WO2012032088A1 - Amortisseur a haut pouvoir dissipatif et pratiquement sans huile - Google Patents

Amortisseur a haut pouvoir dissipatif et pratiquement sans huile Download PDF

Info

Publication number
WO2012032088A1
WO2012032088A1 PCT/EP2011/065488 EP2011065488W WO2012032088A1 WO 2012032088 A1 WO2012032088 A1 WO 2012032088A1 EP 2011065488 W EP2011065488 W EP 2011065488W WO 2012032088 A1 WO2012032088 A1 WO 2012032088A1
Authority
WO
WIPO (PCT)
Prior art keywords
tubular body
chamber
annular
rod
chambers
Prior art date
Application number
PCT/EP2011/065488
Other languages
English (en)
Inventor
Valentin Eroshenko
Original Assignee
Walden Associates Ltd., S.A.
Priority date (The priority date is an assumption and is not a legal conclusion. Google has not performed a legal analysis and makes no representation as to the accuracy of the date listed.)
Filing date
Publication date
Application filed by Walden Associates Ltd., S.A. filed Critical Walden Associates Ltd., S.A.
Priority to JP2013527589A priority Critical patent/JP5667298B2/ja
Priority to RU2013115380/11A priority patent/RU2547023C2/ru
Priority to CN201180042906.4A priority patent/CN103119320B/zh
Priority to US13/820,977 priority patent/US8925697B2/en
Priority to KR1020137008805A priority patent/KR101506020B1/ko
Priority to EP11754405.6A priority patent/EP2614269A1/fr
Publication of WO2012032088A1 publication Critical patent/WO2012032088A1/fr

Links

Classifications

    • FMECHANICAL ENGINEERING; LIGHTING; HEATING; WEAPONS; BLASTING
    • F04POSITIVE - DISPLACEMENT MACHINES FOR LIQUIDS; PUMPS FOR LIQUIDS OR ELASTIC FLUIDS
    • F04BPOSITIVE-DISPLACEMENT MACHINES FOR LIQUIDS; PUMPS
    • F04B1/00Multi-cylinder machines or pumps characterised by number or arrangement of cylinders
    • FMECHANICAL ENGINEERING; LIGHTING; HEATING; WEAPONS; BLASTING
    • F16ENGINEERING ELEMENTS AND UNITS; GENERAL MEASURES FOR PRODUCING AND MAINTAINING EFFECTIVE FUNCTIONING OF MACHINES OR INSTALLATIONS; THERMAL INSULATION IN GENERAL
    • F16FSPRINGS; SHOCK-ABSORBERS; MEANS FOR DAMPING VIBRATION
    • F16F9/00Springs, vibration-dampers, shock-absorbers, or similarly-constructed movement-dampers using a fluid or the equivalent as damping medium
    • F16F9/32Details
    • FMECHANICAL ENGINEERING; LIGHTING; HEATING; WEAPONS; BLASTING
    • F16ENGINEERING ELEMENTS AND UNITS; GENERAL MEASURES FOR PRODUCING AND MAINTAINING EFFECTIVE FUNCTIONING OF MACHINES OR INSTALLATIONS; THERMAL INSULATION IN GENERAL
    • F16FSPRINGS; SHOCK-ABSORBERS; MEANS FOR DAMPING VIBRATION
    • F16F9/00Springs, vibration-dampers, shock-absorbers, or similarly-constructed movement-dampers using a fluid or the equivalent as damping medium
    • FMECHANICAL ENGINEERING; LIGHTING; HEATING; WEAPONS; BLASTING
    • F16ENGINEERING ELEMENTS AND UNITS; GENERAL MEASURES FOR PRODUCING AND MAINTAINING EFFECTIVE FUNCTIONING OF MACHINES OR INSTALLATIONS; THERMAL INSULATION IN GENERAL
    • F16FSPRINGS; SHOCK-ABSORBERS; MEANS FOR DAMPING VIBRATION
    • F16F9/00Springs, vibration-dampers, shock-absorbers, or similarly-constructed movement-dampers using a fluid or the equivalent as damping medium
    • F16F9/003Dampers characterised by having pressure absorbing means other than gas, e.g. sponge rubber
    • FMECHANICAL ENGINEERING; LIGHTING; HEATING; WEAPONS; BLASTING
    • F16ENGINEERING ELEMENTS AND UNITS; GENERAL MEASURES FOR PRODUCING AND MAINTAINING EFFECTIVE FUNCTIONING OF MACHINES OR INSTALLATIONS; THERMAL INSULATION IN GENERAL
    • F16FSPRINGS; SHOCK-ABSORBERS; MEANS FOR DAMPING VIBRATION
    • F16F9/00Springs, vibration-dampers, shock-absorbers, or similarly-constructed movement-dampers using a fluid or the equivalent as damping medium
    • F16F9/02Springs, vibration-dampers, shock-absorbers, or similarly-constructed movement-dampers using a fluid or the equivalent as damping medium using gas only or vacuum
    • FMECHANICAL ENGINEERING; LIGHTING; HEATING; WEAPONS; BLASTING
    • F16ENGINEERING ELEMENTS AND UNITS; GENERAL MEASURES FOR PRODUCING AND MAINTAINING EFFECTIVE FUNCTIONING OF MACHINES OR INSTALLATIONS; THERMAL INSULATION IN GENERAL
    • F16FSPRINGS; SHOCK-ABSORBERS; MEANS FOR DAMPING VIBRATION
    • F16F9/00Springs, vibration-dampers, shock-absorbers, or similarly-constructed movement-dampers using a fluid or the equivalent as damping medium
    • F16F9/06Springs, vibration-dampers, shock-absorbers, or similarly-constructed movement-dampers using a fluid or the equivalent as damping medium using both gas and liquid
    • F16F9/064Units characterised by the location or shape of the expansion chamber
    • F16F9/065Expansion chamber provided on the upper or lower end of a damper, separately there from or laterally on the damper

