WO2012036182A1 - 芳香族炭化水素の製造方法 - Google Patents

芳香族炭化水素の製造方法 Download PDF

Info

Publication number
WO2012036182A1
WO2012036182A1 PCT/JP2011/070925 JP2011070925W WO2012036182A1 WO 2012036182 A1 WO2012036182 A1 WO 2012036182A1 JP 2011070925 W JP2011070925 W JP 2011070925W WO 2012036182 A1 WO2012036182 A1 WO 2012036182A1
Authority
WO
WIPO (PCT)
Prior art keywords
naphthalene
aromatic hydrocarbon
monocyclic aromatic
aromatic hydrocarbons
producing
Prior art date
Application number
PCT/JP2011/070925
Other languages
English (en)
French (fr)
Inventor
柳川 真一朗
領二 伊田
小林 正英
泰之 岩佐
Original Assignee
Jx日鉱日石エネルギー株式会社
Priority date (The priority date is an assumption and is not a legal conclusion. Google has not performed a legal analysis and makes no representation as to the accuracy of the date listed.)
Filing date
Publication date
Application filed by Jx日鉱日石エネルギー株式会社 filed Critical Jx日鉱日石エネルギー株式会社
Priority to KR1020137007883A priority Critical patent/KR20130108319A/ko
Priority to EP11825182.6A priority patent/EP2617697B1/en
Priority to US13/822,556 priority patent/US20130184506A1/en
Priority to CN201180043781.7A priority patent/CN103097323B/zh
Publication of WO2012036182A1 publication Critical patent/WO2012036182A1/ja

Links

Images

Classifications

    • CCHEMISTRY; METALLURGY
    • C10PETROLEUM, GAS OR COKE INDUSTRIES; TECHNICAL GASES CONTAINING CARBON MONOXIDE; FUELS; LUBRICANTS; PEAT
    • C10GCRACKING HYDROCARBON OILS; PRODUCTION OF LIQUID HYDROCARBON MIXTURES, e.g. BY DESTRUCTIVE HYDROGENATION, OLIGOMERISATION, POLYMERISATION; RECOVERY OF HYDROCARBON OILS FROM OIL-SHALE, OIL-SAND, OR GASES; REFINING MIXTURES MAINLY CONSISTING OF HYDROCARBONS; REFORMING OF NAPHTHA; MINERAL WAXES
    • C10G11/00Catalytic cracking, in the absence of hydrogen, of hydrocarbon oils
    • C10G11/02Catalytic cracking, in the absence of hydrogen, of hydrocarbon oils characterised by the catalyst used
    • C10G11/04Oxides
    • C10G11/05Crystalline alumino-silicates, e.g. molecular sieves
    • CCHEMISTRY; METALLURGY
    • C10PETROLEUM, GAS OR COKE INDUSTRIES; TECHNICAL GASES CONTAINING CARBON MONOXIDE; FUELS; LUBRICANTS; PEAT
    • C10GCRACKING HYDROCARBON OILS; PRODUCTION OF LIQUID HYDROCARBON MIXTURES, e.g. BY DESTRUCTIVE HYDROGENATION, OLIGOMERISATION, POLYMERISATION; RECOVERY OF HYDROCARBON OILS FROM OIL-SHALE, OIL-SAND, OR GASES; REFINING MIXTURES MAINLY CONSISTING OF HYDROCARBONS; REFORMING OF NAPHTHA; MINERAL WAXES
    • C10G35/00Reforming naphtha
    • C10G35/04Catalytic reforming
    • C10G35/06Catalytic reforming characterised by the catalyst used
    • C10G35/095Catalytic reforming characterised by the catalyst used containing crystalline alumino-silicates, e.g. molecular sieves
    • CCHEMISTRY; METALLURGY
    • C10PETROLEUM, GAS OR COKE INDUSTRIES; TECHNICAL GASES CONTAINING CARBON MONOXIDE; FUELS; LUBRICANTS; PEAT
    • C10GCRACKING HYDROCARBON OILS; PRODUCTION OF LIQUID HYDROCARBON MIXTURES, e.g. BY DESTRUCTIVE HYDROGENATION, OLIGOMERISATION, POLYMERISATION; RECOVERY OF HYDROCARBON OILS FROM OIL-SHALE, OIL-SAND, OR GASES; REFINING MIXTURES MAINLY CONSISTING OF HYDROCARBONS; REFORMING OF NAPHTHA; MINERAL WAXES
    • C10G45/00Refining of hydrocarbon oils using hydrogen or hydrogen-generating compounds
    • C10G45/44Hydrogenation of the aromatic hydrocarbons
    • CCHEMISTRY; METALLURGY
    • C10PETROLEUM, GAS OR COKE INDUSTRIES; TECHNICAL GASES CONTAINING CARBON MONOXIDE; FUELS; LUBRICANTS; PEAT
    • C10GCRACKING HYDROCARBON OILS; PRODUCTION OF LIQUID HYDROCARBON MIXTURES, e.g. BY DESTRUCTIVE HYDROGENATION, OLIGOMERISATION, POLYMERISATION; RECOVERY OF HYDROCARBON OILS FROM OIL-SHALE, OIL-SAND, OR GASES; REFINING MIXTURES MAINLY CONSISTING OF HYDROCARBONS; REFORMING OF NAPHTHA; MINERAL WAXES
    • C10G63/00Treatment of naphtha by at least one reforming process and at least one other conversion process
    • C10G63/02Treatment of naphtha by at least one reforming process and at least one other conversion process plural serial stages only
    • CCHEMISTRY; METALLURGY
    • C10PETROLEUM, GAS OR COKE INDUSTRIES; TECHNICAL GASES CONTAINING CARBON MONOXIDE; FUELS; LUBRICANTS; PEAT
    • C10GCRACKING HYDROCARBON OILS; PRODUCTION OF LIQUID HYDROCARBON MIXTURES, e.g. BY DESTRUCTIVE HYDROGENATION, OLIGOMERISATION, POLYMERISATION; RECOVERY OF HYDROCARBON OILS FROM OIL-SHALE, OIL-SAND, OR GASES; REFINING MIXTURES MAINLY CONSISTING OF HYDROCARBONS; REFORMING OF NAPHTHA; MINERAL WAXES
    • C10G69/00Treatment of hydrocarbon oils by at least one hydrotreatment process and at least one other conversion process
    • CCHEMISTRY; METALLURGY
    • C10PETROLEUM, GAS OR COKE INDUSTRIES; TECHNICAL GASES CONTAINING CARBON MONOXIDE; FUELS; LUBRICANTS; PEAT
    • C10GCRACKING HYDROCARBON OILS; PRODUCTION OF LIQUID HYDROCARBON MIXTURES, e.g. BY DESTRUCTIVE HYDROGENATION, OLIGOMERISATION, POLYMERISATION; RECOVERY OF HYDROCARBON OILS FROM OIL-SHALE, OIL-SAND, OR GASES; REFINING MIXTURES MAINLY CONSISTING OF HYDROCARBONS; REFORMING OF NAPHTHA; MINERAL WAXES
    • C10G69/00Treatment of hydrocarbon oils by at least one hydrotreatment process and at least one other conversion process
    • C10G69/02Treatment of hydrocarbon oils by at least one hydrotreatment process and at least one other conversion process plural serial stages only
    • C10G69/08Treatment of hydrocarbon oils by at least one hydrotreatment process and at least one other conversion process plural serial stages only including at least one step of reforming naphtha
    • CCHEMISTRY; METALLURGY
    • C10PETROLEUM, GAS OR COKE INDUSTRIES; TECHNICAL GASES CONTAINING CARBON MONOXIDE; FUELS; LUBRICANTS; PEAT
    • C10GCRACKING HYDROCARBON OILS; PRODUCTION OF LIQUID HYDROCARBON MIXTURES, e.g. BY DESTRUCTIVE HYDROGENATION, OLIGOMERISATION, POLYMERISATION; RECOVERY OF HYDROCARBON OILS FROM OIL-SHALE, OIL-SAND, OR GASES; REFINING MIXTURES MAINLY CONSISTING OF HYDROCARBONS; REFORMING OF NAPHTHA; MINERAL WAXES
    • C10G2300/00Aspects relating to hydrocarbon processing covered by groups C10G1/00 - C10G99/00
    • C10G2300/20Characteristics of the feedstock or the products
    • C10G2300/201Impurities
    • C10G2300/202Heteroatoms content, i.e. S, N, O, P
    • C10G2300/203Naphthenic acids, TAN
    • CCHEMISTRY; METALLURGY
    • C10PETROLEUM, GAS OR COKE INDUSTRIES; TECHNICAL GASES CONTAINING CARBON MONOXIDE; FUELS; LUBRICANTS; PEAT
    • C10GCRACKING HYDROCARBON OILS; PRODUCTION OF LIQUID HYDROCARBON MIXTURES, e.g. BY DESTRUCTIVE HYDROGENATION, OLIGOMERISATION, POLYMERISATION; RECOVERY OF HYDROCARBON OILS FROM OIL-SHALE, OIL-SAND, OR GASES; REFINING MIXTURES MAINLY CONSISTING OF HYDROCARBONS; REFORMING OF NAPHTHA; MINERAL WAXES
    • C10G2300/00Aspects relating to hydrocarbon processing covered by groups C10G1/00 - C10G99/00
    • C10G2300/20Characteristics of the feedstock or the products
    • C10G2300/30Physical properties of feedstocks or products
    • C10G2300/301Boiling range
    • CCHEMISTRY; METALLURGY
    • C10PETROLEUM, GAS OR COKE INDUSTRIES; TECHNICAL GASES CONTAINING CARBON MONOXIDE; FUELS; LUBRICANTS; PEAT
    • C10GCRACKING HYDROCARBON OILS; PRODUCTION OF LIQUID HYDROCARBON MIXTURES, e.g. BY DESTRUCTIVE HYDROGENATION, OLIGOMERISATION, POLYMERISATION; RECOVERY OF HYDROCARBON OILS FROM OIL-SHALE, OIL-SAND, OR GASES; REFINING MIXTURES MAINLY CONSISTING OF HYDROCARBONS; REFORMING OF NAPHTHA; MINERAL WAXES
    • C10G2400/00Products obtained by processes covered by groups C10G9/00 - C10G69/14
    • C10G2400/30Aromatics

