WO2012038223A1 - Transducteur de flexion piézocéramique - Google Patents

Transducteur de flexion piézocéramique Download PDF

Info

Publication number
WO2012038223A1
WO2012038223A1 PCT/EP2011/065023 EP2011065023W WO2012038223A1 WO 2012038223 A1 WO2012038223 A1 WO 2012038223A1 EP 2011065023 W EP2011065023 W EP 2011065023W WO 2012038223 A1 WO2012038223 A1 WO 2012038223A1
Authority
WO
WIPO (PCT)
Prior art keywords
bending transducer
longitudinal end
piezoceramic
passive beam
transition line
Prior art date
Application number
PCT/EP2011/065023
Other languages
German (de)
English (en)
Inventor
Carsten Schuh
Original Assignee
Siemens Aktiengesellschaft
Priority date (The priority date is an assumption and is not a legal conclusion. Google has not performed a legal analysis and makes no representation as to the accuracy of the date listed.)
Filing date
Publication date
Application filed by Siemens Aktiengesellschaft filed Critical Siemens Aktiengesellschaft
Priority to EP11760426A priority Critical patent/EP2564437A1/fr
Publication of WO2012038223A1 publication Critical patent/WO2012038223A1/fr

Links

Classifications

    • HELECTRICITY
    • H10SEMICONDUCTOR DEVICES; ELECTRIC SOLID-STATE DEVICES NOT OTHERWISE PROVIDED FOR
    • H10NELECTRIC SOLID-STATE DEVICES NOT OTHERWISE PROVIDED FOR
    • H10N30/00Piezoelectric or electrostrictive devices
    • H10N30/30Piezoelectric or electrostrictive devices with mechanical input and electrical output, e.g. functioning as generators or sensors
    • H10N30/304Beam type
    • H10N30/306Cantilevers