Definitions

  • the present invention relates to a damper with high dissipative power, and more particularly to a damper of the type comprising a rod-piston assembly sliding in a tubular body, said rod-piston assembly being adapted to be connected to a source of external disturbances and said tubular body being adapted to be connected to a structure to be protected.
  • a rod-piston and return spring system is used which is interposed between the structure to be protected (for example the bodywork of a motor vehicle) and the source of external disturbances (for example a vehicle wheel in direct contact with the ground). There is then provided a cylinder and piston rod unit, surrounded by the return spring, whose function is to dissipate the energy of shocks by taking advantage of the viscous flow of the hydraulic fluid.
  • the dissipation of energy in traditional dampers of this type is achieved through the transformation of the mechanical energy of the friction, in the solid-liquid system, into heat which emerges to the outside.
  • This new type of damper used a concept of heterogeneous structure of absorption-energy dissipation using a capillary-porous matrix and an associated liquid with respect to which said matrix is lyophobic, as is described in detail in the document EP 0 791 1 39 B1 ten years older and the same inventor.
  • a capillary porous solid matrix with open porosity and controlled topology is used, and a liquid surrounding the capillary-porous matrix defining a large specific solid / liquid separation surface, which is liquid under which matrix is lyophobic.
  • the separation surface is then evolutionarily isothermal and reversible depending on the external pressure at which the heterogeneous structure is subjected.
  • the document EP 1 250 539 B1 thus illustrates a damper of the type comprising a rod-piston assembly sliding in a cylinder delimiting on either side of the piston a working chamber containing hydraulic fluid, each working chamber communicating permanently with an associated chamber containing a heterogeneous energy absorption-dissipation structure, and further communicating with a common chamber via a system associated with a non-return valve and a choke valve, this common chamber constituting a compensation chamber ensuring the continuity of the hydraulic fluid during the movements of the rod-piston assembly in the cylinder.
  • the energy dissipation is effected without using the viscous fluid, for example oil, as soon as the speed of displacement of the piston exceeds a determined critical speed, to switch from a conventional Newtonian regime to a surface regime, using the heterogeneous absorption-energy dissipation structures where the "solid-liquid" interface acts as a working body.
  • the viscous fluid for example oil
  • the only compensation chamber which is arranged in the central part of the damper, is a chamber with a deformable wall delimited by a flexible envelope, whose arrangement inevitably induces a certain resistance to heat transfer between the working chambers and the outside.
  • the two flexible envelopes each housing a heterogeneous energy absorption-dissipation structure constituted by at least one capillary-porous matrix and an associated liquid with respect to which said matrix is lyophobic, are each arranged in a dedicated chamber of the rod-piston double chamber.
  • these sealed envelopes are remote from the outer surface of the body of the damper.
  • this surface precisely determines the efficiency of the heat exchange between the capillary-porous matrices with the outside, so that we can see a significant increase in the temperature of said matrices in severe operating situations and / or with high velocity peaks of the piston rod.
  • an oleopneumatic suspension comprising a tubular body defining a central chamber sliding a piston and two annular chambers surrounding the central chamber.
  • the central chamber is filled with oil and the piston is provided with channels allowing the forced passage of the oil from one side to the other of the piston.
  • the annular chambers are separated by a deformable wall in two compartments containing for one of the oil and the other air.
  • the compartments containing the oil are in communication through forced passage channels with the central chamber each on one side of the piston. It is understood that the annular chambers provided with deformable walls separating the oil from the air provide a suspension function by compression / expansion of the air to form a pneumatic spring.
  • the object of the invention is to distinguish itself from the high dissipation damper of the aforementioned type illustrated in the document EP 1 250 539 B1, in order to avoid the limitations and disadvantages described above, while also avoiding the disadvantages hydraulic and hydraulic shock absorbers traditional tires, particularly with regard to the high pressure and the large volume of oil used.
  • the invention also aims to design a damper with high dissipative power and substantially oil-free having an optimal behavior in case of hard stresses and / or high speeds of the rod of the damper.
  • the invention also aims to design a damper with high dissipative power and practically oil-free, the structure of which avoids any risk or danger during assembly, disassembly, and manipulation of the damper, and to have same time a maximum compactness for transport or storage of the damper.
  • a damper of the type comprising a rod-piston assembly sliding in a tubular body and said rod-piston assembly delimiting with the tubular body two working chambers containing hydraulic fluid, each chamber working member permanently communicating with an auxiliary chamber containing a heterogeneous energy absorption-dissipation structure constituted by at least one capillary-porous matrix and an associated liquid with respect to which said matrix is lyophobic, the damper being remarkable in that :
  • each of said annular auxiliary chambers housing a flexible envelope enclosing the associated heterogeneous structure
  • each of the two working chambers also communicates, via a respective non-return means, with an associated compensation chamber which is arranged in the relevant end of the tubular body, the said compensation chambers ensuring the continuity of the hydraulic fluid during displacements. of the rod-piston assembly in the tubular body.
  • the two flexible envelopes each containing an associated heterogeneous structure are close to the wall of the tubular body of the damper, which is very favorable for the efficiency of the heat exchange capillary-porous matrices with the outside.
  • the fact of providing two compensation chambers arranged at both ends of the tubular body avoids any negative influence on the heat exchange, and also to reduce the inertia (and therefore increase the speed) of the discharge of the hydraulic fluid in the system "working chamber - clearing chamber".
  • the tubular body terminates at each of its two ends by a head which encloses the associated compensation chamber, each compensation chamber being delimited by a deformable flexible wall which is fixed and housed in the corresponding head.
  • Each flexible deformable wall may be externally subjected to atmospheric pressure, or alternatively be subjected to a low positive pressure by an associated biasing means integrated into the head concerned.
  • the non-return means associated with each compensation chamber is constituted by a valve in the form of a washer with calibrated orifices, which is in abutment against the corresponding head to mask connecting channels formed in said head to connect said chamber of compensation to the associated work room.
  • the tubular body comprises a cylinder part and a hollow central rod part, said parts forming between them an annular space in which the rod-piston assembly which is also hollow slides tightly, delimiting one of the two working chambers on the piston side which is turned towards the source of external disturbances, and on the other side a closed annular chamber containing a gaseous fluid.
  • the closed annular chamber containing a gaseous fluid to have a bottom consisting of a ring connecting the cylinder part and the hollow central rod part solidarily, or alternatively that this annular chamber has a bottom constituted by an annular shoulder integral with the part cylinder, which is slid through with play by the central hollow stem portion, said hollow central stem portion having an end flange which is sealingly abutting against the aforementioned annular shoulder during operation of the damper, and which can be disengaged from said shoulder to form a vent allowing maximum retraction the rod-piston assembly inside the tubular body for a minimum space requirement of the damper for storing or transporting it.
  • the free end of the cylinder part is threaded externally, in order to receive a nut intended to clamp the end flange of the hollow central rod part against the shoulder of the cylinder part, or to release said flange of said shoulder, said nut having a central orifice for the passage of hydraulic fluid during operation of the damper.
  • the cylinder portion of the tubular body is constituted by two tubes screwed at one end to a threaded end forming the central portion and at their other end to a threaded head enclosing the associated compensation chamber, and by a sheath portion which is constituted by a tube, single or double, screwed into a bore of the central nozzle.
  • a sheath portion which is constituted by a tube, single or double, screwed into a bore of the central nozzle.
  • that of the two heads which is traversed by the rod-piston assembly is equipped with the single sealing system of the damper relative to the outside.
  • annular grid intended to ensure the positioning and maintenance of the flexible envelope which is housed in the annular auxiliary chamber concerned.
  • the aforementioned annular grids have a hollow star shape in their central part.
  • the two annular auxiliary chambers communicate with each other by a channel formed in the central part of the tubular body, said channel being equipped with a common choke.
  • the hydraulic resistance provided by the antiretour means will then always be greater, in the closed position, than that, adjustable, provided by the common choke.
  • the two annular auxiliary chambers do not communicate with each other, but each of said annular auxiliary chambers communicates with the associated compensation chamber via a channel formed in the corresponding end of the annular body, each channel being equipped with its own choke.
  • the hydraulic resistance provided by the non-return means will then always be greater, in the closed position, than that, adjustable, provided by each choke.
  • FIG. 1 is an axial sectional view of a damper according to the invention
  • FIG. 2 is an axial sectional view of a variant of the damper of Figure 1, wherein there is provided a vent arrangement which is intended to allow maximum retraction of the rod-piston assembly to the inside the tubular body and also to hold said assembly in this position;
  • FIG. 3 is an axial sectional view illustrating the central portion of the damper of Figure 2 in the maximum depression position of the piston rod, with formation of a vacuum created during the operation of the damper ;
  • FIG. 4 illustrates, on a greatly enlarged scale, the detail IV of FIG. 3, making it possible to better distinguish the above-mentioned arrangement forming a vent in the open position (illustrated position), and allowing the formation of a depression in the closed position (with tight nut);
  • FIG. 5 illustrates the damper of FIGS. 2 to 4, in different axial positions of its rod-piston assembly, with in a) a median position, in b) a maximum retraction position of the rod-piston assembly produced by following the opening of the vent, and c) a maximum output position of the rod-piston assembly;
  • each annular auxiliary chamber communicates with the associated compensation chamber via a channel equipped with its own choke;
  • FIG. 7 is an axial section of a variant of the damper of FIG. 6, in which the deformable flexible wall delimiting each compensation chamber is subjected externally, not as in the preceding variants to atmospheric pressure, but to a low positive pressure;
  • FIG. 9 illustrates the star grids for positioning and maintaining the soft envelopes of the damper of Figures 6 and 7.
  • FIG. 1 shows a shock absorber with a high dissipative power and practically without oil according to the invention, denoted 1.
  • This damper is of the type comprising a rod-piston assembly 2 sliding in a tubular body 3, said rod-piston assembly being adapted to be connected to a source of external disturbances noted SPE (for example a wheel of a vehicle equipped with the damper for its suspension when the wheel is in direct contact with the ground), and said tubular body being adapted to be connected to a structure to protect noted S (for example the body of the motor vehicle thus equipped).
  • SPE for example a wheel of a vehicle equipped with the damper for its suspension when the wheel is in direct contact with the ground
  • the tubular body 3 comprises a cylindrical portion 4 inside which extends axially, along a longitudinal axis X of the damper, a hollow central rod portion 5 open bottom.
  • the ring 6 integrally connecting the cylinder portion 4 and the hollow central rod portion 5 thus forms the bottom of a chamber 10 which is a closed annular chamber containing a gaseous fluid, for example air or nitrogen.
  • the rod-piston assembly thus consists of a rod proper 7 and a piston 8 which slides sealingly by means of seals 9 in the annular space delimited between the inner wall of the cylinder part 4 and the wall 5.
  • the cylinder portion 4 and the hollow central rod portion 5 form between them an annular space in which the rod-piston assembly, which is also hollow, slides in a sealed manner, delimiting a chamber said working 1 1 A on the side of the piston 8 which is turned towards the source of external disturbances SPE, and on the other side the closed annular chamber 1 0 containing a gaseous fluid.
  • the rod-piston assembly 2 delimits, with the tubular body 3, two working chambers 1 1 A, 1 1 B containing hydraulic fluid, each working chamber 1 1 A, 1 1 B permanently communicating with an annex chamber 12A, 12B containing a heterogeneous absorption-energy dissipation structure constituted by at least one capillary-porous matrix 14 and an associated liquid 15 with regard to which said matrix is lyophobic.
  • the inner section of the piston rod 2 here plays the role of the piston for the working chamber 1 1 B.
  • the two adjoining chambers 12A, 12B are annular chambers placed in the wall of the tubular body 3 on either side of a central portion 28 of said tubular body.
  • Each of these annular annular chambers 12A, 12B houses a flexible envelope 13A, 1 3B enclosing the associated heterogeneous structure
  • the capillary-porous matrices are shown here by solids 14, the associated liquid, with respect to which said matrices are lyophobic, being noted 15. It may be water, or any other suitable liquid.
  • each containing an associated heterogeneous structure 14, 15 are disposed in the vicinity of the outer wall of the tubular body of the damper, which is very favorable in terms of heat exchange with the outside.
  • the two annular auxiliary chambers 12A, 12B communicate here with each other through a channel 20 formed in the central portion 28 of the tubular body, extending parallel to the axis X, which channel 20 is equipped with a common choke 21 which provides a adjustable hydraulic resistance.
  • each of the two working chambers 1 1 A, 1 1 B delimited by the rod-piston assembly 2 with the tubular body 3 further communicates via a respective non-return means 22A, 22B , with an associated compensation chamber 17A, 17B which is arranged in the end of the tubular body 3.
  • the tubular body 3 ends at each of its two ends by a head 16A, 16B which encloses the chamber of associated compensation 17A, 17B, each compensation chamber being delimited by a deformable flexible wall 18A, 18B which is fixed and housed in the corresponding head 16A, 16B, said flexible deformable wall 18A, 18B being in this case subject to pressure outside atmospheric.
  • each deformable flexible wall 18A, 18B is externally subjected to a low positive pressure by an associated biasing means 30A, 30B integrated in the relevant head 16A, 16B.
  • the two compensation chambers 17A, 17B are intended to ensure the continuity of the hydraulic fluid during the displacement of the rod-piston assembly 2 in the tubular body 3.
  • the single and central clearing house of the EP 1 250 539 B1 above is now replaced by two compensation chambers disposed at both ends of the tubular body, so that their presence is de facto without influence on the heat exchange during operation of the damper.
  • the flexible envelopes 13A, 13B consist of a non-penetrable material for the hydraulic fluid as has already been provided in the context of the high dissipation damper of EP-1 250 439 B1 cited above.
  • Each flexible envelope thus encloses the capillary-porous matrix or matrices 14 which bathe in an associated functional liquid (working liquid), which may be, for example, water.
  • working liquid which may be, for example, water.
  • the other chambers of the damper, naturally outside the annular chamber 10 above which contains a gas, are then occupied by a hydraulic fluid such as oil (technological liquid).
  • the tubular body 3 ends at each of its two ends by a head 16A, 16B, here unitary with the remainder of the cylindrical portion 4, which encloses the associated compensation chamber 17A, 1 7B.
  • the non-return means 22A, 22B associated with each compensation chamber 17A, 17B is in this case constituted by a washer-shaped valve 23A, 23B with calibrated orifices 24A, 24B, which bears against the corresponding head 16A , 16B for masking connecting channels 25A, 25B formed in said head and connecting each compensation chamber 17A, 17B to the associated working chamber 1 1 A, 1 1 B.
  • the calibrated orifices 24A, 24B of each washer 23A, 23B constituting the nonreturn means 22A, 22B will then be dimensioned so that the hydraulic resistance they provide is always greater, in the closed position, than that, adjustable, provided by the common choke 21 .
  • 16A of the two heads which is traversed by the rod-piston assembly 2 is equipped with the single sealing system 19 of the damper relative to the outside, which is a very important advantage over to previous achievements that required a double system of sealing the damper with respect to the outside.
  • the arrows 101 and 102 have been noted in FIG. 1 to symbolize the directions respectively of exit and retraction of the rod-piston assembly 2.
  • the shock absorber is represented with its rod-piston assembly in the median position, so that the available output stroke, denoted C1, is substantially identical to the available retraction stroke, denoted C2.
  • the residual stroke, denoted C0 corresponds to the maximum depression of the piston, with the volume of gas contained in the annular chamber 10 which is compressed to the maximum, without the gas being able to escape.
  • FIGS. 2 to 4 illustrate a variant of the damper which has just been described with reference to FIG. 1, this variant presenting a structure whose manufacture and assembly are largely simplified, as will be apparent from the comments who will follow.
  • the cylinder portion 4 of the tubular body 3 is then constituted by two tubes 4A, 4B which are screwed at one end to a threaded end forming the central portion 28, and at their other end to a threaded head 16A, 16B enclosing the associated compensation chamber 17A, 17B.
  • the tubular body 3 is also constituted by a sheath portion 4C which is constituted by a single or double tube (here simple) which is in this case screwed into a bore of the central nozzle 28.
  • the unitary component constituting the Cylinder part 4 of the tubular body for the damper of FIG. 1 is replaced by two tubes 4A, 4B, two heads 16A, 16B, a central end 28, and here a single tube 4C.
  • the central end 28, now threaded at its two ends has the channel 20 providing the communication between the two tubular adjoining chambers 12A, 12B, and equipped with the associated common choke 21.
  • the closed annular chamber 10 enclosing a gaseous fluid has a bottom 6 'which is now constituted by an annular shoulder 6.1 integral with the sleeve portion 4C of the cylinder portion 4 of the tubular body 3.
  • This annular shoulder 6.1 is slidably traversed with play (clearance 6.2) by the hollow central rod portion 5, said hollow central rod portion 5 having an end flange 6.3 equipped seals 6.5 and 6.6 on both circular faces.
  • the free end of the sleeve portion 4C of the cylinder portion 4 is threaded externally to receive a nut 30 for clamping the end flange 6.3 of the hollow central rod portion 5 against the shoulder 6.1 of the sleeve portion 4C, or to release said flange 6.3 from said shoulder 6.1.
  • the end flange 6.3 can be tightly pressed against the shoulder 6.1, which corresponds to the operating position of the damper, but may also be disengaged (position shown in Figure 4) to form a vent allowing maximum retraction of the rod-piston assembly 2 inside the tubular body 3 for the purpose of a minimum size of the damper for storing or transporting it.
  • This maximum retraction position of the piston rod is that illustrated in Figures 3 and 4, and it is understood that the gas contained in the annular chamber 10 can then escape, when the nut 30 is slightly unscrewed, by the clearance clearance 6.2 above and the clearance clearance noted 6.4 delimited by the periphery of the flange 6.3, to exit through a central hole 31 of the nut 30, as shown schematically by the arrows 200 in Figure 4.
  • the damper is then ultra-compact. Once this position is reached, it is sufficient for the operator to screw the nut 30 to recreate the seal of the bottom 6 '.
  • the operator can easily, the nut 30 being screwed back, pull the rod to a median position thereof, thereby forming a small depression in the chamber 10 which was initially at atmospheric pressure.
  • the central orifice 31 of the nut 30 extends the central channel noted 40 of the central rod portion 5 to allow the passage of fluid during movement of the piston rod.
  • the nut 30 When one wants to store or transport the damper, the nut 30 is unscrewed, and the piston rod can be pushed to the maximum to have an ultra-compact damper to store or transport.
  • the pressure in the chamber 10 then remains equal to the atmospheric pressure, which therefore excludes any danger during handling of the damper.
  • FIG. 5 illustrates in a) the state of the abovementioned shock absorber in the median position of the piston rod (a slight depression reigns then in the chamber 10), in b) in the maximum retracted position of said piston rod , on the whole of the race C2, with the residual race C0 which is maintained insofar as it is in the operating state of the damper (the pressure in the chamber 10 is then equal to the atmospheric pressure), and finally in c) in the maximum output position of the piston rod on the the entire stroke C1 (a depression higher than a) then reigns in the chamber 10).
  • the piston 9 of the rod-piston assembly 2 occupies a neutral position (the displacement of the rod 7, denoted ⁇ X (t) in FIG. 1, is zero) such as that illustrated in the figures 1, 2 and 5 a), this thanks to the balance between the weight of the motor vehicle and the force of the return spring of the suspension (not shown here).
  • the hydraulic pressures in the working chambers 1 1 A, 1 1 B, as well as in the internal volume of the central channel 40 are then everywhere the same, and are equal to the atmospheric pressure due to the presence of the calibrated orifices 24A, 24B of the check valves 23A, 23B, and also here of the passage channel 20 equipped with the choke 21.
  • the capillary-porous matrices 14 contained in the flexible envelopes 13A, 13B and immersed in the functional liquid 15, have interior spaces which are then empty. It is easy to understand that a small excess pressure in the annular chamber containing gas 10 has no influence on the value of the pressure prevailing in the hydraulic pool of the damper, nor on the behavior of the heterogeneous structures 14, 15 contained in the two flexible envelopes 13A, 13B.
  • the Newtonian regime corresponds to a dissipation of the mechanical energy which is that commonly encountered in the traditional hydraulic or oleo-pneumatic dampers, with a rolling of the viscous liquid through calibrated orifices which causes the transformation of the energy of the friction into heat, with the release of it to the outside.
  • the check valve 23B remains closed, and the resistor (adjustable) of the choke 21 then ensures the quiet passage of the liquid, the working chamber 1 B and the associated annular chamber 12B associated with the working chamber 1 1A and associated annular chamber 12A.
  • the liquid then progressively fills the annular space adjacent to the piston 8, and, in the event of a volume deficit, the non-return valve 23A opens at atmospheric pressure, and the necessary quantity of the liquid in the compensation chamber 17A reaches the working chamber 1 1A to ensure the continuity of the fluid in the hydraulic pool of the damper.
  • the ordinary backflow between the working chambers and their respective respective annular chamber through the channel 20, with the control of the choke 21, provides the function of mechanical energy dissipation. If the rod moves in the direction of the arrow 101, we find exactly the same symmetrical operation, with the letters A which are transformed into B, and vice versa.
  • the pressure inside the annular auxiliary chambers 12A, 12B housing the flexible envelopes 13A, 13B remains moderate, and in any case insufficient to return the functional liquid into the porous space of the matrices of the heterogeneous structure, this to the extent that said pressure is less than the Laplace capillary pressure which corresponds to the pressure P, n t of the intrusion of the functional liquid in the porous space (of volume V pore s).
  • the volume of the flexible envelopes 13A, 13B remains almost invariable, which means that the heterogeneous structures 14, 15 do not participate in the energy dissipation during this Newtonian regime.
  • a critical value X cr for example a value which is of the order of 0.1 meters per second for passenger cars, then the hydraulic resistance provided by the choke 21 increases considerably, and induces a strong increase in the pressure in one of the annular annular chambers 12A or 12B, until reaching the limit value of the Laplace capillary pressure.
  • the rapid displacement of the rod-piston assembly 2 causes the intrusion of the functional liquid into the interior space of the matrices of the heterogeneous structure of one of the flexible envelopes (that concerned by the increase in pressure) , so that the volume of the envelope concerned decreases considerably, more precisely the value V por es-
  • the volume of technological fluid (oil) driven from the central channel 40 under high pressure can not flow through the choke 21 in the secondary chamber annular 12A because of the great resistance of this choke.
  • the volume expelled is forced to compress the flexible concerned envelope 13B, and Sun inution volume AV of this envelope will be equal to a value equivalent to the volume of pores filled es por V of the or matrices contained in inside this flexible envelope 13B.
  • the pressure exerted in the annular auxiliary chamber 12B then exceeds the value of the Laplace capillary pressure (intrusion pressure P in t), which produces the forced intrusion of the functional liquid into the porous matrix or matrices. concerned.
  • the piston 8 flushes the liquid on the side of the working chamber 1 1A and the associated annular associated chamber 12A, which produces a compression of the flexible envelope 13A and a forced intrusion of the functional liquid in the porous space of the matrix of the heterogeneous structure 14, 15 associated.
  • a depression occurs in the other annular annular chamber 12B, which initiates the spontaneous expulsion of the functional liquid out of the pores of the porous matrix 14 of the heterogeneous structure accommodated in the flexible envelope 13B.
  • the opening of the nonreturn valve 23B again guarantees the continuity of the fluid in the annular auxiliary chamber 12B through the possible arrival of additional technological liquid from the associated compensation chamber 17B.
  • a sleeve portion 4C With its bottom 6 'equipped with a nut 30 associated with a vent system.
  • the sleeve portion 4C is either inserted by force into the central portion 28 of the body portion which is unitary 4 (variant of FIG. 6), or, as previously screwed into a boring of the central portion 28 of the body portion which is unitary 4 (variant of Figure 7), with a central seal 28 'sealing.
  • the two annular auxiliary chambers 12A, 12B do not communicate with each other, but each of these chambers communicates with the associated compensation chamber 17A, 17B via a channel 20A, 20B formed in the corresponding head 16A, 16B of the tubular bodies, each channel 20A, 20B being further equipped with its own choke 21 A, 21 B.
  • the non-return means 22A, 22B are then slightly modified, as illustrated in Figure 8 which shows a non-return valve 23A profile (a)) and face (in b)).
  • the hydraulic resistance provided by the non-return means 22A, 22B must again always remain larger, in the closed position, than the adjustable one provided by each choke 21 A, 21 B.
  • FIG. 9 illustrates, in isolation, the positioning and holding grids of the flexible envelopes 13A, 13B enclosing the heterogeneous structures of the damper.
  • the damper equipped with the internal arrangement of vent to be ultra-compact there are a) gate 26A which is normally threaded on the free end of the central rod portion 5, and in b) the gate 26B which is normally here threaded on the nut 30, these grids 26A, 26B having a star shape recessed circularly in their central portion.
  • the structure of the variant of FIG. 6 may also be modified by providing that the flexible wall 18B of the compensation chamber 17B (which is on the side of the structure to be protected) is subjected externally, not as hitherto at atmospheric pressure, but at a low positive pressure (for example 0.5 to 1, 0 bar), generated by a mechanical or pneumatic spring, and to do the same for the other flexible wall 18A with a slightly higher pressure (for example 0.5 to 1 bar), which makes it possible to better guarantee the continuity of the fluid and the speed of the response.
  • a low positive pressure for example 0.5 to 1, 0 bar
  • a mechanical or pneumatic spring generated by a mechanical or pneumatic spring
  • FIG. 7 thus illustrates biasing means 30A
  • FIGS. 6 and 7 are particularly advantageous for operation of the damper in a substantially vertical position, since it prevents the backflow of liquid from one compensation chamber to the other under the effect of gravity ( repression that can be met against with the variants of Figures 1 to 5).
  • the presence of the two separate throttles 21A, 21B allows a fine adjustment ensuring the constancy of the asymmetry of the characteristic of the damper, which adjustment is made once and for all during the initial assembly of the damper. For this setting, it is always arranged for the rebound force of the damper is set to a higher value than the force of shocks.
  • the invention can be applied to fields other than suspensions of motor vehicles, for example earthquake-resistant systems, supports for gas pipes, petroleum, steam, or the supports of public works, as well as anti-vibration pads, with the advantages noted above of high efficiency, combined with great power dissipative and at a maximum compactness of the devices and dissipation systems.
  • the rod-piston assembly 2 can be adapted to be connected to the source of external disturbances SPE or to the structure to be protected S, and the tubular body can be adapted to be connected to the structure to be protected S or to the source of disturbances. external SPE.

