が腐食性でないために大きな応用上の利点を有する。 The oxidant used when the precursor monomer forming the π-conjugated conductive polymer is chemically oxidatively polymerized in the presence of the polyanion to obtain the conductive polymer according to the present invention is, for example, J. Org. Am. Soc. 85, 454 (1963), which is suitable for the oxidative polymerization of pyrrole. For practical reasons, cheap and easy to handle oxidants such as iron (III) salts, eg FeCl 3 , Fe (ClO 4 ) 3 , organic acids and iron (III) salts of inorganic acids containing organic residues Or use hydrogen peroxide, potassium dichromate, alkali persulfate (eg potassium persulfate, sodium persulfate) or ammonium, alkali perborate, potassium permanganate and copper salts such as copper tetrafluoroborate preferable. In addition, air and oxygen in the presence of catalytic amounts of metal ions such as iron, cobalt, nickel, molybdenum and vanadium ions can be used as oxidants at any time. The use of persulfates and the iron (III) salts of inorganic acids containing organic acids and organic residues has great application advantages because they are not corrosive.
 有機残基を含む無機酸の鉄(III)塩の例としては炭素数1~20のアルカノールの硫酸半エステルの鉄(III)塩、例えばラウリル硫酸;炭素数1~20のアルキルスルホン酸、例えばメタンまたはドデカンスルホン酸;脂肪族炭素数1~20のカルボン酸、例えば2-エチルヘキシルカルボン酸;脂肪族パーフルオロカルボン酸、例えばトリフルオロ酢酸及びパーフルオロオクタノン酸;脂肪族ジカルボン酸、例えばシュウ酸並びに殊に芳香族の、随時炭素数1~20のアルキル置換されたスルホン酸、例えばベンゼンスルホン酸、p-トルエンスルホン酸及びドデシルベンゼンスルホン酸のFe(III)塩が挙げられる。 Examples of iron (III) salts of inorganic acids containing organic residues include iron (III) salts of alkanol sulfate hemiesters having 1 to 20 carbon atoms, such as lauryl sulfate; alkyl sulfonic acids having 1 to 20 carbon atoms, such as Methane or dodecanesulfonic acid; carboxylic acid having 1 to 20 aliphatic carbon atoms such as 2-ethylhexyl carboxylic acid; aliphatic perfluorocarboxylic acid such as trifluoroacetic acid and perfluorooctanoic acid; aliphatic dicarboxylic acid such as oxalic acid And in particular aromatic, optionally substituted alkyl sulfonic acids having 1 to 20 carbon atoms such as benzenesulfonic acid, p-toluenesulfonic acid and dodecylbenzenesulfonic acid Fe (III) salts.
 こうした導電性ポリマーは、市販の材料も好ましく利用できる。例えば、ポリ(3,4-エチレンジオキシチオフェン)とポリスチレンスルホン酸からなる導電性ポリマー(PEDOT-PSSと略す)が、H.C.Starck社からCleviosシリーズとして、Aldrich社からPEDOT-PSSの483095、560596として、Nagase Chemtex社からDenatronシリーズとして市販されている。また、ポリアニリンが、日産化学社からORMECONシリーズとして市販されている。本発明において、こうした剤も好ましく用いることができる。 Such a conductive polymer is preferably a commercially available material. For example, a conductive polymer (abbreviated as PEDOT-PSS) composed of poly (3,4-ethylenedioxythiophene) and polystyrenesulfonic acid is described in H.C. C. It is commercially available from Starck as the Clevios series, from Aldrich as PEDOT-PSS 483095 and 560596, and from Nagase Chemtex as the Denatron series. Polyaniline is also commercially available from Nissan Chemical as the ORMECON series. In the present invention, such an agent can also be preferably used.
 第2ドーパントとして水溶性有機化合物を含有してもよい。本発明で用いることができる水溶性有機化合物には特に制限はなく、公知のものの中から適宜選択することができ、例えば、酸素含有化合物が好適に挙げられる。前記酸素含有化合物としては、酸素を含有する限り特に制限はなく、例えば、水酸基含有化合物、カルボニル基含有化合物、エーテル基含有化合物、スルホキシド基含有化合物等が挙げられる。前記水酸基含有化合物としては、例えば、エチレングリコール、ジエチレングリコール、プロピレングリコール、トリメチレングリコール、1,4-ブタンジオール、グリセリン等が挙げられ、これらの中でも、エチレングリコール、ジエチレングリコールが好ましい。前記カルボニル基含有化合物としては、例えば、イソホロン、プロピレンカーボネート、シクロヘキサノン、γ-ブチロラクトン等が挙げられる。前記エーテル基含有化合物としては、例えば、ジエチレングリコールモノエチルエーテル、等が挙げられる。前記スルホキシド基含有化合物としては、例えば、ジメチルスルホキシド等が挙げられる。これらは、1種単独で使用してもよいし、2種以上を併用してもよいが、ジメチルスルホキシド、エチレングリコール、ジエチレングリコールから選ばれる少なくとも1種を用いることが好ましい。 A water-soluble organic compound may be contained as the second dopant. There is no restriction | limiting in particular in the water-soluble organic compound which can be used by this invention, It can select suitably from well-known things, For example, an oxygen containing compound is mentioned suitably. The oxygen-containing compound is not particularly limited as long as it contains oxygen, and examples thereof include a hydroxyl group-containing compound, a carbonyl group-containing compound, an ether group-containing compound, and a sulfoxide group-containing compound. Examples of the hydroxyl group-containing compound include ethylene glycol, diethylene glycol, propylene glycol, trimethylene glycol, 1,4-butanediol, glycerin and the like. Among these, ethylene glycol and diethylene glycol are preferable. Examples of the carbonyl group-containing compound include isophorone, propylene carbonate, cyclohexanone, γ-butyrolactone, and the like. Examples of the ether group-containing compound include diethylene glycol monoethyl ether. Examples of the sulfoxide group-containing compound include dimethyl sulfoxide. These may be used alone or in combination of two or more, but at least one selected from dimethyl sulfoxide, ethylene glycol, and diethylene glycol is preferably used.
 (水酸基含有非導電性ポリマー)
 本発明に係る水酸基含有非導電性ポリマーはポリマー(A)を一定量含むことを特徴とする。本発明においては、透明導電層に導電性ポリマーとポリマー(A)を併用することで、導電性ポリマー含有層の導電性を向上させることが可能で、さらに、導電性ポリマーとの相溶性も良好で高い透明性が達成できる。これにより透明導電層の膜厚を厚くすることが可能となり、透明性を低下させずに基板表面に付着した異物やパターン導電層の凹凸を埋め込むことができ、有機電子デバイスの電極間のリークを抑制できる。また、本発明の水酸基含有非導電性ポリマーは、水溶性であることが好ましく、ポリマー(A)が、25℃の水100gに0.001g以上溶解することが好ましい。溶解性は、ヘイズメーター、濁度計で測定することができる。さらに、ポリ陰イオンがスルホ基を有する場合は、スルホ基が効果的に脱水触媒として働き、架橋剤等の追加の剤を利用しなくても、導電性ポリマーとポリマー(A)が緻密な架橋層を形成でき、強固な透明導電層を形成できる。そのため、耐久性が高く、基板を洗浄する際、有利である。また、架橋は透明導電層のガラス転移温度やナノインデンテーション弾性率の変化、さらにFTIR測定による官能基の変化により測定できる。
(Hydroxyl-containing non-conductive polymer)
The hydroxyl group-containing non-conductive polymer according to the present invention is characterized by containing a certain amount of the polymer (A). In the present invention, it is possible to improve the conductivity of the conductive polymer-containing layer by using the conductive polymer and the polymer (A) in combination with the transparent conductive layer, and the compatibility with the conductive polymer is also good. Can achieve high transparency. As a result, the thickness of the transparent conductive layer can be increased, and foreign matter adhering to the substrate surface and unevenness of the pattern conductive layer can be embedded without reducing the transparency. Can be suppressed. Further, the hydroxyl group-containing non-conductive polymer of the present invention is preferably water-soluble, and the polymer (A) is preferably dissolved in 0.001 g or more in 100 g of water at 25 ° C. The solubility can be measured with a haze meter or a turbidimeter. Further, when the polyanion has a sulfo group, the sulfo group effectively acts as a dehydration catalyst, and the conductive polymer and the polymer (A) are densely cross-linked without using an additional agent such as a cross-linking agent. A layer can be formed, and a strong transparent conductive layer can be formed. Therefore, it has high durability and is advantageous when cleaning the substrate. Crosslinking can be measured by a change in glass transition temperature and nanoindentation elastic modulus of the transparent conductive layer, and a change in functional group by FTIR measurement.
 (ポリマー(A))
 本発明に係るポリマー(A)は、下記一般式(I)及び一般式(II)から選ばれる構造単位を含むポリマーである。
(Polymer (A))
The polymer (A) according to the present invention is a polymer containing a structural unit selected from the following general formula (I) and general formula (II).
 ポリマー(A)内の一般式(I)の構造単位の構成率をm、一般式(II)の構造単位の構成率をnとすると、m+nの構成率(mol%)は、50≦m+n≦100であり、m/(m+n)≧0.2である。 When the constituent ratio of the structural unit of the general formula (I) in the polymer (A) is m and the constituent ratio of the structural unit of the general formula (II) is n, the constituent ratio (mol%) of m + n is 50 ≦ m + n ≦ 100 and m / (m + n) ≧ 0.2.
 ポリマー(A)は一般式(I)、及び一般式(II)の構造単位の成分の合計が50mol%以上100%以下であり、かつ一般式(I)の構造単位の成分が20%以上である共重合ポリマーである。一般式(I)、(II)の構造単位の成分の合計が80mol%以上100%以下であることがより好ましい。 In the polymer (A), the total of the components of the structural unit of the general formula (I) and the general formula (II) is 50 mol% or more and 100% or less, and the component of the structural unit of the general formula (I) is 20% or more. It is a copolymer. More preferably, the sum of the components of the structural units of the general formulas (I) and (II) is 80 mol% or more and 100% or less.
 本発明のポリマー(A)は一般式(I)で表される構造単位と一般式(II)で表される構造単位以外に構造単位を含有していても良い。 The polymer (A) of the present invention may contain a structural unit other than the structural unit represented by the general formula (I) and the structural unit represented by the general formula (II).
 また、ポリマー(A)における一般式(I)の構造単位の成分が20%より少なくなると水酸基の数が少なくなり、架橋点である水酸基が減少し、膜の安定性、緻密性が減少し、水洗耐性や寿命が悪くなる。 Moreover, when the component of the structural unit of the general formula (I) in the polymer (A) is less than 20%, the number of hydroxyl groups decreases, the number of hydroxyl groups as crosslinking points decreases, and the stability and denseness of the film decrease. Deterioration in water resistance and lifespan.
Figure JPOXMLDOC01-appb-C000003
Figure JPOXMLDOC01-appb-C000003
 本発明一般式(I)で表される水酸基を有する構造単位において、R、Rはそれぞれ独立に水素原子、メチル基を表す。また、Q、Qはそれぞれ独立に-C(=O)O-、-C(=O)NRa-を表し、Raは水素原子、アルキル基を表す。アルキル基は、例えば炭素原子数1~5の直鎖、或いは分岐アルキル基が好ましく、より好ましくはメチル基である。また、これらのアルキル基は置換基で置換されていても良い。これら置換基の例としては、アルキル基、シクロアルキル基、アリール基、ヘテロシクロアルキル基、ヘテロアリール基、水酸基、ハロゲン原子、アルコキシ基、アルキルチオ基、アリールチオ基、シクロアルコキシ基、アリールオキシ基、アシル基、アルキルカルボンアミド基、アリールカルボンアミド基、アルキルスルホンアミド基、アリールスルホンアミド基、ウレイド基、アラルキル基、ニトロ基、アルコキシカルボニル基、アリールオキシカルボニル基、アラルキルオキシカルボニル基、アルキルカルバモイル基、アリールカルバモイル基、アルキルスルファモイル基、アリールスルファモイル基、アシルオキシ基、アルケニル基、アルキニル基、アルキルスルホニル基、アリールスルホニル基、アルキルオキシスルホニル基、アリールオキシスルホニル基、アルキルスルホニルオキシ基、アリールスルホニルオキシ基等で置換されても良い。これらのうち好ましくは、水酸基、アルキルオキシ基である。 In the structural unit having a hydroxyl group represented by formula (I) of the present invention, R 1 and R 2 each independently represents a hydrogen atom or a methyl group. Q 1 and Q 2 each independently represent —C (═O) O— or —C (═O) NRa—, and Ra represents a hydrogen atom or an alkyl group. The alkyl group is preferably, for example, a linear or branched alkyl group having 1 to 5 carbon atoms, and more preferably a methyl group. These alkyl groups may be substituted with a substituent. Examples of these substituents include alkyl groups, cycloalkyl groups, aryl groups, heterocycloalkyl groups, heteroaryl groups, hydroxyl groups, halogen atoms, alkoxy groups, alkylthio groups, arylthio groups, cycloalkoxy groups, aryloxy groups, acyls. Group, alkylcarbonamide group, arylcarbonamide group, alkylsulfonamide group, arylsulfonamide group, ureido group, aralkyl group, nitro group, alkoxycarbonyl group, aryloxycarbonyl group, aralkyloxycarbonyl group, alkylcarbamoyl group, aryl Rucarbamoyl group, alkylsulfamoyl group, arylsulfamoyl group, acyloxy group, alkenyl group, alkynyl group, alkylsulfonyl group, arylsulfonyl group, alkyloxysulfonyl group, Lumpur oxysulfonyl group, an alkylsulfonyloxy group, may be substituted with an aryl sulfonyloxy group. Of these, a hydroxyl group and an alkyloxy group are preferable.
 上記ハロゲン原子には、フッ素原子、塩素原子、臭素原子及びヨウ素原子が含まれる。 The halogen atom includes a fluorine atom, a chlorine atom, a bromine atom and an iodine atom.
 上記置換基の例として、アルキル基は分岐を有していてもよく、炭素原子数は、1~20であることが好ましく、1~12であることがより好ましく、1~8であることが更に好ましい。アルキル基の例には、メチル基、エチル基、プロピル基、イソプロピル基、ブチル基、t-ブチル基、ヘキシル基、オクチル基等が含まれる。 As an example of the substituent, the alkyl group may have a branch, and the number of carbon atoms is preferably 1 to 20, more preferably 1 to 12, and more preferably 1 to 8. Further preferred. Examples of the alkyl group include methyl group, ethyl group, propyl group, isopropyl group, butyl group, t-butyl group, hexyl group, octyl group and the like.