Definitions

  • the present invention relates to a method for producing aromatic hydrocarbons.
  • This application claims priority based on Japanese Patent Application No. 2010-205903 filed in Japan on September 14, 2010, the contents of which are incorporated herein by reference.
  • LCO Light cycle oil
  • FCC fluid catalytic cracking
  • the present invention has been made in view of the above circumstances, and an object of the present invention is to produce a monocyclic aromatic hydrocarbon having 6 to 8 carbon atoms in a high yield from a raw material oil containing a polycyclic aromatic hydrocarbon.
  • another object of the present invention is to provide a method for producing aromatic hydrocarbons, which can produce other chemical products, for example, aromatic hydrocarbons other than the monocyclic aromatic hydrocarbons.
  • the heavy fraction contains a large amount of naphthalene and alkylnaphthalene. And based on such knowledge, in parallel with the production of the monocyclic aromatic hydrocarbons, the present invention was completed as a result of further studies on the production of naphthalene as a chemical product.
  • the method for producing an aromatic hydrocarbon of the present invention includes: A feed oil having a 10% by volume distillation temperature of 140 ° C. or more and a 90% by volume distillation temperature of 380 ° C. or less is brought into contact with and reacted with a catalyst for producing monocyclic aromatic hydrocarbons containing crystalline aluminosilicate.
  • a cracking and reforming reaction step for obtaining a product containing a monocyclic aromatic hydrocarbon having 6 to 8 carbon atoms and a heavy fraction having 9 or more carbon atoms;
  • a separation step of separating a monocyclic aromatic hydrocarbon having 6 to 8 carbon atoms and a heavy fraction having 9 or more carbon atoms from the product obtained in the cracking and reforming reaction step;
  • a purification and recovery step of purifying and recovering the monocyclic aromatic hydrocarbon having 6 to 8 carbon atoms separated in the separation step;
  • a naphthalene recovery step of separating and recovering naphthalenes containing at least naphthalene from the heavy fraction having 9 or more carbon atoms separated in the separation step.
  • the naphthalene recovery step is preferably a step of separating and recovering methylnaphthalene and / or dimethylnaphthalene and naphthalene.
  • the method for producing the aromatic hydrocarbon A hydrogenation reaction step of hydrogenating a remaining fraction from which naphthalenes have been separated in the naphthalene recovery step to obtain a hydrogenation reaction product; And a recycling step for returning the hydrogenation reaction product to the cracking and reforming reaction step.
  • the means for separating and recovering naphthalene containing naphthalene in the naphthalene recovery step is preferably a means using a distillation apparatus.
  • the crystalline aluminosilicate is mainly composed of medium pore zeolite and / or large pore zeolite.
  • the reaction temperature when reacting the raw material oil and the monocyclic aromatic hydrocarbon production catalyst in the cracking and reforming reaction step is 400 ° C. or more and 650 ° C. or less. It is preferable to do.
  • the reaction pressure when reacting the raw material oil and the monocyclic aromatic hydrocarbon production catalyst in the cracking and reforming reaction step is 0.1 MPaG or more and 1.5 MPaG. The following is preferable.
  • the contact time for contacting the raw oil and the monocyclic aromatic hydrocarbon production catalyst in the cracking and reforming reaction step is 1 second to 300 seconds. Is preferred.
  • a monocyclic aromatic hydrocarbon having 6 to 8 carbon atoms can be produced with a relatively high yield from a raw material oil containing a polycyclic aromatic hydrocarbon, Moreover, naphthalenes containing naphthalene as other chemicals can be produced together.
  • FIG. 1 is a diagram for explaining an embodiment of the method for producing aromatic hydrocarbons of the present invention.
  • the method for producing aromatic hydrocarbons of this embodiment is a simple method having 6 to 8 carbon atoms from feedstock. This is a method for producing a ring aromatic hydrocarbon and producing naphthalene containing naphthalene.
  • FIG. 1 the method for producing aromatic hydrocarbons of the present embodiment, as shown in FIG.
  • A Production containing raw material oil containing a monocyclic aromatic hydrocarbon having 6 to 8 carbon atoms and a heavy fraction having 9 or more carbon atoms by contacting and reacting with a catalyst for producing monocyclic aromatic hydrocarbons Decomposition reforming reaction step to obtain a product
  • B a separation step of separating the product produced in the cracking and reforming reaction step into a plurality of fractions
  • C a hydrogen recovery step for recovering hydrogen by-produced in the cracking and reforming reaction step from the gas component separated in the separation step
  • D an LPG recovery step for recovering LPG by-produced in the cracking and reforming reaction step from the liquid fraction separated in the separation step
  • E a purification and recovery step for purifying and recovering the monocyclic aromatic hydrocarbons from the liquid fraction separated in the separation step
  • F a naphthalene recovery step for separating and recovering naphthalenes containing at least n
  • the feedstock oil is brought into contact with the catalyst for producing monocyclic aromatic hydrocarbons
  • the saturated hydrocarbon contained in the feedstock oil is used as the hydrogen donor source
  • the polycyclic aromatic is obtained by hydrogen transfer reaction from the saturated hydrocarbon.
  • Group hydrocarbons are partially hydrogenated, ring-opened and converted to monocyclic aromatic hydrocarbons. It can also be converted to monocyclic aromatic hydrocarbons by cyclization and dehydrogenation of saturated hydrocarbons obtained in the feedstock or in the cracking process.
  • monocyclic aromatic hydrocarbons having 6 to 8 carbon atoms by decomposing monocyclic aromatic hydrocarbons having 9 or more carbon atoms.
  • a product containing a monocyclic aromatic hydrocarbon having 6 to 8 carbon atoms and a heavy fraction having 9 or more carbon atoms is obtained.
  • This product includes hydrogen, methane, ethane, ethylene, LPG (propane, propylene, butane, butene, etc.), etc. in addition to monocyclic aromatic hydrocarbons and heavy fractions.
  • the heavy fraction contains a large amount of naphthalene, methylnaphthalene, and dimethylnaphthalene.
  • naphthalenes these naphthalene, methylnaphthalene, and dimethylnaphthalene are collectively referred to as “naphthalenes”.
  • components such as naphthenobenzenes, paraffins and naphthenes in the feedstock oil can be eliminated by producing monocyclic aromatic hydrocarbons, and polycyclic aromatic hydrocarbons are By cutting the alkyl side chain simultaneously with the conversion to the monocyclic aromatic hydrocarbon, it becomes possible to obtain high-value-added naphthalenes having few side chains such as naphthalene, methylnaphthalene and dimethylnaphthalene.
  • a monocyclic aromatic hydrocarbon in the present cracking and reforming reaction step, a monocyclic aromatic hydrocarbon can be produced in a high yield, and at the same time, other components having a boiling point close to naphthalenes can be reduced as much as possible. Therefore, by increasing the amount of naphthalene having a short side chain and increasing the content of naphthalene in the cracking and reforming reaction product oil, it is possible to efficiently recover the naphthalene described later.
  • the cracked light oil and the like listed as the main raw material oil originally contain a lot of naphthalenes, but at the same time contain a lot of other components such as naphthenobenzenes and paraffins.
  • the content ratio of naphthalenes relative to the total amount of raw material oil is small, and it is very difficult to separate and purify naphthalenes directly from raw material oil. If naphthalenes are separated and purified directly from the raw oil, an energy intensive process such as crystallization is adopted, which is not preferable. As described above, the present cracking and reforming reaction step can greatly improve the ratio of recovering useful aromatic hydrocarbons.
  • the feedstock oil used in the present embodiment is an oil having a 10 vol% distillation temperature of 140 ° C or higher and a 90 vol% distillation temperature of 380 ° C or lower. With an oil having a 10% by volume distillation temperature of less than 140 ° C., a monocyclic aromatic hydrocarbon is produced from a light oil, which does not meet the gist of the present embodiment. In addition, when oil having a 90% by volume distillation temperature exceeding 380 ° C. is used, the yield of monocyclic aromatic hydrocarbons is lowered and coke deposition on the catalyst for producing monocyclic aromatic hydrocarbons The amount tends to increase and cause a sharp decrease in catalyst activity.
  • the 10 vol% distillation temperature of the feedstock oil is preferably 150 ° C or higher, and the 90 vol% distillation temperature of the feedstock oil is preferably 360 ° C or lower.
  • the upper limit of the 10 vol% distillation temperature and the lower limit of the 90 vol% distillation temperature of the feed oil are not particularly limited, but monocyclic aromatic hydrocarbons and naphthalenes having 6 to 8 carbon atoms can be produced efficiently.
  • the 10 vol% distillation temperature is preferably 210 ° C or lower, and the 90 vol% distillation temperature is preferably 240 ° C or higher.
  • the 10 vol% distillation temperature and 90 vol% distillation temperature mentioned here mean values measured in accordance with JIS K2254 “Petroleum products-distillation test method”.
  • feedstocks having a 10% by volume distillation temperature of 140 ° C. or higher and a 90% by volume distillation temperature of 380 ° C. or lower include, for example, LCO produced by an FCC unit, LCO hydrorefined oil, hydrocracked diesel oil / heat
  • Other cracked gas oils such as cracked gas oil, coal liquefied oil, heavy oil hydrocracked refined oil, straight-run kerosene, straight-run kerosene, coker kerosene, coker gas oil, and oil sand hydrocracked refined oil can be mentioned.
  • the content of polycyclic aromatic hydrocarbons in the feedstock oil Is preferably 50% by volume or less, and more preferably 40% by volume or less.
  • the polycyclic aromatic content in the feedstock oil may be, for example, 50% by volume or more.
  • the content of the aromatic hydrocarbon of 3 or more rings is preferably 30% by volume or less, and more preferably 15% by volume or less.
  • the polycyclic aromatic component mentioned here is measured according to JPI-5S-49 “Petroleum products—Hydrocarbon type test method—High performance liquid chromatograph method” or analyzed by FID gas chromatograph method. It means the sum of the bicyclic aromatic hydrocarbon content (bicyclic aromatic content) and the tricyclic or higher aromatic hydrocarbon content (tricyclic or higher aromatic content).
  • JPI-5S-49 Petroleum products—Hydrocarbon type test method—High performance liquid chromatograph method” or analyzed by FID gas chromatograph method. It means the sum of the bicyclic aromatic hydrocarbon content (bicyclic aromatic content) and the tricyclic or higher aromatic hydrocarbon content (tricyclic or higher aromatic content).
  • volume% the content of polycyclic aromatic hydrocarbon, bicyclic aromatic hydrocarbon, tricyclic or higher aromatic hydrocarbon is indicated by volume%, it is indicated by mass% in JPI-5S-49 method. If it is, it is measured based on the FID gas chromatograph method.
  • reaction format examples of the reaction mode when the raw material oil is brought into contact with and reacted with the catalyst for producing a monocyclic aromatic hydrocarbon include a fixed bed, a moving bed, and a fluidized bed.
  • a fluidized bed that can continuously remove the coke component adhering to the catalyst and can stably perform the reaction is preferable.
  • a continuous regenerative fluidized bed in which the catalyst circulates between the reactor and the regenerator, and the reaction-regeneration can be repeated continuously.
  • the feedstock oil in contact with the catalyst for producing monocyclic aromatic hydrocarbons is preferably in a gas phase. Moreover, you may dilute a raw material with gas as needed.
  • the catalyst for monocyclic aromatic hydrocarbon production contains crystalline aluminosilicate.
  • the crystalline aluminosilicate is preferably a medium pore zeolite and / or a large pore zeolite because the yield of monocyclic aromatic hydrocarbons can be further increased.
  • the medium pore zeolite is a zeolite having a 10-membered ring skeleton structure. Examples of the medium pore zeolite include AEL type, EUO type, FER type, HEU type, MEL type, MFI type, NES type, and TON type. And zeolite having a WEI type crystal structure. Among these, the MFI type is preferable because the yield of monocyclic aromatic hydrocarbons can be further increased.
  • the large pore zeolite is a zeolite having a 12-membered ring skeleton structure.
  • Examples of the large pore zeolite include AFI type, ATO type, BEA type, CON type, FAU type, GME type, LTL type, and MOR type. , Zeolites of MTW type and OFF type crystal structures.
  • the BEA type is preferable because the total yield of monocyclic aromatic hydrocarbons and aliphatic hydrocarbons having 3 to 4 carbon atoms can be further increased.
  • naphthalene or naphthalenes
  • monocyclic aromatic hydrocarbons as described later, it contains a crystalline aluminosilicate other than the above MFI type or BEA type zeolite. A thing may be used.
  • the crystalline aluminosilicate contains small pore zeolite having a skeleton structure of 10-membered ring or less, and ultra-large pore zeolite having a skeleton structure of 14-membered ring or more, in addition to medium pore zeolite and large pore zeolite. May be.
  • examples of the small pore zeolite include zeolites having crystal structures of ANA type, CHA type, ERI type, GIS type, KFI type, LTA type, NAT type, PAU type, and YUG type.
  • Examples of the ultra-large pore zeolite include zeolites having CLO type and VPI type crystal structures.
  • the content of the crystalline aluminosilicate in the monocyclic aromatic hydrocarbon production catalyst is 100% by mass based on the entire monocyclic aromatic hydrocarbon production catalyst. Is preferably 60 to 100% by mass, more preferably 70 to 100% by mass, and particularly preferably 90 to 100% by mass. If the content of the crystalline aluminosilicate is 60% by mass or more, the yield of monocyclic aromatic hydrocarbons can be sufficiently increased. In addition, the yield of naphthalene can be relatively high.
  • the content of crystalline aluminosilicate in the monocyclic aromatic hydrocarbon production catalyst is 100% by mass of the total monocyclic aromatic hydrocarbon production catalyst. Is preferably 20 to 60% by mass, more preferably 30 to 60% by mass, and particularly preferably 35 to 60% by mass.
  • the content of the crystalline aluminosilicate is 20% by mass or more, the yield of monocyclic aromatic hydrocarbons can be sufficiently increased.
  • the yield of naphthalene can be relatively high.
  • content of crystalline aluminosilicate exceeds 60 mass%, content of the binder which can be mix
  • the catalyst for producing monocyclic aromatic hydrocarbons preferably contains phosphorus and / or boron. If the catalyst for producing monocyclic aromatic hydrocarbons contains phosphorus and / or boron, it is possible to prevent the yield of monocyclic aromatic hydrocarbons from decreasing with time, and to suppress the formation of coke on the catalyst surface.
  • phosphorus is supported on crystalline aluminosilicate, crystalline aluminogallosilicate, or crystalline aluminodine silicate by an ion exchange method, an impregnation method, or the like.
  • Examples thereof include a method, a method in which a phosphorus compound is contained during zeolite synthesis and a part of the skeleton of the crystalline aluminosilicate is replaced with phosphorus, and a method in which a crystal accelerator containing phosphorus is used during zeolite synthesis.
  • the aqueous solution containing phosphate ions used at that time is not particularly limited, but phosphoric acid, diammonium hydrogen phosphate, ammonium dihydrogen phosphate, and other water-soluble phosphates can be dissolved in water at an arbitrary concentration. What was prepared can be used preferably.
  • boron is supported on crystalline aluminosilicate, crystalline aluminogallosilicate, or crystalline aluminodine silicate by an ion exchange method, an impregnation method, or the like.
  • Examples thereof include a method, a method in which a boron compound is contained at the time of zeolite synthesis and a part of the skeleton of the crystalline aluminosilicate is replaced with boron, and a method in which a crystal accelerator containing boron is used at the time of zeolite synthesis.
  • the content of phosphorus and / or boron in the catalyst for monocyclic aromatic hydrocarbon production is preferably 0.1 to 10% by mass relative to the total weight of the catalyst, and the lower limit is 0.5% by mass or more.
  • the upper limit is more preferably 9% by mass or less, and particularly preferably 8% by mass or less.
  • the catalyst for producing monocyclic aromatic hydrocarbons can contain gallium and / or zinc, if necessary. If gallium and / or zinc is contained, the production rate of monocyclic aromatic hydrocarbons can be increased.
  • the gallium-containing form in the monocyclic aromatic hydrocarbon production catalyst is one in which gallium is incorporated into the lattice skeleton of crystalline aluminosilicate (crystalline aluminogallosilicate), and gallium is supported on the crystalline aluminosilicate. And those containing both (gallium-supporting crystalline aluminosilicate).
  • the zinc-containing form is one in which zinc is incorporated in the lattice skeleton of crystalline aluminosilicate (crystalline aluminodine silicate), or zinc is supported on crystalline aluminosilicate.
  • crystalline aluminosilicate crystalline aluminodine silicate
  • Crystalline aluminogallosilicate and crystalline aluminodine silicate have a structure in which SiO 4 , AlO 4 and GaO 4 / ZnO 4 structures are present in the skeleton.
  • crystalline aluminogallosilicate and crystalline aluminodine silicate are, for example, gel crystallization by hydrothermal synthesis, a method of inserting gallium or zinc into the lattice skeleton of crystalline aluminosilicate, or crystalline gallosilicate or crystalline It is obtained by inserting aluminum into the lattice skeleton of zincosilicate.
  • the gallium-supporting crystalline aluminosilicate is obtained by supporting gallium on a crystalline aluminosilicate by a known method such as an ion exchange method or an impregnation method.
  • the gallium source used in this case is not particularly limited, and examples thereof include gallium salts such as gallium nitrate and gallium chloride, and gallium oxide.
  • the zinc-supporting crystalline aluminosilicate is obtained by supporting zinc on a crystalline aluminosilicate by a known method such as an ion exchange method or an impregnation method. Although it does not specifically limit as a zinc source used in that case, Zinc salts, such as zinc nitrate and zinc chloride, zinc oxide, etc. are mentioned.
  • the content of gallium and / or zinc in the catalyst for monocyclic aromatic hydrocarbon production is based on 100% by mass of the entire catalyst.
  • the content is preferably 0.01 to 5.0% by mass, more preferably 0.05 to 1.5% by mass. If the content of gallium and / or zinc is 0.01% by mass or more, the production rate of monocyclic aromatic hydrocarbons can be increased, and if it is 5.0% by mass or less, the monocyclic aromatic hydrocarbons The yield can be higher.
  • the catalyst for monocyclic aromatic hydrocarbon production is, for example, in the form of powder, granules, pellets, etc., depending on the reaction mode.
  • a fluidized bed it is in the form of powder, and in the case of a fixed bed, it is in the form of particles or pellets.
  • the average particle size of the catalyst used in the fluidized bed is preferably 30 to 180 ⁇ m, more preferably 50 to 100 ⁇ m.
  • the bulk density of the catalyst used in the fluidized bed is preferably 0.4 to 1.8 g / cc, more preferably 0.5 to 1.0 g / cc.
  • the average particle size represents a particle size of 50% by mass in the particle size distribution obtained by classification by sieving, and the bulk density is a value measured by the method of JIS standard R9301-2-3.
  • an inert oxide may be blended into the catalyst as a binder and then molded using various molding machines.
  • the catalyst for monocyclic aromatic hydrocarbon production contains an inorganic oxide such as a binder, one containing phosphorus as the binder may be used.
  • reaction temperature when the raw material oil is brought into contact with and reacted with the catalyst for producing a monocyclic aromatic hydrocarbon is not particularly limited, but is preferably 400 to 650 ° C, more preferably 450 to 650 ° C. If reaction temperature is 400 degreeC or more, raw material oil can be made to react easily. If the reaction temperature is 450 ° C. or higher and 650 ° C. or lower, the yield of monocyclic aromatic hydrocarbons can be sufficiently increased, and the yield of naphthalenes can be relatively high.
