WO2012031426A1 - 超高性能微波天线及其馈源组件 - Google Patents

超高性能微波天线及其馈源组件 Download PDF

Info

Publication number
WO2012031426A1
WO2012031426A1 PCT/CN2010/078647 CN2010078647W WO2012031426A1 WO 2012031426 A1 WO2012031426 A1 WO 2012031426A1 CN 2010078647 W CN2010078647 W CN 2010078647W WO 2012031426 A1 WO2012031426 A1 WO 2012031426A1
Authority
WO
WIPO (PCT)
Prior art keywords
waveguide
feed
high performance
microwave antenna
feed assembly
Prior art date
Application number
PCT/CN2010/078647
Other languages
English (en)
French (fr)
Inventor
吴知航
符道临
姜汝丹
刘素芹
谢庆南
王勇
王岩
唐荣
Original Assignee
京信通信系统(中国)有限公司
Priority date (The priority date is an assumption and is not a legal conclusion. Google has not performed a legal analysis and makes no representation as to the accuracy of the date listed.)
Filing date
Publication date
Application filed by 京信通信系统(中国)有限公司 filed Critical 京信通信系统(中国)有限公司
Priority to BR112013005522A priority Critical patent/BR112013005522A2/pt
Priority to EP10856888.2A priority patent/EP2615691B1/en
Publication of WO2012031426A1 publication Critical patent/WO2012031426A1/zh

Links

Images

Classifications

    • HELECTRICITY
    • H01ELECTRIC ELEMENTS
    • H01QANTENNAS, i.e. RADIO AERIALS
    • H01Q19/00Combinations of primary active antenna elements and units with secondary devices, e.g. with quasi-optical devices, for giving the antenna a desired directional characteristic
    • H01Q19/10Combinations of primary active antenna elements and units with secondary devices, e.g. with quasi-optical devices, for giving the antenna a desired directional characteristic using reflecting surfaces
    • H01Q19/18Combinations of primary active antenna elements and units with secondary devices, e.g. with quasi-optical devices, for giving the antenna a desired directional characteristic using reflecting surfaces having two or more spaced reflecting surfaces
    • HELECTRICITY
    • H01ELECTRIC ELEMENTS
    • H01QANTENNAS, i.e. RADIO AERIALS
    • H01Q19/00Combinations of primary active antenna elements and units with secondary devices, e.g. with quasi-optical devices, for giving the antenna a desired directional characteristic
    • H01Q19/10Combinations of primary active antenna elements and units with secondary devices, e.g. with quasi-optical devices, for giving the antenna a desired directional characteristic using reflecting surfaces
    • H01Q19/12Combinations of primary active antenna elements and units with secondary devices, e.g. with quasi-optical devices, for giving the antenna a desired directional characteristic using reflecting surfaces wherein the surfaces are concave
    • H01Q19/13Combinations of primary active antenna elements and units with secondary devices, e.g. with quasi-optical devices, for giving the antenna a desired directional characteristic using reflecting surfaces wherein the surfaces are concave the primary radiating source being a single radiating element, e.g. a dipole, a slot, a waveguide termination
    • H01Q19/134Rear-feeds; Splash plate feeds
    • HELECTRICITY
    • H01ELECTRIC ELEMENTS
    • H01QANTENNAS, i.e. RADIO AERIALS
    • H01Q19/00Combinations of primary active antenna elements and units with secondary devices, e.g. with quasi-optical devices, for giving the antenna a desired directional characteristic
    • H01Q19/10Combinations of primary active antenna elements and units with secondary devices, e.g. with quasi-optical devices, for giving the antenna a desired directional characteristic using reflecting surfaces
    • H01Q19/18Combinations of primary active antenna elements and units with secondary devices, e.g. with quasi-optical devices, for giving the antenna a desired directional characteristic using reflecting surfaces having two or more spaced reflecting surfaces
    • H01Q19/19Combinations of primary active antenna elements and units with secondary devices, e.g. with quasi-optical devices, for giving the antenna a desired directional characteristic using reflecting surfaces having two or more spaced reflecting surfaces comprising one main concave reflecting surface associated with an auxiliary reflecting surface
    • HELECTRICITY
    • H01ELECTRIC ELEMENTS
    • H01QANTENNAS, i.e. RADIO AERIALS
    • H01Q19/00Combinations of primary active antenna elements and units with secondary devices, e.g. with quasi-optical devices, for giving the antenna a desired directional characteristic
    • H01Q19/10Combinations of primary active antenna elements and units with secondary devices, e.g. with quasi-optical devices, for giving the antenna a desired directional characteristic using reflecting surfaces
    • H01Q19/18Combinations of primary active antenna elements and units with secondary devices, e.g. with quasi-optical devices, for giving the antenna a desired directional characteristic using reflecting surfaces having two or more spaced reflecting surfaces
    • H01Q19/19Combinations of primary active antenna elements and units with secondary devices, e.g. with quasi-optical devices, for giving the antenna a desired directional characteristic using reflecting surfaces having two or more spaced reflecting surfaces comprising one main concave reflecting surface associated with an auxiliary reflecting surface
    • H01Q19/193Combinations of primary active antenna elements and units with secondary devices, e.g. with quasi-optical devices, for giving the antenna a desired directional characteristic using reflecting surfaces having two or more spaced reflecting surfaces comprising one main concave reflecting surface associated with an auxiliary reflecting surface with feed supported subreflector

Definitions

  • the present invention relates to a microwave antenna, and more particularly to an ultra high performance microwave antenna and a feed assembly thereof.
  • a microwave antenna is an essential device for receiving and transmitting electromagnetic wave signals.
  • Microwave antennas used in the 5 GHz to 60 GHz band typically include four components: a feed, a reflector that provides a reflective surface, a radome, and an auxiliary mount.
  • the mounting member functions to fix the antenna on the pole or the iron tower; the radome protects the antenna from the natural environment such as rain, snow, ice, etc., and requires the radome to have as little influence on the electrical performance of the antenna. .
  • the reflecting surface and the feeding source mainly determine the electrical performance of the antenna.
  • the electromagnetic wave propagating from a distant place is reflected and concentrated by the reflecting surface, and then the receiving source receives the closed transmission line through the waveguide or the like to the receiver;
  • the electromagnetic wave signal emitted by the signal source is closed to the feed source via a waveguide or the like, and then radiated by the feed source and irradiated to the reflective surface according to a certain amplitude and phase distribution requirement, and finally reflected to the free space radiation through the reflective surface.
  • the electrical performance indicators of microwave antennas mainly include gain, return loss, main polarization and cross-polarization radiation pattern.
  • some international and regional related institutions according to the antenna gain and radiation pattern envelope (Radiation) Pattern Envelope (RPE) has established corresponding grading standards, such as the European standard ETSI EN 302 217 and the US standard US FCC. Part101 and so on. Standard performance (Standard Performance) and high performance (High) are also commonly used in practical engineering. Performance, Ultra-high Performance, etc. are used to characterize the performance level of the antenna.