 上記シクロアルキル基の炭素原子数は、3~20であることが好ましく、3~12であることがより好ましく、3~8であることが更に好ましい。シクロアルキル基の例には、シクロプロピル基、シクロブチル基、シクロペンチル基及びシクロヘキシル基が含まれる。上記アルコキシ基は、分岐を有していてもよく、炭素原子数は1~20であることが好ましく、1~12であることがより好ましく、1~6であることが更に好ましく、1~4であることが最も好ましい。アルコキシ基の例としては、メトキシ基、エトキシ基、2-メトキシエトキシ基、2-メトキシ-2-エトキシエトキシ基、ブチルオキシ基、ヘキシルオキシ基及びオクチルオキシ基が含まれ、好ましくはエトキシ基である。上記アルキルチオ基の炭素数は、分岐を有していてもよく、炭素原子数は1~20であることが好ましく、1~12であることがより好ましく、1~6であることが更に好ましく、1~4であることが最も好ましい。アルキルチオ基の例としては、メチルチオ基、エチルチオ基等が含まれる。上記アリールチオ基の炭素数は、6~20であることが好ましく、6~12であることが更に好ましい。アリールチオ基の例にはフェニルチオ基及びナフチルチオ基等が含まれる。上記シクロアルコキシ基の炭素原子数は、3~12であることが好ましく、より好ましくは3~8である。シクロアルコキシ基の例には、シクロプロポキシ基、シクロブチロキシ基、シクロペンチロキシ基及びシクロヘキシロキシ基が含まれる。上記アリール基の炭素原子数は6~20であることが好ましく、6~12であることが更に好ましい。アリール基の例にはフェニル基及びナフチル基が含まれる。上記アリールオキシ基の炭素原子数は6~20であることが好ましく、6~12であることが更に好ましい。アリールオキシ基の例にはフェノキシ基及びナフトキシ基が含まれる。上記ヘテロシクロアルキル基の炭素原子数は、2~10であることが好ましく、3~5であることが更に好ましい。ヘテロシクロアルキル基の例にはピペリジノ基、ジオキサニル基及び2-モルホリニル基が含まれる。上記ヘテロアリール基の炭素原子数は、3~20であることが好ましく、3~10であることが更に好ましい。ヘテロアリール基の例にはチエニル基、ピリジル基が含まれる。上記アシル基の炭素原子数は1~20であることが好ましく、1~12であることが更に好ましい。アシル基の例にはホルミル基、アセチル基及びベンゾイル基が含まれる。上記アルキルカルボンアミド基の炭素原子数は1~20であることが好ましく、1~12であることが更に好ましい。アルキルカルボンアミド基の例にはアセトアミド基等が含まれる。上記アリールカルボンアミド基の炭素原子数は1~20であることが好ましく、1~12であることが更に好ましい。アリールカルボンアミド基の例にはベンズアミド基等が含まれる。上記アルキルスルホンアミド基の炭素原子数は1~20であることが好ましく、1~12であることが更に好ましい。アルキルスルホンアミド基の例にはメタンスルホンアミド基等が含まれる。上記アリールスルホンアミド基の炭素原子数は1~20であることが好ましく、1~12であることが更に好ましい。アリールスルホンアミド基の例には、ベンゼンスルホンアミド基及びp-トルエンスルホンアミドが基含まれる。上記アラルキル基の炭素原子数は7~20であることが好ましく、7~12であることが更に好ましい。アラルキル基の例にはベンジル基、フェネチル基及びナフチルメチル基が含まれる。上記アルコキシカルボニル基の炭素原子数は1~20であることが好ましく、2~12であることが更に好ましい。アルコキシカルボニル基の例にはメトキシカルボニル基が含まれる。上記アリールオキシカルボニル基の炭素原子数は7~20であることが好ましく、7~12であることが更に好ましい。アリールオキシカルボニル基の例にはフェノキシカルボニル基が含まれる。上記アラルキルオキシカルボニル基の炭素原子数は8~20であることが好ましく、8~12であることが更に好ましい。アラルキルオキシカルボニル基の例にはベンジルオキシカルボニル基が含まれる。上記アシルオキシ基の炭素原子数は1~20であることが好ましく、2~12であることが更に好ましい。アシルオキシ基の例にはアセトキシ基及びベンゾイルオキシ基が含まれる。上記アルケニル基の炭素原子数は2~20であることが好ましく、2~12であることが更に好ましい。アルケニル基の例に、ビニル基、アリル基及びイソプロペニル基が含まれる。上記アルキニル基の炭素原子数は2~20であることが好ましく、2~12であることが更に好ましい。アルキニル基の例にはエチニル基が含まれる。上記アルキルスルホニル基の炭素原子数は1~20であることが好ましく、1~12であることが更に好ましい。アルキルスルホニル基の例に、メチルスルホニル基、エチルスルホニル基が含まれる。上記アリールスルホニル基の炭素原子数は6~20であることが好ましく、6~12であることが更に好ましい。アリールスルホニル基の例に、フェニルスルホニル基、ナフチルスルホニル基が含まれる。上記アルキルオキシスルホニル基の炭素原子数は1~20あることが好ましく、1~12であることが更に好ましい。アルキルオキシスルホニル基の例に、メトキシスルホニル基、エトキシスルホニル基が含まれる。上記アリールオキシスルホニル基の炭素原子数は6~20であることが好ましく、6~12であることが更に好ましい。アリールオキシスルホニル基の例に、フェノキシスルホニル基、ナフトキシスルホニル基が含まれる。上記アルキルスルホニルオキシ基の炭素原子数は1~20であることが好ましく、1~12であることが更に好ましい。アルキルスルホニルオキシ基の例に、メチルスルホニルオキシ基、エチルスルホニルオキシ基が含まれる。 The number of carbon atoms of the cycloalkyl group is preferably 3 to 20, more preferably 3 to 12, and still more preferably 3 to 8. Examples of the cycloalkyl group include a cyclopropyl group, a cyclobutyl group, a cyclopentyl group, and a cyclohexyl group. The alkoxy group may have a branch, and the number of carbon atoms is preferably 1 to 20, more preferably 1 to 12, still more preferably 1 to 6, and further preferably 1 to 4. Most preferably. Examples of the alkoxy group include a methoxy group, an ethoxy group, a 2-methoxyethoxy group, a 2-methoxy-2-ethoxyethoxy group, a butyloxy group, a hexyloxy group and an octyloxy group, preferably an ethoxy group. The alkylthio group may have a branch, and the number of carbon atoms is preferably 1 to 20, more preferably 1 to 12, and still more preferably 1 to 6, Most preferred is 1 to 4. Examples of the alkylthio group include a methylthio group and an ethylthio group. The arylthio group preferably has 6 to 20 carbon atoms, and more preferably 6 to 12 carbon atoms. Examples of the arylthio group include a phenylthio group and a naphthylthio group. The number of carbon atoms of the cycloalkoxy group is preferably 3 to 12, and more preferably 3 to 8. Examples of the cycloalkoxy group include a cyclopropoxy group, a cyclobutoxy group, a cyclopentyloxy group, and a cyclohexyloxy group. The aryl group preferably has 6 to 20 carbon atoms, more preferably 6 to 12 carbon atoms. Examples of the aryl group include a phenyl group and a naphthyl group. The aryloxy group preferably has 6 to 20 carbon atoms, and more preferably 6 to 12 carbon atoms. Examples of the aryloxy group include a phenoxy group and a naphthoxy group. The heterocycloalkyl group preferably has 2 to 10 carbon atoms, and more preferably 3 to 5 carbon atoms. Examples of the heterocycloalkyl group include a piperidino group, a dioxanyl group, and a 2-morpholinyl group. The heteroaryl group preferably has 3 to 20 carbon atoms, and more preferably 3 to 10 carbon atoms. Examples of the heteroaryl group include a thienyl group and a pyridyl group. The acyl group preferably has 1 to 20 carbon atoms, more preferably 1 to 12 carbon atoms. Examples of the acyl group include a formyl group, an acetyl group, and a benzoyl group. The alkylcarbonamide group preferably has 1 to 20 carbon atoms, and more preferably 1 to 12 carbon atoms. Examples of the alkylcarbonamide group include an acetamide group. The arylcarbonamide group preferably has 1 to 20 carbon atoms, and more preferably 1 to 12 carbon atoms. Examples of the arylcarbonamide group include a benzamide group and the like. The alkylsulfonamide group preferably has 1 to 20 carbon atoms, and more preferably 1 to 12 carbon atoms. Examples of the alkylsulfonamide group include a methanesulfonamide group. The arylsulfonamide group preferably has 1 to 20 carbon atoms, and more preferably 1 to 12 carbon atoms. Examples of the arylsulfonamido group include a benzenesulfonamido group and p-toluenesulfonamido group. The aralkyl group preferably has 7 to 20 carbon atoms, and more preferably 7 to 12 carbon atoms. Examples of the aralkyl group include a benzyl group, a phenethyl group, and a naphthylmethyl group. The alkoxycarbonyl group preferably has 1 to 20 carbon atoms, more preferably 2 to 12 carbon atoms. Examples of the alkoxycarbonyl group include a methoxycarbonyl group. The aryloxycarbonyl group preferably has 7 to 20 carbon atoms, and more preferably 7 to 12 carbon atoms. Examples of the aryloxycarbonyl group include a phenoxycarbonyl group. The aralkyloxycarbonyl group preferably has 8 to 20 carbon atoms, and more preferably 8 to 12 carbon atoms. Examples of the aralkyloxycarbonyl group include a benzyloxycarbonyl group. The acyloxy group preferably has 1 to 20 carbon atoms, more preferably 2 to 12 carbon atoms. Examples of the acyloxy group include an acetoxy group and a benzoyloxy group. The alkenyl group preferably has 2 to 20 carbon atoms, and more preferably 2 to 12 carbon atoms. Examples of the alkenyl group include vinyl group, allyl group and isopropenyl group. The alkynyl group preferably has 2 to 20 carbon atoms, and more preferably 2 to 12 carbon atoms. Examples of the alkynyl group include an ethynyl group. The alkylsulfonyl group preferably has 1 to 20 carbon atoms, and more preferably 1 to 12 carbon atoms. Examples of the alkylsulfonyl group include a methylsulfonyl group and an ethylsulfonyl group. The arylsulfonyl group preferably has 6 to 20 carbon atoms, and more preferably 6 to 12 carbon atoms. Examples of the arylsulfonyl group include a phenylsulfonyl group and a naphthylsulfonyl group. The alkyloxysulfonyl group preferably has 1 to 20 carbon atoms, and more preferably 1 to 12 carbon atoms. Examples of the alkyloxysulfonyl group include a methoxysulfonyl group and an ethoxysulfonyl group. The aryloxysulfonyl group preferably has 6 to 20 carbon atoms, and more preferably 6 to 12 carbon atoms. Examples of the aryloxysulfonyl group include a phenoxysulfonyl group and a naphthoxysulfonyl group. The alkylsulfonyloxy group preferably has 1 to 20 carbon atoms, and more preferably 1 to 12 carbon atoms. Examples of the alkylsulfonyloxy group include a methylsulfonyloxy group and an ethylsulfonyloxy group.
 上記アリールスルホニルオキシ基の炭素原子数は6~20であることが好ましく、6~12であることが更に好ましい。アリールスルホニルオキシ基の例に、フェニルスルホニルオキシ基、ナフチルスルホニルオキシ基が含まれる。置換基は同一でも異なっていても良く、これら置換基が更に置換されても良い。 The number of carbon atoms in the arylsulfonyloxy group is preferably 6-20, and more preferably 6-12. Examples of the arylsulfonyloxy group include a phenylsulfonyloxy group and a naphthylsulfonyloxy group. The substituents may be the same or different, and these substituents may be further substituted.
 本発明一般式(I)で表される水酸基を有する構造単位において、A、Aはそれぞれ独立に置換或いは無置換アルキレン基、-(CHCHRbO)x-、-(CHCHRbO)-CHCHRb-を表す。アルキレン基は、例えば炭素原子数1~5が好ましく、より好ましくはエチレン基、プロピレン基である。これらのアルキレン基は前述した置換基で置換されていても良い。また、Rbは水素原子、アルキル基を表す。アルキル基は、例えば炭素原子数1~5の直鎖、或いは分岐アルキル基が好ましく、より好ましくはメチル基である。また、これらのアルキル基は前述の置換基で置換されていても良い。更に、xは平均繰り返しユニット数を表し、1~100が好ましく、より好ましくは1~10である。繰り返しユニット数は分布を有しており、表記は平均値を示し、小数点以下1桁で表記しても良い。 In the structural unit having a hydroxyl group represented by the general formula (I) of the present invention, A 1 and A 2 are each independently a substituted or unsubstituted alkylene group, — (CH 2 CHRbO) x —, — (CH 2 CHRbO) x —CH 2 CHRb— is represented. The alkylene group preferably has, for example, 1 to 5 carbon atoms, more preferably an ethylene group or a propylene group. These alkylene groups may be substituted with the above-described substituents. Rb represents a hydrogen atom or an alkyl group. The alkyl group is preferably, for example, a linear or branched alkyl group having 1 to 5 carbon atoms, and more preferably a methyl group. Further, these alkyl groups may be substituted with the above-described substituents. Further, x represents the average number of repeating units, preferably 1 to 100, more preferably 1 to 10. The number of repeating units has a distribution, the notation indicates an average value, and may be expressed by one digit after the decimal point.
 本発明一般式(II)で表される水酸基を有さない構造単位において、Ra、Rb、xは一般式(I)で定義した内容と同義である。 In the structural unit having no hydroxyl group represented by the general formula (II) of the present invention, Ra, Rb, and x have the same meaning as defined in the general formula (I).
 本発明一般式(II)で表される水酸基を有さない構造単位において、yは0、1を表す。また、Zはアルキル基、-C(=O)-Rc、-SO-Rd、-SiReを表し、アルキル基は、例えば炭素原子数1~12が好ましく、より好ましくはメチル基、エチル基で、更に好ましくはメチル基である。これらのアルキル基は前述した置換基で置換されても良い。Rc、Rd、Reはアルキル基、パーフルオロアルキル基、アリール基を表し、アルキル基は、例えば炭素原子数1~12が好ましく、より好ましくはメチル基、エチル基で、更に好ましくはメチル基である。これらのアルキル基は前述した置換基で置換されても良い。パーフルオロアルキル基は、例えば炭素原子数1~8が好ましく、より好ましくはトリフルオロメチル基、ペンタフルオロエチル基で、更に好ましくはトリフルオロメチル基である。アリール基は、例えばフェニル基、トルイル基が好ましく、より好ましくはトルイル基である。更に、これらのアルキル基、パーフルオロアルキル基、アリール基は前述した置換基で置換されても良い。 In the structural unit having no hydroxyl group represented by formula (II) of the present invention, y represents 0 or 1. Z represents an alkyl group, —C (═O) —Rc, —SO 2 —Rd, —SiRe 3 , and the alkyl group preferably has, for example, 1 to 12 carbon atoms, more preferably a methyl group or an ethyl group And more preferably a methyl group. These alkyl groups may be substituted with the substituent described above. Rc, Rd and Re represent an alkyl group, a perfluoroalkyl group or an aryl group, and the alkyl group preferably has, for example, 1 to 12 carbon atoms, more preferably a methyl group or an ethyl group, and still more preferably a methyl group. . These alkyl groups may be substituted with the substituent described above. The perfluoroalkyl group preferably has, for example, 1 to 8 carbon atoms, more preferably a trifluoromethyl group or a pentafluoroethyl group, still more preferably a trifluoromethyl group. The aryl group is preferably, for example, a phenyl group or a toluyl group, and more preferably a toluyl group. Furthermore, these alkyl groups, perfluoroalkyl groups, and aryl groups may be substituted with the above-described substituents.
 ポリマー(A)は主たる共重合成分がそれぞれ一般式(I)、(II)で表される構造単位を形成するモノマー(I)、(II)の共重合で得ることができる。 Polymer (A) can be obtained by copolymerization of monomers (I) and (II) whose main copolymerization components form structural units represented by general formulas (I) and (II), respectively.
 本発明のポリマー(A)は汎用的な重合触媒を用いたラジカル重合により得ることができる。重合様式としては、塊状重合、溶液重合、懸濁重合、乳化重合等が挙げられ、好ましくは溶液重合である。重合温度は、使用する開始剤によって異なるが、一般に-10~250℃、好ましくは0~200℃、より好ましくは10~100℃で実施される。 The polymer (A) of the present invention can be obtained by radical polymerization using a general-purpose polymerization catalyst. Examples of the polymerization mode include bulk polymerization, solution polymerization, suspension polymerization, emulsion polymerization and the like, preferably solution polymerization. The polymerization temperature varies depending on the initiator used, but is generally -10 to 250 ° C, preferably 0 to 200 ° C, more preferably 10 to 100 ° C.
 本発明ポリマー(A)の数平均分子量は3,000~2,000,000の範囲が好ましく、より好ましくは4,000~500,000、更に好ましくは5000~100000の範囲内である。 The number average molecular weight of the polymer (A) of the present invention is preferably in the range of 3,000 to 2,000,000, more preferably 4,000 to 500,000, still more preferably in the range of 5,000 to 100,000.
 本発明ポリマー(A)の数平均分子量、分子量分布の測定は、一般的に知られているゲルパーミエーションクロマトグラフィー(GPC)により行うことができる。使用する溶媒は、ポリマー(A)が溶解すれば特に限りはなく、THF、DMF、CHClが好ましく、より好ましくはTHF、DMFであり、更に好ましくはDMFである。また、測定温度も特に制限はないが40℃が好ましい。 The number average molecular weight and molecular weight distribution of the polymer (A) of the present invention can be measured by generally known gel permeation chromatography (GPC). The solvent to be used is not particularly limited as long as the polymer (A) is dissolved, and THF, DMF, and CH 2 Cl 2 are preferable, THF and DMF are more preferable, and DMF is more preferable. The measurement temperature is not particularly limited, but 40 ° C. is preferable.
 また、ポリマー(A)は数平均分子量において、分子量1000以下の含有量が0~5質量%以下であることが好ましい。低分子成分が少ないことで、素子の保存性や、導電層に対して垂直方向に電荷をやりとりする際の、層に対して垂直方向に障壁があるような挙動をより低下させることができる。 The polymer (A) preferably has a number average molecular weight of 0 to 5% by mass with a molecular weight of 1000 or less. When the amount of the low molecular component is small, it is possible to further reduce the storage stability of the device and the behavior of having a barrier in the direction perpendicular to the layer when exchanging charges in the direction perpendicular to the conductive layer.
 このポリマー(A)の数平均分子量において、分子量1000以下の含有量が0~5質量%以下とする方法としては、再沈殿法、分取GPCに、リビング重合による単分散のポリマーを合成等により、低分子量成分を除去する、または低分子量成分の生成を抑制する方法を用いることができる。再沈殿法は、ポリマーが溶解可能な溶媒へ溶解し、ポリマーを溶解した溶媒より溶解性の低い溶媒中へ滴下することにより、ポリマーを析出させ、モノマー、触媒、オリゴマー等の低分子量成分を除去する方法である。また、分取GPCは、例えばリサイクル分取GPCLC-9100(日本分析工業社製)、ポリスチレンゲルカラムで、ポリマーを溶解した溶液をカラムに通すことにより分子量で分けることができ、所望の低分子量成分を除去することができる方法である。リビング重合は、開始種の生成が経時で変化せず、また停止反応等の副反応が少なく、分子量の揃ったポリマーが得られる。分子量はモノマーの添加量により調整できるため、例えば分子量を2万のポリマーを合成すれば、低分子量体の生成を抑制することができる。生産適性から、再沈殿法、リビング重合が好ましい。 In the number average molecular weight of the polymer (A), the content of the molecular weight of 1000 or less is 0 to 5% by mass or less. For example, a redispersion method or preparative GPC is synthesized by synthesizing a monodisperse polymer by living polymerization. A method of removing the low molecular weight component or suppressing the generation of the low molecular weight component can be used. In the reprecipitation method, the polymer is dissolved in a solvent in which the polymer can be dissolved and dropped into a solvent having a lower solubility than the solvent in which the polymer is dissolved, thereby precipitating the polymer and removing low molecular weight components such as monomers, catalysts, and oligomers. It is a method to do. Further, preparative GPC can be separated by molecular weight by, for example, recycling preparative GPCLC-9100 (manufactured by Nippon Analytical Industrial Co., Ltd.), polystyrene gel column, and passing the polymer-dissolved solution through the column. It is a method that can be removed. In the living polymerization, the generation of the starting species does not change with time, and there are few side reactions such as termination reaction, and a polymer having a uniform molecular weight can be obtained. Since the molecular weight can be adjusted by the amount of monomer added, for example, if a polymer having a molecular weight of 20,000 is synthesized, the production of low molecular weight substances can be suppressed. From the viewpoint of production suitability, reprecipitation and living polymerization are preferred.
