JP5399624B2 - Numerical control method and numerical control device - Google Patents

Numerical control method and numerical control device Download PDF

Info

Publication number
JP5399624B2
JP5399624B2 JP2007274061A JP2007274061A JP5399624B2 JP 5399624 B2 JP5399624 B2 JP 5399624B2 JP 2007274061 A JP2007274061 A JP 2007274061A JP 2007274061 A JP2007274061 A JP 2007274061A JP 5399624 B2 JP5399624 B2 JP 5399624B2
Authority
JP
Japan
Prior art keywords
error
axis
value
coordinate system
tool
Prior art date
Legal status (The legal status is an assumption and is not a legal conclusion. Google has not performed a legal analysis and makes no representation as to the accuracy of the status listed.)
Active
Application number
JP2007274061A
Other languages
Japanese (ja)
Other versions
JP2009104317A (en
Inventor
哲也 松下
Current Assignee (The listed assignees may be inaccurate. Google has not performed a legal analysis and makes no representation or warranty as to the accuracy of the list.)
Okuma Corp
Original Assignee
Okuma Corp
Priority date (The priority date is an assumption and is not a legal conclusion. Google has not performed a legal analysis and makes no representation as to the accuracy of the date listed.)
Filing date
Publication date
Application filed by Okuma Corp filed Critical Okuma Corp
Priority to JP2007274061A priority Critical patent/JP5399624B2/en
Publication of JP2009104317A publication Critical patent/JP2009104317A/en
Application granted granted Critical
Publication of JP5399624B2 publication Critical patent/JP5399624B2/en
Active legal-status Critical Current
Anticipated expiration legal-status Critical

Links

Images

Classifications

    • GPHYSICS
    • G05CONTROLLING; REGULATING
    • G05BCONTROL OR REGULATING SYSTEMS IN GENERAL; FUNCTIONAL ELEMENTS OF SUCH SYSTEMS; MONITORING OR TESTING ARRANGEMENTS FOR SUCH SYSTEMS OR ELEMENTS
    • G05B19/00Programme-control systems
    • G05B19/02Programme-control systems electric
    • G05B19/18Numerical control [NC], i.e. automatically operating machines, in particular machine tools, e.g. in a manufacturing environment, so as to execute positioning, movement or co-ordinated operations by means of programme data in numerical form
    • G05B19/404Numerical control [NC], i.e. automatically operating machines, in particular machine tools, e.g. in a manufacturing environment, so as to execute positioning, movement or co-ordinated operations by means of programme data in numerical form characterised by control arrangements for compensation, e.g. for backlash, overshoot, tool offset, tool wear, temperature, machine construction errors, load, inertia
    • GPHYSICS
    • G05CONTROLLING; REGULATING
    • G05BCONTROL OR REGULATING SYSTEMS IN GENERAL; FUNCTIONAL ELEMENTS OF SUCH SYSTEMS; MONITORING OR TESTING ARRANGEMENTS FOR SUCH SYSTEMS OR ELEMENTS
    • G05B2219/00Program-control systems
    • G05B2219/30Nc systems
    • G05B2219/49Nc machine tool, till multiple
    • G05B2219/49209Compensation by using temperature feelers on slide, base, workhead
    • GPHYSICS
    • G05CONTROLLING; REGULATING
    • G05BCONTROL OR REGULATING SYSTEMS IN GENERAL; FUNCTIONAL ELEMENTS OF SUCH SYSTEMS; MONITORING OR TESTING ARRANGEMENTS FOR SUCH SYSTEMS OR ELEMENTS
    • G05B2219/00Program-control systems
    • G05B2219/30Nc systems
    • G05B2219/49Nc machine tool, till multiple
    • G05B2219/49219Compensation temperature, thermal displacement

Landscapes

  • Engineering & Computer Science (AREA)
  • Human Computer Interaction (AREA)
  • Manufacturing & Machinery (AREA)
  • Physics & Mathematics (AREA)
  • General Physics & Mathematics (AREA)
  • Automation & Control Theory (AREA)
  • Automatic Control Of Machine Tools (AREA)
  • Numerical Control (AREA)

Description

本発明は、工作機械等の制御のために用いられる数値制御方法及び数値制御装置に関する。   The present invention relates to a numerical control method and a numerical control device used for controlling a machine tool or the like.

図1は、並進軸および回転軸を有する5軸制御工作機械の模式図である。
図において1はフレームで、フレーム1の正面には主軸頭2が設けられている。この主軸頭2は、並進軸であって互いに直交するX軸、Z軸によって並進2自由度の運動が可能である。また、主軸頭2の下方に設けられるテーブル3は、トラニオン4を介してサドル5に支持されて、互いに直交する回転軸であるA軸、C軸によって回転2自由度の運動が可能で、並進軸でありX・Z軸に直交するY軸により並進1自由度の運動が可能となっている。各軸は後述する数値制御装置により制御されるサーボモータにより駆動され、被加工物をテーブル3に固定し、主軸頭2に工具を装着して回転させ、被加工物を任意の形状に加工する。
FIG. 1 is a schematic diagram of a 5-axis control machine tool having a translation axis and a rotation axis.
In the figure, reference numeral 1 denotes a frame, and a spindle head 2 is provided in front of the frame 1. The spindle head 2 is a translational axis and can move in two degrees of freedom of translation by means of an X axis and a Z axis orthogonal to each other. A table 3 provided below the spindle head 2 is supported by a saddle 5 via a trunnion 4 and can be moved with two degrees of freedom of rotation by the A and C axes, which are rotation axes orthogonal to each other. A Y-axis that is an axis and is orthogonal to the X and Z axes enables a translational motion with one degree of freedom. Each axis is driven by a servo motor controlled by a numerical controller described later, and the workpiece is fixed to the table 3, a tool is mounted on the spindle head 2, and the workpiece is rotated to process the workpiece into an arbitrary shape. .

