WO2012033187A1 - Method for producing optically active 2-aminobutyric acid - Google Patents

Method for producing optically active 2-aminobutyric acid Download PDF

Info

Publication number
WO2012033187A1
WO2012033187A1 PCT/JP2011/070575 JP2011070575W WO2012033187A1 WO 2012033187 A1 WO2012033187 A1 WO 2012033187A1 JP 2011070575 W JP2011070575 W JP 2011070575W WO 2012033187 A1 WO2012033187 A1 WO 2012033187A1
Authority
WO
WIPO (PCT)
Prior art keywords
optically active
aminobutyric acid
acid
tartaric acid
aminobutyric
Prior art date
Application number
PCT/JP2011/070575
Other languages
French (fr)
Japanese (ja)
Inventor
哲雄 安藤
井上 敦
将紀 杉田
Original Assignee
三菱瓦斯化学株式会社
Priority date (The priority date is an assumption and is not a legal conclusion. Google has not performed a legal analysis and makes no representation as to the accuracy of the date listed.)
Filing date
Publication date
Application filed by 三菱瓦斯化学株式会社 filed Critical 三菱瓦斯化学株式会社
Publication of WO2012033187A1 publication Critical patent/WO2012033187A1/en

Links

Classifications

    • CCHEMISTRY; METALLURGY
    • C07ORGANIC CHEMISTRY
    • C07CACYCLIC OR CARBOCYCLIC COMPOUNDS
    • C07C227/00Preparation of compounds containing amino and carboxyl groups bound to the same carbon skeleton
    • C07C227/30Preparation of optical isomers
    • C07C227/34Preparation of optical isomers by separation of optical isomers
    • CCHEMISTRY; METALLURGY
    • C07ORGANIC CHEMISTRY
    • C07BGENERAL METHODS OF ORGANIC CHEMISTRY; APPARATUS THEREFOR
    • C07B57/00Separation of optically-active compounds
    • CCHEMISTRY; METALLURGY
    • C07ORGANIC CHEMISTRY
    • C07BGENERAL METHODS OF ORGANIC CHEMISTRY; APPARATUS THEREFOR
    • C07B2200/00Indexing scheme relating to specific properties of organic compounds
    • C07B2200/07Optical isomers