 本発明に係るポリマー(A)の分子量分布は1.01~1.30が好ましく、より好ましくは1.01~1.25である。分子量分布は(重量平均分子量/数平均分子量)の比で表す。 The molecular weight distribution of the polymer (A) according to the present invention is preferably 1.01 to 1.30, more preferably 1.01 to 1.25. The molecular weight distribution is represented by a ratio of (weight average molecular weight / number average molecular weight).
 分子量1000以下の含有量は、GPCにより得られた分布において、分子量1000以下の面積を積算し、分布全体の面積で割ることで割合を換算した。 Content with molecular weight of 1000 or less was converted to a ratio by integrating the area of molecular weight of 1000 or less and dividing by the area of the entire distribution in the distribution obtained by GPC.
 導電性ポリマーとポリマー(A)の比率は、導電性ポリマーを100質量部とした時、ポリマー(A)が30~900質量部であることが好ましく、ポリマー(A)の導電性アシスト効果、透明性の視点からは、ポリマー(A)が100~900質量部であることがより好ましい。 The ratio of the conductive polymer to the polymer (A) is preferably from 30 to 900 parts by mass of the polymer (A) when the conductive polymer is 100 parts by mass. From the viewpoint of properties, the polymer (A) is more preferably 100 to 900 parts by mass.
 (加熱処理)
 本発明における加熱処理は、150℃以上300℃以下で行われることを特徴とする。導電性ポリマーとポリマー(A)を含有する透明導電層は150℃以上300℃以下の温度範囲で加熱処理されて形成することで、有機電子デバイスに用いた場合、駆動電圧が低下する。駆動電圧が下がることについての原理の詳細は不明であるが、ポリマー(A)と導電性ポリマーからなる透明導電層を高温で処理することにより、透明導電層内のポリマーとパターン導電層との間に何らかの反応が起き、分子レベルでの接点を作りやすくなり導電パスができるためと考えている。さらに、高温で処理することにより、透明導電層の膜構造が安定化し、さらに緻密な膜となるため強固となり、洗浄耐性に優れ、高温環境下での劣化が少ない電極が得られる。
(Heat treatment)
The heat treatment in the present invention is performed at 150 ° C. or higher and 300 ° C. or lower. When the transparent conductive layer containing the conductive polymer and the polymer (A) is formed by heat treatment in a temperature range of 150 ° C. or more and 300 ° C. or less, the drive voltage is lowered when used for an organic electronic device. Although the details of the principle about lowering the driving voltage are unknown, by treating the transparent conductive layer made of the polymer (A) and the conductive polymer at a high temperature, the polymer between the polymer in the transparent conductive layer and the patterned conductive layer is removed. This is thought to be because some kind of reaction occurs, making it easier to make contacts at the molecular level and creating a conductive path. Further, by treating at a high temperature, the film structure of the transparent conductive layer is stabilized, and becomes a dense film, so that it becomes strong, has an excellent cleaning resistance, and has an electrode with little deterioration under a high temperature environment.
 加熱処理温度が150℃未満だと、透明導電層とパターン導電層との間の反応が不十分なためか、駆動電圧が低下しない。さらに、透明導電層中に水分が残留してしまい有機電子デバイスの寿命、高温状態での保存性を劣化させてしまう。また、300℃より高い温度で加熱処理を行うと、導電性ポリマーの結合の一部が壊れて始め、抵抗が高くなるため、有機電子デバイスに好適に用いることができない。 If the heat treatment temperature is less than 150 ° C., the drive voltage does not decrease because the reaction between the transparent conductive layer and the patterned conductive layer is insufficient. Furthermore, moisture remains in the transparent conductive layer, deteriorating the life of the organic electronic device and the storage stability at high temperatures. In addition, when heat treatment is performed at a temperature higher than 300 ° C., a part of the bond of the conductive polymer starts to break and the resistance increases, so that it cannot be suitably used for an organic electronic device.
 加熱処理方法は150℃以上300℃以下で処理できれば特に制限はなく、公知の処理方法を用いることができる。例えば、ヒータ、IRヒータ、真空加熱などを挙げることができるが、これに限定されない。加熱処理時間は10秒以上30分以下であることが好ましく、10秒以上10分以下であることがより好ましい。加熱処理時間が10秒以上の場合、透明導電層の水分を十分に減らすことができ、有機電子デバイスの寿命を劣化するのを防止できる。一方、加熱処理が30分以下とすることで、透明導電層の一部の結合が一部壊れ始めるのを防止し、抵抗に影響することを防止できる。 The heat treatment method is not particularly limited as long as it can be performed at 150 ° C. or more and 300 ° C. or less, and a known treatment method can be used. For example, a heater, an IR heater, vacuum heating, etc. can be mentioned, but it is not limited to this. The heat treatment time is preferably 10 seconds or longer and 30 minutes or shorter, and more preferably 10 seconds or longer and 10 minutes or shorter. When the heat treatment time is 10 seconds or more, the moisture in the transparent conductive layer can be sufficiently reduced, and deterioration of the lifetime of the organic electronic device can be prevented. On the other hand, when the heat treatment is performed for 30 minutes or less, it is possible to prevent partial bond of the transparent conductive layer from starting to be broken and to prevent the resistance from being affected.
 (パターン導電層)
 本発明に係るパターン導電層は、基板上に金属材料または金属酸化物をパターン状に形成することを特徴とする。パターン導電層には、公知のITOやIZOなどの金属酸化物を用いてもよいし、金属材料を用いてもよい。金属酸化物を用いた場合、透明性は金属材料を用いたものより優れるが、透明電極の抵抗の観点から、金属材料に劣る。そのため、大面積な透明電極を作成するためには、金属材料のほうがより好ましい。
(Pattern conductive layer)
The patterned conductive layer according to the present invention is characterized in that a metal material or a metal oxide is formed in a pattern on a substrate. A known metal oxide such as ITO or IZO may be used for the pattern conductive layer, or a metal material may be used. When a metal oxide is used, the transparency is superior to that using a metal material, but inferior to a metal material from the viewpoint of the resistance of the transparent electrode. Therefore, a metal material is more preferable for producing a large-area transparent electrode.
 パターン導電層に金属材料を用いる場合、金属材料からなる光不透過の導電部と透光性窓部を併せ持つ基板となり、導電性に優れた電極基板が作製できる。金属材料は、導電性に優れていれば特に制限はなく、例えば、金、銀、銅、鉄、ニッケル、クロム等の金属の他に合金でもよい。特に、後述のようにパターンの形成のしやすさの観点から金属材料の形状は、金属微粒子または金属ナノワイヤであることが好ましく、金属材料は導電性の観点から銀であることが好ましい。 When a metal material is used for the pattern conductive layer, it becomes a substrate having both a light-impermeable conductive portion made of a metal material and a light-transmitting window portion, and an electrode substrate excellent in conductivity can be manufactured. The metal material is not particularly limited as long as it is excellent in conductivity. For example, the metal material may be an alloy other than a metal such as gold, silver, copper, iron, nickel, and chromium. In particular, the shape of the metal material is preferably metal fine particles or metal nanowires from the viewpoint of ease of pattern formation as described later, and the metal material is preferably silver from the viewpoint of conductivity.
 パターン形状には特に制限はないが、例えば、導電部がストライプ状、メッシュ状あるいはランダムな網目状であってもよいが、開口率は透明性の観点から80%以上であることが好ましい。開口率とは、光不透過の導電部が全体に占める割合である。例えば、導電部がストライプ状あるいはメッシュ状であるとき、線幅100μm、線間隔1mmのストライプ状パターンの開口率は、およそ90%である。パターンの線幅は10~200μmが好ましい。 The pattern shape is not particularly limited. For example, the conductive portion may be a stripe shape, a mesh shape, or a random network shape, but the aperture ratio is preferably 80% or more from the viewpoint of transparency. The aperture ratio is the ratio of the light-impermeable conductive portion to the whole. For example, when the conductive portion has a stripe shape or a mesh shape, the aperture ratio of the stripe pattern having a line width of 100 μm and a line interval of 1 mm is about 90%. The line width of the pattern is preferably 10 to 200 μm.
 細線の線幅を10μm以上とすることで所望の導電性が得られ、また200μm以下とすることで透明性が向上する。細線の高さは0.1~10μmが好ましい。細線の高さを0.1μm以上とすることで所望の導電性が得られ、また10μm以下とすることで有機電子デバイスの形成において、電流リークや機能層の膜厚分布不良の要因となるのを防止できる。 Desirable conductivity is obtained by setting the line width of the fine wire to 10 μm or more, and transparency is improved by setting the line width to 200 μm or less. The height of the fine wire is preferably 0.1 to 10 μm. If the height of the fine wire is 0.1 μm or more, desired conductivity can be obtained, and if it is 10 μm or less, it causes current leakage and poor function layer thickness distribution in the formation of organic electronic devices. Can be prevented.
 導電部がストライプ状またはメッシュ状の電極を形成する方法としては、特に、制限はなく、従来公知な方法が利用できる。例えば、基材全面に金属層を形成し、公知のフォトリソ法によって形成できる。具体的には、基材上に全面に、印刷、蒸着、スパッタ、めっき等の1あるいは2以上の物理的または化学的形成手法を用いて導電体層を形成する、あるいは、金属箔を接着剤で基材に積層した後、公知のフォトリソ法を用いて、エッチングすることにより、所望のストライプ状あるいはメッシュ状に加工できる。 There is no particular limitation on the method for forming the stripe-shaped or mesh-shaped electrode of the conductive part, and a conventionally known method can be used. For example, a metal layer can be formed on the entire surface of the substrate and formed by a known photolithography method. Specifically, a conductor layer is formed on the entire surface using one or more physical or chemical forming methods such as printing, vapor deposition, sputtering, plating, etc., or a metal foil is used as an adhesive. After being laminated on the base material, the film can be processed into a desired stripe shape or mesh shape by etching using a known photolithography method.
 別な方法としては、金属微粒子を含有するインクをスクリーン印刷により所望の形状に印刷する方法や、メッキ可能な触媒インクをグラビア印刷、あるいは、インクジェット方式で所望の形状に塗布した後、メッキ処理する方法、さらに別な方法としては、銀塩写真技術を応用した方法も利用できる。銀塩写真技術を応用した方法については、例えば、特開2009-140750号公報の段落0076~0112、及び実施例を参考にして実施できる。触媒インクをグラビア印刷してメッキ処理する方法については、例えば、特開2007-281290号公報を参考にして実施できる。 As another method, a method of printing an ink containing metal fine particles in a desired shape by screen printing, or applying a plating catalyst ink to a desired shape by gravure printing or an ink jet method, followed by plating treatment As another method, a method using silver salt photographic technology can also be used. A method using silver salt photographic technology can be carried out, for example, referring to paragraphs 0076 to 0112 of JP2009-140750A and examples. The method for carrying out the plating process by gravure printing of the catalyst ink can be carried out with reference to, for example, JP-A-2007-281290.
 ランダムな網目構造としては、例えば、特表2005-530005号公報に記載のような、金属微粒子を含有する液を塗布乾燥することにより、自発的に導電性微粒子の無秩序な網目構造を形成する方法を利用できる。 As a random network structure, for example, a method for spontaneously forming a disordered network structure of conductive fine particles by applying and drying a liquid containing metal fine particles as described in JP-T-2005-530005 Can be used.
 別な方法としては、例えば、特表2009-505358号公報に記載のような、金属ナノワイヤを含有する塗布液を塗布乾燥することで、金属ナノワイヤのランダムな網目構造を形成させる方法を利用できる。 As another method, for example, a method for forming a random network structure of metal nanowires by applying and drying a coating solution containing metal nanowires as described in JP-T-2009-505358 can be used.
 金属ナノワイヤとは、金属元素を主要な構成要素とする繊維状構造体のことをいう。特に、本発明における金属ナノワイヤとは、原子スケールからnmサイズの短径を有する多数の繊維状構造体を意味する。 Metal nanowire refers to a fibrous structure having a metal element as a main component. In particular, the metal nanowire in the present invention means a large number of fibrous structures having a minor axis from the atomic scale to the nm size.
 金属ナノワイヤとしては、1つの金属ナノワイヤで長い導電パスを形成するために、平均長さが3μm以上であることが好ましく、さらには3~500μmが好ましく、特に3~300μmであることが好ましい。併せて、長さの相対標準偏差は40%以下であることが好ましい。また、平均短径には特に制限はないが、透明性の観点からは小さいことが好ましく、一方で、導電性の観点からは大きい方が好ましい。金属ナノワイヤの平均短径として10~300nmが好ましく、30~200nmであることがより好ましい。併せて、短径の相対標準偏差は20%以下であることが好ましい。金属ナノワイヤの目付け量は0.005~0.5g/mが好ましく、0.01~0.2g/mがより好ましい。 As the metal nanowire, in order to form a long conductive path with one metal nanowire, the average length is preferably 3 μm or more, more preferably 3 to 500 μm, and particularly preferably 3 to 300 μm. In addition, the relative standard deviation of the length is preferably 40% or less. Moreover, although there is no restriction | limiting in particular in an average breadth, it is preferable that it is small from a transparency viewpoint, and the larger one is preferable from a conductive viewpoint. The average minor axis of the metal nanowire is preferably 10 to 300 nm, and more preferably 30 to 200 nm. In addition, the relative standard deviation of the minor axis is preferably 20% or less. The basis weight of the metal nanowire is preferably 0.005 to 0.5 g / m 2 , and more preferably 0.01 to 0.2 g / m 2 .
 金属ナノワイヤに用いられる金属としては、銅、鉄、コバルト、金、銀等を用いることができるが、導電性の観点から銀が好ましい。また、金属は単一で用いてもよいが、導電性と安定性(金属ナノワイヤの硫化や酸化耐性、及びマイグレーション耐性)を両立するために、主成分となる金属と1種類以上の他の金属を任意の割合で含んでもよい。 As the metal used for the metal nanowire, copper, iron, cobalt, gold, silver or the like can be used, but silver is preferable from the viewpoint of conductivity. In addition, although a single metal may be used, in order to achieve both conductivity and stability (sulfurization, oxidation resistance, and migration resistance of metal nanowires), the main metal and one or more other metals May be included in any proportion.
