WO2012037777A1 - 自驱动关节 - Google Patents
自驱动关节 Download PDFInfo
- Publication number
- WO2012037777A1 WO2012037777A1 PCT/CN2011/001513 CN2011001513W WO2012037777A1 WO 2012037777 A1 WO2012037777 A1 WO 2012037777A1 CN 2011001513 W CN2011001513 W CN 2011001513W WO 2012037777 A1 WO2012037777 A1 WO 2012037777A1
- Authority
- WO
- WIPO (PCT)
- Prior art keywords
- sleeve
- self
- structural
- permanent magnet
- magnetic field
- Prior art date
Links
Classifications
-
- H—ELECTRICITY
- H02—GENERATION; CONVERSION OR DISTRIBUTION OF ELECTRIC POWER
- H02K—DYNAMO-ELECTRIC MACHINES
- H02K21/00—Synchronous motors having permanent magnets; Synchronous generators having permanent magnets
- H02K21/12—Synchronous motors having permanent magnets; Synchronous generators having permanent magnets with stationary armatures and rotating magnets
-
- H—ELECTRICITY
- H02—GENERATION; CONVERSION OR DISTRIBUTION OF ELECTRIC POWER
- H02K—DYNAMO-ELECTRIC MACHINES
- H02K11/00—Structural association of dynamo-electric machines with electric components or with devices for shielding, monitoring or protection
- H02K11/20—Structural association of dynamo-electric machines with electric components or with devices for shielding, monitoring or protection for measuring, monitoring, testing, protecting or switching
- H02K11/21—Devices for sensing speed or position, or actuated thereby
- H02K11/215—Magnetic effect devices, e.g. Hall-effect or magneto-resistive elements
Definitions
- the invention relates to a device in the field of driving sensing control technology, in particular to a self-driving joint based on the composite action of materials or devices such as permanent magnet, magnetostrictive and piezoelectric.
- the traditional joint mechanism is a passively driven joint device that functions only for connection and transmission functions.
- the implementation of the startup process requires external motor action.
- China Patent No. 20092025552. 3 which records a "mechanical joint”
- the action process needs to be used with an external motor, and the degree of motion or process can usually only be achieved by an external sensing system. Therefore, such joints are not suitable for manufacturing compact structures, a large number of joints, and applications requiring active drive and sensing control.
- the present invention provides a self-driving joint according to the above-mentioned deficiencies of the prior art, and has a compact structure and high structural strength, and the joint itself is a driving power source, and has self-sensing self-driving intelligent characteristics; the joint device can be conveniently realized in It can drive the rotation of any controllable angle under load, and the rotation angle can be detected by its own sensing device in real time; It can be suitable for large array self-expanding mechanism, robot joint, rotary drive control mechanism, motion operating system drive component, intelligent switch Doors and windows, smart switch mechanisms, smart hinges and more.
- the present invention is achieved by the following technical solutions.
- the present invention comprises: a sleeve, a magnetic sensing device and a magnetic field generating device, wherein: the magnetic sensing device is rotatably disposed inside the sleeve along the axis of the sleeve, and the magnetic field generating device is fixedly disposed on the sleeve external.
- the magnetic field generating device comprises: a magnetostrictive piezoelectric sensing device and a corresponding electromagnetic coil, wherein: a plurality of pairs of opposite polarity electromagnetic coils are oppositely disposed on an outer wall of the sleeve, and the magnetostrictive piezoelectric sensing device is fixedly disposed On the side wall of the casing.
- the inside of the electromagnetic coil is provided with a yoke
- the magnetic field generating device can also be realized by one or several external permanent magnets embedded in the sleeve;
- the number of the magnetic field generating devices is one or more groups, and the magnetic field generating devices are specifically arranged side by side in the axial direction of the sleeve.
- the sleeve is composed of a plurality of curved semi-open tubes made of a body of magnetic conductive material and a body of non-magnetically permeable material.
- the magnetic sensing device is a structural permanent magnet or an electromagnet, wherein:
- the structural permanent magnet comprises: a permanent magnet rotor and a rotating output rod body, wherein: the permanent magnet rotor is sleeved on the rotating output rod body Upper, the rotating output rod body is fixedly disposed at the axial center position of the sleeve.
- the electromagnet comprises: a structural electromagnetic coil and a structural yoke, wherein: the structural yoke is sleeved on the rotating output rod body, and the structural electromagnetic coil is disposed on the structural yoke.
