WO2012035758A1 - Multi-degree-of-freedom positioning device and multi-degree-of-freedom positioning method - Google Patents
Multi-degree-of-freedom positioning device and multi-degree-of-freedom positioning method Download PDFInfo
- Publication number
- WO2012035758A1 WO2012035758A1 PCT/JP2011/005142 JP2011005142W WO2012035758A1 WO 2012035758 A1 WO2012035758 A1 WO 2012035758A1 JP 2011005142 W JP2011005142 W JP 2011005142W WO 2012035758 A1 WO2012035758 A1 WO 2012035758A1
- Authority
- WO
- WIPO (PCT)
- Prior art keywords
- degree
- driving force
- end plate
- current
- freedom positioning
- Prior art date
Links
Images
Classifications
-
- B—PERFORMING OPERATIONS; TRANSPORTING
- B25—HAND TOOLS; PORTABLE POWER-DRIVEN TOOLS; MANIPULATORS
- B25J—MANIPULATORS; CHAMBERS PROVIDED WITH MANIPULATION DEVICES
- B25J9/00—Programme-controlled manipulators
- B25J9/16—Programme controls
- B25J9/1615—Programme controls characterised by special kind of manipulator, e.g. planar, scara, gantry, cantilever, space, closed chain, passive/active joints and tendon driven manipulators
- B25J9/1623—Parallel manipulator, Stewart platform, links are attached to a common base and to a common platform, plate which is moved parallel to the base
-
- B—PERFORMING OPERATIONS; TRANSPORTING
- B25—HAND TOOLS; PORTABLE POWER-DRIVEN TOOLS; MANIPULATORS
- B25J—MANIPULATORS; CHAMBERS PROVIDED WITH MANIPULATION DEVICES
- B25J17/00—Joints
- B25J17/02—Wrist joints
- B25J17/0208—Compliance devices
- B25J17/0216—Compliance devices comprising a stewart mechanism
-
- B—PERFORMING OPERATIONS; TRANSPORTING
- B25—HAND TOOLS; PORTABLE POWER-DRIVEN TOOLS; MANIPULATORS
- B25J—MANIPULATORS; CHAMBERS PROVIDED WITH MANIPULATION DEVICES
- B25J19/00—Accessories fitted to manipulators, e.g. for monitoring, for viewing; Safety devices combined with or specially adapted for use in connection with manipulators
- B25J19/0008—Balancing devices
- B25J19/0012—Balancing devices using fluidic devices
-
- B—PERFORMING OPERATIONS; TRANSPORTING
- B25—HAND TOOLS; PORTABLE POWER-DRIVEN TOOLS; MANIPULATORS
- B25J—MANIPULATORS; CHAMBERS PROVIDED WITH MANIPULATION DEVICES
- B25J9/00—Programme-controlled manipulators
- B25J9/003—Programme-controlled manipulators having parallel kinematics
- B25J9/0063—Programme-controlled manipulators having parallel kinematics with kinematics chains having an universal joint at the base
- B25J9/0069—Programme-controlled manipulators having parallel kinematics with kinematics chains having an universal joint at the base with kinematics chains of the type universal-prismatic-universal
Definitions
- the present invention relates to a multi-degree-of-freedom positioning device and a multi-degree-of-freedom positioning method using a parallel mechanism mechanism.
- a micro robot hand is used when performing operations such as supply of semiconductor parts and MEMS (Micro Electro Mechanical Systems) parts and precision mounting.
- the position and orientation of the micro robot hand are controlled by a multi-degree-of-freedom positioning device using a parallel mechanism mechanism.
- a base plate and an end plate which is the final output, are connected in parallel by a plurality of links, and a tool or jig for a micro robot hand is attached to the surface of the end plate.
- Each link is operated by an actuator such as a rotary motor or a linear motor to control the position / posture of the end plate.
- the multi-degree-of-freedom positioning device configured in this way has (1) large generated force, (2) high rigidity, (3) high-speed operation, and (4) a high degree of freedom can be realized in a compact manner (5 ) Easy control, (6) Good positioning accuracy.
- Patent Document 1 there is an actuator configured to add a driving force by an air cylinder to a driving force by a linear motor for an actuator that needs to operate at a high load (see, for example, Patent Document 1).
- Patent Document 1 when the actuator disclosed in Patent Document 1 is applied to a multi-degree-of-freedom positioning device, it is necessary to provide an air cylinder for each link, which complicates the mechanical structure and piping and is not practical. There was a problem.
- An object of the present invention is to provide a multi-degree-of-freedom positioning device and a multi-degree-of-freedom positioning method capable of suppressing heat generation due to a driving current and ensuring a sufficient driving force when performing work.
- a multi-degree-of-freedom positioning device includes a plurality of links connected between a base plate and an end plate, an actuator attached to each link and operating the links, and a connection between the base plate and the end plate. And a gravity compensator that supports the weight of the object attached to the end plate and the end plate in a steady position.
- the multi-degree-of-freedom positioning method includes a position measuring step for measuring the tip position of the own device, and a thrust generated by the gravity compensation device based on the tip position of the own device measured in the position measuring step.
- a thrust correction calculation step for calculating a thrust correction value for correcting any balance between the weight and the weight, a driving force conversion calculation step for calculating the driving force of the actuator based on the thrust correction value calculated in the thrust correction calculation step,
- a drive current calculation step for converting the driving force of the actuator calculated in the force conversion calculation step into a current instruction value, a drive current generation step for generating a drive current according to the current instruction value converted in the drive current calculation step, and a drive current A drive step for driving the link to operate according to the drive current generated in the generation step. It is intended to.
- a plurality of links connected between the base plate and the end plate, an actuator attached to each link and operating the link, and connected between the base plate and the end plate,
- a position measurement step for measuring the tip position of the own device and a thrust correction for correcting any balance between the thrust generated by the gravity compensation device and the weight based on the tip position of the own device measured in the position measurement step.
- a thrust correction calculation step for calculating the value a driving force conversion calculation step for calculating the driving force of the actuator based on the thrust correction value calculated in the thrust correction calculation step, and a driving force of the actuator calculated in the driving force conversion calculation step
- Drive current calculation step for converting the current into a current instruction value, a drive current generation step for generating a drive current according to the current instruction value converted in the drive current calculation step, and a drive according to the drive current generated in the drive current generation step
- the driving step for operating the link, the end plate is in a steady position. Even if there is a difference between the thrust generated by the gravity compensation device and the weight of the end plate and the object attached to the end plate, it is easy to correct the drive current supplied to each actuator. It can be corrected.
- FIG. 1 is a schematic diagram showing the configuration of a multi-degree-of-freedom positioning device 1 according to Embodiment 1 of the present invention.
- a parallel mechanism mechanism used in the multi-degree-of-freedom positioning device 1 a case where the Stewart Platform type in which a plurality of links are linearly moved is shown.
- the multi-degree-of-freedom positioning device 1 is used for a robot hand, for example, and includes a base plate 2, a plurality of links 3, an end plate 4, and a gravity compensation device 5, as shown in FIG.
- the base plate 2 is a base for the multi-degree-of-freedom positioning device 1 and is installed horizontally.
- the link 3 is connected to a predetermined position between the base plate 2 and the end plate 4 via universal joints 3a at both ends.
- a linear motor (actuator) 6 is attached to each link 3.
- the linear motor 6 is driven according to a drive current from a current control unit 15 to be described later, and moves the corresponding link 3 linearly.
- the end plate 4 is controlled to a predetermined position and posture.
- FIG. 1 shows a case where six links 3 are provided in the multi-degree-of-freedom positioning device 1, the number of links 3 can be appropriately changed according to the degrees of freedom.
- the end plate 4 has a tool or jig for a robot hand (not shown) attached to the surface of the end plate 4.
- the gravity compensator 5 supports the end plate 4 at the steady position and the weight of the tool or jig attached to the end plate 4 (hereinafter referred to as the weight of the jig or the like). Etc.
- the gravity compensator 5 is connected between the center of the base plate 2 and the center of the end plate 4 via universal joints 5a at both ends.
- the thrust generated by the gravity compensation device 5 is set in advance so as to balance the weight of the jig or the like when the end plate 4 is in the steady position.
- FIG. 2 is a diagram illustrating a dynamic model of multi-degree-of-freedom positioning device 1 according to Embodiment 1 of the present invention.
- a viscosity matrix (n ⁇ n), and a stiffness matrix (n ⁇ n) (n is a degree of freedom of the multi-degree-of-freedom positioning device 1)
- fa is a driving force generated by the multi-degree-of-freedom positioning device 1
- fd Is an external force (gravity, contact force, etc.).
- the inertia matrix Ma, the viscosity matrix Da, and the rigidity matrix Ka represent the inertia, viscosity, and rigidity of the link 3 and the linear motor 6 in the orthogonal coordinates of the tip position of the multi-degree-of-freedom positioning device 1.
- fa ⁇ Mcr ′′ ⁇ Dcr′ ⁇ Kcr + fc (2)
- Mc, Dc, and Kc are feedback gains of acceleration, speed, and position, respectively, and parameters that are arbitrarily determined.
- the external force fd is expressed as the following equation (3).
- fd Mvr ′′ + Dvr ′ + Kvr ⁇ fc (3)
- Mv, Dv, and Kv are impedances of the dynamic model represented by the following equations (4) to (6).
- Mv Ma + Mc (4)
- Dv Da + Dc (5)
- Kv Ka + Kc (6)
- the impedance (Mv, Dv, Kv) that determines the response of the mechanical system to the external force fd can be determined. That is, the impedance of the mechanical system can be controlled, and position control and compliance control can be performed.
- the control system The compliance set value set in step 1 is used as the estimated value.
- the estimated value ⁇ fd> of the external force is expressed as the following equation (8).
- ⁇ Fd> ⁇ Ma> r ′′ + ⁇ Da> r ′ + ⁇ Ka> r ⁇ fa (8)
- ⁇ Ma> is an estimated value of the inertia matrix
- ⁇ Da> is an estimated value of the viscosity matrix
- ⁇ Ka> is an estimated value of the stiffness matrix.
- FIG. 3 is a block diagram showing the configuration of the control system of multi-degree-of-freedom positioning apparatus 1 according to Embodiment 1 of the present invention.
- the control system of the multi-degree-of-freedom positioning device 1 includes a position sensor 7, a coordinate conversion calculation unit 8, a subtracter 9, an impedance control calculation unit 10, a thrust correction calculation unit 11, an adder 12, and a driving force.
- the conversion calculation unit 13, the drive current calculation unit 14, the current control unit 15, and the external force estimation calculation unit 16 are configured.
- the position sensor 7 is attached to each linear motor 6 and measures the tip position (displacement) of the linear motor 6.
- the position sensor 7 for example, an proximity sensor, a strain cage, a linear encoder, or the like is used.