 金属ナノワイヤの製造方法には特に制限はなく、例えば、液相法や気相法等の公知の手段を用いることができる。また、具体的な製造方法にも特に制限はなく、公知の製造方法を用いることができる。例えば、銀ナノワイヤの製造方法としては、Adv.Mater.,2002,14,833~837、Chem.Mater.,2002,14,4736~4745、金ナノワイヤの製造方法としては特開2006-233252号公報等、銅ナノワイヤの製造方法としては特開2002-266007号公報等、コバルトナノワイヤの製造方法としては特開2004-149871号公報等を参考にすることができる。特に、上述した銀ナノワイヤの製造方法は、水溶液中で簡便に銀ナノワイヤを製造することができ、また銀の導電率は金属中で最大であることから、好ましく適用することができる。 The method for producing the metal nanowire is not particularly limited, and for example, known means such as a liquid phase method and a gas phase method can be used. Moreover, there is no restriction | limiting in particular in a specific manufacturing method, A well-known manufacturing method can be used. For example, as a method for producing silver nanowires, Adv. Mater. , 2002, 14, 833-837, Chem. Mater. 2002, 14, 4736-4745, a method for producing gold nanowires is disclosed in Japanese Patent Application Laid-Open No. 2006-233252, a method for producing copper nanowires is disclosed in Japanese Patent Application Laid-Open No. 2002-266007, and the like. Reference can be made to 2004-149871. In particular, the above-described method for producing silver nanowires can be preferably applied because silver nanowires can be easily produced in an aqueous solution, and the conductivity of silver is maximum in metals.
 また、パターン導電層の細線部の表面比抵抗は、100Ω/□以下であることが好ましく、大面積化するには20Ω/□以下であることがより好ましい。表面比抵抗は、例えば、JIS K6911、ASTM D257等に準拠して測定することができ、また市販の表面抵抗率計を用いて簡便に測定することができる。 Further, the surface specific resistance of the thin line portion of the pattern conductive layer is preferably 100Ω / □ or less, and more preferably 20Ω / □ or less for increasing the area. The surface specific resistance can be measured, for example, according to JIS K6911, ASTM D257, etc., and can be easily measured using a commercially available surface resistivity meter.
 また、パターン導電層は加熱することが好ましい。これにより、金属微粒子や金属ナノワイヤ同士の融着が進み、パターン導電層の高導電化するため、特に好ましい。加熱温度は金属微粒子であれば、150℃以上500℃以下であることが好ましく、200℃以上350℃以下であることがより好ましい。 Further, it is preferable to heat the pattern conductive layer. Thereby, fusion of metal fine particles and metal nanowires proceeds and the pattern conductive layer becomes highly conductive, which is particularly preferable. The heating temperature is preferably 150 ° C. or higher and 500 ° C. or lower, and more preferably 200 ° C. or higher and 350 ° C. or lower, if it is metal fine particles.
 (透明導電層)
 透明導電層は、パターン形成されたパターン導電層を完全に被覆してもよいし、一部を被覆または接触してもよい。透明導電層は導電性ポリマーとポリマー(A)を含む分散液を塗布、乾燥して膜形成する。透明導電層の塗布は、前述のグラビア印刷法、フレキソ印刷法、スクリーン印刷法等の印刷方法に加えて、ロールコート法、バーコート法、ディップコーティング法、スピンコーティング法、キャスティング法、ダイコート法、ブレードコート法、バーコート法、グラビアコート法、カーテンコート法、スプレーコート法、ドクターコート法、インクジェット法等の塗布法を用いることができる。また、転写フィルムに透明導電層を塗布、乾燥して膜形成した後に、パターン導電層を形成し、透明基板に転写してもよい。
(Transparent conductive layer)
The transparent conductive layer may completely cover the patterned patterned conductive layer, or may partially cover or contact it. The transparent conductive layer is formed into a film by applying and drying a dispersion containing a conductive polymer and polymer (A). In addition to the above-mentioned printing methods such as gravure printing method, flexographic printing method, screen printing method, the application of the transparent conductive layer is performed by roll coating method, bar coating method, dip coating method, spin coating method, casting method, die coating method, Coating methods such as blade coating, bar coating, gravure coating, curtain coating, spray coating, doctor coating, and ink jet can be used. Moreover, after forming a film | membrane by apply | coating and drying a transparent conductive layer to a transfer film, a pattern conductive layer may be formed and transcribe | transferred to a transparent substrate.
 また、パターン導電層の一部を透明導電層が被覆または接触している透明電極を作製する手段としては、転写フィルムにパターン導電層を上述の方法で形成し、さらに透明導電層を上述の方法で積層したしたものを、上述の透明基板に転写する方法が挙げられる。また、パターン導電層の非導電部にインクジェット法等で公知の方法で、透明導電層を形成する方法等が挙げられる。 Further, as a means for producing a transparent electrode in which a part of the pattern conductive layer is covered or in contact with the transparent conductive layer, the pattern conductive layer is formed on the transfer film by the above-described method, and the transparent conductive layer is further formed by the above-described method. There is a method of transferring the layer laminated in the above-mentioned transparent substrate. Moreover, the method etc. which form a transparent conductive layer by the well-known method by the inkjet method etc. in the nonelectroconductive part of a pattern conductive layer are mentioned.
 透明導電層は、さらにポリマー(A)を含むことが特徴である。これにより、高い導電性、高い透明性、強い膜強度を得ることができる。 The transparent conductive layer is further characterized by containing a polymer (A). Thereby, high electroconductivity, high transparency, and strong film | membrane intensity | strength can be obtained.
 このような構造を有する本発明の導電層を形成することで、金属または金属酸化物細線、あるいは導電性ポリマー層単独では得ることのできない高い導電性を、電極面内において均一に得ることができる。 By forming the conductive layer of the present invention having such a structure, high conductivity that cannot be obtained with a metal or metal oxide fine wire or a conductive polymer layer alone can be obtained uniformly in the electrode plane. .
 透明導電層の乾燥膜厚は30~2000nmであることが好ましい。導電性の点から、100nm以上であることがより好ましく、電極の表面平滑性の点から、200nm以上であることがさらに好ましい。また、透明性の点から、1000nm以下であることがより好ましい。 The dry film thickness of the transparent conductive layer is preferably 30 to 2000 nm. From the viewpoint of conductivity, the thickness is more preferably 100 nm or more, and from the viewpoint of the surface smoothness of the electrode, it is further preferably 200 nm or more. Moreover, it is more preferable that it is 1000 nm or less from the point of transparency.
 透明導電層を塗布した後、適宜乾燥処理を施すことができる。乾燥処理の条件としては加熱処理温度以下で加熱することが好ましい。例えば、80~120℃で1分以上10分以下の乾燥処理をすることができる。本発明において、乾燥終了後、さらに加熱処理を行うことで、透明導電層の抵抗を下げることができ、さらに透明導電層中の水分を十分に減らすことができる。さらに、高温で処理することにより、透明導電層の膜構造が安定化し強固になる。また、これにより電極の加熱により耐性が著しく向上する。これらの効果により、特に有機EL素子においては、寿命の向上、高温環境下での素子の保存性の向上といった効果が得られる。 After applying the transparent conductive layer, it can be appropriately dried. It is preferable to heat at a temperature equal to or lower than the heat treatment temperature as a drying treatment condition. For example, a drying treatment at 80 to 120 ° C. for 1 minute or more and 10 minutes or less can be performed. In this invention, after completion | finish of drying, by further heat-processing, the resistance of a transparent conductive layer can be lowered | hung and the water | moisture content in a transparent conductive layer can fully be reduced. Furthermore, the film structure of the transparent conductive layer is stabilized and strengthened by processing at a high temperature. In addition, the resistance is remarkably improved by heating the electrode. With these effects, particularly in the case of an organic EL element, effects such as improvement of life and improvement of storage stability of the element under a high temperature environment can be obtained.
 本発明に係る導電性ポリマー及びポリマー(A)を含む分散液は、導電層の導電性、透明性、平滑性を同時に満たす範囲において、さらに他の透明な非導電性ポリマーや添加剤や架橋剤を含有してもよい。 The dispersion containing the conductive polymer and the polymer (A) according to the present invention is a transparent non-conductive polymer, additive or cross-linking agent as long as the conductivity, transparency and smoothness of the conductive layer are simultaneously satisfied. It may contain.
 透明な非導電性ポリマーとしては、天然高分子樹脂または合成高分子樹脂から広く選択して使用することができ、水溶性高分子または水性高分子エマルジョンが特に好ましい。水溶性高分子としては、天然高分子のデンプン、ゼラチン、寒天等、半合成高分子のヒドロキシプロピルメチルセルロース、カルボキシメチルセルロース、ヒドロキシエチルセルロース等のセルロース誘導体、合成高分子のポリビニルアルコール、ポリアクリル酸系高分子、ポリアクリルアミド、ポリエチレンオキシド、ポリビニルピロリドン等が、水性高分子エマルジョンとしては、アクリル系樹脂(アクリルシリコン変性樹脂、フッ素変性アクリル樹脂、ウレタン変性アクリル樹脂、エポキシ変性アクリル樹脂等)、ポリエステル系樹脂、ウレタン系樹脂、酢酸ビニル系樹脂等を使用することができる。 As the transparent non-conductive polymer, a wide variety of natural polymer resins or synthetic polymer resins can be used, and a water-soluble polymer or an aqueous polymer emulsion is particularly preferable. Examples of water-soluble polymers include natural polymers such as starch, gelatin, and agar, semi-synthetic polymers such as hydroxypropylmethylcellulose, carboxymethylcellulose, and hydroxyethylcellulose, cellulose derivatives, synthetic polymers such as polyvinyl alcohol, and polyacrylic acid polymers. , Polyacrylamide, polyethylene oxide, polyvinylpyrrolidone, etc., and aqueous polymer emulsions include acrylic resins (acrylic silicone modified resins, fluorine modified acrylic resins, urethane modified acrylic resins, epoxy modified acrylic resins, etc.), polyester resins, urethane Resin, vinyl acetate resin and the like can be used.
 また、合成高分子樹脂としては、透明な熱可塑性樹脂(例えば、ポリ塩化ビニル、塩化ビニル-酢酸ビニル共重合体、ポリメチルメタクリレート、ニトロセルロース、塩素化ポリエチレン、塩素化ポリプロピレン、フッ化ビニリデン)や、熱・光・電子線・放射線で硬化する透明硬化性樹脂(例えば、メラミンアクリレート、ウレタンアクリレート、エポキシ樹脂、ポリイミド樹脂、アクリル変性シリケート等のシリコン樹脂)を使用することができる。 Synthetic polymer resins include transparent thermoplastic resins (for example, polyvinyl chloride, vinyl chloride-vinyl acetate copolymer, polymethyl methacrylate, nitrocellulose, chlorinated polyethylene, chlorinated polypropylene, vinylidene fluoride), A transparent curable resin (for example, a melamine acrylate, urethane acrylate, epoxy resin, polyimide resin, or a silicone resin such as an acrylic-modified silicate) that can be cured by heat, light, electron beam, or radiation can be used.
 添加剤としては、可塑剤、酸化防止剤や硫化防止剤等の安定剤、界面活性剤、溶解促進剤、重合禁止剤、染料や顔料等の着色剤等が挙げられる。さらに、塗布性等の作業性を高める観点から、溶媒(例えば、水や、アルコール類、グリコール類、セロソルブ類、ケトン類、エステル類、エーテル類、アミド類、炭化水素類等の有機溶媒)を含んでいてもよい。 Examples of additives include plasticizers, stabilizers such as antioxidants and sulfurization inhibitors, surfactants, dissolution accelerators, polymerization inhibitors, and colorants such as dyes and pigments. Furthermore, from the viewpoint of improving workability such as coating properties, solvents (for example, organic solvents such as water, alcohols, glycols, cellosolves, ketones, esters, ethers, amides, hydrocarbons, etc.) are used. May be included.
 ポリマー(A)の架橋剤としては、例えばオキサゾリン系架橋剤、カルボジイミド系架橋剤、阻止イソシアネート系架橋剤、エポキシ系架橋剤、メラミン系架橋剤、アルデヒド系架橋剤等を単独あるいは複数併用して用いることができる。 As the crosslinking agent for the polymer (A), for example, an oxazoline crosslinking agent, a carbodiimide crosslinking agent, a blocked isocyanate crosslinking agent, an epoxy crosslinking agent, a melamine crosslinking agent, an aldehyde crosslinking agent, or the like is used alone or in combination. be able to.
 (有機電子デバイス)
 本発明の透明電極は各種有機電子デバイスに用いることができる。有機電子デバイスとは、支持体上にアノード電極と、カソード電極を有し、電極間に少なくとも1層の有機機能層を有する。有機機能層としては、有機発光層、有機光電変換層、液晶ポリマー層等が挙げられるが、特に限定されない。本発明は、機能層が薄膜でかつ電流駆動系のデバイスである有機発光層、有機光電変換層である場合において、特に有効で、有機ELデバイス、太陽電池等の有機電子デバイスに適用できる。
(Organic electronic devices)
The transparent electrode of the present invention can be used for various organic electronic devices. An organic electronic device has an anode electrode and a cathode electrode on a support, and has at least one organic functional layer between the electrodes. Examples of the organic functional layer include, but are not particularly limited to, an organic light emitting layer, an organic photoelectric conversion layer, and a liquid crystal polymer layer. INDUSTRIAL APPLICABILITY The present invention is particularly effective when the functional layer is a thin film and is an organic light emitting layer or an organic photoelectric conversion layer that is a current-driven device, and can be applied to organic electronic devices such as organic EL devices and solar cells.
 以下、実施例により本発明を具体的に説明するが、本発明はこれにより限定されるものではない。なお、実施例において「%」の表示を用いるが、特に断りがない限り「質量%」を表す。 Hereinafter, the present invention will be specifically described by way of examples, but the present invention is not limited thereto. In addition, although the display of "%" is used in an Example, unless otherwise indicated, "mass%" is represented.
 《導電層の作製》
 ガラス基板上に下記塗布液A~Iを、押し出し法を用いて、乾燥膜厚300nmになるように押し出しヘッドのスリット間隙を調整して塗布し、100℃、1分加熱して、導電層A~Iとした。
<< Preparation of conductive layer >>
The following coating liquids A to I are applied onto a glass substrate by adjusting the slit gap of the extrusion head so as to have a dry film thickness of 300 nm using an extrusion method, and heated at 100 ° C. for 1 minute to form a conductive layer A. ~ I.
 (塗布液A)
 PEDOT-PSS CLEVIOS PH510(固形分濃度1.89%)(H.C.Starck社製)            2.00g
 ジメチルスルホキシド(DMSO)           0.08g
 (塗布液B)
 PEDOT-PSS CLEVIOS PH510(固形分濃度1.89%、H.C.Starck社製)             1.59g
 P-1(固形分20%水溶液)             0.35g
 ジメチルスルホキシド(DMSO)           0.08g
 (塗布液C)
 PEDOT-PSS CLEVIOS PH510(固形分濃度1.89%、H.C.Starck社製)             1.59g
 P-2(固形分20%水溶液)             0.35g
 ジメチルスルホキシド(DMSO)           0.08g
 (塗布液D)
 PEDOT-PSS CLEVIOS PH510(固形分濃度1.89%、H.C.Starck社製)             1.59g
 P-3(固形分20%水溶液)             0.35g
 ジメチルスルホキシド(DMSO)           0.08g
 (塗布液E)
 PEDOT-PSS CLEVIOS PH510(固形分濃度1.89%)(H.C.Starck社製)            1.59g
 ポリビニルアルコール PVA-235(クレハ製)固形分2% 水溶液
                            3.50g
 ジメチルスルホキシド(DMSO)           0.20g
 (塗布液F)
 PEDOT-PSS CLEVIOS PH510(固形分濃度1.89%)(H.C.Starck社製)            1.59g
 ポリビニルピロリドンK15(粘度平均分子量10、000 東京化成工業)固形分2% 水溶液                 3.50g
 ジメチルスルホキシド(DMSO)           0.20g
 (塗布液G)
 PEDOT-PSS CLEVIOS PH750(固形分濃度1.03%)(H.C.Starck社製)            3.27g
 ジメチルスルホキシド(DMSO)           0.13g
 (塗布液H)
 PEDOT-PSS CLEVIOS PH750(固形分濃度1.03%)(H.C.Starck社製)            2.92g
 P-1(固形分20%水溶液)             0.35g
 ジメチルスルホキシド(DMSO)           0.13g
 (塗布液I)