Definitions

  • the invention relates to a piezoceramic bending transducer.
  • a conventional piezoceramic bending transducer has a piezoceramic layer and a carrier layer on which the piezoceramic layer is applied. The layers are clamped on one side and are deflected at their end facing away from the clamping, so that they undergo a deflection. Since ⁇ at comes into the piezoceramic layer of the piezo-ceramic Ef ⁇ fect for supporting, in which generates an external electric field due to a linear piezoelekt ⁇ step interaction between the mechanical and electrical states of a crystal of the piezoelectric ceramic layer has a crystal deforming stress.
  • the piezoceramic bending transducer has at least two layers, a piezoceramic layer and the carrier layer, wherein only the piezoceramic layer is piezoelectrically active and the carrier layer is passive.
  • the backing layer forms both a support and a Bie ⁇ geversteifung for the piezoceramic layer. If the piezoceramic bending transducer has a single piezoceramic layer and a single carrier layer, its structure is referred to as monomorphic. If the piezoceramic bending transducer has two piezoceramic layers, between which the carrier layer is arranged, then its structure is referred to as trimorphic. Conceivable is a type of piezoceramic bending transducer in which a plurality of piezoceramic layers are arranged adjacent to each other without the carrier layer, this structure being referred to as bimorph or multimorph.
  • the object of the invention is to provide a piezoceramic bending transducer, which has a long service life and in which the piezoelectric effect is effectively used.
  • the piezoceramic bending transducer according to the invention has a clamping at its one longitudinal end and has at its other, free longitudinal end a predetermined Auslenkrich ⁇ tion, the bending transducer is formed by a piezoceramic beam and a passive beam, which stacked in the deflecting juxtaposed and their bending stiffness of ⁇ art are dimensioned such that when deflecting the bending transducer always a train-pressure voltage transition line is located in the Piezoke ⁇ ramikbalken and the flexural rigidity of the Pas ⁇ sivbalkens along the train-pressure-voltage transition line to the free longitudinal end decreases.
  • the train-pressure is voltage transition line than the inactive position of the means Bie ⁇ garment coupler in the region of a bending-neutral region respects ⁇ Lich the flexural rigidity is formed graded, wherein the flexural rigidity of the clamping area decreases up to the free longitudinal end.
  • the bending rigidity of the passive beam along the train-pressure-voltage transition line takes to the free longitudinal end in such a way from thatdersvertei ⁇ system is out homogeneously in the piezoceramic beam along the train-pressure voltage transition line on the free longitudinal end.
  • the bending transducer At the free longitudinal end may be provided on the bending transducer preferably a seismic mass.
  • the flexural resonance of the bending transducer can be adjusted.
  • Bevorzugterma The bending stiffness of the passive beam decreases linearly along the tensile-stress-voltage transition line towards the free longitudinal end. It is preferred that the thickness of the passive beam decreases along the tension-pressure-voltage transition line to the free longitudinal end in the plane swept by the bending transducer when deflecting.
  • the passive beam is formed in the plane swept by the bending transducer during deflection as a wedge, which tapers towards the free longitudinal end.
  • the passive beam is formed of a plurality of layers, which are of the same thickness and parallel to the train-pressure voltage transition line and arranged at the clamped longitudinal end flush with each other and so under ⁇ different lengths to the free longitudinal end have the thickness of the passive beam along the train-pressure voltage transition line to the free longitudinal end decreases in the swept over by the bending transducer level.
  • the rigidity of the passive beam can advantageously be established by means of the locally present number of layers, their thickness distribution and their mutual mechanical coupling, and their length distribution.
  • the tension-pressure-voltage transition line lies in the middle layer of the passive beam.
  • the passive beam is formed by an in situ already wedge-shaped single layer.
  • the passive beam is formed by a fiber composite whose fiber density decreases along the tension-pressure-voltage transition line to the free longitudinal ⁇ end .
  • the passive ⁇ beam having a prepreg body.
  • the prepreg body is a semi-finished product having long fibers in an uncured thermosetting plastic matrix. All long fibers are arranged flush on the clamped longitudinal end and have towards remo ⁇ Mende lengths on the free longitudinal end, so that the density of the long fibers in the passive beams from the clamping to the free longitudinal end decreases.
  • the long fibers are preferably aligned with the longitudinal direction of the passive beam.
  • the bending transducer is preferably formed trimorphic and has two piezoceramic bars, between which the passive beam is located. Alternatively, it is preferable to perform the bending transducer bimorph or multimorph.
  • the piezoceramic beam is preferably glued to the passive beam. In addition, it is preferred that the bending transducer is set up as a piezo-generator.
  • FIG. 1 shows a longitudinal section of a first embodiment of the bending transducer according to the invention
  • FIG. 2 shows a longitudinal section of a second embodiment of the bending transducer according to the invention.
  • a piezoceramic bending transducer 1 has a first piezoceramic beam 2 and a second piezoceramic beam 3. Between the piezoceramic beam 2, 3, a passive beam 4 is arranged. The piezoceramic beams 2, 3 and the passive beam 4 are firmly clamped at their one longitudinal end 13 with a clamping block 7, whereas the clamped longitudinal end 13 facing away from the free longitudinal end 14 of the bending transducer 1 may be subjected to a deflection. The deflection is in the direction of a deflection direction 15, which lies in the plane of Figures 1 and 2 and hinted ⁇ tet with a double arrow.
  • the piezoceramic beam 2, 3 and the passive beam 4 are formed a corresponding train-pressure-voltage distribution. From the first piezoceramic beam 2 to the second piezoceramic beam 3, in the passive beam 4 the stress distribution passes through the zero point at which the tension-pressure-voltage transition line 9 lies in the passive beam 4.
  • the flexural rigidity of the piezo ⁇ ceramic beams 2, 3 and of the passive beam 4 are such dimen ⁇ sized to allow for all conceivable and contemplated deflections of the train-pressure-voltage transition line 9 is always male within the passive beam 4 and in the direction of professionnnor- of the layers extends ,
  • the free sides of the piezoceramic beams 2, 3 are each provided with a first electrode 5 and the passive beam 4 facing sides of the piezoceramic beams 2, 3 are each equipped with a second electrode 6.
  • 6 is upon deflection of the bending transducer 1 is according to the piezoelekt ⁇ generic effect that comes into the piezoceramic beams 2, 3 for supporting, between the electrodes 5, a corresponding voltage difference a.
  • a seismic mass 8 is mounted, which is dimensioned in accordance with egg ⁇ ner desired bending resonance of the bending transducer 1 in size. The larger the seismic mass 8, the smaller the frequency of the bending-critical resonant oscillation mode of the bending transducer 1.
  • the bending transducer 1 acts as a piezoelectric generator.
  • the bending transducer 1 and in particular its seismic mass 8 is excited to bending vibrations by means of external vibration excitation, whereby the piezoceramic beams 2, 3 are mutually exposed to a compressive and a tensile stress.
  • the thickness 10 of the passive beam 4 decreases linearly from the clamped longitudinal end 13 to the free longitudinal end 14 along the tension-pressure-voltage transition line 9.
  • the passive bar 4 is formed as a wedge.
  • the material of the passive beam 4 has isotropic material properties, whereby the Bending stiffness of the passive beam from the clamped L jossen ⁇ de 13 to the free longitudinal end 14 decreases towards.
  • the tension level in the passive beam 4 is essentially constant.
  • the tensile or compressive stress level in the piezoceramic beam 2, 3 constant along their longitudinal extension also substantially, which occurs in the piezo ceramic beam 2, 3 of the piezoelectric effect uniformly over de ⁇ ren longitudinal extension.
  • the charge input into the electrodes 5, 6 along the longitudinal direction of the piezoceramic bars 2, 3 is substantially constant, whereby the charge yield due to the piezoelectric effect in the piezoceramic bars 2, 3 is high.
  • an equally thick passive bar 4 is selected, whereby the piezoceramic bars 2, 3 are arranged parallel to one another.
  • the passive beam 4 has a resin body 11, in which a plurality of fibers 12 is embedded, so that the passive beam 4 is formed by a fiber composite material.
  • the density of the fibers 12 is the highest at the clamped longitudinal end 13 and the lowest at the free longitudinal end 14, wherein the density of the fibers 12 from the clamped longitudinal end 13 to the free longitudinal end 14 drops.
  • the course of the density of the fibers 12 over the longitudinal extent of the passive beam 4 is selected such that, in the case of a deflection of the bending transducer 1, the stress level in the passive beam 4 is substantially constant.
  • the fibers 12 may have a short length compared to the length of the resin body 11, wherein the density of the fibers 12 in the resin body 11 is defined by their distribution in the resin body 11.
  • the fibers 12 may have a large length compared to the length of the resin body 11 and extend from the clamped longitudinal end 13 in the passive beam 4 to the free longitudinal end 14.