このような5軸制御工作機械において、その運動精度及び運動精度が転写される被加工物の形状精度に影響を及ぼす要因の一つとして、例えば、回転軸と並進軸の平行度や各回転軸間の回転中心の不一致など製造、組立により発生する各軸間の幾何学的な誤差(以下、幾何誤差と呼ぶ)が大きな割合を占める場合がある。この幾何誤差を製造上無くすことは非常に困難であり、この幾何誤差を補償する手段として、特許文献1のような制御装置が提案されている。ここでは機械の幾何誤差を基に、工具とワークの相対関係が誤差のない機械と同じになるように各軸指令位置を補償して各軸を駆動している。
一方、他の要因として、並進軸の位置決め誤差、真直度誤差が挙げられる。各並進軸の位置決め誤差は、同軸の位置に依存して同軸方向に発生する誤差であり、真直度誤差は、各軸の位置に依存して他の2軸方向に発生する誤差であるため、併せて3軸方向に発生する位置決め誤差と考えることができる。そこで、特許文献2では、3次元格子状に可動空間を区切り、各格子交点に誤差ベクトルを設定し、各軸の位置とそれに対応する誤差ベクトルから3軸方向の誤差を算出して指令値を補償するようにしている。
また、その他の要因として、機械の動作に伴う変形誤差が挙げられる。例えば、5軸制御工作機械においてA軸を旋回させると重心位置が変化し、A軸の回転軸部材のねじれやこれらを支える部材の変形が生じる。また、テーブル上に搭載される被加工物の重量や重心が変化しても同様な変形が発生する。この変形誤差が主軸頭とテーブル間の相対誤差として現れる。この変形誤差のうち回転部材のねじれに対しては、公知である回転軸割り出し位置に対応した補償値を基に割り出し位置を補償することで精度良く割り出すことを可能にしている。
さらに、その他の要因として、機械の要素の発熱や環境温度変化による熱変位が挙げられる。特許文献3では、主軸頭側に回転軸を有する5軸機械において、主軸の回転による発熱が原因で主軸に熱変位が生じた場合に、温度センサの情報を基に熱変位量を推定し、その熱変位量を回転軸の位置に応じて各並進軸方向に分配して各軸を補償することで、精度良い制御を可能にしている。
In such a 5-axis control machine tool, as one of the factors that affect the accuracy of the motion and the shape accuracy of the workpiece to which the motion accuracy is transferred, for example, the parallelism between the rotation axis and the translation axis, and each rotation axis There may be a large proportion of geometrical errors between the axes (hereinafter referred to as geometrical errors) caused by manufacturing and assembly such as inconsistencies in the rotation center between them. It is very difficult to eliminate this geometric error in manufacturing, and as a means for compensating for this geometric error, a control device as in Patent Document 1 has been proposed. Here, based on the geometric error of the machine, each axis command position is compensated to drive each axis so that the relative relationship between the tool and the workpiece is the same as that of the machine having no error.
On the other hand, as other factors, there are translation axis positioning error and straightness error. The positioning error of each translation axis is an error that occurs in the coaxial direction depending on the coaxial position, and the straightness error is an error that occurs in the other two axis directions depending on the position of each axis. In addition, it can be considered as a positioning error that occurs in the three-axis directions. Therefore, in Patent Document 2, a movable space is divided into a three-dimensional lattice, an error vector is set at each lattice intersection, an error in three axes is calculated from the position of each axis and the corresponding error vector, and a command value is obtained. I am trying to compensate.
Another factor is a deformation error accompanying the operation of the machine. For example, when the A-axis is turned in a 5-axis control machine tool, the position of the center of gravity changes, and the A-axis rotating shaft member is twisted and the members supporting these are deformed. Further, the same deformation occurs even if the weight or the center of gravity of the work piece mounted on the table changes. This deformation error appears as a relative error between the spindle head and the table. Among the deformation errors, the twist of the rotating member can be accurately determined by compensating the index position based on a known compensation value corresponding to the rotation axis index position.
In addition, other factors include heat generated by machine elements and thermal displacement due to environmental temperature changes. In Patent Document 3, in a 5-axis machine having a rotating shaft on the spindle head side, when thermal displacement occurs in the main shaft due to heat generation due to rotation of the main shaft, the thermal displacement amount is estimated based on the information of the temperature sensor, The amount of thermal displacement is distributed in the direction of each translational axis in accordance with the position of the rotation axis, and each axis is compensated, thereby enabling accurate control.

特開2004−272887号公報JP 2004-272887 A 特許第3174704号公報Japanese Patent No. 3174704 特開平2−106252号公報JP-A-2-106252

しかし、各誤差を全て補償するためにはこれら全ての補償技術を併せて用いることとなりシステムが煩雑になるという課題がある。
また、変形誤差は回転軸部材のねじれだけではなく、変形する部材によっては複数の方向に誤差として現れるため、変形誤差を全て補償できないという課題がある。
さらに、熱変位においても、部材の変形が傾きの場合、加工物の形状精度に影響する度合いは各軸の位置により異なるため、十分な補償結果が得られないという課題もある。
However, in order to compensate all the errors, all these compensation techniques are used together, and there is a problem that the system becomes complicated.
In addition, the deformation error appears not only as a torsion of the rotary shaft member but also as an error in a plurality of directions depending on the member to be deformed.
Furthermore, even in the case of thermal displacement, when the deformation of the member is inclined, the degree of influence on the shape accuracy of the workpiece varies depending on the position of each axis, and thus there is a problem that a sufficient compensation result cannot be obtained.

そこで、本発明は、各誤差に対応した補償技術を併せて用いることなく、より簡単な構成で各種誤差を統合的に補償する機能を有する数値制御方法及び数値制御装置を提供することを目的とする。   Accordingly, an object of the present invention is to provide a numerical control method and a numerical control device having a function of comprehensively compensating various errors with a simpler configuration without using a compensation technique corresponding to each error. To do.

上記目的を達成するために、請求項1に記載の発明は、2軸以上の並進軸および1軸以上の回転軸を有し、工作物と工具とを相対運動させる機械を制御する数値制御方法であって、各軸の指令位置に従って各軸が動作した際に機械の各要素が変形して発生する変形誤差の推定値と、前記各軸の指令位置に対応し各軸方向に発生する位置決め誤差の推定値とを夫々演算し、前記各誤差の推定値を前記各軸間の幾何学的な相対誤差に変換し、前記指令位置での前記各誤差の推定値を含めた前記各軸間の幾何学的な相対誤差による工作物座標系における前記工具の位置誤差を、前記幾何学的な相対誤差を考慮した工具座標系から工作物座標系への同次座標変換により求めた前記幾何学的な相対誤差がある場合の工具の位置と、前記幾何学的な相対誤差を考慮しない工具座標系から工作物座標系への同次座標変換により求めた理想的な工具の位置と、から演算し、工作物座標系から指令値座標系への同次座標変換により前記位置誤差を各軸の指令値座標系に変換することで各軸の補償値を演算し、前記補償値を前記指令位置に加算して前記指令位置を更新することを特徴とする。
請求項2に記載の発明は、請求項1の構成において、熱変位による誤差も簡単に補償するために、変形誤差と位置決め誤差との推定値に加え、前記機械の各要素の熱変位の推定値を演算し、該熱変位の推定値も前記各軸間の幾何学的な相対誤差に変換し、前記指令位置での前記各誤差の推定値を含めた前記各軸間の幾何学的な相対誤差による工作物座標系における前記工具の位置誤差を演算することを特徴とする。
請求項3に記載の発明は、請求項1または2の構成において、誤差の補償精度をより向上させるために、前記変形誤差の推定値と、前記位置決め誤差の推定値と、前記熱変位の推定値との少なくとも1つについて各軸に対する補償値を演算し、該補償値を前記各軸間の幾何学的な相対誤差に対する補償値と共に前記指令位置に加算することを特徴とする。
In order to achieve the above object, the invention described in claim 1 is a numerical control method for controlling a machine having two or more translation axes and one or more rotation axes, and which relatively moves a workpiece and a tool. An estimated value of deformation error caused by deformation of each element of the machine when each axis is operated according to the command position of each axis, and positioning generated in each axis direction corresponding to the command position of each axis An error estimated value is calculated, the error estimated value is converted into a geometric relative error between the axes, and the error between the axes including the error estimated value at the command position is calculated. The position error of the tool in the workpiece coordinate system due to the geometric relative error of the geometry is obtained by the homogeneous coordinate transformation from the tool coordinate system to the workpiece coordinate system in consideration of the geometric relative error. Tool position when there is a relative error and the geometric relative error Calculating the position of an ideal tool as determined by the homogeneous coordinate transformation to the workpiece coordinate system from the tool coordinate system is not taken into consideration, from the position by the homogeneous coordinate transformation to the command value coordinate system from a workpiece coordinate system A compensation value for each axis is calculated by converting an error into a command value coordinate system for each axis, and the command position is updated by adding the compensation value to the command position.
According to a second aspect of the present invention, in the configuration of the first aspect, in order to easily compensate for errors due to thermal displacement, in addition to the estimated values of deformation error and positioning error, the thermal displacement of each element of the machine is estimated. A value is calculated, and the estimated value of the thermal displacement is also converted into a geometric relative error between the axes, and the geometric value between the axes including the estimated value of the errors at the command position is calculated. The position error of the tool in the workpiece coordinate system due to the relative error is calculated.
According to a third aspect of the present invention, in the configuration of the first or second aspect, in order to further improve error compensation accuracy, the deformation error estimation value, the positioning error estimation value, and the thermal displacement estimation A compensation value for each axis is calculated for at least one of the values, and the compensation value is added to the command position together with a compensation value for a geometric relative error between the axes.