 PEDOT-PSS CLEVIOS PH510(固形分濃度1.89%、H.C.Starck社製)             1.59g
 P-4(固形分20%水溶液)             0.35g
 ジメチルスルホキシド(DMSO)           0.08g
 ポリマー(A)の合成
 <ポリマー(A)の合成>
 合成例1(ポリマー(A)であるP-1の合成)
 500ml三ツ口フラスコにTHF200mlを加え10分間加熱還流させた後、窒素下で室温に冷却した。2-ヒドロキシエチルアクリレート(10.0g、86mmol、分子量:116.05)、AIBN(1.41g、8.5mmol、分子量:164.11)を加え、5時間加熱還流した。室温に冷却した後、5000mlのMEK中に反応溶液を滴下し、1時間攪拌した。MEKをデカンテーション後、200mlのMEKで3回洗浄後、THFでポリマーを溶解し、100mlフラスコへ移した。THFをロータリーエバポレーターにより減圧留去後、50℃で3時間減圧乾燥した。その結果、数平均分子量35700、分子量分布2.3のP-1を9.0g(収率90%)得た。
(Coating liquid A)
PEDOT-PSS CLEVIOS PH510 (solid content concentration 1.89%) (manufactured by HC Starck) 2.00 g
Dimethyl sulfoxide (DMSO) 0.08g
(Coating solution B)
PEDOT-PSS CLEVIOS PH510 (solid content concentration 1.89%, manufactured by HC Starck) 1.59 g
P-1 (20% solid content aqueous solution) 0.35 g
Dimethyl sulfoxide (DMSO) 0.08g
(Coating liquid C)
PEDOT-PSS CLEVIOS PH510 (solid content concentration 1.89%, manufactured by HC Starck) 1.59 g
P-2 (20% solid content aqueous solution) 0.35 g
Dimethyl sulfoxide (DMSO) 0.08g
(Coating liquid D)
PEDOT-PSS CLEVIOS PH510 (solid content concentration 1.89%, manufactured by HC Starck) 1.59 g
P-3 (20% solid content aqueous solution) 0.35 g
Dimethyl sulfoxide (DMSO) 0.08g
(Coating fluid E)
PEDOT-PSS CLEVIOS PH510 (solid content concentration 1.89%) (manufactured by HC Starck) 1.59 g
Polyvinyl alcohol PVA-235 (manufactured by Kureha) 2% solid content aqueous solution 3.50 g
Dimethyl sulfoxide (DMSO) 0.20g
(Coating fluid F)
PEDOT-PSS CLEVIOS PH510 (solid content concentration 1.89%) (manufactured by HC Starck) 1.59 g
Polyvinylpyrrolidone K15 (viscosity average molecular weight 10,000, Tokyo Chemical Industry Co., Ltd.) 2% solid content aqueous solution 3.50 g
Dimethyl sulfoxide (DMSO) 0.20g
(Coating liquid G)
PEDOT-PSS CLEVIOS PH750 (solid content concentration 1.03%) (manufactured by HC Starck) 3.27 g
Dimethyl sulfoxide (DMSO) 0.13g
(Coating liquid H)
PEDOT-PSS CLEVIOS PH750 (solid content concentration 1.03%) (manufactured by HC Starck) 2.92 g
P-1 (20% solid content aqueous solution) 0.35 g
Dimethyl sulfoxide (DMSO) 0.13g
(Coating liquid I)
PEDOT-PSS CLEVIOS PH510 (solid content concentration 1.89%, manufactured by HC Starck) 1.59 g
P-4 (20% solid content aqueous solution) 0.35 g
Dimethyl sulfoxide (DMSO) 0.08g
Synthesis of polymer (A) <Synthesis of polymer (A)>
Synthesis Example 1 (Synthesis of P-1 as polymer (A))
After adding 200 ml of THF to a 500 ml three-necked flask and heating to reflux for 10 minutes, it was cooled to room temperature under nitrogen. 2-hydroxyethyl acrylate (10.0 g, 86 mmol, molecular weight: 116.05) and AIBN (1.41 g, 8.5 mmol, molecular weight: 164.11) were added, and the mixture was heated to reflux for 5 hours. After cooling to room temperature, the reaction solution was added dropwise into 5000 ml of MEK and stirred for 1 hour. After decantation of MEK, the polymer was washed 3 times with 200 ml of MEK, and then the polymer was dissolved in THF and transferred to a 100 ml flask. THF was distilled off under reduced pressure using a rotary evaporator and then dried under reduced pressure at 50 ° C. for 3 hours. As a result, 9.0 g (yield 90%) of P-1 having a number average molecular weight of 35,700 and a molecular weight distribution of 2.3 was obtained.
 分子量はGPC(Waters2695、Waters社製)で測定した。 Molecular weight was measured by GPC (Waters 2695, manufactured by Waters).
 <GPC測定条件>
装置:Wagers2695(Separations Module)
検出器:Waters 2414 (Refractive Index Detector)
カラム:Shodex Asahipak GF-7M HQ
溶離液:ジメチルホルムアミド(20mM LiBr)
流速:1.0ml/min
温度:40℃
 合成例2(ポリマー(A)であるP-2の合成)
 モノマーとしてヒドロキシメチルアクリレートを用いた以外は合成例1と同様な方法により、P-2を得た。
<GPC measurement conditions>
Apparatus: Wagers 2695 (Separations Module)
Detector: Waters 2414 (Refractive Index Detector)
Column: Shodex Asahipak GF-7M HQ
Eluent: Dimethylformamide (20 mM LiBr)
Flow rate: 1.0 ml / min
Temperature: 40 ° C
Synthesis Example 2 (Synthesis of P-2 as polymer (A))
P-2 was obtained in the same manner as in Synthesis Example 1 except that hydroxymethyl acrylate was used as a monomer.
 合成例3(ポリマー(A)であるP-3の合成)
 200ml三ツ口フラスコにTHF100mlを加え10分間加熱還流させた後、窒素下で室温に冷却した。2-ヒドロキシエチルアクリレート(4.1g、35mmol、分子量:116.05)、ブレンマーPME-900(7.4g、15mmol、分子量:496.29)、AIBN(0.8g、5mmol、分子量:164.11)を加え、5時間加熱還流した。室温に冷却した後、3000mlのMEK中に反応溶液を滴下し、1時間攪拌した。MEKをデカンテーション後、100mlのMEKで3回洗浄後、THFでポリマーを溶解し、100mlフラスコへ移した。THFをロータリーエバポレーターにより減圧留去後、50℃で3時間減圧乾燥した。その結果、数平均分子量33700、分子量分布2.4のP-3を10.3g(収率90%)得た。
Synthesis Example 3 (Synthesis of P-3 as polymer (A))
After adding 100 ml of THF to a 200 ml three-necked flask and heating to reflux for 10 minutes, the mixture was cooled to room temperature under nitrogen. 2-hydroxyethyl acrylate (4.1 g, 35 mmol, molecular weight: 116.05), Bremmer PME-900 (7.4 g, 15 mmol, molecular weight: 496.29), AIBN (0.8 g, 5 mmol, molecular weight: 164.11) ) And heated to reflux for 5 hours. After cooling to room temperature, the reaction solution was dropped into 3000 ml of MEK and stirred for 1 hour. After decantation of MEK, the polymer was washed 3 times with 100 ml of MEK, and then the polymer was dissolved in THF and transferred to a 100 ml flask. THF was distilled off under reduced pressure using a rotary evaporator and then dried under reduced pressure at 50 ° C. for 3 hours. As a result, 10.3 g (yield 90%) of P-3 having a number average molecular weight of 33700 and a molecular weight distribution of 2.4 was obtained.
 合成例4(P-4の合成)
 200ml三ツ口フラスコにTHF100mlを加え10分間加熱還流させた後、窒素下で室温に冷却した。2-ヒドロキシエチルアクリレート(0.6g、5mmol、分子量:116.05)、ブレンマーPME-900(21g、45mmol、分子量:496.29)、AIBN(0.8g、5mmol、分子量:164.11)を加え、5時間加熱還流した。室温に冷却した後、3000mlのMEK中に反応溶液を滴下し、1時間攪拌した。MEKをデカンテーション後、100mlのMEKで3回洗浄後、THFでポリマーを溶解し、100mlフラスコへ移した。THFをロータリーエバポレーターにより減圧留去後、50℃で3時間減圧乾燥した。その結果、数平均分子量34500、分子量分布2.3のP-4を17.3g(収率80%)得た。
Synthesis Example 4 (Synthesis of P-4)
After adding 100 ml of THF to a 200 ml three-necked flask and heating to reflux for 10 minutes, the mixture was cooled to room temperature under nitrogen. 2-hydroxyethyl acrylate (0.6 g, 5 mmol, molecular weight: 116.05), Bremer PME-900 (21 g, 45 mmol, molecular weight: 496.29), AIBN (0.8 g, 5 mmol, molecular weight: 164.11). The mixture was heated to reflux for 5 hours. After cooling to room temperature, the reaction solution was dropped into 3000 ml of MEK and stirred for 1 hour. After decantation of MEK, the polymer was washed 3 times with 100 ml of MEK, and then the polymer was dissolved in THF and transferred to a 100 ml flask. THF was distilled off under reduced pressure using a rotary evaporator and then dried under reduced pressure at 50 ° C. for 3 hours. As a result, 17.3 g (yield 80%) of P-4 having a number average molecular weight of 34500 and a molecular weight distribution of 2.3 was obtained.
 (電極1~24の作製)
 導電層A~Iを、それぞれ下記の温度で加熱処理し電極1~24を作製した。加熱時間は2分とした。
導電層Aを150℃、200℃で加熱して電極1、2とした。
導電層Bを130℃、150℃、200℃、250℃、300℃、330℃で加熱して電極3~8とした。
導電層Cを200℃、250℃で加熱して電極9、10とした。
導電層Dを200℃、250℃で加熱して電極11、12とした。
導電層Eを150℃、200℃、250℃で加熱して電極13~15とした。
導電層Fを150℃、200℃、250℃で加熱し電極16~18とした。
導電層Gを200℃、250℃で加熱して電極19、20とした。
導電層Hを200℃、250℃で加熱して電極21、22とした。
導電層Iを200℃、250℃で加熱して電極23、24とした。
(Production of electrodes 1 to 24)
Conductive layers A to I were heat-treated at the following temperatures to prepare electrodes 1 to 24, respectively. The heating time was 2 minutes.
The conductive layer A was heated at 150 ° C. and 200 ° C. to form electrodes 1 and 2.
Conductive layer B was heated at 130 ° C., 150 ° C., 200 ° C., 250 ° C., 300 ° C., and 330 ° C. to form electrodes 3-8.
The conductive layer C was heated at 200 ° C. and 250 ° C. to form electrodes 9 and 10.
The conductive layer D was heated at 200 ° C. and 250 ° C. to form electrodes 11 and 12.
The conductive layer E was heated at 150 ° C., 200 ° C., and 250 ° C. to form electrodes 13 to 15.
The conductive layer F was heated at 150 ° C., 200 ° C., and 250 ° C. to form electrodes 16 to 18.
The conductive layer G was heated at 200 ° C. and 250 ° C. to form electrodes 19 and 20.
The conductive layer H was heated at 200 ° C. and 250 ° C. to form electrodes 21 and 22.
The conductive layer I was heated at 200 ° C. and 250 ° C. to form electrodes 23 and 24.
 《電極1~24の評価》
 得られた電極の透明性、導電性及び膜の水洗耐性を下記のように評価した。
<< Evaluation of electrodes 1 to 24 >>
The transparency, conductivity, and water washing resistance of the obtained electrode were evaluated as follows.
 (透明性)
 東京電色社製 HAZE METER NDH5000を用いて、全光線透過率を測定し、下記基準で評価した。有機電子デバイスに用いるため、80%以上であることが好ましい。
(transparency)
Total light transmittance was measured using a HAZE METER NDH5000 manufactured by Tokyo Denshoku Co., Ltd., and evaluated according to the following criteria. Since it is used for an organic electronic device, it is preferably 80% or more.
 ○:80%以上
 △:75%~80%未満
 ×:70%~75%未満
 ××:0%~70%未満
 (導電性)
 抵抗率計(ロレスタGP(MCP-T610型):(株)三菱化学アナリテック製)を用いて表面抵抗を測定した。表面抵抗は1500Ω/□以下であることが好ましく、有機電子デバイスを大面積にするには、1000Ω/□以下であることがより好ましい。
○: 80% or more △: 75% to less than 80% ×: 70% to less than 75% × ×: 0% to less than 70% (conductivity)
The surface resistance was measured using a resistivity meter (Loresta GP (MCP-T610 type): manufactured by Mitsubishi Chemical Analytech Co., Ltd.). The surface resistance is preferably 1500Ω / □ or less, and more preferably 1000Ω / □ or less in order to increase the area of the organic electronic device.
 ◎:1000Ω/□未満
 ○:1000~1500Ω/□未満
 △:1500~3000Ω/□未満
 ×:3000~10000Ω/□未満
 ××:10000Ω/□以上
 (膜の洗浄耐性)
 洗浄液はMilli-Q水製造装置 Milli-Q Advantage(日本ミリポア(株))を用いて作製した超純水を用い、10分間、洗浄液に基板をつけ、目視により透明導電層の表面に乱れが無いかを下記の基準で評価した。
◎: Less than 1000Ω / □ ○: 1000-1500Ω / □ Less than: 1500-3000Ω / □ Less than: 3000-10000Ω / □ Less than ×: 10000Ω / □ (Membrane cleaning resistance)
The cleaning liquid is ultra-pure water prepared using Milli-Q water production equipment Milli-Q Advantage (Nippon Millipore Corporation). A substrate is attached to the cleaning liquid for 10 minutes, and the surface of the transparent conductive layer is not visually disturbed. The following criteria evaluated.
 ○:なし
 ×:あり
 電極1~24に用いた導電性ポリマー、非導電性ポリマー及び加熱処理等の試料内容と上記の評価結果を表1にまとめた。
○: None ×: Available Table 1 summarizes the contents of the samples such as the conductive polymer, non-conductive polymer, and heat treatment used for the electrodes 1 to 24 and the evaluation results.
Figure JPOXMLDOC01-appb-T000004
Figure JPOXMLDOC01-appb-T000004
 表1から導電性ポリマー単独では厚膜化したときに透明性が悪く、層の洗浄耐性が足りないことが分かる(電極1、2、19、20)。また、親水基含有非導電性ポリマーにポリマー(A)以外のPVAやPVPを用いた場合、導電性、透明性が悪いことがわかる。更に、本発明に係る構造単位を有していても、その構成率が範囲外の場合(m/(m+n)=0.1)は、良好な結果が得られないことが分かる(電極23、24)。一方、親水基含有非導電性ポリマーにポリマー(A)を用い、高温で加熱処理された本発明電極の場合、透明性、導電性、洗浄耐性に優れた透明電極が得られることが分かる。 From Table 1, it can be seen that the conductive polymer alone has poor transparency when it is thickened, and the layer has insufficient cleaning resistance (electrodes 1, 2, 19, 20). Moreover, when PVA and PVP other than a polymer (A) are used for a hydrophilic group containing nonelectroconductive polymer, it turns out that electroconductivity and transparency are bad. Furthermore, even when the structural unit according to the present invention is included, when the composition ratio is out of the range (m / (m + n) = 0.1), it is understood that good results cannot be obtained (electrode 23, 24). On the other hand, it can be seen that in the case of the present invention electrode obtained by using the polymer (A) as the hydrophilic group-containing non-conductive polymer and heat-treated at a high temperature, a transparent electrode excellent in transparency, conductivity and washing resistance can be obtained.
 また、パターンの同じAg細線を形成したガラス基板上に、前述の導電層1-24を形成し、透明性、洗浄耐性を評価したところ、透明性はAg細線のロス分だけ透過率が減少しただけで、評価結果の相関関係は表1と同様な結果であり、洗浄耐性は表1と同様な結果が得られた。 In addition, when the conductive layer 1-24 described above was formed on a glass substrate on which the same Ag thin wire with the same pattern was formed, and the transparency and washing resistance were evaluated, the transparency decreased in transmittance by the loss of the Ag thin wire. As a result, the correlation between the evaluation results was the same as in Table 1, and the cleaning resistance was the same as in Table 1.
 〈有機ELデバイスの作製〉
 次にガラス基板に、以下の方法でAg細線格子、ITO、銀ナノワイヤそれぞれのパターン導電層を作成し、取り出し電極として、ITOをパターン電極につながるようにスパッタした。さらに前述の塗布液A~Fを用いて、透明導電層を前述の方法でパターン電極層上に300nm積層し、余分な部分については加熱前にふき取りを行った。そして、種々の温度で加熱処理を2分行うことにより有機EL用電極1~14を作成した。さらに以下の方法で有機EL用電極1~14を用いて表2で示した基板と導電層の組成と加熱処理温度の組み合わせとなるように有機ELデバイス1~14を作成した。以下作製の詳細を記す。
<Production of organic EL device>
Next, pattern conductive layers of Ag fine wire lattice, ITO, and silver nanowire were formed on a glass substrate by the following method, and ITO was sputtered as a takeout electrode so as to be connected to the pattern electrode. Further, using the above-described coating liquids A to F, a transparent conductive layer was laminated on the pattern electrode layer by 300 nm by the above-described method, and excess portions were wiped off before heating. Then, the organic EL electrodes 1 to 14 were prepared by performing heat treatment at various temperatures for 2 minutes. Further, the organic EL devices 1 to 14 were formed by using the organic EL electrodes 1 to 14 by the following method so as to have a combination of the composition of the substrate and the conductive layer shown in Table 2 and the heat treatment temperature. Details of the production will be described below.