Definitions

  • the present invention relates to a process for producing optically active 2-aminobutyric acid.
  • Optically active 2-aminobutyric acid is well known as an intermediate for producing pharmaceuticals, agricultural chemicals and industrial chemicals. For example, it can be used as a raw material for the antiepileptic drug levetiracetam.
  • Examples of the production method using an enzymatic reaction include a method of obtaining D-2-aminobutyric acid by reacting hydantoinase with 5-ethylhydantoin, or an optically active 2-aminobutyric acid by reacting 2-aminobutyric acid amide with amidase.
  • the method of obtaining is known.
  • the method using an enzyme reaction is generally slow, and the desired optically active 2-aminobutyric acid stereo is limited by the stereoselectivity of the enzyme.
  • impurities derived from microorganisms may be mixed. For this reason, the removal operation of microorganisms is needed and a process becomes complicated.
  • a method of preferential crystallization using 2-aminobutyric acid as p-toluenesulfonate is known.
  • a method of utilizing optical resolution by a resolving agent a diastereomeric method is known in which a fractional crystallization is performed by forming a diastereomeric salt using an optically active 2-phenoxypropionic acid derivative as a resolving agent.
  • the yield of the target optically active 2-aminobutyric acid is limited to 50%.
  • the target steric enantiomer remains only by preferential crystallization or optical resolution with a resolving agent, it is difficult to obtain optically active 2-aminobutyric acid with high optical purity. Therefore, the optical purity must be further improved by a refining operation such as recrystallization, and the number of operation procedures is increased, which is practically disadvantageous.
  • the isomerization crystallization method is known as a method for obtaining an optically active amino acid at a high yield exceeding the theoretical yield of 50% in the above preferential crystallization and diastereomer methods.
  • an amino acid of a diastereomeric salt composed of an optically active amino acid and an optically active resolving agent is epimerized in the presence of a catalyst such as an aldehyde, and the diastereomeric salt of the target optically active amino acid is obtained. Crystallize.
  • the isomerization crystallization method has been reported for specific amino acids such as proline (Chem. Rev. 2006, 106, 2711-2733). Further, in the optically active 2-aminobutyric acid amide of a derivative of 2-aminobutyric acid, an optically active 2-aminobutyric acid is obtained by epimerizing 2-aminobutyric acid amide of a diastereomeric salt composed of 2-aminobutyric acid amide and optically active tartaric acid. A method for obtaining an amide in a high yield is known (Japanese Patent Laid-Open No. 2009-19036). In the isomerization crystallization method, as in the diastereomer method, an appropriate resolving agent must be selected.
  • the optically active amino acid is obtained as a diastereomeric salt with the resolving agent.
  • the optical resolving agent In order to obtain only the optically active amino acid, the optical resolving agent must be separated from the diastereomeric salt.
  • a method of separating the resolving agent into an acid salt or a base salt by adding an acid or a base is performed.
  • JP-A-5-070415 discloses a method for obtaining a preferred optically active isomer by dividing an optically active isomer mixture of ⁇ -amino acids.
  • the amino acids and resolving agents here are different from those of the present invention.
  • the reaction was actually attempted using the amino acids and the resolving agent used in the present invention with reference to the description in the examples of the patent application, the asymmetric conversion did not proceed well.
  • the inventors of the present invention aimed at producing L-2-aminobutyric acid represented by the following formula (1) or D-2-aminobutyric acid represented by the following formula (2), or a mixture thereof.
  • the optically active 2-tarbutyric acid that can form a sparingly soluble diastereomeric salt is reacted with the optically active 2-tarbutyric acid to perform optical resolution by the diastereomeric method, and at the same time, by heating and stirring in the presence of an aldehyde.
  • Aminobutyric acid was racemized to successfully produce the desired diastereomeric salt of optically active 2-aminobutyric acid and optically active tartaric acid.
  • optically active 2-aminobutyric acid is separated.
  • the present invention is based on these findings.
  • an object of the present invention is to provide a method for producing optically active 2-aminobutyric acid simply and in high yield without requiring special equipment.
  • the present invention relates to a method for producing optically active 2-aminobutyric acid as follows.
  • the method includes a step of obtaining a diastereomeric salt of optically active 2-aminobutyric acid and optically active tartaric acid by heating the optically active tartaric acid and aldehyde in the presence of 2-aminobutyric acid in an organic solvent.
  • a method for producing optically active 2-aminobutyric acid comprising a step of separating optically active 2-aminobutyric acid from the diastereomeric salt.
  • the method for producing optically active 2-aminobutyric acid of the present invention increases the abundance of the target optically active substance by performing both racemization of 2-aminobutyric acid and optical resolution of 2-aminobutyric acid with optically active tartaric acid.
  • the yield can be improved. Therefore, the theoretical yield is 50% in the conventional optical resolution method, whereas the theoretical yield can be improved to 100% according to the method of the present invention. Therefore, according to the present invention, the productivity of the target optically active 2-aminobutyric acid can be made extremely high.
  • optically active 2-aminobutyric acid obtained by the method of the present invention is useful as an intermediate for producing pharmaceuticals, agricultural chemicals and industrial chemicals.
  • the method for producing optically active 2-aminobutyric acid heats 2-aminobutyric acid in an organic solvent in the presence of optically active tartaric acid and an aldehyde, and passes through the aldehyde and a Schiff base.
  • Both the racemization of 2-aminobutyric acid and the optical resolution of 2-aminobutyric acid with optically active tartaric acid proceed to enrich the desired diastereomeric salt of optically active 2-aminobutyric acid and optically active tartaric acid.
  • the present invention relates to an optically active 2-aminobutyric acid obtained by heating in the presence of 2-aminobutyric acid, optically active tartaric acid, and aldehyde, and then purifying the reaction mixture or the reaction mixture. Separation and acquisition of D-form or L-form 2-aminobutyric acid from a diastereomeric salt of and an optically active tartaric acid. Preferably, the separation is performed by adding an amine.
  • 2-aminobutyric acid used as a raw material in the present invention is an L-form represented by the following formula (1), a D-form represented by the following formula (2), a mixture thereof, or a D-form And a racemate in which an equal amount of L form exists.
  • 2-aminobutyric acid is preferably freed by neutralization or solvent washing.
  • Optically active tartaric acid In the method of the present invention, optically active tartaric acid is used as a resolving agent.
  • the optically active tartaric acid used is D-form, L-form, or a mixture thereof.
  • the optical purity of tartaric acid is 95% e.e. e. (Enantiomeric excess) or more, preferably 98% e.e. e. That's it.
  • the optically active tartaric acid is used in a molar amount relative to 2-aminobutyric acid, which is a raw material, because tartaric acid is a dibasic acid and excessive use of tartaric acid may inhibit Schiff base formation.
  • the ratio is preferably in the range of 0.5 to 5.0, more preferably in the range of 0.5 to 1.0.
  • D-tartaric acid is used when producing L-2-aminobutyric acid
  • L-tartaric acid is used when producing D-2-aminobutyric acid
  • Aldehyde In the process of the present invention, an aldehyde is used as a catalyst.
  • aldehyde to be used can be appropriately determined in consideration of the difficulty of side reactions and the ease of purification in the subsequent steps.
  • Aromatic aldehydes such as salicylaldehyde and benzaldehyde are preferred specific examples, among which salicylaldehyde is particularly preferred.
  • the amount of aldehyde used is preferably in the range of 0.05 to 0.75, more preferably in the range of 0.1 to 0.5 in terms of molar ratio to 2-aminobutyric acid as a raw material. It is.
  • formic acid, acetic acid, propionic acid, butanoic acid, pentanoic acid, etc. for the raw material 2-aminobutyric acid, in order to rapidly advance the racemization and crystallization of the desired diastereomeric salt
  • a lower fatty acid, an inorganic acid such as hydrochloric acid, or an inorganic salt such as ammonium chloride may be added as a catalytic amount as appropriate. If the amount used is large, the optical purity of the target optically active 2-aminobutyric acid may be lowered. Further, the amine in the separation step of the optically active 2-aminobutyric acid performed after the diastereomeric salt crystallization is performed. The amount added may be economically disadvantageous.
  • the amount used is preferably within a range of 0.01 to 0.5, more preferably 0.05 to 0 in terms of a molar ratio with respect to the amino acid that is a raw material. Within the range of .25.
  • organic solvent used in the present invention a solvent in which a salt of 2-aminobutyric acid and tartaric acid causes a difference in solubility due to the difference in stericity of 2-aminobutyric acid is appropriately selected. Furthermore, a solvent having low reactivity with 2-aminobutyric acid, tartaric acid, and aldehyde is preferable, and alcohols, aromatic hydrocarbons, and nitriles are preferable.
  • the alcohol is preferably an alcohol having a linear or branched alkyl group having 1 to 8 carbon atoms.
  • Specific examples include methanol, ethanol, 1-propanol, 2-propanol, 1-butanol, Examples include 2-butanol, isobutanol, cyclohexanol, and benzyl alcohol.
  • Preferred examples of aromatic hydrocarbons include benzene, toluene and xylene, and preferred examples of nitriles include acetonitrile.
  • organic solvents are used alone or in admixture of two or more.
  • alcohols are preferable from the viewpoint of higher optical purity and chemical purity, more preferably alcohol having a linear or branched alkyl group having 1 to 8 carbon atoms, Specific examples of suitable solvents include methanol, ethanol, 1-propanol, 2-propanol, 1-butanol, 2-butanol or isobutanol.
  • the water content of the organic solvent used in the present invention may be appropriately determined in consideration of the difficulty of side reactions and the solubility of diastereomeric salts in the solvent.
  • the yield may decrease due to an increase in the solubility of the diastereomeric salt in the solvent.
  • the water content of the organic solvent is preferably in the range of 0.001 to 5.0% by mass, more preferably in the range of 0.1 to 2.0% by mass.
  • the amount of the organic solvent used may be appropriately adjusted according to the amount of 2-aminobutyric acid used as a raw material, and is not particularly limited. If the amount of the solvent is small, both chemical purity and optical purity become insufficient, and the slurry concentration becomes high and stirring may become difficult. Further, if the amount of the solvent is large, it may lead to industrial disadvantage because it leads to a decrease in volumetric efficiency and a decrease in yield.
  • the amount of the organic solvent used is preferably within a range of 1.5 to 10.0, more preferably within a range of 2.0 to 6.0, by mass ratio with respect to 2-aminobutyric acid as a raw material. Amount.
  • the amine used in the present invention is appropriately selected from those capable of dissociating the salt of 2-aminobutyric acid and tartaric acid and forming a good salt with tartaric acid.
  • a salt of tartaric acid and an amine has high solubility in an organic solvent, and more preferable examples include the following formula (3): (In the formula, R1, R2, and R3 are hydrogen atoms or hydrocarbon groups, and R1, R2, and R3 have a total carbon number of 1 to 8, and these may be bonded to each other to form a ring. ) And amines represented by
  • the hydrocarbon group that can be selected as R1 to R3 is preferably a linear or branched alkyl group having 1 to 8 carbon atoms (more preferably 1 to 4 carbon atoms), carbon number A cycloalkyl group having 3 to 8 carbon atoms, or an aromatic hydrocarbon group having 6 to 8 carbon atoms.
  • the alkyl group include methyl, ethyl, n-propyl, isopropyl, n-butyl, tert-butyl, sec-butyl, and isobutyl.
  • Specific examples of the cycloalkyl group include cyclopentyl and cyclohexyl. Can be mentioned.
  • the aromatic group includes phenyl, and the aromatic hydrocarbon group having 6 to 8 carbon atoms includes benzyl in addition to phenyl.
  • R1 to R3 when R1 to R3 are bonded to each other to form a ring, R1 and R3, R2 and R3, or R1 and R3 may form a heterocycle together with the nitrogen atom in the formula.
  • the remainder not related to ring formation is preferably a hydrogen atom or a hydrocarbon group (preferably a hydrogen atom).
  • examples of the amine include methylamine, dimethylamine, trimethylamine, ethylamine, diethylamine, triethylamine, n-propylamine, isopropylamine, diisopropylamine, n-butylamine, tert-butylamine, sec-butylamine, diisobutylamine, Examples include cyclohexylamine, benzylamine, and aniline. These amines are used alone or in admixture of two or more.
  • preferred amines include methylamine, dimethylamine, trimethylamine, ethylamine, diethylamine, triethylamine, n-propylamine, isopropylamine, diisopropylamine, n-butylamine, tert-butylamine, sec-butylamine, diisobutylamine. More preferred specific examples include methylamine, dimethylamine, trimethylamine, ethylamine, diethylamine and triethylamine.
  • the amount of amine used can be appropriately adjusted according to the amount of tartaric acid used as a resolving agent and the type of amine. If the amount of amine used is small, the dissociation of the salt of 2-aminobutyric acid and tartaric acid becomes insufficient, and the purity of the optically active 2-aminobutyric acid may be reduced. In addition, when the amount of amine used is large, the yield of optically active 2-aminobutyric acid may decrease because 2-aminobutyric acid and amine form a salt.
  • the amount of amine used is preferably in the range of 1.0 to 4.0, more preferably in the range of 1.5 to 2.5 as a molar ratio to tartaric acid.
  • 2-aminobutyric acid, optically active tartaric acid and aldehyde are mixed in an organic solvent, and racemization of 2-aminobutyric acid and optical resolution of 2-aminobutyric acid with optically active tartaric acid are allowed to proceed in solution.
  • a diastereomeric salt of optically active 2-aminobutyric acid and optically active tartaric acid is produced.
  • the reaction temperature for producing a diastereomeric salt of optically active 2-aminobutyric acid and optically active tartaric acid depends on the type and amount of the organic solvent used, and the desired optically active 2-aminobutyric acid and optical activity depend on the reaction temperature.
  • the effect of the enrichment crystallization rate of the diastereomeric salt with tartaric acid and the solubility of the diastereomeric salt in the solvent are different and are not particularly limited. However, when the reaction temperature is low, the completion of the reaction may be delayed.
  • the reaction temperature is typically 30 ° C. or higher and below the boiling point of the organic solvent used, preferably 50 ° C. or higher and below the boiling point of the organic solvent used, more preferably 65 ° C. or higher and below the boiling point of the organic solvent used. Is desirable.
  • the reaction time is not particularly limited, and may be appropriately determined while monitoring the deviation of the optical purity of 2-aminobutyric acid by tracking the reaction using an analytical instrument such as high performance liquid chromatography.
  • heat generated by mixing the raw materials may be used, but since the temperature can be adjusted appropriately and quickly, heat treatment is usually performed.
  • the reaction does not proceed sufficiently, or the reaction rate is slow and the reaction time is long, the reaction can be promoted by appropriately performing a concentration operation, catalyst addition, or poor solvent addition.
  • tartaric acid can be removed using, for example, an electrodialyzer.
  • tartaric acid can be removed as an amine salt by adding an amine in a solvent.
  • optically active 2-aminobutyric acid can be crystallized by adding a poor solvent in an aqueous solution after the inorganic base treatment.
  • tartaric acid can be removed using an ion exchange resin after the inorganic or organic base treatment.
  • the method of removing tartaric acid as an amine salt by adding an amine in a solvent is preferred because of the ease of operation.
  • the amine may be added as it is to the crystallization solution of the diastereomeric salt (one-pot treatment), or the amine may be added after the diastereomeric salt is isolated.
  • Examples of methods for isolating diastereomeric salts include filtration by suction filtration, filtration by pressure filtration, and centrifugation.
  • the recovered diastereomeric salt is then dissolved in an organic solvent and an amine is added.
  • the tartaric acid moiety in the diastereomeric salt can be converted to an amine salt, which can be separated from the optically active 2-aminobutyric acid.
  • the organic solvent for dissolving the diastereomeric salt can be selected from the same range as the organic solvent containing the above-mentioned raw materials, and this may be the same organic solvent used in the above step. May be different.
  • the reaction temperature at the time of adding amine it may be suitably adjusted according to the kind of amine and the organic solvent to be used, and is not particularly limited.
  • the reaction temperature at the time of amine addition is usually 0 ° C. to 100 ° C. or below the boiling point of the organic solvent used, preferably 20 ° C. to 100 ° C. or below the boiling point of the organic solvent used.
  • optically active 2-aminobutyric acid remaining undissolved is separated and recovered. Separation is performed using a method such as filtration or centrifugation.
  • the obtained optically active 2-aminobutyric acid is washed with a solvent as required (for example, methanol, ethanol, 1-propanol, 2-propanol, 1-butanol, 2-butanol or isobutanol as a solvent washing solvent)
  • solvents can be used alone or in admixture of two or more types), and purification such as recrystallization may be performed.
  • optically active 2-aminobutyric acid useful as an intermediate for producing pharmaceuticals, agricultural chemicals and industrial chemicals can be obtained simply and in high yield.
  • Example 1 10.0 g of L-2-aminobutyric acid and 8.1 g of L-tartaric acid were suspended in 50 g of 2-butanol / methanol mixed solvent (weight composition ratio 1: 1), and 2.3 g of salicylaldehyde was added. After stirring with heating at 75 ° C. for 45 hours, suction filtration was performed to obtain a diastereomeric salt of D-2-aminobutyric acid / L-tartrate (molar composition ratio 2: 1). The weight of the obtained diastereomeric salt was 14.2 g (yield 79%), and the optical purity was 86.3% e.e. e. Met.
  • the obtained D-2-aminobutyric acid / L-tartrate (molar composition ratio 2: 1) was suspended in 50 g of a 2-propanol / methanol mixed solvent (weight composition ratio 1: 2), and the reaction temperature was 30 ° C. 14 g of 30% trimethylamine aqueous solution was added. After stirring at the same temperature for 4 hours, suction filtration was performed, and the resulting cake was washed with 35 g of methanol. Thereafter, the obtained cake was dried to obtain 6.19 g of D-2-aminobutyric acid (total yield: 62%) as a white powder.
  • HPLC high performance liquid chromatography
  • Example 2 2.01 g of D-2-aminobutyric acid and 1.65 g of D-tartaric acid were suspended in 10 g of a 2-propanol / methanol mixed solvent (weight composition ratio 1: 1), and 0.47 g of salicylaldehyde was added. After heating and stirring at 75 ° C for 43 hours and gradually cooling to 40 ° C, 1.4 g of 70% ethylamine aqueous solution and 5 g of methanol were added. After stirring at the same temperature for 4 hours, suction filtration was performed, and the resulting cake was washed with 15 g of methanol.
  • Example 3 20.0 g of D-2-aminobutyric acid and 16.1 g of D-tartaric acid were suspended in 80 g of a 2-propanol / methanol mixed solvent (weight composition ratio 1: 1), and 4.7 g of salicylaldehyde was added. After stirring with heating at 70 ° C. for 18 hours and gradually cooling to 30 ° C., 18.9 g of a 51% dimethylamine aqueous solution and 100 g of methanol were added. After stirring at the same temperature for 3 hours, suction filtration was performed, and the resulting cake was washed with 120 g of methanol.
  • Example 4 L-2-aminobutyric acid 2.0 g and L-tartaric acid 1.65 g were suspended in 10 g of 2-propanol / methanol mixed solvent (weight composition ratio 1: 1), and 0.24 g of salicylaldehyde was added. After heating and stirring at 75 ° C. for 72 hours and gradually cooling to 30 ° C., 2.21 g of triethylamine and 5 g of methanol were added. After stirring at the same temperature for 24 hours, suction filtration was performed, and the resulting cake was washed with 15 g of methanol. Thereafter, the obtained cake was dried to obtain 1.43 g of D-2-aminobutyric acid (yield 72%) as a white powder. As a result of analyzing the obtained D-2-aminobutyric acid by high performance liquid chromatography (HPLC), the chemical purity was 99.9% and the optical purity was 93.6% e.e. e. Met.
  • HPLC high performance liquid chromatography
  • Reference example 1 10.0 g of L-2-aminobutyric acid and 8.1 g of L-tartaric acid were suspended in 10 g of a 2-butanol / methanol mixed solvent (weight composition ratio 1: 1), and 2.3 g of salicylaldehyde was added. After stirring with heating at 75 ° C. for 45 hours, suction filtration was performed to obtain a diastereomeric salt of D-2-aminobutyric acid / L-tartrate (molar composition ratio 2: 1). The weight of the obtained diastereomeric salt was 14.2 g (yield 79%), and the optical purity was 86.3% e.e. e. Met.
  • the obtained D-2-aminobutyric acid / L-tartrate (molar composition ratio 2: 1) was suspended in 35 g of a 2-propanol / methanol mixed solvent (weight composition ratio 1: 2), and the reaction temperature was 30 ° C. 12 g of 30% trimethylamine aqueous solution was added. After stirring at the same temperature for 4 hours, suction filtration was performed, and the resulting cake was washed with 35 g of methanol. Thereafter, the obtained cake was dried to obtain 4.41 g of D-2-aminobutyric acid (total yield: 44%) as a white powder.
  • HPLC high performance liquid chromatography

Landscapes

  • Chemical & Material Sciences (AREA)
  • Organic Chemistry (AREA)
  • Analytical Chemistry (AREA)
  • Organic Low-Molecular-Weight Compounds And Preparation Thereof (AREA)

Abstract

The present invention pertains to a method for producing optically active 2-aminobutyric acid containing a step for obtaining a diastereometric salt of optically active 2-aminobutyric acid and optically active tartaric acid by combining optically active tartaric acid and aldehyde with 2-aminobutyric acid in an organic solvent, and heating the same. The present invention makes it possible to produce optically active 2-aminobutyric acid easily and with a high yield, without requiring any special facilities.