- the coordinate transformation calculation unit 8 calculates the apparatus position using the above equations (9) to (11) based on the tip position of each linear motor 6 measured by the position sensor 7.
- the position sensor 7 and the coordinate transformation calculation unit 8 correspond to the measurement unit of the present invention.
- the measuring unit is configured to calculate the device position based on the tip position of each linear motor 6. However, when the position sensor can be attached to the end plate 4, the device position is directly measured. You may do it.
- the subtracter 9 subtracts the device position calculated by the coordinate conversion calculation unit 8 from the target value input from the host controller (robot controller).
- the impedance control calculation unit 10 calculates the driving force to be generated by the multi-degree-of-freedom positioning device 1 using the above equation (2) based on the difference value calculated by the subtracter 9 and the parameter information. is there.
- the parameter information is information necessary for the calculation according to the above equation (2), and is a force fc necessary for the work and parameters Mc, Dc, and Kc representing the feedback gain.
- the thrust correction calculation unit 11 corrects a thrust correction value (driving force) that corrects any balance between the thrust generated by the gravity compensation device 5 and the weight of the jig or the like, which occurs when the end plate 4 moves from the steady position. Is calculated.
- the thrust correction calculation unit 11 calculates a thrust correction value using the following equation (13) based on the device position calculated by the coordinate conversion calculation unit 8.
- Thrust correction value xyz component of gravity compensator thrust-weight of jig (13)
- the gravity compensator thrust is a thrust generated by the gravity compensator 5 and is calculated from the cylinder diameter and the supply air pressure when an air cylinder is used. Further, when a spring mechanism is used, it is calculated from the displacement of the spring based on the device position and the spring constant.
- the xyz component of the gravity compensation device thrust is calculated from the gravity compensation device thrust and the device position.
- the adder 12 adds the driving force calculated by the impedance control calculation unit 10 and the thrust correction value calculated by the thrust correction calculation unit 11.
- the driving force conversion calculation unit 13 calculates the driving force for each linear motor 6 using the above equation (12) based on the driving force added by the adder 12.
- the driving force calculated by the impedance control calculation unit 10 and the thrust correction calculation unit 11 is a driving force that should be generated by the multi-degree-of-freedom positioning device 1, that is, a driving force at work coordinates (coordinates of the device position). Therefore, the driving force conversion calculation unit 13 converts the driving force at the work coordinates into a driving force for each linear motor 6.
- the drive current calculation unit 14 converts the drive force for each linear motor 6 calculated by the drive force conversion calculation unit 13 into a current instruction value indicating a current value for driving the linear motor 6.
- the current control unit 15 generates a drive current according to the current instruction value for each linear motor 6 converted by the drive current calculation unit 14. Thus, the linear motor 6 is driven according to the drive current supplied from the current control unit 15 to operate the link 3.
- the external force estimation calculation unit 16 is a device position calculated by the coordinate conversion calculation unit 8, a driving force calculated by the impedance control calculation unit 10, an inertia matrix estimated value ⁇ Ma> set in the control system, and a viscosity matrix estimation. Based on the value ⁇ Da> and the estimated value ⁇ Ka> of the stiffness matrix, the estimated external force value ⁇ fd> is calculated using the above equation (8).
- FIG. 4 is a flowchart showing the operation of the control system of multi-degree-of-freedom positioning apparatus 1 according to Embodiment 1 of the present invention.
- the measurement unit measures the device position (step ST41, position measurement step).
- each position sensor 7 measures the tip position of each linear motor 6.
- the coordinate conversion calculation unit 8 calculates the apparatus position using the above equations (9) to (11) based on the tip position of each linear motor 6 measured by each position sensor 7.
- the device position signal indicating the device position calculated by the coordinate transformation calculation unit 8 is supplied to the subtracter 9, the thrust correction calculation unit 11, and the external force estimation calculation unit 16.
- the subtracter 9 subtracts the device position calculated by the coordinate transformation calculation unit 8 from the target value input from the host controller (robot controller) (step ST42).
- the difference value signal indicating the difference value calculated by the subtracter 9 is supplied to the impedance control calculation unit 10.
- the impedance control calculation unit 10 calculates the driving force to be generated by the multi-degree-of-freedom positioning device 1 using the above equation (2) based on the difference value calculated by the subtracter 9 and the parameter information. (Step ST43).
- the device driving force signal indicating the driving force calculated by the impedance control calculation unit 10 is supplied to the adder 12 and the external force estimation calculation unit 16.
- the thrust correction calculation unit 11 uses the above equation (13) based on the device position calculated by the coordinate conversion calculation unit 8, and calculates the thrust generated by the gravity compensation device 5 and the weight of the jig, etc.
- a thrust correction value for correcting any of these balances is calculated (step ST44, thrust correction calculation step).
- the thrust correction value is 0 because the thrust generated by the gravity compensation device 5 is balanced with the weight of the jig or the like.
- the end plate 4 moves from the steady position, the thrust and the weight are not balanced, and thus a thrust correction value for correcting this deviation is calculated.
- a thrust correction signal indicating the thrust correction value calculated by the thrust correction calculation unit 11 is supplied to the adder 12.
- the adder 12 adds the driving force calculated by the impedance control calculation unit 10 and the thrust correction value calculated by the thrust correction calculation unit 11 (step ST45).
- the added driving force signal indicating the driving force added by the adder 12 is supplied to the driving force conversion calculation unit 13.
- the driving force conversion calculation unit 13 calculates the driving force for each linear motor 6 based on the driving force added by the adder 12 using the above equation (12) (step ST46, driving force conversion calculation). Step). An actuator driving force signal indicating the driving force for each linear motor 6 calculated by the driving force conversion calculating unit 13 is supplied to the driving current calculating unit 14.
- the drive current calculation unit 14 converts the drive force for each linear motor 6 calculated by the drive force conversion calculation unit 13 into a current instruction value indicating the value of the current that drives the linear motor 6 (step ST47, drive). Current calculation step).
- the current command value signal indicating the current command value converted by the drive current calculation unit 14 is supplied to the corresponding linear motor 6.
- the conversion from the driving force to the current instruction value may be performed based on a predetermined formula, or a conversion table in which the driving force and the current instruction value are associated with each other in advance is created. A table may be used.
- the current control unit 15 generates a drive current corresponding to the current instruction value converted by the drive current calculation unit 14 (step ST48, drive current generation step).
- the drive current generated by the current control unit 15 is supplied to the corresponding linear motor 6.
- the linear motor 6 is driven according to the drive current generated by the current control unit 15 to operate the link 3 (step ST49, drive step). Thereby, the end plate 4 is controlled to a predetermined position and posture.
- the external force estimation calculation unit 16 includes the device position calculated by the coordinate conversion calculation unit 8, the driving force calculated by the impedance control calculation unit 10, the estimated value ⁇ Ma> of the inertia matrix set in the control system, the viscosity matrix Based on the estimated value ⁇ Da> and the estimated value ⁇ Ka> of the stiffness matrix, the external force estimated value ⁇ fd> is calculated using the above equation (8) (step ST50).
- the external force estimation value signal indicating the external force estimation value ⁇ fd> calculated by the external force estimation calculation unit 16 is supplied to the host controller.
- the host controller detects the work state from the estimated external force value calculated by the external force estimation calculation unit 16, confirms the work result, and determines the operation of the robot.
- the gravity compensator 5 is connected between the center of the base plate 2 and the center of the end plate 4 so that the weight of the jig or the like at the steady position is supported by the gravity compensator 5. Since configured, this weight can be supported with a simple configuration. Further, when the end plate 4 is in the steady position, it is not necessary to support this weight by the linear motor 6, and thus heat generation due to the drive current can be suppressed. In addition, it is possible to ensure a sufficient driving force when performing operations such as component supply and assembly.
- each linear motor 6 has Since the configuration is such that the supplied drive current is corrected, the deviation can be easily corrected.
- the base plate 2 is described as being horizontally installed. However, when the base plate 2 is tilted, the calculation is performed in consideration of the tilt angle. It is possible to apply.
- the error due to the universal joint 5a has been described without any particular mention. However, by calculating the thrust correction value in consideration of the error due to the universal joint 5a, more accurate control can be performed. It can be performed.
- the multi-degree-of-freedom positioning device and the multi-degree-of-freedom positioning method according to the present invention can support the weight of the end plate and the object attached to the end plate at a steady position with a simple configuration, and the end plate is stationary. In the case of position, since it is not necessary to support the weight with an actuator, heat generation due to driving current can be suppressed, and sufficient driving force can be secured when performing work, so a parallel mechanism mechanism was used. It is suitable for use in a multi-degree-of-freedom positioning device and a multi-degree-of-freedom positioning method.
Landscapes
- Engineering & Computer Science (AREA)
- Robotics (AREA)
- Mechanical Engineering (AREA)
- Health & Medical Sciences (AREA)
- General Health & Medical Sciences (AREA)
- Orthopedic Medicine & Surgery (AREA)
- Manipulator (AREA)
- Transmission Devices (AREA)
- Control Of Linear Motors (AREA)
Abstract
This device is capable of supporting the weight of a jig or tool and an endplate by means of a simple configuration, suppresses heat release resulting from a drive current, and secures driving power when performing work. The device is provided with: a plurality of links (3) that connect between a baseplate (2) and an endplate (4); an actuator (6) that is attached to each link (3) and that drives each link (3); and a gravity compensation device (5) that is connected between the baseplate (2) and the endplate (4) and that supports the weight of the endplate (4) in a steady position and an object that is attached to the endplate (4).
Description
この発明は、パラレルメカニズム機構を利用した多自由度位置決め装置および多自由度位置決め方法に関するものである。
The present invention relates to a multi-degree-of-freedom positioning device and a multi-degree-of-freedom positioning method using a parallel mechanism mechanism.
例えば半導体部品やMEMS(Micro Electro Mechanical Systems)部品の供給や精密実装などの作業を行う場合に、マイクロロボットハンドが用いられている。マイクロロボットハンドは、パラレルメカニズム機構を利用した多自由度位置決め装置によって位置・姿勢が制御されている。
この多自由度位置決め装置は、ベースプレートから最終出力であるエンドプレートまでが複数のリンクで並列に連結され、エンドプレートの表面にマイクロロボットハンド用のツールや治具が取り付けられている。各リンクは、回転型モータやリニアモータなどのアクチュエータによって動作し、エンドプレートの位置・姿勢を制御する。 For example, a micro robot hand is used when performing operations such as supply of semiconductor parts and MEMS (Micro Electro Mechanical Systems) parts and precision mounting. The position and orientation of the micro robot hand are controlled by a multi-degree-of-freedom positioning device using a parallel mechanism mechanism.
In this multi-degree-of-freedom positioning device, a base plate and an end plate, which is the final output, are connected in parallel by a plurality of links, and a tool or jig for a micro robot hand is attached to the surface of the end plate. Each link is operated by an actuator such as a rotary motor or a linear motor to control the position / posture of the end plate.