 (Ag細線格子)
 3cm角のガラス基板の1.5cm×1.5cmの大きさで中央部に細線格子を作成した。細線格子(金属材料)については以下に示す、インクジェット法により作製した。
(Ag fine wire grid)
A thin wire grid was created in the center of a 3 cm square glass substrate with a size of 1.5 cm × 1.5 cm. The fine wire lattice (metal material) was produced by the inkjet method shown below.
 (インクジェット法)
 銀ナノ粒子インク(ハリマNPS-J ハリマ化成製)を、インクジェット記録ヘッドとして、圧力印加手段と電界印加手段とを有し、ノズル口径25μm、駆動周波数12kHz、ノズル数128、ノズル密度180dpi(dpiとは1インチ、即ち2.54cm当たりのドット数を表す)のピエゾ型ヘッドを搭載したインクジェットプリント装置に装填し、3cm角のガラス基板の中央部1.5cm×1.5cmの範囲に、線幅50μm、高さ0.5μm、間隔1.0mmの細線格子を印刷した後、220℃、60分の乾燥処理を行った。
(Inkjet method)
A silver nanoparticle ink (Harima NPS-J manufactured by Harima Kasei Co., Ltd.) is used as an ink jet recording head, and has a pressure applying means and an electric field applying means, and has a nozzle diameter of 25 μm, a driving frequency of 12 kHz, a number of nozzles of 128, a nozzle density of 180 dpi Is an ink jet printing apparatus equipped with a piezo head of 1 inch, that is, 2.54 cm), and the line width is within a range of 1.5 cm × 1.5 cm at the center of a 3 cm square glass substrate. After printing a thin wire grid having a thickness of 50 μm, a height of 0.5 μm, and an interval of 1.0 mm, a drying process was performed at 220 ° C. for 60 minutes.
 (銀ナノワイヤ)
 3cm角のガラス基板の中央部1.5cm×1.5cmの範囲に、銀ナノワイヤを用いてランダムな網目構造を作製した。
(Silver nanowires)
A random network structure was prepared using silver nanowires in a 1.5 cm × 1.5 cm central portion of a 3 cm square glass substrate.
 銀ナノワイヤ分散液を、銀ナノワイヤの目付け量が0.06g/mとなるように、銀ナノワイヤ分散液を、バーコート法を用いて塗布し110℃、5分乾燥加熱し、銀ナノワイヤ基板を作製した。余分な部分についてはふき取りを行った。 The silver nanowire dispersion liquid is applied using a bar coating method so that the basis weight of the silver nanowires is 0.06 g / m 2 , dried at 110 ° C. for 5 minutes, and heated to form a silver nanowire substrate. Produced. The excess part was wiped off.
 銀ナノワイヤ分散液は、Adv.Mater.,2002,14,833~837に記載の方法を参考に、PVP K30(分子量5万;ISP社製)を利用して、平均短径75nm、平均長さ35μmの銀ナノワイヤを作製し、限外濾過膜を用いて銀ナノワイヤを濾別、洗浄処理した後、ヒドロキシプロピルメチルセルロース60SH-50(信越化学工業社製)を銀に対し25質量%加えた水溶液に再分散し、銀ナノワイヤ分散液を調製した。 Silver nanowire dispersions are available from Adv. Mater. , 2002, 14, 833 to 837 with reference to the method described in PVP K30 (molecular weight 50,000; manufactured by ISP), silver nanowires having an average minor axis of 75 nm and an average length of 35 μm were produced. Silver nanowires are filtered off using a filtration membrane, washed, and then redispersed in an aqueous solution containing 25% by mass of hydroxypropylmethylcellulose 60SH-50 (manufactured by Shin-Etsu Chemical Co., Ltd.) to prepare a silver nanowire dispersion. did.
 (ITO基板)
 3cm角のガラス基板に、ITO(インジウムチンオキシド)をスパッタ法により150nm成膜し、ITO基板を作成し、フォトリソ法により、中央部15mm×15mmの範囲にITOが残るようにパターニングした。
(ITO substrate)
An ITO (indium tin oxide) film having a thickness of 150 nm was formed on a 3 cm square glass substrate by a sputtering method to form an ITO substrate, and was patterned by a photolithographic method so that the ITO remained in a central area of 15 mm × 15 mm.
 《有機ELデバイスの作製》
 作製した有機EL用電極3~14を超純水で洗浄後、アノード電極として、以下の手順でそれぞれ有機ELデバイスを作製した。正孔輸送層以降は蒸着により形成した。導電性ポリマーを積層した電極1、2は導電層の一部が洗浄によりはがれてしまうため、洗浄は行わなかった。有機EL用電極1~14から、洗浄のあとは、同一の処理を施し、それぞれ有機ELデバイス1~14を作製した。
<< Production of organic EL devices >>
After the produced organic EL electrodes 3 to 14 were washed with ultrapure water, organic EL devices were produced as anode electrodes by the following procedure. The hole transport layer and subsequent layers were formed by vapor deposition. The electrodes 1 and 2 laminated with the conductive polymer were not cleaned because a part of the conductive layer was peeled off by cleaning. After cleaning, the organic EL electrodes 1 to 14 were subjected to the same treatment to produce organic EL devices 1 to 14, respectively.
 市販の真空蒸着装置内の蒸着用るつぼの各々に、各層の構成材料を各々素子作製に必要量を充填した。蒸着用るつぼはモリブデン製またはタングステン製の抵抗加熱用材料で作製されたものを用いた。 Each of the deposition crucibles in a commercially available vacuum deposition apparatus was filled with a constituent material for each layer in a necessary amount for device fabrication. The evaporation crucible used was made of a resistance heating material made of molybdenum or tungsten.
 まず、正孔輸送層、有機発光層、正孔阻止層、電子輸送層からなる有機EL層を中央部17mm×17mmの範囲に順次形成した。 First, an organic EL layer composed of a hole transport layer, an organic light emitting layer, a hole blocking layer, and an electron transport layer was sequentially formed in a range of a central portion of 17 mm × 17 mm.
 〈正孔輸送層の形成〉
 真空度1×10-4Paまで減圧した後、化合物1の入った前記蒸着用るつぼに通電して加熱し、蒸着速度0.1nm/秒で蒸着し、厚さ30nmの正孔輸送層を設けた。
<Formation of hole transport layer>
After reducing the vacuum to 1 × 10 −4 Pa, the deposition crucible containing compound 1 was heated by energization, and deposited at a deposition rate of 0.1 nm / second to provide a 30 nm thick hole transport layer. It was.
 〈有機発光層の形成〉
 次に、以下の手順で各発光層を設けた。
<Formation of organic light emitting layer>
Next, each light emitting layer was provided in the following procedures.
 形成した正孔輸送層上に、化合物2が13.0質量%、化合物3が3.7質量%、化合物5が83.3質量%になるように、化合物2、化合物3及び化合物5を蒸着速度0.1nm/秒で正孔輸送層と同じ領域に共蒸着し、発光極大波長が622nm、厚さ10nmの緑赤色燐光発光の有機発光層を形成した。 Compound 2, Compound 3 and Compound 5 are deposited on the formed hole transport layer so that Compound 2 is 13.0% by mass, Compound 3 is 3.7% by mass, and Compound 5 is 83.3% by mass. Co-evaporation was performed in the same region as the hole transport layer at a rate of 0.1 nm / second to form a green-red phosphorescent organic light emitting layer having a maximum emission wavelength of 622 nm and a thickness of 10 nm.
 次いで、化合物4が10.0質量%、化合物5が90.0質量%になるように、化合物4及び化合物5を蒸着速度0.1nm/秒で緑赤色燐光発光の有機発光層と同じ領域に共蒸着し、発光極大波長が471nm、厚さ15nmの青色燐光発光の有機発光層を形成した。 Next, compound 4 and compound 5 are deposited in the same region as the organic light-emitting layer emitting green-red phosphorescence at a deposition rate of 0.1 nm / second so that compound 4 is 10.0% by mass and compound 5 is 90.0% by mass. Co-evaporation was performed to form a blue phosphorescent organic light emitting layer having an emission maximum wavelength of 471 nm and a thickness of 15 nm.
 〈正孔阻止層の形成〉
 さらに、形成した有機発光層と同じ領域に、化合物6を膜厚5nmに蒸着して正孔阻止層を形成した。
<Formation of hole blocking layer>
Further, a hole blocking layer was formed by depositing compound 6 in a thickness of 5 nm on the same region as the formed organic light emitting layer.
 〈電子輸送層の形成〉
 引き続き、形成した正孔阻止層と同じ領域に、CsFを膜厚比で10%になるように化合物6と共蒸着し、厚さ45nmの電子輸送層を形成した。
<Formation of electron transport layer>
Subsequently, in the same region as the formed hole blocking layer, CsF was co-evaporated with compound 6 so as to have a film thickness ratio of 10% to form an electron transport layer having a thickness of 45 nm.
Figure JPOXMLDOC01-appb-C000005
Figure JPOXMLDOC01-appb-C000005
 〈カソード電極の形成〉
 形成した電子輸送層の上に、17mm×17mmの陰極形成用材料としてAlを5×10-4Paの真空下にてマスク蒸着し、厚さ100nmの陰極を形成した。
<Formation of cathode electrode>
On the formed electron transport layer, Al was deposited as a cathode forming material of 17 mm × 17 mm under a vacuum of 5 × 10 −4 Pa to form a cathode having a thickness of 100 nm.
 さらに、陰極及び陽極の外部取り出し端子が形成できるように、端部を除き陽極の周囲に接着剤を塗り、ポリエチレンテレフタレートを基材としAlを厚さ300nmで蒸着した可撓性封止部材を貼合した後、熱処理で接着剤を硬化させ封止膜を形成し、発光エリア15mm×15mmの有機ELデバイスを作製した。 Further, a flexible seal in which an adhesive is applied around the anode except for the end portion, and polyethylene terephthalate is used as a base material and Al 2 O 3 is deposited in a thickness of 300 nm so that external terminals for the cathode and anode can be formed. After pasting the members, the adhesive was cured by heat treatment to form a sealing film, and an organic EL device having a light emitting area of 15 mm × 15 mm was produced.
 《有機ELデバイスの評価》
 得られた有機ELデバイス1~14のそれぞれについて電流の面均一性、駆動電圧、寿命及び高温条件下での保存性を下記のように評価した。
<< Evaluation of organic EL devices >>
For each of the obtained organic EL devices 1 to 14, the surface uniformity of the current, the driving voltage, the lifetime, and the storage stability under high temperature conditions were evaluated as follows.
 (電流の面均一性)
 電流の面均一性は発光均一性を評価することで行った。KEITHLEY製ソースメジャーユニット2400型を用いて、各有機EL素子に直流電圧を印加して輝度が1000cd/mになるよう発光させ、発光状態を下記基準で目視評価した。
(Surface uniformity of current)
The surface uniformity of the current was determined by evaluating the light emission uniformity. Using a source measure unit type 2400 manufactured by KEITHLEY, a direct current voltage was applied to each organic EL element to emit light so that the luminance became 1000 cd / m 2 , and the light emission state was visually evaluated according to the following criteria.
 ○:均一発光しており、問題ない
 ×:部分的に発光ムラが見られる
 (駆動電圧)
 初期の輝度を5000cd/mで発光した時の電圧を駆動電圧とし、アノード電極として作成した有機EL用透明電極ではなくITOとした有機ELデバイスを上記と同様の方法で作製し、これに対する比率を求め、以下の指標で評価した。95%未満が好ましく90%未満であることがより好ましい。
○: Uniform light emission, no problem ×: Light emission unevenness is partially observed (drive voltage)
An organic EL device made of ITO instead of a transparent electrode for organic EL prepared as an anode electrode was prepared by the same method as described above, with the voltage when light was emitted at an initial luminance of 5000 cd / m 2 as a drive voltage, and the ratio to this Was evaluated using the following indicators. It is preferably less than 95% and more preferably less than 90%.
 ◎:90%未満
 ○:90~95%未満
 △:95~100%未満
 ×:100%以上
 (寿命)
 得られた有機ELデバイスの、初期の輝度を5000cd/mで連続発光させて、電圧を固定して、輝度が半減するまでの時間を求めた。アノード電極として作成した有機EL用透明電極ではなくITOとした有機ELデバイスを上記と同様の方法で作製し、これに対する比率を求め、以下の基準で評価した。100%以上が好ましく、150%以上であることがより好ましい。
◎: Less than 90% ○: 90 to less than 95% △: Less than 95 to 100% ×: 100% or more (Life)
The obtained organic EL device was continuously emitted at an initial luminance of 5000 cd / m 2 , the voltage was fixed, and the time until the luminance was reduced by half was determined. An organic EL device made of ITO instead of the transparent electrode for organic EL prepared as the anode electrode was prepared by the same method as described above, the ratio to this was determined, and evaluated according to the following criteria. 100% or more is preferable, and 150% or more is more preferable.
 ◎:150%以上
 ○:100~150%未満
 △:80~100%未満
 ×:80%未満
 (保存性)
 80℃の恒温槽で保存。12時間毎に恒温槽から取り出し、初期の1000cd/m発光時の電圧を印加し、その時の輝度を測定、輝度が半減した時間を評価し、保存時間とした。アノード電極として作成した有機EL用透明電極ではなくITOとした有機ELデバイスを上記と同様の方法で作製し、これに対する比率を求め、以下の指標で評価した。100%以上が好ましく、120%以上であることがより好ましい。
◎: 150% or more ○: 100 to less than 150% △: 80 to less than 100% ×: less than 80% (preservability)
Store in a constant temperature bath at 80 ° C. It was taken out from the thermostatic chamber every 12 hours, an initial voltage of 1000 cd / m 2 light emission was applied, the luminance at that time was measured, the time when the luminance was reduced by half was evaluated, and the storage time was taken. An organic EL device made of ITO instead of the organic EL transparent electrode prepared as the anode electrode was prepared in the same manner as described above, the ratio to this was determined, and the following indicators were evaluated. 100% or more is preferable, and 120% or more is more preferable.
 ◎:120%以上
 ○:100~120%未満
 △:80~100%未満
 ×:80%未満
 有機ELデバイス1~14について、上記の電流の面均一性、寿命、高温条件下での輝度保存性の評価結果を、基板、導電層の組成、加熱処理温度条件とともに表2にまとめた。
◎: 120% or more ○: 100 to less than 120% △: 80 to less than 100% ×: less than 80% For the organic EL devices 1 to 14, the surface uniformity of the current, the lifetime, and the luminance preservability under high temperature conditions The results of evaluation are summarized in Table 2 together with the substrate, the composition of the conductive layer, and the heat treatment temperature conditions.
Figure JPOXMLDOC01-appb-T000006
Figure JPOXMLDOC01-appb-T000006
 表2から、導電性ポリマー単独(有機ELデバイス1,2)や水酸基含有しない非導電性ポリマーと導電性ポリマーを併用した場合(有機ELデバイス12)やポリマー(A)に当てはまらない水酸基含有非導電性ポリマーと導電性ポリマーを併用した場合(有機ELデバイス11)は、駆動電圧が高いことが分かる。また、導電性ポリマー単独では、洗浄できないことによる異物の影響や透明性の悪さにより、有機ELの寿命、保存性が悪いことが分かる(有機ELデバイス1,2)。また、親水基含有非導電性ポリマーにポリマー(A)以外のPVAやPVPを用いた場合も、導電性が悪いため、発光が均一にならない。さらに、透明性が悪いため、効率が悪くなり、寿命が悪くなる。一方、親水基含有非導電性ポリマーにポリマー(A)を用い、加熱処理されて形成された本発明の透明電極を用いた場合、駆動電圧が低く、発光均一性、寿命、保存性に優れた有機ELデバイスが得られることが分かる。 From Table 2, when a conductive polymer alone (organic EL devices 1 and 2) or a non-conductive polymer not containing a hydroxyl group and a conductive polymer are used in combination (organic EL device 12) or a hydroxyl group-containing non-conductive that does not apply to the polymer (A) When the conductive polymer and the conductive polymer are used in combination (organic EL device 11), it can be seen that the drive voltage is high. Moreover, it turns out that the lifetime of an organic EL and the preservability are bad by the influence of the foreign material and the poor transparency by a conductive polymer alone (organic EL devices 1 and 2). In addition, when PVA or PVP other than the polymer (A) is used for the hydrophilic group-containing non-conductive polymer, light emission is not uniform because of poor conductivity. Furthermore, since transparency is bad, efficiency will worsen and lifetime will worsen. On the other hand, when the transparent electrode of the present invention formed by using the polymer (A) as the hydrophilic group-containing non-conductive polymer and heat-treated is used, the driving voltage is low, and the light emission uniformity, life and storage stability are excellent. It can be seen that an organic EL device can be obtained.