  • the electrical performance of a microwave antenna is primarily determined by the feed and the profile height of the reflective surface used.
  • the conventional solution is to add a certain height of the barrel-shaped metal skirt 4 at the edge of the reflecting surface 1, and adsorb the absorbing material 5 on the inner surface of the skirt 4 to Improve the RPE performance of the antenna, especially improving the radiation performance from 50° to 180° from the main lobe.
  • the traditional solution is characterized by a large focal plane ratio (F/D) for the main reflector 1 (usually F/D) > 0.3) "shallow pot surface", the corresponding feeding angle of the feed 3 is also small (usually less than 180 °), the feed 3 can be in the form of a mouth-feeding type feedforward feed, or a self-supporting feedforward Feed.
  • Feedforward feeds usually need to be equipped with a "J" shaped support structure, which not only increases the complexity and cost of the structure, but also causes radiation occlusion, scattering, and structural asymmetry, which deteriorates the radiation performance of the antenna. .
  • the larger F/D feedforward feed has a larger lateral dimension of the secondary reflection surface, which inevitably causes greater radiation occlusion, thereby deteriorating the aperture efficiency and echo of the antenna. Loss and other performance.
  • the metal skirt and the absorbing material increase the volume, weight and wind load of the antenna. In short, no matter which kind of feed form is adopted, the traditional ultra-high performance antenna solution has the disadvantages of high structural profile, heavy weight, large wind load and high manufacturing cost.
  • Another solution for ultra-high performance microwave antennas is to use a deep reflective surface 1 with a small F/D (usually F/D ⁇ 0.2) with a feed 3 with a large illumination angle (usually greater than 180°), see Figure 2.
  • the solution can realize ultra-high performance RPE without adding metal skirt and absorbing material, so it has the advantages of low overall profile, light weight, small wind load and low cost.
  • the open-mouth waveguide feedforward feed is not suitable for such low-profile ultra-high-performance antennas because it is difficult to achieve such a large illumination angle; while the self-supporting feed-back feed is easy to achieve an illumination angle greater than 180°, and is illuminated Radiation phase fluctuations within the angle are small, so it is more suitable for low profile ultra high performance antennas.
  • the self-supporting feed-fed feed is the key to the design of low profile ultra-high performance microwave antennas, which will largely determine the electrical performance, form and cost of the antenna.
  • the self-supporting feed-back feed is usually composed of three parts in structure, from top to bottom, a sub-reflecting surface, a dielectric head and an open waveguide.
  • the working mechanism in the transmitting state is that the electromagnetic signal generated by the transmitter is transmitted through the waveguide and radiated on the waveguide surface, and the primary radiated electromagnetic wave is reflected by the sub-reflecting surface to the main reflecting surface, and finally radiated to the free space through the main reflection surface. .
  • the working mechanism of the receiving state is opposite: the electromagnetic wave transmitted from a distant point is firstly reflected by the main reflecting surface to the sub-reflecting surface, then focused by the sub-reflecting surface to the waveguide surface, and finally received by the waveguide and input to the receiver. .
  • the waveguide acts as a primary radiation source;
  • the secondary reflective surface acts as a reflection of the primary radiated electromagnetic wave, and the size and shape of the secondary reflective surface will affect the spatial distribution of the amplitude and phase of the reflected electromagnetic wave;
  • the structure of the head supports and connects the sub-reflecting surface and the waveguide, and the electrical performance will also affect the return loss of the feed, the amplitude and phase pattern of the main polarization and cross-polarization components.
  • the ideal self-supporting feedforward feed solution should achieve the following objectives: 1) In terms of electrical performance, it has good impedance matching performance, small cross-polarization component, and amplitude of main polarization component in a wide frequency range.
  • phase distribution can be flexibly shaped to meet the requirements of various machine performances; 2) in terms of structural performance, the size is small, the mechanical strength is good, and the requirements of various environmental test indicators are met; 3) in terms of cost, the material cost is low, Easy to process and form.
  • Figure 3a is a patent US Patent "Hat” shaped feed as described in 4963878 and US Patent 6137449 (Hat Feed), its main feature is that the secondary reflecting surface 4 is composed of a set of toroidal metal teeth to form a high-impedance surface, thereby obtaining equalized E-plane and H-plane feed patterns.
  • the surface impedance of the secondary reflecting surface is related to the electrical dimension of the metal tooth depth, i.e., frequency sensitive, the bandwidth of the "hat" shaped feed is typically limited.
  • Figure 3b is the patent US Patent 6995727 A type of feed described by B2, the main feature of which is that the dielectric head portion 3 exposed outside the waveguide 2 is frustoconical in shape, and the feed can obtain good impedance matching performance in a wide frequency band.
  • the outer surface of the medium head of such a feed is a smooth surface, the flexibility of the shaped design is lacking, for example, the unequal E-plane and H-plane feed patterns satisfying the requirements are met to satisfy the ETSI.
  • Class 3B and Class 3C RPE performance as specified in EN 302 217.
  • Figure 3c is a patent US Patent 6919855 A feed solution described in B2, the main feature of which is that the head portion 3 exposed outside the waveguide 2 is a cone having a pair of teeth or grooves having the same central axis on the tapered surface thereof.
  • the perturbation structure is used to achieve a flexible shape design.
  • the outer surface of the medium head of this type of feed is a tapered surface, and the above-mentioned perturbation structure is generally not parallel or perpendicular to the central axis of the dielectric head, and is difficult to machine or directly mold, and thus the manufacturing cost is high.
  • the primary object of the present invention is to overcome the deficiencies of the above-mentioned self-supporting feedforward feed solutions for low profile ultra high performance microwave antennas, and to provide an excellent electrical performance, easy shape design, and structural Feed assembly for low cost, ultra high performance microwave antennas that are easy to machine or mold.
  • Another object of the present invention is to provide an ultra high performance microwave antenna corresponding to the foregoing objects.
  • the feed assembly of the ultra-high performance microwave antenna of the present invention has a rotationally symmetrical structure, including a secondary reflection surface, a dielectric head, a waveguide, and a base.
  • a rotationally symmetrical structure including a secondary reflection surface, a dielectric head, a waveguide, and a base.
  • One end of the waveguide is inserted in the base, and the other end is inserted into the first end of the dielectric head.
  • the second end of the dielectric head covers the sub-reflecting surface according to the shape of the end surface of the end, and the medium head:
  • a side surface exposed outside the waveguide is provided with a plurality of cylindrical surfaces having different diameters
  • the end surface of the second end is provided with a tapered surface which is centered and recessed toward the first end thereof, and a circular plane is formed along the periphery of the inclined tapered surface, and the inclined tapered surface is provided with at least one level of perturbation structure.
  • the perturbation structure is convex upward or downward.