この多自由度位置決め装置は、ベースプレートから最終出力であるエンドプレートまでが複数のリンクで並列に連結され、エンドプレートの表面にマイクロロボットハンド用のツールや治具が取り付けられている。各リンクは、回転型モータやリニアモータなどのアクチュエータによって動作し、エンドプレートの位置・姿勢を制御する。 For example, a micro robot hand is used when performing operations such as supply of semiconductor parts and MEMS (Micro Electro Mechanical Systems) parts and precision mounting. The position and orientation of the micro robot hand are controlled by a multi-degree-of-freedom positioning device using a parallel mechanism mechanism.
In this multi-degree-of-freedom positioning device, a base plate and an end plate, which is the final output, are connected in parallel by a plurality of links, and a tool or jig for a micro robot hand is attached to the surface of the end plate. Each link is operated by an actuator such as a rotary motor or a linear motor to control the position / posture of the end plate.
このように構成される多自由度位置決め装置は、(1)発生力が大きい、(2)剛性が高い、(3)高速動作が可能、(4)多自由度をコンパクトに実現できる、(5)制御が容易、(6)位置決め精度がよい、などの特徴を持っている。
The multi-degree-of-freedom positioning device configured in this way has (1) large generated force, (2) high rigidity, (3) high-speed operation, and (4) a high degree of freedom can be realized in a compact manner (5 ) Easy control, (6) Good positioning accuracy.
しかしながら、従来の多自由度位置決め装置では、エンドプレートおよびエンドプレートに取り付けられたツールや治具の重量を常にアクチュエータによって支える必要がある。そのため、治具などの重量が大きくなる場合にはアクチュエータに対する負荷も増大し、駆動電流による発熱や、作業を行う際の駆動力の制限などの課題があった。
However, in the conventional multi-degree-of-freedom positioning device, it is necessary to always support the weight of the end plate and the tool or jig attached to the end plate by the actuator. For this reason, when the weight of the jig or the like increases, the load on the actuator also increases, causing problems such as heat generation due to a driving current and limitation of driving force when performing work.
一方、高負荷での動作が必要なアクチュエータに対して、リニアモータによる駆動力に、エアシリンダによる駆動力を付加するように構成されたものがある(例えば特許文献1参照)。
しかしながら、この特許文献1に開示されるアクチュエータを多自由度位置決め装置に適用する場合、エアシリンダをリンクごとに設ける必要があるため、機械構造や配管が複雑になってしまい、実用的ではないという課題があった。 On the other hand, there is an actuator configured to add a driving force by an air cylinder to a driving force by a linear motor for an actuator that needs to operate at a high load (see, for example, Patent Document 1).
However, when the actuator disclosed inPatent Document 1 is applied to a multi-degree-of-freedom positioning device, it is necessary to provide an air cylinder for each link, which complicates the mechanical structure and piping and is not practical. There was a problem.
しかしながら、この特許文献1に開示されるアクチュエータを多自由度位置決め装置に適用する場合、エアシリンダをリンクごとに設ける必要があるため、機械構造や配管が複雑になってしまい、実用的ではないという課題があった。 On the other hand, there is an actuator configured to add a driving force by an air cylinder to a driving force by a linear motor for an actuator that needs to operate at a high load (see, for example, Patent Document 1).
However, when the actuator disclosed in
この発明は、上記のような課題を解決するためになされたもので、パラレルメカニズム機構を利用した多自由度位置決め装置において、簡易な構成で、治具などの重量を支えることができ、また、駆動電流による発熱を抑制し、作業を行う際に十分な駆動力を確保することができる多自由度位置決め装置および多自由度位置決め方法を提供することを目的としている。
The present invention was made to solve the above-described problems, and in a multi-degree-of-freedom positioning device using a parallel mechanism mechanism, it can support the weight of a jig or the like with a simple configuration, An object of the present invention is to provide a multi-degree-of-freedom positioning device and a multi-degree-of-freedom positioning method capable of suppressing heat generation due to a driving current and ensuring a sufficient driving force when performing work.
この発明に係る多自由度位置決め装置は、ベースプレートとエンドプレートとの間に接続された複数のリンクと、各リンクに取り付けられ、リンクを動作させるアクチュエータと、ベースプレートとエンドプレートとの間に接続され、定常位置でのエンドプレートおよびエンドプレートに取り付けられた物体の重量を支える重力補償装置とを備えたものである。
A multi-degree-of-freedom positioning device according to the present invention includes a plurality of links connected between a base plate and an end plate, an actuator attached to each link and operating the links, and a connection between the base plate and the end plate. And a gravity compensator that supports the weight of the object attached to the end plate and the end plate in a steady position.
また、この発明に係る多自由度位置決め方法は、自機の先端位置を計測する位置計測ステップと、位置計測ステップにおいて計測した自機の先端位置に基づいて、重力補償装置が発生している推力と重量との釣り合いずれを補正する推力補正値を算出する推力補正演算ステップと、推力補正演算ステップにおいて算出した推力補正値に基づいて、アクチュエータの駆動力を算出する駆動力変換演算ステップと、駆動力変換演算ステップにおいて算出したアクチュエータの駆動力を電流指示値に変換する駆動電流演算ステップと、駆動電流演算ステップにおいて変換した電流指示値に応じた駆動電流を生成する駆動電流生成ステップと、駆動電流生成ステップにおいて生成した駆動電流に応じて駆動し、リンクを動作させる駆動ステップとを有するものである。
Further, the multi-degree-of-freedom positioning method according to the present invention includes a position measuring step for measuring the tip position of the own device, and a thrust generated by the gravity compensation device based on the tip position of the own device measured in the position measuring step. A thrust correction calculation step for calculating a thrust correction value for correcting any balance between the weight and the weight, a driving force conversion calculation step for calculating the driving force of the actuator based on the thrust correction value calculated in the thrust correction calculation step, A drive current calculation step for converting the driving force of the actuator calculated in the force conversion calculation step into a current instruction value, a drive current generation step for generating a drive current according to the current instruction value converted in the drive current calculation step, and a drive current A drive step for driving the link to operate according to the drive current generated in the generation step. It is intended to.
この発明によれば、ベースプレートとエンドプレートとの間に接続された複数のリンクと、各リンクに取り付けられ、リンクを動作させるアクチュエータと、ベースプレートとエンドプレートとの間に接続され、定常位置でのエンドプレートおよびエンドプレートに取り付けられた物体の重量を支える重力補償装置とを備えたことで、簡易な構成で、定常位置でのエンドプレートおよびエンドプレートに取り付けられた物体の重量を支えることができる。また、エンドプレートが定常位置の場合には、重量をアクチュエータで支える必要はないため、駆動電流による発熱を抑制することができ、作業を行う際に十分な駆動力を確保することができる。
According to the present invention, a plurality of links connected between the base plate and the end plate, an actuator attached to each link and operating the link, and connected between the base plate and the end plate, By providing the end plate and the gravity compensation device that supports the weight of the object attached to the end plate, it is possible to support the weight of the end plate and the object attached to the end plate at a steady position with a simple configuration. . In addition, when the end plate is in a steady position, it is not necessary to support the weight with an actuator, so heat generation due to the drive current can be suppressed, and a sufficient driving force can be ensured when performing work.
また、自機の先端位置を計測する位置計測ステップと、位置計測ステップにおいて計測した自機の先端位置に基づいて、重力補償装置が発生している推力と重量との釣り合いずれを補正する推力補正値を算出する推力補正演算ステップと、推力補正演算ステップにおいて算出した推力補正値に基づいて、アクチュエータの駆動力を算出する駆動力変換演算ステップと、駆動力変換演算ステップにおいて算出したアクチュエータの駆動力を電流指示値に変換する駆動電流演算ステップと、駆動電流演算ステップにおいて変換した電流指示値に応じた駆動電流を生成する駆動電流生成ステップと、駆動電流生成ステップにおいて生成した駆動電流に応じて駆動し、リンクを動作させる駆動ステップとを有することで、エンドプレートが定常位置から移動して重力補正装置が発生している推力とエンドプレートおよびエンドプレートに取り付けられた物体の重量とに差が生じた場合にも、各アクチュエータに供給する駆動電流を補正することで容易に修正することができる。
Also, a position measurement step for measuring the tip position of the own device, and a thrust correction for correcting any balance between the thrust generated by the gravity compensation device and the weight based on the tip position of the own device measured in the position measurement step. A thrust correction calculation step for calculating the value, a driving force conversion calculation step for calculating the driving force of the actuator based on the thrust correction value calculated in the thrust correction calculation step, and a driving force of the actuator calculated in the driving force conversion calculation step Drive current calculation step for converting the current into a current instruction value, a drive current generation step for generating a drive current according to the current instruction value converted in the drive current calculation step, and a drive according to the drive current generated in the drive current generation step And the driving step for operating the link, the end plate is in a steady position. Even if there is a difference between the thrust generated by the gravity compensation device and the weight of the end plate and the object attached to the end plate, it is easy to correct the drive current supplied to each actuator. It can be corrected.
以下、この発明の実施の形態について図面を参照しながら詳細に説明する。
実施の形態1.
図1はこの発明の実施の形態1に係る多自由度位置決め装置1の構成を示す概略図である。なお以下では、多自由度位置決め装置1に用いるパラレルメカニズム機構として、複数のリンクを直動移動させるStewart Platform型を用いた場合について示す。
多自由度位置決め装置1は、例えばロボットハンドに用いられるものであり、図1に示すように、ベースプレート2、複数のリンク3、エンドプレート4および重力補償装置5から構成されている。 Hereinafter, embodiments of the present invention will be described in detail with reference to the drawings.
Embodiment 1 FIG.
FIG. 1 is a schematic diagram showing the configuration of a multi-degree-of-freedom positioning device 1 according to Embodiment 1 of the present invention. In the following, as a parallel mechanism mechanism used in the multi-degree-of-freedom positioning device 1, a case where the Stewart Platform type in which a plurality of links are linearly moved is shown.
The multi-degree-of-freedom positioning device 1 is used for a robot hand, for example, and includes a base plate 2, a plurality of links 3, an end plate 4, and a gravity compensation device 5, as shown in FIG.
実施の形態1.
図1はこの発明の実施の形態1に係る多自由度位置決め装置1の構成を示す概略図である。なお以下では、多自由度位置決め装置1に用いるパラレルメカニズム機構として、複数のリンクを直動移動させるStewart Platform型を用いた場合について示す。
多自由度位置決め装置1は、例えばロボットハンドに用いられるものであり、図1に示すように、ベースプレート2、複数のリンク3、エンドプレート4および重力補償装置5から構成されている。 Hereinafter, embodiments of the present invention will be described in detail with reference to the drawings.
