WO2012038223A1 - Piezoceramic bending transducer - Google Patents

Piezoceramic bending transducer Download PDF

Info

Publication number
WO2012038223A1
WO2012038223A1 PCT/EP2011/065023 EP2011065023W WO2012038223A1 WO 2012038223 A1 WO2012038223 A1 WO 2012038223A1 EP 2011065023 W EP2011065023 W EP 2011065023W WO 2012038223 A1 WO2012038223 A1 WO 2012038223A1
Authority
WO
WIPO (PCT)
Prior art keywords
bending transducer
longitudinal end
piezoceramic
passive beam
transition line
Prior art date
Application number
PCT/EP2011/065023
Other languages
German (de)
French (fr)
Inventor
Carsten Schuh
Original Assignee
Siemens Aktiengesellschaft
Priority date (The priority date is an assumption and is not a legal conclusion. Google has not performed a legal analysis and makes no representation as to the accuracy of the date listed.)
Filing date
Publication date
Application filed by Siemens Aktiengesellschaft filed Critical Siemens Aktiengesellschaft
Priority to EP11760426A priority Critical patent/EP2564437A1/en
Publication of WO2012038223A1 publication Critical patent/WO2012038223A1/en

Links

Classifications

    • HELECTRICITY
    • H10SEMICONDUCTOR DEVICES; ELECTRIC SOLID-STATE DEVICES NOT OTHERWISE PROVIDED FOR
    • H10NELECTRIC SOLID-STATE DEVICES NOT OTHERWISE PROVIDED FOR
    • H10N30/00Piezoelectric or electrostrictive devices
    • H10N30/30Piezoelectric or electrostrictive devices with mechanical input and electrical output, e.g. functioning as generators or sensors
    • H10N30/304Beam type
    • H10N30/306Cantilevers

Definitions

  • the invention relates to a piezoceramic bending transducer.
  • a conventional piezoceramic bending transducer has a piezoceramic layer and a carrier layer on which the piezoceramic layer is applied. The layers are clamped on one side and are deflected at their end facing away from the clamping, so that they undergo a deflection. Since ⁇ at comes into the piezoceramic layer of the piezo-ceramic Ef ⁇ fect for supporting, in which generates an external electric field due to a linear piezoelekt ⁇ step interaction between the mechanical and electrical states of a crystal of the piezoelectric ceramic layer has a crystal deforming stress.
  • the piezoceramic bending transducer has at least two layers, a piezoceramic layer and the carrier layer, wherein only the piezoceramic layer is piezoelectrically active and the carrier layer is passive.
  • the backing layer forms both a support and a Bie ⁇ geversteifung for the piezoceramic layer. If the piezoceramic bending transducer has a single piezoceramic layer and a single carrier layer, its structure is referred to as monomorphic. If the piezoceramic bending transducer has two piezoceramic layers, between which the carrier layer is arranged, then its structure is referred to as trimorphic. Conceivable is a type of piezoceramic bending transducer in which a plurality of piezoceramic layers are arranged adjacent to each other without the carrier layer, this structure being referred to as bimorph or multimorph.
  • the object of the invention is to provide a piezoceramic bending transducer, which has a long service life and in which the piezoelectric effect is effectively used.
  • the piezoceramic bending transducer according to the invention has a clamping at its one longitudinal end and has at its other, free longitudinal end a predetermined Auslenkrich ⁇ tion, the bending transducer is formed by a piezoceramic beam and a passive beam, which stacked in the deflecting juxtaposed and their bending stiffness of ⁇ art are dimensioned such that when deflecting the bending transducer always a train-pressure voltage transition line is located in the Piezoke ⁇ ramikbalken and the flexural rigidity of the Pas ⁇ sivbalkens along the train-pressure-voltage transition line to the free longitudinal end decreases.
  • the train-pressure is voltage transition line than the inactive position of the means Bie ⁇ garment coupler in the region of a bending-neutral region respects ⁇ Lich the flexural rigidity is formed graded, wherein the flexural rigidity of the clamping area decreases up to the free longitudinal end.
  • the bending rigidity of the passive beam along the train-pressure-voltage transition line takes to the free longitudinal end in such a way from thatdersvertei ⁇ system is out homogeneously in the piezoceramic beam along the train-pressure voltage transition line on the free longitudinal end.
  • the bending transducer At the free longitudinal end may be provided on the bending transducer preferably a seismic mass.
  • the flexural resonance of the bending transducer can be adjusted.
  • Bevorzugterma The bending stiffness of the passive beam decreases linearly along the tensile-stress-voltage transition line towards the free longitudinal end. It is preferred that the thickness of the passive beam decreases along the tension-pressure-voltage transition line to the free longitudinal end in the plane swept by the bending transducer when deflecting.
  • the passive beam is formed in the plane swept by the bending transducer during deflection as a wedge, which tapers towards the free longitudinal end.
  • the passive beam is formed of a plurality of layers, which are of the same thickness and parallel to the train-pressure voltage transition line and arranged at the clamped longitudinal end flush with each other and so under ⁇ different lengths to the free longitudinal end have the thickness of the passive beam along the train-pressure voltage transition line to the free longitudinal end decreases in the swept over by the bending transducer level.
  • the rigidity of the passive beam can advantageously be established by means of the locally present number of layers, their thickness distribution and their mutual mechanical coupling, and their length distribution.