  • reaction pressure About the reaction pressure at the time of making a raw material oil contact and react with the catalyst for monocyclic aromatic hydrocarbon production, it is preferable to set it as 1.5 MPaG or less, and it is more preferable to set it as 1.0 MPaG or less. If the reaction pressure is 1.5 MPaG or less, the by-product of light gas can be suppressed and the pressure resistance of the reactor can be lowered. Moreover, if it is 0.1 MPaG or more and 1.5 MPaG or less, the yield of monocyclic aromatic hydrocarbons can be made sufficiently high, and the yield of naphthalenes can also be made relatively high.
  • the contact time between the feedstock and the catalyst for producing monocyclic aromatic hydrocarbons is not particularly limited as long as the desired reaction proceeds substantially.
  • gas passing over the catalyst for producing monocyclic aromatic hydrocarbons The time is preferably 1 to 300 seconds, more preferably a lower limit of 5 seconds and an upper limit of 150 seconds. If the contact time is 1 second or longer, the reaction can be performed reliably, and if the contact time is 300 seconds or shorter, accumulation of carbonaceous matter in the catalyst due to coking or the like can be suppressed. Or the generation amount of the light gas by decomposition
  • the separation step the product produced in the cracking and reforming reaction step is separated into a plurality of fractions.
  • a known distillation apparatus or gas-liquid separation apparatus may be used.
  • a distillation apparatus what can distill and isolate
  • the gas-liquid separation device a gas-liquid separation tank, a product introduction pipe for introducing the product into the gas-liquid separation tank, a gas component outflow pipe provided at the upper part of the gas-liquid separation tank, What comprises the liquid component outflow pipe
  • the separation step it is preferable to separate at least the gas component and the liquid fraction, and the liquid fraction may be further separated into a plurality of fractions.
  • a separation process there exists a form which isolate
  • a separation step there is a form in which the liquid fraction is further separated into a fraction containing LPG, a monocyclic aromatic hydrocarbon, and a heavy fraction.
  • the liquid fraction is further separated into LPG (for example, propylene, propane, butene, butane, etc.), a fraction containing monocyclic aromatic hydrocarbons, and a plurality of heavy fractions, etc. Is mentioned.
  • LPG for example, propylene, propane, butene, butane, etc.
  • the mixed catalyst powder and the like may be removed in this step.
  • naphthalenes may be separated separately, or the heavy fraction may be fractionated together without dividing into a plurality of fractions.
  • the boiling range of the fraction containing the monocyclic aromatic hydrocarbon having 6 to 8 carbon atoms is preferably 78 ° C. to 150 ° C.
  • the boiling range of the heavy fraction containing mainly naphthalenes is 210 ° C. to 270 ° C. It is preferable that
  • the monocyclic aromatic hydrocarbon having 6 to 8 carbon atoms obtained in the separation step is purified and recovered.
  • a process of purifying and recovering the slag is employed.
  • the monocyclic aromatic hydrocarbons are recovered and then separated into benzene / toluene / xylene. Processes for purification and recovery are adopted.
  • the liquid fraction is not fractionated well, and when a monocyclic aromatic hydrocarbon having 6 to 8 carbon atoms is recovered, a large amount of fraction other than the monocyclic aromatic hydrocarbon is contained.
  • this fraction may be separated and supplied to, for example, a hydrogenation reaction step or a naphthalene recovery step described later.
  • a fraction heavier than the monocyclic aromatic hydrocarbon is supplied to the naphthalene recovery step.
  • the heavy fraction having 9 or more carbon atoms is mainly composed of polycyclic aromatic hydrocarbons, and particularly contains a large amount of naphthalene or alkylnaphthalene.
  • naphthalene recovery step naphthalenes containing at least naphthalene are separated and recovered from the heavy fraction having 9 or more carbon atoms obtained from the liquid fraction separated in the separation step.
  • the heavy fraction separated in the separation step is separated into a heavy fraction mainly containing naphthalenes and other heavy fractions, The heavy fraction containing naphthalene is purified, and naphthalene is separated and recovered.
  • the separation step when the heavy fraction having 9 or more carbon atoms is fractionated without dividing into a plurality of fractions, fractions containing naphthalenes, specifically naphthalene, methylnaphthalene, dimethyl It is separated into naphthalene containing naphthalene and other fractions, and at least naphthalene containing naphthalene is purified and recovered.
  • a known distillation apparatus distillation tower
  • naphthalene recovery step Naphthalene can be separated and purified and recovered with high purity using only such known distillation apparatus. For example, naphthalene can be purified to a purity of about 80 to 98% and recovered. The purity of the recovered naphthalene is determined by the number of components having a boiling point close to naphthalene remaining in the cracking and reforming reaction step, the amount of the components generated, and the performance of the distillation apparatus.
  • naphthalene When naphthalene is recovered with a purity of 95% or more, it can be handled as a product having commercial value that is generally distributed as crude naphthalene, and the purity is less than 95%, for example, about 80 to 95%.
  • a purification treatment later to increase the purity to 95% or more, it becomes possible to obtain crude naphthalene as a chemical product. Further, even a fraction having a purity of 95% or more can be further purified to obtain higher-purity naphthalene. Examples of the purification treatment means in this case include crystallization.
  • naphthalenes other than naphthalene may be collected together as alkyl naphthalene or separately as methyl naphthalene, dimethylnaphthalene, etc., and purified and recovered.
  • methylnaphthalene and dimethylnaphthalene are purified to a purity of about 80 to 95% and recovered. Then, it refine
  • fractions other than the target naphthalene, methylnaphthalene, and dimethylnaphthalene are also obtained.
  • This fraction is sent out of the system and, for example, is subjected to a treatment such as refining as necessary, and then used as a light oil / kerosene base material. Or it is sent to the hydrogenation reaction process mentioned later, and also it is recycled through this process.
  • the naphthalene recovery step is a single step.
  • a process for separating and recovering naphthalene from a heavy fraction having 9 or more carbon atoms is provided, and then a process for separating and recovering methylnaphthalene, dimethylnaphthalene, etc. is provided.
  • naphthalene, methylnaphthalene and dimethylnaphthalene may be fractionated and recovered. Further, the fractions other than these are used as a light oil / kerosene base material as described above, or subjected to recycling to a raw material oil through a hydrogenation reaction step or the like.
  • the remaining fraction from which naphthalenes have been separated in the naphthalene recovery step and hydrogen are supplied to a hydrogenation reactor, and a hydrogenation catalyst is used to contain many of the remaining fractions from which naphthalenes have been separated.
  • a part of the ring aromatic hydrocarbon is hydrotreated. Although it does not specifically limit about polycyclic aromatic hydrocarbon, It is preferable to hydrogenate until an aromatic ring becomes one or less on average. If the hydrogenation is carried out until the average number of aromatic rings is 1 or less, it can be easily converted into monocyclic aromatic hydrocarbons when returned to the cracking and reforming reaction step.
  • the polycyclic aromatic hydrocarbon content in the hydrogenation reaction product obtained in the hydrogenation reaction step is preferably 20% by mass or less. It is preferable to make it 10 mass% or less.
  • the polycyclic aromatic hydrocarbon content in the hydrogenation reaction product is preferably less than the polycyclic aromatic hydrocarbon content of the feedstock, and decreases as the amount of hydrogenation catalyst increases and the reaction pressure increases. be able to. However, it is not necessary to hydrotreat all the polycyclic aromatic hydrocarbons until they become saturated hydrocarbons. Excessive hydrogenation tends to increase hydrogen consumption and heat generation.
  • the polycyclic aromatic hydrocarbons in the hydrogenation reaction product obtained in the hydrogenation reaction step The content is preferably 20% by mass or more.
  • a fixed bed is preferably employed.
  • a known hydrogenation catalyst for example, nickel catalyst, palladium catalyst, nickel-molybdenum catalyst, cobalt-molybdenum catalyst, nickel-cobalt-molybdenum catalyst, nickel-tungsten catalyst, etc.
  • the reaction temperature varies depending on the hydrogenation catalyst used, but is usually in the range of 100 to 450 ° C., more preferably 200 to 400 ° C., and further preferably 250 to 380 ° C.
  • the reaction pressure varies depending on the hydrogenation catalyst and raw materials used, but is preferably in the range of 0.7 MPa to 13 MPa, more preferably 1 MPa to 10 MPa, and particularly preferably 1 MPa to 7 MPa. If the reaction pressure is 13 MPa or less, a hydrogenation reactor having a low withstand pressure can be used, and the equipment cost can be reduced. On the other hand, the reaction pressure is preferably 0.7 MPa or more from the viewpoint of the yield of the hydrogenation reaction.
  • Hydrogen consumption is preferably not more than 3000scfb (506Nm 3 / m 3) , more preferably less 2500scfb (422Nm 3 / m 3) , more preferably not more than 1500scfb (253Nm 3 / m 3) .
  • the hydrogen consumption is preferably 300 scfb (50 Nm 3 / m 3 ) or more from the viewpoint of the yield of the hydrogenation reaction.
  • the liquid hourly space velocity (LHSV) is preferably set to below 0.1 h -1 or 20h -1, and more preferably to 0.2 h -1 or 10h -1 or less.
  • the hydrogen recovery step hydrogen is recovered from the gas component obtained in the separation step.
  • the method for recovering hydrogen is not particularly limited as long as hydrogen contained in the gas component obtained in the separation step and other gas can be separated.
  • the amount of hydrogen recovered in the hydrogen recovery step is larger than the amount necessary for hydrogenating the heavy fraction or the light oil / kerosene fraction.
  • the hydrogen obtained in the hydrogen recovery step is supplied to the hydrogenation reactor in the hydrogenation reaction step.
  • the amount of hydrogen supplied at that time is adjusted according to the amount of the remaining fraction that is supplied to the hydrogenation reaction step and from which naphthalenes have been separated in the naphthalene recovery step. If necessary, the hydrogen pressure is adjusted.
  • the remaining fraction obtained by separating naphthalenes in the naphthalene recovery step can be hydrogenated using hydrogen by-produced in the cracking and reforming reaction step. The efficiency of the apparatus can be improved.
  • the hydrogenation reaction product is mixed with the raw material oil and returned to the cracking and reforming reaction process.
  • the hydrogenation reaction product is obtained by reacting the remaining fraction after separation of naphthalenes in the naphthalene recovery step in the hydrogenation reaction step.
  • the hydrogen transfer reaction in the cracking and reforming reaction step can be promoted. From these, it is possible to improve the overall yield of monocyclic aromatic hydrocarbons relative to the amount of feedstock supplied, and also improve the yield of naphthalenes. If the remaining fraction from which naphthalene was separated in the naphthalene recovery step without being hydrotreated is returned to the cracking reforming reaction step as it is, the reactivity of the polycyclic aromatic hydrocarbon is low, Almost no improvement in the yield of aromatic hydrocarbons can be expected. However, it is possible to improve the yield of naphthalenes.
  • LPG recovery process LPG produced as a by-product in the cracking and reforming reaction step is recovered from the liquid fraction separated in the separation step.
  • liquid fractions having 3 and 4 carbon atoms that is, propylene, propane, butene and butane are purified and recovered as LPG.
  • the cracked reforming reaction product oil contains more olefins such as propylene and butene, unlike products such as hydrocracking in a normal petroleum refining process. Therefore, olefins can be recovered by hydrogenation or rectification as necessary.
  • naphthalenes containing naphthalene as other chemicals and olefins such as propylene, propane, butene and butane can be produced together.
  • naphthalene is conventionally produced by a crystallization method in which coal tar distillate is cooled and crystallized, but the crystallization method requires a complicated process, and thus the production cost is high.
  • the method for producing aromatic hydrocarbons of the present embodiment adds a naphthalene recovery step and, if necessary, a naphthalene separation and recovery step to the process for producing monocyclic aromatic hydrocarbons having 6 to 8 carbon atoms. This makes it possible to obtain naphthalene having a relatively high purity.
  • naphthalene or naphthalenes
  • the production cost of naphthalene (or naphthalenes) when subtracting the amount of monocyclic aromatic hydrocarbons having 6 to 8 carbon atoms, is significantly lower than the conventional method by crystallization, and therefore naphthalene ( Or naphthalenes) can be provided at low cost.
  • a hydrogenation reaction step for hydrogenating part of the liquid components separated in the separation step is provided between the separation step and the purification and recovery step.
  • the hydrogenation reaction product obtained in the step may be distilled to purify and recover the monocyclic aromatic hydrocarbon.
  • a part of the heavy fraction separated in the separation step may be supplied to the hydrogenation reaction step without going through the naphthalene recovery step, and hydrogenated to return to the cracking reforming reaction step.
  • the hydrogen used in the hydrogenation reaction step is replaced with the one produced as a by-product in the cracking and reforming reaction step, using hydrogen obtained by a known hydrogen production method.
  • hydrogen produced as a by-product in other catalytic cracking methods may be used.
  • Catalyst preparation example for monocyclic aromatic hydrocarbon production Preparation of catalyst comprising Ga and phosphorus-supported crystalline aluminosilicate: Sodium oxalate (J sodium silicate No. 3, SiO 2 : 28-30% by mass, Na: 9-10% by mass, balance water, manufactured by Nippon Chemical Industry Co., Ltd.): 1706.1 g and water: 2227.5 g Solution (A), Al 2 (SO 4 ) 3 ⁇ 14 to 18H 2 O (special reagent grade, manufactured by Wako Pure Chemical Industries, Ltd.): 64.2 g, tetrapropylammonium bromide: 369.2 g, H 2 SO 4 (97% by mass): 152.1 g, NaCl: 326.6 g and water: 2975.7 g, respectively, were prepared (B).
  • Sodium oxalate J sodium silicate No. 3, SiO 2 : 28-30% by mass, Na: 9-10% by mass, balance water, manufactured by Nippon Chemical Industry Co
  • the solution (B) was gradually added to the solution (A) while stirring the solution (A) at room temperature.
  • the resulting mixture was vigorously stirred with a mixer for 15 minutes to break up the gel into a milky homogeneous fine state.
  • this mixture was put into a stainless steel autoclave, and a crystallization operation was performed under self-pressure under the conditions of a temperature of 165 ° C., a time of 72 hours, and a stirring speed of 100 rpm.
  • the product was filtered to recover the solid product, and washing and filtration were repeated 5 times using about 5 liters of deionized water.
  • the solid substance obtained by filtration was dried at 120 ° C., and further calcined at 550 ° C.
  • This operation was repeated 4 times, followed by drying at 120 ° C. for 3 hours to obtain an ammonium type crystalline aluminosilicate. Thereafter, baking was performed at 780 ° C. for 3 hours to obtain a proton-type crystalline aluminosilicate.
  • 120 g of the obtained proton-type crystalline aluminosilicate was impregnated with 120 g of an aqueous gallium nitrate solution so that 0.4% by mass (a value obtained by setting the total mass of the crystalline aluminosilicate to 100% by mass) was supported, Dry at 120 ° C. Then, it baked at 780 degreeC under air circulation for 3 hours, and obtained the gallium carrying
  • gallium-supporting crystalline aluminosilicate was charged with 30 g of diammonium hydrogenphosphate aqueous solution so that 0.7% by mass of phosphorus (a value obtained by setting the total mass of the crystalline aluminosilicate to 100% by mass) was supported. Impregnation and drying at 120 ° C. Then, it baked at 780 degreeC under air circulation for 3 hours, and obtained the catalyst A containing crystalline aluminosilicate, gallium, and phosphorus.
  • catalyst A is added to crystalline aluminosilicate, gallium and phosphorus, and a silica binder (silica binder content is 60% relative to the total mass of the catalyst). % By mass).
  • the amount of impurities between durene (boiling point: 196 ° C.) and naphthalene (boiling point: 218 ° C.) was 1.9% by mass with respect to naphthalene 100. It was.
  • the amount of impurities between naphthalene and 2-methylnaphthalene (boiling point: 241 ° C.) is 0.6% by mass with respect to naphthalene 100, and 0.4% by mass with respect to methyl naphthalene 100. It was found that there were very few components having boiling points close to each other.
  • reaction product oil is subjected to a gas fraction, a fraction containing monocyclic aromatic hydrocarbons (benzene, toluene, xylene), a heavy fraction having 9 or more carbon atoms (heavy fraction) in a rectifying column.
  • the heavy fraction 1 was further distilled in a rectification column, and fractionated into a fraction mainly composed of naphthalene (boiling point 218 ° C.) and a fraction other than naphthalene (heavy fraction 2).
  • the yield of monocyclic aromatic hydrocarbons (benzene, toluene, crude xylene (xylene containing a small amount of ethylbenzene, etc.)) obtained by fractional distillation was 30% by mass, and the yield of naphthalene fraction was 7% by mass. .
  • the naphthalene purity in the naphthalene fraction was 96% by mass.
  • Example 2 LCO (10 vol% distillation temperature 224.5 ° C, 90 vol% distillation temperature 349.5 ° C) shown in Table 1 as a raw material oil was reacted at 550 ° C, reaction pressure: 0.3 MPaG, and contact time 18
  • the monocyclic aromatic hydrocarbon is produced by contacting and reacting with catalyst A (MFI type zeolite carrying 0.4% by mass of gallium and 0.7% by mass of phosphorus) in a fixed bed reactor under the conditions of seconds. It was.
  • catalyst A MFI type zeolite carrying 0.4% by mass of gallium and 0.7% by mass of phosphorus
  • the amount of impurities between durene (boiling point: 196 ° C.) and naphthalene (boiling point: 218 ° C.) was 2.4% by mass with respect to naphthalene 100. It was.
  • the amount of impurities between naphthalene and 2-methylnaphthalene (boiling point: 241 ° C.) is 1.6% by mass with respect to naphthalene 100, 0.9% by mass with respect to methyl naphthalene 100, and naphthalene. It was found that there were very few components having boiling points close to each other.
  • the obtained reaction product oil is fractionated in a fractionation tower into a gas fraction, a fraction containing monocyclic aromatic hydrocarbons (benzene, toluene, crude xylene), and a heavy fraction having 9 or more carbon atoms. did.
  • the heavy fraction having 9 or more carbon atoms was further distilled in a rectifying column, and fractionated into a fraction mainly composed of naphthalene (boiling point 218 ° C.) and a fraction other than naphthalene.
  • the yield of monocyclic aromatic hydrocarbons (benzene, toluene, crude xylene) obtained by fractional distillation was 37% by mass, and the yield of naphthalene fraction was 9% by mass.
  • the naphthalene purity in the naphthalene fraction was 95% by mass.
  • Example 3 A fraction other than naphthalene obtained in Example 1 (heavy fraction 2: polycyclic aromatic hydrocarbon content 95% by mass or more) was used with a commercially available nickel-molybdenum catalyst, reaction temperature 350 ° C., reaction pressure The hydrogenation reaction was performed under the condition of 5 MPaG. The obtained hydrogenation reaction product contains 69% by mass of a hydrocarbon compound having one aromatic ring and 28% by mass of a compound having two or more aromatic rings (polycyclic aromatic hydrocarbon). In comparison, the polycyclic aromatic hydrocarbon content was significantly reduced.
  • a raw material oil obtained by recycling the hydrogenation reaction product in an amount of 0.4 mass times with respect to LCO to LCO shown in Table 1 was reacted at a reaction temperature of 550 ° C., a reaction pressure of 0.3 MPaG, and a contact time of 30 seconds.
  • catalyst A 50% by mass of silica binder in MFI type zeolite carrying 0.4% by mass of gallium and 0.7% by mass of phosphorus with respect to the total mass of the catalyst
  • the yield of the obtained monocyclic aromatic hydrocarbon (benzene, toluene, crude xylene) was 36% by mass, and the monocyclic aromatic hydrocarbon was compared with Example 1 in which the hydrogenation reaction product was not recycled. The yield was improved.
  • aromatic hydrocarbons of the present invention not only monocyclic aromatic hydrocarbons having 6 to 8 carbon atoms but also naphthalene are contained using oil containing polycyclic aromatic hydrocarbons such as LCO. Naphthalenes can be produced together.