Landscapes

  • Engineering & Computer Science (AREA)
  • General Engineering & Computer Science (AREA)
  • Mechanical Engineering (AREA)
  • Fluid-Damping Devices (AREA)

Abstract

L'invention concerne un amortisseur à haut pouvoir dissipatif et pratiquement sans huile, du type comportant un ensemble tige-piston (2) coulissant dans un corps tubulaire (3), ledit ensemble tige-piston (2) délimitant avec le corps tubulaire deux chambres de travail (11A, 11B) contenant du fluide hydraulique, chaque chambre de travail (11A, 11B) communiquant en permanence avec une chambre annexe (12A, 12B) contenant une structure hétérogène d'absorption-dissipation d'énergie (14, 15) constituée par au moins une matrice capillairo-poreuse (14) et un liquide associé (15) au regard duquel ladite matrice est lyophobe. Conformément à l'invention, les deux chambres annexes (12A, 12B) sont des chambres annulaires ménagées dans la paroi du corps tubulaire(3), de part et d'autre d'une partie centrale (28) dudit corps tubulaire, chacune desdites chambres annexes annulaires (12A, 12B) logeant une enveloppe souple (13A, 3B) renfermant la structure hétérogène associée (14, 15); et chacune des deux chambres de travail (11A, 11B) communique en outre, via un moyen anti-retour respectif (22A, 22B), avec une chambre de compensation associée (17A, 17B) qui est agencée dans l'extrémité concernée du corps tubulaire (3), lesdites chambres de compensation (17A, 17B) assurant la continuité du fluide hydraulique lors des déplacements de l'ensemble tige-piston (2) dans le corps tubulaire (3).