Landscapes

  • General Electrical Machinery Utilizing Piezoelectricity, Electrostriction Or Magnetostriction (AREA)
  • Apparatuses For Generation Of Mechanical Vibrations (AREA)

Abstract

L'invention concerne un transducteur de flexion piézocéramique (1) comprenant un élément de serrage (7) à une extrémité longitudinale (13) et présentant une direction de déflexion (15) prédéfinie à son autre extrémité longitudinale libre (14). Le transducteur de flexion (1) est formé par une poutre piézocéramique (2, 3) et une poutre passive (4) qui sont juxtaposées et empilées dans la direction de déflexion (15) et dont les rigidités à la flexion sont dimensionnées de telle sorte que, lors de la déflexion du transducteur de flexion (1), une ligne de transition traction-pression-tension (9) se situe en permanence dans la poutre passive (4) et que la rigidité à la flexion de la poutre passive (4) le long de la ligne de transition traction-pression-tension (9) diminue en direction de l'extrémité longitudinale libre (14) de telle façon que la répartition des tensions est homogène dans la poutre piézocéramique (2, 3) le long de la ligne de transition traction-pression-tension (9) en direction de l'extrémité longitudinale libre (14).
PCT/EP2011/065023 2010-09-22 2011-08-31 Transducteur de flexion piézocéramique WO2012038223A1 (fr)