Landscapes

  • Chemical & Material Sciences (AREA)
  • Oil, Petroleum & Natural Gas (AREA)
  • Engineering & Computer Science (AREA)
  • Chemical Kinetics & Catalysis (AREA)
  • General Chemical & Material Sciences (AREA)
  • Organic Chemistry (AREA)
  • Crystallography & Structural Chemistry (AREA)
  • Production Of Liquid Hydrocarbon Mixture For Refining Petroleum (AREA)
  • Organic Low-Molecular-Weight Compounds And Preparation Thereof (AREA)
  • Low-Molecular Organic Synthesis Reactions Using Catalysts (AREA)

Abstract

 この芳香族炭化水素の製造方法では、10容量%留出温度が140℃以上かつ90容量%留出温度が380℃以下である原料油を、結晶性アルミノシリケートを含有する単環芳香族炭化水素製造用触媒に接触させ反応させて、炭素数6~8の単環芳香族炭化水素、及び炭素数9以上の重質留分を含む生成物を得る分解改質反応工程と、分解改質反応工程で得られた生成物から炭素数6~8の単環芳香族炭化水素と炭素数9以上の重質留分とをそれぞれ分離する分離工程と、分離工程で分離された炭素数6~8の単環芳香族炭化水素を精製し回収する精製回収工程と、分離工程で分離された炭素数9以上の重質留分からナフタレン類を分離し回収するナフタレン回収工程とを有する。