Description

AMORTISSEUR A HAUT POUVOIR DISSIPATIF ET PRATIQUEMENT
SANS HUILE La présente invention concerne un amortisseur à haut pouvoir dissipatif, et plus particulièrement un amortisseur du type comportant un ensemble tige-piston coulissant dans un corps tubulaire, ledit ensemble tige- piston étant adapté pour être relié à une source de perturbations extérieures et ledit corps tubulaire étant adapté pour être relié à une structure à protéger.
ARRIERE-PLAN DE L'INVENTION
Dans les amortisseurs traditionnels hydrauliques ou oléo- pneumatiques, on utilise un système à tige-piston et ressort de rappel qui est intercalé entre la structure à protéger (par exemple la carrosserie d'un véhicule automobile) et la source de perturbations extérieures (par exemple une roue du véhicule en contact direct avec le sol). Il est alors prévu une unité cylindre et tige-piston, entourée par le ressort de rappel, qui a pour fonction de dissiper l'énergie des chocs en tirant partie de l'écoulement visqueux du fluide hydraulique. La dissipation de l'énergie dans les amortisseurs traditionnels de ce type est réalisée grâce à la transformation de l'énergie mécanique du frottement, dans le système solide-liquide, en chaleur qui se dégage vers l'extérieur.
De tels amortisseurs traditionnels sont extrêmement répandus, mais ils restent liés à un principe de dissipation d'énergie uniquement obtenu par le laminage d'un fluide visqueux, en général de l'huile, ce qui explique le faible pouvoir dissipatif de ces amortisseurs. Il existe en outre des inconvénients pratiques inhérents à leur structure, en particulier le fait d'être toujours sous haute pression. Il en est ainsi pour les amortisseurs MONROE (amortisseurs oléo-pneumatiques de l'inventeur BOURCIER de CARBON) utilisant un piston flottant libre séparant le gaz de l'huile. Il existe, et ce même à l'état de repos de l'amortisseur, une pression permanente de 50 à 100 bars qui est là pour éviter la vaporisation de l'huile lors du passage de celle-ci au travers des orifices calibrés de laminage. La présence d'une telle haute pression peut être génératrice de danger lors du montage ou du démontage, et lors des manipulations de l'amortisseur. Pour éviter ce danger, il est habituel de prévoir un cerclage de sécurité passant devant l'extrém ité libre de la tige-piston, afin d'éviter une brutale sortie de la tige qui pourrait provoquer un grave accident.
Un autre inconvénient, également inhérent au fait d'être en permanence sous haute pression, est que, pour le stockage ou le transport de l'amortisseur, la tige-piston est en position sortie, de sorte que l'amortisseur reste très encombrant en longueur.
Il y a une dizaine d'années, il a été proposé de concevoir un nouveau type d'amortisseur, capable de procurer un pourvoir d'absorption- dissipation d'énergie beaucoup plus élevé, tout en étant plus léger structurellement et moins volum ineux que les amortisseurs traditionnels. On pourra à ce titre se référer au document EP 1 250 539 B1 du même inventeur.
Ce nouveau type d'amortisseur faisait appel à un concept de structure hétérogène d'absorption-dissipation d'énergie utilisant une matrice capillairo-poreuse et un liquide associé au regard duquel ladite matrice est lyophobe, comme cela est décrit en détail dans le document EP 0 791 1 39 B1 de dix ans plus vieux et du même inventeur. Conformément à ce type très novateur de structure hétérogène, on utilise une matrice solide capillairo- poreuse à porosité ouverte et de topologie contrôlée, et un liquide entourant la matrice capillairo-poreuse en définissant une grande surface spécifique de séparation solide/liquide, liquide au regard duquel la matrice est lyophobe. La surface de séparation est alors évolutive de façon isotherme et réversible en fonction de la pression extérieure à laquelle la structure hétérogène est soumise.
Le cycle « compression-détente » isotherme de la structure hétérogène se caractérise par une boucle fermée à grande hystérésis sur le diagramme PV, l'hystérésis H correspondant à la différence ΔΡ = Pint - Pex , où Pint est la pression d'intrusion forcée du liquide dans l'espace poreux de la matrice, et Pexp est la pression d'expulsion spontanée du liquide chassé de cet espace poreux, et l'aire délimitée par cette boucle fermée caractérise l'énergie dissipée. Ce principe fondamental et très novateur est expliqué en détail dans la publication parue dans la revue anglaise J. Automobile Engineering, V A Eroshenko, 2007, Vol.221 , Part D, pages 285 à 300 sous le titre « A new paradigm of mechanical energy dissipation - Part 1 : theoretical aspects and practical solutions », et pages 301 à 312 sous le titre « A new paradigm of mechanical energy dissipation - Part 2 : expérimental investigation and effectiveness of a novel car damper ».
Le document EP 1 250 539 B1 illustre ainsi un amortisseur du type comportant un ensemble tige-piston coulissant dans un cylindre en délimitant de part et d'autre du piston une chambre de travail contenant du fluide hydraulique, chaque chambre de travail communiquant en permanence avec une chambre associée contenant une structure hétérogène d'absorption- dissipation d'énergie, et communiquant en outre avec une chambre commune par l'intermédiaire d'un système associé à clapet anti-retour et étrangleur, cette chambre commune constituant une chambre de compensation assurant la continuité du fluide hydraulique lors des déplacements de l'ensemble tige-piston dans le cylindre. On pourra à ce titre se référer au document EP 1 250 539 B1 du même inventeur.
Dans cet amortisseur, la dissipation d'énergie s'effectue sans faire appel au fluide visqueux, par exemple de l'huile, dès que la vitesse de déplacement du piston dépasse une vitesse critique déterminée, pour passer d'un régime newtonien classique à un régime surfacique, en faisant appel aux structures hétérogènes d'absorption-dissipation d'énergie où l'interface « solide- liquide » joue le rôle de corps de travail.
Il est cependant apparu encore certains inconvénients dans la structure de l'amortisseur précité.
Tout d'abord, comme l'amortisseur met en œuvre un piston classique double chambre avec deux systèmes d'étanchéité, il est nécessaire de prévoir un corps se prolongeant vers l'arrière d'une longueur suffisante pour permettre la rentrée complète de la tige-piston, d'où il résulte une longueur importante de l'amortisseur, même en position de rentrée complète de la tige- piston.
Par ailleurs, l'unique chambre de compensation, qui est agencée dans la partie centrale de l'amortisseur, est une chambre à paroi déformable délimitée par une enveloppe souple, dont l'agencement induit inévitablement une certaine résistance au transfert thermique entre les chambres de travail et l'extérieur.
Enfin, les deux enveloppes souples, logeant chacune une structure hétérogène d'absorption-dissipation d'énergie constituée par au moins une matrice capillairo-poreuse et un liquide associé au regard duquel ladite matrice est lyophobe, sont disposées chacune dans une chambre dédiée de la tige-piston double chambre. Par suite, ces enveloppes étanches sont éloignées de la surface extérieure du corps de l'amortisseur. Or, cette surface détermine justement l'efficacité de l'échange thermique entre les matrices capillairo- poreuses avec l'extérieur, de sorte que l'on peut constater une augmentation significative de la température desdites matrices dans des situations de fonctionnement sévères et/ou avec des pics de vitesses élevés de la tige- piston.
Il est par ailleurs connu du document GB-A-1 188453 une suspension oléopneumatique comportant un corps tubulaire délimitant une chambre centrale à coulissement un piston et deux chambres annulaires entourant la chambre centrale. La chambre centrale est remplie d'huile et le piston est pourvu de canaux permettant le passage contraint de l'huile d'un côté à l'autre du piston. Les chambres annulaires sont séparées par une paroi déformable en deux compartiments contenant pour l'un de l'huile et pour l'autre de l'air. Les compartiments contenant l'huile sont en communication par des canaux de passage contraint avec la chambre centrale chacun d'un côté du piston. On comprend que les chambres annulaires pourvues des parois déformables séparant l'huile de l'air assurent une fonction de suspension par compression / détente de l'air pour former un ressort pneumatique.
OBJET DE L'INVENTION
L'invention a pour objet de se démarquer de l'amortisseur à haut pouvoir dissipatif du type précité illustré dans le document EP 1 250 539 B1 , afin d'en éviter les limitations et inconvénients exposés ci-dessus, tout en évitant aussi les inconvénients des amortisseurs hydrauliques et oléo- pneumatiques traditionnels, notamment au regard de la haute pression et du grand volume d'huile utilisé.
L'invention a également pour objet de concevoir un amortisseur à haut pouvoir dissipatif et pratiquement sans huile présentant un comportement optimal en cas de sollicitations dures et/ou de vitesses élevées de la tige de l'amortisseur.
L'invention a aussi pour objet de concevoir un amortisseur à haut pouvoir dissipatif et pratiquement sans huile, dont la structure permet d'éviter tout risque ou danger lors du montage, démontage, et des manipulations de l'amortisseur, et d'avoir en même temps une compacité maximale pour le transport ou le stockage de l'amortisseur.
DEFINITION GENERALE DE L'INVENTION
Le problème technique précité est résolu conformément à l'invention grâce à un amortisseur du type comportant un ensemble tige-piston coulissant dans un corps tubulaire et ledit ensemble tige-piston délimitant avec le corps tubulaire deux chambres de travail contenant du fluide hydraulique, chaque chambre de travail communiquant en permanence avec une chambre annexe contenant une structure hétérogène d'absorption-dissipation d'énergie constituée par au moins une matrice capillairo-poreuse et un liquide associé au regard duquel ladite matrice est lyophobe, l'amortisseur étant remarquable en ce que :
- les deux chambres annexes sont des chambres annulaires ménagées dans la paroi du corps tubulaire, de part et d'autre d'une partie centrale dudit corps tubulaire, chacune desdites chambres annexes annulaires logeant une enveloppe souple renfermant la structure hétérogène associée ; et
- chacune des deux chambres de travail communique en outre, via un moyen anti-retour respectif, avec une chambre de compensation associée qui est agencée dans l'extrémité concernée du corps tubulaire, lesdites chambres de compensation assurant la continuité du fluide hydraulique lors des déplacements de l'ensemble tige-piston dans le corps tubulaire.
Grâce à la structure précitée, les deux enveloppes souples renfermant chacune une structure hétérogène associée sont proches de la paroi du corps tubulaire de l'amortisseur, ce qui est très favorable pour l'efficacité de l'échange thermique des matrices capillairo-poreuses avec l'extérieur. En outre, le fait de prévoir deux chambres de compensation disposées aux deux extrémités du corps tubulaire permet d'éviter toute influence négative sur l'échange thermique, et aussi de diminuer l'inertie (et donc d'augmenter la rapidité) du refoulement du fluide hydraulique dans le système « chambre de travail - chambre de compensation ».
Conformément à une caractéristique avantageuse, le corps tubulaire se termine à chacune de ses deux extrémités par une tête qui renferme la chambre de compensation associée, chaque chambre de compensation étant délimitée par une paroi souple déformable qui est fixée et logée dans la tête correspondante. Chaque paroi souple déformable peut être extérieurement soumise à la pression atmosphérique, ou en variante être soumise à une faible pression positive par un moyen de sollicitation associé intégré à la tête concernée.
Avantageusement alors, le moyen anti-retour associé à chaque chambre de compensation est constitué par un clapet en forme de rondelle à orifices calibrés, qui est en appui contre la tête correspondante pour masquer des canaux de liaison ménagés dans ladite tête pour relier ladite chambre de compensation à la chambre de travail associée.
Conformément à un mode d'exécution particulier, le corps tubulaire comporte une partie cylindre et une partie tige centrale creuse, lesdites parties formant entre elles un espace annulaire dans lequel l'ensemble tige-piston qui est également creux coulisse de façon étanche, en délimitant l'une des deux chambres de travail du côté du piston qui est tourné vers la source de perturbations extérieures, et de l'autre côté une chambre annulaire fermée renfermant un fluide gazeux.
On pourra alors prévoir que la chambre annulaire fermée renfermant un fluide gazeux a un fond constitué par une couronne reliant solidairement la partie cylindre et la partie tige centrale creuse, ou en variante que cette chambre annulaire a un fond constitué par un épaulement annulaire solidaire de la partie cylindre, qui est traversé à coulissement avec jeu par la partie tige centrale creuse, ladite partie tige centrale creuse comportant une bride d'extrémité qui est en appui étanche contre l'épaulement annulaire précité lors du fonctionnement de l'amortisseur, et qui peut être dégagé dudit épaulement pour constituer un évent permettant une rentrée maximale de l'ensemble tige-piston à l'intérieur du corps tubulaire en vue d'un encombrement minimal de l'amortisseur pour le stockage ou le transport de celui-ci. Avantageusement dans ce dernier cas, l'extrémité libre de la partie cylindre est filetée extérieurement, afin de recevoir un écrou destiné à serrer la bride d'extrémité de la partie tige centrale creuse contre l'épaulement de la partie cylindre, ou à dégager ladite bride dudit épaulement, ledit écrou présentant un orifice central pour le passage du fluide hydraulique lors du fonctionnement de l'amortisseur.
On pourra en variante prévoir que la partie cylindre du corps tubulaire est constituée par deux tubes vissés à l'une de leur extrémité sur un embout fileté constituant la partie centrale et à leur autre extrémité sur une tête filetée renfermant la chambre de compensation associée, et par une partie fourreau qui est constituée par un tube, simple ou double, vissé dans un alésage de l'embout central. En particulier, celle des deux têtes qui est traversée par l'ensemble tige-piston est équipée de l'unique système d'étanchéité de l'amortisseur par rapport à l'extérieur.
Avantageusement encore, il est prévu, au niveau de l'ouverture de chacune des chambres annexes annulaires, une grille annulaire destinée à assurer le positionnement et le maintien de l'enveloppe souple qui est logée dans la chambre annexe annulaire concernée. En particulier, les grilles annulaires précitées ont une forme d'étoile évidée dans leur partie centrale.
Conformément à un mode de réalisation particulier, les deux chambres annexes annulaires communiquent entre elles par un canal ménagé dans la partie centrale du corps tubulaire, ledit canal étant équipé d'un étrangleur commun. La résistance hydraulique procurée par les moyens antiretour sera alors toujours plus grande, en position de fermeture, que celle, ajustable, procurée par l'étrangleur commun. Conformément à une variante de réalisation, les deux chambres annexes annulaires ne communiquent pas entre elles, mais chacune desdites chambres annexes annulaires communique avec la chambre de compensation associée via un canal ménagé dans l'extrémité correspondante du corps annulaire, chaque canal étant équipé de son propre étrangleur. La résistance hydraulique procurée par les moyens anti-retour sera alors toujours plus grande, en position de fermeture, que celle, ajustable, procurée par chaque étrangleur.