FIG. 1 is a schematic diagram showing the configuration of a multi-degree-of-
The multi-degree-of-
ベースプレート2は、多自由度位置決め装置1の土台となるものであり、水平に設置されている。
リンク3は、両端の自在継手3aを介してベースプレート2とエンドプレート4との間の所定位置に接続されたものである。また、各リンク3にはリニアモータ(アクチュエータ)6が取り付けられている。リニアモータ6は、後述する電流制御部15からの駆動電流に応じて駆動し、対応するリンク3を直動移動させる。これによって、エンドプレート4は所定の位置・姿勢に制御される。なお図1では、多自由度位置決め装置1に6個のリンク3を設けた場合について示しているが、リンク3の数は自由度に応じて適宜変更可能である。
エンドプレート4は、その表面に不図示のロボットハンド用のツールや治具が取り付けられるものである。 Thebase plate 2 is a base for the multi-degree-of-freedom positioning device 1 and is installed horizontally.
The link 3 is connected to a predetermined position between thebase plate 2 and the end plate 4 via universal joints 3a at both ends. A linear motor (actuator) 6 is attached to each link 3. The linear motor 6 is driven according to a drive current from a current control unit 15 to be described later, and moves the corresponding link 3 linearly. Thereby, the end plate 4 is controlled to a predetermined position and posture. Although FIG. 1 shows a case where six links 3 are provided in the multi-degree-of-freedom positioning device 1, the number of links 3 can be appropriately changed according to the degrees of freedom.
The end plate 4 has a tool or jig for a robot hand (not shown) attached to the surface of the end plate 4.
リンク3は、両端の自在継手3aを介してベースプレート2とエンドプレート4との間の所定位置に接続されたものである。また、各リンク3にはリニアモータ(アクチュエータ)6が取り付けられている。リニアモータ6は、後述する電流制御部15からの駆動電流に応じて駆動し、対応するリンク3を直動移動させる。これによって、エンドプレート4は所定の位置・姿勢に制御される。なお図1では、多自由度位置決め装置1に6個のリンク3を設けた場合について示しているが、リンク3の数は自由度に応じて適宜変更可能である。
エンドプレート4は、その表面に不図示のロボットハンド用のツールや治具が取り付けられるものである。 The
The link 3 is connected to a predetermined position between the
The end plate 4 has a tool or jig for a robot hand (not shown) attached to the surface of the end plate 4.
重力補償装置5は、定常位置でのエンドプレート4およびエンドプレート4に取り付けられたツールや治具の重量(以下、治具などの重量と称す)を支持するものであり、エアシリンダやスプリング機構などから構成されている。この重力補償装置5は、両端の自在継手5aを介してベースプレート2中心とエンドプレート4中心との間に接続されている。なお、この重力補償装置5が発生する推力は、エンドプレート4が定常位置の場合における治具などの重量と釣り合うように予め設定されている。
The gravity compensator 5 supports the end plate 4 at the steady position and the weight of the tool or jig attached to the end plate 4 (hereinafter referred to as the weight of the jig or the like). Etc. The gravity compensator 5 is connected between the center of the base plate 2 and the center of the end plate 4 via universal joints 5a at both ends. The thrust generated by the gravity compensation device 5 is set in advance so as to balance the weight of the jig or the like when the end plate 4 is in the steady position.
次に、上記のように構成された多自由度位置決め装置1の動作を制御する制御系について説明する。まず、多自由度位置決め装置1の動作を制御する際に用いる力学モデルについて説明する。
図2はこの発明の実施の形態1に係る多自由度位置決め装置1の力学モデルを説明する図である。 Next, a control system for controlling the operation of the multi-degree-of-freedom positioning device 1 configured as described above will be described. First, the dynamic model used when controlling the operation of the multi-degree-of-freedom positioning device 1 will be described.
FIG. 2 is a diagram illustrating a dynamic model of multi-degree-of-freedom positioning device 1 according to Embodiment 1 of the present invention.
図2はこの発明の実施の形態1に係る多自由度位置決め装置1の力学モデルを説明する図である。 Next, a control system for controlling the operation of the multi-degree-of-
FIG. 2 is a diagram illustrating a dynamic model of multi-degree-of-
図2に示すように、多自由度位置決め装置1の先端位置(エンドプレート4の中心位置)を示す座標r(装置位置)の右方向を正(+)とすると、多自由度位置決め装置1の運動方程式は、次式(1)のように表される。
fa+fd=Mar”+Dar’+Kar (1)
なお、r’,r”はそれぞれ多自由度位置決め装置1の速度(装置速度)、加速度(装置加速度)であり、Ma,Da,Kaはそれぞれ多自由度位置決め装置1の慣性行列(n×n)、粘性行列(n×n)、剛性行列(n×n)であり(nは多自由度位置決め装置1の自由度)、faは多自由度位置決め装置1が発生する駆動力であり、fdは外力(重力や接触力など)である。
ここで、慣性行列Ma、粘性行列Daおよび剛性行列Kaは、リンク3およびリニアモータ6の慣性、粘性および剛性を、多自由度位置決め装置1の先端位置の直交座標で表したものである。 As shown in FIG. 2, when the right direction of the coordinate r (device position) indicating the tip position (center position of the end plate 4) of the multi-degree-of-freedom positioning device 1 is positive (+), the multi-degree-of-freedom positioning device 1 The equation of motion is expressed as the following equation (1).
fa + fd = Mar "+ Dar '+ Kar (1)
Note that r ′ and r ″ are the speed (device speed) and acceleration (device acceleration) of the multi-degree-of-freedom positioning device 1, respectively, and Ma, Da, and Ka are the inertia matrices (n × n) of the multi-degree-of-freedom positioning device 1, respectively. ), A viscosity matrix (n × n), and a stiffness matrix (n × n) (n is a degree of freedom of the multi-degree-of-freedom positioning device 1), fa is a driving force generated by the multi-degree-of-freedom positioning device 1, and fd Is an external force (gravity, contact force, etc.).
Here, the inertia matrix Ma, the viscosity matrix Da, and the rigidity matrix Ka represent the inertia, viscosity, and rigidity of the link 3 and thelinear motor 6 in the orthogonal coordinates of the tip position of the multi-degree-of-freedom positioning device 1.
fa+fd=Mar”+Dar’+Kar (1)
なお、r’,r”はそれぞれ多自由度位置決め装置1の速度(装置速度)、加速度(装置加速度)であり、Ma,Da,Kaはそれぞれ多自由度位置決め装置1の慣性行列(n×n)、粘性行列(n×n)、剛性行列(n×n)であり(nは多自由度位置決め装置1の自由度)、faは多自由度位置決め装置1が発生する駆動力であり、fdは外力(重力や接触力など)である。
ここで、慣性行列Ma、粘性行列Daおよび剛性行列Kaは、リンク3およびリニアモータ6の慣性、粘性および剛性を、多自由度位置決め装置1の先端位置の直交座標で表したものである。 As shown in FIG. 2, when the right direction of the coordinate r (device position) indicating the tip position (center position of the end plate 4) of the multi-degree-of-
fa + fd = Mar "+ Dar '+ Kar (1)
Note that r ′ and r ″ are the speed (device speed) and acceleration (device acceleration) of the multi-degree-of-
Here, the inertia matrix Ma, the viscosity matrix Da, and the rigidity matrix Ka represent the inertia, viscosity, and rigidity of the link 3 and the
また、駆動力faは、次式(2)のように表される。
fa=-Mcr”-Dcr’-Kcr+fc (2)
なお、fcは作業のために必要な力であり、Mc,Dc,Kcはそれぞれ加速度、速度、位置の各フィードバックゲインであり、それぞれ任意に決められるパラメータである。 Further, the driving force fa is expressed as the following equation (2).
fa = −Mcr ″ −Dcr′−Kcr + fc (2)
Note that fc is a force required for work, and Mc, Dc, and Kc are feedback gains of acceleration, speed, and position, respectively, and parameters that are arbitrarily determined.
fa=-Mcr”-Dcr’-Kcr+fc (2)
なお、fcは作業のために必要な力であり、Mc,Dc,Kcはそれぞれ加速度、速度、位置の各フィードバックゲインであり、それぞれ任意に決められるパラメータである。 Further, the driving force fa is expressed as the following equation (2).
fa = −Mcr ″ −Dcr′−Kcr + fc (2)
Note that fc is a force required for work, and Mc, Dc, and Kc are feedback gains of acceleration, speed, and position, respectively, and parameters that are arbitrarily determined.
上式(1)および(2)から、外力fdは次式(3)のように表される。
fd=Mvr”+Dvr’+Kvr-fc (3)
なお、Mv,Dv,Kvは、下記の式(4)~(6)で表される力学モデルのインピーダンスである。
Mv=Ma+Mc (4)
Dv=Da+Dc (5)
Kv=Ka+Kc (6) From the above equations (1) and (2), the external force fd is expressed as the following equation (3).
fd = Mvr ″ + Dvr ′ + Kvr−fc (3)
Mv, Dv, and Kv are impedances of the dynamic model represented by the following equations (4) to (6).
Mv = Ma + Mc (4)
Dv = Da + Dc (5)
Kv = Ka + Kc (6)
fd=Mvr”+Dvr’+Kvr-fc (3)
なお、Mv,Dv,Kvは、下記の式(4)~(6)で表される力学モデルのインピーダンスである。
Mv=Ma+Mc (4)
Dv=Da+Dc (5)
Kv=Ka+Kc (6) From the above equations (1) and (2), the external force fd is expressed as the following equation (3).
fd = Mvr ″ + Dvr ′ + Kvr−fc (3)
Mv, Dv, and Kv are impedances of the dynamic model represented by the following equations (4) to (6).
Mv = Ma + Mc (4)
Dv = Da + Dc (5)
Kv = Ka + Kc (6)
したがって、パラメータMc,Dc,Kcをそれぞれ適当に設定することにより、外力fdに対する機械系の応答を決めるインピーダンス(Mv,Dv,Kv)を定めることができる。すなわち、機械系のインピーダンスを制御することができ、位置制御やコンプライアンス制御を行うことができる。
Therefore, by appropriately setting the parameters Mc, Dc, and Kc, the impedance (Mv, Dv, Kv) that determines the response of the mechanical system to the external force fd can be determined. That is, the impedance of the mechanical system can be controlled, and position control and compliance control can be performed.
なお、式(2)において、加速度フィードバック(-Mcr”)や速度フィードバック(-Dcr’)の項を省略して、駆動力faを次式(7)のように表してもよい。
fa=-Kcr+fc (7)
上式(7)の場合は、機械系が本来持っている慣性および粘性での応答となる。 In Expression (2), terms of acceleration feedback (−Mcr ″) and speed feedback (−Dcr ′) may be omitted, and the driving force fa may be expressed as the following Expression (7).
fa = −Kcr + fc (7)
In the case of the above formula (7), the response is the inertia and viscosity inherent in the mechanical system.
fa=-Kcr+fc (7)
上式(7)の場合は、機械系が本来持っている慣性および粘性での応答となる。 In Expression (2), terms of acceleration feedback (−Mcr ″) and speed feedback (−Dcr ′) may be omitted, and the driving force fa may be expressed as the following Expression (7).
fa = −Kcr + fc (7)
In the case of the above formula (7), the response is the inertia and viscosity inherent in the mechanical system.