Description

光学活性2-アミノ酪酸の製造方法Method for producing optically active 2-aminobutyric acid 関連出願の参照Reference to related applications
 本願は、先行する日本国特許出願である特願2010-201867号(出願日:2010年9月9日)に基づくものであって、その優先権の利益を主張するものであり、その開示内容全体は参照することによりここに組み込まれる。 This application is based on Japanese Patent Application No. 2010-2018867 (filing date: September 9, 2010), which is a prior Japanese patent application, and claims the benefit of its priority. The entirety is hereby incorporated by reference.
発明の背景Background of the Invention
発明の分野
 本発明は、光学活性2-アミノ酪酸の製造方法に関する。
The present invention relates to a process for producing optically active 2-aminobutyric acid.
関連技術
 光学活性2-アミノ酪酸は、医薬、農薬および工業薬品を製造する中間体としてよく知られている。例えば、抗てんかん薬レベチラセタムの原料としての用途が挙げられる。
Related Art Optically active 2-aminobutyric acid is well known as an intermediate for producing pharmaceuticals, agricultural chemicals and industrial chemicals. For example, it can be used as a raw material for the antiepileptic drug levetiracetam.
 光学活性2-アミノ酪酸の製造法としては、酵素反応を用いる方法、優先晶析や分割剤による光学分割を利用する方法などが知られている。 As a method for producing optically active 2-aminobutyric acid, a method using an enzyme reaction, a method using preferential crystallization or optical resolution with a resolving agent, and the like are known.
 酵素反応を用いた製造方法としては、例えば、5-エチルヒダントインにヒダントイナーゼを作用させてD-2-アミノ酪酸を得る方法や、2-アミノ酪酸アミドにアミダーゼを作用させて光学活性2-アミノ酪酸を得る方法などが知られている。しかしながら、酵素反応を用いる方法は一般的に反応が遅く、目的とする光学活性2-アミノ酪酸の立体は酵素の立体選択性に制限される。また、酵素反応では、微生物由来の不純物が混入する可能性がある。このため、微生物の除去操作が必要となり、工程が煩雑となる。 Examples of the production method using an enzymatic reaction include a method of obtaining D-2-aminobutyric acid by reacting hydantoinase with 5-ethylhydantoin, or an optically active 2-aminobutyric acid by reacting 2-aminobutyric acid amide with amidase. The method of obtaining is known. However, the method using an enzyme reaction is generally slow, and the desired optically active 2-aminobutyric acid stereo is limited by the stereoselectivity of the enzyme. Moreover, in an enzyme reaction, impurities derived from microorganisms may be mixed. For this reason, the removal operation of microorganisms is needed and a process becomes complicated.
 優先晶析による分割法としては、2-アミノ酪酸をp-トルエンスルホン酸塩として優先晶析する方法が知られている。分割剤による光学分割を利用する方法としては、光学活性2-フェノキシプロピオン酸誘導体を分割剤として用い、ジアステレオマー塩を形成させて分別結晶を行うジアステレオマー法が知られている。しかし、これらの方法ではラセミ体の2-アミノ酪酸を原料とした場合において、目的の光学活性2-アミノ酪酸の収率は50%が限界となる。また、優先晶析や分割剤による光学分割のみでは目的の立体の対掌体が残留するため、高い光学純度の光学活性2-アミノ酪酸の取得は困難である。従って、再結晶などの精製操作による光学純度の向上がさらに必要となり操作手順が多くなるため、実用的に不利となる。 As a method of resolution by preferential crystallization, a method of preferential crystallization using 2-aminobutyric acid as p-toluenesulfonate is known. As a method of utilizing optical resolution by a resolving agent, a diastereomeric method is known in which a fractional crystallization is performed by forming a diastereomeric salt using an optically active 2-phenoxypropionic acid derivative as a resolving agent. However, in these methods, when racemic 2-aminobutyric acid is used as a raw material, the yield of the target optically active 2-aminobutyric acid is limited to 50%. In addition, since the target steric enantiomer remains only by preferential crystallization or optical resolution with a resolving agent, it is difficult to obtain optically active 2-aminobutyric acid with high optical purity. Therefore, the optical purity must be further improved by a refining operation such as recrystallization, and the number of operation procedures is increased, which is practically disadvantageous.
 上記の優先晶析およびジアステレオマー法における理論収率50%を超えて、高い収率で光学活性アミノ酸を取得する方法としては、異性化晶出法が知られている。異性化晶出法では、アルデヒド等の触媒の存在下にて光学活性アミノ酸と光学活性な分割剤からなるジアステレオマー塩のアミノ酸をエピ化させ、目的とする光学活性アミノ酸のジアステレオマー塩を晶出させる。 The isomerization crystallization method is known as a method for obtaining an optically active amino acid at a high yield exceeding the theoretical yield of 50% in the above preferential crystallization and diastereomer methods. In the isomerization crystallization method, an amino acid of a diastereomeric salt composed of an optically active amino acid and an optically active resolving agent is epimerized in the presence of a catalyst such as an aldehyde, and the diastereomeric salt of the target optically active amino acid is obtained. Crystallize.
 異性化晶出法は、プロリンなどの特定のアミノ酸について報告されている(Chem.Rev.2006、106、2711-2733)。また、2-アミノ酪酸の誘導体の光学活性2-アミノ酪酸アミドでは、2-アミノ酪酸アミドと光学活性酒石酸からなるジアステレオマー塩の2-アミノ酪酸アミドをエピ化させ、光学活性2-アミノ酪酸アミドを高収率に取得する方法が知られている(特開2009-19036号公報)。異性化晶出法ではジアステレオマー法と同様に、適切な分割剤を選択しなければならない。しかし、使用可能な光学分割剤は分割の対象物質ごとに特異的であるため、分割剤の予測は困難である。ゆえに、必ずしも光学活性2-アミノ酪酸アミドの製造で用いられる異性化晶出法の条件を光学活性2-アミノ酪酸の製造へ適用できるとは限らない。したがって、2-アミノ酪酸に関してはジアステレオマー塩をエピ化させる方法は知られていない。 The isomerization crystallization method has been reported for specific amino acids such as proline (Chem. Rev. 2006, 106, 2711-2733). Further, in the optically active 2-aminobutyric acid amide of a derivative of 2-aminobutyric acid, an optically active 2-aminobutyric acid is obtained by epimerizing 2-aminobutyric acid amide of a diastereomeric salt composed of 2-aminobutyric acid amide and optically active tartaric acid. A method for obtaining an amide in a high yield is known (Japanese Patent Laid-Open No. 2009-19036). In the isomerization crystallization method, as in the diastereomer method, an appropriate resolving agent must be selected. However, since the usable optical resolution agent is specific for each substance to be resolved, it is difficult to predict the resolution agent. Therefore, the isomerization crystallization conditions used in the production of optically active 2-aminobutyric acid amide are not necessarily applicable to the production of optically active 2-aminobutyric acid. Therefore, there is no known method for epimerizing diastereomeric salts with respect to 2-aminobutyric acid.
 さらに、適当な分割剤により異性化晶出法を実施した場合、光学活性アミノ酸は分割剤とのジアステレオマー塩として取得される。光学活性アミノ酸のみを取得するためにはジアステレオマー塩から光学分割剤を分離しなければならない。一般的に、ジアステレオマー法等で光学活性化合物をジアステレオマー塩から取得したい場合、酸または塩基の添加により分割剤を酸塩または塩基塩にして分離する方法が行われる。例えば、ラセミ体のアミンを光学活性酒石酸により光学分割した場合、得られたジアステレオマー塩に無機塩基を加えることで光学活性酒石酸をナトリウム塩やカリウム塩として分離回収する方法が報告されている(特開平7-188097号公報)。しかし、アミノ酸は、分割剤の無機酸塩または無機塩基塩と同様に水に溶解しやすく、有機溶媒に溶解し難い性質を有している。したがって、アミノ酸のジアステレオマー塩の場合、無機塩基を加える方法は適用できない場合が多く、分晶や分液抽出等によるアミノ酸の効率的な単離は難しい。 Furthermore, when the isomerization crystallization method is carried out with an appropriate resolving agent, the optically active amino acid is obtained as a diastereomeric salt with the resolving agent. In order to obtain only the optically active amino acid, the optical resolving agent must be separated from the diastereomeric salt. In general, when an optically active compound is desired to be obtained from a diastereomer salt by a diastereomer method or the like, a method of separating the resolving agent into an acid salt or a base salt by adding an acid or a base is performed. For example, when a racemic amine is optically resolved with optically active tartaric acid, a method of separating and recovering optically active tartaric acid as a sodium salt or potassium salt by adding an inorganic base to the obtained diastereomeric salt has been reported ( JP-A-7-188097). However, amino acids have the property of being easily dissolved in water and difficult to dissolve in organic solvents, like the inorganic acid salt or inorganic base salt of the resolving agent. Therefore, in the case of diastereomeric salts of amino acids, the method of adding an inorganic base cannot be applied in many cases, and it is difficult to efficiently isolate amino acids by separation, separation or extraction.
 特開平5-070415号公報(EP0499376A1)には、α-アミノ酸の光学活性異性体混合物を分割して好ましい光学活性異性体を得る方法が開示されている。しかしながら、ここでのアミノ酸や分割剤は本発明とは異なるものである。また、本発明で用いられるアミノ酸や分割剤を使用して、上記特許出願の実施例の記載を参考に反応を実際に試みたところ、不斉転換は上手く進行しなかった。 JP-A-5-070415 (EP0499376A1) discloses a method for obtaining a preferred optically active isomer by dividing an optically active isomer mixture of α-amino acids. However, the amino acids and resolving agents here are different from those of the present invention. In addition, when the reaction was actually attempted using the amino acids and the resolving agent used in the present invention with reference to the description in the examples of the patent application, the asymmetric conversion did not proceed well.
 光学分割剤を用いたこれまでに知られている光学活性2-アミノ酪酸の製造方法において、ラセミ体の2-アミノ酪酸を原料とした場合には、目的とする光学活性2-アミノ酪酸の理論収率は50%であった。また、目的の光学活性2-アミノ酪酸の対掌体が過剰に存在する場合には、さらに収率が低下するため、生産性の面からは実用的ではなかった。 In the known methods for producing optically active 2-aminobutyric acid using an optical resolving agent, when racemic 2-aminobutyric acid is used as a raw material, the theory of the desired optically active 2-aminobutyric acid is used. The yield was 50%. In addition, when the enantiomer of the target optically active 2-aminobutyric acid is excessively present, the yield is further reduced, and thus it is not practical from the viewpoint of productivity.
 そこで、収率の向上を達成するためには、目的とする光学活性2-アミノ酪酸と光学活性な分割剤からなるジアステレオマー塩への異性化晶出法の確立が有効であると考え、検討を進めた。この場合、光学活性2-アミノ酪酸のジアステレオマー塩を取得した後、分割剤の除去も必要となる。このため、特別な設備を必要とすることなく、簡便かつ高収率に光学活性2-アミノ酪酸を製造する方法であることが求められる。 Therefore, in order to achieve an improvement in yield, it is considered effective to establish an isomerization crystallization method into a diastereomeric salt composed of a target optically active 2-aminobutyric acid and an optically active resolving agent, We proceeded with the examination. In this case, it is necessary to remove the resolving agent after obtaining the diastereomeric salt of optically active 2-aminobutyric acid. Therefore, there is a demand for a method for producing optically active 2-aminobutyric acid in a simple and high yield without requiring special equipment.
 本発明者らは、有機溶媒存在下、下記の式(1)で示されるL-2-アミノ酪酸若しくは下記の式(2)で示されるD-2-アミノ酪酸、またはそれらの混合物へ、目的とする光学活性2-アミノ酪酸と難溶性のジアステレオマー塩を形成しうる光学活性酒石酸を作用させてジアステレオマー法による光学分割を行うと同時に、アルデヒド共存下において加熱撹拌することにより2-アミノ酪酸をラセミ化せしめ、目的とする光学活性2-アミノ酪酸と光学活性酒石酸とのジアステレオマー塩を製造することに成功した。 In the presence of an organic solvent, the inventors of the present invention aimed at producing L-2-aminobutyric acid represented by the following formula (1) or D-2-aminobutyric acid represented by the following formula (2), or a mixture thereof. The optically active 2-tarbutyric acid that can form a sparingly soluble diastereomeric salt is reacted with the optically active 2-tarbutyric acid to perform optical resolution by the diastereomeric method, and at the same time, by heating and stirring in the presence of an aldehyde. Aminobutyric acid was racemized to successfully produce the desired diastereomeric salt of optically active 2-aminobutyric acid and optically active tartaric acid.
Figure JPOXMLDOC01-appb-C000002
Figure JPOXMLDOC01-appb-C000002
Figure JPOXMLDOC01-appb-C000003
Figure JPOXMLDOC01-appb-C000003
 さらには、上記の反応混合物中または上記の反応で得た光学活性2-アミノ酪酸と光学活性酒石酸とのジアステレオマー塩から、光学活性2-アミノ酪酸を分離することにより、光学活性2-アミノ酪酸を高収率で得ることに成功した。 Further, by separating the optically active 2-aminobutyric acid from the diastereomeric salt of optically active 2-aminobutyric acid and optically active tartaric acid obtained in the above reaction mixture or in the above reaction, the optically active 2-aminobutyric acid is separated. We succeeded in obtaining butyric acid in high yield.