- the number of the magnetic sensing devices is one or more groups, and the magnetic sensing devices are arranged in parallel in the axial direction or the radial direction of the sleeve.
- the device can realize self-rotation driving to drive the associated mechanism or the load to generate an action, and the driving action process and the degree, that is, the rotation angle can be perceived, so that the driving and sensing functions of the joint itself can be realized by the computer control to realize the intelligent self. Drive the joint system.
- the invention has the following advantages: realizes a joint device self-driven by the joint inside; realizes the intelligent link of driving and sensing integration; the joint structure is simple, the components are small, and the volume is relatively small High structural strength; electromagnetic permanent magnet composite, high driving efficiency, strong driving load capacity; active vibration control in the direction of rotating output and the use of electromagnetic and permanent magnets, and interaction between permanent magnets and magnetically permeable materials,
- the active damping is formed to facilitate the active vibration control function.
- the joint has the potential to achieve rotational drive adaptive control, or vibration adaptive control.
- the intelligent self-driving joint of the present invention can be used for a large array self-expanding mechanism, a robot joint, a rotary drive control mechanism, a motion operating system driving component, an intelligent switch door and window, a smart switch mechanism, a smart hinge mechanism, and the like.
- Figure 1 is a schematic view of Embodiment 1.
- Figure 2 is a schematic diagram of the initial assembly structure of the joint and the position of the permanent magnet at the initial moment of electromagnetic loading.
- Figure 3 is a schematic diagram of the deflection position/process of the structural permanent magnet in the joint during the electromagnetic loading process.
- Figure 4 is a schematic view showing the deflection position of the structural permanent magnet in the joint at the end of electromagnetic loading.
- Figure 5 is a schematic view of the joint structure of two pairs of electromagnetic poles at any angle.
- Figure 6 is a schematic diagram of the joint structure of two electromagnetic poles at intervals of 90 degrees (or other angles).
- Figure 7 is a schematic view of a joint of a permanent magnet with a profiled structure.
- Figure 8 is a schematic view showing the assembly relationship between the yoke and the bushing and the coil structure.
- Figure 9 is a schematic view showing the structural composition of a structural permanent magnet replaced with a structural electromagnetic coil.
- Figure 10 is a schematic view showing the structure of the external permanent magnet embedded in the outer ring body when the structural permanent magnet is replaced by the structural electromagnetic coil.
- the intelligent self-driving joint of the present invention comprises: a sleeve 1, a magnetic sensing device composed of a structural permanent magnet 3 and a rotating output rod 4 fixedly connected thereto, and a magnetic coil 6, a fastener 7, and a magnetic
- the body 8 of the stretchable material is pressed against the magnetic field generating device composed of the piezoelectric or compressive strain material connected body 9, wherein: the magnetic sensing device is disposed inside the sleeve 1 along the axis of the sleeve 1, and the magnetic field generating device is fixedly disposed on the sleeve 1 external, a pair of opposite polarity electromagnetic coils 6 are oppositely disposed on the outer wall of the sleeve 1, and the magnetostriction composed of the piezoelectric or compressive strain material 9 is pressed by the fastener 7 and the magnetostrictive material body 8.
- the piezoelectric sensing device is embedded in the side wall of the sleeve 1.
- the sleeve 1 is a composite sleeve of a magnetically permeable material body 2 and a non-magnetically permeable material body 11;
- the structural permanent magnet 3 is a rotating body coaxial with the sleeve 1 and placed in the middle of the sleeve;
- the inside of the electromagnetic coil 6 is provided with a first yoke 5, and at the initial position of the first yoke 5, the magnetic permeable material body 2 on the sleeve 1 and the structural permanent magnet 3 are assembled. Connected in series in the same magnetic path direction.
- the two output ends of the first yoke 5 are oppositely disposed on the upper and lower sides of the sleeve 1;
- the mounting gap is adjusted by the fastener 7 and the magnetostrictive material body 8 is pressed against the piezoelectric or compressive strain material body 9 and finally fixed in a sleeve in a unitary form.
- the side wall of the tube 1 is hollowed out and clamped in the sleeve 1 without a gap in the direction of magnetostriction.