  • the tension-pressure-voltage transition line lies in the middle layer of the passive beam.
  • the passive beam is formed by an in situ already wedge-shaped single layer.
  • the passive beam is formed by a fiber composite whose fiber density decreases along the tension-pressure-voltage transition line to the free longitudinal ⁇ end .
  • the passive ⁇ beam having a prepreg body.
  • the prepreg body is a semi-finished product having long fibers in an uncured thermosetting plastic matrix. All long fibers are arranged flush on the clamped longitudinal end and have towards remo ⁇ Mende lengths on the free longitudinal end, so that the density of the long fibers in the passive beams from the clamping to the free longitudinal end decreases.
  • the long fibers are preferably aligned with the longitudinal direction of the passive beam.
  • the bending transducer is preferably formed trimorphic and has two piezoceramic bars, between which the passive beam is located. Alternatively, it is preferable to perform the bending transducer bimorph or multimorph.
  • the piezoceramic beam is preferably glued to the passive beam. In addition, it is preferred that the bending transducer is set up as a piezo-generator.
  • FIG. 1 shows a longitudinal section of a first embodiment of the bending transducer according to the invention
  • FIG. 2 shows a longitudinal section of a second embodiment of the bending transducer according to the invention.
  • a piezoceramic bending transducer 1 has a first piezoceramic beam 2 and a second piezoceramic beam 3. Between the piezoceramic beam 2, 3, a passive beam 4 is arranged. The piezoceramic beams 2, 3 and the passive beam 4 are firmly clamped at their one longitudinal end 13 with a clamping block 7, whereas the clamped longitudinal end 13 facing away from the free longitudinal end 14 of the bending transducer 1 may be subjected to a deflection. The deflection is in the direction of a deflection direction 15, which lies in the plane of Figures 1 and 2 and hinted ⁇ tet with a double arrow.
  • the piezoceramic beam 2, 3 and the passive beam 4 are formed a corresponding train-pressure-voltage distribution. From the first piezoceramic beam 2 to the second piezoceramic beam 3, in the passive beam 4 the stress distribution passes through the zero point at which the tension-pressure-voltage transition line 9 lies in the passive beam 4.
  • the flexural rigidity of the piezo ⁇ ceramic beams 2, 3 and of the passive beam 4 are such dimen ⁇ sized to allow for all conceivable and contemplated deflections of the train-pressure-voltage transition line 9 is always male within the passive beam 4 and in the direction of professionnnor- of the layers extends ,
  • the free sides of the piezoceramic beams 2, 3 are each provided with a first electrode 5 and the passive beam 4 facing sides of the piezoceramic beams 2, 3 are each equipped with a second electrode 6.
  • 6 is upon deflection of the bending transducer 1 is according to the piezoelekt ⁇ generic effect that comes into the piezoceramic beams 2, 3 for supporting, between the electrodes 5, a corresponding voltage difference a.
  • a seismic mass 8 is mounted, which is dimensioned in accordance with egg ⁇ ner desired bending resonance of the bending transducer 1 in size. The larger the seismic mass 8, the smaller the frequency of the bending-critical resonant oscillation mode of the bending transducer 1.
  • the bending transducer 1 acts as a piezoelectric generator.
  • the bending transducer 1 and in particular its seismic mass 8 is excited to bending vibrations by means of external vibration excitation, whereby the piezoceramic beams 2, 3 are mutually exposed to a compressive and a tensile stress.
  • the thickness 10 of the passive beam 4 decreases linearly from the clamped longitudinal end 13 to the free longitudinal end 14 along the tension-pressure-voltage transition line 9.
  • the passive bar 4 is formed as a wedge.
  • the material of the passive beam 4 has isotropic material properties, whereby the Bending stiffness of the passive beam from the clamped L jossen ⁇ de 13 to the free longitudinal end 14 decreases towards.
  • the tension level in the passive beam 4 is essentially constant.
  • the tensile or compressive stress level in the piezoceramic beam 2, 3 constant along their longitudinal extension also substantially, which occurs in the piezo ceramic beam 2, 3 of the piezoelectric effect uniformly over de ⁇ ren longitudinal extension.
  • the charge input into the electrodes 5, 6 along the longitudinal direction of the piezoceramic bars 2, 3 is substantially constant, whereby the charge yield due to the piezoelectric effect in the piezoceramic bars 2, 3 is high.
  • an equally thick passive bar 4 is selected, whereby the piezoceramic bars 2, 3 are arranged parallel to one another.
  • the passive beam 4 has a resin body 11, in which a plurality of fibers 12 is embedded, so that the passive beam 4 is formed by a fiber composite material.
  • the density of the fibers 12 is the highest at the clamped longitudinal end 13 and the lowest at the free longitudinal end 14, wherein the density of the fibers 12 from the clamped longitudinal end 13 to the free longitudinal end 14 drops.
  • the course of the density of the fibers 12 over the longitudinal extent of the passive beam 4 is selected such that, in the case of a deflection of the bending transducer 1, the stress level in the passive beam 4 is substantially constant.
  • the fibers 12 may have a short length compared to the length of the resin body 11, wherein the density of the fibers 12 in the resin body 11 is defined by their distribution in the resin body 11.
  • the fibers 12 may have a large length compared to the length of the resin body 11 and extend from the clamped longitudinal end 13 in the passive beam 4 to the free longitudinal end 14.