  • a plurality of cylindrical faces of the side portion of the dielectric head exposed to the outside of the waveguide are stepped from the second end of the dielectric head toward the first end in a decreasing diameter.
  • At least one of the cylindrical faces adjacent to the first end of the dielectric head has a diameter larger than a diameter of a cylindrical face relatively close to the second end of the dielectric head.
  • At least one of the cylindrical faces of the dielectric head exposed in the side portions outside the waveguide is sleeved with a metal ring.
  • the metal ring is a metal plating or a metal molded piece.
  • the secondary reflecting surface is formed by covering a metal plating or a metal forming member disposed on the end surface of the second end of the dielectric head.
  • the base has a hollow structure for the waveguide to be inserted therein, which is formed with a toroidal step surrounding the waveguide for reducing the effect of the primary reflection facing the impedance matching performance of the feed assembly.
  • the ultra high performance microwave antenna of the present invention includes a reflector that provides a main reflecting surface, a radome, and the aforementioned feed assembly.
  • the present invention has the following advantages:
  • the feed assembly of the present invention can achieve good impedance matching performance in a wide frequency band, and has a cylindrical surface at the first end of the dielectric head, an upward bulge on the end surface of the second end of the dielectric head, or A device for adjusting the impedance matching such as a downwardly recessed perturbation structure and a circular step of the base; the flexible design of the structural size of the dielectric head to obtain a shaped feed amplitude and phase pattern to satisfy various ultra-high performance microwaves
  • the requirements of the antenna for the RPE; structurally, the outline of the dielectric head of the present invention is mostly parallel or perpendicular to the axis of rotational symmetry, so that it is easy to be machined or injection molded, and the manufacturing cost is low.
  • FIG. 1a is a schematic structural view of an ultra-high performance microwave antenna using a mouth-port waveguide type feedforward feed in the prior art.
  • FIG. 1b is a schematic structural view of an ultra-high performance microwave antenna using a self-supporting feedforward feed and having a relatively large F/D in the prior art.
  • FIG. 2 is a schematic structural view of a low profile ultra-high performance microwave antenna using a self-supporting feedforward feed and having a relatively small F/D in the prior art.
  • Figure 3a is a patent US Patent 4963878 and US Patent 6137449 is a schematic diagram of the structure of a "hat" shaped feed for one of the self-supporting feedforward feed solutions for low profile ultra high performance microwave antennas.
  • Figure 3b is a patent US Patent 6995727 A schematic diagram of the second embodiment of the self-supporting feedforward feed solution for a low profile ultra high performance microwave antenna described in B2.
  • Figure 3c is a patent US Patent 6919855 A schematic diagram of the third of the self-supporting feedforward feed solutions for low profile ultra high performance microwave antennas described in B2.
  • FIG. 4 is a schematic structural view of an ultra high performance microwave antenna of the present invention.
  • FIG. 5 is a schematic diagram showing a typical structure of a feed component of an ultra high performance microwave antenna according to the present invention.
  • FIG. 6 is a schematic view showing the working principle of the medium head loading a circular tubular medium tooth or loading a metal ring to realize the shape of the feed radiation pattern.
  • FIG. 7a is a schematic structural view of an embodiment of a feed assembly according to the present invention.
  • Figure 7b shows a typical return loss curve for the feed component shown in Figure 7a applied in the 15 GHz band.
  • Figure 7c is a typical feed amplitude pattern of the feed assembly of Figure 7a at a frequency of 14.8 GHz.
  • Figure 7d is a typical feed phase pattern of the feed assembly of Figure 7a at a frequency of 14.8 GHz.
  • FIG. 7e is a typical antenna E-plane radiation pattern and RPE performance of the antenna assembly of FIG. 7a applied to a 0.6 meter antenna at a frequency of 14.8 GHz.
  • Fig. 7f is a diagram showing the H-plane radiation pattern and RPE performance of a typical antenna machine of the antenna assembly of Fig. 7a applied to a 0.6 meter antenna at a frequency of 14.8 GHz.
  • FIG. 8a is a schematic structural view of another embodiment of a feed assembly according to the present invention.
  • Figure 8b is a typical feed amplitude pattern of the feed assembly of Figure 8a at 38.5 GHz.
  • Figure 8c is a typical feed phase pattern of the feed assembly of Figure 8a at a frequency of 38.5 GHz.
  • Figure 8d shows the E-plane radiation pattern and RPE performance of a typical antenna of a feeder assembly of Figure 8a applied to a 0.3 m antenna at 38.5 GHz.
  • FIG. 8e is a diagram showing the H-plane radiation pattern and RPE performance of a typical antenna of a 0.3 m calibre antenna applied to a 0.3 m calibre antenna as shown in FIG. 8a.
  • 9a is a schematic structural view of still another embodiment of the feed assembly of the present invention.
  • Figure 9b is a typical feed amplitude pattern of the feed assembly of Figure 9a at a frequency of 38.5 GHz.
  • FIG. 10a is a schematic structural view of still another embodiment of a feed assembly according to the present invention.
  • Figure 10b is a typical feed amplitude pattern of the feed assembly of Figure 10a at a frequency of 38.5 GHz.
  • Figure 10c is a typical feed phase pattern of the feed assembly of Figure 10a at a frequency of 38.5 GHz.
  • Figure 10d shows the E-plane radiation pattern and RPE performance of a typical antenna machine with a feed assembly of Figure 10a applied to a 0.3 m antenna at 38.5 GHz.
  • Figure 10e shows the H-plane radiation pattern and RPE performance of a typical antenna machine with a feed assembly of Figure 10a applied to a 0.3 m antenna at 38.5 GHz.
  • the ultra-high performance microwave antenna of the present invention is composed of a reflector, a radome, and a feed component that provide a reflecting surface 1.
  • the microwave antenna as a whole is rotationally symmetric about one axis OO' of itself, and therefore, each of the included The components are all rotationally symmetric.
  • FIG. 1 A typical structure of the feed assembly of the present invention is shown in FIG.
  • the feed assembly includes a sub-reflecting surface 4, a dielectric head 3, a circular waveguide 2, and a base 5 which are sequentially connected from top to bottom and have the same rotational symmetry axis OO'.
  • the end surface 34 of the top end of the dielectric head 3 is attached to the lower surface of the sub-reflecting surface 4 supply member; the bottom end 31 of the dielectric head 3 is inserted into the lumen of one end of the circular waveguide 2; the bottom end of the circular waveguide 2 Inserting the base 5, the auxiliary reflecting surface 4 is closely attached to the top end surface of the dielectric head 3, so that the shape is consistent with the shape of the end surface of the dielectric head 3, and metal plating or metal forming covering the end surface may be adopted. Implementation.
  • the dielectric head 3 is composed of a solid dielectric material having a stable dielectric constant, low loss, and good mechanical properties, and its structure is rotationally symmetrical about the central axis OO'.