- the self-driving joint in the initial assembly position, a magnetic pole of the structural permanent magnet 3 in the sleeve 1 and a magnetically permeable material body on the sleeve 1. 2 adsorption and fixed position, the other magnetic pole of the structural permanent magnet 3 is not adsorbed due to being adjacent to the non-magnetic material body 11 of the sleeve 1, and the structural permanent magnet 3 can thus be adsorbed and fixed to the magnetic permeability of the sleeve 1. On the material body 2, it can be fixed in the middle of the sleeve 1.
- the electromagnet 6 around the first yoke 5 is energized (the general structure of the outside of the sleeve is as shown in Fig. 8), and a magnetic field is generated on both end faces of the first yoke 5, and the magnitude of the magnetic field can be controlled by the coil 6 current.
- the rotating output rod 4 fixed to the structural permanent magnet 3 is rotated by 180 degrees with the structural permanent magnet 3, and the electromagnetic-permanent magnetic composite magnetic field torque can be transmitted to the outside of the joint through the rotating output rod 3.
- the mechanism that controls the driving is up, thereby achieving the effect of 180 degree deflection rotation and electromagnetic control driving.
- a second pair of electromagnetic coils 11 and a second yoke 10 are added to the first embodiment, wherein: the second pair of opposite polarity electromagnetic coils 11 are interleaved with the first pair of opposite polarity electromagnetic coils 6 The outer wall of the sleeve 1.
- Embodiment 2 The operation of Embodiment 2 is performed by first energizing the electromagnetic coil on the first yoke 5 to cancel the permanent magnet attraction of the initial structural permanent magnet 3 acting on the magnetically permeable material body 2 in the sleeve 1, and then passing through the second yoke 10
- the electromagnetic coil 11 is applied with a reverse current, and under the combined action of the electromagnetic repulsion of the magnetic first yoke 5 and the electromagnetic attraction of the second yoke 10, the structural permanent magnet 3 is deflected corresponding to the arrangement angle of the second yoke 10, And it is stopped in the direction of the magnetic flux of the second yoke 10 due to the suction of the second yoke 10.
- the direction of the energizing current of the above two yoke ferromagnetic poles is exchanged, and the structural permanent magnet 3 will rotate and return to the initial position.
- the number of electromagnetic coils and yokes can be further increased to form a multi-angle or angular subdivided rotational drive and control.
- this embodiment uses a first yoke 5 having an L-shaped cross section
- this embodiment adopts a structural permanent magnet 3 of a central symmetrical structure, and realizes a reciprocating rotational driving action by a non-axisymmetric structure.
- a structural electromagnetic coil 11 and a structural yoke 12 provided with a ferromagnetic material or a permanent magnet material or a ferromagnetic or permanent magnetic composite body disposed in the structural electromagnetic coil 11 are used as the magnetic sensation.
- a structural electromagnetic coil 11 and a structural yoke 12 provided with a ferromagnetic material or a permanent magnet material or a ferromagnetic or permanent magnetic composite body disposed in the structural electromagnetic coil 11 are used as the magnetic sensation.
- the external magnetic body 13 is used as the magnetic field generating device corresponding to the magnetic induction device, and the external permanent magnet 13 can be realized by being embedded in the sleeve 1, or a pair of external permanent magnets 13
- the upper and lower sides are symmetrically disposed outside the casing 1.
- the deflection mechanism is the same as that of Embodiments 1-4.
- the intelligent self-driving joint of the proposed invention can realize self-rotation driving.
- the driving mechanism and the load generating action are driven, and the driving process and the degree, that is, the turning angle, are conveniently controlled, and at the same time, the driving degree or angle can be implemented, and the intelligent driving joint system capable of self-driving and sensing performance can be realized by computer control.