Landscapes

  • General Electrical Machinery Utilizing Piezoelectricity, Electrostriction Or Magnetostriction (AREA)
  • Apparatuses For Generation Of Mechanical Vibrations (AREA)

Abstract

The invention relates to a piezoceramic bending transducer (1) comprising a fixed support (7) at one longitudinal end (13) thereof and having a predetermined deflection direction (15) at the other, free longitudinal end (14) thereof, wherein the bending transducer (1) is formed from a piezoceramic beam (2, 3) and a passive beam (4), which are stacked on one another in the deflection direction (15) and the flexural rigidities of which are designed such that when the bending transducer (1) is deflected, a tension-compression stress transition line (9) settles in the passive beam (4) and the bending stiffness of the passive beam decreases along the tension-compression stress transition line (9) toward the free longitudinal end (14), so that the stress distribution in the piezoceramic beam (2, 3) is homogenous along the tension-compression stress transition line (9) toward the free longitudinal end (14).

Description

Beschreibung description
Piezokeramischer Biegewandler Piezoceramic bending transducer
Die Erfindung betrifft einen piezokeramischen Biegewandler. The invention relates to a piezoceramic bending transducer.
Es ist bekannt, Biegewandler als Generatoren einzusetzen. Ein herkömmlicher piezokeramischer Biegewandler weist eine Piezo- keramikschicht und eine Trägerschicht auf, auf der die Piezo- keramikschicht aufgebracht ist. Die Schichten sind einseitig eingespannt und werden an ihrem der Einspannung abgewandten Ende ausgelenkt, so dass sie eine Durchbiegung erfahren. Da¬ bei kommt in der Piezokeramikschicht der piezokeramische Ef¬ fekt zum Tragen, bei dem aufgrund einer linearen piezoelekt¬ rischen Wechselwirkung zwischen den mechanischen und den elektrischen Zuständen eines Kristalls der Piezokeramikschicht eine den Kristall deformierende mechanische Spannung ein äußeres elektrisches Feld erzeugt. It is known to use bending transducers as generators. A conventional piezoceramic bending transducer has a piezoceramic layer and a carrier layer on which the piezoceramic layer is applied. The layers are clamped on one side and are deflected at their end facing away from the clamping, so that they undergo a deflection. Since ¬ at comes into the piezoceramic layer of the piezo-ceramic Ef ¬ fect for supporting, in which generates an external electric field due to a linear piezoelekt ¬ step interaction between the mechanical and electrical states of a crystal of the piezoelectric ceramic layer has a crystal deforming stress.
Der piezokeramische Biegewandler weist mindestens zwei Lagen auf, eine Piezokeramikschicht und die Trägerschicht, wobei nur die Piezokeramikschicht piezoelektrisch aktiv und die Trägerschicht passiv ist. Die Trägerschicht bildet für die Piezokeramikschicht sowohl eine Abstützung als auch eine Bie¬ geversteifung. Weist der piezokeramische Biegewandler eine einzige Piezokeramikschicht und eine einzige Trägerschicht auf, so wird sein Aufbau als monomorph bezeichnet. Weist der piezokeramische Biegewandler zwei Piezokeramikschichten auf, zwischen denen die Trägerschicht angeordnet ist, so wird sein Aufbau als trimorph bezeichnet. Denkbar ist eine Bauart des piezokeramischen Biegewandlers, bei dem mehrere Piezokeramikschichten ohne die Trägerschicht aneinanderliegend angeordnet sind, wobei dieser Aufbau als bimorph bzw. multimorph bezeichnet wird. The piezoceramic bending transducer has at least two layers, a piezoceramic layer and the carrier layer, wherein only the piezoceramic layer is piezoelectrically active and the carrier layer is passive. The backing layer forms both a support and a Bie ¬ geversteifung for the piezoceramic layer. If the piezoceramic bending transducer has a single piezoceramic layer and a single carrier layer, its structure is referred to as monomorphic. If the piezoceramic bending transducer has two piezoceramic layers, between which the carrier layer is arranged, then its structure is referred to as trimorphic. Conceivable is a type of piezoceramic bending transducer in which a plurality of piezoceramic layers are arranged adjacent to each other without the carrier layer, this structure being referred to as bimorph or multimorph.
Aufgabe der Erfindung ist es, einen piezokeramischen Biegewandler zu schaffen, der eine hohe Lebensdauer hat und bei dem der piezoelektrische Effekt effektiv genutzt ist. Der erfindungsgemäße piezokeramische Biegewandler weist eine Einspannung an seinem einen Längsende auf und hat an seinem anderen, freien Längsende eine vorherbestimmte Auslenkrich¬ tung, wobei der Biegewandler von einem Piezokeramikbalken und einem Passivbalken gebildet ist, die in die Auslenkrichtung gestapelt aneinandergelegt und deren Biegesteifigkeiten der¬ art dimensioniert sind, dass beim Auslenken des Biegewandlers stets eine Zug-Druck-Spannungsübergangslinie in dem Piezoke¬ ramikbalken angesiedelt ist und die Biegesteifigkeit des Pas¬ sivbalkens entlang der Zug-Druck-Spannungsübergangslinie zum freien Längsende hin abnimmt. Dadurch ist die Zug-Druck- Spannungsübergangslinie als die inaktive Mittellage des Bie¬ gewandlers im Bereich eines biegeneutralen Bereichs hinsicht¬ lich der Biegesteifigkeit gradiert ausgebildet, wobei die Biegesteifigkeit vom Einspannbereich bis hin zum freien Längsende abnimmt. Erfindungsgemäß nimmt die Biegesteifigkeit des Passivbalkens entlang der Zug-Druck-Spannungsübergangslinie zum freien Längsende hin derart ab, dass die Spannungsvertei¬ lung in dem Piezokeramikbalken entlang der Zug-Druck- Spannungsübergangslinie zum freien Längsende hin homogen ist. Dadurch wird vorteilhaft erreicht, dass die mechanische De¬ formation des Biegewandlers bei seiner Auslenkung und somit die in dem Biegewandler wirkenden Druck- und Zugspannungen über die gesamte freie Biegelänge des Biegewandlers homogen sind, wodurch der Piezokeramikbalken ebenso homogen und dadurch effektiv hinsichtlich des piezoelektrischen Effekts belastet wird. Dies führt vorteilhaft zu einem maximalen Bei¬ trag an Ladungsgenerierung in dem Piezokeramikbalken. Ferner führt die Homogenisierung der mechanischen Spannungen in dem Biegewandler zu einer Erhöhung von dessen Lebensdauer und somit zu einer Erhöhung von dessen Zuverlässigkeit beim Betrieb . The object of the invention is to provide a piezoceramic bending transducer, which has a long service life and in which the piezoelectric effect is effectively used. The piezoceramic bending transducer according to the invention has a clamping at its one longitudinal end and has at its