Description

芳香族炭化水素の製造方法
 本発明は、芳香族炭化水素の製造方法に関する。
 本願は、2010年9月14日に、日本に出願された特願2010-205903号に基づき優先権を主張し、その内容をここに援用する。
 流動接触分解(以下、「FCC」という。)装置で生成する分解軽油であるライトサイクル油(以下、「LCO」という。)は、多環芳香族炭化水素を多く含み、軽油または重油として利用されていた。しかし、近年ではLCOから、高オクタン価ガソリン基材や、石油化学原料として利用でき、付加価値の高い炭素数6~8の単環芳香族炭化水素(例えば、ベンゼン、トルエン、キシレン、エチルベンゼン等)を得ることが検討されている。
 例えば、特許文献1~3では、ゼオライト触媒を用いて、LCO等に多く含まれる多環芳香族炭化水素から、単環芳香族炭化水素を製造する方法が提案されている。
特開平3-2128号公報 特開平3-52993号公報 特開平3-26791号公報
 しかしながら、特許文献1~3に記載の方法では、炭素数6~8の単環芳香族炭化水素の収率が十分に高いとは言えなかった。
 また、近年では、LCOのさらなる有効活用が期待されている。具体的には、ベンゼン、トルエン、キシレン、エチルベンゼン等の炭素数6~8の単環芳香族炭化水素を効率良く製造するのに加えて、同じプロセスあるいは一部に新たなプロセスを付加するだけで、有効な副生物として他の化学品も製造できるようにすることが期待されている。
 本発明は前記事情に鑑みてなされたもので、その目的とするところは、多環芳香族炭化水素を含む原料油から高い収率で炭素数6~8の単環芳香族炭化水素を製造できるとともに、他の化学品、例えば前記単環芳香族炭化水素以外の芳香族炭化水素も製造できるようにした、芳香族炭化水素の製造方法を提供することにある。
 本発明者は前記目的を達成すべく鋭意検討を重ねた結果、以下の知見を得た。
 LCO中には多環芳香族炭化水素を多く含むことから、これを分解改質反応処理すると、炭素数6~8の単環芳香族炭化水素以外に炭素数が9以上の重質留分も比較的多く得られる。この重質留分については、単に軽油・灯油基材として回収したり、前記単環芳香族炭化水素の原料としてリサイクルするといったことが検討されていただけであった。
 そこで、本発明者は重質留分の有効活用を図るべく、その成分を細かく分析した結果、重質留分にはナフタレンやアルキルナフタレンが多く含まれることが分かった。そして、このような知見に基づき、前記単環芳香族炭化水素の製造と並行して、化学品としてのナフタレンの製造についてさらに検討を重ねた結果、本発明を完成するに至った。
 すなわち、本発明の芳香族炭化水素の製造方法は、
 10容量%留出温度が140℃以上かつ90容量%留出温度が380℃以下である原料油を、結晶性アルミノシリケートを含有する単環芳香族炭化水素製造用触媒に接触させ、反応させて、炭素数6~8の単環芳香族炭化水素、及び炭素数9以上の重質留分を含む生成物を得る分解改質反応工程と、
 前記分解改質反応工程で得られた生成物から炭素数6~8の単環芳香族炭化水素と炭素数9以上の重質留分とをそれぞれ分離する分離工程と、
 前記分離工程で分離された炭素数6~8の単環芳香族炭化水素を精製し、回収する精製回収工程と、
 前記分離工程で分離された炭素数9以上の重質留分から少なくともナフタレンを含むナフタレン類を分離し、回収するナフタレン回収工程と、を有することを特徴としている。
 また、前記芳香族炭化水素の製造方法は、前記ナフタレン回収工程が、メチルナフタレンおよび/またはジメチルナフタレン、およびナフタレンを分離し、回収する工程であることが好ましい。
 また、前記芳香族炭化水素の製造方法は、
 前記ナフタレン回収工程でナフタレン類を分離した残りの留分を水素化して水素化反応物を得る水素化反応工程と、
 前記水素化反応物を前記分解改質反応工程に戻すリサイクル工程と、を有することが好ましい。
 また、前記芳香族炭化水素の製造方法では、前記ナフタレン回収工程において、ナフタレンを含むナフタレン類を分離し、回収する手段が、蒸留装置を用いた手段であることが好ましい。
 また、前記芳香族炭化水素の製造方法では、前記結晶性アルミノシリケートが、中細孔ゼオライトおよび/または大細孔ゼオライトを主成分としたものであることが好ましい。
 また、前記芳香族炭化水素の製造方法では、前記分解改質反応工程における前記原料油と前記単環芳香族炭化水素製造用触媒とを反応させる際の反応温度を、400℃以上650℃以下とすることが好ましい。
 また、前記芳香族炭化水素の製造方法では、前記分解改質反応工程における前記原料油と前記単環芳香族炭化水素製造用触媒とを反応させる際の反応圧力を、0.1MPaG以上1.5MPaG以下とすることが好ましい。
 また、前記芳香族炭化水素の製造方法では、前記分解改質反応工程における前記原料油と前記単環芳香族炭化水素製造用触媒とを接触させる接触時間を、1秒以上300秒以下とすることが好ましい。
 本発明の芳香族炭化水素の製造方法によれば、多環芳香族炭化水素を含む原料油から比較的高い収率で炭素数6~8の単環芳香族炭化水素を製造することができ、しかも、他の化学品としてナフタレンを含むナフタレン類も共に製造することができる。
本発明の芳香族炭化水素の製造方法の一実施形態を説明するための図である。
 以下、本発明の芳香族炭化水素の製造方法について詳しく説明する。
 図1は、本発明の芳香族炭化水素の製造方法の一実施形態を説明するための図であり、本実施形態の芳香族炭化水素の製造方法は、原料油から炭素数6~8の単環芳香族炭化水素を製造するとともに、ナフタレンを含むナフタレン類を製造する方法である。
 すなわち、本実施形態の芳香族炭化水素の製造方法は、図1に示すように、
(a)原料油を、単環芳香族炭化水素製造用触媒に接触させ、反応させて、炭素数6~8の単環芳香族炭化水素、及び炭素数9以上の重質留分を含む生成物を得る分解改質反応工程、
(b)分解改質反応工程で生成した生成物を複数の留分に分離する分離工程、
(c)分離工程で分離されたガス成分から、分解改質反応工程で副生した水素を回収する水素回収工程、
(d)分離工程で分離された液体留分から、分解改質反応工程で副生したLPGを回収するLPG回収工程、
(e)分離工程で分離された液体留分から単環芳香族炭化水素を精製し、回収する精製回収工程、
(f)分離工程で分離された液体留分より得られる炭素数9以上の重質留分から、少なくともナフタレンを含むナフタレン類を分離し、回収するナフタレン回収工程、
(g)水素回収工程で回収された水素を水素化反応工程に供給する水素供給工程
(h)ナフタレン回収工程でナフタレン類を分離した残りの留分を水素化する水素化反応工程、及び
(i)水素化反応工程で得られた水素化反応物を分解改質反応工程に戻すリサイクル工程、
 を有していることが好ましい。
 なお、前記(a)~(i)の工程のうち、(a),(b),(e),(f)の工程は、本願請求項1に係る発明において必須の工程であり、その他の工程は任意の工程である。
 以下、各工程について具体的に説明する。
<分解改質反応工程>
 分解改質反応工程では、原料油を単環芳香族炭化水素製造用触媒に接触させて、原料油に含まれる飽和炭化水素を水素供与源とし、飽和炭化水素からの水素移行反応によって多環芳香族炭化水素を部分的に水素化し、開環させて単環芳香族炭化水素に転換する。また、原料油中もしくは分解過程で得られる飽和炭化水素を環化、脱水素することによっても単環芳香族炭化水素に転換できる。さらには、炭素数9以上の単環芳香族炭化水素を分解することによって、炭素数6~8の単環芳香族炭化水素を得ることもできる。これにより、炭素数6~8の単環芳香族炭化水素、及び炭素数9以上の重質留分を含む生成物を得る。なお、この生成物には、単環芳香族炭化水素や重質留分以外にも、水素、メタン、エタン、エチレン、LPG(プロパン、プロピレン、ブタン、ブテン等)などが含まれる。また、重質留分中には、ナフタレン、メチルナフタレン、ジメチルナフタレンが多く含まれている。なお、本願においては、これらナフタレン、メチルナフタレン、ジメチルナフタレンを総称して、「ナフタレン類」と記している。
 本分解改質反応工程では、原料油中のナフテノベンゼン類、パラフィン類、ナフテン類等の成分は単環芳香族炭化水素を製造することで消失させることができ、多環芳香族炭化水素は単環芳香族炭化水素への転換と同時にアルキル側鎖を切断することで主にナフタレン、メチルナフタレン、ジメチルナフタレンといった側鎖の少ない高付加価値のナフタレン類とすることが可能となる。即ち、本分解改質反応工程においては、単環芳香族炭化水素を高収率で製造できると同時に、ナフタレン類と近接する沸点を有する他の成分を極力削減できる。したがって、側鎖の短いナフタレン類の生成量を増大させ、分解改質反応生成油中のナフタレン類の含有割合を高めることにより、後述するナフタレン類の回収を効率的に行うことができる。
 なお、主な原料油として挙げられる分解軽油等には元々ナフタレン類が多く含まれているが、同時にナフテノベンゼン類、パラフィン類等の他の成分も多く含有されている。従って、原料油全量に対するナフタレン類の含有割合が少なく、原料油から直接ナフタレン類を分離精製することは極めて困難である。もし、原料油から直接ナフタレン類の分離精製を行う場合、晶析などのエネルギー多消費型プロセスを採用することになり好ましくない。
 本分解改質反応工程は、上述の通り、有用な芳香族炭化水素を回収できる割合を大幅に向上させることを可能とする。
(原料油)
 本実施形態で使用される原料油は、10容量%留出温度が140℃以上かつ90容量%留出温度が380℃以下の油である。10容量%留出温度が140℃未満の油では、軽質のものから単環芳香族炭化水素を製造することになり、本実施形態の主旨にそぐわなくなる。また、90容量%留出温度が380℃を超える油を用いた場合には、単環芳香族炭化水素の収率が低くなる上に、単環芳香族炭化水素製造用触媒上へのコーク堆積量が増大して、触媒活性の急激な低下を引き起こす傾向にある。
 原料油の10容量%留出温度は150℃以上であることが好ましく、原料油の90容量%留出温度は360℃以下であることが好ましい。一方、原料油の10容量%留出温度の上限および90容量%留出温度の下限に特に限定はないが、炭素数6~8の単環芳香族炭化水素およびナフタレン類を効率的に製造できる点で、10容量%留出温度は210℃以下、90容量%留出温度は240℃以上が好ましい。
 なお、ここでいう10容量%留出温度、90容量%留出温度とは、JIS K2254「石油製品-蒸留試験方法」に準拠して測定される値を意味する。
 10容量%留出温度が140℃以上かつ90容量%留出温度が380℃以下である原料油としては、例えば、FCC装置で生成するLCO、LCOの水素化精製油、水素化分解軽油・熱分解軽油等の他の分解軽油、石炭液化油、重質油水素化分解精製油、直留灯油、直留軽油、コーカー灯油、コーカー軽油およびオイルサンド水素化分解精製油などが挙げられる。
 また、原料油中に多環芳香族炭化水素が多く含まれると単環芳香族炭化水素の収率が低下するため、原料油中の多環芳香族炭化水素の含有量(多環芳香族分)は50容量%以下が好ましく、40容量%以下であることがより好ましい。ただし、後述するように単環芳香族炭化水素とともに製造するナフタレン(またはナフタレン類)の収率をより高めたい場合には、原料油中の多環芳香族分を例えば50容量%以上としてもよい。しかし、その場合においても、3環以上の芳香族炭化水素の含有量は30容量%以下とすることが好ましく、15容量%以下とすることがより好ましい。
 なお、ここでいう多環芳香族分とは、JPI-5S-49「石油製品-炭化水素タイプ試験方法-高速液体クロマトグラフ法」に準拠して測定、あるいはFIDガスクロマトグラフ法にて分析される2環芳香族炭化水素含有量(2環芳香族分)および、3環以上の芳香族炭化水素含有量(3環以上の芳香族分)の合計値を意味する。以降、多環芳香族炭化水素、2環芳香族炭化水素、3環以上の芳香族炭化水素の含有量が容量%で示されている場合はJPI-5S-49法に、質量%で示されている場合はFIDガスクロマトグラフ法に基づいて測定されたものである。
(反応形式)
 原料油を単環芳香族炭化水素製造用触媒と接触、反応させる際の反応形式としては、固定床、移動床、流動床等が挙げられる。本実施形態においては、重質分を原料とするため、触媒に付着したコーク分を連続的に除去可能で、かつ安定的に反応を行うことができる流動床が好ましい。特に、反応器と再生器との間を触媒が循環し、連続的に反応-再生を繰り返すことができる、連続再生式流動床が特に好ましい。単環芳香族炭化水素製造用触媒と接触する際の原料油は、気相状態であることが好ましい。また、原料は、必要に応じてガスによって希釈してもよい。
(単環芳香族炭化水素製造用触媒)
 単環芳香族炭化水素製造用触媒は、結晶性アルミノシリケートを含有する。
[結晶性アルミノシリケート]
 結晶性アルミノシリケートは、単環芳香族炭化水素の収率をより高くできることから、中細孔ゼオライトおよび/または大細孔ゼオライトであることが好ましい。
 中細孔ゼオライトは、10員環の骨格構造を有するゼオライトであり、中細孔ゼオライトとしては、例えば、AEL型、EUO型、FER型、HEU型、MEL型、MFI型、NES型、TON型、WEI型の結晶構造のゼオライトが挙げられる。これらの中でも、単環芳香族炭化水素の収率をより高くできることから、MFI型が好ましい。
 大細孔ゼオライトは、12員環の骨格構造を有するゼオライトであり、大細孔ゼオライトとしては、例えば、AFI型、ATO型、BEA型、CON型、FAU型、GME型、LTL型、MOR型、MTW型、OFF型の結晶構造のゼオライトが挙げられる。これらの中でも、単環芳香族炭化水素および炭素数3~4の脂肪族炭化水素の合計の収率をより高くできることから、BEA型が好ましい。
 ただし、後述するように単環芳香族炭化水素とともに製造するナフタレン(またはナフタレン類)の収率をより高めたい場合には、前記のMFI型やBEA型のゼオライト以外の結晶性アルミノシリケートを含有したものを用いてもよい。
 また、結晶性アルミノシリケートは、中細孔ゼオライトおよび大細孔ゼオライト以外に、10員環以下の骨格構造を有する小細孔ゼオライト、14員環以上の骨格構造を有する超大細孔ゼオライトを含有してもよい。
 ここで、小細孔ゼオライトとしては、例えば、ANA型、CHA型、ERI型、GIS型、KFI型、LTA型、NAT型、PAU型、YUG型の結晶構造のゼオライトが挙げられる。
 超大細孔ゼオライトとしては、例えば、CLO型、VPI型の結晶構造のゼオライトが挙げられる。
 分解改質反応工程を固定床の反応とする場合、単環芳香族炭化水素製造用触媒における結晶性アルミノシリケートの含有量は、単環芳香族炭化水素製造用触媒全体を100質量%とした際の60~100質量%が好ましく、70~100質量%がより好ましく、90~100質量%が特に好ましい。結晶性アルミノシリケートの含有量が60質量%以上であれば、単環芳香族炭化水素の収率を十分に高くできる。また、ナフタレン類の収率も比較的高くできる。
 分解改質反応工程を流動床の反応とする場合、単環芳香族炭化水素製造用触媒における結晶性アルミノシリケートの含有量は、単環芳香族炭化水素製造用触媒全体を100質量%とした際の20~60質量%が好ましく、30~60質量%がより好ましく、35~60質量%が特に好ましい。結晶性アルミノシリケートの含有量が20質量%以上であれば、単環芳香族炭化水素の収率を十分に高くできる。また、ナフタレン類の収率も比較的高くできる。なお、結晶性アルミノシリケートの含有量が60質量%を超えると、触媒に配合できるバインダーの含有量が少なくなり、流動床用として適さないものになることがある。
[リン、ホウ素]
 単環芳香族炭化水素製造用触媒においては、リンおよび/またはホウ素を含有することが好ましい。単環芳香族炭化水素製造用触媒がリンおよび/またはホウ素を含有すれば、単環芳香族炭化水素の収率の経時的な低下を防止でき、また、触媒表面のコーク生成を抑制できる。
 単環芳香族炭化水素製造用触媒にリンを含有させる方法としては、例えば、イオン交換法、含浸法等により、結晶性アルミノシリケートまたは結晶性アルミノガロシリケートまたは結晶性アルミノジンコシリケートにリンを担持する方法、ゼオライト合成時にリン化合物を含有させて結晶性アルミノシリケートの骨格内の一部をリンと置き換える方法、ゼオライト合成時にリンを含有した結晶促進剤を用いる方法、などが挙げられる。その際に用いるリン酸イオン含有水溶液としては、特に限定されないものの、リン酸、リン酸水素二アンモニウム、リン酸二水素アンモニウムおよびその他の水溶性リン酸塩などを任意の濃度で水に溶解させて調製したものを好ましく使用できる。
 単環芳香族炭化水素製造用触媒にホウ素を含有させる方法としては、例えば、イオン交換法、含浸法等により、結晶性アルミノシリケートまたは結晶性アルミノガロシリケートまたは結晶性アルミノジンコシリケートにホウ素を担持する方法、ゼオライト合成時にホウ素化合物を含有させて結晶性アルミノシリケートの骨格内の一部をホウ素と置き換える方法、ゼオライト合成時にホウ素を含有した結晶促進剤を用いる方法、などが挙げられる。
 単環芳香族炭化水素製造用触媒におけるリンおよび/またはホウ素の含有量は、触媒全重量に対して0.1~10質量%であることが好ましく、さらには、下限は0.5質量%以上がより好ましく、上限は9質量%以下であることがより好ましく、8質量%以下が特に好ましい。触媒全重量に対するリンおよび/またはホウ素の含有量が0.1質量%以上であることで、経時的な単環芳香族炭化水素の収率低下を防止でき、10質量%以下であることで、単環芳香族炭化水素の収率を高くできる。
[ガリウム、亜鉛]
 単環芳香族炭化水素製造用触媒には、必要に応じて、ガリウムおよび/または亜鉛を含有させることができる。ガリウムおよび/または亜鉛を含有させれば、単環芳香族炭化水素の生成割合をより多くできる。
 単環芳香族炭化水素製造用触媒におけるガリウム含有の形態としては、結晶性アルミノシリケートの格子骨格内にガリウムが組み込まれたもの(結晶性アルミノガロシリケート)、結晶性アルミノシリケートにガリウムが担持されたもの(ガリウム担持結晶性アルミノシリケート)、その両方を含んだものが挙げられる。
 単環芳香族炭化水素製造用触媒における亜鉛含有の形態としては、結晶性アルミノシリケートの格子骨格内に亜鉛が組み込まれたもの(結晶性アルミノジンコシリケート)、結晶性アルミノシリケートに亜鉛が担持されたもの(亜鉛担持結晶性アルミノシリケート)、その両方を含んだものが挙げられる。
 結晶性アルミノガロシリケート、結晶性アルミノジンコシリケートは、SiO、AlOおよびGaO/ZnO構造が骨格中に存在する構造を有する。また、結晶性アルミノガロシリケート、結晶性アルミノジンコシリケートは、例えば、水熱合成によるゲル結晶化、結晶性アルミノシリケートの格子骨格中にガリウムまたは亜鉛を挿入する方法、または結晶性ガロシリケートまたは結晶性ジンコシリケートの格子骨格中にアルミニウムを挿入する方法により得られる。
 ガリウム担持結晶性アルミノシリケートは、結晶性アルミノシリケートにガリウムをイオン交換法、含浸法等の公知の方法によって担持したものである。その際に用いるガリウム源としては、特に限定されないが、硝酸ガリウム、塩化ガリウム等のガリウム塩、酸化ガリウム等が挙げられる。
 亜鉛担持結晶性アルミノシリケートは、結晶性アルミノシリケートに亜鉛をイオン交換法、含浸法等の公知の方法によって担持したものである。その際に用いる亜鉛源としては、特に限定されないものの、硝酸亜鉛、塩化亜鉛等の亜鉛塩、酸化亜鉛等が挙げられる。
 単環芳香族炭化水素製造用触媒がガリウムおよび/または亜鉛を含有する場合、単環芳香族炭化水素製造用触媒におけるガリウムおよび/または亜鉛の含有量は、触媒全体を100質量%とした際の0.01~5.0質量%であることが好ましく、0.05~1.5質量%であることがより好ましい。ガリウムおよび/または亜鉛の含有量が0.01質量%以上であれば、単環芳香族炭化水素の生成割合をより多くでき、5.0質量%以下であれば、単環芳香族炭化水素の収率をより高くできる。
[形状]
 単環芳香族炭化水素製造用触媒は、反応形式に応じて、例えば、粉末状、粒状、ペレット状等にされる。例えば、流動床の場合には粉末状にされ、固定床の場合には粒状またはペレット状にされる。流動床で用いる触媒の平均粒子径は30~180μmが好ましく、50~100μmがより好ましい。また、流動床で用いる触媒のかさ密度は0.4~1.8g/ccが好ましく、0.5~1.0g/ccがより好ましい。
 なお、平均粒子径は、ふるいによる分級で得られた粒径分布において50質量%となる粒径を表し、かさ密度はJIS規格R9301-2-3の方法で測定された値である。
 粒状またはペレット状の触媒を得る場合には、必要に応じて、バインダーとして触媒に不活性な酸化物を配合した後、各種成形機を用いて成形すればよい。
 単環芳香族炭化水素製造用触媒がバインダー等の無機酸化物を含有する場合、バインダーとしてリンを含むものを用いても構わない。
(反応温度)
 原料油を単環芳香族炭化水素製造用触媒と接触、反応させる際の反応温度については、特に制限されないものの、400~650℃とすることが好ましく、450~650℃とすることがより好ましい。反応温度が400℃以上であれば、原料油を容易に反応させることができる。また、反応温度が450℃以上かつ650℃以下であれば、単環芳香族炭化水素の収率を十分に高くでき、しかもナフタレン類の収率も比較的高くできる。
(反応圧力)
 原料油を単環芳香族炭化水素製造用触媒と接触、反応させる際の反応圧力については、1.5MPaG以下とすることが好ましく、1.0MPaG以下とすることがさらに好ましい。反応圧力が1.5MPaG以下であれば、軽質ガスの副生を抑制できる上に、反応装置の耐圧性を低くできる。また、0.1MPaG以上かつ1.5MPaG以下であれば、単環芳香族炭化水素の収率を十分に高くでき、しかもナフタレン類の収率も比較的高くできる。
(接触時間)
 原料油と単環芳香族炭化水素製造用触媒との接触時間については、所望する反応が実質的に進行すれば特に制限はされないものの、例えば、単環芳香族炭化水素製造用触媒上のガス通過時間で1~300秒が好ましく、さらに下限を5秒、上限を150秒とするのがより好ましい。接触時間が1秒以上であれば、確実に反応させることができ、接触時間が300秒以下であれば、コーキング等による触媒への炭素質の蓄積を抑制できる。または分解による軽質ガスの発生量を抑制できる。さらに、単環芳香族炭化水素の収率を十分に高くでき、しかもナフタレン類の収率も比較的高くできる。
<分離工程>