上記目的を達成するために、請求項4に記載の発明は、2軸以上の並進軸および1軸以上の回転軸を有し、工作物と工具とを相対運動させる機械を制御する数値制御装置であって、各軸の指令位置を算出する指令位置算出手段と、前記指令位置に従って各軸が動作した際に機械の各要素が変形して発生する変形誤差の推定値を演算する変形誤差推定手段と、前記指令位置に対応し各軸方向に発生する位置決め誤差の推定値を演算する位置決め誤差推定手段と、前記各推定手段で得られた推定値を前記各軸間の幾何学的な相対誤差に変換し、前記指令位置での前記各誤差の推定値を含めた前記各軸間の幾何学的な相対誤差による工作物座標系における前記工具の位置誤差を、前記幾何学的な相対誤差を考慮した工具座標系から工作物座標系への同次座標変換により求めた前記幾何学的な相対誤差がある場合の工具の位置と、前記幾何学的な相対誤差を考慮しない工具座標系から工作物座標系への同次座標変換により求めた理想的な工具の位置と、から演算し、工作物座標系から指令値座標系への同次座標変換により前記位置誤差を各軸の指令値座標系に変換することで各軸の補償値を演算する幾何誤差補償値演算手段と、前記補償値を前記指令位置に加算して前記指令位置を更新する補償値加算手段と、を備えたことを特徴とする。
請求項5に記載の発明は、請求項4の構成において、熱変位による誤差も簡単に補償するために、前記機械の各要素の熱変位の推定値を演算する熱変位推定手段を備えて、前記幾何誤差補償値演算手段は、該熱変位の推定値も前記各軸間の幾何学的な相対誤差に変換し、前記指令位置での前記各誤差の推定値を含めた前記各軸間の幾何学的な相対誤差による工作物座標系における前記工具の位置誤差を演算することを特徴とする。
請求項6に記載の発明は、請求項4または5の構成において、誤差の補償精度をより向上させるために、前記変形誤差の各軸に対する補償値を演算する変形誤差補償値演算手段と、前記位置決め誤差の各軸に対する補償値を演算する位置決め誤差補償値演算手段と、前記熱変位の各軸に対する補償値を演算する熱変位補償値演算手段とのうち少なくとも1つを設けて、ここで得られる補償値も前記補償値加算手段において前記指令位置に加算することを特徴とする。
In order to achieve the above object, a fourth aspect of the present invention is a numerical control device for controlling a machine having two or more translation axes and one or more rotation axes, and relatively moving a workpiece and a tool. A command position calculating means for calculating a command position of each axis, and a deformation error estimation for calculating an estimated value of a deformation error generated by deformation of each element of the machine when each axis operates according to the command position. Means, positioning error estimating means for calculating an estimated value of a positioning error generated in each axis direction corresponding to the command position, and an estimated value obtained by each of the estimating means The position error of the tool in the workpiece coordinate system due to the geometric relative error between the axes including the estimated value of each error at the command position is converted into the error. From tool coordinate system to workpiece coordinate system The position of the tool when there is the geometric relative error obtained by the secondary coordinate transformation, and the ideal obtained by the homogeneous coordinate transformation from the tool coordinate system to the workpiece coordinate system that does not consider the geometric relative error. specific position of the tool, is calculated from, calculates the compensation value of each axis of the position error by homogeneous coordinate transformation to the command value coordinate system from a workpiece coordinate system by converting the command value coordinate system for each axis And a compensation value adding means for updating the command position by adding the compensation value to the command position.
According to a fifth aspect of the present invention, in the configuration of the fourth aspect, in order to easily compensate for an error due to thermal displacement, a thermal displacement estimation unit that calculates an estimated value of thermal displacement of each element of the machine is provided. The geometric error compensation value calculation means also converts the estimated value of the thermal displacement into a geometric relative error between the axes, and includes the estimated values of the errors at the command position. The position error of the tool in the workpiece coordinate system due to a geometric relative error is calculated.
According to a sixth aspect of the present invention, in the configuration of the fourth or fifth aspect, in order to further improve the error compensation accuracy, a deformation error compensation value calculating unit that calculates a compensation value for each axis of the deformation error; At least one of a positioning error compensation value computing means for computing a compensation value for each axis of positioning error and a thermal displacement compensation value computing means for computing a compensation value for each axis of the thermal displacement is provided and obtained here. The compensation value to be added is also added to the command position by the compensation value adding means.

請求項1及び4に記載の発明によれば、各誤差に対応した補償技術を併せて用いることなく、より簡単な構成で、幾何学的な誤差、変形誤差、位置決め誤差、熱変位を統合的に1つの補償システムで補償することができる。
また、従来補償できなかった変形誤差や傾きを伴う熱変位の補償が可能になり、機械を精度良く動作させることが可能になる。
請求項2及び5に記載の発明によれば、上記効果に加えて、熱変位の推定値も補償値の演算に利用することで、熱変位による誤差も簡単に補償可能となる。
請求項3及び6に記載の発明によれば、上記効果に加えて、各誤差の各軸に対する補償値を演算して指令位置に加算することで、誤差の補償精度をより向上させることができる。
According to the first and fourth aspects of the present invention, geometric errors, deformation errors, positioning errors, and thermal displacements can be integrated with a simpler configuration without using a compensation technique corresponding to each error. Can be compensated with one compensation system.
In addition, it becomes possible to compensate for thermal displacement accompanied by deformation errors and inclinations that could not be compensated conventionally, and the machine can be operated with high accuracy.
According to the second and fifth aspects of the invention, in addition to the above effect, the estimated value of the thermal displacement is also used for calculating the compensation value, so that an error due to the thermal displacement can be easily compensated.
According to the third and sixth aspects of the invention, in addition to the above-described effects, the compensation value of the error can be further improved by calculating the compensation value for each axis of each error and adding it to the command position. .

以下、本発明の実施の形態を図面に基づいて説明する。
[形態1]
ここでも本発明の対象となる機械の一例として、図1で示した5軸制御工作機械を用いて説明する。なお、本発明に関わる機械としては5軸に限定するものではなく、2軸以上の並進軸と1軸以上の回転軸を有するものであれば、工作機械に限らず、ロボット、産業機械、建築機械などでもよい。
まず、従来の数値制御装置のブロック図を図2に示す。
この数値制御装置には、各軸の所望の動作が記述された加工プログラム11が格納される。この加工プログラム11は、指令位置算出手段12により制御周期毎の各軸の指令位置に変換され、変換された指令位置は、サーボ指令値変換手段13にてサーボアンプ14に対する指令値に変換され、指令値を基に各軸のサーボアンプ14a〜14eにより各軸のサーボモータ15a〜15eが駆動されて所望の動作を行うことになる。
Hereinafter, embodiments of the present invention will be described with reference to the drawings.
[Form 1]
Here, as an example of the machine that is the subject of the present invention, description will be made using the 5-axis control machine tool shown in FIG. The machine according to the present invention is not limited to five axes, but is not limited to a machine tool as long as it has two or more translation axes and one or more rotation axes. It may be a machine.
First, a block diagram of a conventional numerical controller is shown in FIG.
The numerical control device stores a machining program 11 in which desired operations for each axis are described. This machining program 11 is converted into a command position for each axis for each control cycle by the command position calculation means 12, and the converted command position is converted into a command value for the servo amplifier 14 by the servo command value conversion means 13, Based on the command value, the servo amplifiers 14a to 14e of the respective axes drive the servo motors 15a to 15e of the respective axes to perform desired operations.