other, free longitudinal end a predetermined Auslenkrich ¬ tion, the bending transducer is formed by a piezoceramic beam and a passive beam, which stacked in the deflecting juxtaposed and their bending stiffness of ¬ art are dimensioned such that when deflecting the bending transducer always a train-pressure voltage transition line is located in the Piezoke ¬ ramikbalken and the flexural rigidity of the Pas ¬ sivbalkens along the train-pressure-voltage transition line to the free longitudinal end decreases. Thus, the train-pressure is voltage transition line than the inactive position of the means Bie ¬ garment coupler in the region of a bending-neutral region respects ¬ Lich the flexural rigidity is formed graded, wherein the flexural rigidity of the clamping area decreases up to the free longitudinal end. According to the invention, the bending rigidity of the passive beam along the train-pressure-voltage transition line takes to the free longitudinal end in such a way from that Spannungsvertei ¬ system is out homogeneously in the piezoceramic beam along the train-pressure voltage transition line on the free longitudinal end. This advantageously ensures that the mechanical De ¬ formation of the bending transducer in its deflection and thus acting in the bending transducer compressive and tensile stresses over the entire free bending length of the bending transducer are homogeneous, whereby the piezoceramic beam also charged as homogeneous and thereby effective in terms of piezoelectric effect becomes. This advantageously leads to a maximum ¬ In support of charge generation in the piezoceramic beam. Furthermore, the homogenization of the mechanical stresses in the bending transducer leads to an increase in its lifetime and thus to an increase in its reliability during operation.
An dem freien Längsende kann an dem Biegewandler bevorzugt eine seismische Masse vorgesehen sein. Durch eine entspre¬ chende Dimensionierung der seismischen Masse kann die Biegeresonanz des Biegewandlers eingestellt werden. Bevorzugterma- ßen nimmt die Biegesteifigkeit des Passivbalkens entlang der Zug-Druck-Spannungsübergangslinie zum freien Längsende hin linear ab. Bevorzugt ist es, dass die Dicke des Passivbalkens entlang der Zug-Druck-Spannungsübergangslinie zum freien Längsende hin in der vom Biegewandler beim Auslenken überstrichenen Ebene abnimmt. Somit ist der Passivbalken in der vom Biegewandler beim Auslenken überstrichenen Ebene als ein Keil ausgebildet, der zum freien Längsende hin sich verjüngt. At the free longitudinal end may be provided on the bending transducer preferably a seismic mass. By a entspre ¬ sponding dimensioning of the seismic mass, the flexural resonance of the bending transducer can be adjusted. Bevorzugterma- The bending stiffness of the passive beam decreases linearly along the tensile-stress-voltage transition line towards the free longitudinal end. It is preferred that the thickness of the passive beam decreases along the tension-pressure-voltage transition line to the free longitudinal end in the plane swept by the bending transducer when deflecting. Thus, the passive beam is formed in the plane swept by the bending transducer during deflection as a wedge, which tapers towards the free longitudinal end.
Ferner ist es bevorzugt, dass der Passivbalken aus einer Mehrzahl an Schichten gebildet ist, die gleich dick überein- andergelegt und parallel zur Zug-Druck- Spannungsübergangslinie verlaufen sowie an dem eingespannten Längsende bündig zueinander angeordnet sind und derart unter¬ schiedliche Längen zum freien Längsende hin haben, dass die Dicke des Passivbalkens entlang der Zug-Druck- Spannungsübergangslinie zum freien Längsende hin in der vom Biegewandler beim Auslenken überstrichenen Ebene abnimmt. Dadurch kann vorteilhaft die Steifigkeit des Passivbalkens über die örtlich vorliegende Anzahl der Schichten, deren Dickenverteilung und deren gegenseitige mechanischer Kopplung sowie deren Längenverteilung eingerichtet werden. Es ist bevorzugt, dass die Zug-Druck-Spannungsübergangslinie in der mittleren Schicht des Passivbalkens liegt. Alternativ bevorzugt ist es, dass der Passivbalken von einer in situ bereits keilförmigen Einzellage gebildet ist. Further, it is preferred that the passive beam is formed of a plurality of layers, which are of the same thickness and parallel to the train-pressure voltage transition line and arranged at the clamped longitudinal end flush with each other and so under ¬ different lengths to the free longitudinal end have the thickness of the passive beam along the train-pressure voltage transition line to the free longitudinal end decreases in the swept over by the bending transducer level. As a result, the rigidity of the passive beam can advantageously be established by means of the locally present number of layers, their thickness distribution and their mutual mechanical coupling, and their length distribution. It is preferred that the tension-pressure-voltage transition line lies in the middle layer of the passive beam. Alternatively, it is preferred that the passive beam is formed by an in situ already wedge-shaped single layer.
Außerdem ist es bevorzugt, dass der Passivbalken von einem Faserverbundwerkstoff gebildet ist, dessen Faserdichte ent- lang der Zug-Druck-Spannungsübergangslinie zum freien Läng¬ sende hin abnimmt. Hierbei ist es bevorzugt, dass der Passiv¬ balken einen Prepreg-Körper aufweist. Der Prepreg-Körper ist ein Halbzeug, das Langfasern in einer ungehärteten duroplastischen Kunststoffmatrix aufweist. Alle Langfasern sind am eingespannten Längsende bündig angeordnet und haben abneh¬ mende Längen zum freien Längsende hin, so dass die Dichte der Langfasern in dem Passivbalken von der Einspannung bis zum freien Längsende hin abnimmt. Die Langfasern sind bevorzugt an der Längsrichtung des Passivbalkens ausgerichtet. Moreover, it is preferred that the passive beam is formed by a fiber composite whose fiber density decreases along the tension-pressure-voltage transition line to the free longitudinal ¬ end . Here, it is preferable that the passive ¬ beam having a prepreg body. The prepreg body is a semi-finished product having long fibers in an uncured thermosetting plastic matrix. All long fibers are arranged flush on the clamped longitudinal end and have towards remo ¬ Mende lengths on the free longitudinal end, so that the density of the long fibers in the passive beams from the clamping to the free longitudinal end decreases. The long fibers are preferably aligned with the longitudinal direction of the passive beam.