D'autres caractéristiques et avantages de l'invention apparaîtront plus clairement à la lumière de la description qui va suivre et des dessins annexés, concernant un mode de réalisation particulier.
BREVE DESCRIPTION DES DESSINS
Il sera fait référence aux figures des dessins annexés, où :
- la figure 1 est une vue en coupe axiale d'un amortisseur conforme à l'invention ;
- la figure 2 est une vue en coupe axiale d'une variante de l'amortisseur de la figure 1 , dans laquelle il est prévu un agencement d'évent qui est destiné à permettre une rentrée maximale de l'ensemble tige-piston à l'intérieur du corps tubulaire et aussi de retenir ledit ensemble dans cette position ;
- la figure 3 est une vue en coupe axiale illustrant la partie centrale de l'amortisseur de la figure 2 en position d'enfoncement maximal de la tige-piston, avec formation d'une dépression créée lors de l'exploitation de l'amortisseur ;
- la figure 4 illustre, à échelle très agrandie, le détail IV de la figure 3, permettant de mieux distinguer l'agencement précité formant évent en position ouverte (position illustrée), et permettant la formation d'une dépression en position fermée (avec écrou serré) ;
- la figure 5 illustre l'amortisseur des figures 2 à 4, dans différentes positions axiales de son ensemble tige-piston, avec en a) une position médiane, en b) une position de rentrée maximum de l'ensemble tige-piston réalisée par suite de l'ouverture de l'évent, et en c) une position de sortie maximale de l'ensemble tige-piston ;
- la figure 6 est une vue en coupe axiale d'encore une autre variante de l'amortisseur, dans laquelle chaque chambre annexe annulaire communique avec la chambre de compensation associée via un canal équipé de son propre étrangleur ;
- la figure 7 est une coupe axiale d'une variante de l'amortisseur de la figure 6, dans laquelle la paroi souple déformable délimitant chaque chambre de compensation est soumise extérieurement, non pas comme dans les variantes précédentes à la pression atmosphérique, mais à une faible pression positive ;
- la figure 8 illustre l'un des moyens anti-retour de l'amortisseur des figures 6 et 7; et
- la figure 9 illustre les grilles en étoile servant au positionnement et au maintien des enveloppes souples de l'amortisseur des figures 6 et 7.
DESCRIPTION DETAILLEE DU MODE DE REALISATION PREFERE
On distingue sur la figure 1 un amortisseur à haut pouvoir dissipatif et pratiquement sans huile conforme à l'invention, noté 1 . Cet amortisseur est du type comportant un ensemble tige-piston 2 coulissant dans un corps tubulaire 3, ledit ensemble tige-piston étant adapté pour être relié à une source de perturbations extérieures notée SPE (par exemple une roue d'un véhicule équipé de l'amortisseur pour sa suspension lorsque la roue est en contact direct avec le sol), et ledit corps tubulaire étant adapté pour être relié à une structure à protéger notée S (par exemple la carrosserie du véhicule automobile ainsi équipé).
En l'espèce, le corps tubulaire 3 comporte une partie cylindrique 4 à l'intérieur de laquelle s'étend axialement, selon un axe longitudinal X de l'amortisseur, une partie tige centrale creuse 5 à fond ouvert. La couronne 6 reliant solidairement la partie cylindre 4 et la partie tige centrale creuse 5 forme ainsi le fond d'une chambre 10 qui est une chambre annulaire fermée renfermant un fluide gazeux, par exemple de l'air ou de l'azote. Il convient cependant de noter qu'un tel fond fermé rigide ne constitue qu'un mode de réalisation particulier, et l'on verra par la suite que l'on peut prévoir un fond qui n'est pas monobloc et unitaire, afin de procurer une fonction d'évent destinée à permettre à la fois une rentrée maximale de l'ensemble tige-piston à l'intérieur du corps tubulaire 3 en vue d'un encombrement m inimal de l'amortisseur lors du stockage ou du transport de celui-ci, et la formation d'une dépression créée lors de l'exploitation de l'amortisseur.
L'ensemble tige-piston est ainsi constitué d'une tige proprement dite 7 et d'un piston 8 qui coulisse avec étanchéité au moyen de joints 9 dans l'espace annulaire délim ité entre la paroi interne de la partie cylindre 4 et la paroi externe de la partie tige centrale creuse 5. La partie cylindre 4 et la partie tige centrale creuse 5 forment entre elles un espace annulaire dans lequel l'ensemble tige-piston, qui est également creux, coulisse de façon étanche, en délim itant une chambre dite de travail 1 1 A du côté du piston 8 qui est tourné vers la source de perturbations extérieures SPE, et de l'autre coté la chambre annulaire fermée 1 0 renfermant un fluide gazeux.
Conformément au principe général de l'amortisseur à haut pouvoir dissipatif décrit dans le document EP 1 250 539 B1 précité, l'ensemble tige- piston 2 délim ite avec le corps tubulaire 3 deux chambres de travail 1 1 A, 1 1 B contenant du fluide hydraulique, chaque chambre de travail 1 1 A, 1 1 B communiquant en permanence avec une chambre annexe 12A, 12B contenant une structure hétérogène d'absorption-dissipation d'énergie constituée par au moins une matrice capillairo-poreuse 14 et un liquide associé 15 au regard duquel ladite matrice est lyophobe. Cependant, à la différence de l'amortisseur précité, la section intérieure de la tige-piston 2 joue ici le rôle du piston pour la chambre de travail 1 1 B.
Conformément à une première caractéristique de l'invention, les deux chambres annexes 12A, 12B sont des chambres annulaires placées dans la paroi du corps tubulaire 3 de part et d'autre d'une partie centrale 28 dudit corps tubulaire. Chacune de ces chambres annexes annulaires 12A, 12B loge une enveloppe souple 13A, 1 3B renfermant la structure hétérogène associée dont on a schématisé ici les matrices capillairo-poreuses par des solides 14, le liquide associé, au regard duquel lesdites matrices sont lyophobes, étant quant à lui noté 15. Il pourra s'agir d'eau, ou de tout autre liquide adéquat.
On remarque immédiatement que les enveloppes souples 13A,
13B renfermant chacune une structure hétérogène associée 14, 15, sont disposées au voisinage de la paroi externe du corps tubulaire de l'amortisseur, ce qui est très favorable sur le plan de l'échange thermique avec l'extérieur.
Les deux chambres annexes annulaires 12A, 12B communiquent ici entre elles par un canal 20 ménagé dans la partie centrale 28 du corps tubulaire, s'étendant parallèlement à l'axe X, lequel canal 20 est équipé d'un étrangleur commun 21 qui procure une résistance hydraulique réglable.
Conformément une autre caractéristique de l'invention, chacune des deux chambres de travail 1 1 A, 1 1 B que délimite l'ensemble tige-piston 2 avec le corps tubulaire 3 communique en outre, via un moyen anti-retour respectif 22A, 22B, avec une chambre de compensation associée 17A, 17B qui est agencée dans l'extrémité du corps tubulaire 3. En l'espèce, le corps tubulaire 3 se termine à chacune de ses deux extrémités par une tête 16A, 16B qui renferme la chambre de compensation associée 17A, 17B, chaque chambre de compensation étant délimitée par une paroi souple déformable 18A, 18B qui est fixée et logée dans la tête correspondante 16A, 16B, ladite paroi souple déformable 18A, 18B étant en l'espèce soumise extérieurement à la pression atmosphérique. On a noté 27A, 27B un élément tel que circlips permettant de fixer la paroi souple déformable 18A, 18B dans le logement associé de la tête respective 16A, 16B. On pourra prévoir en variante, comme illustré sur la figure 7, que chaque paroi souple déformable 18A, 18B est extérieurement soumise à une faible pression positive par un moyen de sollicitation associé 30A, 30B intégré à la tête concernée 16A, 16B.
Comme on le verra par la suite lors de la description du fonctionnement de l'amortisseur, les deux chambres de compensation 17A, 17B sont destinées à assurer la continuité du fluide hydraulique lors du déplacement de l'ensemble tige-piston 2 dans le corps tubulaire 3. Là encore, il convient de noter que la chambre de compensation unique et centrale de l'amortisseur du document EP 1 250 539 B1 précité est remplacée maintenant par deux chambres de compensation disposées au niveau des deux extrémités du corps tubulaire, de sorte que leur présence est de facto sans influence sur l'échange thermique lors du fonctionnement de l'amortisseur.
Il sera par ailleurs avantageux de prévoir, comme cela est illustré ici, des grilles annulaires en forme de couronne ou d'étoile évidée 26A, 26B (analogues à celles représentées à la figure 9), disposées au niveau de l'ouverture de chacune des chambres annulaires annexes 12A, 12B, chaque grille étant destinée à assurer le positionnement et le maintien de l'enveloppe souple 13A, 13B qui est logée dans la chambre annexe annulaire concernée. Ainsi, on est certain d'éviter tout risque d'endommagement des enveloppes souples 1 3A, 1 3B lors du fonctionnement de l'amortisseur, en cas notamment de vibrations importantes.
Les enveloppes souples 13A, 13B sont constituées d'un matériau non pénétrable pour le fluide hydraulique comme cela a été déjà prévu dans le cadre de l'amortisseur à haut pouvoir dissipatif du document EP-1 250 439 B1 précité. Chaque enveloppe souple renferme ainsi la ou les matrices capillairo- poreuses 14 qui baignent dans un liquide fonctionnel associé 1 5 (liquide de travail), qui peut être par exemple de l'eau. Les autres chambres de l'amortisseur, en dehors naturellement de la chambre annulaire 10 précitée qui renferme un gaz, sont alors occupées par un fluide hydraulique tel que de l'huile (liquide technologique).
Comme cela est visible sur la figure 1 , le corps tubulaire 3 se term ine à chacune de ses deux extrémités par une tête 16A, 16B, ici unitaire avec le restant de la partie cylindrique 4, qui renferme la chambre de compensation associée 17A, 1 7B.
Le moyen anti-retour 22A, 22B associé à chaque chambre de compensation 1 7A, 17B est en l'espèce constitué par un clapet en forme de rondelle 23A, 23B à orifices calibrés 24A, 24B, qui est en appui contre la tête correspondante 16A, 16B pour masquer des canaux de liaison 25A, 25B ménagés dans ladite tête et reliant chaque chambre de compensation 17A, 17B à la chambre de travail associée 1 1 A, 1 1 B. Les orifices calibrés 24A, 24B de chaque rondelle 23A, 23B constituant le moyen anti-retour 22A, 22B seront alors dimensionnés de telle sorte que la résistance hydraulique qu'ils procurent est toujours plus grande, en position de fermeture, que celle, ajustable, procurée par l'étrangleur commun 21 . Grâce au réglage de la résistance hydraulique au moyen de l'étrangleur 21 , on peut régler la pression d'intrusion du liquide fonctionnel dans l'espace poreux de la matrice capillairo-poreuse (en régime de dissipation d'énergie surfacique). Ce phénomène de dissipation efficace de l'énergie mécanique s'explique par la différence élevée ΔΡ entre la pression Pint d'intrusion forcée du liquide dans l'espace poreux de la matrice et la pression d'expulsion Pexp spontanée du liquide hors de cet espace poreux (ΔΡ = Pjnt - Pexp avec Pint » Pexp)- Ceci sera mieux compris en se référant à la description du fonctionnement donnée ci-après. Pour plus de détail encore, on pourra aussi se référer à la publication précitée parue en 2007.
On notera que celle 16A des deux têtes qui est traversée par l'ensemble tige-piston 2 est équipée de l'unique système d'étanchéité 19 de l'amortisseur par rapport à l'extérieur, ce qui constitue un avantage très important par rapport aux réalisations antérieures qui nécessitaient un double système d'étanchéité de l'amortisseur par rapport à l'extérieur.
On notera enfin la présence, sur la figure 1 , d'un joint torique souple 29 agencé contre le piston 8 sur la tige 7 de l'ensemble tige-piston 2, qui est destiné à constituer une butée de sécurité en position d'extension maximale de l'ensemble tige-piston 2.
On a noté sur la figure 1 les flèches 101 et 102 pour symboliser les directions respectivement de sortie et de rentrée de l'ensemble tige-piston 2.
Sur la figure 1 , l'amortisseur est représenté avec son ensemble tige-piston en position médiane, de sorte que la course de sortie disponible, notée C1 , est sensiblement identique à la course de rentrée disponible, notée C2. La course résiduelle, notée C0, correspond à l'enfoncement maximal du piston, avec le volume de gaz contenu dans la chambre annulaire 10 qui est comprimé au maximum, sans que le gaz puisse s'échapper. On verra sur la variante des figures qui suivent qu'il est possible de supprimer dans certaines situations cette course résiduelle C0 pour arriver à un enfoncement total de l'ensemble tige-piston en vue d'une compacité maximale de l'amortisseur.
Sur les figures 2 à 4, on a illustré une variante de l'amortisseur qui vient d'être décrit en référence à la figure 1 , cette variante présentant une structure dont la fabrication et le montage sont largement simplifiés, ainsi que cela ressortira des commentaires qui vont suivre.
La partie cylindre 4 du corps tubulaire 3 est alors constituée par deux tubes 4A, 4B qui sont vissés à l'une de leur extrémité sur un embout fileté constituant la partie centrale 28, et à leur autre extrémité sur une tête filetée 16A, 16B renfermant la chambre de compensation associée 17A, 17B. Le corps tubulaire 3 est également constitué par une partie fourreau notée 4C qui est constituée par un tube simple ou double (ici simple) qui est en l'espèce vissé dans un alésage de l'embout central 28. Ainsi, le composant unitaire constituant la partie cylindre 4 du corps tubulaire pour l'amortisseur de la figure 1 est remplacé par deux tubes 4A, 4B, deux têtes 16A, 16B, un embout central 28, et un tube ici simple de fourreau 4C. Comme précédemment, l'embout central 28, maintenant fileté à ses deux extrémités, présente le canal 20 assurant la communication entre les deux chambres annexes tubulaires 12A, 12B, et équipé de l'étrangleur commun associé 21 .
Ainsi que cela est mieux visible sur la figure 3, et surtout sur le détail associé de la figure 4, on constate que la chambre annulaire fermée 10 renfermant un fluide gazeux a un fond 6' qui est maintenant constitué par un épaulement annulaire 6.1 solidaire de la partie fourreau 4C de la partie cylindre 4 du corps tubulaire 3. Cet épaulement annulaire 6.1 est traversé à coulissement avec jeu (jeu 6.2) par la partie tige centrale creuse 5, ladite partie tige centrale creuse 5 comportant une bride d'extrémité 6.3 équipée de joints d'étanchéité 6.5 et 6.6 sur ses deux faces circulaires. L'extrémité libre de la partie fourreau 4C de la partie cylindre 4 est filetée extérieurement afin de recevoir un écrou 30 destiné à serrer la bride d'extrémité 6.3 de la partie tige centrale creuse 5 contre l'épaulement 6.1 de la partie fourreau 4C, ou à dégager ladite bride 6.3 dudit épaulement 6.1 . Ainsi, la bride d'extrémité 6.3 peut être serrée en appui étanche contre l'épaulement 6.1 , ce qui correspond à la position de fonctionnement de l'amortisseur, mais peut aussi en être dégagée (position illustrée sur la figure 4) pour constituer un évent permettant une rentrée maximale de l'ensemble tige-piston 2 à l'intérieur du corps tubulaire 3 en vue d'un encombrement minimal de l'amortisseur pour le stockage ou le transport de celui-ci. Cette position de rentrée maximale de la tige-piston est celle illustrée sur les figures 3 et 4, et l'on comprend que le gaz contenu dans la chambre annulaire 10 peut alors s'échapper, lorsque l'écrou 30 est légèrement dévissé, par le jeu de passage 6.2 précité et le jeu de passage noté 6.4 délimité par la périphérie de la bride 6.3, pour sortir par un orifice central 31 de l'écrou 30, comme schématisé par les flèches 200 sur la figure 4. L'amortisseur est alors ultra-compact. Une fois cette position atteinte, il suffit à l'opérateur de revisser l'écrou 30 pour recréer alors l'étanchéité du fond 6'. On comprend alors que cette position d'enfoncement maximal de la tige-piston est maintenue (l'écrou 30 étant revissé) par la dépression qui se crée dans la chambre 10 dès que ladite tige-piston quitte cette position (cette dépression constitue un moyen de rappel efficace à la fois simple et fiable).