次に、本発明の数値制御装置のブロック図を図3に示す。ここでも図2と同様に指令位置算出手段12とサーボ指令値変換手段13とを備えている。なお、加工プログラム11、サーボアンプ14a〜14e、サーボモータ15a〜15eは簡略化のため図示を省略している。
ここでは、指令位置算出手段12より算出された指令位置を基に変形誤差推定手段18にて変形誤差の推定値が演算される。また、指令位置を基に位置決め誤差推定手段19にて位置決め誤差の推定値が演算される。さらに機械の各所に組み込んだ温度センサで計測した温度や指令情報を基に熱変位推定手段20にて熱変位の推定値が演算される。
これらの各推定値は機械の幾何誤差の一部として他の幾何誤差と共に扱われ、幾何誤差補償値演算手段16にて各軸に対する幾何誤差の補償値が演算される。この補償値を補償値加算手段17にて指令位置に加算することでサーボ指令値変換手段13に渡る指令位置が更新され、新しい指令位置を基に最終的にサーボモータ15a〜15eが制御される。
Next, a block diagram of the numerical controller of the present invention is shown in FIG. Here, similarly to FIG. 2, a command position calculation means 12 and a servo command value conversion means 13 are provided. The machining program 11, the servo amplifiers 14a to 14e, and the servo motors 15a to 15e are not shown for the sake of simplicity.
Here, based on the command position calculated by the command position calculation means 12, the deformation error estimation means 18 calculates the estimated value of the deformation error. Further, the positioning error estimation means 19 calculates an estimated value of the positioning error based on the command position. Further, an estimated value of the thermal displacement is calculated by the thermal displacement estimating means 20 based on the temperature measured by temperature sensors incorporated in various parts of the machine and the command information.
Each of these estimated values is handled together with other geometric errors as a part of the mechanical error of the machine, and the geometric error compensation value calculating means 16 calculates the geometric error compensation value for each axis. By adding this compensation value to the command position by the compensation value adding means 17, the command position over the servo command value converting means 13 is updated, and finally the servo motors 15a to 15e are controlled based on the new command position. .

次に、各推定手段18〜20及び幾何誤差補償値演算手段16による各種誤差の推定値および補償値の演算について説明する。
上述の工作機械では、主軸頭2およびテーブル3上にそれぞれ座標系を考慮しており、主軸頭2の座標系上の点、すなわち工具先端点ベクトルPをワーク座標系に変換する場合、X、Y、Z、A、C軸の指令位置を夫々x、y、z、a、cとすると、各軸の変換行列は数1の通りとなるため、数2を用いて同次座標変換を行うことができる。これにより誤差のない場合のワーク座標系での工具先端点ベクトルを求めることができる。
Next, calculation of estimated values and compensation values of various errors by the estimating means 18 to 20 and the geometric error compensation value calculating means 16 will be described.
In the above-described machine tool, the coordinate system is considered on the spindle head 2 and the table 3, respectively. When the point on the coordinate system of the spindle head 2, that is, the tool tip point vector TP is converted into the workpiece coordinate system, X If the command positions of the Y, Z, A, and C axes are x, y, z, a, and c, respectively, since the transformation matrix of each axis is as shown in Equation 1, homogeneous coordinate transformation is performed using Equation 2. It can be carried out. Thus, the tool tip point vector W P I in the workpiece coordinate system when there is no error can be obtained.

Figure 0005399624
Figure 0005399624

Figure 0005399624
Figure 0005399624

次に、機械に幾何誤差が存在する場合、各幾何誤差を各軸間の相対誤差として考え、各幾何誤差の並進誤差をδx、δy、δz、回転誤差をα、β、γとすると、数3のマトリックスεが幾何誤差による変換行列となり、これらを数2の各軸間に配置した数4とすることで、幾何誤差がある場合のワーク座標系での工具先端点ベクトルを求めることができる。ここで、各幾何誤差は実測により予め求めておく。 Next, when there is a geometric error in the machine, each geometric error is considered as a relative error between the axes, the translation error of each geometric error is δx, δy, δz, and the rotation error is α, β, γ, The matrix ε of 3 becomes a transformation matrix due to geometric error, and these are set to Equation 4 arranged between the axes of Equation 2 to obtain the tool tip point vector W P G in the workpiece coordinate system when there is a geometric error. be able to. Here, each geometric error is obtained in advance by actual measurement.

Figure 0005399624
Figure 0005399624

Figure 0005399624
Figure 0005399624

一方、X、Y、Z軸それぞれに真直度誤差、位置決め誤差がある場合、その誤差を曲線もしくは線分群として各軸指令位置に対する関数fとし、それを成分とした数5に示すマトリックスζを数2の該当軸に隣接して配置した数6とすることで、真直度誤差、位置決め誤差がある場合のワーク座標系での工具先端点ベクトルを求めることができる。ここで、真直度誤差や位置決め誤差の関数は、それぞれの推定値や実測値や解析値を用いることができ、離散値であれば点間を直線や曲線で補間する。 On the other hand, when there is a straightness error and a positioning error on each of the X, Y, and Z axes, the error is set as a function f for each axis command position as a curve or a line segment group, and the matrix ζ shown in Equation 5 is used as a component. with 6 disposed adjacent to the second corresponding axis, linearity errors, it is possible to obtain the tool center point vector W P P in the work coordinate system when there is positioning error. Here, as the functions of straightness error and positioning error, respective estimated values, actual measurement values, and analysis values can be used. If they are discrete values, the points are interpolated with straight lines or curves.

Figure 0005399624
Figure 0005399624

Figure 0005399624
Figure 0005399624

さらに、重力や摩擦力などの外力による変形誤差がある場合、その誤差を曲線もしくは線分群とし、A・C軸指令値位置およびテーブル上のワーク質量mおよび重心vなどに対する関数fとすると、それを要素とした数7に示すマトリックスξを用いて、変形誤差がある場合のワーク座標系での工具先端点ベクトルを数8から求めることができる。ここで、変形誤差の関数は推定値や実測値や解析値を用いることができ、離散値であれば点間を直線や曲線で補間する。 Further, when there is a deformation error due to an external force such as gravity or frictional force, the error is set as a curve or a line segment group, a function f G for the A / C axis command value position, the workpiece mass m W and the center of gravity v W on the table, etc. Then, the tool tip point vector W P P in the workpiece coordinate system when there is a deformation error can be obtained from Equation 8 using the matrix ξ G shown in Equation 7 using this as an element. Here, an estimated value, an actual measurement value, or an analysis value can be used as the deformation error function. If the function is a discrete value, the points are interpolated with straight lines or curves.