Der Biegewandler ist bevorzugt trimorph ausgebildet und weist zwei Piezokeramikbalken auf, zwischen denen der Passivbalken liegt. Alternativ bevorzugt ist es, den Biegewandler bimorph oder multimorph auszuführen. Der Piezokeramikbalken ist bevorzugt auf den Passivbalken geklebt. Außerdem ist es bevorzugt, dass der Biegewandler als ein Piezogenerator eingerichtet ist. The bending transducer is preferably formed trimorphic and has two piezoceramic bars, between which the passive beam is located. Alternatively, it is preferable to perform the bending transducer bimorph or multimorph. The piezoceramic beam is preferably glued to the passive beam. In addition, it is preferred that the bending transducer is set up as a piezo-generator.
Im Folgenden wird die Erfindung anhand bevorzugter Ausführungsformen des erfindungsgemäßen Biegewandlers anhand der beigefügten schematischen Zeichnungen gezeigt. Es zeigen: In the following the invention will be shown with reference to preferred embodiments of the bending transducer according to the invention with reference to the accompanying schematic drawings. Show it:
Figur 1 einen Längsschnitt einer ersten Aus führungs form des erfindungsgemäßen Biegewandlers und 1 shows a longitudinal section of a first embodiment of the bending transducer according to the invention and
Figur 2 einen Längsschnitt einer zweiten Aus führungs form des erfindungsgemäßen Biegewandlers. FIG. 2 shows a longitudinal section of a second embodiment of the bending transducer according to the invention.
Wie aus Figuren 1 und 2 ersichtlich ist, weist ein piezokera- mischer Biegewandler 1 einen ersten Piezokeramikbalken 2 und einen zweiten Piezokeramikbalken 3 auf. Zwischen den Piezokeramikbalken 2, 3 ist ein Passivbalken 4 angeordnet. Die Piezokeramikbalken 2, 3 und der Passivbalken 4 sind an ihrem einen Längsende 13 mit einem Einspannungsblock 7 fest eingespannt, wohingegen das dem eingespannten Längsende 13 abgewandt liegende freie Längsende 14 des Biegewandlers 1 einer Auslenkung unterworfen sein kann. Die Auslenkung ist in Richtung einer Auslenkungsrichtung 15, die in der Zeichenebene der Figuren 1 und 2 liegt und mit einem Doppelpfeil angedeu¬ tet ist. As can be seen from FIGS. 1 and 2, a piezoceramic bending transducer 1 has a first piezoceramic beam 2 and a second piezoceramic beam 3. Between the piezoceramic beam 2, 3, a passive beam 4 is arranged. The piezoceramic beams 2, 3 and the passive beam 4 are firmly clamped at their one longitudinal end 13 with a clamping block 7, whereas the clamped longitudinal end 13 facing away from the free longitudinal end 14 of the bending transducer 1 may be subjected to a deflection. The deflection is in the direction of a deflection direction 15, which lies in the plane of Figures 1 and 2 and hinted ¬ tet with a double arrow.
Wird der Biegewandler 1 beispielsweise durch eine am freien Längsende 14 in Figuren 1 und 2 nach unten angreifenden Kraft nach unten in die Auslenkrichtung 15 ausgelenkt, so stellt sich in den Piezokeramikbalken 2, 3 und dem Passivbalken 4 eine entsprechende Zug-Druck-Spannungsverteilung ein. Von dem ersten Piezokeramikbalken 2 zu dem zweiten Piezokeramikbalken 3 durchläuft in dem Passivbalken 4 die Spannungsverteilung den Nullpunkt, an dem die Zug-Druck-Spannungsübergangslinie 9 in dem Passivbalken 4 liegt. Die Biegesteifigkeit der Piezo¬ keramikbalken 2, 3 und des Passivbalkens 4 sind derart dimen¬ sioniert, dass bei allen denkbaren und in Erwägung gezogenen Auslenkungen die Zug-Druck-Spannungsübergangslinie 9 stets innerhalb des Passivbalkens 4 und in Richtung der Flächennor- male der Schichten verläuft. If the bending transducer 1 is deflected downwards into the deflection direction 15, for example, by a force acting downwards on the free longitudinal end 14 in FIGS. 1 and 2, the piezoceramic beam 2, 3 and the passive beam 4 are formed a corresponding train-pressure-voltage distribution. From the first piezoceramic beam 2 to the second piezoceramic beam 3, in the passive beam 4 the stress distribution passes through the zero point at which the tension-pressure-voltage transition line 9 lies in the passive beam 4. The flexural rigidity of the piezo ¬ ceramic beams 2, 3 and of the passive beam 4 are such dimen ¬ sized to allow for all conceivable and contemplated deflections of the train-pressure-voltage transition line 9 is always male within the passive beam 4 and in the direction of Flächennor- of the layers extends ,
Die freien Seiten der Piezokeramikbalken 2, 3 sind jeweils mit einer ersten Elektrode 5 und die dem Passivbalken 4 zugewandten Seiten der Piezokeramikbalken 2, 3 sind jeweils mit einer zweiten Elektrode 6 ausgestattet. Bei einer Auslenkung des Biegewandlers 1 stellt sich entsprechend dem piezoelekt¬ rischen Effekt, der in den Piezokeramikbalken 2, 3 zum Tragen kommt, zwischen den Elektroden 5, 6 eine entsprechende Spannungsdifferenz ein. An dem freien Längsende 14 des Biegewand- lers 1 ist eine seismische Masse 8 angebracht, die gemäß ei¬ ner gewünschten Biegeresonanz des Biegewandlers 1 in ihrer Größe dimensioniert ist. Je größer die seismische Masse 8 ist, desto kleiner ist die Frequenz des biegekritischen reso- nanten Schwingungsmodes des Biegewandlers 1. The free sides of the piezoceramic beams 2, 3 are each provided with a first electrode 5 and the passive beam 4 facing sides of the piezoceramic beams 2, 3 are each equipped with a second electrode 6. 6 is upon deflection of the bending transducer 1 is according to the piezoelekt ¬ generic effect that comes into the piezoceramic beams 2, 3 for supporting, between the electrodes 5, a corresponding voltage difference a. At the free longitudinal end 14 of the bending transducer 1, a seismic mass 8 is mounted, which is dimensioned in accordance with egg ¬ ner desired bending resonance of the bending transducer 1 in size. The larger the seismic mass 8, the smaller the frequency of the bending-critical resonant oscillation mode of the bending transducer 1.
Der Biegewandler 1 wirkt als ein Piezogenerator . Dabei wird mittels externer Schwingungsanregung der Biegewandler 1 und insbesondere seine seismische Masse 8 zu Biegeschwingungen angeregt, wodurch die Piezokeramikbalken 2, 3 wechselseitig einer Druck- und einer Zug-Beanspruchung ausgesetzt sind.The bending transducer 1 acts as a piezoelectric generator. In this case, the bending transducer 1 and in particular its seismic mass 8 is excited to bending vibrations by means of external vibration excitation, whereby the piezoceramic beams 2, 3 are mutually exposed to a compressive and a tensile stress.
Dementsprechend liegen zwischen den Elektroden 5, 6 wechselseitig Spannungen an, die abgreifbar sind. Accordingly, between the electrodes 5, 6 mutually voltages, which can be tapped.