また、上式(1),(4)~(6)で用いられる多自由度位置決め装置1の慣性行列Ma、粘性行列Daおよび剛性行列Kaは、実際上、真の値はわからないため、制御系で設定したコンプライアンスの設定値を推定値として用いる。
この場合、上式(1)から、外力の推定値<fd>は次式(8)のように表される。
<fd>=<Ma>r”+<Da>r’+<Ka>r-fa (8)
なお、<Ma>は慣性行列の推定値であり、<Da>は粘性行列の推定値であり、<Ka>は剛性行列の推定値である。 Since the inertia matrix Ma, the viscosity matrix Da, and the stiffness matrix Ka of the multi-degree-of-freedom positioning device 1 used in the above equations (1), (4) to (6) are actually unknown, the control system The compliance set value set in step 1 is used as the estimated value.
In this case, from the above equation (1), the estimated value <fd> of the external force is expressed as the following equation (8).
<Fd> = <Ma> r ″ + <Da> r ′ + <Ka> r−fa (8)
<Ma> is an estimated value of the inertia matrix, <Da> is an estimated value of the viscosity matrix, and <Ka> is an estimated value of the stiffness matrix.
この場合、上式(1)から、外力の推定値<fd>は次式(8)のように表される。
<fd>=<Ma>r”+<Da>r’+<Ka>r-fa (8)
なお、<Ma>は慣性行列の推定値であり、<Da>は粘性行列の推定値であり、<Ka>は剛性行列の推定値である。 Since the inertia matrix Ma, the viscosity matrix Da, and the stiffness matrix Ka of the multi-degree-of-
In this case, from the above equation (1), the estimated value <fd> of the external force is expressed as the following equation (8).
<Fd> = <Ma> r ″ + <Da> r ′ + <Ka> r−fa (8)
<Ma> is an estimated value of the inertia matrix, <Da> is an estimated value of the viscosity matrix, and <Ka> is an estimated value of the stiffness matrix.
一方、装置位置r、装置速度r’および装置加速度r”は、後述する位置センサ7により検出された各リニアモータ6の位置qに基づいて、下記の式(9)~(11)のように表される。
r=T(q) (9)
r’=Jq’ (10)
x”=J’q’+Jq” (11)
なお、Tは位置変換式であり、q’,q”は、各リニアモータ6の速度、加速度であり、Jはヤコビ行列であり、J’はJの時間微分である。 On the other hand, the device position r, device speed r ′, and device acceleration r ″ are based on the position q of eachlinear motor 6 detected by the position sensor 7 described later, as shown in the following equations (9) to (11). expressed.
r = T (q) (9)
r ′ = Jq ′ (10)
x ″ = J′q ′ + Jq ″ (11)
T is a position conversion formula, q ′, q ″ are the speed and acceleration of eachlinear motor 6, J is a Jacobian matrix, and J ′ is a time derivative of J.
r=T(q) (9)
r’=Jq’ (10)
x”=J’q’+Jq” (11)
なお、Tは位置変換式であり、q’,q”は、各リニアモータ6の速度、加速度であり、Jはヤコビ行列であり、J’はJの時間微分である。 On the other hand, the device position r, device speed r ′, and device acceleration r ″ are based on the position q of each
r = T (q) (9)
r ′ = Jq ′ (10)
x ″ = J′q ′ + Jq ″ (11)
T is a position conversion formula, q ′, q ″ are the speed and acceleration of each
また、多自由度位置決め装置1の駆動力faとリニアモータ6毎の駆動力τとの関係は、次式(12)のように表される。
τ=JTfa (12)
なお、JTはJの転置行列である。 Further, the relationship between the driving force fa of the multi-degree-of-freedom positioning device 1 and the driving force τ for each linear motor 6 is expressed by the following equation (12).
τ = J T fa (12)
J T is a transposed matrix of J.
τ=JTfa (12)
なお、JTはJの転置行列である。 Further, the relationship between the driving force fa of the multi-degree-of-
τ = J T fa (12)
J T is a transposed matrix of J.
次に、多自由度位置決め装置1の制御系の構成について説明する。
図3はこの発明の実施の形態1に係る多自由度位置決め装置1の制御系の構成を示すブロック図である。
多自由度位置決め装置1の制御系は、図3に示すように、位置センサ7、座標変換演算部8、減算器9、インピーダンス制御演算部10、推力補正演算部11、加算器12、駆動力変換演算部13、駆動電流演算部14、電流制御部15および外力推定演算部16から構成される。 Next, the configuration of the control system of the multi-degree-of-freedom positioning device 1 will be described.
FIG. 3 is a block diagram showing the configuration of the control system of multi-degree-of-freedom positioning apparatus 1 according to Embodiment 1 of the present invention.
As shown in FIG. 3, the control system of the multi-degree-of-freedom positioning device 1 includes a position sensor 7, a coordinate conversion calculation unit 8, a subtracter 9, an impedance control calculation unit 10, a thrust correction calculation unit 11, an adder 12, and a driving force. The conversion calculation unit 13, the drive current calculation unit 14, the current control unit 15, and the external force estimation calculation unit 16 are configured.
図3はこの発明の実施の形態1に係る多自由度位置決め装置1の制御系の構成を示すブロック図である。
多自由度位置決め装置1の制御系は、図3に示すように、位置センサ7、座標変換演算部8、減算器9、インピーダンス制御演算部10、推力補正演算部11、加算器12、駆動力変換演算部13、駆動電流演算部14、電流制御部15および外力推定演算部16から構成される。 Next, the configuration of the control system of the multi-degree-of-
FIG. 3 is a block diagram showing the configuration of the control system of multi-degree-of-
As shown in FIG. 3, the control system of the multi-degree-of-
位置センサ7は、各リニアモータ6に取り付けられ、リニアモータ6の先端位置(変位)を計測するものである。位置センサ7としては、例えば、接近センサ、ひずみケージやリニアエンコーダなどが用いられる。
座標変換演算部8は、位置センサ7により計測された各リニアモータ6の先端位置に基づいて、上式(9)~(11)を用いて、装置位置を算出するものである。
なお、位置センサ7および座標変換演算部8は、本願発明の計測部に対応する。ここで、計測部は、各リニアモータ6の先端位置に基づいて装置位置を計算するように構成したが、エンドプレート4に位置センサを取り付けることが可能な場合には、装置位置を直接計測するようにしてもよい。 The position sensor 7 is attached to eachlinear motor 6 and measures the tip position (displacement) of the linear motor 6. As the position sensor 7, for example, an proximity sensor, a strain cage, a linear encoder, or the like is used.
The coordinatetransformation calculation unit 8 calculates the apparatus position using the above equations (9) to (11) based on the tip position of each linear motor 6 measured by the position sensor 7.
The position sensor 7 and the coordinatetransformation calculation unit 8 correspond to the measurement unit of the present invention. Here, the measuring unit is configured to calculate the device position based on the tip position of each linear motor 6. However, when the position sensor can be attached to the end plate 4, the device position is directly measured. You may do it.
座標変換演算部8は、位置センサ7により計測された各リニアモータ6の先端位置に基づいて、上式(9)~(11)を用いて、装置位置を算出するものである。
なお、位置センサ7および座標変換演算部8は、本願発明の計測部に対応する。ここで、計測部は、各リニアモータ6の先端位置に基づいて装置位置を計算するように構成したが、エンドプレート4に位置センサを取り付けることが可能な場合には、装置位置を直接計測するようにしてもよい。 The position sensor 7 is attached to each
The coordinate
The position sensor 7 and the coordinate
減算器9は、上位コントローラ(ロボットのコントローラ)から入力された目標値から、座標変換演算部8により算出された装置位置を減算するものである。
インピーダンス制御演算部10は、減算器9により算出された差分値、およびパラメータ情報に基づいて、上式(2)を用いて、多自由度位置決め装置1が発生すべき駆動力を算出するものである。ここで、パラメータ情報とは、上式(2)による演算に必要な情報であり、作業のために必要な力fcと、フィードバックゲインを表すパラメータMc,Dc,Kcである。 The subtracter 9 subtracts the device position calculated by the coordinateconversion calculation unit 8 from the target value input from the host controller (robot controller).
The impedancecontrol calculation unit 10 calculates the driving force to be generated by the multi-degree-of-freedom positioning device 1 using the above equation (2) based on the difference value calculated by the subtracter 9 and the parameter information. is there. Here, the parameter information is information necessary for the calculation according to the above equation (2), and is a force fc necessary for the work and parameters Mc, Dc, and Kc representing the feedback gain.
インピーダンス制御演算部10は、減算器9により算出された差分値、およびパラメータ情報に基づいて、上式(2)を用いて、多自由度位置決め装置1が発生すべき駆動力を算出するものである。ここで、パラメータ情報とは、上式(2)による演算に必要な情報であり、作業のために必要な力fcと、フィードバックゲインを表すパラメータMc,Dc,Kcである。 The subtracter 9 subtracts the device position calculated by the coordinate
The impedance
推力補正演算部11は、エンドプレート4が定常位置から移動した際に生じる、重力補償装置5が発生している推力と治具などの重量との釣り合いずれを補正する推力補正値(駆動力)を算出するものである。ここで、推力補正演算部11は、座標変換演算部8により算出された装置位置に基づいて、次式(13)を用いて、推力補正値を算出する。
推力補正値=重力補償装置推力のxyz成分-治具などの重量 (13)
なお、重力補償装置推力は、重力補償装置5が発生している推力であり、エアシリンダを用いた場合には、シリンダ径と供給空気圧から算出される。また、スプリング機構を用いた場合には、装置位置に基づくスプリングの変位とバネ定数から算出される。また、重力補償装置推力のxyz成分は、重力補償装置推力と装置位置から算出される。 The thrust correction calculation unit 11 corrects a thrust correction value (driving force) that corrects any balance between the thrust generated by thegravity compensation device 5 and the weight of the jig or the like, which occurs when the end plate 4 moves from the steady position. Is calculated. Here, the thrust correction calculation unit 11 calculates a thrust correction value using the following equation (13) based on the device position calculated by the coordinate conversion calculation unit 8.
Thrust correction value = xyz component of gravity compensator thrust-weight of jig (13)
The gravity compensator thrust is a thrust generated by thegravity compensator 5 and is calculated from the cylinder diameter and the supply air pressure when an air cylinder is used. Further, when a spring mechanism is used, it is calculated from the displacement of the spring based on the device position and the spring constant. The xyz component of the gravity compensation device thrust is calculated from the gravity compensation device thrust and the device position.