Figure 0005399624
Figure 0005399624

Figure 0005399624
Figure 0005399624

また、変形誤差は一部の幾何誤差として扱うことができる。例えば、ワークの積載によりA軸回転軸のねじれが発生した場合、A軸とY軸間の回転誤差αAY(幾何誤差変換行列εAYの成分)として扱うことができ、A・C軸指令位置およびテーブル上のワーク質量および重心などによりαAYを変更することで、該変形誤差がある場合のワーク座標系での工具先端点ベクトルを数4から求めることができる。
さらにまた、変形誤差の別の例として、ワークの積載によりトラニオン4が変形した場合、C軸とA軸間の並進誤差δxCA、δyCA、δzCA(幾何誤差変換行列εCAの成分)として扱うことができ、A・C軸指令位置およびテーブル上のワーク質量および重心などによりδxCA、δyCA、δzCAを変更することで、該変形誤差がある場合のワーク座標系での工具先端点ベクトルを数4から求めることができる。
Further, the deformation error can be treated as a part of geometric error. For example, when a twist of the A axis rotation axis occurs due to the loading of the workpiece, it can be handled as a rotation error α AY (component of geometric error conversion matrix ε AY ) between the A axis and the Y axis, and the A / C axis command position Further, by changing α AY according to the workpiece mass and the center of gravity on the table, the tool tip point vector in the workpiece coordinate system when there is the deformation error can be obtained from Equation 4.
Furthermore, as another example of the deformation error, when the trunnion 4 is deformed by loading a workpiece, the translation errors δx CA , δy CA , δz CA (components of the geometric error conversion matrix ε CA ) between the C axis and the A axis are used. Tool tip point in the workpiece coordinate system when there is a deformation error by changing δx CA , δy CA , δz CA by A / C axis command position and workpiece mass and center of gravity on table The vector can be obtained from Equation 4.

一方、熱変位がある場合、例えばC軸回転による発熱に起因したトラニオン4の熱変位はC軸とA軸間の並進幾何誤差δxCA、δyCA、δzCAとして扱うことができ、従来技術により推定した熱変位の推定値を用いてδxCA、δyCA、δzCAを更新することで、該熱変位がある場合のワーク座標系での工具先端点ベクトルを数4から求めることができる。
また、別の例として、環境温度変化によりフレーム1が変形し、Z軸を支える部材が変位しながらX軸周りに傾いた場合、Z軸とX軸の間の並進誤差δyXY、回転誤差αXZ(幾何誤差変換行列εXZの成分)として扱うことができ、推定した熱変位を用いてδyXY、回転誤差αXZを更新することで該熱変位がある場合のワーク座標系での工具先端点ベクトルを数4から求めることができる。
On the other hand, when there is a thermal displacement, for example, the thermal displacement of the trunnion 4 caused by the heat generated by the C-axis rotation can be handled as translational geometric errors δx CA , δy CA , δz CA between the C-axis and the A-axis. By updating δx CA , δy CA , δz CA using the estimated value of the estimated thermal displacement, the tool tip point vector in the workpiece coordinate system when there is the thermal displacement can be obtained from Equation 4.
As another example, when the frame 1 is deformed by a change in environmental temperature and the member supporting the Z axis is tilted around the X axis while being displaced, the translation error δy XY between the Z axis and the X axis, and the rotation error α XZ (geometric error transformation matrix ε XZ component) can be handled as a tool tip in the workpiece coordinate system when there is thermal displacement by updating δy XY and rotation error α XZ using the estimated thermal displacement A point vector can be obtained from Equation 4.

上述の各種誤差によるワーク座標系での工具先端点の誤差ベクトルは、各種誤差がある場合のワーク座標系での工具先端点ベクトルとの差分から求めることができる。一方、各種誤差に対するX,Y,Z軸の補償値は、指令値座標系上の工具先端点の誤差ベクトルである。指令値座標系は一例として挙げた5軸制御工作機械の場合、C軸とY軸の間にあると考えることができるため、各種誤差に対するX、Y、Z軸の補償値Δx、Δy、Δzは数9から求めることができる。 The error vector of the tool tip point in the workpiece coordinate system due to the above-described various errors can be obtained from the difference between the tool tip point vectors W P * and W P I in the workpiece coordinate system when there are various errors. On the other hand, the X, Y, and Z axis compensation values for various errors are error vectors at the tool tip on the command value coordinate system. In the case of the 5-axis control machine tool given as an example, the command value coordinate system can be considered to be between the C-axis and the Y-axis, and therefore the X, Y, and Z-axis compensation values Δx * and Δy * for various errors . , Δz * can be obtained from Equation 9.

Figure 0005399624
Figure 0005399624

また、上述の各種誤差が全てある場合のワーク座標系での工具先端点ベクトルallは全ての誤差行列を用いた数10からまとめて求めることができる。 Further, the tool tip point vector W P all in the workpiece coordinate system in the case where all the above-described various errors are present can be obtained collectively from Expression 10 using all error matrices.

Figure 0005399624
Figure 0005399624

したがって、上述の全ての誤差に対するX、Y、Z軸の補償値Δx、Δy、Δzは数11から求めることができる。   Therefore, the X, Y, and Z axis compensation values Δx, Δy, and Δz for all the errors described above can be obtained from Equation 11.

Figure 0005399624
Figure 0005399624

次に、回転軸A、C軸の補償値を求める場合について説明する。まず工具座標系での工具姿勢ベクトルVを数12とする。 Next, the case where the compensation values for the rotation axes A and C are obtained will be described. First the tool posture vector T V in the tool coordinate system and the number 12.

Figure 0005399624
Figure 0005399624

上述の全ての誤差がある場合のワーク座標系での工具姿勢ベクトルは数13にて求めることができる。ここで、Mallは数10のものを再利用することで効率的に計算することができる。 The tool posture vector W V G in the workpiece coordinate system in the case where all the errors described above are present can be obtained by Expression 13. Here, M all can be efficiently calculated by reusing the number 10 equation .

Figure 0005399624
Figure 0005399624

さらに、A,C軸の補償値は数14を用いてワーク座標系での誤差を含んだ工具姿勢ベクトルを工具座標系に変換することで求めることができる。 Further, the compensation values for the A and C axes can be obtained by converting the tool posture vector W V G including an error in the workpiece coordinate system into the tool coordinate system using Equation 14.

Figure 0005399624
Figure 0005399624

従って、A,C軸の補償値Δa、Δcは数15から求めることができる。ここで、数15からわかるようにA軸指令値が0の場合、C軸補償値Δcは求めることができず、小さい場合は非常に大きな補償値となるため、C軸の補償はしない、若しくはA軸指令値によりC軸の補償有無を選択してもよい。また、回転軸補償値の計算は4×4行列若しくは4×1行列として行ったが、夫々3×3行列若しくは3×1行列であるとして計算してもよい。   Accordingly, the compensation values Δa and Δc for the A and C axes can be obtained from Equation 15. Here, as can be seen from Equation 15, when the A-axis command value is 0, the C-axis compensation value Δc cannot be obtained, and when it is small, the compensation value is very large. Whether or not the C axis is compensated may be selected according to the A axis command value. Further, although the rotation axis compensation value is calculated as a 4 × 4 matrix or a 4 × 1 matrix, it may be calculated as a 3 × 3 matrix or a 3 × 1 matrix, respectively.

Figure 0005399624
Figure 0005399624

このように、上記形態1の数値制御方法及び数値制御装置によれば、各軸の指令位置に従って各軸が動作した際に工作機械の各要素が変形して発生する変形誤差の推定値と、各軸の指令位置に対応し各軸方向に発生する位置決め誤差の推定値とを夫々演算し、各誤差の推定値を工作機械の幾何学的な誤差の一部とみなし、当該一部を含めて指令位置での工作機械の幾何学的な誤差による各軸方向の誤差を演算して該誤差の各軸に対する補償値を演算し、その補償値を指令位置に加算して指令位置を更新することで、各誤差に対応した補償技術を併せて用いることなく、より簡単な構成で、各誤差を統合的に1つの補償システムで補償することができる。また、従来補償できなかった変形誤差の補償が可能になり、機械を精度良く動作させることが可能になる。
特にここでは、変形誤差と位置決め誤差との推定値に加え、工作機械の各要素の熱変位の推定値を演算し、該熱変位の推定値も幾何学的な誤差の一部とみなして、指令位置での工作機械の幾何学的な誤差による各軸方向の誤差を演算しているため、熱変位による誤差も簡単に補償可能となっている。
As described above, according to the numerical control method and the numerical control device of the first aspect, when each axis is operated according to the command position of each axis, the estimated value of the deformation error generated by the deformation of each element of the machine tool, Calculate the estimated value of the positioning error that occurs in the direction of each axis corresponding to the command position of each axis, consider each estimated value of error as a part of the geometric error of the machine tool, and include that part. Then, an error in each axis direction due to a geometric error of the machine tool at the command position is calculated to calculate a compensation value for each axis of the error, and the command value is updated by adding the compensation value to the command position. Thus, each error can be compensated in an integrated manner by a single compensation system with a simpler configuration without using a compensation technique corresponding to each error. Further, it becomes possible to compensate for deformation errors that could not be compensated conventionally, and the machine can be operated with high accuracy.
In particular, here, in addition to the estimated values of the deformation error and the positioning error, the estimated value of the thermal displacement of each element of the machine tool is calculated, and the estimated value of the thermal displacement is also regarded as a part of the geometric error, Since the error in each axial direction due to the geometric error of the machine tool at the command position is calculated, the error due to thermal displacement can be easily compensated.