Gemäß Figur 1 nimmt die Dicke 10 des Passivbalkens 4 vom ein- gespannten Längsende 13 zum freien Längsende 14 entlang der Zug-Druck-Spannungsübergangslinie 9 linear ab. Dadurch ist der Passivbalken 4 als ein Keil ausgebildet. Das Material des Passivbalkens 4 hat isotrope Stoffeigenschaften, wodurch die Biegesteifigkeit des Passivbalkens vom eingespannten Längsen¬ de 13 zu dem freien Längsende 14 hin abnimmt. Dadurch ist bei einer Auslenkung des Biegewandlers 1 in die Auslenkrichtung 15 das Spannungsniveau im Passivbalken 4 im Wesentlichen konstant. Dadurch ist das Zug- bzw. Druck-Spannungsniveau in den Piezokeramikbalken 2, 3 entlang ihrer Längserstreckung ebenfalls im Wesentlichen konstant, wodurch in den Piezokeramikbalken 2, 3 der piezoelektrische Effekt gleichmäßig über de¬ ren Längserstreckung auftritt. Somit ist der Ladungseintrag in die Elektroden 5, 6 entlang der Längsrichtung der Piezokeramikbalken 2, 3 im Wesentlichen konstant, wodurch die Ladungsausbeute aufgrund des piezoelektrischen Effekts in den Piezokeramikbalken 2, 3 hoch ist. According to FIG. 1, the thickness 10 of the passive beam 4 decreases linearly from the clamped longitudinal end 13 to the free longitudinal end 14 along the tension-pressure-voltage transition line 9. As a result, the passive bar 4 is formed as a wedge. The material of the passive beam 4 has isotropic material properties, whereby the Bending stiffness of the passive beam from the clamped Längsen ¬ de 13 to the free longitudinal end 14 decreases towards. As a result, when the bending transducer 1 is deflected into the deflection direction 15, the tension level in the passive beam 4 is essentially constant. As a result, the tensile or compressive stress level in the piezoceramic beam 2, 3 constant along their longitudinal extension also substantially, which occurs in the piezo ceramic beam 2, 3 of the piezoelectric effect uniformly over de ¬ ren longitudinal extension. Thus, the charge input into the electrodes 5, 6 along the longitudinal direction of the piezoceramic bars 2, 3 is substantially constant, whereby the charge yield due to the piezoelectric effect in the piezoceramic bars 2, 3 is high.
Außerdem braucht bei der Auslenkung des Biegewandlers 1 auf eventuell auftretende Spannungsspitzen und daraus resultie¬ renden Ladungsspitzen nicht Rücksicht genommen zu werden, da die Spannungsverteilung und die Ladungsverteilung über die Längserstreckung der Piezokeramikbalken 2, 3 im Wesentlichen konstant ist. Diese Konstanz ist beibehalten bei unterschied¬ lich schweren seismischen Massen 8, wodurch der Biegewandler 1 einen großen Anwendungsbereich hat. In addition, needs in the deflection of the bending transducer 1 on possibly occurring voltage spikes and not to be taken therefrom resultie ¬ leaders peak charges consideration, since the voltage distribution and the charge distribution over the longitudinal extent of the piezoceramic beam 2, 3 is substantially constant. This constancy is maintained at different ¬ serious seismic masses 8, whereby the bending transducer 1 has a wide range of applications.
Im Gegensatz zur Aus führungs form gemäß Figur 1 ist gemäß einer weiteren Aus führungs form gemäß Figur 2 ein gleichdicker Passivbalken 4 gewählt, wodurch die Piezokeramikbalken 2, 3 parallel zueinander angeordnet sind. Der Passivbalken 4 weist einen Harzkörper 11 auf, in dem eine Mehrzahl an Fasern 12 eingelagert ist, so dass der Passivbalken 4 von einem Faserverbundmaterial gebildet ist. Die Dichte der Fasern 12 ist am eingespannten Längsende 13 am höchsten und am freien Längsende 14 am niedrigsten, wobei die Dichte der Fasern 12 von dem eingespannten Längsende 13 zu dem freien Längsende 14 abfällt. Der Verlauf der Dichte der Fasern 12 über die Längs¬ erstreckung des Passivbalkens 4 ist derart gewählt, dass bei einer Auslenkung des Biegewandlers 1 das Spannungsniveau in dem Passivbalken 4 im Wesentlichen konstant ist. Die Fasern 12 können eine kurze Länge im Vergleich zur Länge des Harzkörpers 11 haben, wobei die Dichte der Fasern 12 im Harzkörper 11 durch deren Verteilung im Harzkörper 11 definiert ist. Alternativ können die Fasern 12 eine große Länge im Vergleich zur Länge des Harzkörpers 11 haben und vom eingespannten Längsende 13 in dem Passivbalken 4 zu dem freien Längsende 14 hin verlaufen. Durch das Vorsehen von entsprechend längeren und kürzeren Fasern 12 nimmt die örtliche Anzahl an Fasern über die Längserstreckung des Harzkörpers 11 gesehen ab, da zunehmend immer weniger Fasern 12 in den Bereich des freien Längsendes 14 reichen. Dadurch nimmt über die Zug-Druck-Spannungsübergangslinie 9 die Biegesteifigkeit des Passivbalkens 4 ab, wodurch bei einer Auslenkung des Bie¬ gewandlers 1 das Spannungsniveau in dem Passivbalken 4 und in den Piezokeramikbalken 2, 3 im Wesentlichen konstant ist. In contrast to the disclosed embodiment according to FIG. 1, according to a further disclosed embodiment according to FIG. 2, an equally thick passive bar 4 is selected, whereby the piezoceramic bars 2, 3 are arranged parallel to one another. The passive beam 4 has a resin body 11, in which a plurality of fibers 12 is embedded, so that the passive beam 4 is formed by a fiber composite material. The density of the fibers 12 is the highest at the clamped longitudinal end 13 and the lowest at the free longitudinal end 14, wherein the density of the fibers 12 from the clamped longitudinal end 13 to the free longitudinal end 14 drops. The course of the density of the fibers 12 over the longitudinal extent of the passive beam 4 is selected such that, in the case of a deflection of the bending transducer 1, the stress level in the passive beam 4 is substantially constant. The fibers 12 may have a short length compared to the length of the resin body 11, wherein the density of the fibers 12 in the resin body 11 is defined by their distribution in the resin body 11. Alternatively, the fibers 12 may have a large length compared to the length of the resin body 11 and extend from the clamped longitudinal end 13 in the passive beam 4 to the free longitudinal end 14. By providing correspondingly longer and shorter fibers 12, the local number of fibers seen over the longitudinal extent of the resin body 11 decreases, as increasingly fewer fibers 12 reach into the region of the free longitudinal end 14. This increases via the train-pressure-voltage transition line 9, the bending stiffness of the passive beam 4 from, whereby upon deflection of the Bie ¬ garment coupler 1, the voltage level in the passive beam 4 and in the piezoceramic beam 2, 3 is substantially constant.