  • the portion of the dielectric head 3 placed in the circular waveguide 2 is provided with a plurality of cylindrical surfaces of different sizes by a plurality of solid cylinders 31 having different diameters; the side 32 of the dielectric head 3 exposed outside the circular waveguide 2 is also the same.
  • a plurality of solid cylinders having different diameters provide a plurality of cylindrical surfaces of different sizes; a plurality of circular tubular media teeth 33 are longitudinally loaded on the side surface 32, and the medium teeth 33 are arranged to be spaced apart from each other at a periphery of a cylindrical surface.
  • the medium head 3 is placed in the inner portion of the waveguide 2 and is composed of a cylindrical surface provided by a multi-stage cylinder, wherein the cylindrical surface provided by the uppermost cylinder 311 shown in FIG. 5 closely fits the inner wall of the metal circular waveguide 2, and the rest
  • the diameter of the cylinder 312 is smaller than the inner diameter of the waveguide 2.
  • Both the cylinder 311 and the cylinder 312 are impedance matched, and their diameter and length can be determined by a full wave analysis optimization design.
  • the side 32 of the dielectric head 3 exposed outside the waveguide 2 is composed of a cylindrical surface provided by a multi-stage cylinder, and the number, diameter and height of the cylinders can be flexibly designed according to the requirements of the radiation amplitude and phase pattern of the feed, among which the most
  • the diameter of the lower first cylinder 321 is larger than the inner diameter of the waveguide 2 to fix the medium head 3 and the waveguide 2, and the diameter of the uppermost primary cylinder 322 is larger than the diameter of the second upper cylinder.
  • the outer periphery of the top end face of the dielectric head 3 has a circular planar shape.
  • annular media teeth 33 are longitudinally loaded on the side 32 of the medium head 3, and the media teeth 33 extend downwardly from the cylinder of the higher-order cylindrical surface.
  • the lower one of the cylinders providing the cylindrical surface serves as a spacer structure. 5 and 6, these annular dielectric teeth 33 are rotationally symmetrical in structure, but have different types of boundary conditions for E-plane and H-plane electromagnetic waves, that is, have polarization selectivity: in E- The surface of the electric field is perpendicular to the medium teeth 33.
  • the medium teeth 33 When the width of the medium teeth 33 is designed to be small, the medium teeth 33 have little influence on the electric field distribution; conversely, on the H-plane, the electric field direction is parallel to the medium teeth 33, even if the medium teeth 33 The width is small and the influence of the dielectric teeth 33 on the electric field distribution is still large. Therefore, the circular tubular medium teeth 33 have different effects on the E-plane and H-plane patterns of the feed, that is, it is possible to optimize the design by optimizing the structural parameters such as the position, number, diameter, longitudinal length and width of the medium teeth 33. The special shape of the source radiation pattern.
  • the medium teeth 33 can be integrally processed with the medium head 3, and since the medium teeth 33 are parallel to the rotational symmetry axis OO' of the medium head 3, it is easy to machine or directly mold injection molding.
  • a loading metal ring 35 may be sleeved on at least one cylindrical surface of the side surface 32 of the dielectric head 3 to achieve a similar shape of the feed radiation pattern.
  • the working principle and the medium are as described above.
  • the working principle of the teeth 33 is similar, that is, the influence of the metal ring 35 on the E-plane and the H-plane radiation pattern of the feed is different, and the structural parameters such as the position, the number, the diameter and the width of the metal ring 35 can be optimized.
  • a special shape of the feed radiation pattern is achieved.
  • the metal ring 35 can be realized by designing a metal plating on the side 32 of the dielectric head 3, or by attaching a separate metal molding.
  • the end surface 34 of the top end of the dielectric head 3 is bonded to the lower surface of the providing member that supplies the sub-reflecting surface 4, so that the shape of the tip end surface 34 of the dielectric head 3 matches the shape of the lower surface of the sub-reflecting surface 4, and the sub-reflecting surface 4
  • the shape of the top surface is the same as the shape of the top end surface 34 of the dielectric head 3. Therefore, the shape of the dielectric head 3 has a large influence on the electrical properties of the feed.
  • the intermediate portion 341 of the top end face 34 of the dielectric head 3 is a tapered surface that is recessed downward toward the bottom end of the dielectric head 3, the taper angle of which will mainly affect the illumination angle of the feed; the edge portion of the oblique tapered surface is immediately adjacent to 342 is the upper surface of the uppermost cylinder 322 of the side 32 of the dielectric head 3, and has a circular arc-shaped plane whose diameter and width will mainly affect the illumination angle of the feed and the feed amplitude pattern at the edge of the illumination angle.
  • the level value which in turn affects the RPE performance of the antenna unit; at least one perturbation structure 343 is disposed in the middle portion 341 of the top end surface 34 of the dielectric head 3, and the perturbation structure 343 can be raised relative to the inclined cone surface.
  • the recessed or recessed structure 343 may be parallel to the axis of rotational symmetry OO', and the position, width and height or depth of the raised or recessed structure 343 will primarily affect the impedance matching performance of the feed.
  • the structural dimensions of the top end face 34 of the dielectric head 3 can be initially designed by the above-described influence on the electrical properties and finally determined by the full wave analysis optimization design.
  • the secondary reflecting surface 4 may be provided by a metal plating of the top end surface 34 of the dielectric head 3 or a separable metal molding which is closely adhered to the top end surface 34 of the dielectric head 3, whereby the metal plating or the metal molding is a vice A supply of reflective surface 4.
  • Waveguide 2 is working in the main mode
  • the circular waveguide of the TE11 mode has a top end connected to the bottom end 31 of the dielectric head 3 and a bottom end connected to the base 5.
  • the waveguide 2 functions to transmit electromagnetic waves in electrical performance while supporting the dielectric head 3 in structure.
  • the diameter of the waveguide 2 is about 0.6-0.8 times the free-space wavelength to ensure that the waveguide 2 operates in the main mode TE11 mode and obtains substantially equalized E-plane and H-plane feed patterns; the length of the waveguide 2 is based on the microwave
  • the focal length of the main reflection surface 1 of the antenna (see FIG. 4) is determined, and the length thereof is adjusted to ensure that the phase center of the feed coincides with the focus of the main reflection surface 1.
  • the structure of the metal base 5 is also rotationally symmetrical about the central axis OO' with a circular hole corresponding to the outer diameter of the waveguide 2 therebetween.
  • the base 5 includes three parts: an upper portion 51, a middle portion 52, and a lower portion 53.
  • the upper portion 51 is a circular step.
  • the upper portion 51 of the base 5 is slightly higher than the bus bar of the main reflecting surface 1, and the annular step of the upper portion 51 serves to reduce the main reflecting surface. 1
  • the influence of the impedance matching performance of the feed, the size of the annular step needs to be determined by the integrated wave analysis optimization design of the feed and the reflective surface 1; the middle portion 52 of the base 5 is used to fix the feed to the main reflective surface.