[形態2]
次に、他の形態について説明する。
図4は、本形態2の数値制御装置のブロック図で、幾何誤差補償値演算手段16や補償値加算手段17、各推定手段18〜20を備えた点は形態1と同じであるが、ここでは変形誤差補償値演算手段21、位置決め誤差補償値演算手段22、熱変位補償値演算手段23を夫々設けて、変形誤差推定手段18により求められた変形誤差推定値の一部から変形誤差補償値演算手段21にて変形誤差補償値を演算し、位置決め誤差推定手段19により求められた位置決め誤差推定値の一部から位置決め誤差補償値演算手段22にて位置決め誤差補償値を演算し、熱変位推定手段20により求められた熱変位推定値の一部から熱変位補償値演算手段23にて熱変位補償値を演算して、各補償値を補償値加算手段17で指令位置に加算するようになっている。すなわち、各補償値を幾何誤差補償値演算手段16により演算された幾何誤差補償値と共に指令位置に加算することで、サーボ指令値変換手段13に渡る指令位置を更新するようにしたものである。
[Form 2]
Next, another embodiment will be described.
FIG. 4 is a block diagram of the numerical controller according to the second embodiment, which is the same as the first embodiment in that the geometric error compensation value calculating means 16, the compensation value adding means 17, and the estimating means 18 to 20 are provided. Then, a deformation error compensation value calculation means 21, a positioning error compensation value calculation means 22, and a thermal displacement compensation value calculation means 23 are provided, respectively, and a deformation error compensation value is obtained from a part of the deformation error estimation value obtained by the deformation error estimation means 18. The deformation error compensation value is calculated by the calculation means 21, the positioning error compensation value is calculated by the positioning error compensation value calculation means 22 from a part of the positioning error estimation value obtained by the positioning error estimation means 19, and the thermal displacement is estimated. The thermal displacement compensation value is calculated by the thermal displacement compensation value calculation means 23 from a part of the estimated thermal displacement value obtained by the means 20, and each compensation value is added to the command position by the compensation value addition means 17. The That. That is, by adding each compensation value to the command position together with the geometric error compensation value calculated by the geometric error compensation value calculation means 16, the command position over the servo command value conversion means 13 is updated.

よって、この形態2の数値制御装置及び数値制御方法においても、各誤差に対応した補償技術を併せて用いることなく、より簡単な構成で、各誤差を統合的に1つの補償システムで補償することができると共に、従来補償できなかった変形誤差の補償が可能になり、機械を精度良く動作させることが可能になる、という形態1と同様の効果を奏する。
特にここでは、変形誤差の推定値と、位置決め誤差の推定値と、熱変位の推定値とについて各軸に対する補償値を演算し、該補償値を幾何学的な誤差に対する補償値と共に指令位置に加算しているので、形態1に比較して補償の精度がより向上する利点がある。
Therefore, even in the numerical control device and the numerical control method according to the second embodiment, each error can be compensated by a single compensation system with a simpler configuration without using a compensation technique corresponding to each error. In addition, it is possible to compensate for deformation errors that could not be compensated in the past, and to achieve the same effect as in the first mode in which the machine can be operated with high accuracy.
In particular, here, a compensation value for each axis is calculated with respect to an estimated value of deformation error, an estimated value of positioning error, and an estimated value of thermal displacement, and the compensation value together with the compensation value for the geometric error is calculated at the command position. Since the addition is performed, there is an advantage that the accuracy of compensation is further improved as compared with the first mode.

なお、上記形態1,2では、変形誤差と、位置決め誤差と、熱変位誤差との夫々の推定値を演算しているが、対象機械において熱変位が無視できる程度であれば、熱変位誤差の推定値の演算を省略して、変形誤差と位置決め誤差との推定値のみを利用しても差し支えない。
また、形態2では、変形誤差、位置決め誤差、熱変位夫々において補償値演算手段を設けているが、全て設ける必要はなく、少なくとも1つ設けて補償値を加算するようにしても、補償精度の向上は期待できる。
In the first and second embodiments, the estimated values of the deformation error, the positioning error, and the thermal displacement error are calculated, but if the thermal displacement is negligible in the target machine, the thermal displacement error The calculation of the estimated value may be omitted, and only the estimated value of the deformation error and the positioning error may be used.
In the second embodiment, the compensation value calculation means is provided for each of the deformation error, the positioning error, and the thermal displacement. However, it is not necessary to provide all of them. Improvement can be expected.

X軸、Y軸、Z軸の並進軸およびA軸、C軸の回転軸を有する5軸制御工作機械の模式図である。It is a schematic diagram of a 5-axis control machine tool having X-axis, Y-axis, and Z-axis translation axes and A-axis and C-axis rotation axes. 従来の数値制御装置のブロック図である。It is a block diagram of the conventional numerical control apparatus. 形態1の数値制御装置のブロック図である。It is a block diagram of the numerical control apparatus of form 1. 形態2の数値制御装置のブロック図である。It is a block diagram of the numerical control apparatus of form 2.

符号の説明Explanation of symbols

1・・フレーム、2・・主軸頭、3・・テーブル、4・・トラニオン、5・・サドル、14a〜14e・・サーボアンプ、15a〜15e・・サーボモータ、16・・幾何誤差補償値演算手段、17・・補償値加算手段、18・・変形誤差推定手段、19・・位置決め誤差推定手段、20・・熱変位推定手段、21・・変形誤差補償値演算手段、22・・位置決め誤差補償値演算手段、23・・熱変位補償値演算手段。   1 ·· Frame, 2 ·· Spindle head, 3 · Table, 4 · Trunnion, 5 ·· Saddle, 14a to 14e · · Servo amplifier, 15a to 15e · · Servo motor, 16 ··· Geometric error compensation value calculation Means 17 ··· Compensation value adding means 18 ··· Deformation error estimation means 19 ··· Positioning error estimation means 20 ··· Thermal displacement estimation means 21 ··· Deformation error compensation value calculation means 22 ··· Positioning error compensation Value calculation means, 23... Thermal displacement compensation value calculation means.