 本発明は、これらの知見に基づくものである。 The present invention is based on these findings.
 従って本発明は、特別な設備を必要とすることなく、簡便かつ高収率に光学活性2-アミノ酪酸を製造する方法を提供することをその目的とする。 Therefore, an object of the present invention is to provide a method for producing optically active 2-aminobutyric acid simply and in high yield without requiring special equipment.
 即ち本発明は以下のとおりの光学活性2-アミノ酪酸の製造方法に関する。
 [1] 有機溶媒中、2-アミノ酪酸に、光学活性酒石酸と、アルデヒドとを共存させて加熱することによって、光学活性2-アミノ酪酸と光学活性酒石酸とのジアステレオマー塩を得る工程を含む、光学活性2-アミノ酪酸の製造方法。
 [2] 前記ジアステレオマー塩から光学活性2-アミノ酪酸を分離する工程を含む、前記[1]の方法。
 [3] アミンを添加することによって、前記ジアステレオマー塩から光学活性2-アミノ酪酸を分離する、前記[2]の方法。
 [4] 前記アミンが、下式(3): 
Figure JPOXMLDOC01-appb-C000004
(式中、R1,R2,R3は水素原子または炭化水素基であり、R1,R2,R3の合計炭素数が1~8であり、これらは相互に結合して環を形成していてもよい)
で示されるアミン類からなる群より選ばれる1種類以上である、前記[3]の方法。
 [5] 前記アルデヒドがサリチルアルデヒドである、前記[1]~[4]のいずれかの方法。
 [6] 前記有機溶媒が、炭素数1から8までの直鎖状または分岐状のアルキル基を有するアルコール類からなる群より選ばれる1種類以上である、前記[1]~[5]のいずれかの方法。
That is, the present invention relates to a method for producing optically active 2-aminobutyric acid as follows.
[1] The method includes a step of obtaining a diastereomeric salt of optically active 2-aminobutyric acid and optically active tartaric acid by heating the optically active tartaric acid and aldehyde in the presence of 2-aminobutyric acid in an organic solvent. And a method for producing optically active 2-aminobutyric acid.
[2] The method according to [1] above, comprising a step of separating optically active 2-aminobutyric acid from the diastereomeric salt.
[3] The method of [2], wherein the optically active 2-aminobutyric acid is separated from the diastereomeric salt by adding an amine.
[4] The amine is represented by the following formula (3):
Figure JPOXMLDOC01-appb-C000004
(In the formula, R1, R2, and R3 are hydrogen atoms or hydrocarbon groups, and R1, R2, and R3 have a total carbon number of 1 to 8, and these may be bonded to each other to form a ring. )
The method of [3] above, which is at least one selected from the group consisting of amines represented by the formula:
[5] The method according to any one of [1] to [4], wherein the aldehyde is salicylaldehyde.
[6] Any of the above [1] to [5], wherein the organic solvent is at least one selected from the group consisting of alcohols having a linear or branched alkyl group having 1 to 8 carbon atoms. That way.
 本発明の光学活性2-アミノ酪酸の製造方法は、2-アミノ酪酸のラセミ化と光学活性酒石酸による2-アミノ酪酸の光学分割の両方を行うことによって、目的の光学活性体存在量を増大させ、収率を向上させることができる。従って、従来の光学分割法では理論収率50%であったのに対し、本発明の方法によれば、理論収率100%に向上させることができる。このため、本発明によれば、目的とする光学活性2-アミノ酪酸の生産性を極めて高くすることができる。 The method for producing optically active 2-aminobutyric acid of the present invention increases the abundance of the target optically active substance by performing both racemization of 2-aminobutyric acid and optical resolution of 2-aminobutyric acid with optically active tartaric acid. The yield can be improved. Therefore, the theoretical yield is 50% in the conventional optical resolution method, whereas the theoretical yield can be improved to 100% according to the method of the present invention. Therefore, according to the present invention, the productivity of the target optically active 2-aminobutyric acid can be made extremely high.
 本発明の方法により得られる光学活性2-アミノ酪酸は、医薬、農薬および工業薬品を製造する中間体として有用である。 The optically active 2-aminobutyric acid obtained by the method of the present invention is useful as an intermediate for producing pharmaceuticals, agricultural chemicals and industrial chemicals.
発明の具体的説明Detailed description of the invention
 本発明による光学活性2-アミノ酪酸を製造する方法は、より詳細には、2-アミノ酪酸を、有機溶媒中において、光学活性酒石酸とアルデヒドとの共存下で加熱し、アルデヒドとシッフ塩基を経由した2-アミノ酪酸のラセミ化と光学活性酒石酸による2-アミノ酪酸の光学分割の両方を進行させ、目的とする光学活性2-アミノ酪酸と光学活性酒石酸のジアステレオマー塩を富化晶出させる工程を含む。 More specifically, the method for producing optically active 2-aminobutyric acid according to the present invention heats 2-aminobutyric acid in an organic solvent in the presence of optically active tartaric acid and an aldehyde, and passes through the aldehyde and a Schiff base. Both the racemization of 2-aminobutyric acid and the optical resolution of 2-aminobutyric acid with optically active tartaric acid proceed to enrich the desired diastereomeric salt of optically active 2-aminobutyric acid and optically active tartaric acid. Process.
 さらに本発明は、2-アミノ酪酸と、光学活性酒石酸と、アルデヒドとを共存させて加熱した後に、その反応混合物中、または、その反応混合物中から精製して得た、光学活性2-アミノ酪酸と光学活性酒石酸とのジアステレオマー塩から、D体またはL体の2-アミノ酪酸を分離取得することを含む。好ましくは、分離はアミンの添加により行う。 Furthermore, the present invention relates to an optically active 2-aminobutyric acid obtained by heating in the presence of 2-aminobutyric acid, optically active tartaric acid, and aldehyde, and then purifying the reaction mixture or the reaction mixture. Separation and acquisition of D-form or L-form 2-aminobutyric acid from a diastereomeric salt of and an optically active tartaric acid. Preferably, the separation is performed by adding an amine.
 2-アミノ酪酸
 本発明において原料として使用する2-アミノ酪酸は、下式(1)で表されるL体若しくは下式(2)で表されるD体、またはそれらの混合物、さらにはD体とL体が等量存在するラセミ体であっても良い。無機塩、強酸または強塩基を含む場合は、中和や溶媒洗浄等により2-アミノ酪酸を遊離体とするのが好適である。
2-Aminobutyric acid The 2-aminobutyric acid used as a raw material in the present invention is an L-form represented by the following formula (1), a D-form represented by the following formula (2), a mixture thereof, or a D-form And a racemate in which an equal amount of L form exists. When an inorganic salt, a strong acid or a strong base is contained, 2-aminobutyric acid is preferably freed by neutralization or solvent washing.
Figure JPOXMLDOC01-appb-C000005
Figure JPOXMLDOC01-appb-C000005
Figure JPOXMLDOC01-appb-C000006
Figure JPOXMLDOC01-appb-C000006
 光学活性酒石酸
 本発明の方法において、光学活性酒石酸を分割剤として使用する。
Optically active tartaric acid In the method of the present invention, optically active tartaric acid is used as a resolving agent.
 使用する光学活性酒石酸は、D体、L体、またはそれらの混合物である。D体とL体との混合物を使用する場合、望ましくは、酒石酸の光学純度は95%e.e.(鏡像体過剰率)以上、好ましくは98%e.e.以上である。 The optically active tartaric acid used is D-form, L-form, or a mixture thereof. When a mixture of D-form and L-form is used, desirably, the optical purity of tartaric acid is 95% e.e. e. (Enantiomeric excess) or more, preferably 98% e.e. e. That's it.
 光学活性酒石酸の使用量は、酒石酸が二塩基酸であることや酒石酸の使用量が過剰であるとシッフ塩基形成を阻害する可能性があることから、原料である2-アミノ酪酸に対してモル比で好ましくは0.5~5.0の範囲内、より好ましくは0.5~1.0の範囲内の量である。 The optically active tartaric acid is used in a molar amount relative to 2-aminobutyric acid, which is a raw material, because tartaric acid is a dibasic acid and excessive use of tartaric acid may inhibit Schiff base formation. The ratio is preferably in the range of 0.5 to 5.0, more preferably in the range of 0.5 to 1.0.
 使用する光学活性酒石酸としては、L-2-アミノ酪酸を製造する場合には、D-酒石酸を使用し、D-2-アミノ酪酸を製造する場合には、L-酒石酸を使用する。 As the optically active tartaric acid to be used, D-tartaric acid is used when producing L-2-aminobutyric acid, and L-tartaric acid is used when producing D-2-aminobutyric acid.
 アルデヒド
 本発明の方法において、アルデヒドを触媒として使用する。
Aldehyde In the process of the present invention, an aldehyde is used as a catalyst.
 使用するアルデヒドの種類は、副反応の生じにくさや後工程での精製の容易さを考慮して適宜決定することができる。サリチルアルデヒドやベンズアルデヒドなどの芳香族アルデヒドが望ましい具体例として挙げられ、このうちサリチルアルデヒドが特に好適である。 The type of aldehyde to be used can be appropriately determined in consideration of the difficulty of side reactions and the ease of purification in the subsequent steps. Aromatic aldehydes such as salicylaldehyde and benzaldehyde are preferred specific examples, among which salicylaldehyde is particularly preferred.
 アルデヒドの使用量が多いと短時間で反応完結させることが可能となるが、使用量が過剰であると経済的に不利になることがある。このため、アルデヒドの使用量は、原料である2-アミノ酪酸に対してモル比で好ましくは0.05~0.75の範囲内、より好ましくは0.1~0.5の範囲内の量である。 If the amount of aldehyde used is large, the reaction can be completed in a short time, but if the amount used is excessive, it may be economically disadvantageous. For this reason, the amount of aldehyde used is preferably in the range of 0.05 to 0.75, more preferably in the range of 0.1 to 0.5 in terms of molar ratio to 2-aminobutyric acid as a raw material. It is.
 他の成分
 さらに、該ラセミ化と目的とするジアステレオマー塩の富化晶出を速やかに進行させるために、原料2-アミノ酪酸に対してギ酸、酢酸、プロピオン酸、ブタン酸、ペンタン酸などの低級脂肪酸、塩酸などの無機酸または塩化アンモニウムなどの無機塩を適宜触媒量として添加してもよい。これらの使用量が多いと目的とする光学活性2-アミノ酪酸の光学純度が低くなる場合があり、さらには該ジアステレオマー塩晶出後に行う光学活性2-アミノ酪酸の分離工程の際のアミン添加量が多くなり、経済的に不利となることがある。
In addition to the other components , formic acid, acetic acid, propionic acid, butanoic acid, pentanoic acid, etc., for the raw material 2-aminobutyric acid, in order to rapidly advance the racemization and crystallization of the desired diastereomeric salt A lower fatty acid, an inorganic acid such as hydrochloric acid, or an inorganic salt such as ammonium chloride may be added as a catalytic amount as appropriate. If the amount used is large, the optical purity of the target optically active 2-aminobutyric acid may be lowered. Further, the amine in the separation step of the optically active 2-aminobutyric acid performed after the diastereomeric salt crystallization is performed. The amount added may be economically disadvantageous.
 例えば、低級脂肪酸である酢酸を添加する場合には、その使用量は、原料であるアミノ酸に対してモル比で好ましくは0.01~0.5の範囲内、より好ましくは0.05~0.25の範囲内である。 For example, when acetic acid, which is a lower fatty acid, is added, the amount used is preferably within a range of 0.01 to 0.5, more preferably 0.05 to 0 in terms of a molar ratio with respect to the amino acid that is a raw material. Within the range of .25.
 有機溶媒
 本発明において使用する有機溶媒としては、2-アミノ酪酸と酒石酸との塩が2-アミノ酪酸の立体の違いにより溶解度差が生じるような溶媒を適宜選択する。さらには、2-アミノ酪酸、酒石酸、アルデヒドに対する反応性が低い溶媒が好ましく、アルコール類、芳香族炭化水素類、ニトリル類が望ましい。例えば、アルコール類としては、炭素数1から8までの直鎖状又は分岐状のアルキル基を有するアルコールが好ましく、具体例としては、メタノール、エタノール、1-プロパノール、2-プロパノール、1-ブタノール、2-ブタノール、イソブタノール、シクロヘキサノール、ベンジルアルコールなどが挙げられる。芳香族炭化水素類としては、ベンゼン、トルエン、キシレンなど好ましい例として挙げられ、ニトリル類としてはアセトニトリルなどが好ましい例として挙げられる。
Organic Solvent As an organic solvent used in the present invention, a solvent in which a salt of 2-aminobutyric acid and tartaric acid causes a difference in solubility due to the difference in stericity of 2-aminobutyric acid is appropriately selected. Furthermore, a solvent having low reactivity with 2-aminobutyric acid, tartaric acid, and aldehyde is preferable, and alcohols, aromatic hydrocarbons, and nitriles are preferable. For example, the alcohol is preferably an alcohol having a linear or branched alkyl group having 1 to 8 carbon atoms. Specific examples include methanol, ethanol, 1-propanol, 2-propanol, 1-butanol, Examples include 2-butanol, isobutanol, cyclohexanol, and benzyl alcohol. Preferred examples of aromatic hydrocarbons include benzene, toluene and xylene, and preferred examples of nitriles include acetonitrile.
 これらの有機溶媒は単独で、または2種類以上を混和させて使用する。 These organic solvents are used alone or in admixture of two or more.
 使用する有機溶媒としては、光学純度,化学純度をより高くする観点から、アルコール類が好ましく、より好ましくは、炭素数1から8までの直鎖状又は分岐状のアルキル基を有するアルコールであり、メタノール、エタノール、1-プロパノール、2-プロパノール、1-ブタノール、2-ブタノールまたはイソブタノールが好適な溶媒の具体例として挙げられる。 As the organic solvent to be used, alcohols are preferable from the viewpoint of higher optical purity and chemical purity, more preferably alcohol having a linear or branched alkyl group having 1 to 8 carbon atoms, Specific examples of suitable solvents include methanol, ethanol, 1-propanol, 2-propanol, 1-butanol, 2-butanol or isobutanol.