Claims (3)

  1.  透明基板上にパターン導電層と少なくとも導電性ポリマーと水酸基含有非導電性ポリマーを含む透明導電層とを有する透明電極の製造方法において、パターン導電層が金属酸化物または金属材料であり、且つ前記水酸基含有非導電性ポリマーが下記一般式(I)及び一般式(II)から選ばれる構造単位を含むポリマー(A)であり、且つ前記透明導電層が、150℃以上300℃以下の温度範囲で加熱処理されて形成されたことを特徴とする透明電極の製造方法。
    Figure JPOXMLDOC01-appb-C000001
     〔式中、R、Rはそれぞれ独立に水素原子、メチル基を表し、Q、Qはそれぞれ独立に-C(=O)O-、-C(=O)NRa-を表す。Raは水素原子、アルキル基を表し、A、Aはそれぞれ独立に置換或いは無置換アルキレン基、-(CHCHRbO)-、-(CHCHRbO)-CHCHRb-を表す。Rbは水素原子、アルキル基を示し、xは平均繰り返しユニット数を表す。yは0、1を表す。Zはアルキル基、-C(=O)-Rc、-SO-Rd、-SiReを表す。Rc、Rd、Reはアルキル基、パーフルオロアルキル基、アリール基を表す。ポリマー(A)内の一般式(I)の構造単位の構成率をm、一般式(II)の構造単位の構成率をnとすると、m+nの構成率(mol%)は、50≦m+n≦100であり、m/(m+n)≧0.2である。〕
    In the method for producing a transparent electrode having a patterned conductive layer and a transparent conductive layer containing at least a conductive polymer and a hydroxyl group-containing non-conductive polymer on a transparent substrate, the patterned conductive layer is a metal oxide or a metal material, and the hydroxyl group The contained nonconductive polymer is a polymer (A) containing a structural unit selected from the following general formula (I) and general formula (II), and the transparent conductive layer is heated in a temperature range of 150 ° C. or higher and 300 ° C. or lower. A method for producing a transparent electrode, characterized by being formed by processing.
    Figure JPOXMLDOC01-appb-C000001
    [Wherein, R 1 and R 2 each independently represent a hydrogen atom or a methyl group, and Q 1 and Q 2 each independently represent —C (═O) O— or —C (═O) NRa—. Ra represents a hydrogen atom or an alkyl group, and A 1 and A 2 each independently represents a substituted or unsubstituted alkylene group, — (CH 2 CHRbO) x —, — (CH 2 CHRbO) x —CH 2 CHRb—. Rb represents a hydrogen atom or an alkyl group, and x represents the average number of repeating units. y represents 0 or 1; Z represents an alkyl group, —C (═O) —Rc, —SO 2 —Rd, —SiRe 3 . Rc, Rd, and Re represent an alkyl group, a perfluoroalkyl group, and an aryl group. When the constituent ratio of the structural unit of the general formula (I) in the polymer (A) is m and the constituent ratio of the structural unit of the general formula (II) is n, the constituent ratio (mol%) of m + n is 50 ≦ m + n ≦ 100 and m / (m + n) ≧ 0.2. ]
  2.  前記金属材料が金属微粒子または金属ナノワイヤであることを特徴とする請求項1に記載の透明電極の製造方法。 The method for producing a transparent electrode according to claim 1, wherein the metal material is metal fine particles or metal nanowires.
  3.  請求項1または2に記載の製造方法で製造された透明電極を用いたことを特徴とする有機電子デバイス。 An organic electronic device using the transparent electrode manufactured by the manufacturing method according to claim 1 or 2.
PCT/JP2011/069413 2010-09-24 2011-08-29 Method for producing transparent electrode and organic electronic device WO2012039240A1 (en)