Claims (6)

2軸以上の並進軸および1軸以上の回転軸を有し、工作物と工具とを相対運動させる機械を制御する数値制御方法であって、
各軸の指令位置に従って各軸が動作した際に機械の各要素が変形して発生する変形誤差の推定値と、前記各軸の指令位置に対応し各軸方向に発生する位置決め誤差の推定値とを夫々演算し、
前記各誤差の推定値を前記各軸間の幾何学的な相対誤差に変換し、前記指令位置での前記各誤差の推定値を含めた前記各軸間の幾何学的な相対誤差による工作物座標系における前記工具の位置誤差を、前記幾何学的な相対誤差を考慮した工具座標系から工作物座標系への同次座標変換により求めた前記幾何学的な相対誤差がある場合の工具の位置と、前記幾何学的な相対誤差を考慮しない工具座標系から工作物座標系への同次座標変換により求めた理想的な工具の位置と、から演算し、
工作物座標系から指令値座標系への同次座標変換により前記位置誤差を各軸の指令値座標系に変換することで各軸の補償値を演算し、
前記補償値を前記指令位置に加算して前記指令位置を更新する
ことを特徴とする数値制御方法。
A numerical control method for controlling a machine having two or more translation axes and one or more rotation axes, and relatively moving a workpiece and a tool,
Estimated value of deformation error that occurs when each element of the machine is deformed when each axis operates according to the command position of each axis, and estimated value of positioning error that occurs in each axis direction corresponding to the command position of each axis And calculate
The workpiece by converting the estimated value of each error into a geometric relative error between the axes and including the estimated value of each error at the command position. The position error of the tool in the coordinate system is determined when there is the geometric relative error obtained by the homogeneous coordinate transformation from the tool coordinate system to the workpiece coordinate system in consideration of the geometric relative error. Calculating from the position and the ideal tool position obtained by the homogeneous coordinate transformation from the tool coordinate system to the workpiece coordinate system without considering the geometric relative error ,
By calculating the compensation value of each axis by converting the position error to the command value coordinate system of each axis by homogeneous coordinate conversion from the workpiece coordinate system to the command value coordinate system ,
A numerical control method comprising: updating the command position by adding the compensation value to the command position.
前記変形誤差と位置決め誤差との推定値に加え、前記機械の各要素の熱変位の推定値を演算し、該熱変位の推定値も前記各軸間の幾何学的な相対誤差に変換し、前記指令位置での前記各誤差の推定値を含めた前記各軸間の幾何学的な相対誤差による工作物座標系における前記工具の位置誤差を演算することを特徴とする請求項1に記載の数値制御方法。   In addition to the estimated values of the deformation error and positioning error, the thermal displacement estimated value of each element of the machine is calculated, and the estimated value of the thermal displacement is also converted into a geometric relative error between the axes, 2. The position error of the tool in the workpiece coordinate system based on a geometric relative error between the axes including the estimated value of the error at the command position is calculated. Numerical control method. 前記変形誤差の推定値と、前記位置決め誤差の推定値と、前記熱変位の推定値との少なくとも1つについて各軸に対する補償値を演算し、該補償値を前記各軸間の幾何学的な相対誤差に対する補償値と共に前記指令位置に加算することを特徴とする請求項1または2に記載の数値制御方法。   A compensation value for each axis is calculated for at least one of the estimated value of the deformation error, the estimated value of the positioning error, and the estimated value of the thermal displacement, and the compensation value is calculated based on the geometric value between the axes. The numerical control method according to claim 1, wherein the value is added to the command position together with a compensation value for a relative error. 2軸以上の並進軸および1軸以上の回転軸を有し、工作物と工具とを相対運動させる機械を制御する数値制御装置であって、
各軸の指令位置を算出する指令位置算出手段と、
前記指令位置に従って各軸が動作した際に機械の各要素が変形して発生する変形誤差の推定値を演算する変形誤差推定手段と、
前記指令位置に対応し各軸方向に発生する位置決め誤差の推定値を演算する位置決め誤差推定手段と、
前記各推定手段で得られた推定値を前記各軸間の幾何学的な相対誤差に変換し、前記指令位置での前記各誤差の推定値を含めた前記各軸間の幾何学的な相対誤差による工作物座標系における前記工具の位置誤差を、前記幾何学的な相対誤差を考慮した工具座標系から工作物座標系への同次座標変換により求めた前記幾何学的な相対誤差がある場合の工具の位置と、前記幾何学的な相対誤差を考慮しない工具座標系から工作物座標系への同次座標変換により求めた理想的な工具の位置と、から演算し、工作物座標系から指令値座標系への同次座標変換により前記位置誤差を各軸の指令値座標系に変換することで各軸の補償値を演算する幾何誤差補償値演算手段と、
前記補償値を前記指令位置に加算して前記指令位置を更新する補償値加算手段と、
を備えたことを特徴とする数値制御装置。
A numerical control device for controlling a machine having two or more translation axes and one or more rotation axes, and relatively moving a workpiece and a tool,
Command position calculating means for calculating the command position of each axis;
Deformation error estimating means for calculating an estimated value of a deformation error generated by deformation of each element of the machine when each axis is operated according to the command position;
Positioning error estimating means for calculating an estimated value of positioning error generated in each axis direction corresponding to the command position;
The estimated value obtained by each of the estimating means is converted into a geometric relative error between the axes, and the geometric relative between the axes including the estimated value of the errors at the command position. There is the geometric relative error obtained by the homogeneous coordinate transformation from the tool coordinate system to the workpiece coordinate system in consideration of the geometric relative error as the tool position error due to the error. Calculated from the tool position in this case and the ideal tool position obtained by the homogeneous coordinate transformation from the tool coordinate system to the workpiece coordinate system not considering the geometric relative error, and the workpiece coordinate system Geometric error compensation value computing means for computing a compensation value for each axis by transforming the position error into a command value coordinate system for each axis by homogeneous coordinate transformation from to command value coordinate system ;
Compensation value adding means for adding the compensation value to the command position and updating the command position;
A numerical control device comprising:
前記機械の各要素の熱変位の推定値を演算する熱変位推定手段を備えて、前記幾何誤差補償値演算手段は、該熱変位の推定値も前記各軸間の幾何学的な相対誤差に変換し、前記指令位置での前記各誤差の推定値を含めた前記各軸間の幾何学的な相対誤差による工作物座標系における前記工具の位置誤差を演算することを特徴とする請求項4に記載の数値制御装置。   Thermal displacement estimation means for calculating an estimated value of thermal displacement of each element of the machine, and the geometric error compensation value calculating means converts the estimated value of thermal displacement into a geometric relative error between the axes. 5. The position error of the tool in the workpiece coordinate system is calculated by converting and calculating a geometric relative error between the axes including an estimated value of the error at the command position. The numerical control device described in 1. 前記変形誤差の各軸に対する補償値を演算する変形誤差補償値演算手段と、前記位置決め誤差の各軸に対する補償値を演算する位置決め誤差補償値演算手段と、前記熱変位の各軸に対する補償値を演算する熱変位補償値演算手段とのうち少なくとも1つを設けて、ここで得られる補償値も前記補償値加算手段において前記指令位置に加算することを特徴とする請求項4または5に記載の数値制御装置。   Deformation error compensation value computing means for computing a compensation value for each axis of the deformation error, positioning error compensation value computing means for computing a compensation value for each axis of the positioning error, and compensation values for each axis of the thermal displacement. 6. The thermal displacement compensation value computing means for computing, wherein at least one of them is provided, and the compensation value obtained here is also added to the command position by the compensation value adding means. Numerical control unit.
JP2007274061A 2007-10-22 2007-10-22 Numerical control method and numerical control device Active JP5399624B2 (en)

Priority Applications (1)

Application Number Priority Date Filing Date Title
JP2007274061A JP5399624B2 (en) 2007-10-22 2007-10-22 Numerical control method and numerical control device

Applications Claiming Priority (1)

Application Number Priority Date Filing Date Title
JP2007274061A JP5399624B2 (en) 2007-10-22 2007-10-22 Numerical control method and numerical control device

Publications (2)