Landscapes
- Engineering & Computer Science (AREA)
- Power Engineering (AREA)
- Microelectronics & Electronic Packaging (AREA)
- Dynamo-Electric Clutches, Dynamo-Electric Brakes (AREA)
- Reciprocating, Oscillating Or Vibrating Motors (AREA)
Description
自驱动关节 技术领域
本发明涉及的是一种驱动传感控制技术领域的装置, 具体是一种基于永磁、磁致伸縮和压 电等材料或器件复合作用的自驱动关节。
背景技术
传统的关节机构都为被动驱动的关节装置, 其功能只为连接和传动功能。 启动过过程的实 现需要外部电机作用方能实现。 经过对现有技术的检索发现, 中国专利号 20092025552. 3, 记 载了一种 "机械关节", 该技术由于只是一种单纯的机械机构, 结构相对复杂, 组成部件多。 类似的关节装置, 其动作过程需要与外部电机配合使用, 动作程度或过程通常也只能通过外部 传感系统来实现。 因此, 这类关节不适合制造结构紧凑, 关节数量多, 并且要求实现主动驱动 和传感控制的应用领域。
发明内容
本发明针对现有技术存在的上述不足, 提供一种自驱动关节, 该装置结构紧凑、 结构强度 高, 关节自身为驱动动力源, 具有自传感自驱动智能特性; 该关节装置可以方便实现在带动负 载情况下的任意可控角度的转动, 并且转动角度可以被自身传感装置实时检测; 能够适合于大 型阵列式自展开机构, 机器人关节, 旋转驱动控制机构, 运动操作系统驱动部件, 智能开关门 窗, 智能开关机构, 智能合页机构等等。
本发明是通过以下技术方案实现的,本发明包括:套管、磁感装置和磁场产生装置,其中: 磁感装置沿套管轴心转动设置于套管内部, 磁场产生装置固定设置于套管外部。
所述的磁场产生装置包括: 磁致伸縮压电传感装置及其对应电磁线圈, 其中: 若干对极性 相反的电磁线圈相对设置于套管的外壁, 磁致伸縮压电传感装置固定设置于套管的侧壁上。
所述的电磁线圈的内部设有轭铁;
所述的磁场产生装置也可以通过一块或若干块嵌装于套管的外部永磁体实现;
所述的磁场产生装置的个数为一组或多组,该磁场产生装置具体为沿套管的轴向方向上并 行布置。
所述的套管由导磁材料体和不导磁材料体制成的若干块弧形半开口管组成。
所述的磁感装置为结构永磁体或电磁体, 其中:
所述的结构永磁体包括: 永磁转子和转动输出棒体, 其中: 永磁转子套接于转动输出棒体
上, 转动输出棒体固定设置于套管的轴心位置。
所述的电磁体包括: 结构电磁线圈和结构轭铁, 其中: 结构轭铁套接于转动输出棒体上, 结构电磁线圈设置于结构轭铁上。
所述的磁感装置的个数为一组或多组,该磁感装置为沿套管的轴向方向或径向方向上并行 布置。
本装置可实现自转动驱动而带动连带机构或负载产生动作,并且驱动动作过程和程度即转 动角度可以被感知, 从而通过计算机控制, 使该关节自身的驱动和传感功能共同作用而实现智 能自驱动关节系统。
与现有技术相比, 本发明具有以下优点: 实现了一种由关节内部自驱动的关节装置; 实现 了驱动和传感一体化的智能环节; 关节结构简单, 组成部件少, 体积相对较小, 结构强度高; 电磁永磁复合作用, 驱动效率高, 驱动负载能力强; 可以实现旋转输出方向的振动主动控制和 利用电磁与永磁, 以及永磁与导磁材料之间的相互做作用, 而形成主动阻尼, 以方便实现振动 主动控制功能。 与传感装置相配合, 该关节具有实现转动驱动自适应控制, 或振动自适应控制 的潜力。
基于以上优点, 本发明的智能自驱动关节可用于大型阵列式自展开机构, 机器人关节, 旋 转驱动控制机构,运动操作系统驱动部件,智能开关门窗,智能开关机构,智能合页机构等等。
附图说明
图 1为实施例 1示意图。
图 2为关节初始装配结构及电磁加载初始时刻结构永磁体位置示意图。
图 3为关节中结构永磁体在电磁加载过程偏转位置 /过程示意图。
图 4为关节中结构永磁体在电磁加载结束时刻偏转位置示意图。
图 5为间隔任意角度两对电磁极作用的关节结构示意图。
图 6为间隔 90度(或其他角度)两个电磁极作用的关节结构示意图。
图 7为异型结构永磁体关节示意图。
图 8为轭铁与套管和线圈结构装配关系示意图。
图 9为结构永磁体换为结构电磁线圈的结构组成示意图。
图 10为结构永磁体换为结构电磁线圈时, 外部永磁体嵌入外环体中时结构示意图。
具体实施方式
下面对本发明的实施例作详细说明, 本实施例在以本发明技术方案为前提下进行实施, 给 出了详细的实施方式和具体的操作过程, 但本发明的保护范围不限于下述的实施例。
实施例 1
如图 1示, 本发明智能自驱动关节包括: 套管 1、 由结构永磁体 3和与之固定相连的转动 输出棒体 4组成的磁感装置以及由电磁线圈 6、 紧固件 7、 磁致伸缩材料体 8紧压在压电或压 应变材料连体 9组成的磁场产生装置, 其中: 磁感装置沿套管 1轴心转动设置于套管 1内部, 磁场产生装置固定设置于套管 1外部, 一对极性相反的电磁线圈 6相对设置于套管 1的外壁, 由紧固件 7、 磁致伸縮材料体 8紧压在压电或压应变材料连体 9组成的磁致伸缩压电传感装置 嵌于套管 1的侧壁上。