 本発明で使用する有機溶媒の含水率としては、副反応の生じにくさ、ジアステレオマー塩の溶媒への溶解性等を考慮して適宜決定すれば良い。含水率が高いと、ジアステレオマー塩の溶媒への溶解性が上昇することにより収率が低下することがある。 The water content of the organic solvent used in the present invention may be appropriately determined in consideration of the difficulty of side reactions and the solubility of diastereomeric salts in the solvent. When the water content is high, the yield may decrease due to an increase in the solubility of the diastereomeric salt in the solvent.
 従って、有機溶媒の含水率は、好ましくは0.001~5.0質量%の範囲内、より好ましくは0.1~2.0質量%の範囲内である。 Therefore, the water content of the organic solvent is preferably in the range of 0.001 to 5.0% by mass, more preferably in the range of 0.1 to 2.0% by mass.
 有機溶媒の使用量は、原料である2-アミノ酪酸の使用量に応じて適宜調節すれば良く、特に限定されるものではない。溶媒量が少ないと化学純度、光学純度ともに不十分になるうえにスラリー濃度が高くなり攪拌が困難になることがある。また、溶媒量が多いと容積効率低下、収率の減少等につながるので工業的に不利になることがある。 The amount of the organic solvent used may be appropriately adjusted according to the amount of 2-aminobutyric acid used as a raw material, and is not particularly limited. If the amount of the solvent is small, both chemical purity and optical purity become insufficient, and the slurry concentration becomes high and stirring may become difficult. Further, if the amount of the solvent is large, it may lead to industrial disadvantage because it leads to a decrease in volumetric efficiency and a decrease in yield.
 このため、有機溶媒の使用量は、原料である2-アミノ酪酸に対して質量比で好ましくは1.5~10.0の範囲内、より好ましくは2.0~6.0の範囲内の量である。 Therefore, the amount of the organic solvent used is preferably within a range of 1.5 to 10.0, more preferably within a range of 2.0 to 6.0, by mass ratio with respect to 2-aminobutyric acid as a raw material. Amount.
 アミン
 本発明で使用するアミンとしては、2-アミノ酪酸と酒石酸との塩を解離させ、酒石酸と良好に塩を形成することができるものを適宜選択して使用する。好ましいアミンとしては、酒石酸とアミンとの塩が有機溶媒への溶解性が高いものであり、より好ましいものとしては、下式(3):
Figure JPOXMLDOC01-appb-C000007
(式中、R1,R2,R3は水素原子または炭化水素基であり、R1,R2,R3の合計炭素数が1~8であり、これらは相互に結合して環を形成していてもよい)
で示されるアミン類が挙げられる。
Amine The amine used in the present invention is appropriately selected from those capable of dissociating the salt of 2-aminobutyric acid and tartaric acid and forming a good salt with tartaric acid. As a preferable amine, a salt of tartaric acid and an amine has high solubility in an organic solvent, and more preferable examples include the following formula (3):
Figure JPOXMLDOC01-appb-C000007
(In the formula, R1, R2, and R3 are hydrogen atoms or hydrocarbon groups, and R1, R2, and R3 have a total carbon number of 1 to 8, and these may be bonded to each other to form a ring. )
And amines represented by
 ここで前記式中、R1~R3として選択されうる炭化水素基としては、好ましくは、炭素数1~8(より好ましくは炭素数1~4)の直鎖状または分岐状のアルキル基、炭素数3~8のシクロアルキル基、または炭素数6~8の芳香族炭化水素基である。前記アルキル基の具体例としては、メチル、エチル、n-プロピル、イソプロピル、n-ブチル、tert-ブチル、sec-ブチル、イソブチルが挙げられ、前記シクロアルキル基の具体例としては、シクロペンチル、シクロヘキシルが挙げられる。また、芳香族基としてはフェニルが挙げられ、炭素数6~8の芳香族炭化水素基としては、フェニルの他、ベンジルなども挙げられる。 In the above formula, the hydrocarbon group that can be selected as R1 to R3 is preferably a linear or branched alkyl group having 1 to 8 carbon atoms (more preferably 1 to 4 carbon atoms), carbon number A cycloalkyl group having 3 to 8 carbon atoms, or an aromatic hydrocarbon group having 6 to 8 carbon atoms. Specific examples of the alkyl group include methyl, ethyl, n-propyl, isopropyl, n-butyl, tert-butyl, sec-butyl, and isobutyl. Specific examples of the cycloalkyl group include cyclopentyl and cyclohexyl. Can be mentioned. The aromatic group includes phenyl, and the aromatic hydrocarbon group having 6 to 8 carbon atoms includes benzyl in addition to phenyl.
 また、R1~R3が相互に結合して環を形成する場合、R1とR3,R2とR3、またはR1とR3のいずれかが式中の窒素原子と一緒になってヘテロ環を形成することができ、この場合、環形成に関係しない残りが水素原子または炭化水素基(好ましくは水素原子)となるのが好ましい。 In addition, when R1 to R3 are bonded to each other to form a ring, R1 and R3, R2 and R3, or R1 and R3 may form a heterocycle together with the nitrogen atom in the formula. In this case, the remainder not related to ring formation is preferably a hydrogen atom or a hydrocarbon group (preferably a hydrogen atom).
 より具体的には、アミンとしては、メチルアミン、ジメチルアミン、トリメチルアミン、エチルアミン、ジエチルアミン、トリエチルアミン、n-プロピルアミン、イソプロピルアミン、ジイソプロピルアミン、n-ブチルアミン、tert-ブチルアミン、sec-ブチルアミン、ジイソブチルアミン、シクロへキシルアミン、ベンジルアミン、アニリンが挙げられる。これらのアミンは単独で、または2種類以上を混合して使用する。アミンの好ましい具体例としては、メチルアミン、ジメチルアミン、トリメチルアミン、エチルアミン、ジエチルアミン、トリエチルアミン、n-プロピルアミン、イソプロピルアミン、ジイソプロピルアミン、n-ブチルアミン、tert-ブチルアミン、sec-ブチルアミン、ジイソブチルアミンが挙げられ、より好ましい具体例としては、メチルアミン、ジメチルアミン、トリメチルアミン、エチルアミン、ジエチルアミン、トリエチルアミンが挙げられる。 More specifically, examples of the amine include methylamine, dimethylamine, trimethylamine, ethylamine, diethylamine, triethylamine, n-propylamine, isopropylamine, diisopropylamine, n-butylamine, tert-butylamine, sec-butylamine, diisobutylamine, Examples include cyclohexylamine, benzylamine, and aniline. These amines are used alone or in admixture of two or more. Specific examples of preferred amines include methylamine, dimethylamine, trimethylamine, ethylamine, diethylamine, triethylamine, n-propylamine, isopropylamine, diisopropylamine, n-butylamine, tert-butylamine, sec-butylamine, diisobutylamine. More preferred specific examples include methylamine, dimethylamine, trimethylamine, ethylamine, diethylamine and triethylamine.
 アミンの使用量は、分割剤である酒石酸の使用量及びアミンの種類に応じて適宜調節することができる。アミンの使用量が少ないと2-アミノ酪酸と酒石酸との塩の解離が不十分となり、光学活性2-アミノ酪酸の純度が低下することがある。また、アミンの使用量が多いと2-アミノ酪酸とアミンが塩を形成するため、光学活性2-アミノ酪酸の収率が低下することがある。 The amount of amine used can be appropriately adjusted according to the amount of tartaric acid used as a resolving agent and the type of amine. If the amount of amine used is small, the dissociation of the salt of 2-aminobutyric acid and tartaric acid becomes insufficient, and the purity of the optically active 2-aminobutyric acid may be reduced. In addition, when the amount of amine used is large, the yield of optically active 2-aminobutyric acid may decrease because 2-aminobutyric acid and amine form a salt.
 このため、アミンの使用量は、酒石酸に対してモル比で好ましくは1.0~4.0の範囲内、より好ましくは1.5~2.5の範囲内の量である。 For this reason, the amount of amine used is preferably in the range of 1.0 to 4.0, more preferably in the range of 1.5 to 2.5 as a molar ratio to tartaric acid.
 以下、本発明による製造方法の詳細について述べる。 Hereinafter, details of the production method according to the present invention will be described.
 まず、有機溶媒中に、2-アミノ酪酸、光学活性酒石酸およびアルデヒドを混合させて、2-アミノ酪酸のラセミ化と光学活性酒石酸による2-アミノ酪酸の光学分割を溶液中で進行させることによって、光学活性2-アミノ酪酸と光学活性酒石酸とのジアステレオマー塩を製造させる。 First, 2-aminobutyric acid, optically active tartaric acid and aldehyde are mixed in an organic solvent, and racemization of 2-aminobutyric acid and optical resolution of 2-aminobutyric acid with optically active tartaric acid are allowed to proceed in solution. A diastereomeric salt of optically active 2-aminobutyric acid and optically active tartaric acid is produced.
 光学活性2-アミノ酪酸と光学活性酒石酸とのジアステレオマー塩を製造する際の反応温度は、使用する有機溶媒の種類や量によっても反応温度による目的とする光学活性2-アミノ酪酸と光学活性酒石酸とのジアステレオマー塩の富化晶出速度及びジアステレオマー塩の溶媒への溶解度の影響は異なるので、特に限定されるものではない。但し、反応温度が低いと反応完結が遅くなることがある。 The reaction temperature for producing a diastereomeric salt of optically active 2-aminobutyric acid and optically active tartaric acid depends on the type and amount of the organic solvent used, and the desired optically active 2-aminobutyric acid and optical activity depend on the reaction temperature. The effect of the enrichment crystallization rate of the diastereomeric salt with tartaric acid and the solubility of the diastereomeric salt in the solvent are different and are not particularly limited. However, when the reaction temperature is low, the completion of the reaction may be delayed.
 従って、反応温度としては、典型的には30℃以上から使用有機溶媒の沸点以下、好ましくは50℃以上から使用有機溶媒の沸点以下、さらに好ましくは65℃以上から使用有機溶媒沸点以下で行うのが望ましい。反応時間は高速液体クロマトグラフィーなどの分析機器を用いた反応追跡により2-アミノ酪酸の光学純度の偏りを見ながら適宜判断すればよく、特に限定されるものではない。 Therefore, the reaction temperature is typically 30 ° C. or higher and below the boiling point of the organic solvent used, preferably 50 ° C. or higher and below the boiling point of the organic solvent used, more preferably 65 ° C. or higher and below the boiling point of the organic solvent used. Is desirable. The reaction time is not particularly limited, and may be appropriately determined while monitoring the deviation of the optical purity of 2-aminobutyric acid by tracking the reaction using an analytical instrument such as high performance liquid chromatography.
 所望の反応温度にするためには、原料を混合することによって生ずる熱を利用してもよいが、温度を適切かつ迅速に調整できることから、通常は、加熱処理を行う。 In order to achieve the desired reaction temperature, heat generated by mixing the raw materials may be used, but since the temperature can be adjusted appropriately and quickly, heat treatment is usually performed.
 前記反応が十分に進行していない、又は反応速度が遅く反応時間が長くなる場合には、適宜濃縮操作、触媒添加または貧溶媒添加を行うことにより反応を促進させることが可能である。 If the reaction does not proceed sufficiently, or the reaction rate is slow and the reaction time is long, the reaction can be promoted by appropriately performing a concentration operation, catalyst addition, or poor solvent addition.
 ジアステレオマー塩から光学活性2-アミノ酪酸を分離する方法としては、例えば電気透析装置を用いて酒石酸を除去することができる。または、溶媒中でアミンを添加することにより酒石酸をアミン塩として除去することができる。あるいは、無機塩基処理後に水溶液中で貧溶媒を添加することにより光学活性2-アミノ酪酸を晶析させることができる。もしくは、無機または有機塩基処理後にイオン交換樹脂を用いて酒石酸を除去することができる。  As a method for separating optically active 2-aminobutyric acid from a diastereomeric salt, tartaric acid can be removed using, for example, an electrodialyzer. Alternatively, tartaric acid can be removed as an amine salt by adding an amine in a solvent. Alternatively, optically active 2-aminobutyric acid can be crystallized by adding a poor solvent in an aqueous solution after the inorganic base treatment. Alternatively, tartaric acid can be removed using an ion exchange resin after the inorganic or organic base treatment. *
 これらのうち、操作の簡便性から、溶媒中でアミンを添加することにより酒石酸をアミン塩として除去する方法が好ましい。 Of these, the method of removing tartaric acid as an amine salt by adding an amine in a solvent is preferred because of the ease of operation.
 アミンの添加は、該ジアステレオマー塩の晶出液中にそのまま添加してもよいし(ワンポット処理)、該ジアステレオマー塩を単離してからアミンを添加してもよい。 The amine may be added as it is to the crystallization solution of the diastereomeric salt (one-pot treatment), or the amine may be added after the diastereomeric salt is isolated.
 ジアステレオマー塩を単離する方法としては、吸引濾過による濾別、加圧濾過による濾別、遠心分離などの方法が挙げられる。次いで、回収されたジアステレオマー塩を有機溶媒に溶解しアミンを添加する。これによりジアステレオマー塩における酒石酸部分をアミン塩とすることができ、光学活性2-アミノ酪酸と分けることができる。ここで、ジアステレオマー塩を溶解させる有機溶媒としては、前述の原料を含む有機溶媒と同様の範囲から選択することができ、これは前記の工程で使用したものと同じ有機溶媒であっても、異なるものであってもよい。 Examples of methods for isolating diastereomeric salts include filtration by suction filtration, filtration by pressure filtration, and centrifugation. The recovered diastereomeric salt is then dissolved in an organic solvent and an amine is added. As a result, the tartaric acid moiety in the diastereomeric salt can be converted to an amine salt, which can be separated from the optically active 2-aminobutyric acid. Here, the organic solvent for dissolving the diastereomeric salt can be selected from the same range as the organic solvent containing the above-mentioned raw materials, and this may be the same organic solvent used in the above step. May be different.