Claims

Patentansprüche claims
1. Piezokeramischer Biegewandler (1) mit einer Einspannung1. piezoceramic bending transducer (1) with a clamping
(7) an seinem einen Längsende (13) und einer vorherbestimmten Auslenkrichtung (15) an seinem anderen, freien Längsende(7) at its one longitudinal end (13) and a predetermined deflection direction (15) at its other, free longitudinal end
(14), wobei der Biegewandler (1) von einem Piezokeramikbalken (2, 3) und einem Passivbalken (4) gebildet ist, die in die Auslenkrichtung (15) gestapelt aneinandergelegt und deren Biegesteifigkeiten derart dimensioniert sind, dass beim Aus- lenken des Biegewandlers (1) stets eine Zug-Druck- Spannungsübergangslinie (9) in dem Passivbalken (4) angesie¬ delt ist und die Biegesteifigkeit des Passivbalkens (4) ent¬ lang der Zug-Druck-Spannungsübergangslinie (9) zum freien Längsende (14) hin abnimmt, so dass die Spannungsverteilung in dem Piezokeramikbalken (2, 3) entlang der Zug-Druck- Spannungsübergangslinie (9) zum freien Längsende (14) hin ho¬ mogen ist. (14), wherein the bending transducer (1) of a piezoceramic beam (2, 3) and a passive beam (4) is stacked in the deflection direction (15) juxtaposed and whose bending stiffnesses are dimensioned such that when deflecting the bending transducer (1) is always a train-pressure voltage transition line (9) in the passive beam (4) angesie ¬ delt and the flexural rigidity of the passive beam (4) ent ¬ long the tension-pressure voltage transition line (9) to the free longitudinal end (14) decreases, so that the stress distribution in the piezoceramic beam (2, 3) along the train-pressure voltage transition line (9) to the free longitudinal end (14) is ho ¬ homogeneous.
2. Biegewandler gemäß Anspruch 1, wobei die Biegesteifigkeit des Passivbalkens (4) entlang der Zug-Druck- Spannungsübergangslinie (9) zum freien Längsende (14) hin li¬ near abnimmt. 2. bending transducer according to claim 1, wherein the flexural rigidity of the passive beam (4) decreases along the train-pressure voltage transition line (9) to the free longitudinal end (14) towards li ¬ near.
3. Biegewandler gemäß Anspruch 1 oder 2, wobei die Dicke (10) des Passivbalkens (4) entlang der Zug-Druck- Spannungsübergangslinie (9) zum freien Längsende (14) hin in der vom Biegewandler (1) beim Auslenken überstrichenen Ebene abnimmt . 3. bending transducer according to claim 1 or 2, wherein the thickness (10) of the passive beam (4) decreases along the train-pressure voltage transition line (9) to the free longitudinal end (14) in the swept by the bending transducer (1) when deflecting plane.
4. Biegewandler gemäß Anspruch 3, wobei der Passivbalken (4) aus einer Mehrzahl an Schichten gebildet ist, die gleichdick übereinandergelegt und parallel zur Zug-Druck- Spannungsübergangslinie (9) verlaufen sowie am einen Längsen¬ de (13) bündig zueinander angeordnet sind und derart unter- schiedliche Längen zum freien Längsende (14) hin haben, dass die Dicke (10) des Passivbalkens (4) entlang der Zug-Druck- Spannungsübergangslinie (9) zum freien Längsende (14) hin in der vom Biegewandler (1) beim Auslenken überstrichenen Ebene abnimmt . 4. bending transducer according to claim 3, wherein the passive beam (4) is formed from a plurality of layers, the same thickness superimposed and parallel to the train-pressure voltage transition line (9) and on a Längsen ¬ de (13) are arranged flush to each other and Such different lengths to the free longitudinal end (14) out have that the thickness (10) of the passive beam (4) along the train-pressure voltage transition line (9) to the free longitudinal end (14) out in the level swept by the bending transducer (1) when deflecting decreases.
5. Biegewandler gemäß Anspruch 4, wobei die Zug-Druck- Spannungsübergangslinie (9) in der mittleren Schicht des Pas¬ sivbalkens (4) liegt. 5. bending transducer according to claim 4, wherein the tension-pressure voltage transition line (9) in the middle layer of the Pas ¬ sivbalkens (4).
6. Biegewandler gemäß einem der Ansprüche 1 bis 5, wobei der Passivbalken (4) von einem Faserverbundwerkstoff gebildet ist, dessen Faserdichte (12) entlang der Zug-Druck- Spannungsübergangslinie (9) zum freien Längsende (14) hin ab¬ nimmt . 6. bending transducer according to one of claims 1 to 5, wherein the passive beam (4) is formed by a fiber composite material whose fiber density (12) along the train-pressure voltage transition line (9) to the free longitudinal end (14) towards ¬ decreases.
7. Biegewandler gemäß Anspruch 6, wobei der Passivbalken (4) einen Prepreg-Körper aufweist. 7. bending transducer according to claim 6, wherein the passive beam (4) comprises a prepreg body.
8. Biegewandler gemäß einem der Ansprüche 1 bis 7, wobei der Biegewandler (1) trimorph ausgebildet ist und zwei Piezokera- mikbalken (2, 3) und den dazwischen liegenden Passivbalken (4) aufweist. 8. bending transducer according to one of claims 1 to 7, wherein the bending transducer (1) is formed trimorph and two Piezokera mikbalken (2, 3) and the intermediate passive beam (4).
9. Biegewandler gemäß einem der Ansprüche 1 bis 8, wobei der Piezokeramikbalken (2, 3) auf den Passivbalken (4) geklebt ist . 9. bending transducer according to one of claims 1 to 8, wherein the piezoceramic beam (2, 3) is glued to the passive beam (4).
10. Biegewandler gemäß einem der Ansprüche 1 bis 9, wobei der Biegewandler (1) als ein Piezogenerator eingerichtet ist. 10. bending transducer according to one of claims 1 to 9, wherein the bending transducer (1) is arranged as a piezoelectric generator.
PCT/EP2011/065023 2010-09-22 2011-08-31 Piezoceramic bending transducer WO2012038223A1 (en)

Priority Applications (1)

Application Number Priority Date Filing Date Title
EP11760426A EP2564437A1 (en) 2010-09-22 2011-08-31 Piezoceramic bending transducer

Applications Claiming Priority (2)

Application Number Priority Date Filing Date Title
DE102010041200.7 2010-09-22
DE102010041200A DE102010041200A1 (en) 2010-09-22 2010-09-22 Piezoceramic bending transducer

Publications (1)