  • the height is substantially flush with the bus bar of the main reflecting surface 1;
  • the lower portion 53 of the base 5 is an external interface of the antenna machine formed by assembling the feeding source to the main reflecting surface 1 , and can be designed for connection according to the interface requirement.
  • the base 5 can be integrally machined or opened for molding, and has low manufacturing cost and versatility.
  • Figure 7a is used to reveal one of the simplified structures of the present invention
  • Figure 7b ⁇ 7f is a diagram of some typical electrical properties of the feed assembly of the structure.
  • the greatest feature of the structure is that the diameters of the cylinders constituting the side faces 32 of the medium head 3 are successively decreased from top to bottom, whereby the cylindrical surfaces are arranged in a stepped shape from top to bottom in the diameter of the cylinder.
  • the thus formed dielectric head 3 is extremely easy to machine or mold injection molding; and the equalization of the E-plane and H-plane feed amplitude and phase patterns can be obtained by optimizing the diameter and height of the cylinders of each stage.
  • Figure 7b shows the measured return loss of the structure applied to the 15 GHz band, with a return loss better than -25 dB and a wide band redundancy in the 14.25 GHz to 15.35 GHz band.
  • Fig. 7c and Fig. 7d are the amplitude and phase directions of the typical E-plane and H-plane of the structure at 14.8 GHz, respectively, and the E-plane and H-plane amplitude patterns are equalized in the range of 0° to 120°.
  • Figure 7e ⁇ 7f gives a typical radiation pattern of the structure applied to a 0.6m aperture antenna at 14.8GHz. The RPE performance of the antenna satisfies the ETSI 302 217 Class 3 standard.
  • Figure 8a is used to reveal the simplified structure of the present invention
  • Figure 8b ⁇ 8e is a diagram of some typical electrical properties of the feed assembly of the structure.
  • the greatest difference between the present structure and the previous simplified structure is that a plurality of circular tubular media teeth 33 are longitudinally loaded on the side 32 of the media head 3, and the shape, width and length of the media teeth 33 can be optimized to obtain a special shape.
  • Unequalized E-plane and H-plane feed pattern which satisfies the requirements of the E-plane and H-plane different radiation patterns.
  • Figure 8b and Figure 8c show the amplitude and phase patterns of the typical E-plane and H-plane of the structure at 38.5 GHz, respectively.
  • Figure 9a ⁇ 9b is a structural diagram of a simplified structure of the feed assembly of the present invention and a typical electrical performance diagram.
  • the structure has the same design purpose as the second simplified structure described above, that is, the E-plane and H-plane feed pattern of the special shape is obtained to realize the ETSI. 302 217 Class 3B standard antenna RPE performance; the simplified structure and one of the above simplified structures are structurally different, that is, the diameters of the cylinders constituting the side faces 32 of the dielectric head 3 are no longer limited to descend from top to bottom, and the cylinders of the respective stages are successively reduced.
  • the position, diameter and width can be optimized according to the requirements of the feed forming by full-wave analysis.