Lorsque l'amortisseur doit être remonté ou installé à partir de cette position de tige rentrée maximale, l'opérateur peut aisément, l'écrou 30 étant revissé, tirer la tige jusqu'à une position médiane de celle-ci, en formant alors une petite dépression dans la chambre 10 qui était initialement à la pression atmosphérique. En fonctionnement, l'orifice central 31 de l'écrou 30 prolonge le canal central noté 40 de la partie tige centrale 5 pour permettre le passage du fluide lors des mouvements de la tige-piston.
Lorsque l'on veut stocker ou transporter l'amortisseur, l'écrou 30 est dévissé, et la tige-piston peut être enfoncée au maximum pour avoir un amortisseur ultra-compact à stocker ou à transporter. La pression dans la chambre 10 reste alors égale à la pression atmosphérique, ce qui exclut dès lors tout danger lors des manipulations de l'amortisseur.
La figure 5 illustre en a) l'état de l'amortisseur précité dans la position médiane de la tige-piston (une légère dépression règne alors dans la chambre 10), en b) dans la position de rentrée maximale de ladite tige-piston, sur la totalité de la course C2, avec la course résiduelle C0 qui est maintenue dans la mesure où l'on est en état de fonctionnement de l'amortisseur (la pression dans la chambre 10 est alors égale à la pression atmosphérique), et enfin en c) dans la position de sortie maximale de la tige-piston sur la totalité de la course C1 (une dépression plus élevée qu'en a) règne alors dans la chambre 10).
On va maintenant procéder à la description du fonctionnement de l'amortisseur qui vient d'être décrit ci-dessus, monté sur un véhicule automobile (non représenté ici).
A l'état statique, le piston 9 de l'ensemble tige-piston 2 occupe une position neutre (le déplacement de la tige 7, noté Δ X (t) sur la figure 1 , est nul) telle que celle illustrée sur les figures 1 , 2 et 5 a), ceci grâce à l'équilibre entre le poids du véhicule automobile et la force du ressort de rappel de la suspension (non représenté ici). Les pressions hydrauliques dans les chambres de travail 1 1 A, 1 1 B, ainsi que dans le volume intérieur du canal central 40, sont alors partout les mêmes, et sont égales à la pression atmosphérique en raison de la présence des orifices calibrés 24A, 24B des clapets anti-retour 23A, 23B, et aussi ici du canal de passage 20 équipé de l'étrangleur 21 . Les matrices capillairo-poreuses 14 contenues dans les enveloppes souples 13A, 13B et baignant dans le liquide fonctionnel 15, ont des espaces intérieurs qui sont alors vides. Il est aisé de comprendre qu'une petite surpression dans la chambre annulaire contenant du gaz 10 n'a aucune influence sur la valeur de la pression régnant dans la piscine hydraulique de l'amortisseur, ni sur le comportement des structures hétérogènes 14, 15 contenues dans les deux enveloppes souples 13A, 13B.
En fonctionnement dynamique de l'amortisseur, il convient de différencier deux régimes de fonctionnement, dont un premier régime dit newtonien qui est conforme à l'unique régime de fonctionnement des amortisseurs traditionnels hydrauliques ou oléo-pneumatiques, et un autre régime, dit surfacique, qui met en œuvre les structures hétérogènes d'absorption-dissipation d'énergie, comme décrit dans le document EP-1 250 539 B1 et dans la publication de 2007 précitée. Le régime newtonien correspond à une dissipation de l'énergie mécanique qui est celle couramment rencontrée dans les amortisseurs traditionnels hydrauliques ou oléo-pneumatiques, avec un laminage du liquide visqueux au travers d'orifices calibrés qui provoque la transformation de l'énergie du frottement en chaleur, avec le dégagement de celle-ci vers l'extérieur. Le déplacement de la tige 7, Δ X (t), avec la force F (t) (comme indiqué sur la figure 1 ), provoque une variation des pressions hydrauliques dans les chambres de travail 1 1 A, 1 1 B, avec par suite un refoulement du liquide à travers le canal 20. Si l'on suppose par exemple que l'ensemble tige-piston 2 se déplace dans le sens de la flèche 102, la pression hydraulique dans le canal central 40, et par suite dans la chambre de travail 1 1 B augmente, tandis que la pression hydraulique dans l'autre chambre de travail 1 1A diminue. Le clapet anti-retour 23B reste fermé, et la résistance (réglable) de l'étrangleur 21 assure alors le passage tranquille du liquide, de la chambre de travail 1 B et de la chambre annexe annulaire 12B associée, à la chambre de travail 1 1A et à la chambre annexe annulaire 12A associée. Le liquide remplit alors progressivement l'espace annulaire adjacent au piston 8, et, en cas de déficit de volume, le clapet anti-retour 23A s'ouvre sous la pression atmosphérique, et la quantité nécessaire du liquide se trouvant dans la chambre de compensation 17A parvient dans la chambre de travail 1 1A pour assurer la continuité du fluide dans la piscine hydraulique de l'amortisseur. Dans ce régime newtonien, le refoulement ordinaire entre les chambres de travail et leur chambre annulaire annexe respective à travers le canal 20, avec le contrôle de l'étrangleur 21 , assure la fonction de dissipation d'énergie mécanique. Si la tige se déplace dans le sens de la flèche 101 , on retrouve exactement le même fonctionnement symétrique, avec les lettres A qui sont transformées en B, et réciproquement.
Dans tous les cas considérés ci-dessus, la pression à l'intérieur des chambres annexes annulaires 12A, 12B logeant les enveloppes souples 13A, 13B reste modérée, et en tout cas insuffisante pour faire rentrer le liquide fonctionnel dans l'espace poreux des matrices de la structure hétérogène, ceci dans la mesure où ladite pression est inférieure à la pression capillaire de Laplace qui correspond à la pression P,nt d'intrusion du liquide fonctionnel dans l'espace poreux (de volume Vpores). Ainsi, dans le cadre d'un fonctionnement en régime newtonien, le volume des enveloppes souples 13A, 1 3B reste quasiment invariable, ce qui signifie que les structures hétérogènes 14, 15 ne participent pas à la dissipation d'énergie pendant ce régime newtonien.
Si la vitesse de déplacement X de l'ensemble tige-piston 2 dépasse une valeur critique X cr, par exemple une valeur qui est de l'ordre 0, 1 mètre par seconde pour les véhicules automobiles de tourisme, alors la résistance hydraulique procurée par l'étrangleur 21 augmente considérablement, et induit une élévation forte de la pression dans l'une des chambres annexes annulaires 12A ou 12B, jusqu'à atteindre la valeur limite de la pression capillaire de Laplace. Dans ce cas, le déplacement rapide de l'ensemble tige-piston 2 provoque l'intrusion du liquide fonctionnel dans l'espace intérieur des matrices de la structure hétérogène de l'une des enveloppes souples (celle concernée par l'augmentation de pression), de sorte que le volume de l'enveloppe concernée diminue considérablement, plus précisément de la valeur Vpores- Grâce à la communication entre les chambres annexes annulaires 12A, 12B par le canal 20, le phénomène inverse se produit pour la structure hétérogène située dans l'autre chambre annexe annulaire, de sorte que l'on retrouve le principe d'un cycle compression-détente à grande hystérésis qui se caractérise par une très grande valeur de dissipation d'énergie, conformément à la relation E =(Pint - Pexp) Vpores-
Ainsi, lors du déplacement de l'ensemble tige-piston 2 dans le sens de la flèche 102, le volume de liquide technologique (huile) chassé du canal central 40 sous haute pression ne peut pas refouler via l'étrangleur 21 dans la chambre annexe annulaire 12A à cause de la grande résistance de cet étrangleur. Par suite, le volume chassé est obligé de comprimer l'enveloppe souple concernée 13B, et la dim inution du volume de cette enveloppe AV sera égale à une valeur équivalente au volume des pores remplis V pores de la ou des matrices contenues à l'intérieur de cette enveloppe souple 13B. La pression exercée dans la chambre annexe annulaire 12B dépasse alors la valeur de la pression capillaire de Laplace (pression d'intrusion Pint), ce qui produit l'intrusion forcée du liquide fonctionnel dans la ou les matrices poreuses concernées. De l'autre côté du piston 8, le volume de l'espace augmente, et la pression qui y règne diminue. La dépression dans l'autre chambre annexe annulaire 12A produit alors une détente de la structure hétérogène associée avec une expulsion spontanée du liquide fonctionnel à la pression Pexp (avec Pexp « Pint) hors des pores des matrices poreuses qui sont dans l'enveloppe souple 13A, avec éventuellement et en même temps l'ouverture du clapet antiretour 23A, pour un remplissage complémentaire de liquide avec du liquide provenant de la chambre de compensation 17A sous l'action de la pression atmosphérique. Grâce à la simultanéité du processus compression-détente dans les deux chambres annexes annulaires 12B, 12A, le cycle réalisé produit la dissipation d'une grande quantité d'énergie mécanique, laquelle est directement proportionnelle à la différence de pression ΔΡ = Pjnt - Pexp, ce qui détermine la grande quantité d'énergie dissipée E—(Pjnt - Pexp) Vpores-
Lors d'un déplacement de l'ensemble tige-piston 2 dans la direction 101 opposée, le piston 8 chasse alors le liquide du côté de la chambre de travail 1 1A et de la chambre annexe annulaire associée 12A, ce qui produit une compression de l'enveloppe souple 13A et une intrusion forcée du liquide fonctionnel dans l'espace poreux de la matrice de la structure hétérogène 14, 15 associée. Durant ce déplacement, il se produit une dépression dans l'autre chambre annexe annulaire 12B, ce qui initie l'expulsion spontanée du liquide 15 fonctionnel hors des pores de la matrice 14 poreuse de la structure hétérogène logée dans l'enveloppe souple 13B. L'ouverture du clapet anti-retour 23B garantit là encore la continuité du fluide dans la chambre annexe annulaire 12B grâce à l'arrivée éventuelle d'un complément de liquide technologique en provenance de la chambre de compensation associée 17B.
On va maintenant décrire deux autres variantes de l'amortisseur précédent, en référence aux figures 6 et 7.
On retrouve une partie fourreau 4C, avec son fond 6' équipé d'un écrou 30 associé à un système formant évent. Cependant, la partie fourreau 4C est, soit insérée en force dans la partie centrale 28 de la partie corps qui est unitaire 4 (variante de la figure 6), soit, comme précédemment vissée dans un alésage de la partie centrale 28 de la partie corps qui est unitaire 4 (variante de la figure 7), avec un joint central 28' assurant l'étanchéité.
A la différence des variantes précédentes, les deux chambres annexes annulaires 12A, 12B ne communiquent plus entre elles, mais chacune de ces chambres communique avec la chambre de compensation associée 17A, 17B via un canal 20A, 20B ménagé dans la tête correspondante 16A, 16B du corps tubulaires, chaque canal 20A, 20B étant en outre équipé de son propre étrangleur 21 A, 21 B.
Les moyens anti-retour 22A, 22B sont alors légèrement modifiés, comme illustré sur la figure 8 qui montre un clapet anti-retour 23A de profil (en a)) et de face (en b)). La résistance hydraulique procurée par les moyens antiretour 22A, 22B doit là encore rester toujours plus grande, en position de fermeture, que celle, ajustable, procurée par chaque étrangleur 21 A, 21 B.
La figure 9 illustre de façon isolée les grilles de positionnement et de maintien des enveloppes souples 13A, 13B renfermant les structures hétérogènes de l'amortisseur. En l'espèce, s'agissant de l'amortisseur équipé de l'agencement interne d'évent pour pouvoir être ultra-compact, on distingue en a) la grille 26A qui est normalement enfilée sur l'extrémité libre de la partie tige centrale creuse 5, et en b) la grille 26B qui est quant elle normalement ici enfilée sur l'écrou 30, ces grilles 26A, 26B ayant une forme d'étoile évidée circulairement dans leur partie centrale.
Comme illustré sur la figure 7, on pourra encore éventuellement modifier la structure de la variante de la figure 6, en prévoyant que la paroi souple 18B de la chambre de compensation 17B (qui est du côté de la structure à protéger) est soumise extérieurement, non pas comme jusque là à la pression atmosphérique, mais à une faible pression positive (par exemple 0,5 à 1 ,0 bar), générée par un ressort mécanique ou pneumatique, et de faire de même pour l'autre paroi souple 18A avec une pression légèrement supérieure (par exemple 0,5 à 1 bar), ce qui permet de garantir encore mieux la continuité du fluide et la rapidité de la réponse. Il est important de noter qu'à l'état de repos de l'amortisseur, il n'y a aucune autre pression que les faibles pressions positives précitées qui vont de 0,5 à 1 ,0 bar, de sorte que l'on évite totalement les inconvénients et dangers rappelés plus haut des amortisseurs oléo- pneumatiques à haute pression qui mettent en œuvre des pressions positives allant de 50 à 100 bars.
Sur la figure 7, on a ainsi illustré des moyens de sollicitation 30A,
30B, qui sont intégrés à la tête concernée 16A, 16B, et qui assurent la faible pression positive désirée. En l'espèce, on distingue une chambre de sollicitation 31 A, 31 B, fermée par un couvercle 32A, 32B qui maintient une platine 33A, 33B équipée d'un embout de raccordement 34A, 34B servant au remplissage de la chambre de sollicitation concernée par un fluide adéquat.
Les deux dernières variantes des figures 6 et 7 sont particulièrement intéressantes pour un fonctionnement de l'amortisseur dans une position essentiellement verticale, car on évite le refoulement de liquide d'une chambre de compensation à l'autre sous l'effet de la gravité (refoulement que l'on peut par contre rencontrer avec les variantes des figures 1 à 5).
De plus, la présence des deux étrangleurs séparés 21 A, 21 B permet un réglage fin garantissant la constance de l'asymétrie de la caractéristique de l'amortisseur, lequel réglage est fait une fois pour toutes lors du montage initial de l'amortisseur. Pour ce réglage, on s'arrange toujours pour que la force de rebond de l'amortisseur soit réglée à une valeur plus élevée que la force des chocs.
Les structures qui viennent d'être décrites procurent de nombreux avantages par rapport à l'amortisseur à haut pouvoir dissipatif de l'art antérieur, comme cela a été décrit en détail.
L'invention n'est pas limitée aux modes de réalisation qui viennent d'être décrits, mais englobe au contraire toutes variantes reprenant, avec des moyens équivalents, les caractéristiques essentielles énoncées plus haut.
En particulier, l'invention pourra s'appliquer à d'autres domaines que les suspensions de véhicules automobiles, par exemple aux systèmes parasismiques, aux supports de conduites de gaz, pétrole, vapeur, ou aux supports d'ouvrages de travaux publics, ainsi qu'aux patins anti-vibrations, avec les avantages notés plus haut d'une grande efficacité, alliée à un grand pouvoir dissipatif et à une compacité maximale des dispositifs et systèmes de dissipation.
L'ensemble tige-piston 2 peut être adapté pour être relié à la source de perturbations extérieures SPE ou à la structure à protéger S, et le corps tubulaire peut être adapté pour être relié à la structure à protéger S ou à la source de perturbations extérieures SPE.