 分離工程では、分解改質反応工程で生成した生成物を複数の留分に分離する。
 複数の留分に分離するには、公知の蒸留装置、気液分離装置を用いればよい。蒸留装置の一例としては、ストリッパーのような多段蒸留装置により複数の留分を蒸留分離できるものが挙げられる。気液分離装置の一例としては、気液分離槽と、該気液分離槽に前記生成物を導入する生成物導入管と、前記気液分離槽の上部に設けられたガス成分流出管と、前記気液分離槽の下部に設けられた液成分流出管とを具備するものが挙げられる。
 分離工程では、少なくともガス成分と液体留分とを分離することが好ましく、該液体留分は、さらに複数の留分に分離されていてもよい。分離工程の例としては、主として炭素数4以下の成分(例えば、水素、メタン、エタン、LPG等)を含むガス成分と液体留分に分離する形態がある。また、分離工程として、炭素数2以下の成分(例えば、水素、メタン、エタン)を含むガス成分と液体留分に分離する形態がある。また、分離工程として、前記液体留分をさらにLPG、単環芳香族炭化水素を含む留分、重質留分に分けて分離する形態がある。また、分離工程として、前記液体留分をさらにLPG(例えば、プロピレン、プロパン、ブテン、ブタン等)、単環芳香族炭化水素を含む留分、複数の重質留分に分けて分離する形態等が挙げられる。また、分解改質反応工程において反応形式として流動床を採用した場合、混入する触媒粉末等も本工程で除去しても構わない。ただし、重質留分については、ナフタレン類を単独分離してもよく、また、重質留分を複数に分けることなく、まとめて分留するようにしてもよい。炭素数6~8の単環芳香族炭化水素を含む留分の沸点範囲は78℃~150℃であることが好ましく、ナフタレン類を主に含む重質留分の沸点範囲は210℃~270℃であることが好ましい。
<精製回収工程>
 精製回収工程は、分離工程で得られた炭素数6~8の単環芳香族炭化水素を精製し、回収する。
 この精製回収工程では、前記分離工程で液体留分が十分に分留されており、炭素数6~8の単環芳香族炭化水素がベンゼン/トルエン/キシレンに分離されている場合には、それぞれを精製し回収する工程が採用される。また、炭素数6~8の単環芳香族炭化水素としてまとめて分留されている場合には、この単環芳香族炭化水素を回収した後、ベンゼン/トルエン/キシレンに分離し、その後それぞれを精製、回収する工程が採用される。
 なお、前記分離工程で液体留分が良好に分留されておらず、炭素数6~8の単環芳香族炭化水素を回収した際に該単環芳香族炭化水素以外の留分を多く含んでいる場合には、この留分を分離し、例えば後述する水素化反応工程やナフタレン回収工程に供給するようにしてもよい。特に、単環芳香族炭化水素以外の留分のうち、該単環芳香族炭化水素よりも重質の留分(炭素数9以上の重質留分)については、ナフタレン回収工程に供給することが好ましい。前記炭素数9以上の重質留分は、多環芳香族炭化水素を主成分としており、特にナフタレンやアルキルナフタレンを多く含んでいるからである。
<ナフタレン回収工程>
 ナフタレン回収工程は、分離工程で分離された液体留分より得られる炭素数9以上の重質留分から、少なくともナフタレンを含むナフタレン類を分離し、回収する。
 このナフタレン回収工程では、分離工程で分離された前記重質留分が、特にナフタレン類を主に含む重質留分と、その他の重質留分とに分けて分離されている場合には、ナフタレン類を含む重質留分を精製し、ナフタレン類を分離、回収する。また、分離工程において、炭素数9以上の重質留分を複数に分けることなく、まとめて分留している場合には、ナフタレン類を含む留分、具体的にはナフタレン、メチルナフタレン、ジメチルナフタレンを含むナフタレン類、その他の留分に分離し、少なくともナフタレンを含むナフタレン類を精製し、回収する。
 なお、重質留分を複数の留分に分離するには、前記分離工程で用いられたような公知の蒸留装置(蒸留塔)を用いればよい。
 前記分解改質反応工程を経ることで、分解改質反応生成油中のナフタレン類と近接する沸点を有する成分が大幅に削減されたため、本ナフタレン回収工程においては、前記分離工程で用いられたような公知の蒸留装置のみを用いてナフタレンを高純度で分離し、精製、回収することができる。例えば、ナフタレンを純度80~98%程度にまで精製し、回収することが可能である。なお、回収されるナフタレン純度は、分解改質反応工程において残存するナフタレンと近接する沸点を有する成分の数および当該成分の生成量を削減すること、並びに蒸留装置の性能とにより決定される。95%以上の純度でナフタレンを回収した場合、一般に粗ナフタレンとして流通している商業価値を有する製品として取り扱うことが可能であり、純度が95%未満、例えば80~95%程度のものについては、後に精製処理を行って95%以上に純度を上げることにより、化学品としての粗ナフタレンとすることが可能となる。また、95%以上の純度を有する留分においても、さらに精製処理を行い、より高純度のナフタレンにすることができる。この場合の精製処理手段としては、例えば晶析などが挙げられる。
 前記ナフタレン回収工程では、ナフタレンを分離、回収さえできれば、ナフタレン以外のナフタレン類をまとめてアルキルナフタレンとして、または個別にメチルナフタレン、ジメチルナフタレン等としてそれぞれ分離し、精製、回収してもよい。この場合、メチルナフタレンやジメチルナフタレンをそれぞれ純度80~95%程度にまで精製し、回収する。その後、化学品として要求される純度にまで精製する。
 ここで、このナフタレン回収工程では、目的とするナフタレンやメチルナフタレン、ジメチルナフタレン以外の留分も得られる。この留分は系外に送られ、例えば必要に応じて精製等の処理がなされた後、軽油・灯油基材とされる。または、後述する水素化反応工程に送られ、さらにこの工程を経てリサイクルされるようになっている。
 なお、図1に示す本実施形態ではナフタレン回収工程が一つの工程になっている。ナフタレン回収工程では、まず炭素数9以上の重質留分よりナフタレンを分離、回収する工程を設け、次にメチルナフタレン、ジメチルナフタレン等をそれぞれ分留し、回収する工程を設けるといった複数の工程に分けて、ナフタレン、メチルナフタレン、ジメチルナフタレンをそれぞれ分留し、回収してもよい。また、これら以外の留分については、前記したように軽油・灯油基材とされ、あるいは水素化反応工程等を経て原料油へのリサイクルに供せられる。
<水素化反応工程>
 この水素化反応工程では、ナフタレン回収工程でナフタレン類を分離した残りの留分の一部または全部が、この水素化反応工程に供給され、これを水素化する。ここで、ナフタレン回収工程でナフタレンしか分離・回収せず、メチルナフタレンやジメチルナフタレンといったアルキルナフタレンを分離・回収しなかった場合、これらアルキルナフタレンは前記の「ナフタレン類を分離した残りの留分」となり、水素化反応工程に供給されるようになる。なお、水素化反応工程に供給されなかったナフタレン類を分離した残りの留分を、軽油・灯油等の燃料基材として利用してもよい。
 具体的には、ナフタレン回収工程でナフタレン類を分離した残りの留分と水素とを水素化反応器に供給し、水素化触媒を用いて、ナフタレン類を分離した残りの留分に含まれる多環芳香族炭化水素の少なくとも一部を水素化処理する。
 多環芳香族炭化水素については、特に限定されないものの、芳香環が平均1つ以下になるまで水素化することが好ましい。芳香環が平均1つ以下になるまで水素化すれば、分解改質反応工程に戻した際に単環芳香族炭化水素に容易に変換できる。
 また、特に単環芳香族炭化水素の収率をより向上させるには、水素化反応工程で得られる水素化反応物における多環芳香族炭化水素の含有量を20質量%以下にすることが好ましく、10質量%以下にすることが好ましい。水素化反応物における多環芳香族炭化水素の含有量は、原料油の多環芳香族炭化水素含有量より少ないことが好ましく、水素化触媒量を増やす程、反応圧力を高くする程、減少させることができる。
 ただし、多環芳香族炭化水素の全部を飽和炭化水素になるまで水素化処理する必要はない。過剰な水素化は、水素消費量の増加、発熱量の増大を招く傾向にある。
 また、単環芳香族炭化水素の収率向上より、ナフタレン(ナフタレン類)の収率向上を優先させたい場合には、水素化反応工程で得られる水素化反応物における多環芳香族炭化水素の含有量を、20質量%以上にすることが好ましい。
 本実施形態例では、水素として、分解改質反応工程で副生したものを利用することも可能である。すなわち、分離工程で得たガス成分から後述する水素回収工程で水素を回収し、水素供給工程で、回収した水素を水素化反応工程に供給する。
 水素化反応工程における反応形式としては、固定床が好適に採用される。
 水素化触媒としては、公知の水素化触媒(例えば、ニッケル触媒、パラジウム触媒、ニッケル-モリブデン系触媒、コバルト-モリブデン系触媒、ニッケル-コバルト-モリブデン系触媒、ニッケル-タングステン系触媒等)を用いることができる。
 反応温度は、使用する水素化触媒によっても異なるものの、通常は100~450℃、より好ましくは200~400℃、さらに好ましくは250~380℃の範囲とされる。
 反応圧力は、使用する水素化触媒や原料によっても異なるが、0.7MPaから13MPaの範囲とすることが好ましく、1MPaから10MPaとすることがより好ましく、1MPaから7MPaとすることが特に好ましい。反応圧力を13MPa以下にすれば、耐用圧力の低い水素化反応器を使用でき、設備費を低減できる。
 一方、反応圧力は、水素化反応の収率の点からは、0.7MPa以上であることが好ましい。
 水素消費量は3000scfb(506Nm/m)以下であることが好ましく、2500scfb(422Nm/m)以下であることがより好ましく、1500scfb(253Nm/m)以下であることがさらに好ましい。
 一方、水素消費量は、水素化反応の収率の点からは、300scfb(50Nm/m)以上であることが好ましい。
 液空間速度(LHSV)は、0.1h-1以上20h-1以下にすることが好ましく、0.2h-1以上10h-1以下にすることがより好ましい。LHSVを20h-1以下とすれば、より低い水素化反応圧力にて多環芳香族炭化水素を十分に水素化することができる。一方、0.1-1以上とすることで、水素化反応器の大型化を避けることができる。
<水素回収工程>
 水素回収工程では、分離工程で得られたガス成分から水素を回収する。
 水素を回収する方法としては、分離工程で得られたガス成分に含まれる水素とそれ以外のガスとを分離できれば、特に制限はなく、例えば圧力変動吸着法(PSA法)、深冷分離法、膜分離法などが挙げられる。
 通常、水素回収工程で回収される水素の量は、前記の重質留分または軽油・灯油留分を水素化するのに必要な量より多くなる。
<水素供給工程>
 水素供給工程では、水素回収工程で得られた水素を水素化反応工程の水素化反応器に供給する。その際の水素供給量については、水素化反応工程に供給する、ナフタレン回収工程でナフタレン類を分離した残りの留分量に応じて調整される。また、必要であれば、水素圧力を調節する。
 本実施形態例のように水素供給工程を備えることにより、前記分解改質反応工程で副生した水素を用いて前記のナフタレン回収工程でナフタレン類を分離した残りの留分を水素化することができ、装置の効率化を図ることができる。
<リサイクル工程>
 リサイクル工程では、水素化反応物を原料油に混合して、分解改質反応工程に戻す。水素化反応物は、前記ナフタレン回収工程でナフタレン類を分離した後の残りの留分を水素化反応工程で反応させて得たものである。
 このような水素化反応物を分解改質反応工程に戻すことにより、副生物であった重質留分(ナフタレン類を除く)も原料にして単環芳香族炭化水素やナフタレン類を得ることができる。そのため、副生物量を削減できる上に、単環芳香族炭化水素やナフタレン類の生成量を増やすことができる。また、水素化によって飽和炭化水素も生成するため、分解改質反応工程における水素移行反応を促進させることもできる。これらのことから、原料油の供給量に対する総括的な単環芳香族炭化水素の収率を向上することができるとともに、ナフタレン類の収率も向上することができる。
 なお、水素化処理せずにナフタレン回収工程でナフタレン類を分離した残りの留分をそのまま分解改質反応工程に戻した場合には、多環芳香族炭化水素の反応性が低いため、単環芳香族炭化水素の収率向上はほとんど期待できない。ただし、ナフタレン類の収率向上を図ることは可能である。
<LPG回収工程>
 LPG回収工程は、分離工程で分離された液体留分から、分解改質反応工程で副生したLPGを回収する。
 このLPG回収工程では、LPGとして炭素数が3、4の液体留分、すなわちプロピレン、プロパン、ブテン、ブタンを精製し、回収する。本実施形態の芳香族炭化水素の製造方法において分解改質反応生成油中には、通常の石油精製プロセスにおける水素化分解等の生成物と異なり、プロピレン、ブテン等のオレフィン類がより多く存在するため、必要に応じて、水素化もしくは精留によるオレフィン類の回収も可能である。
 以上説明したように本実施形態の芳香族炭化水素の製造方法にあっては、多環芳香族炭化水素を含む原料油から比較的高い収率で炭素数6~8の単環芳香族炭化水素を製造することができ、しかも、他の化学品としてナフタレンを含むナフタレン類や、プロピレン、プロパン、ブテン、ブタンといったオレフィン類も共に製造することができる。
 特にナフタレンについては、従来ではコールタール留出油を冷却して結晶析出させる、晶析法によって製造するのが一般的であるが、晶析法は複雑な工程を要するため、製造コストが高いといった課題がある。
 これに対して本実施形態の芳香族炭化水素の製造方法は、炭素数6~8の単環芳香族炭化水素を製造するプロセスにおいて、ナフタレン回収工程や必要に応じてナフタレン類分離回収工程を付加するだけで、比較的高い純度のナフタレンを得ることができる。したがって、ナフタレン(またはナフタレン類)の製造コストについては、炭素数6~8の単環芳香族炭化水素を製造する分を差し引くと、晶析法による従来法に比べ格段に低くなり、したがってナフタレン(またはナフタレン類)を安価に提供することが可能になる。
「他の実施形態」
 なお、本発明は前記実施形態例に限定されることなく、本発明の主旨を逸脱しない範囲で種々の変更が可能である。
 例えば、図1に示した方法において、分離工程と精製回収工程との間に、分離工程で分離した液成分の一部を水素化する水素化反応工程を設け、精製回収工程では、水素化反応工程で得られた水素化反応物を蒸留して、単環芳香族炭化水素を精製し、回収するようにしてもよい。
 また、分離工程で分離した重質留分の一部を、ナフタレン回収工程を経ずに水素化反応工程に供給し、水素化して分解改質反応工程に戻してもよい。
 また、これら方法や図1に示した方法において、水素化反応工程で使用する水素については、分解改質反応工程で副生したものに代えて、公知の水素製造方法で得た水素を用いてもよく、また、他の接触分解方法で副生した水素を用いてもよい。
 以下、実施例および比較例に基づいて本発明をより具体的に説明するが、本発明はこれらの実施例に限定されるものではない。
〔単環芳香族炭化水素製造用触媒調製例〕
 Gaおよびリン担持結晶性アルミノシリケートを含む触媒の調製:
 硅酸ナトリウム(Jケイ酸ソーダ3号、SiO:28~30質量%、Na:9~10質量%、残部水、日本化学工業(株)製):1706.1gおよび水:2227.5gからなる溶液(A)と、Al(SO・14~18HO(試薬特級、和光純薬工業(株)製):64.2g、テトラプロピルアンモニウムブロマイド:369.2g、HSO(97質量%):152.1g、NaCl:326.6gおよび水:2975.7gからなる溶液(B)をそれぞれ調製した。
 次いで、溶液(A)を室温で撹拌しながら、溶液(A)に溶液(B)を徐々に加えた。
 得られた混合物をミキサーで15分間激しく撹拌し、ゲルを解砕して乳状の均質微細な状態にした。
 次いで、この混合物をステンレス製のオートクレーブに入れ、温度を165℃、時間を72時間、撹拌速度を100rpmとする条件で、自己圧力下に結晶化操作を行った。結晶化操作の終了後、生成物を濾過して固体生成物を回収し、約5リットルの脱イオン水を用いて洗浄と濾過を5回繰り返した。濾別して得られた固形物を120℃で乾燥し、さらに空気流通下、550℃で3時間焼成した。
 得られた焼成物は、X線回析分析(機種名:Rigaku RINT-2500V)の結果、MFI構造を有するものであることが確認された。また、蛍光X線分析(機種名:Rigaku ZSX101e)による、SiO/Al比(モル比)は、64.8であった。また、この結果から計算された格子骨格中に含まれるアルミニウム元素は1.32質量%であった。
 次いで、得られた焼成物1g当り5mLの割合で、30質量%硝酸アンモニウム水溶液を加え、100℃で2時間加熱、撹拌した後、濾過、水洗した。この操作を4回繰り返した後、120℃で3時間乾燥して、アンモニウム型結晶性アルミノシリケートを得た。
その後、780℃で3時間焼成を行い、プロトン型結晶性アルミノシリケートを得た。
 次いで、得られたプロトン型結晶性アルミノシリケート120gに、0.4質量%(結晶性アルミノシリケート総質量を100質量%とした値)のガリウムが担持されるように硝酸ガリウム水溶液120gを含浸させ、120℃で乾燥した。その後、空気流通下、780℃で3時間焼成して、ガリウム担持結晶性アルミノシリケートを得た。
 次いで、得られたガリウム担持結晶性アルミノシリケート30gに、0.7質量%のリン(結晶性アルミノシリケート総質量を100質量%とした値)が担持されるようにリン酸水素二アンモニウム水溶液30gを含浸させ、120℃で乾燥した。その後、空気流通下、780℃で3時間焼成して、結晶性アルミノシリケートとガリウムとリンとを含有する触媒Aを得た。
 なお、流動床の反応形式で単環芳香族炭化水素の製造を行う場合は、触媒Aは結晶性アルミノシリケートとガリウムとリンに加え、シリカバインダー(シリカバインダー含有量は触媒全質量に対して60質量%)をさらに含有する。
(実施例1)
 原料油である表1に示すLCO(10容量%留出温度224.5℃、90容量%留出温度が349.5℃)を、反応温度:550℃、反応圧力:0.1MPaG、接触時間30秒の条件で、流動床反応器にて触媒A(ガリウム0.4質量%およびリン0.7質量%を担持したMFI型ゼオライトにシリカバインダーを触媒全質量に対して60質量%含有させたもの)と接触、反応させ、単環芳香族炭化水素の製造を行った。
 得られた反応生成油をFIDガスクロマトグラフ法にて分析したところ、デュレン(沸点:196℃)とナフタレン(沸点:218℃)の間の不純物量はナフタレン100に対して1.9質量%であった。また、ナフタレンと2-メチルナフタレン(沸点:241℃)との間の不純物量はナフタレン100に対して0.6質量%であり、メチルナフタレン100に対しては0.4質量%であり、ナフタレンと近接する沸点を有する成分が非常に少ないことが分かった。
 次いで、得られた反応生成油を精留塔にて、ガス留分、単環芳香族炭化水素(ベンゼン、トルエン、キシレン)を含む留分、炭素数9以上の重質留分(重質留分1)に分留した。
 重質留分1をさらに精留塔にて蒸留し、ナフタレン(沸点218℃)を主とする留分とナフタレン以外の留分(重質留分2)とに分留した。
 分留して得られた単環芳香族炭化水素(ベンゼン、トルエン、粗キシレン(エチルベンゼン等を少量含むキシレン))の収率は30質量%、ナフタレン留分の収率は7質量%であった。なお、ナフタレン留分中のナフタレン純度は96質量%であった。
Figure JPOXMLDOC01-appb-T000001
(実施例2)
 原料油である表1に示すLCO(10容量%留出温度224.5℃、90容量%留出温度が349.5℃)を反応温度:550℃、反応圧力:0.3MPaG、接触時間18秒の条件で、固定床反応器にて触媒A(ガリウム0.4質量%およびリン0.7質量%を担持したMFI型ゼオライト)と接触、反応させ、単環芳香族炭化水素の製造を行った。
 得られた反応生成油をFIDガスクロマトグラフ法にて分析したところ、デュレン(沸点:196℃)とナフタレン(沸点:218℃)の間の不純物量はナフタレン100に対して2.4質量%であった。また、ナフタレンと2-メチルナフタレン(沸点:241℃)との間の不純物量はナフタレン100に対して1.6質量%であり、メチルナフタレン100に対しては0.9質量%であり、ナフタレンと近接する沸点を有する成分が非常に少ないことが分かった。
 次いで、得られた反応生成油を精留塔にて、ガス留分、単環芳香族炭化水素(ベンゼン、トルエン、粗キシレン)を含む留分、炭素数9以上の重質留分に分留した。
 炭素数9以上の重質留分をさらに精留塔にて蒸留し、ナフタレン(沸点218℃)を主とする留分とナフタレン以外の留分とに分留した。
 分留して得られた単環芳香族炭化水素(ベンゼン、トルエン、粗キシレン)の収率は37質量%、ナフタレン留分の収率は9質量%であった。なお、ナフタレン留分中のナフタレン純度は95質量%であった。
(実施例3)
 実施例1において得られたナフタレン以外の留分(重質留分2:多環芳香族炭化水素含有量が95質量%以上)を市販のニッケル-モリブデン触媒を用い、反応温度350℃、反応圧力5MPaGの条件で水素化反応を行った。得られた水素化反応物は、芳香環を1つ有する炭化水素化合物を69質量%、芳香環を2つ以上有する化合物(多環芳香族炭化水素)を28質量%含み、水素化反応前と比べて多環芳香族炭化水素の含有量が大幅に減少していた。
 次いで、表1に示すLCOに、水素化反応物をLCOに対して0.4質量倍となる量をリサイクルした原料油を、反応温度:550℃、反応圧力:0.3MPaG、接触時間30秒の条件で、流動床反応器にて触媒A(ガリウム0.4質量%およびリン0.7質量%を担持したMFI型ゼオライトにシリカバインダーを触媒全質量に対して60質量%含有させたもの)と接触、反応させ、単環芳香族炭化水素の製造を行った。
 得られた単環芳香族炭化水素(ベンゼン、トルエン、粗キシレン)の収率は36質量%であり、水素化反応物のリサイクルを行っていない実施例1と比較して単環芳香族炭化水素の収率の向上が見られた。
 実施例1~3の結果より、本発明に係る芳香族炭化水素の製造方法に基づけば、ベンゼン、トルエン、粗キシレンからなる炭素数6~8の単環芳香族炭化水素を収率よく得られるのと同時に、高純度(90質量%以上)のナフタレンも製造可能であることが分かった。
 本発明の芳香族炭化水素の製造方法によれば、LCO等の多環芳香族炭化水素を含有する油を用いて、炭素数6~8の単環芳香族炭化水素だけでなく、ナフタレンを含むナフタレン類も共に製造することができる。