Priority Applications (1)

Application Number Priority Date Filing Date Title
EP11760426A EP2564437A1 (fr) 2010-09-22 2011-08-31 Transducteur de flexion piézocéramique

Applications Claiming Priority (2)

Application Number Priority Date Filing Date Title
DE102010041200.7 2010-09-22
DE102010041200A DE102010041200A1 (de) 2010-09-22 2010-09-22 Piezokeramischer Biegewandler

Publications (1)

Publication Number Publication Date
WO2012038223A1 true WO2012038223A1 (fr) 2012-03-29

Family

ID=44674765

Family Applications (1)

Application Number Title Priority Date Filing Date
PCT/EP2011/065023 WO2012038223A1 (fr) 2010-09-22 2011-08-31 Transducteur de flexion piézocéramique

Country Status (3)

Country Link
EP (1) EP2564437A1 (fr)
DE (1) DE102010041200A1 (fr)
WO (1) WO2012038223A1 (fr)

Cited By (2)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
US20130342075A1 (en) * 2011-02-11 2013-12-26 Commissariat A L'energie Atomique Et Aux Energies Alternatives Optimized device for converting mechanical energy into electrical energy
CN108713260A (zh) * 2016-03-01 2018-10-26 维蒙股份公司 具有复合垫片的压电俘能器系统

Families Citing this family (2)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
DE102013205626A1 (de) * 2013-03-28 2014-10-02 Siemens Aktiengesellschaft Biegewandler mit piezoelektrischem Biegeelement, Kühlvorrichtung und Elektronikmodul
KR102229140B1 (ko) * 2014-09-11 2021-03-18 한국전자통신연구원 에너지 하베스팅 소자, 그의 제조방법, 및 그를 포함하는 무선 장치

Citations (5)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
DE19635929A1 (de) * 1995-09-29 1997-07-10 Siemens Ag Piezoelektrischer Biegewandler mit einer Trägerschicht
DE19920576C1 (de) * 1999-05-04 2000-06-21 Siemens Ag Piezoelektrischer Biegewandler
US20070114890A1 (en) * 2005-11-23 2007-05-24 Churchill David L Slotted beam piezoelectric composite
EP1791192A1 (fr) * 2005-11-25 2007-05-30 Festo Ag & Co. Transducteur piézo-électrique à flexion
EP2113953A1 (fr) * 2008-04-30 2009-11-04 Silicon Sensing Systems Limited Améliorations de ou associées à la conversion d'énergie

Family Cites Families (2)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
US5869189A (en) * 1994-04-19 1999-02-09 Massachusetts Institute Of Technology Composites for structural control
JP2007167998A (ja) * 2005-12-20 2007-07-05 Toshiba Corp 梁構造を有する装置、および半導体装置

Patent Citations (5)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
DE19635929A1 (de) * 1995-09-29 1997-07-10 Siemens Ag Piezoelektrischer Biegewandler mit einer Trägerschicht
DE19920576C1 (de) * 1999-05-04 2000-06-21 Siemens Ag Piezoelektrischer Biegewandler
US20070114890A1 (en) * 2005-11-23 2007-05-24 Churchill David L Slotted beam piezoelectric composite
EP1791192A1 (fr) * 2005-11-25 2007-05-30 Festo Ag & Co. Transducteur piézo-électrique à flexion
EP2113953A1 (fr) * 2008-04-30 2009-11-04 Silicon Sensing Systems Limited Améliorations de ou associées à la conversion d'énergie