所述的套管 1为导磁材料体 2和不导磁材料体 11固接的复合材料套管;
所述的结构永磁体 3为与套管 1同轴的旋转体, 置于套管中间;
如图 2所示,所述的电磁线圈 6的内部设有第一轭铁 5,装配初始位置时,第一轭铁 5两端 与套管 1上的导磁材料体 2、 结构永磁体 3串接在同一磁路方向上。
如图 8所示, 所述的第一轭铁 5的两个输出端相对设置于套管 1的上下两侧;
所述的磁致伸缩压电传感装置中: 由紧固件 7调整安装间隙并将磁致伸縮材料体 8紧压在 压电或压应变材料连体 9上并最终以整体形式固定在套管 1的侧壁镂空部位,并在磁致伸縮作 用方向无间隙地卡紧在套管 1中。
工作时, 如图 2所示, 根据该装配组成和结构形式, 所述自驱动关节, 初始装配位置时, 套管 1中的结构永磁体 3的一个磁极与套管 1上的导磁材料体 2吸附而位置固定,结构永磁体 3的另一个磁极由于与套管 1的非导磁材料体 11相邻而不被吸附,结构永磁体 3因此可以被吸 附和固定在套管 1的导磁材料体 2上, 即可以固定在套管 1中间。对围绕第一轭铁 5的电磁线 圈 6通电(其套管外部的一般结构形式如图 8所示), 则在第一轭铁 5两端面产生磁场, 该磁 场的大小可以通过控制线圈 6电流的大小来控制。对第一轭铁 5上的线圈 6施加电流, 当通入 电流的方向正确, 电流强度足够大时, 与套管 1上导磁材料体 2外圆面相接的第一轭铁 5端所 产生的磁场力与套管 1上导磁材料体 2内圆面吸附的结构永磁体 3的磁场力相斥,直至抵消初 始永磁吸力,此时永磁结构体 3与套管 1脱离,如果继续增加线圈 6电流强度, 由于同极相斥, 异极相吸的磁力作用, 结构永磁体 3将会在第一轭铁 5电磁力作用下发生偏转, 如图 3所示, 直至 180度偏转后, 即电磁场方向与结构永磁体 3磁场方向同向时, 结构永磁体 3偏转停止。 此刻, 如果断开第一轭铁 5上电磁线圈 6的电流, 电磁场消失, 此时结构永磁体 3靠近套管 1 上导磁材料体 2的一端与导磁材料体 2再次吸合而定位不动, 如图 4所示。
以上过程中, 固连在结构永磁体 3上的转动输出棒体 4随结构永磁体 3转动 180度, 并且 能够将该电磁 -永磁复合磁场转矩通过转动输出棒体 3传导到关节外部需要控制带动的机构上 去, 从而实现 180度偏转转动及其电磁控制驱动的效果。
同理, 根据以上工作方式的作用过程, 如果再给第一轭铁 5的电磁线圈 6通入与之前反方
向的电流,且当电流强度足够大时,结构永磁体 3将会发生反向 180度(或继续的正向 180度) 旋转, 直至结构永磁体 3回到初始装配位置, 断电, 位置复原。
至此, 关节的 180度旋转驱动和复原驱动两个典型工作过程能够得以实现。
实施例 2
本实施例在实施例 1的基础上增加第二对电磁线圈 11以及第二轭铁 10, 其中: 第二对极 性相反的电磁线圈 11与第一对极性相反的电磁线圈 6交错设置于套管 1的外壁。
实施例 2工作时通过首先对第一轭铁 5上的电磁线圈通电抵消初始的结构永磁体 3作用在 套管 1中导磁材料体 2上的永磁吸力, 然后通过对第二轭铁 10的电磁线圈 11加反向电流, 并 且在磁第一轭铁 5电磁斥力以及第二轭铁 10的电磁吸力共同作用下, 结构永磁体 3发生对应 于第二轭铁 10摆放角度的偏转, 并由于第二轭铁 10的吸力而止动在第二轭铁 10的磁力线方 向上。 同理, 交换以上两个轭铁磁极的通电电流方向, 结构永磁体 3将发生回转, 而回复至初 始位置。
所述的电磁线圈以及轭铁的数目可进一步增加以形成多角度或角度细分的旋转驱动和控 制。
实施例 3
如图 6所示, 本实施例采用剖面为 L字形结构的第一轭铁 5;
本实施例工作时, 其所有组成要件和驱动动作方式与实施方式 1相同, 只是对于本工作方 式情况, 第一轭铁 5的两端面法线呈 90度角; 初始位置时, 第一轭铁 5的一个端面法线与结 构永磁体 3长度方向的轴线重合(/垂直)或垂直(/重合), 如图 6所示位置情况。 结合工作 方式 1的驱动过程, 此种工作方式下, 结构永磁体 3可以实现 90度转角的往复转动驱动动作。
实施例 4
如图 7所示, 本实施例采用中心对称结构的结构永磁体 3, 通过非轴对称结构实现往复转 动驱动动作。
实施例 5
如图 9所示,本实施例中采用结构电磁线圈 11以及设置于结构电磁线圈 11中设有铁磁材 料或永磁材料或铁磁、 永磁复合材料体制成的结构轭铁 12作为磁感装置。
如图 10所示, 本实施例中对应上述磁感装置采用外部永磁体 13作为磁场产生装置, 该外 部永磁体 13可以为一块嵌装于套管 1内得以实现,或一对外部永磁体 13上下对称设置于套管 1外部。
基于本实施列的结构形式, 其偏转作用机理与实施例 1-4相同。
通过以上几种具体的实施方式说明,所提出发明的智能自驱动关节可以实现自转动驱动而
带动连带机构或负载产生动作, 并且驱动动作过程和程度即转动角度方便控制, 同时驱动转动 程度或角度可以被实施感知, 通过计算机控制, 即可实现自驱动和传感性能的智能驱动关节系 统。