  • At least one of the cylinders near the bottom end of the dielectric head 3 can provide a cylindrical surface having a diameter larger than that of the medium head 3 .
  • Figure 9b shows the amplitude pattern of the typical E-plane and H-plane of the simplified structure at 38.5 GHz. It can be seen that the required E-plane and H-plane feed amplitude patterns are obtained.
  • Figure 10a is a diagram of the fourth simplified structure of the present invention
  • Figure 10b ⁇ 10e is a typical electrical performance result for this structure.
  • the embodiment obtains a more unequal E-plane and H-plane feed pattern, thereby fulfilling the requirements of ETSI 302 217.
  • the simplified structure realizes the shaping means by coating a plurality of circular metal plating layers 35 (or metal rings 35) on the vertical surface constituting the side surface 32 of the dielectric head 3, and the position and width of each metal plating layer can be Feed shaping requires a full-wave analysis optimization design.
  • Figure 10b and Figure 10c show the amplitude and phase patterns of a typical E-plane and H-plane at 38.5 GHz for a simplified structure
  • Figure 10d ⁇ 10e gives the typical radiation pattern of the simplified structure applied to the 0.3m aperture antenna at 38.5GHz.
  • the RPE performance of the antenna meets the ETSI 302 217 Class 3C standard and US FCC Part 101A standard.
  • the ultra-high performance microwave antenna and the feed component of the invention have good electrical performance, simple and compact physical structure, and relatively low cost.

Landscapes

  • Aerials With Secondary Devices (AREA)
  • Waveguide Aerials (AREA)

Description

超高性能微波天线及其馈源组件 技术领域
本发明涉及一种微波天线,尤其涉及一种超高性能微波天线及其馈源组件。
背景技术
在微波点对点或者点对多点的通信网络中,微波天线是必不可少的接收和发射电磁波信号的装置。应用在5GHz到60GHz频带内的微波天线通常包括四个组件:馈源、提供反射面的反射件、天线罩以及辅助的安装件等。安装件起将天线安装固定在抱杆或铁塔上的作用;天线罩则起保护天线免受雨、雪、冰冻等自然环境影响的作用,同时要求天线罩对天线电性能的影响尽可能地小。而反射面和馈源则主要决定天线的电性能,作接收天线时,从远处传播来的电磁波经反射面反射汇聚,再由馈源接收经波导等封闭传输线至接收机;作发射天线时,由信号源发出的电磁波信号经波导等封闭传输线至馈源,再由馈源辐射并按照一定幅度和相位分布要求照射至反射面,最后经反射面反射至自由空间辐射。随着微波通信的发展,市场对微波天线的需求量越来越大,同时对天线的要求也越来越高。不仅要求微波天线满足严格的电性能指标以及尺寸、重量、风荷等机械性能指标,同时也要求在制造、运输、安装等环节的成本低。
微波天线的电性能指标主要包括增益、回波损耗、主极化和交叉极化的辐射方向图等。为了区别天线的电性能等级以为不同应用场合选用天线做参考,一些国际和地区的相关机构根据天线的增益和辐射方向图包络(Radiation Pattern Envelope,RPE)制定了相应的等级标准,例如欧洲标准ETSI EN 302 217和美国标准US FCC Part101等。在实际工程中也常用标准性能(Standard Performance)、高性能(High Performance)、超高性能(Ultra-high Performance)等称谓来表征天线的性能等级。
微波天线的电性能,尤其是RPE性能,主要由馈源以及所采用的反射面的剖面高度决定。为实现超高性能,如图1所示,传统的解决方案是:在反射面1的边缘增加一定高度的圆桶形金属裙边4,并在裙边4的内表面吸附吸波材料5以改善天线的RPE性能,尤其改善偏离主瓣方向50°到180°范围内的辐射性能。传统解决方案的特点是主反射面1为焦径比(F/D)比较大(通常F/D > 0.3)的“浅锅面”,相应馈源3的照射角度也较小(通常小于180°),馈源3的形式可以是张口波导型的前馈式馈源,亦可是自支撑的后馈式馈源。前馈式馈源通常需配以“J”形支撑结构,该结构不仅增加了结构的复杂度和成本,同时也造成了辐射遮挡、散射、以及结构不对称性,从而恶化了天线的辐射性能。而F/D较大的后馈式馈源为了获得较小的照射角度,其副反射面的横向尺寸通常比较大,这也势必造成较大的辐射遮挡,从而恶化天线的口径效率和回波损耗等性能。另外,金属裙边和吸波材料增加了天线的体积、重量和风荷。总之,无论采取上述哪种馈源形式,传统的超高性能天线解决方案都具有结构剖面高、重量重、风荷大、制造成本高等缺点。
另一种超高性能微波天线的解决方案是采用F/D较小(通常F/D<0.2)的深反射面1配合照射角度较大(通常大于180°)的馈源3,参考图2所示,该方案由于无需附加金属裙边和吸波材料即可实现超高性能的RPE,因此具有整体剖面低、重量轻、风荷小、成本低等优点。张口波导型前馈式馈源由于难于实现如此大的照射角度,因而不适用于这类低剖面超高性能天线;而自支撑后馈式馈源容易实现大于180°的照射角度,并且在照射角度内辐射相位波动较小,因此较适用于低剖面超高性能天线。
自支撑后馈式馈源是低剖面超高性能微波天线设计的关键,它将在很大程度上决定天线整机的电性能、结构形式以及成本。自支撑后馈式馈源在结构上通常由三部分构成,自上而下分别是副反射面、介质头以及开口波导管。在发射状态下的工作机理是:由发射机产生的电磁信号经波导管传输并在波导口面辐射,该初级辐射电磁波再经副反射面反射到主反射面,最后经主反射面向自由空间辐射。接收状态的工作机理与之相反:从远处传输来的电磁波首先经主反射面聚束反射到副反射面,再由副反射面聚焦至波导口面,最后经波导管接收并输入到接收机。在自支撑后馈式馈源中,波导管起初级辐射源的作用;副反射面起反射初级辐射电磁波的作用,副反射面的尺寸和形状将影响反射电磁波的幅度和相位的空间分布;介质头在结构上起支撑和连接副反射面和波导管的作用,在电性能上也将影响馈源的回波损耗、主极化和交叉极化分量的幅度和相位方向图等性能。理想的自支撑后馈式馈源的解决方案应该达到如下目标:1)在电性能方面,在较宽的频带范围内具有良好的阻抗匹配性能、交叉极化分量小、主极化分量的幅度和相位分布可灵活赋形以满足各种整机性能的要求;2)在结构性能方面,尺寸小、机械强度好、满足各种环境试验指标的要求;3)在成本方面,材料成本低廉、易加工成型。