Claims (8)

  1.  芳香族炭化水素の製造方法であって、
     10容量%留出温度が140℃以上かつ90容量%留出温度が380℃以下である原料油を、結晶性アルミノシリケートを含有する単環芳香族炭化水素製造用触媒に接触させ、反応させて、炭素数6~8の単環芳香族炭化水素、及び炭素数9以上の重質留分を含む生成物を得る分解改質反応工程と、
     前記分解改質反応工程で得られた生成物から炭素数6~8の単環芳香族炭化水素と炭素数9以上の重質留分とをそれぞれ分離する分離工程と、
     前記分離工程で分離された炭素数6~8の単環芳香族炭化水素を精製し、回収する精製回収工程と、
     前記分離工程で分離された炭素数9以上の重質留分から少なくともナフタレンを含むナフタレン類を分離し、回収するナフタレン回収工程と、を有することを特徴とする芳香族炭化水素の製造方法。
  2.  前記ナフタレン回収工程が、メチルナフタレンおよび/またはジメチルナフタレン、およびナフタレンを分離し、回収する工程である請求項1記載の芳香族炭化水素の製造方法。
  3.  請求項1又は2に記載の芳香族炭化水素の製造方法であって、更に、
     前記ナフタレン回収工程でナフタレン類を分離した残りの留分を水素化して水素化反応物を得る水素化反応工程と、
     前記水素化反応物を前記分解改質反応工程に戻すリサイクル工程と、を有する。
  4.  前記ナフタレン回収工程において、ナフタレンを含むナフタレン類を分離し、回収する手段が、蒸留装置を用いた手段である請求項1~3のいずれか一項に記載の芳香族炭化水素の製造方法。
  5.  前記結晶性アルミノシリケートが、中細孔ゼオライトおよび/または大細孔ゼオライトを主成分としたものである請求項1~4のいずれか一項に記載の芳香族炭化水素の製造方法。
  6.  前記分解改質反応工程において前記原料油と前記単環芳香族炭化水素製造用触媒とを反応させる際の反応温度を、400℃以上650℃以下とする請求項1~5のいずれか一項に記載の芳香族炭化水素の製造方法。
  7.  前記分解改質反応工程において前記原料油と前記単環芳香族炭化水素製造用触媒とを反応させる際の反応圧力を、0.1MPaG以上1.5MPaG以下とする請求項1~6のいずれか一項に記載の芳香族炭化水素の製造方法。
  8.  前記分解改質反応工程において前記原料油と前記単環芳香族炭化水素製造用触媒とを接触させる接触時間を、1秒以上300秒以下とする請求項1~7のいずれか一項に記載の芳香族炭化水素の製造方法。
PCT/JP2011/070925 2010-09-14 2011-09-14 芳香族炭化水素の製造方法 WO2012036182A1 (ja)