 アミンを添加する際の反応温度であるが、アミンの種類及び使用する有機溶媒に応じて適宜調節すればよく特に限定されるものではない。反応温度が低いと酒石酸・アミン塩が析出してしまうことがあり、この場合、得られる光学活性2-アミノ酪酸の純度を下げる結果となる。このため、アミン添加時の反応温度は、通常、0℃以上から100℃以下あるいは使用有機溶媒の沸点以下、好ましくは20℃以上から100℃以下あるいは使用有機溶媒の沸点以下で行うのが望ましい。 Although it is the reaction temperature at the time of adding amine, it may be suitably adjusted according to the kind of amine and the organic solvent to be used, and is not particularly limited. When the reaction temperature is low, tartaric acid / amine salt may be precipitated. In this case, the resulting optically active 2-aminobutyric acid is lowered in purity. Therefore, the reaction temperature at the time of amine addition is usually 0 ° C. to 100 ° C. or below the boiling point of the organic solvent used, preferably 20 ° C. to 100 ° C. or below the boiling point of the organic solvent used.
 最後に、溶解せず残存した光学活性2-アミノ酪酸を分離回収する。分離は濾過または遠心分離などの方法を用いて行う。得られた光学活性2-アミノ酪酸は必要に応じて溶媒洗浄(溶媒洗浄用の溶媒としては、例えば、メタノール、エタノール、1-プロパノール、2-プロパノール、1-ブタノール、2-ブタノールまたはイソブタノールなどが挙げられ、これらの溶媒を単独、又は2種類以上を混和させて使用できる)、再結晶などの精製を行ってもよい。 Finally, the optically active 2-aminobutyric acid remaining undissolved is separated and recovered. Separation is performed using a method such as filtration or centrifugation. The obtained optically active 2-aminobutyric acid is washed with a solvent as required (for example, methanol, ethanol, 1-propanol, 2-propanol, 1-butanol, 2-butanol or isobutanol as a solvent washing solvent) These solvents can be used alone or in admixture of two or more types), and purification such as recrystallization may be performed.
 このようにして、医薬、農薬および工業薬品を製造する中間体として有用な光学活性2-アミノ酪酸を、簡便かつ高収率に得ることができる。 In this way, optically active 2-aminobutyric acid useful as an intermediate for producing pharmaceuticals, agricultural chemicals and industrial chemicals can be obtained simply and in high yield.
 以下において本発明を実施例により具体的に説明する。ただし、本発明は以下の実施例によって限定されるものではない。 Hereinafter, the present invention will be described in detail with reference to examples. However, the present invention is not limited to the following examples.
 本発明の反応追跡及び光学純度の測定は下記の条件で行った。
HPLC分析条件
溶離液    1mM CuSO 水溶液
流量     0.5mL/min
カラム    SUMICHIRAL OA-5000 
       (株式会社住化分析センター製)
カラム恒温槽 30℃
検出器    UV254nm
The reaction tracking and optical purity measurement of the present invention were performed under the following conditions.
HPLC Analysis conditions <br/> eluent 1 mM CuSO 4 solution flow rate 0.5 mL / min
Column SUMICHIRAL OA-5000
(Made by Sumika Chemical Analysis Co., Ltd.)
Column thermostat 30 ° C
Detector UV254nm
実施例1
 L-2-アミノ酪酸10.0gとL-酒石酸8.1gを50gの2-ブタノール/メタノール混合溶媒中(重量組成比 1:1)に懸濁させ、サリチルアルデヒド2.3gを添加した。75℃で45時間加熱撹拌後、吸引濾過を行いD-2-アミノ酪酸・L-酒石酸塩(モル組成比 2:1)のジアステレオマー塩を得た。取得したジアステレオマー塩の重量は14.2g(収率79%),光学純度は86.3%e.e.であった。
Example 1
10.0 g of L-2-aminobutyric acid and 8.1 g of L-tartaric acid were suspended in 50 g of 2-butanol / methanol mixed solvent (weight composition ratio 1: 1), and 2.3 g of salicylaldehyde was added. After stirring with heating at 75 ° C. for 45 hours, suction filtration was performed to obtain a diastereomeric salt of D-2-aminobutyric acid / L-tartrate (molar composition ratio 2: 1). The weight of the obtained diastereomeric salt was 14.2 g (yield 79%), and the optical purity was 86.3% e.e. e. Met.
 得られたD-2-アミノ酪酸・L-酒石酸塩(モル組成比 2:1)を50gの2-プロパノール/メタノール混合溶媒中(重量組成比 1:2)に懸濁させ、反応温度30℃で30%トリメチルアミン水溶液14gを添加した。同温度で4時間攪拌した後、吸引濾過し、得られたケーキをメタノール35gで洗浄した。その後、得られたケーキを乾燥し、白色粉末として6.19gのD-2-アミノ酪酸(通算収率62%)を取得した。取得したD-2-アミノ酪酸を高速液体クロマトグラフィー(HPLC)で分析した結果、化学純度99.9%、光学純度は99.8%e.e.であった。 The obtained D-2-aminobutyric acid / L-tartrate (molar composition ratio 2: 1) was suspended in 50 g of a 2-propanol / methanol mixed solvent (weight composition ratio 1: 2), and the reaction temperature was 30 ° C. 14 g of 30% trimethylamine aqueous solution was added. After stirring at the same temperature for 4 hours, suction filtration was performed, and the resulting cake was washed with 35 g of methanol. Thereafter, the obtained cake was dried to obtain 6.19 g of D-2-aminobutyric acid (total yield: 62%) as a white powder. As a result of analyzing the obtained D-2-aminobutyric acid by high performance liquid chromatography (HPLC), the chemical purity was 99.9%, and the optical purity was 99.8% e.e. e. Met.
実施例2
 D-2-アミノ酪酸2.01gとD-酒石酸1.65gを10gの2-プロパノール/メタノール混合溶媒中(重量組成比 1:1)に懸濁させ、サリチルアルデヒド0.47gを添加した。75℃で43時間加熱撹拌し40℃まで徐冷した後、70%エチルアミン水溶液1.4g及びメタノール5gを添加した。同温度で4時間攪拌した後、吸引濾過し、得られたケーキをメタノール15gで洗浄した。その後、得られたケーキを乾燥し、白色粉末として1.46gのL-2-アミノ酪酸(収率73%)を取得した。取得したL-2-アミノ酪酸を高速液体クロマトグラフィー(HPLC)で分析した結果、化学純度99.7%、光学純度は99.9%e.e.であった。
Example 2
2.01 g of D-2-aminobutyric acid and 1.65 g of D-tartaric acid were suspended in 10 g of a 2-propanol / methanol mixed solvent (weight composition ratio 1: 1), and 0.47 g of salicylaldehyde was added. After heating and stirring at 75 ° C for 43 hours and gradually cooling to 40 ° C, 1.4 g of 70% ethylamine aqueous solution and 5 g of methanol were added. After stirring at the same temperature for 4 hours, suction filtration was performed, and the resulting cake was washed with 15 g of methanol. Thereafter, the obtained cake was dried to obtain 1.46 g of L-2-aminobutyric acid (yield 73%) as a white powder. As a result of analyzing the obtained L-2-aminobutyric acid by high performance liquid chromatography (HPLC), the chemical purity was 99.7% and the optical purity was 99.9% e.e. e. Met.
実施例3
 D-2-アミノ酪酸20.0gとD-酒石酸16.1gを80gの2-プロパノール /メタノール混合溶媒中(重量組成比 1:1)に懸濁させ、サリチルアルデヒド4.7gを添加した。70℃で18時間加熱撹拌し、30℃まで徐冷した後、51%ジメチルアミン水溶液18.9g及びメタノール100gを添加した。同温度で3時間攪拌した後、吸引濾過し、得られたケーキをメタノール120gで洗浄した。その後、得られたケーキを乾燥し、白色粉末として13.9gのL-2-アミノ酪酸(収率70%)を取得した。取得したL-2-アミノ酪酸を高速液体クロマトグラフィー(HPLC)で分析した結果、化学純度99.7%、光学純度は99.7%e.e.であった。
Example 3
20.0 g of D-2-aminobutyric acid and 16.1 g of D-tartaric acid were suspended in 80 g of a 2-propanol / methanol mixed solvent (weight composition ratio 1: 1), and 4.7 g of salicylaldehyde was added. After stirring with heating at 70 ° C. for 18 hours and gradually cooling to 30 ° C., 18.9 g of a 51% dimethylamine aqueous solution and 100 g of methanol were added. After stirring at the same temperature for 3 hours, suction filtration was performed, and the resulting cake was washed with 120 g of methanol. Thereafter, the obtained cake was dried to obtain 13.9 g of L-2-aminobutyric acid (yield 70%) as a white powder. As a result of analyzing the obtained L-2-aminobutyric acid by high performance liquid chromatography (HPLC), the chemical purity was 99.7% and the optical purity was 99.7% e.e. e. Met.
実施例4
 L-2-アミノ酪酸2.0gとL-酒石酸1.65gを10gの2-プロパノール /メタノール混合溶媒中(重量組成比 1:1)に懸濁させ、サリチルアルデヒド0.24gを添加した。75℃で72時間加熱撹拌し、30℃まで徐冷した後、トリエチルアミン2.21g及びメタノール5gを添加した。同温度で24時間攪拌した後、吸引濾過し、得られたケーキをメタノール15gで洗浄した。その後、得られたケーキを乾燥し、白色粉末として1.43gのD-2-アミノ酪酸(収率72%)を取得した。取得したD-2-アミノ酪酸を高速液体クロマトグラフィー(HPLC)で分析した結果、化学純度99.9%、光学純度は93.6%e.e.であった。
Example 4
L-2-aminobutyric acid 2.0 g and L-tartaric acid 1.65 g were suspended in 10 g of 2-propanol / methanol mixed solvent (weight composition ratio 1: 1), and 0.24 g of salicylaldehyde was added. After heating and stirring at 75 ° C. for 72 hours and gradually cooling to 30 ° C., 2.21 g of triethylamine and 5 g of methanol were added. After stirring at the same temperature for 24 hours, suction filtration was performed, and the resulting cake was washed with 15 g of methanol. Thereafter, the obtained cake was dried to obtain 1.43 g of D-2-aminobutyric acid (yield 72%) as a white powder. As a result of analyzing the obtained D-2-aminobutyric acid by high performance liquid chromatography (HPLC), the chemical purity was 99.9% and the optical purity was 93.6% e.e. e. Met.
参考例1
 L-2-アミノ酪酸10.0gとL-酒石酸8.1gを10gの2-ブタノール/メタノール混合溶媒中(重量組成比 1:1)に懸濁させ、サリチルアルデヒド2.3gを添加した。75℃で45時間加熱撹拌後、吸引濾過を行いD-2-アミノ酪酸・L-酒石酸塩(モル組成比 2:1)のジアステレオマー塩を得た。取得したジアステレオマー塩の重量は14.2g(収率79%),光学純度は86.3%e.e.であった。
Reference example 1
10.0 g of L-2-aminobutyric acid and 8.1 g of L-tartaric acid were suspended in 10 g of a 2-butanol / methanol mixed solvent (weight composition ratio 1: 1), and 2.3 g of salicylaldehyde was added. After stirring with heating at 75 ° C. for 45 hours, suction filtration was performed to obtain a diastereomeric salt of D-2-aminobutyric acid / L-tartrate (molar composition ratio 2: 1). The weight of the obtained diastereomeric salt was 14.2 g (yield 79%), and the optical purity was 86.3% e.e. e. Met.
 得られたD-2-アミノ酪酸・L-酒石酸塩(モル組成比 2:1)を35gの2-プロパノール/メタノール混合溶媒中(重量組成比 1:2)に懸濁させ、反応温度30℃で30%トリメチルアミン水溶液12gを添加した。同温度で4時間攪拌した後、吸引濾過し、得られたケーキをメタノール35gで洗浄した。その後、得られたケーキを乾燥し、白色粉末として4.41gのD-2-アミノ酪酸(通算収率44%)を取得した。取得したD-2-アミノ酪酸を高速液体クロマトグラフィー(HPLC)で分析した結果、化学純度99.9%、光学純度は99.8%e.e.であった。 The obtained D-2-aminobutyric acid / L-tartrate (molar composition ratio 2: 1) was suspended in 35 g of a 2-propanol / methanol mixed solvent (weight composition ratio 1: 2), and the reaction temperature was 30 ° C. 12 g of 30% trimethylamine aqueous solution was added. After stirring at the same temperature for 4 hours, suction filtration was performed, and the resulting cake was washed with 35 g of methanol. Thereafter, the obtained cake was dried to obtain 4.41 g of D-2-aminobutyric acid (total yield: 44%) as a white powder. As a result of analyzing the obtained D-2-aminobutyric acid by high performance liquid chromatography (HPLC), the chemical purity was 99.9%, and the optical purity was 99.8% e.e. e. Met.
比較例1
 D-2-アミノ酪酸2.02gとD-酒石酸1.63gを8.0gの水中に溶解させ、サリチルアルデヒド0.486gを添加した。80℃で40時間加熱攪拌し、30℃まで徐冷した。しかし、2-アミノ酪酸とD-酒石酸のジアステレオマー塩が水中で析出せず回収に至らなかった。
Comparative Example 1
2.02 g of D-2-aminobutyric acid and 1.63 g of D-tartaric acid were dissolved in 8.0 g of water, and 0.486 g of salicylaldehyde was added. The mixture was heated and stirred at 80 ° C. for 40 hours and gradually cooled to 30 ° C. However, the diastereomeric salt of 2-aminobutyric acid and D-tartaric acid did not precipitate in water and could not be recovered.
比較例2
 L-2-アミノ酪酸2.01gと(-)-カンファースルホン酸2.50gを8.0gのメタノール中に溶解させ、サリチルアルデヒド0.480gを添加した。65℃で40時間加熱攪拌し、30℃まで徐冷した。しかし、2-アミノ酪酸と(-)-カンファースルホン酸のジアステレオマー塩がメタノール中で析出せず回収に至らなかった。
Comparative Example 2
2.01 g of L-2-aminobutyric acid and 2.50 g of (−)-camphorsulfonic acid were dissolved in 8.0 g of methanol, and 0.480 g of salicylaldehyde was added. The mixture was heated and stirred at 65 ° C. for 40 hours and gradually cooled to 30 ° C. However, the diastereomeric salt of 2-aminobutyric acid and (−)-camphorsulfonic acid did not precipitate in methanol and could not be recovered.
比較例3
 L-2-アミノ酪酸2.01gと(+)-マンデル酸1.64gを8.0gのメタノール中に懸濁させ、サリチルアルデヒド0.475gを添加した。65℃で40時間加熱攪拌し、30℃まで徐冷した後、吸引濾過し、得られたケーキをメタノール12gで洗浄した。その後、得られたケーキを乾燥し、白色粉末として1.36gの2-アミノ酪酸と(+)-マンデル酸とのジアステレオマー塩を取得した。取得した2-アミノ酪酸と(+)-マンデル酸とのジアステレオマー塩を高速液体クロマトグラフィー(HPLC)トグラフィーで分析した結果、2-アミノ酪酸の光学純度は0.0%e.e.のラセミ体であった。
Comparative Example 3
2.01 g of L-2-aminobutyric acid and 1.64 g of (+)-mandelic acid were suspended in 8.0 g of methanol, and 0.475 g of salicylaldehyde was added. The mixture was heated and stirred at 65 ° C. for 40 hours, gradually cooled to 30 ° C., filtered with suction, and the obtained cake was washed with 12 g of methanol. Thereafter, the obtained cake was dried to obtain 1.36 g of a diastereomeric salt of 2-aminobutyric acid and (+)-mandelic acid as a white powder. The obtained diastereomeric salt of 2-aminobutyric acid and (+)-mandelic acid was analyzed by high-performance liquid chromatography (HPLC). As a result, the optical purity of 2-aminobutyric acid was 0.0% e.e. e. The racemic form of