Claims
1、 一种自驱动关节, 包括: 套管、 磁感装置和磁场产生装置, 其特征在于: 磁感装置沿 套管轴心转动设置于套管内部, 磁场产生装置固定设置于套管外部。
2、 根据权利要求 1所述的自驱动关节, 其特征是, 所述的磁场产生装置包括: 磁致伸缩 压电传感装置及其对应电磁线圈, 其中: 若干对极性相反的电磁线圈相对设置于套管的外壁, 磁致伸縮压电传感装置固定设置于套管的侧壁上。
3、 根据权利要求 2所述的自驱动关节, 其特征是, 所述的电磁线圈的内部设有轭铁。
4、 根据权利要求 1所述的自驱动关节, 其特征是, 所述的磁场产生装置由一块或若干块 嵌装于套管的外部永磁体实现。
5、 根据权利要求 1或 2或 4所述的自驱动关节, 其特征是, 所述的磁场产生装置的个数 为一组或多组, 该磁场产生装置为沿套管的轴向方向上并行布置。
6、 根据权利要求 1或 2或 4所述的自驱动关节, 其特征是, 所述的套管由导磁材料体和 不导磁材料体制成的若干块弧形半开口管组成。
7、 根据权利要求 1所述的自驱动关节, 其特征是, 所述的磁感装置为结构永磁体或电磁 体, 其中:
所述的结构永磁体包括: 永磁转子和转动输出棒体, 其中: 永磁转子套接于转动输出棒体 上, 转动输出棒体固定设置于套管的轴心位置;
所述的电磁体包括: 结构电磁线圈和结构轭铁, 其中: 结构轭铁套接于转动输出棒体上, 结构电磁线圈设置于结构轭铁上。
8、 根据权利要求 1或 7所述的自驱动关节, 其特征是, 所述的磁感装置的个数为一组或 多组, 该磁感装置为沿套管的轴向方向或径向方向上并行布置。
Applications Claiming Priority (2)
Application Number | Priority Date | Filing Date | Title |
---|---|---|---|
CN2010102908022A CN101956891B (zh) | 2010-09-26 | 2010-09-26 | 自驱动关节 |
CN201010290802.2 | 2010-09-26 |
Publications (1)
Publication Number | Publication Date |
---|---|
WO2012037777A1 true WO2012037777A1 (zh) | 2012-03-29 |
Family
ID=43484398
Family Applications (1)
Application Number | Title | Priority Date | Filing Date |
---|---|---|---|
PCT/CN2011/001513 WO2012037777A1 (zh) | 2010-09-26 | 2011-09-06 | 自驱动关节 |
Country Status (2)
Country | Link |
---|---|
CN (1) | CN101956891B (zh) |
WO (1) | WO2012037777A1 (zh) |
Families Citing this family (8)
Publication number | Priority date | Publication date | Assignee | Title |
---|---|---|---|---|
CN101956891B (zh) * | 2010-09-26 | 2013-09-25 | 上海交通大学 | 自驱动关节 |
CN104908835B (zh) * | 2015-06-10 | 2017-03-01 | 华南理工大学 | 一种攀爬机器人的攀爬机构 |
CN106870288B (zh) * | 2017-03-18 | 2023-08-15 | 南昌工程学院 | 基于磁致伸缩的旋转压电式微风发电装置 |
CN107471247B (zh) * | 2017-08-25 | 2020-10-09 | 歌尔科技有限公司 | 机器人头部转动方法及机器人 |
CN112178404A (zh) * | 2020-09-25 | 2021-01-05 | 南京明行宇贸易有限公司 | 一种电子商务磁吸静音的智能制造展示设备 |
CN112647480B (zh) * | 2020-12-09 | 2022-04-22 | 浙江城乡工程检测有限公司 | 建设基坑智慧监测升降设备和系统 |
CN113503437A (zh) * | 2021-07-14 | 2021-10-15 | 舒崇峰 | 一种便于携带的建筑施工用测绘装置 |
CN113478520A (zh) * | 2021-07-26 | 2021-10-08 | 海门海立电子科技有限公司 | 一种机器人磁悬浮关节及控制方法 |
Citations (8)
Publication number | Priority date | Publication date | Assignee | Title |
---|---|---|---|---|