Claims

REVENDICATIONS
1 . Amortisseur du type comportant un ensemble tige-piston (2) coulissant dans un corps tubulaire (3) et ledit ensemble tige-piston délimitant avec le corps tubulaire deux chambres de travail (1 1 A, 1 1 B) contenant un fluide hydraulique, chaque chambre de travail (1 1 A, 1 1 B) communiquant en permanence avec une chambre annexe (12A, 12B) contenant une structure hétérogène d'absorption-dissipation d'énergie (14, 15) constituée par au moins une matrice capillairo-poreuse (14) et un liquide associé (15) au regard duquel ladite matrice est lyophobe, caractérisé en ce que :
- les deux chambres annexes (12A, 12B) sont des chambres annulaires ménagées dans la paroi du corps tubulaire (3), de part et d'autre d'une partie centrale (28) dudit corps tubulaire, chacune desdites chambres annexes annulaires (12A, 12B) logeant une enveloppe souple (13A, 13B) renfermant la structure hétérogène associée (14, 15) ; et
- chacune des deux chambres de travail (1 1 A, 1 1 B) communique en outre, via un moyen anti-retour respectif (22A, 22B), avec une chambre de compensation associée (17A, 17B) qui est agencée dans l'extrémité concernée du corps tubulaire (3), lesdites chambres de compensation (17A, 17B) assurant la continuité du fluide hydraulique lors des déplacements de l'ensemble tige- piston (2) dans le corps tubulaire (3).
2. Amortisseur selon la revendication 1 , caractérisé en ce que le corps tubulaire (3) se termine à chacune de ses deux extrémités par une tête (16A, 16B) qui renferme la chambre de compensation associée (17A, 17B), chaque chambre de compensation (17A, 17B) étant délimitée par une paroi souple déformable (18A, 18B) qui est fixée et logée dans la tête correspondante (16A, 16B).
3. Amortisseur selon la revendication 2, caractérisé en ce que chaque paroi souple déformable (18A, 18B) est extérieurement soumise à la pression atmosphérique.
4. Amortisseur selon la revendication 2, caractérisé en ce que chaque paroi souple déformable (18A, 18B) est extérieurement soumise à une faible pression positive par un moyen de sollicitation associé (30A, 30B) intégré à la tête concernée (16A, 16B).
5. Amortisseur selon la revendication 2, caractérisé en ce que le moyen anti-retour (22A, 22B) associé à chaque chambre de compensation (17A, 17B) est constitué par un clapet en forme de rondelle (23A, 23B) à orifices calibrés (24A, 24B), qui est en appui contre la tête correspondante (16A, 16B) pour masquer des canaux de liaison (25A, 25B) ménagés dans ladite tête pour relier ladite chambre de compensation (17A, 17B) à la chambre de travail associée (1 1A. 1 1 B).
6. Amortisseur selon l'une des revendications 1 à 5, caractérisé en ce que le corps tubulaire (3) comporte une partie cylindre (4) et une partie tige centrale creuse (5), lesdites parties (4, 5) formant entre elles un espace annulaire dans lequel l'ensemble tige-piston (2) qui est également creux coulisse de façon étanche, en délimitant l'une des deux chambres de travail (1 1A) du côté du piston (8) qui est tourné vers la source de perturbations extérieures (SPE), et de l'autre côté une chambre annulaire fermée (10) renfermant un fluide gazeux.
7. Amortisseur selon la revendication 6, caractérisé en ce que la chambre annulaire fermée (10) renfermant un fluide gazeux à un fond (6) constitué par une couronne reliant solidairement la partie cylindre (4) et la partie tige centrale creuse (5).
8. Amortisseur selon la revendication 6, caractérisé en ce que la chambre annulaire fermée (10) renfermant un fluide gazeux a un fond (6') constitué par un épaulement annulaire (6.1 ) solidaire de la partie cylindre (4), qui est traversé à coulissement avec jeu par la partie tige centrale creuse (5), ladite partie tige centrale creuse (5) comportant une bride d'extrémité (6.3) qui est en appui étanche contre l'épaulement annulaire (6.1 ) précité lors du fonctionnement de l'amortisseur, et qui peut être dégagée dudit épaulement (6.1 ) pour constituer un évent permettant une rentrée maximale de l'ensemble tige-piston (2) à l'intérieur du corps tubulaire (3) en vue d'un encombrement minimal de l'amortisseur pour le stockage ou le transport de celui-ci.
9. Amortisseur selon la revendication 8, caractérisé en ce que l'extrémité libre de la partie cylindre (4) est filetée extérieurement, afin de recevoir un écrou (30) destiné à serrer la bride d'extrémité (6.3) de la partie tige centrale creuse (5) contre l'épaulement (6.1 ) de la partie cylindre (4), ou à dégager ladite bride (6.3) dudit épaulement, (6.1 ), ledit écrou (30) présentant un orifice central (31 ) pour le passage du fluide hydraulique lors du fonctionnement de l'amortisseur.
10. Amortisseur selon l'une des revendications 6 à 9, caractérisé en ce que la partie cylindre (4) du corps tubulaire (3) est constituée par deux tubes
(4A, 4B) vissés à l'une de leur extrémité sur un embout fileté constituant la partie centrale (28) et à leur autre extrémité sur une tête filetée (16A, 16B) renfermant la chambre de compensation associée (17A, 17B), et par une partie fourreau (4C) qui est constituée par un tube, simple ou double, vissé dans un alésage de l'embout central (28).
1 1 . Amortisseur selon l'une des revendications 1 à 10, caractérisé en ce que celle (16A) des deux têtes qui est traversée par l'ensemble tige-piston (2) est équipée de l'unique système d'étanchéité (19) de l'amortisseur par rapport à l'extérieur.
12. Amortisseur selon l'une des revendications 1 à 1 1 , caractérisé en ce qu'il est prévu, au niveau de l'ouverture de chacune des chambres annexes annulaires (12A, 12B), une grille annulaire (26A, 26B) destinée à assurer le positionnement et le maintien de l'enveloppe souple (13A, 13B) qui est logée dans la chambre annexe annulaire concernée.
13. Amortisseur selon la revendication 12, caractérisé en ce que les grilles annulaires (26A, 26B) ont une forme d'étoile évidée circulairement dans leur partie centrale.
14. Amortisseur selon l'une des revendications 1 à 13, caractérisé en ce que les deux chambres annexes annulaires (12A, 12B) communiquent entre elles par un canal (20) ménagé dans la partie centrale (28) du corps tubulaire (3), ledit canal (20) étant équipé d'un étrangleur commun (21 ).
15. Amortisseur selon la revendication 14, caractérisé en ce que la résistance hydraulique procurée par le moyen anti-retour (22A, 22B) est toujours plus grande, en position de fermeture, que celle, ajustable, procurée par l'étrangleur commun (21 ).
16. Amortisseur selon l'une des revendications 1 à 13, caractérisé en ce que les deux chambres annexes annulaires (12A, 12B) ne communiquent pas entre elles, mais chacune desdites chambres annexes annulaires (12A, 12B) communique avec la chambre de compensation associée (17A, 17B) via un canal (20A, 20B) ménagé dans l'extrémité correspondante (16A, 16B) du corps tubulaire (3), chaque canal (20A, 20B) étant équipé de son propre étrangleur (21 A, 21 B).
17. Amortisseur selon la revendication 16, caractérisé en ce que la résistance hydraulique procurée par les moyens anti-retour (22A, 22B) est toujours plus grande, en position de fermeture, que celle, ajustable, procurée par chaque étrangleur (21 A, 21 B).
PCT/EP2011/065488 2010-09-07 2011-09-07 Amortisseur a haut pouvoir dissipatif et pratiquement sans huile WO2012032088A1 (fr)