Claims (6)

  1.  有機溶媒中、2-アミノ酪酸に、光学活性酒石酸と、アルデヒドとを共存させて加熱することによって、光学活性2-アミノ酪酸と光学活性酒石酸とのジアステレオマー塩を得る工程を含む、光学活性2-アミノ酪酸の製造方法。 An optical activity comprising a step of obtaining a diastereomeric salt of optically active 2-aminobutyric acid and optically active tartaric acid by heating the optically active tartaric acid and aldehyde in the presence of 2-aminobutyric acid in an organic solvent. A method for producing 2-aminobutyric acid.
  2.  前記ジアステレオマー塩から光学活性2-アミノ酪酸を分離する工程をさらに含む、請求項1に記載の方法。 The method according to claim 1, further comprising a step of separating optically active 2-aminobutyric acid from the diastereomeric salt.
  3.  アミンを添加することによって、前記ジアステレオマー塩から光学活性2-アミノ酪酸を分離する、請求項2に記載の方法。 The method according to claim 2, wherein the optically active 2-aminobutyric acid is separated from the diastereomeric salt by adding an amine.
  4.  前記アミンが、下式(3):
    Figure JPOXMLDOC01-appb-C000001
    (式中、R1,R2,R3は水素原子または炭化水素基であり、R1,R2,R3の合計炭素数が1~8であり、これらは相互に結合して環を形成していてもよい)
    で示されるアミン類からなる群より選ばれる1種類以上である、請求項3に記載の方法。
    The amine is represented by the following formula (3):
    Figure JPOXMLDOC01-appb-C000001
    (In the formula, R1, R2, and R3 are hydrogen atoms or hydrocarbon groups, and R1, R2, and R3 have a total carbon number of 1 to 8, and these may be bonded to each other to form a ring. )
    The method of Claim 3 which is 1 or more types chosen from the group which consists of amines shown by these.
  5.  前記アルデヒドがサリチルアルデヒドである、請求項1~4のいずれか一項に記載の方法。 The method according to any one of claims 1 to 4, wherein the aldehyde is salicylaldehyde.
  6.  前記有機溶媒が、炭素数1から8までの直鎖状または分岐状のアルキル基を有するアルコール類からなる群より選ばれる1種類以上である、請求項1~5のいずれか一項に記載の方法。 The organic solvent according to any one of claims 1 to 5, wherein the organic solvent is at least one selected from the group consisting of alcohols having a linear or branched alkyl group having 1 to 8 carbon atoms. Method.
PCT/JP2011/070575 2010-09-09 2011-09-09 Method for producing optically active 2-aminobutyric acid WO2012033187A1 (en)