US4163164A (en) * | 1977-10-11 | 1979-07-31 | Micropump Corporation | Split magnet drive |
EP0251918A1 (fr) * | 1986-07-02 | 1988-01-07 | Commissariat A L'energie Atomique | Capteur de position angulaire et ensemble de détermination de position angulaire muni de plusieurs de ces capteurs |
CN2241613Y (zh) * | 1995-06-07 | 1996-12-04 | 中国人民解放军89000部队 | 一种人工关节驱动器 |
EP1661670A1 (de) * | 2004-11-27 | 2006-05-31 | Schunk GmbH & Co. KG Fabrik für Spann- und Greifwerkzeuge | Greif- und Spannvorrichtung mit Magnetantrieb zum Bewegen eines Fingers |
WO2008029969A1 (en) * | 2006-09-04 | 2008-03-13 | Korea Institute Of Science And Technology | Device for generating stiffness and joint of robot manipulator comprising the same |
CN101698304A (zh) * | 2009-09-29 | 2010-04-28 | 大连理工大学 | 一种磁感应式磁力传动器 |
CN101956891A (zh) * | 2010-09-26 | 2011-01-26 | 上海交通大学 | 自驱动关节 |
CN201764206U (zh) * | 2010-09-26 | 2011-03-16 | 上海交通大学 | 自驱动关节 |
Family Cites Families (4)
Publication number | Priority date | Publication date | Assignee | Title |
---|---|---|---|---|
JP4545681B2 (ja) * | 2005-12-01 | 2010-09-15 | 日本メクトロン株式会社 | 板状ワークの吸着搬送装置および搬送方法 |
CN200988225Y (zh) * | 2006-12-30 | 2007-12-12 | 浙江工业大学 | 一种机器人灵巧手臂关节驱动及其减速装置 |
CN101486190A (zh) * | 2009-02-26 | 2009-07-22 | 清华大学 | 电磁直接驱动机器人手指装置 |
CN201380492Y (zh) * | 2009-05-05 | 2010-01-13 | 扬州大学 | 向心拉力磁悬浮球形主动关节 |
-
2010
- 2010-09-26 CN CN2010102908022A patent/CN101956891B/zh active Active
-
2011
- 2011-09-06 WO PCT/CN2011/001513 patent/WO2012037777A1/zh active Application Filing
Patent Citations (8)
Publication number | Priority date | Publication date | Assignee | Title |
---|---|---|---|---|
US4163164A (en) * | 1977-10-11 | 1979-07-31 | Micropump Corporation | Split magnet drive |
EP0251918A1 (fr) * | 1986-07-02 | 1988-01-07 | Commissariat A L'energie Atomique | Capteur de position angulaire et ensemble de détermination de position angulaire muni de plusieurs de ces capteurs |
CN2241613Y (zh) * | 1995-06-07 | 1996-12-04 | 中国人民解放军89000部队 | 一种人工关节驱动器 |
EP1661670A1 (de) * | 2004-11-27 | 2006-05-31 | Schunk GmbH & Co. KG Fabrik für Spann- und Greifwerkzeuge | Greif- und Spannvorrichtung mit Magnetantrieb zum Bewegen eines Fingers |