Priority Applications (6)

Application Number Priority Date Filing Date Title
JP2013527589A JP5667298B2 (ja) 2010-09-07 2011-09-07 高い散逸能力を有する事実上オイルフリーのショックアブソーバ
RU2013115380/11A RU2547023C2 (ru) 2010-09-07 2011-09-07 Амортизатор с повышенной диссипативной способностью и практически без масла
CN201180042906.4A CN103119320B (zh) 2010-09-07 2011-09-07 具有高耗散能力的几乎无油的减振器
US13/820,977 US8925697B2 (en) 2010-09-07 2011-09-07 Virtually oil-free shock absorber having high dissipative capacity
KR1020137008805A KR101506020B1 (ko) 2010-09-07 2011-09-07 높은 소산 성능을 가진 가상 오일-프리 쇽업소버
EP11754405.6A EP2614269A1 (fr) 2010-09-07 2011-09-07 Amortisseur a haut pouvoir dissipatif et pratiquement sans huile

Applications Claiming Priority (2)

Application Number Priority Date Filing Date Title
FR1057096A FR2964434B1 (fr) 2010-09-07 2010-09-07 Amortisseur a haut pouvoir dissipatif et pratiquement sans huile
FR1057096 2010-09-07

Publications (1)

Publication Number Publication Date
WO2012032088A1 true WO2012032088A1 (fr) 2012-03-15

Family

ID=43927618

Family Applications (1)

Application Number Title Priority Date Filing Date
PCT/EP2011/065488 WO2012032088A1 (fr) 2010-09-07 2011-09-07 Amortisseur a haut pouvoir dissipatif et pratiquement sans huile

Country Status (8)

Country Link
US (1) US8925697B2 (fr)
EP (1) EP2614269A1 (fr)
JP (1) JP5667298B2 (fr)
KR (1) KR101506020B1 (fr)
CN (1) CN103119320B (fr)
FR (1) FR2964434B1 (fr)
RU (1) RU2547023C2 (fr)
WO (1) WO2012032088A1 (fr)

Families Citing this family (6)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
NO20160672A1 (no) * 2016-04-22 2017-08-14 Tech Damper As Subsea demperstag
US11204075B2 (en) 2018-04-10 2021-12-21 Textron Innovations, Inc. Free-floating washer for rebound damping
CN108591339B (zh) * 2018-05-24 2023-07-07 太原科技大学 一种液滴弹簧隔振装置及其隔振方法
FR3102524B1 (fr) * 2019-10-29 2021-11-12 Safran Landing Systems Porte-diaphragme pour amortisseur de type oléopneumatique
CN111271255B (zh) * 2020-03-03 2021-10-29 湖南诚跃新能源有限公司 一种用来压缩气体提高气体压力的空压机
CN112610481B (zh) * 2020-12-22 2022-09-06 克诺尔南口供风设备(北京)有限公司 一种受力平衡的机车用单螺杆式空压机

Citations (4)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
GB1188453A (en) 1967-02-14 1970-04-15 Hoesch Ag Level-Regulating Hydro-Pneumatic Suspension Unit, Particularly for Motor Vehicles
EP0791139B1 (fr) 1994-12-09 2000-03-22 D L D International Structure heterogene d'accumulation ou de dissipation d'energie, procedes d'utilisation d'une telle structure et appareils associes
EP1250539A1 (fr) * 2000-01-26 2002-10-23 Sarl D L D International Amortisseur a haut pouvoir dissipatif
EP1250439B1 (fr) 2000-01-19 2007-08-22 Hanmi Pharm. Co., Ltd. Vecteur d'expression et de secretion pour l'interferon humain alpha et procede d'obtention de l'interferon humain alpha au moyen dudit vecteur

Family Cites Families (4)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
UA18905U (en) * 2006-06-16 2006-11-15 Viktor Hryhorovych Herasymenko METHOD FOR PREPARATION OF STABILIZED ENZYMATIC AGENT WITH AMYLOLYTIC ENZYME ACTIVITY ôSAPOENZYME-1ö
RU2309307C1 (ru) * 2006-07-24 2007-10-27 Московский инженерно-физический институт (государственный университет) Способ поглощения энергии ударного воздействия с использованием гетерогенной системы
DE102007042864B4 (de) * 2007-09-08 2011-05-05 Zf Friedrichshafen Ag Selbstpumpendes hydropneumatisches Federbein
WO2012042614A1 (fr) * 2010-09-29 2012-04-05 トヨタ自動車株式会社 Amortisseur colloïdal

Patent Citations (5)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
GB1188453A (en) 1967-02-14 1970-04-15 Hoesch Ag Level-Regulating Hydro-Pneumatic Suspension Unit, Particularly for Motor Vehicles
EP0791139B1 (fr) 1994-12-09 2000-03-22 D L D International Structure heterogene d'accumulation ou de dissipation d'energie, procedes d'utilisation d'une telle structure et appareils associes
EP1250439B1 (fr) 2000-01-19 2007-08-22 Hanmi Pharm. Co., Ltd. Vecteur d'expression et de secretion pour l'interferon humain alpha et procede d'obtention de l'interferon humain alpha au moyen dudit vecteur
EP1250539A1 (fr) * 2000-01-26 2002-10-23 Sarl D L D International Amortisseur a haut pouvoir dissipatif
EP1250539B1 (fr) 2000-01-26 2004-01-07 Sarl D L D International Amortisseur a haut pouvoir dissipatif

Non-Patent Citations (1)

* Cited by examiner, † Cited by third party
Title
V A EROSHENKO: "A new paradigm of mechanical energy dissipation - Part 1 : theoretical aspects and practical solutions", J. AUTOMOBILE ENGINEERING, vol. 221, 2007, pages 285 - 300

Also Published As

Publication number Publication date
RU2013115380A (ru) 2014-10-20
US20130189138A1 (en) 2013-07-25
EP2614269A1 (fr) 2013-07-17
FR2964434B1 (fr) 2012-08-24
KR20130052672A (ko) 2013-05-22
RU2547023C2 (ru) 2015-04-10
CN103119320A (zh) 2013-05-22
CN103119320B (zh) 2015-08-26
KR101506020B1 (ko) 2015-03-25
US8925697B2 (en) 2015-01-06
JP2013536930A (ja) 2013-09-26
FR2964434A1 (fr) 2012-03-09
JP5667298B2 (ja) 2015-02-12

Similar Documents

Publication Publication Date Title
EP0275503B1 (fr) Amortisseur à compensation de charge
EP2614269A1 (fr) Amortisseur a haut pouvoir dissipatif et pratiquement sans huile
FR2997151A1 (fr) Amortisseur avec fonction ressort associee
CA2762767C (fr) Amortisseur et atterrisseur equipe d'un tel amortisseur
EP0051506A1 (fr) Amortisseur-vérin
EP0873457B1 (fr) Dispositif d'amortissement pour des elements d'une structure de genie civil
EP1588939A1 (fr) Atterrisseur à amortisseur trichambre
FR2820479A1 (fr) Amortisseur comportant un systeme de securite de surcharge
WO2000049358A1 (fr) Dispositif anti-recul avec frein, compensateur du frein et recuperateur
EP3085988B1 (fr) Dispositif de suspension pneumatique
EP0873458B1 (fr) Ensemble comprenant un premier et un second element d'une structure de genie civil et un dispositif de liaison entre ces deux elements
EP1774195B1 (fr) Dispositif d'amortisseur a deceleration asservie, et son application a l'amortissement de la colonne de direction escamotable d'un vehicule automobile
WO2010018319A1 (fr) Dispositif de compensation du volume du corps d'un amortisseur hydraulique de suspension
EP1554506A2 (fr) Butee hydraulique d'amortisseur pour vehicule, systeme amortisseur et procede d'utilisation
FR2914716A1 (fr) Butee de compression hydraulique, notamment pour amortisseur hydraulique de suspension de vehicule automobile
EP0045269B1 (fr) Suspension oléopneumatique
FR2530763A1 (fr) Amortisseur retractable
FR3098561A1 (fr) Butée hydraulique pour amortisseur
WO2007054653A1 (fr) Module de couplage de deux amortisseurs hydrauliques
EP1978277B1 (fr) Module de compensation pour un amortisseur hydraulique de véhicule, et amortisseur equipé d'un tel module de compensation
FR2883613A1 (fr) Dispositif d'amortissement a obturateur entre appui et cloche d'inversion
FR3070450A1 (fr) Dispositif de verin simple effet avec rappel par fluide compressible
WO2011004125A1 (fr) Dispositif de ressort à gaz avec système de lubrification dynamique
FR2561696A1 (fr) Buton precontraint autoregule
FR2914727A1 (fr) Valve hydraulique, amortisseur hydraulique equipe d'une telle valve et ensemble forme de deux amortisseurs couples entre eux

Legal Events

Date Code Title Description
WWE Wipo information: entry into national phase

Ref document number: 201180042906.4

Country of ref document: CN

121 Ep: the epo has been informed by wipo that ep was designated in this application

Ref document number: 11754405

Country of ref document: EP

Kind code of ref document: A1

ENP Entry into the national phase

Ref document number: 2013527589

Country of ref document: JP

Kind code of ref document: A

NENP Non-entry into the national phase

Ref country code: DE

WWE Wipo information: entry into national phase

Ref document number: 2011754405

Country of ref document: EP

ENP Entry into the national phase

Ref document number: 20137008805

Country of ref document: KR

Kind code of ref document: A

ENP Entry into the national phase

Ref document number: 2013115380

Country of ref document: RU

Kind code of ref document: A

WWE Wipo information: entry into national phase

Ref document number: 13820977

Country of ref document: US