Applications Claiming Priority (2)

Application Number Priority Date Filing Date Title
JP2010-201867 2010-09-09
JP2010201867A JP2013241338A (en) 2010-09-09 2010-09-09 Method for producing optically active 2-aminobutyric acid

Publications (1)

Publication Number Publication Date
WO2012033187A1 true WO2012033187A1 (en) 2012-03-15

Family

ID=45810783

Family Applications (1)

Application Number Title Priority Date Filing Date
PCT/JP2011/070575 WO2012033187A1 (en) 2010-09-09 2011-09-09 Method for producing optically active 2-aminobutyric acid

Country Status (2)

Country Link
JP (1) JP2013241338A (en)
WO (1) WO2012033187A1 (en)

Citations (5)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
JPS60156654A (en) * 1984-01-25 1985-08-16 Nippon Kayaku Co Ltd Novel process for preparing optically active phenylalanine
JPH11228512A (en) * 1998-02-20 1999-08-24 Yamakawa Yakuhin Kogyo Kk Production of d-alloisoleucine and intermediate therefor
JP2000509068A (en) * 1996-04-26 2000-07-18 アストラ・アクチエボラーグ Process for preparing enantiomerically pure azetidine-2-carboxylic acid
WO2005103005A1 (en) * 2004-04-26 2005-11-03 Astellas Pharma Inc. PROCESS FOR SELECTIVELY PRODUCING OPTICALLY ACTIVE ISOMER OF β-PYRIDYLALANINE
CN102060721A (en) * 2009-11-12 2011-05-18 南京工程学院 Method for preparing L-2-aminobutyric acid by asymmetric conversion method

Patent Citations (5)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
JPS60156654A (en) * 1984-01-25 1985-08-16 Nippon Kayaku Co Ltd Novel process for preparing optically active phenylalanine
JP2000509068A (en) * 1996-04-26 2000-07-18 アストラ・アクチエボラーグ Process for preparing enantiomerically pure azetidine-2-carboxylic acid
JPH11228512A (en) * 1998-02-20 1999-08-24 Yamakawa Yakuhin Kogyo Kk Production of d-alloisoleucine and intermediate therefor
WO2005103005A1 (en) * 2004-04-26 2005-11-03 Astellas Pharma Inc. PROCESS FOR SELECTIVELY PRODUCING OPTICALLY ACTIVE ISOMER OF β-PYRIDYLALANINE
CN102060721A (en) * 2009-11-12 2011-05-18 南京工程学院 Method for preparing L-2-aminobutyric acid by asymmetric conversion method

Also Published As

Publication number Publication date
JP2013241338A (en) 2013-12-05

Similar Documents

Publication Publication Date Title
EP0442584A1 (en) Process for the preparation of an optically active amino acid amide
EP2586769B1 (en) Method for producing (1r, 2s)-1-amino-2-vinyl cyclopropane carboxylic acid ester that has improved optical purity
US20080015385A1 (en) Preparation of (S)-pregabalin-nitrile
EP0499376A1 (en) Precipitation-induced asymmetric transformation of chiral alpha-amino acids and salts thereof
EP1879854B1 (en) Optical resolution of 3-carbamoylmethyl-5-methyl hexanoic acid
EP2524910A1 (en) Process for the resolution of aminobutyramide
US6310242B1 (en) Process for preparing D-alloisoleucine and intermediates for preparation
EP1074539B1 (en) Process for producing optically active 3,3,3,-trifluoro-2-hydroxy-2-methylpropionic acid, and salt thereof
WO2012033187A1 (en) Method for producing optically active 2-aminobutyric acid
JP4138928B2 (en) Method for producing D-alloisoleucine and intermediate for production
EP2221294A1 (en) Process for production of n-carbamoyl-tert-leucine
CN1226275C (en) Method for preparing dextrorotary phenylalanine by asymmetric conversion method
US20110245536A1 (en) Process for preparing pregabalin
USH2154H1 (en) Process for preparing R- and S-isomers of (R)-5-(2-( (2-(2-ethoxyphenoxy)ethyl)amino)propyl)-2-methoxybenzenesulfonamide
JP2007191470A (en) Method for producing optically active 2-aminobutanamide or its salt
WO2012033188A1 (en) Method for producing optically active amino acid
WO2013058241A1 (en) Method for producing (r)-2-amino-2-ethylhexanol
JP5097607B2 (en) Method for producing optically active amino acid
JP5157997B2 (en) Method for producing DL-tert-leucinamide
JP2011057619A (en) Method for producing optically active amine compound, and diastereomer salt and method for producing the same
JP3663643B2 (en) Process for producing optically active 1- (2,4-dichlorophenyl) ethylamine
JP6483332B2 (en) Method for producing D-arginine
JP4035856B2 (en) Method for producing high optical purity optically active amino acid ester
JP2003238507A (en) METHOD FOR PRODUCING OPTICALLY ACTIVE beta-PHENYLALANINE DERIVATIVE
CA3154610A1 (en) An industrial process for resolution of chlocyphos

Legal Events

Date Code Title Description
121 Ep: the epo has been informed by wipo that ep was designated in this application

Ref document number: 11823661

Country of ref document: EP

Kind code of ref document: A1

NENP Non-entry into the national phase

Ref country code: DE

122 Ep: pct application non-entry in european phase

Ref document number: 11823661

Country of ref document: EP

Kind code of ref document: A1

NENP Non-entry into the national phase

Ref country code: JP