推力補正値=重力補償装置推力のxyz成分-治具などの重量 (13)
なお、重力補償装置推力は、重力補償装置5が発生している推力であり、エアシリンダを用いた場合には、シリンダ径と供給空気圧から算出される。また、スプリング機構を用いた場合には、装置位置に基づくスプリングの変位とバネ定数から算出される。また、重力補償装置推力のxyz成分は、重力補償装置推力と装置位置から算出される。 The thrust correction calculation unit 11 corrects a thrust correction value (driving force) that corrects any balance between the thrust generated by the
Thrust correction value = xyz component of gravity compensator thrust-weight of jig (13)
The gravity compensator thrust is a thrust generated by the
加算器12は、インピーダンス制御演算部10により算出された駆動力と、推力補正演算部11により算出された推力補正値とを加算するものである。
駆動力変換演算部13は、加算器12により加算された駆動力に基づいて、上式(12)を用いて、リニアモータ6毎の駆動力を算出するものである。インピーダンス制御演算部10および推力補正演算部11が算出する駆動力は、多自由度位置決め装置1が発生すべき駆動力、すなわち作業座標(装置位置の座標)における駆動力である。したがって、駆動力変換演算部13は、この作業座標の駆動力を、リニアモータ6毎の駆動力に変換する。 Theadder 12 adds the driving force calculated by the impedance control calculation unit 10 and the thrust correction value calculated by the thrust correction calculation unit 11.
The driving forceconversion calculation unit 13 calculates the driving force for each linear motor 6 using the above equation (12) based on the driving force added by the adder 12. The driving force calculated by the impedance control calculation unit 10 and the thrust correction calculation unit 11 is a driving force that should be generated by the multi-degree-of-freedom positioning device 1, that is, a driving force at work coordinates (coordinates of the device position). Therefore, the driving force conversion calculation unit 13 converts the driving force at the work coordinates into a driving force for each linear motor 6.
駆動力変換演算部13は、加算器12により加算された駆動力に基づいて、上式(12)を用いて、リニアモータ6毎の駆動力を算出するものである。インピーダンス制御演算部10および推力補正演算部11が算出する駆動力は、多自由度位置決め装置1が発生すべき駆動力、すなわち作業座標(装置位置の座標)における駆動力である。したがって、駆動力変換演算部13は、この作業座標の駆動力を、リニアモータ6毎の駆動力に変換する。 The
The driving force
駆動電流演算部14は、駆動力変換演算部13により算出されたリニアモータ6毎の駆動力を、リニアモータ6を駆動する電流の値を示す電流指示値に変換するものである。
電流制御部15は、駆動電流演算部14により変換されたリニアモータ6毎の電流指示値に応じた駆動電流を生成するものである。これにより、リニアモータ6は、電流制御部15から供給された駆動電流に応じて駆動し、リンク3を動作させる。 The drivecurrent calculation unit 14 converts the drive force for each linear motor 6 calculated by the drive force conversion calculation unit 13 into a current instruction value indicating a current value for driving the linear motor 6.
Thecurrent control unit 15 generates a drive current according to the current instruction value for each linear motor 6 converted by the drive current calculation unit 14. Thus, the linear motor 6 is driven according to the drive current supplied from the current control unit 15 to operate the link 3.
電流制御部15は、駆動電流演算部14により変換されたリニアモータ6毎の電流指示値に応じた駆動電流を生成するものである。これにより、リニアモータ6は、電流制御部15から供給された駆動電流に応じて駆動し、リンク3を動作させる。 The drive
The
外力推定演算部16は、座標変換演算部8により算出された装置位置、インピーダンス制御演算部10により算出された駆動力、制御系で設定された慣性行列の推定値<Ma>、粘性行列の推定値<Da>および剛性行列の推定値<Ka>に基づいて、上式(8)を用いて、外力推定値<fd>を算出するものである。
The external force estimation calculation unit 16 is a device position calculated by the coordinate conversion calculation unit 8, a driving force calculated by the impedance control calculation unit 10, an inertia matrix estimated value <Ma> set in the control system, and a viscosity matrix estimation. Based on the value <Da> and the estimated value <Ka> of the stiffness matrix, the estimated external force value <fd> is calculated using the above equation (8).
次に、多自由度位置決め装置1の制御系の動作について説明する。
図4はこの発明の実施の形態1に係る多自由度位置決め装置1の制御系の動作を示すフローチャートである。
多自由度位置決め装置1の制御系の動作では、図3に示すように、まず、計測部は装置位置を計測する(ステップST41、位置計測ステップ)。このステップST41では、まず、各位置センサ7は、各リニアモータ6の先端位置を計測する。次に、座標変換演算部8は、各位置センサ7により計測された各リニアモータ6の先端位置に基づいて、上式(9)~(11)を用いて、装置位置を算出する。この座標変換演算部8により算出された装置位置を示す装置位置信号は減算器9、推力補正演算部11および外力推定演算部16に供給される。 Next, the operation of the control system of the multi-degree-of-freedom positioning device 1 will be described.
FIG. 4 is a flowchart showing the operation of the control system of multi-degree-of-freedom positioning apparatus 1 according to Embodiment 1 of the present invention.
In the operation of the control system of the multi-degree-of-freedom positioning device 1, as shown in FIG. 3, first, the measurement unit measures the device position (step ST41, position measurement step). In this step ST41, first, each position sensor 7 measures the tip position of each linear motor 6. Next, the coordinate conversion calculation unit 8 calculates the apparatus position using the above equations (9) to (11) based on the tip position of each linear motor 6 measured by each position sensor 7. The device position signal indicating the device position calculated by the coordinate transformation calculation unit 8 is supplied to the subtracter 9, the thrust correction calculation unit 11, and the external force estimation calculation unit 16.
図4はこの発明の実施の形態1に係る多自由度位置決め装置1の制御系の動作を示すフローチャートである。
多自由度位置決め装置1の制御系の動作では、図3に示すように、まず、計測部は装置位置を計測する(ステップST41、位置計測ステップ)。このステップST41では、まず、各位置センサ7は、各リニアモータ6の先端位置を計測する。次に、座標変換演算部8は、各位置センサ7により計測された各リニアモータ6の先端位置に基づいて、上式(9)~(11)を用いて、装置位置を算出する。この座標変換演算部8により算出された装置位置を示す装置位置信号は減算器9、推力補正演算部11および外力推定演算部16に供給される。 Next, the operation of the control system of the multi-degree-of-
FIG. 4 is a flowchart showing the operation of the control system of multi-degree-of-
In the operation of the control system of the multi-degree-of-
次いで、減算器9は、上位コントローラ(ロボットのコントローラ)から入力された目標値から、座標変換演算部8により算出された装置位置を減算する(ステップST42)。この減算器9により算出された差分値を示す差分値信号はインピーダンス制御演算部10に供給される。
次いで、インピーダンス制御演算部10は、減算器9により算出された差分値、およびパラメータ情報に基づいて、上式(2)を用いて、多自由度位置決め装置1が発生すべき駆動力を算出する(ステップST43)。このインピーダンス制御演算部10により算出された駆動力を示す装置駆動力信号は加算器12および外力推定演算部16に供給される。 Next, the subtracter 9 subtracts the device position calculated by the coordinatetransformation calculation unit 8 from the target value input from the host controller (robot controller) (step ST42). The difference value signal indicating the difference value calculated by the subtracter 9 is supplied to the impedance control calculation unit 10.
Next, the impedancecontrol calculation unit 10 calculates the driving force to be generated by the multi-degree-of-freedom positioning device 1 using the above equation (2) based on the difference value calculated by the subtracter 9 and the parameter information. (Step ST43). The device driving force signal indicating the driving force calculated by the impedance control calculation unit 10 is supplied to the adder 12 and the external force estimation calculation unit 16.
次いで、インピーダンス制御演算部10は、減算器9により算出された差分値、およびパラメータ情報に基づいて、上式(2)を用いて、多自由度位置決め装置1が発生すべき駆動力を算出する(ステップST43)。このインピーダンス制御演算部10により算出された駆動力を示す装置駆動力信号は加算器12および外力推定演算部16に供給される。 Next, the subtracter 9 subtracts the device position calculated by the coordinate
Next, the impedance
一方、推力補正演算部11は、座標変換演算部8によって算出された装置位置に基づいて、上式(13)を用いて、重力補償装置5が発生している推力と治具などの重量との釣り合いずれを補正する推力補正値を算出する(ステップST44、推力補正演算ステップ)。ここで、エンドプレート4が定常位置の場合には、重力補償装置5が発生している推力と治具などの重量とは釣り合っているため、推力補正値は0となる。一方、エンドプレート4が定常位置から移動した場合には、推力と重量とが釣り合わなくなるため、このずれを補正するための推力補正値が算出される。
この推力補正演算部11により算出された推力補正値を示す推力補正信号は加算器12に供給される。 On the other hand, the thrust correction calculation unit 11 uses the above equation (13) based on the device position calculated by the coordinateconversion calculation unit 8, and calculates the thrust generated by the gravity compensation device 5 and the weight of the jig, etc. A thrust correction value for correcting any of these balances is calculated (step ST44, thrust correction calculation step). Here, when the end plate 4 is in a steady position, the thrust correction value is 0 because the thrust generated by the gravity compensation device 5 is balanced with the weight of the jig or the like. On the other hand, when the end plate 4 moves from the steady position, the thrust and the weight are not balanced, and thus a thrust correction value for correcting this deviation is calculated.
A thrust correction signal indicating the thrust correction value calculated by the thrust correction calculation unit 11 is supplied to theadder 12.
この推力補正演算部11により算出された推力補正値を示す推力補正信号は加算器12に供給される。 On the other hand, the thrust correction calculation unit 11 uses the above equation (13) based on the device position calculated by the coordinate
A thrust correction signal indicating the thrust correction value calculated by the thrust correction calculation unit 11 is supplied to the
次いで、加算器12は、インピーダンス制御演算部10により算出された駆動力と、推力補正演算部11により算出された推力補正値とを加算する(ステップST45)。この加算器12により加算された駆動力を示す加算駆動力信号は駆動力変換演算部13に供給される。
Next, the adder 12 adds the driving force calculated by the impedance control calculation unit 10 and the thrust correction value calculated by the thrust correction calculation unit 11 (step ST45). The added driving force signal indicating the driving force added by the adder 12 is supplied to the driving force conversion calculation unit 13.
次いで、駆動力変換演算部13は、加算器12により加算された駆動力に基づいて、上式(12)を用いて、リニアモータ6毎の駆動力を算出する(ステップST46、駆動力変換演算ステップ)。この駆動力変換演算部13により算出されたリニアモータ6毎の駆動力を示すアクチュエータ駆動力信号は駆動電流演算部14に供給される。
Next, the driving force conversion calculation unit 13 calculates the driving force for each linear motor 6 based on the driving force added by the adder 12 using the above equation (12) (step ST46, driving force conversion calculation). Step). An actuator driving force signal indicating the driving force for each linear motor 6 calculated by the driving force conversion calculating unit 13 is supplied to the driving current calculating unit 14.