目前已经发展出了多种应用于低剖面超高性能微波天线的自支撑后馈式馈源的解决方案,其中几种典型的方案如图3所示。图3a是专利US Patent 4963878和US Patent 6137449中所述的“帽子”形馈源(Hat Feed),它主要的特征是副反射面4由一组圆环形金属齿构成高阻抗表面,从而获得等化的E-面和H-面馈源方向图。然而,由于副反射面的表面阻抗与金属齿深度的电尺寸有关,即具有频率敏感性,因此“帽子”形馈源的频带宽度通常受限。图3b是专利US Patent 6995727 B2描述的一类馈源,它的主要特征是露在波导管2外的介质头部分3为截头圆锥体形,该馈源能获得在较宽频带内的良好阻抗匹配性能。然而,由于这类馈源的介质头外表面是光滑表面,缺乏赋形设计的灵活度,例如实现满足要求的不等化E-面和H-面馈源方向图以满足ETSI EN 302 217中所规定的Class 3B和Class 3C整机RPE性能。图3c是专利US Patent 6919855 B2中所述的一种馈源解决方案,它的主要特征是露在波导管2外的介质头部分3为锥形体,在其锥面上带有一组具有相同中心轴的齿状或槽状微扰结构以实现灵活的赋形设计。然而,这一类馈源的介质头外表面为斜锥面,且上述微扰结构通常不平行或垂直与介质头的中心轴,难于机械加工或直接模具成型,因而制造成本较高。
技术问题
本发明的首要目的即是克服上述各种应用于低剖面超高性能微波天线的自支撑后馈式馈源解决方案的不足,提供一种在电性能优良、易于赋形设计,同时在结构上易于机械加工或模具成型的低成本超高性能微波天线的馈源组件。
本发明的另一目的在于提供一种与前述目的相应的超高性能微波天线。
技术解决方案
为实现该目的,本发明采用如下技术方案:
本发明的超高性能微波天线的馈源组件,呈旋转对称结构,包括副反射面、介质头、波导管及底座,波导管一端插置于底座中,另一端供介质头第一端插置,介质头第二端依照该端的端面形状覆盖设置所述副反射面,所述介质头:
其插置于波导管部分具有至少一级圆柱体;
其外露于波导管外的侧面部分设有多个具有不同直径的圆柱面;
其第二端的端面上设有置中且朝向其第一端凹陷的斜锥面,沿斜锥面外围形成有圆环平面,该斜锥面上设置有至少一级微扰结构。
该微扰结构呈向上凸起或向下凹陷状。
所述介质头的外露于波导管外的侧面部分的多个圆柱面自介质头第二端向第一端以直径渐小的方式台阶式排列。
所述介质头的外露于波导管外的侧面部分的多个圆柱面中,至少有一个靠近介质头第一端的圆柱面的直径大于相对靠近介质头第二端的一个圆柱面的直径。
所述介质头的外露于波导管外的侧面部分中的多个圆柱面中,至少有一个圆柱面在其外围有间距地设置圆管状介质齿,该介质齿与该圆柱面紧邻的一个圆柱面相连接。
所述介质头的外露于波导外的侧面部分中的多个圆柱面中,至少一个圆柱面套设有金属圆环。
所述金属圆环为金属镀层或金属成型件。
所述副反射面由覆盖设置在介质头第二端端面上的金属镀层或金属成型件形成。
所述底座呈中空结构以供波导管插置其中,其形成有包围波导管用于减小主反射面对馈源组件的阻抗匹配性能影响的圆环台阶。
本发明的超高性能微波天线,包括提供主反射面的反射件、天线罩以及前述的馈源组件。
有益效果
与现有技术相比,本发明具有如下优点:
在电性能方面,本发明所述的馈源组件可在较宽频带内获得良好的阻抗匹配性能,并有介质头的第一端的圆柱面、介质头第二端的端面上的向上凸起或向下凹陷的微扰结构、以及底座的圆环台阶等调节阻抗匹配的装置;可通过灵活设计介质头的结构尺寸以获得赋形的馈源幅度和相位方向图以满足各种超高性能微波天线对RPE的要求;在结构上,本发明所述的介质头的外形轮廓大多平行或者垂直于旋转对称轴,因此易于机械加工或模具注塑成型,制造成本低。
附图说明
图1a为现有技术中采用张口波导型前馈式馈源的超高性能微波天线的结构示意图。
图1b为现有技术中采用自支撑后馈式馈源且F/D比较大的超高性能微波天线的结构示意图。
图2为现有技术中采用自支撑后馈式馈源且F/D比较小的低剖面超高性能微波天线的结构示意图。
图3a为专利US Patent 4963878和US Patent 6137449所述的应用于低剖面超高性能微波天线的自支撑后馈式馈源解决方案之一的“帽子”形馈源的结构示意图。
图3b为专利US Patent 6995727 B2所述的应用于低剖面超高性能微波天线的自支撑后馈式馈源解决方案之二的结构示意图。
图3c为专利US Patent 6919855 B2所述的应用于低剖面超高性能微波天线的自支撑后馈式馈源解决方案之三的结构示意图。
图4为本发明的超高性能微波天线的结构示意图。
图5为本发明超高性能微波天线的馈源组件的典型结构示意图。
图6为本发明的介质头加载圆管状的介质齿或加载金属圆环以实现馈源辐射方向图赋形的工作原理图。
图7a为本发明所述馈源组件的一实施例的结构示意图。
图7b为图7a所示馈源组件应用在15GHz频段的典型回波损耗曲线。
图7c为图7a所示馈源组件在14.8GHz频率的典型馈源幅度方向图。
图7d为图7a所示馈源组件在14.8GHz频率的典型馈源相位方向图。
图7e为图7a所示馈源组件应用于0.6米口径的天线在14.8GHz频率的典型天线整机E-面辐射方向图及RPE性能。
图7f为图7a所示馈源组件应用于0.6米口径的天线在14.8GHz频率的典型天线整机H-面辐射方向图及RPE性能。
图8a为本发明所述馈源组件另一实施例的结构示意图。
图8b为图8a所示馈源组件在38.5GHz频率的典型馈源幅度方向图。
图8c为图8a所示馈源组件在38.5GHz频率的典型馈源相位方向图。
图8d为图8a所示馈源组件应用于0.3米口径的天线在38.5GHz频率的典型天线整机E-面辐射方向图及RPE性能。
图8e为图8a所示馈源组件应用于0.3米口径的天线在38.5GHz的典型天线整机H-面辐射方向图及RPE性能。
图9a为本发明所述馈源组件又一实施例的结构示意图。
图9b为图9a所示馈源组件在38.5GHz频率的典型馈源幅度方向图。
图10a为本发明所述馈源组件再一实施例的结构示意图。
图10b为图10a所示馈源组件在38.5GHz频率的典型馈源幅度方向图。
图10c为图10a所示馈源组件在38.5GHz频率的典型馈源相位方向图。
图10d为图10a所示馈源组件应用于0.3米口径的天线在38.5GHz频率的典型天线整机E-面辐射方向图及RPE性能。
图10e为图10a所示馈源组件应用于0.3米口径的天线在38.5GHz频率的典型天线整机H-面辐射方向图及RPE性能。
本发明的最佳实施方式
下面结合附图和实施例对本发明作进一步的说明:
请参阅图4,本发明的超高性能微波天线由提供反射面1的反射件、天线罩以及馈源组件构成,微波天线整体关于自身的一条轴OO’旋转对称,因此,其所包含的各个组成部件均为旋转对称件。
本发明的馈源组件的典型结构请参阅图5所示。
图5中,馈源组件包括自上而下依次连接并具有同一旋转对称轴OO’的副反射面4、介质头3、圆形波导管2以及底座5。介质头3的顶端的端面34与副反射面4提供件的下表面贴合;介质头3的底端31插置于圆形波导管2一端的管腔中;圆形波导管2的底端则插入底座5,所述副反射面4提供件由于与介质头3顶端端面紧密贴合,故其形状与介质头3的该端面形状一致,可以采用覆盖在该端面上的金属镀层或金属成型件实现。
介质头3由介电常数稳定、低损耗、机械性能良好的实心介质材料构成,其结构关于中心轴OO’旋转对称。介质头3置入圆形波导管2内的部分由多个直径不同的实心圆柱体31提供多个不同大小的圆柱面;露在圆形波导管2外的介质头3的侧面32部分也同理由多级直径不同的实心圆柱体提供多个不同大小的圆柱面;在侧面32上纵向加载有多个圆管状的介质齿33,介质齿33呈现有间距地套设在一个圆柱面外围的结构。介质头3置入波导管2内部部分由多级圆柱体提供的圆柱面构成,其中图5所示最上一级圆柱体311提供的圆柱面与金属圆形波导管2的内壁紧密贴合,其余圆柱体312的直径小于波导管2的内直径。圆柱体311和圆柱体312均起阻抗匹配作用,其直径和长度可通过全波分析优化设计确定。