Priority Applications (4)

Application Number Priority Date Filing Date Title
KR1020137007883A KR20130108319A (ko) 2010-09-14 2011-09-14 방향족 탄화수소의 제조 방법
EP11825182.6A EP2617697B1 (en) 2010-09-14 2011-09-14 Method for manufacturing aromatic hydrocarbon
US13/822,556 US20130184506A1 (en) 2010-09-14 2011-09-14 Method for producing aromatic hydrocarbons
CN201180043781.7A CN103097323B (zh) 2010-09-14 2011-09-14 芳香族烃的制造方法

Applications Claiming Priority (2)

Application Number Priority Date Filing Date Title
JP2010-205903 2010-09-14
JP2010205903A JP5485088B2 (ja) 2010-09-14 2010-09-14 芳香族炭化水素の製造方法

Publications (1)

Publication Number Publication Date
WO2012036182A1 true WO2012036182A1 (ja) 2012-03-22

Family

ID=45831639

Family Applications (1)

Application Number Title Priority Date Filing Date
PCT/JP2011/070925 WO2012036182A1 (ja) 2010-09-14 2011-09-14 芳香族炭化水素の製造方法

Country Status (6)

Country Link
US (1) US20130184506A1 (ja)
EP (1) EP2617697B1 (ja)
JP (1) JP5485088B2 (ja)
KR (1) KR20130108319A (ja)
CN (1) CN103097323B (ja)
WO (1) WO2012036182A1 (ja)

Cited By (3)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
EP2690082A1 (en) * 2011-03-25 2014-01-29 JX Nippon Oil & Energy Corporation Method for producing single-ring aromatic hydrocarbons
WO2014065421A1 (ja) * 2012-10-25 2014-05-01 Jx日鉱日石エネルギー株式会社 オレフィン及び単環芳香族炭化水素の製造方法、並びにエチレン製造装置
WO2014065420A1 (ja) * 2012-10-25 2014-05-01 Jx日鉱日石エネルギー株式会社 オレフィン及び単環芳香族炭化水素の製造方法、並びにエチレン製造装置

Families Citing this family (13)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
US20130030232A1 (en) 2010-01-20 2013-01-31 Jx Nippon Oil & Energy Corporation Catalyst for production of monocyclic aromatic hydrocarbons and method of producing monocyclic aromatic hydrocarbons
JP5690624B2 (ja) 2011-03-25 2015-03-25 Jx日鉱日石エネルギー株式会社 単環芳香族炭化水素の製造方法
JP5683342B2 (ja) 2011-03-25 2015-03-11 Jx日鉱日石エネルギー株式会社 単環芳香族炭化水素の製造方法
JP5690623B2 (ja) * 2011-03-25 2015-03-25 Jx日鉱日石エネルギー株式会社 単環芳香族炭化水素の製造方法
US9382173B2 (en) 2011-03-25 2016-07-05 Jx Nippon Oil & Energy Corporation Method of producing single-ring aromatic hydrocarbons
JP5646381B2 (ja) * 2011-03-25 2014-12-24 Jx日鉱日石エネルギー株式会社 単環芳香族炭化水素の製造方法
KR101835928B1 (ko) * 2012-02-01 2018-03-07 사우디 아라비안 오일 컴퍼니 감소된 벤젠 가솔린을 생산하기 위한 촉매 개질 공정 및 시스템
US9862897B2 (en) 2013-02-21 2018-01-09 Jx Nippon Oil & Energy Corporation Method for producing monocyclic aromatic hydrocarbon
US9162955B2 (en) 2013-11-19 2015-10-20 Uop Llc Process for pyrolysis of a coal feed
KR101600430B1 (ko) * 2015-01-08 2016-03-07 한국화학연구원 이산화탄소가 풍부한 합성가스로부터 단환 방향족 화합물 및 장쇄올레핀 화합물의 직접 합성방법
US20190002367A1 (en) * 2017-06-28 2019-01-03 Exxonmobil Chemical Patents Inc. Systems and Methods for Producing Naphthalenes and Methylnaphthalenes
KR102186035B1 (ko) * 2018-10-30 2020-12-07 한국화학연구원 합성가스로부터 단환 방향족 화합물의 직접 합성방법
US11046899B2 (en) 2019-10-03 2021-06-29 Saudi Arabian Oil Company Two stage hydrodearylation systems and processes to convert heavy aromatics into gasoline blending components and chemical grade aromatics

Citations (7)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
JPH032128A (ja) * 1989-05-30 1991-01-08 Idemitsu Kosan Co Ltd 単環芳香族含有炭化水素の製造方法
JPH0326791A (ja) * 1989-06-23 1991-02-05 Idemitsu Kosan Co Ltd 炭化水素の製造方法
JPH0352993A (ja) * 1989-07-21 1991-03-07 Idemitsu Kosan Co Ltd Btxに富む炭化水素の製造方法
JP2009235248A (ja) * 2008-03-27 2009-10-15 Toray Ind Inc 炭素数6〜8の芳香族炭化水素の製造方法
JP2010001462A (ja) * 2008-05-19 2010-01-07 Cosmo Oil Co Ltd 石油系炭化水素の処理方法
WO2011090124A1 (ja) * 2010-01-20 2011-07-28 Jx日鉱日石エネルギー株式会社 炭化水素製造用触媒および炭化水素の製造方法
WO2011118753A1 (ja) * 2010-03-26 2011-09-29 Jx日鉱日石エネルギー株式会社 単環芳香族炭化水素の製造方法

Family Cites Families (14)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
US2727854A (en) * 1953-03-20 1955-12-20 Standard Oil Co Recovery of naphthalene
US2769753A (en) * 1953-06-03 1956-11-06 Pure Oil Co Combination process for catalytic hydrodesulfurization and reforming of high sulfur hydrocarbon mixtures
US3258503A (en) * 1961-08-18 1966-06-28 Phillips Petroleum Co Production of benzene
US3926778A (en) * 1972-12-19 1975-12-16 Mobil Oil Corp Method and system for controlling the activity of a crystalline zeolite cracking catalyst
US4585545A (en) * 1984-12-07 1986-04-29 Ashland Oil, Inc. Process for the production of aromatic fuel
US5183557A (en) * 1991-07-24 1993-02-02 Mobil Oil Corporation Hydrocracking process using ultra-large pore size catalysts
US5990032A (en) * 1997-09-30 1999-11-23 Phillips Petroleum Company Hydrocarbon conversion catalyst composition and processes therefor and therewith
US5981418A (en) * 1998-04-08 1999-11-09 Phillips Petroleum Company Zeolite based catalyst containing zinc, boron and phosphorus and method of making such zeolite based catalyst
US6900365B2 (en) * 1999-11-15 2005-05-31 Chevron Phillips Chemical Company Lp Process for converting heavy hydrocarbon feeds to high octane gasoline, BTX and other valuable aromatics
US20040140246A1 (en) * 2001-08-31 2004-07-22 Lomas David A. Process for upgrading fcc product with additional reactor
JP2007154151A (ja) * 2005-11-11 2007-06-21 Toray Ind Inc 炭素数6〜8の芳香族炭化水素の製造方法
CN101376823B (zh) * 2007-08-31 2012-07-18 中国石油化工股份有限公司 一种石脑油催化重整方法
JP2009235247A (ja) * 2008-03-27 2009-10-15 Toray Ind Inc 炭素数6〜8の芳香族炭化水素の製造方法
FR2933987B1 (fr) * 2008-07-18 2010-08-27 Inst Francais Du Petrole Procede d'hydrogenation du benzene

Patent Citations (7)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
JPH032128A (ja) * 1989-05-30 1991-01-08 Idemitsu Kosan Co Ltd 単環芳香族含有炭化水素の製造方法
JPH0326791A (ja) * 1989-06-23 1991-02-05 Idemitsu Kosan Co Ltd 炭化水素の製造方法
JPH0352993A (ja) * 1989-07-21 1991-03-07 Idemitsu Kosan Co Ltd Btxに富む炭化水素の製造方法
JP2009235248A (ja) * 2008-03-27 2009-10-15 Toray Ind Inc 炭素数6〜8の芳香族炭化水素の製造方法
JP2010001462A (ja) * 2008-05-19 2010-01-07 Cosmo Oil Co Ltd 石油系炭化水素の処理方法
WO2011090124A1 (ja) * 2010-01-20 2011-07-28 Jx日鉱日石エネルギー株式会社 炭化水素製造用触媒および炭化水素の製造方法
WO2011118753A1 (ja) * 2010-03-26 2011-09-29 Jx日鉱日石エネルギー株式会社 単環芳香族炭化水素の製造方法

Non-Patent Citations (1)

* Cited by examiner, † Cited by third party
Title
See also references of EP2617697A4 *

Cited By (15)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
EP2690082A4 (en) * 2011-03-25 2014-09-03 Jx Nippon Oil & Energy Corp PROCESS FOR PRODUCING MONOCYCLIC AROMATIC HYDROCARBONS
US9573864B2 (en) 2011-03-25 2017-02-21 Jx Nippon Oil & Energy Corporation Method of producing monocyclic aromatic hydrocarbons
EP2690082A1 (en) * 2011-03-25 2014-01-29 JX Nippon Oil & Energy Corporation Method for producing single-ring aromatic hydrocarbons
KR20150077433A (ko) * 2012-10-25 2015-07-07 제이엑스 닛코닛세키에너지주식회사 올레핀 및 단환 방향족 탄화수소의 제조 방법, 및 에틸렌 제조 장치
CN104736679A (zh) * 2012-10-25 2015-06-24 吉坤日矿日石能源株式会社 烯烃及单环芳香族烃的制造方法以及乙烯制造装置
CN104755598A (zh) * 2012-10-25 2015-07-01 吉坤日矿日石能源株式会社 烯烃和单环芳香族烃的制造方法以及乙烯制造装置
WO2014065420A1 (ja) * 2012-10-25 2014-05-01 Jx日鉱日石エネルギー株式会社 オレフィン及び単環芳香族炭化水素の製造方法、並びにエチレン製造装置
EP2913382A4 (en) * 2012-10-25 2016-07-13 Jx Nippon Oil & Energy Corp METHOD FOR PRODUCING OLEFINS AND SINGLE CYCLE AROMATIC HYDROCARBONS, AND DEVICE FOR PRODUCING ETHYLENE
CN104736679B (zh) * 2012-10-25 2016-08-17 吉坤日矿日石能源株式会社 烯烃及单环芳香族烃的制造方法以及它们的制造装置
JPWO2014065420A1 (ja) * 2012-10-25 2016-09-08 Jxエネルギー株式会社 オレフィン及び単環芳香族炭化水素の製造方法、並びにエチレン製造装置
JPWO2014065421A1 (ja) * 2012-10-25 2016-09-08 Jxエネルギー株式会社 オレフィン及び単環芳香族炭化水素の製造方法、並びにエチレン製造装置
WO2014065421A1 (ja) * 2012-10-25 2014-05-01 Jx日鉱日石エネルギー株式会社 オレフィン及び単環芳香族炭化水素の製造方法、並びにエチレン製造装置
CN104755598B (zh) * 2012-10-25 2017-03-08 吉坤日矿日石能源株式会社 烯烃和单环芳香族烃的制造方法以及乙烯制造装置
US9845433B2 (en) 2012-10-25 2017-12-19 Jx Nippon Oil & Energy Corporation Method for producing olefins and monocyclic aromatic hydrocarbons by a combination of steam cracking, dicyclopentadiene reduction, and cracking and reforming
KR102074541B1 (ko) 2012-10-25 2020-02-06 제이엑스티지 에네루기 가부시키가이샤 올레핀 및 단환 방향족 탄화수소의 제조 방법, 및 에틸렌 제조 장치

Also Published As

Publication number Publication date
KR20130108319A (ko) 2013-10-02
EP2617697A4 (en) 2014-06-04
JP2012062255A (ja) 2012-03-29
CN103097323A (zh) 2013-05-08
JP5485088B2 (ja) 2014-05-07
EP2617697B1 (en) 2017-01-18
EP2617697A1 (en) 2013-07-24
US20130184506A1 (en) 2013-07-18
CN103097323B (zh) 2015-07-08

Similar Documents

Publication Publication Date Title
JP5485088B2 (ja) 芳香族炭化水素の製造方法
JP4961052B2 (ja) 単環芳香族炭化水素の製造方法
WO2012133138A1 (ja) 単環芳香族炭化水素の製造方法
WO2012133168A1 (ja) 単環芳香族炭化水素の製造方法
JP5759263B2 (ja) 単環芳香族炭化水素の製造方法
US9382174B2 (en) Method for producing monocyclic aromatic hydrocarbons
JP5868012B2 (ja) 単環芳香族炭化水素の製造方法
JP5683344B2 (ja) 単環芳香族炭化水素の製造方法
US9862654B2 (en) Method for producing xylene
US9828309B2 (en) Method for producing monocyclic aromatic hydrocarbons
JP5744622B2 (ja) 単環芳香族炭化水素の製造方法
WO2018016397A1 (ja) 低級オレフィン及び炭素数6~8の単環芳香族炭化水素の製造方法、低級オレフィン及び炭素数6~8の単環芳香族炭化水素の製造装置
KR20150077433A (ko) 올레핀 및 단환 방향족 탄화수소의 제조 방법, 및 에틸렌 제조 장치
JP5690623B2 (ja) 単環芳香族炭化水素の製造方法
JP5646381B2 (ja) 単環芳香族炭化水素の製造方法

Legal Events

Date Code Title Description
WWE Wipo information: entry into national phase

Ref document number: 201180043781.7

Country of ref document: CN

121 Ep: the epo has been informed by wipo that ep was designated in this application

Ref document number: 11825182

Country of ref document: EP

Kind code of ref document: A1

WWE Wipo information: entry into national phase

Ref document number: 13822556

Country of ref document: US

NENP Non-entry into the national phase

Ref country code: DE

REEP Request for entry into the european phase

Ref document number: 2011825182

Country of ref document: EP

WWE Wipo information: entry into national phase

Ref document number: 2011825182

Country of ref document: EP

ENP Entry into the national phase

Ref document number: 20137007883

Country of ref document: KR

Kind code of ref document: A