Priority Applications (1)

Application Number Priority Date Filing Date Title
JP2012534973A JP5983408B2 (en) 2010-09-24 2011-08-29 Manufacturing method of transparent electrode

Applications Claiming Priority (2)

Application Number Priority Date Filing Date Title
JP2010213252 2010-09-24
JP2010-213252 2010-09-24

Publications (1)

Publication Number Publication Date
WO2012039240A1 true WO2012039240A1 (en) 2012-03-29

Family

ID=45873730

Family Applications (1)

Application Number Title Priority Date Filing Date
PCT/JP2011/069413 WO2012039240A1 (en) 2010-09-24 2011-08-29 Method for producing transparent electrode and organic electronic device

Country Status (2)

Country Link
JP (1) JP5983408B2 (en)
WO (1) WO2012039240A1 (en)

Cited By (3)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
US20130285041A1 (en) * 2010-12-13 2013-10-31 Konica Minolta, Inc. Transparent surface electrode, organic electronic element, and method for manufacturing transparent surface electrode
WO2019049470A1 (en) * 2017-09-11 2019-03-14 日東電工株式会社 Conductive composition and biosensor
WO2022239107A1 (en) * 2021-05-11 2022-11-17 シャープディスプレイテクノロジー株式会社 Light-emitting element, light-emitting device, and method for manufacturing light-emitting element

Citations (7)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
JPH06273964A (en) * 1993-03-18 1994-09-30 Fujitsu Ltd Photosensitive body, electrophotographic device using it and production of the photosensitive body
JP2001115098A (en) * 1999-10-18 2001-04-24 Mitsubishi Rayon Co Ltd Electroconductive composition for covering, excellent in coatability
JP3716167B2 (en) * 1999-08-23 2005-11-16 トムソン ライセンシング Electrophotographic screening method with organic conductors independent of humidity and temperature
JP2008288067A (en) * 2007-05-18 2008-11-27 Fujifilm Corp Translucent conductor
JP2009004348A (en) * 2006-09-28 2009-01-08 Fujifilm Corp Spontaneous emission display, transparent conductive film, method for manufacturing transparent conductive film, electroluminescence device, solar cell transparent electrode, and electronic paper transparent electrode
WO2009060717A1 (en) * 2007-11-07 2009-05-14 Konica Minolta Holdings, Inc. Transparent electrode and method for producing transparent electrode
JP2009252493A (en) * 2008-04-04 2009-10-29 Konica Minolta Holdings Inc Transparent conductive film, method of manufacturing the same, and organic electroluminescent device

Family Cites Families (3)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
DE60134317D1 (en) * 2000-06-26 2008-07-17 Agfa Gevaert MATERIAL AND METHOD FOR THE PRODUCTION OF AN ELECTRICALLY CONDUCTIVE PATTERN
JP4689222B2 (en) * 2004-09-22 2011-05-25 信越ポリマー株式会社 Conductive coating film and method for producing the same
WO2007020458A1 (en) * 2005-08-19 2007-02-22 Avx Limited Polymer based solid state capacitors and a method of manufacturing them

Patent Citations (7)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
JPH06273964A (en) * 1993-03-18 1994-09-30 Fujitsu Ltd Photosensitive body, electrophotographic device using it and production of the photosensitive body
JP3716167B2 (en) * 1999-08-23 2005-11-16 トムソン ライセンシング Electrophotographic screening method with organic conductors independent of humidity and temperature
JP2001115098A (en) * 1999-10-18 2001-04-24 Mitsubishi Rayon Co Ltd Electroconductive composition for covering, excellent in coatability
JP2009004348A (en) * 2006-09-28 2009-01-08 Fujifilm Corp Spontaneous emission display, transparent conductive film, method for manufacturing transparent conductive film, electroluminescence device, solar cell transparent electrode, and electronic paper transparent electrode
JP2008288067A (en) * 2007-05-18 2008-11-27 Fujifilm Corp Translucent conductor
WO2009060717A1 (en) * 2007-11-07 2009-05-14 Konica Minolta Holdings, Inc. Transparent electrode and method for producing transparent electrode
JP2009252493A (en) * 2008-04-04 2009-10-29 Konica Minolta Holdings Inc Transparent conductive film, method of manufacturing the same, and organic electroluminescent device

Cited By (7)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
US20130285041A1 (en) * 2010-12-13 2013-10-31 Konica Minolta, Inc. Transparent surface electrode, organic electronic element, and method for manufacturing transparent surface electrode
US8987720B2 (en) * 2010-12-13 2015-03-24 Konica Minolta, Inc. Transparent surface electrode, organic electronic element, and method for manufacturing transparent surface electrode
WO2019049470A1 (en) * 2017-09-11 2019-03-14 日東電工株式会社 Conductive composition and biosensor
JP2019048945A (en) * 2017-09-11 2019-03-28 日東電工株式会社 Conductive composition and biological sensor
US11217360B2 (en) 2017-09-11 2022-01-04 Nitto Denko Corporation Electrically conductive composition and biosensor
US11837377B2 (en) 2017-09-11 2023-12-05 Nitto Denko Corporation Electrically conductive composition and biosensor
WO2022239107A1 (en) * 2021-05-11 2022-11-17 シャープディスプレイテクノロジー株式会社 Light-emitting element, light-emitting device, and method for manufacturing light-emitting element

Also Published As

Publication number Publication date
JPWO2012039240A1 (en) 2014-02-03
JP5983408B2 (en) 2016-08-31

Similar Documents

Publication Publication Date Title
JP5741581B2 (en) Transparent conductive film and organic electroluminescence element
US10251267B2 (en) Transparent electrode, organic electronic element, and method for producing transparent electrode
JP5880444B2 (en) Transparent surface electrode, organic electronics element, and method of manufacturing transparent surface electrode
US9640762B2 (en) Method for producing transparent electrode and organic EL element
JP5761058B2 (en) Method for producing transparent conductive film and organic electroluminescence element
JP2012216449A (en) Method for forming transparent electrode and organic electronic element
JP5660121B2 (en) Transparent conductive film and organic electroluminescence element
JP5782855B2 (en) Transparent electrode and organic electroluminescence device
JP5983408B2 (en) Manufacturing method of transparent electrode
JP6003582B2 (en) Manufacturing method of transparent electrode
JP5750908B2 (en) Method for producing transparent conductive film, transparent conductive film and organic electroluminescence element
JPWO2013061967A1 (en) Transparent conductive film and organic electroluminescence device
WO2011077804A1 (en) Transparent electrode and organic electronic device
JP2011096437A (en) Transparent electrode, organic el element, and organic electronic device
JP2012252856A (en) Transparent conductive substrate and method for manufacturing transparent conductive substrate
JP5617539B2 (en) Transparent conductive film substrate and organic electroluminescence element
JP2012054085A (en) Method of preparing dispersion, transparent conductive film, method of forming transparent conductive film, and organic electroluminescence element
JP2012138311A (en) Transparent conductive film substrate and organic electroluminescent element
JP5741366B2 (en) Manufacturing method of transparent electrode
JP2012128957A (en) Manufacturing method for transparent electrode and manufacturing method for organic electroluminescent element
JP2012243401A (en) Transparent conductive film and organic electroluminescent element
JP2011238471A (en) Manufacturing method of transparent electrode
JP2012243492A (en) Method for manufacturing transparent electrode, and organic electronic device
JP2012248383A (en) Transparent electrode and organic electronic element using the same
JP2011249104A (en) Method of manufacturing transparent electrode, and organic electronic element

Legal Events

Date Code Title Description
121 Ep: the epo has been informed by wipo that ep was designated in this application

Ref document number: 11826686

Country of ref document: EP

Kind code of ref document: A1

ENP Entry into the national phase

Ref document number: 2012534973

Country of ref document: JP

Kind code of ref document: A

NENP Non-entry into the national phase

Ref country code: DE

122 Ep: pct application non-entry in european phase

Ref document number: 11826686

Country of ref document: EP

Kind code of ref document: A1