次いで、駆動電流演算部14は、駆動力変換演算部13により算出されたリニアモータ6毎の駆動力を、リニアモータ6を駆動する電流の値を示す電流指示値に変換する(ステップST47、駆動電流演算ステップ)。この駆動電流演算部14により変換された電流指示値を示す電流指示値信号は対応するリニアモータ6に供給される。
なお、駆動力から電流指示値への変換は、予め定められた式に基づいて行ってもよく、或いは、予め駆動力と電流指示値とを対応付けた変換テーブルを作成しておき、この変換テーブルを用いるようにしてもよい。 Next, the drivecurrent calculation unit 14 converts the drive force for each linear motor 6 calculated by the drive force conversion calculation unit 13 into a current instruction value indicating the value of the current that drives the linear motor 6 (step ST47, drive). Current calculation step). The current command value signal indicating the current command value converted by the drive current calculation unit 14 is supplied to the corresponding linear motor 6.
The conversion from the driving force to the current instruction value may be performed based on a predetermined formula, or a conversion table in which the driving force and the current instruction value are associated with each other in advance is created. A table may be used.
なお、駆動力から電流指示値への変換は、予め定められた式に基づいて行ってもよく、或いは、予め駆動力と電流指示値とを対応付けた変換テーブルを作成しておき、この変換テーブルを用いるようにしてもよい。 Next, the drive
The conversion from the driving force to the current instruction value may be performed based on a predetermined formula, or a conversion table in which the driving force and the current instruction value are associated with each other in advance is created. A table may be used.
次いで、電流制御部15は、駆動電流演算部14により変換された電流指示値に応じた駆動電流を生成する(ステップST48、駆動電流生成ステップ)。この電流制御部15により生成された駆動電流は対応するリニアモータ6に供給される。
次いで、リニアモータ6は、電流制御部15により生成された駆動電流に応じて駆動し、リンク3を動作させる(ステップST49、駆動ステップ)。これにより、エンドプレート4を所定の位置・姿勢に制御させる。 Next, thecurrent control unit 15 generates a drive current corresponding to the current instruction value converted by the drive current calculation unit 14 (step ST48, drive current generation step). The drive current generated by the current control unit 15 is supplied to the corresponding linear motor 6.
Next, thelinear motor 6 is driven according to the drive current generated by the current control unit 15 to operate the link 3 (step ST49, drive step). Thereby, the end plate 4 is controlled to a predetermined position and posture.
次いで、リニアモータ6は、電流制御部15により生成された駆動電流に応じて駆動し、リンク3を動作させる(ステップST49、駆動ステップ)。これにより、エンドプレート4を所定の位置・姿勢に制御させる。 Next, the
Next, the
一方、外力推定演算部16は、座標変換演算部8により算出された装置位置、インピーダンス制御演算部10により算出された駆動力、制御系で設定された慣性行列の推定値<Ma>、粘性行列の推定値<Da>および剛性行列の推定値<Ka>に基づいて、上式(8)を用いて、外力推定値<fd>を算出する(ステップST50)。この外力推定演算部16により算出された外力推定値<fd>を示す外力推定値信号は上位コントローラに供給される。
上位コントローラは、外力推定演算部16により算出された外力推定値により作業状態を検出して作業結果を確認するとともに、ロボットの動作を決定する。 On the other hand, the external forceestimation calculation unit 16 includes the device position calculated by the coordinate conversion calculation unit 8, the driving force calculated by the impedance control calculation unit 10, the estimated value <Ma> of the inertia matrix set in the control system, the viscosity matrix Based on the estimated value <Da> and the estimated value <Ka> of the stiffness matrix, the external force estimated value <fd> is calculated using the above equation (8) (step ST50). The external force estimation value signal indicating the external force estimation value <fd> calculated by the external force estimation calculation unit 16 is supplied to the host controller.
The host controller detects the work state from the estimated external force value calculated by the external forceestimation calculation unit 16, confirms the work result, and determines the operation of the robot.
上位コントローラは、外力推定演算部16により算出された外力推定値により作業状態を検出して作業結果を確認するとともに、ロボットの動作を決定する。 On the other hand, the external force
The host controller detects the work state from the estimated external force value calculated by the external force
以上のように、この実施の形態1では、ベースプレート2中心とエンドプレート4中心との間に重力補償装置5を接続し、重力補償装置5によって、定常位置における治具などの重量を支えるように構成したので、簡易な構成でこの重量を支えることができる。また、エンドプレート4が定常位置の場合には、リニアモータ6でこの重量を支える必要がなくなるため、駆動電流による発熱を抑制することができる。また、部品供給や組立などの作業を行う際の駆動力を十分に確保することができる。
As described above, in the first embodiment, the gravity compensator 5 is connected between the center of the base plate 2 and the center of the end plate 4 so that the weight of the jig or the like at the steady position is supported by the gravity compensator 5. Since configured, this weight can be supported with a simple configuration. Further, when the end plate 4 is in the steady position, it is not necessary to support this weight by the linear motor 6, and thus heat generation due to the drive current can be suppressed. In addition, it is possible to ensure a sufficient driving force when performing operations such as component supply and assembly.
また、作業を行う際にエンドプレート4が定常位置から移動して、重力補償装置5が発生している推力と治具などの重量とに釣り合いずれが生じた場合にも、各リニアモータ6に供給する駆動電流を補正するように構成したので、容易にずれを修正することができる。
In addition, when the end plate 4 moves from the steady position during the work, and the balance between the thrust generated by the gravity compensation device 5 and the weight of the jig or the like occurs, each linear motor 6 has Since the configuration is such that the supplied drive current is corrected, the deviation can be easily corrected.
なお、実施の形態1では、ベースプレート2は水平に設置されているものとして説明を行ったが、ベースプレート2が傾いている場合にも、傾きの角度を考慮して計算を行うことで、同様に適用することが可能である。
また、実施の形態1では、自在継手5aによる誤差については特に言及せずに説明を行ったが、この自在継手5aによる誤差を考慮して推力補正値の計算を行うことで、より正確な制御を行うことができる。 In the first embodiment, thebase plate 2 is described as being horizontally installed. However, when the base plate 2 is tilted, the calculation is performed in consideration of the tilt angle. It is possible to apply.
In the first embodiment, the error due to the universal joint 5a has been described without any particular mention. However, by calculating the thrust correction value in consideration of the error due to the universal joint 5a, more accurate control can be performed. It can be performed.
また、実施の形態1では、自在継手5aによる誤差については特に言及せずに説明を行ったが、この自在継手5aによる誤差を考慮して推力補正値の計算を行うことで、より正確な制御を行うことができる。 In the first embodiment, the
In the first embodiment, the error due to the universal joint 5a has been described without any particular mention. However, by calculating the thrust correction value in consideration of the error due to the universal joint 5a, more accurate control can be performed. It can be performed.
また、実施の形態1では、パラレルメカニズム機構としてStewart Platform型を用いた場合について示したが、これに限るものではなく、アクチュエータとして回転型モータを用いたHexa型や、直動固定型などに対しても同様に適用可能である。
In the first embodiment, the case where the Stewart Platform type is used as the parallel mechanism mechanism has been described. However, the same applies.
この発明に係る多自由度位置決め装置および多自由度位置決め方法は、簡易な構成で、定常位置でのエンドプレートおよびエンドプレートに取り付けられた物体の重量を支えることができ、また、エンドプレートが定常位置の場合には、重量をアクチュエータで支える必要はないため、駆動電流による発熱を抑制することができ、作業を行う際に十分な駆動力を確保することができるため、パラレルメカニズム機構を利用した多自由度位置決め装置および多自由度位置決め方法に用いられるのに適している。
The multi-degree-of-freedom positioning device and the multi-degree-of-freedom positioning method according to the present invention can support the weight of the end plate and the object attached to the end plate at a steady position with a simple configuration, and the end plate is stationary. In the case of position, since it is not necessary to support the weight with an actuator, heat generation due to driving current can be suppressed, and sufficient driving force can be secured when performing work, so a parallel mechanism mechanism was used. It is suitable for use in a multi-degree-of-freedom positioning device and a multi-degree-of-freedom positioning method.