WO2008029969A1 (en) * | 2006-09-04 | 2008-03-13 | Korea Institute Of Science And Technology | Device for generating stiffness and joint of robot manipulator comprising the same |
CN101698304A (zh) * | 2009-09-29 | 2010-04-28 | 大连理工大学 | 一种磁感应式磁力传动器 |
CN101956891A (zh) * | 2010-09-26 | 2011-01-26 | 上海交通大学 | 自驱动关节 |
CN201764206U (zh) * | 2010-09-26 | 2011-03-16 | 上海交通大学 | 自驱动关节 |
Also Published As
Publication number | Publication date |
---|---|
CN101956891A (zh) | 2011-01-26 |
CN101956891B (zh) | 2013-09-25 |
Similar Documents
Publication | Publication Date | Title |
---|---|---|
WO2012037777A1 (zh) | 自驱动关节 | |
US7382106B2 (en) | Method to operate a motor having reciprocating and rotating permanent magnets | |
JPH06225508A (ja) | 永久磁石ブラシレストルクアクチュエータ | |
JP2006523081A5 (zh) | ||
WO2021098548A1 (zh) | 磁性联轴器及其使用调节方法 | |
TWI413347B (zh) | 具斷電自鎖功能之磁控式機器臂關節致動器 | |
CN103001392B (zh) | 基于电磁能和永磁能复合能量的摆动驱动装置 | |
CN102983778A (zh) | 基于超磁致伸缩材料的旋转电机 | |
CN101267171B (zh) | 电磁调压式多自由度球形超声波电机 | |
CN201764206U (zh) | 自驱动关节 | |
JPH0586496B2 (zh) | ||
CN107733143B (zh) | 一种基于屈曲梁的双稳态永磁舵机及作动方法 | |
CN101485070B (zh) | 产生非线性力或力矩特性曲线的设备 | |
JP2005523175A (ja) | 磁気インパクト装置およびインパクト運動を磁気的に発生させる方法 | |
US6323575B1 (en) | High-efficiency rotating coil torque motor | |
CN110364376B (zh) | 双电源自动转换开关及其旋转驱动器 | |
CN205595913U (zh) | 高性能旋转电磁执行器 | |
CN105449922B (zh) | 内置于螺线管线圈的摆动直驱装置及方法 | |
CN104184363A (zh) | 超磁致伸缩步进电机 | |
CN216844017U (zh) | 一种磁性开关吸盘 | |
CN109245600B (zh) | 无线圈式超磁致伸缩致动器 | |
CN110365186B (zh) | 线性电机 | |
US8350429B2 (en) | Spring assisted magnetic motor | |
WO2007073671A1 (fr) | Moteur | |
CN202231651U (zh) | 一种磁耦合悬浮式复合动作机构 |
Legal Events
Date | Code | Title | Description |
---|---|---|---|
121 | Ep: the epo has been informed by wipo that ep was designated in this application |
Ref document number: 11826304 Country of ref document: EP Kind code of ref document: A1 |
|
NENP | Non-entry into the national phase |
Ref country code: DE |
|
32PN | Ep: public notification in the ep bulletin as address of the adressee cannot be established |
Free format text: NOTING OF LOSS OF RIGHTS PURSUANT TO RULE 112(1) EPC (EPO FORM 1205A DATED 12.08.2013) |
|
122 | Ep: pct application non-entry in european phase |
Ref document number: 11826304 Country of ref document: EP Kind code of ref document: A1 |