Publication Number Publication Date
JP2009104317A JP2009104317A (en) 2009-05-14
JP5399624B2 true JP5399624B2 (en) 2014-01-29

Family

ID=40705938

Family Applications (1)

Application Number Title Priority Date Filing Date
JP2007274061A Active JP5399624B2 (en) 2007-10-22 2007-10-22 Numerical control method and numerical control device

Country Status (1)

Country Link
JP (1) JP5399624B2 (en)

Families Citing this family (19)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
JP2011140098A (en) * 2010-01-08 2011-07-21 Mitsubishi Heavy Ind Ltd Machine displacement correction system for machine tool
CN103328155B (en) * 2011-01-26 2016-06-15 三菱电机株式会社 Error display device and error display method
JP5713764B2 (en) * 2011-04-04 2015-05-07 オークマ株式会社 Correction value calculation method and program for machine tool
US9002503B2 (en) 2011-04-04 2015-04-07 Okuma Corporation Method and program for calculating correction value for machine tool
JP5789114B2 (en) 2011-04-04 2015-10-07 オークマ株式会社 Correction value calculation method and program for machine tool
JP5764366B2 (en) * 2011-04-04 2015-08-19 オークマ株式会社 Correction value calculation method and program for machine tool
JP2012248098A (en) * 2011-05-30 2012-12-13 Okuma Corp Error compensation value calculation method for machine
JP5788260B2 (en) * 2011-08-01 2015-09-30 ファナック株式会社 Numerical control device with error correction unit
KR101997923B1 (en) * 2011-12-23 2019-07-09 두산공작기계 주식회사 Method for compensating deflection of tool
JP2015191306A (en) 2014-03-27 2015-11-02 オークマ株式会社 Control method of machine tool, and control device
JP6184363B2 (en) 2014-03-31 2017-08-23 オークマ株式会社 Method and apparatus for controlling machine tool
CN104267667B (en) * 2014-09-04 2017-05-10 武汉理工大学 Embedded thermal error real-time compensation controller of numerical control machine tool
CN105302068B (en) * 2015-11-12 2017-10-20 西安交通大学 A kind of design method for improving machine finish
JP6942577B2 (en) 2017-09-15 2021-09-29 オークマ株式会社 Numerical control device and numerical control method for machine tools
CN109571898B (en) * 2018-11-28 2020-03-20 宁波安信数控技术有限公司 Precision compensation system and method for manipulator of injection molding machine
CN111273606B (en) * 2020-03-09 2022-06-10 西南交通大学 Tool posture optimization method for geometric error compensation of five-axis machine tool
CN112783087A (en) * 2020-12-25 2021-05-11 珠海格力智能装备有限公司 Method and device for processing shaft elongation, storage medium and processor
CN113359609B (en) * 2021-07-06 2022-05-31 宁波大学 Key geometric error optimization proportioning compensation method for five-axis numerical control machine tool
CN114115130B (en) * 2021-11-25 2024-02-06 济南二机床集团有限公司 Automatic geometric precision compensation method for accessory milling head of numerical control machine tool equipment

Family Cites Families (6)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
JPH02106252A (en) * 1988-10-13 1990-04-18 Mitsubishi Heavy Ind Ltd Numerically controlled machine tool with thermal displacement correcting function
JPH05228790A (en) * 1992-02-19 1993-09-07 Kobe Steel Ltd Correcting method for machine parameter of machine tool and device thereof
JP3263175B2 (en) * 1993-04-16 2002-03-04 株式会社ダイヘン Installation error calibration method and calibration control device for industrial robot system
JP3174704B2 (en) * 1994-11-29 2001-06-11 ファナック株式会社 Numerical controller with position error correction function
JP2002215211A (en) * 2001-01-16 2002-07-31 Yaskawa Electric Corp Numerical controller
JP4038185B2 (en) * 2003-02-19 2008-01-23 ファナック株式会社 Numerical control method

Also Published As

Publication number Publication date
JP2009104317A (en) 2009-05-14

Similar Documents

Publication Publication Date Title
JP5399624B2 (en) Numerical control method and numerical control device
Lee et al. Accuracy improvement of miniaturized machine tool: geometric error modeling and compensation
US11498179B2 (en) Direct pose feedback control method and direct pose feedback controlled machine
JP5030653B2 (en) Numerical control machine tool and numerical control device
JP6942577B2 (en) Numerical control device and numerical control method for machine tools
JP2021098268A (en) Drive device, robot device, product manufacturing method, control method, control program, and recording medium
JP5418272B2 (en) Thermal displacement correction method and thermal displacement correction apparatus for machine tool
KR102312368B1 (en) System, method for controlling redundant robot, and a recording medium having computer readable program for executing the method
JP5968749B2 (en) Geometric error identification method and numerical control method, numerical control apparatus and machining center using the geometric error identification method
JP2012248098A (en) Error compensation value calculation method for machine
JP2006065716A (en) Correction method for deformation error
JP2015109023A (en) Multi-shaft machine tool geometrical error identification method and multi-shaft machine tool
JP2001157975A (en) Robot control device
US6456897B1 (en) Control method and numerical control for motion control of industrial machine tools
JP5713764B2 (en) Correction value calculation method and program for machine tool
JP2009009274A (en) Numerical controller
JP4984114B2 (en) Spatial 3-DOF parallel mechanism and multi-axis control machine tool using the spatial 3-DOF parallel mechanism
JP2009271685A (en) Controller for three-axis tool unit and processing machine
JP5071250B2 (en) Parallel mechanism and calibration method thereof
US6539274B1 (en) Method for compensating for temperature-related dimensional deviations in machine geometry
JP5956952B2 (en) Numerically controlled machine tool
Tang et al. Deformation error prediction and compensation for robot multi-axis milling
JP5764366B2 (en) Correction value calculation method and program for machine tool
JP2015009352A (en) Thermal displacement correction method and thermal displacement correction device
JP2012033203A (en) Numerical control machine tool

Legal Events

Date Code Title Description
A621 Written request for application examination

Free format text: JAPANESE INTERMEDIATE CODE: A621

Effective date: 20100729

A977 Report on retrieval

Free format text: JAPANESE INTERMEDIATE CODE: A971007

Effective date: 20110131

A131 Notification of reasons for refusal

Free format text: JAPANESE INTERMEDIATE CODE: A131

Effective date: 20111004

A521 Written amendment

Free format text: JAPANESE INTERMEDIATE CODE: A523

Effective date: 20111124

A131 Notification of reasons for refusal

Free format text: JAPANESE INTERMEDIATE CODE: A131

Effective date: 20120605

A521 Written amendment

Free format text: JAPANESE INTERMEDIATE CODE: A523

Effective date: 20120803

A02 Decision of refusal

Free format text: JAPANESE INTERMEDIATE CODE: A02

Effective date: 20130226

A521 Written amendment

Free format text: JAPANESE INTERMEDIATE CODE: A523

Effective date: 20130524

A911 Transfer of reconsideration by examiner before appeal (zenchi)

Free format text: JAPANESE INTERMEDIATE CODE: A911

Effective date: 20130603

TRDD Decision of grant or rejection written
A01 Written decision to grant a patent or to grant a registration (utility model)

Free format text: JAPANESE INTERMEDIATE CODE: A01

Effective date: 20130924

A61 First payment of annual fees (during grant procedure)

Free format text: JAPANESE INTERMEDIATE CODE: A61

Effective date: 20131024

R150 Certificate of patent or registration of utility model

Ref document number: 5399624

Country of ref document: JP

Free format text: JAPANESE INTERMEDIATE CODE: R150

Free format text: JAPANESE INTERMEDIATE CODE: R150