Cited By (4)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
US20130342075A1 (en) * 2011-02-11 2013-12-26 Commissariat A L'energie Atomique Et Aux Energies Alternatives Optimized device for converting mechanical energy into electrical energy
US8779651B2 (en) * 2011-02-11 2014-07-15 Commissariat A L'energie Atomique Et Aux Energies Alternatives Optimized device for converting mechanical energy into electrical energy
CN108713260A (zh) * 2016-03-01 2018-10-26 维蒙股份公司 具有复合垫片的压电俘能器系统
CN108713260B (zh) * 2016-03-01 2023-03-24 卡爱达克有限公司 具有复合垫片的压电俘能器系统

Also Published As

Publication number Publication date
EP2564437A1 (fr) 2013-03-06
DE102010041200A1 (de) 2012-03-22

Similar Documents

Publication Publication Date Title
EP3510470B1 (fr) Dispositif de génération d'un retour haptique
DE102006040316B4 (de) Piezokeramischer Flächenaktuator und Verfahren zur Herstellung eines solchen
WO1998021759A1 (fr) Element d'entrainement ou de reglage piezo-electrique
EP1228541B1 (fr) Procede de fabrication d'un transducteur piezo-electrique
EP2564437A1 (fr) Transducteur de flexion piézocéramique
EP2361443A1 (fr) Convertisseur d'énergie électromécanique destiné à produire de l'énergie électrique à partir de mouvements mécaniques
DE102004031404A1 (de) Piezoelektrisches Bauteil mit Sollbruchstelle und elektrischem Anschlusselement, Verfahren zum Herstellen des Bauteils und Verwendung des Bauteils
EP2824824A1 (fr) Dispositif d'entraînement
DE102013110356A1 (de) Ultraschallaktor
EP2030263B1 (fr) Actionneur piézoélectrique
EP2467924B1 (fr) Résonateur pouvant être syntonisé en fréquence et procédé pour le faire fonctionner
DE19631026A1 (de) Vorrichtung zur Verformung einer Trägerstruktur mittels elektrischer oder magnetischer Effekte
DE102013204101A1 (de) Energieerzeugungseinrichtung mit freischwingenden piezoelektrischen Biegewandlern
DE102015226233A1 (de) Biegewandler sowie Verfahren zu dessen Herstellung sowie zu dessen Betrieb
DE19704389C2 (de) Aktor aus Einzelelementen
EP1794819A1 (fr) Actionneur a corps solide, en particulier actionneur piezo-ceramique
DE102022116244A1 (de) Eingabegerät mit verbesserten Federelementen zur beweglichen Lagerung des Bedienteils, zugehöriges Federelement sowie Montageverfahren
DE102010060736B4 (de) Verfahren zur Herstellung eines Piezoaktors
WO2006136504A1 (fr) Actionneur piezo-electrique a pouvoir de levee augmente
CH710245B1 (de) Anordnung zum Verschliessen von Nuten.
EP3335252A1 (fr) Composant piézoélectrique
DE102019112842A1 (de) Aktuator
DE102009003270A1 (de) Piezoaktor sowie Verfahren zur Anpassung der Resonanzfrequenz eines Piezoaktors
DE10310296A1 (de) Verfahren zum Einstellen des Hubes eines piezoelektrischen oder elektrostriktiven Aktors sowie Vorrichtung zur Durchführung des Verfahrens
DE102005060922A1 (de) Kompositwerkstoff auf Basis von ferroelektrischen Röhren für den Einsatz als Stellglied und/oder als Sensor

Legal Events

Date Code Title Description
121 Ep: the epo has been informed by wipo that ep was designated in this application

Ref document number: 11760426

Country of ref document: EP

Kind code of ref document: A1

WWE Wipo information: entry into national phase

Ref document number: 2011760426

Country of ref document: EP

NENP Non-entry into the national phase

Ref country code: DE