1 多自由度位置決め装置
2 ベースプレート
3 リンク
3a,5a 自在継手
4 エンドプレート
5 重力補償装置
6 リニアモータ
7 位置センサ(計測部)
8 座標変換演算部(計測部)
9 減算器
10 インピーダンス制御演算部
11 推力補正演算部
12 加算器
13 駆動力変換演算部
14 駆動電流演算部
15 電流制御部
16 外力推定演算部 DESCRIPTION OFSYMBOLS 1 Multi-degree-of-freedom positioning device 2 Base plate 3 Link 3a, 5a Universal joint 4 End plate 5 Gravity compensator 6 Linear motor 7 Position sensor (measurement part)
8 Coordinate transformation calculation unit (measurement unit)
9Subtractor 10 Impedance control calculation unit 11 Thrust correction calculation unit 12 Adder 13 Driving force conversion calculation unit 14 Drive current calculation unit 15 Current control unit 16 External force estimation calculation unit
2 ベースプレート
3 リンク
3a,5a 自在継手
4 エンドプレート
5 重力補償装置
6 リニアモータ
7 位置センサ(計測部)
8 座標変換演算部(計測部)
9 減算器
10 インピーダンス制御演算部
11 推力補正演算部
12 加算器
13 駆動力変換演算部
14 駆動電流演算部
15 電流制御部
16 外力推定演算部 DESCRIPTION OF
8 Coordinate transformation calculation unit (measurement unit)
9
Claims (3)
- ベースプレートとエンドプレートとの間に接続された複数のリンクと、
前記各リンクに取り付けられ、前記リンクを動作させるアクチュエータと、
前記ベースプレートと前記エンドプレートとの間に接続され、定常位置での前記エンドプレートおよび前記エンドプレートに取り付けられた物体の重量を支える重力補償装置と
を備えた多自由度位置決め装置。 A plurality of links connected between the base plate and the end plate;
An actuator attached to each link for operating the link;
A multi-degree-of-freedom positioning device comprising a gravity compensator connected between the base plate and the end plate and supporting a weight of the end plate in a steady position and an object attached to the end plate. - 自機の先端位置を計測する計測部と、
前記計測部により計測された自機の先端位置に基づいて、前記重力補償装置が発生している推力と前記重量との釣り合いずれを補正する推力補正値を算出する推力補正演算部と、
前記推力補正演算部により算出された推力補正値に基づいて、前記アクチュエータの駆動力を算出する駆動力変換演算部と、
前記駆動力変換演算部により算出されたアクチュエータの駆動力を電流指示値に変換する駆動電流演算部と、
前記駆動電流演算部により変換された電流指示値に応じた駆動電流を生成する電流制御部とを備え、
前記アクチュエータは、前記電流制御部により生成された駆動電流に応じて駆動し、前記リンクを動作させる
ことを特徴とする請求項1記載の多自由度位置決め装置。 A measurement unit that measures the tip position of the machine,
A thrust correction calculation unit that calculates a thrust correction value that corrects a balance between the thrust generated by the gravity compensation device and the weight based on the tip position of the own device measured by the measurement unit;
A driving force conversion calculating unit that calculates the driving force of the actuator based on the thrust correction value calculated by the thrust correction calculating unit;
A driving current calculation unit that converts the driving force of the actuator calculated by the driving force conversion calculation unit into a current instruction value;
A current control unit that generates a drive current according to the current instruction value converted by the drive current calculation unit;
The multi-degree-of-freedom positioning device according to claim 1, wherein the actuator is driven according to a drive current generated by the current control unit to operate the link. - ベースプレートとエンドプレートとの間に接続された複数のリンクと、前記各リンクに取り付けられ、前記リンクを動作させるアクチュエータと、前記ベースプレートと前記エンドプレートとの間に接続され、定常位置での前記エンドプレートおよび前記エンドプレートに取り付けられた物体の重量を支える重力補償装置とを備えた多自由度位置決め装置の多自由度位置決め方法であって、
自機の先端位置を計測する位置計測ステップと、
前記位置計測ステップにおいて計測した自機の先端位置に基づいて、前記重力補償装置が発生している推力と前記重量との釣り合いずれを補正する推力補正値を算出する推力補正演算ステップと、
前記推力補正演算ステップにおいて算出した推力補正値に基づいて、前記アクチュエータの駆動力を算出する駆動力変換演算ステップと、
前記駆動力変換演算ステップにおいて算出したアクチュエータの駆動力を電流指示値に変換する駆動電流演算ステップと、
前記駆動電流演算ステップにおいて変換した電流指示値に応じた駆動電流を生成する駆動電流生成ステップと、
前記駆動電流生成ステップにおいて生成した駆動電流に応じて駆動し、前記リンクを動作させる駆動ステップと
を有することを特徴とする多自由度位置決め方法。 A plurality of links connected between a base plate and an end plate, an actuator attached to each link for operating the links, and connected between the base plate and the end plate, and the end in a steady position. A multi-degree-of-freedom positioning method for a multi-degree-of-freedom positioning device comprising a plate and a gravity compensation device for supporting a weight of an object attached to the end plate,
A position measurement step for measuring the tip position of the machine,
A thrust correction calculation step for calculating a thrust correction value for correcting any balance between the thrust generated by the gravity compensation device and the weight based on the tip position of the own device measured in the position measurement step;
A driving force conversion calculating step for calculating the driving force of the actuator based on the thrust correction value calculated in the thrust correction calculating step;
A driving current calculation step of converting the driving force of the actuator calculated in the driving force conversion calculation step into a current instruction value;
A drive current generation step for generating a drive current according to the current instruction value converted in the drive current calculation step;
A multi-degree-of-freedom positioning method comprising: a driving step of driving the link in accordance with the driving current generated in the driving current generating step.
Applications Claiming Priority (2)
Application Number | Priority Date | Filing Date | Title |
---|---|---|---|
JP2010-208017 | 2010-09-16 | ||
JP2010208017A JP2012061564A (en) | 2010-09-16 | 2010-09-16 | Multi-degree-of-freedom positioning device, and multi-degree-of-freedom positioning method |
Publications (1)
Publication Number | Publication Date |
---|---|
WO2012035758A1 true WO2012035758A1 (en) | 2012-03-22 |
Family
ID=45831244
Family Applications (1)
Application Number | Title | Priority Date | Filing Date |
---|---|---|---|
PCT/JP2011/005142 WO2012035758A1 (en) | 2010-09-16 | 2011-09-13 | Multi-degree-of-freedom positioning device and multi-degree-of-freedom positioning method |
Country Status (2)
Country | Link |
---|---|
JP (1) | JP2012061564A (en) |
WO (1) | WO2012035758A1 (en) |
Cited By (4)
Publication number | Priority date | Publication date | Assignee | Title |
---|---|---|---|---|
JP2015534909A (en) * | 2012-11-14 | 2015-12-07 | コミッサリア ア レネルジー アトミーク エ オ ゼネルジ ザルタナテイヴ | Hexapod system |
CN110202545A (en) * | 2019-06-21 | 2019-09-06 | 中国科学院自动化研究所 | A kind of auxiliary drive unit and the six-degree-of-freedom parallel connection mechanism containing the unit |
CN114310844A (en) * | 2021-12-17 | 2022-04-12 | 中国计量科学研究院 | Metering integrated parallel robot device for precise operation |
CN114406729A (en) * | 2022-02-21 | 2022-04-29 | 复旦大学 | Large-rotation-angle five-degree-of-freedom parallel mechanism |
Families Citing this family (5)
Publication number | Priority date | Publication date | Assignee | Title |
---|---|---|---|---|
JP7002928B2 (en) * | 2017-11-27 | 2022-01-20 | アズビル株式会社 | Positioning device |
JP7175212B2 (en) * | 2019-02-07 | 2022-11-18 | Ntn株式会社 | Parallel link actuator with gravity compensation mechanism |
KR102190455B1 (en) * | 2019-07-02 | 2020-12-11 | 재단법인대구경북과학기술원 | Robot joint apparatus |
KR102380237B1 (en) * | 2020-04-14 | 2022-03-31 | 한국기계연구원 | Tool coupling device for robot being capable of active moving |
CN112847307B (en) * | 2020-12-31 | 2022-05-17 | 伯朗特机器人股份有限公司 | Six-axis robot and counter-force inverse solution method thereof |
Citations (5)
Publication number | Priority date | Publication date | Assignee | Title |
---|---|---|---|---|
JP2000079586A (en) * | 1998-07-07 | 2000-03-21 | Kajima Corp | Handling mechanism for heavy cargo |
JP2000120824A (en) * | 1998-10-16 | 2000-04-28 | Seiko Seiki Co Ltd | Parallel link mechanism |
JP2002027732A (en) * | 2000-07-06 | 2002-01-25 | Shinko Electric Co Ltd | Linear actuator |
JP2006055973A (en) * | 2004-08-23 | 2006-03-02 | Atsuo Takanishi | Self-weight bearing device, bipedal walking robot with the same, and control structure therefor |
WO2011114723A1 (en) * | 2010-03-17 | 2011-09-22 | パナソニック株式会社 | Parallel link robot, and method of teaching parallel link robot |
-
2010
- 2010-09-16 JP JP2010208017A patent/JP2012061564A/en active Pending
-
2011
- 2011-09-13 WO PCT/JP2011/005142 patent/WO2012035758A1/en active Application Filing
Patent Citations (5)
Publication number | Priority date | Publication date | Assignee | Title |
---|---|---|---|---|
JP2000079586A (en) * | 1998-07-07 | 2000-03-21 | Kajima Corp | Handling mechanism for heavy cargo |
JP2000120824A (en) * | 1998-10-16 | 2000-04-28 | Seiko Seiki Co Ltd | Parallel link mechanism |
JP2002027732A (en) * | 2000-07-06 | 2002-01-25 | Shinko Electric Co Ltd | Linear actuator |
JP2006055973A (en) * | 2004-08-23 | 2006-03-02 | Atsuo Takanishi | Self-weight bearing device, bipedal walking robot with the same, and control structure therefor |
WO2011114723A1 (en) * | 2010-03-17 | 2011-09-22 | パナソニック株式会社 | Parallel link robot, and method of teaching parallel link robot |
Cited By (5)
Publication number | Priority date | Publication date | Assignee | Title |
---|---|---|---|---|
JP2015534909A (en) * | 2012-11-14 | 2015-12-07 | コミッサリア ア レネルジー アトミーク エ オ ゼネルジ ザルタナテイヴ | Hexapod system |
CN110202545A (en) * | 2019-06-21 | 2019-09-06 | 中国科学院自动化研究所 | A kind of auxiliary drive unit and the six-degree-of-freedom parallel connection mechanism containing the unit |
CN114310844A (en) * | 2021-12-17 | 2022-04-12 | 中国计量科学研究院 | Metering integrated parallel robot device for precise operation |
CN114406729A (en) * | 2022-02-21 | 2022-04-29 | 复旦大学 | Large-rotation-angle five-degree-of-freedom parallel mechanism |
CN114406729B (en) * | 2022-02-21 | 2024-01-26 | 复旦大学 | Large-rotation-angle five-degree-of-freedom parallel mechanism |
Also Published As
Publication number | Publication date |
---|---|
JP2012061564A (en) | 2012-03-29 |
Similar Documents
Publication | Publication Date | Title |
---|---|---|
WO2012035758A1 (en) | Multi-degree-of-freedom positioning device and multi-degree-of-freedom positioning method | |
US9645565B2 (en) | Method and system for determination of at least one property of a joint | |
JP5327722B2 (en) | Robot load estimation apparatus and load estimation method | |
JP5897644B2 (en) | Robot control device | |
JP5399624B2 (en) | Numerical control method and numerical control device | |
JP6044511B2 (en) | Robot control method and robot system | |
JP5389251B2 (en) | Parallel drive system | |
Harada et al. | Impedance control of a redundantly actuated 3-DOF planar parallel link mechanism using direct drive linear motors | |
JP2604929B2 (en) | Robot control device | |
JPH08155868A (en) | Control of robot and its device | |
JP2015033277A (en) | Servo device, and control method of servo device | |
Yang et al. | Dynamic compensation control of flexible macro–micro manipulator systems | |
JP5203010B2 (en) | Component gripping apparatus and method | |
TW200921316A (en) | Multi-degree-of-freedom stage control apparatus | |
WO2020184203A1 (en) | Robot control device and robot control method | |
JP2022006927A (en) | Robot control system, control program and control method | |
JP6278620B2 (en) | Active compliance equipment | |
JP3937078B2 (en) | Robot control apparatus and control method | |
JP4507071B2 (en) | Motor control device | |
JP2010167507A (en) | Robot system and method of controlling the same | |
JP7392590B2 (en) | Robot control system, control program and control method | |
JP2010221322A (en) | Positioner | |
JP2024088431A (en) | Remote operation system | |
JP4636034B2 (en) | Control device for movable table and movable table device including the same | |
WO2023223570A1 (en) | Control device, robot system, learning device, robot control method, and program |
Legal Events
Date | Code | Title | Description |
---|---|---|---|
121 | Ep: the epo has been informed by wipo that ep was designated in this application |
Ref document number: 11824772 Country of ref document: EP Kind code of ref document: A1 |
|
NENP | Non-entry into the national phase |
Ref country code: DE |
|
122 | Ep: pct application non-entry in european phase |
Ref document number: 11824772 Country of ref document: EP Kind code of ref document: A1 |