Publication Number Publication Date
WO2012038223A1 true WO2012038223A1 (en) 2012-03-29

Family

ID=44674765

Family Applications (1)

Application Number Title Priority Date Filing Date
PCT/EP2011/065023 WO2012038223A1 (en) 2010-09-22 2011-08-31 Piezoceramic bending transducer

Country Status (3)

Country Link
EP (1) EP2564437A1 (en)
DE (1) DE102010041200A1 (en)
WO (1) WO2012038223A1 (en)

Cited By (2)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
US20130342075A1 (en) * 2011-02-11 2013-12-26 Commissariat A L'energie Atomique Et Aux Energies Alternatives Optimized device for converting mechanical energy into electrical energy
CN108713260A (en) * 2016-03-01 2018-10-26 维蒙股份公司 Piezoelectric harvester system with Composition spacer

Families Citing this family (2)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
DE102013205626A1 (en) * 2013-03-28 2014-10-02 Siemens Aktiengesellschaft Bending transducer with piezoelectric bending element, cooling device and electronic module
KR102229140B1 (en) * 2014-09-11 2021-03-18 한국전자통신연구원 device for harvesting energy, manufacturing method, and wireless apparatus including the same

Citations (5)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
DE19635929A1 (en) * 1995-09-29 1997-07-10 Siemens Ag Piezoelectric transducers for textile needle able to be set close
DE19920576C1 (en) * 1999-05-04 2000-06-21 Siemens Ag Piezoelectric transducer used e.g. as printing head of ink jet printers has a carrier made of a duroplast reinforced with fibers having a specified heat expansion coefficient
US20070114890A1 (en) * 2005-11-23 2007-05-24 Churchill David L Slotted beam piezoelectric composite
EP1791192A1 (en) * 2005-11-25 2007-05-30 Festo Ag & Co. Piezoelectric bender transducer
EP2113953A1 (en) * 2008-04-30 2009-11-04 Silicon Sensing Systems Limited Improvements in or relating to energy conversion

Family Cites Families (2)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
US5869189A (en) * 1994-04-19 1999-02-09 Massachusetts Institute Of Technology Composites for structural control
JP2007167998A (en) * 2005-12-20 2007-07-05 Toshiba Corp Device having beam structure and semiconductor device

Patent Citations (5)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
DE19635929A1 (en) * 1995-09-29 1997-07-10 Siemens Ag Piezoelectric transducers for textile needle able to be set close
DE19920576C1 (en) * 1999-05-04 2000-06-21 Siemens Ag Piezoelectric transducer used e.g. as printing head of ink jet printers has a carrier made of a duroplast reinforced with fibers having a specified heat expansion coefficient
US20070114890A1 (en) * 2005-11-23 2007-05-24 Churchill David L Slotted beam piezoelectric composite
EP1791192A1 (en) * 2005-11-25 2007-05-30 Festo Ag & Co. Piezoelectric bender transducer
EP2113953A1 (en) * 2008-04-30 2009-11-04 Silicon Sensing Systems Limited Improvements in or relating to energy conversion

Cited By (4)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
US20130342075A1 (en) * 2011-02-11 2013-12-26 Commissariat A L'energie Atomique Et Aux Energies Alternatives Optimized device for converting mechanical energy into electrical energy
US8779651B2 (en) * 2011-02-11 2014-07-15 Commissariat A L'energie Atomique Et Aux Energies Alternatives Optimized device for converting mechanical energy into electrical energy
CN108713260A (en) * 2016-03-01 2018-10-26 维蒙股份公司 Piezoelectric harvester system with Composition spacer
CN108713260B (en) * 2016-03-01 2023-03-24 卡爱达克有限公司 Piezoelectric energy harvester system with composite gasket

Also Published As

Publication number Publication date
EP2564437A1 (en) 2013-03-06
DE102010041200A1 (en) 2012-03-22

Similar Documents

Publication Publication Date Title
EP3510470B1 (en) Device for producing haptic feedback
DE102006040316B4 (en) Piezoceramic Flächenaktuator and method for producing such
WO1998021759A1 (en) Piezo-electric driving or adjusting element
EP1228541B1 (en) Method for producing a piezoelectric transducer
EP2564437A1 (en) Piezoceramic bending transducer
EP2361443A1 (en) Electromechanical energy converter for generating electric energy from mechanical movements
DE102004031404A1 (en) Piezoelectric component e.g. piezoelectric actuator, for use in automotive engineering, has body with breaking point that leads to formation of split in body, where component controls and limits split formation and expansion by using point
EP2824824A1 (en) Drive device
DE102013110356A1 (en) ultrasonic actuator
EP2030263B1 (en) Piezoelectric actuator
EP2467924B1 (en) Frequency-tunable resonator and method for operating it
DE19631026A1 (en) Device for deforming a support structure using electrical or magnetic effects
DE102013204101A1 (en) Energy generating device with free-running piezoelectric bending transducers
DE102015226233A1 (en) Bending transducer and method for its production and its operation
DE19704389C2 (en) Single element actuator
EP1794819A1 (en) Solid-state actuator, especially piezoceramic actuator
DE102022116244A1 (en) Input device with improved spring elements for movable mounting of the control panel, associated spring element and assembly method
DE102010060736B4 (en) Method for producing a piezoactuator
WO2006136504A1 (en) High lifting capacity piezoelectric actuator
CH710245B1 (en) Arrangement for closing grooves.
EP3335252A1 (en) Piezoelectric component
DE102019112842A1 (en) Actuator
DE102009003270A1 (en) Piezoactuator i.e. longitudinal resonator, for use in piezomotor, has energy storage element adjusting mechanical resonant frequency and storing energy at electrical input of stack arrangement
DE10310296A1 (en) Stroke setting method for piezoelectric or electrostrictive actuator e.g. for IC engine fuel injection valve, using adjustment of number of internal electrodes supplied with operating voltage
DE102005060922A1 (en) Composite material, has ferroelectric tubes arranged parallel and one upon other with specific distance under utilization of maximum packing density, such that direct connection between inner and outer surfaces of tubes does not exist

Legal Events

Date Code Title Description
121 Ep: the epo has been informed by wipo that ep was designated in this application

Ref document number: 11760426

Country of ref document: EP

Kind code of ref document: A1

WWE Wipo information: entry into national phase

Ref document number: 2011760426

Country of ref document: EP

NENP Non-entry into the national phase

Ref country code: DE