露在波导管2外的介质头3的侧面32由多级圆柱体提供的圆柱面构成,这些圆柱体的数量、直径和高度可根据馈源辐射幅度和相位方向图要求进行灵活设计,其中最下面一级圆柱体321的直径大于波导管2的内径以起将介质头3和波导管2限位固定的作用,同时其最上面一级圆柱体322的直径大于次上一级圆柱体的直径以使介质头3顶端端面的外围呈圆环平面状。
为了实现馈源辐射方向图的赋形,尤其是实现不等化的E-面和H-面馈源方向图以满足如ETSI EN 302 217中所规定的Class 3B或Class 3C整机RPE要求,在介质头3的侧面32上纵向加载多个圆环状的介质齿33,这些介质齿33自较高一级的提供圆柱面的圆柱体中一体向下延伸,对较低一级的提供圆柱面的圆柱体起有间距的围护结构。结合图5和图6,这些圆环状介质齿33虽然在结构上是旋转对称的,但是对E-面和H-面电磁波构成的边界条件类型不同,即具有极化选择性:在E-面,电场方向垂直于介质齿33,当介质齿33的宽度设计得较小时,介质齿33对电场分布影响很小;反之,在H-面,电场方向平行于介质齿33,即使介质齿33的宽度很小,介质齿33对电场分布的影响依然很大。因此,圆管状介质齿33对馈源的E-面和H-面方向图的影响不同,即有可能通过优化设计介质齿33的位置、数量、直径、纵向长度以及宽度等结构参数来实现馈源辐射方向图的特殊赋形。介质齿33可以与介质头3一体化加工完成,由于介质齿33平行于介质头3的旋转对称轴OO’,因此易于机械加工或直接模具注塑成型。
参阅图10a,作为一种替换手段,亦可在介质头3的侧面32的至少一个圆柱面上套设加载金属圆环35实现类似的馈源辐射方向图赋形目的,其工作原理与上述介质齿33的工作原理相类似,即金属圆环35对馈源E-面和H-面辐射方向图的影响不同,可通过优化设计金属圆环35的位置、数量、直径和宽度等结构参数来实现馈源辐射方向图的特殊赋形。金属圆环35可通过在介质头3的侧面32设计金属镀层实现,或通过附加独立的金属成型件实现。
介质头3的顶端的端面34与提供副反射面4的提供件的下表面贴合,因此介质头3的顶端端面34的形状与副反射面4下表面的形状相配合,而副反射面4的顶面形状则与介质头3顶端端面34的形状相同,因此,介质头3的形状对馈源电性能有较大影响。介质头3的顶端端面34的中间部分341为朝向介质头3底端向下凹陷的斜锥面,其锥角?将主要影响馈源的照射角度;紧接并包围该斜锥面的边缘部分342为介质头3的侧面32的最上一级圆柱体322的上表面,形状为圆环形平面,其直径和宽度将主要影响馈源的照射角度以及馈源幅度方向图在照射角度边缘处的电平值,进而影响天线整机的RPE性能;介质头3的顶端端面34的中间部分341内设置有至少一个微扰结构343,该微扰结构343既可相对于斜锥面向上凸起也可向下凹陷,凸起或凹陷结构343平行于旋转对称轴OO’,凸起或凹陷结构343的位置、宽度和高度或深度将主要影响馈源的阻抗匹配性能。介质头3的顶端端面34的结构尺寸可通过上述对电性能的影响程度初步设计并最终通过全波分析优化设计确定。
副反射面4可由介质头3顶端端面34的金属镀层或与介质头3顶端端面34可紧密贴合的可分离式的金属成型件提供,由此,该种金属镀层或金属成型件即为副反射面4的提供件。
波导管2为工作于主模 TE11模的圆波导,其顶端与介质头3的底端31相连,底端与底座5相连。波导管2在电性能上起传输电磁波的作用,同时在结构上起支撑介质头3的作用。波导管2的直径约为0.6~0.8倍自由空间波长以保证波导管2工作于主模TE11模并获得基本等化的E-面和H-面馈源方向图;波导管2的长度根据微波天线主反射面1(参阅图4)的焦距确定,调节其长度保证馈源的相位中心与主反射面1的焦点重合即可。
金属底座5的结构同样关于中心轴OO’旋转对称,其中间开有与波导管2外径相当的圆孔。底座5包括3部分:上部分51、中间部分52以及下部分53。上部分51为圆环台阶,当馈源安装于主反射面1上后,底座5上部分51略高出主反射面1的母线,上部分51的圆环台阶的作用是减小主反射面1对馈源阻抗匹配性能的影响,圆环台阶的尺寸需通过将馈源与反射面1一体化全波分析优化设计确定;底座5的中间部分52用于将馈源安装固定在主反射面1上,其高度与主反射面1的母线基本平齐;底座5的下部分53是将馈源装配于主反射面1后形成的天线整机的对外接口,可根据接口需求设计用于连接圆形波导管、圆矩变换器等。底座5可整体机械加工或开模成型,具有低制造成本和多功能的特点。
为进一步说明上述馈源组件典型结构所带来的电气性能上的改进,以下将本发明的一些改进措施单独构建为本发明的改进方案,结合附图对本发明的做更深入的说明。
图7a用于揭示本发明的简化结构之一,图7b ~ 7f是该结构的馈源组件的一些典型电性能图示。本结构的最大特征是构成介质头3侧面32的各级圆柱体的直径自上而下依次递减,由此,各个圆柱面之间便以圆柱体的直径大小自上而下排列呈台阶状,这样形成的介质头3极易于机械加工或模具注塑成型;而且通过优化设计各级圆柱体的直径和高度可以获得较等化的E-面和H-面馈源幅度和相位方向图。图7b为该结构应用于15GHz频段的实测回波损耗,在14.25GHz~15.35GHz的频带内回波损耗优于-25dB并且具有较宽的频带冗余。图7c和图7d分别是该结构在14.8GHz的典型E-面和H-面的幅度和相位方向图,在0°~120°范围内E-面和H-面幅度方向图较为等化。图7e~ 7f给出了该结构应用于0.6m口径的天线在14.8GHz的典型辐射方向图,天线的RPE性能满足ETSI 302 217 Class 3标准。
图8a 用于揭示本发明的简化结构之二,图8b~ 8e是该结构的馈源组件的一些典型电性能图示。本结构与上一简化结构最大的不同是在介质头3的侧面32上纵向加载了多个圆管状的介质齿33,通过优化设计这些介质齿33的直径、宽度和长度可以获得特殊赋形的不等化的E-面和H-面馈源方向图,进而满足E-面和H-面不同的整机辐射方向图要求。图8b和图8c分别为本结构在38.5GHz的典型E-面和H-面的幅度和相位方向图,可见E-面和H-面馈源幅度方向图差异较大,尤其在馈源照射角度边缘的110°附近H-面的照射电平值比E-面低了约7dB。图8d ~ 8e给出了该结构应用于0.3m口径的天线在38.5GHz的典型辐射方向图,天线的RPE性能满足ETSI 302 217 Class 3B标准和US FCC Part 101A标准。
图9a ~ 9b是本发明所述馈源组件的简化结构之三的结构图以及典型的电性能图示。本结构与上述简化结构之二的设计目的相同,即获得特殊赋形的不等化的E-面和H-面馈源方向图进而实现满足ETSI 302 217 Class 3B标准的天线RPE性能;本简化结构与上述简化结构之一在结构上存在不同,即构成介质头3侧面32的各级圆柱体的直径不再限定自上而下依次递减,各级圆柱体的位置、直径和宽度均可根据馈源赋形要求采用全波分析优化设计得到,由此,会出现其中至少一个靠近介质头3底端的圆柱体提供的圆柱面的直径大于相对靠近介质头3顶端的圆柱体提供的圆柱面的直径。图9b给出了本简化结构在38.5GHz的典型E-面和H-面的幅度方向图,可见获得了所要求的不等化的E-面和H-面馈源幅度方向图。
图10a是本发明简化结构之四的图示,图10b ~ 10e是该结构的典型的电性能结果。相比上述简化结构之二和之三,该实施例获得了更不等化的E-面和H-面馈源方向图,进而实现满足ETSI 302 217 Class 3C标准的天线RPE性能。该简化结构实现赋形的措施是在构成介质头3侧表面32的竖向表面上涂覆多段圆环形的金属镀层35(或金属圆环35),各段金属镀层的位置和宽度可根据馈源赋形要求采用全波分析优化设计得到。图10b和图10c分别为本简化结构在38.5GHz的典型E-面和H-面的幅度和相位方向图,图10d~ 10e给出了本简化结构应用于0.3m口径的天线在38.5GHz的典型辐射方向图,天线的RPE性能满足ETSI 302 217 Class 3C标准和US FCC Part 101A标准。
综上所述,本发明的超高性能微波天线及其馈源组件电气性能表现良好,物理结构简单紧凑,造价相对低廉。
以上实施例仅用以说明本发明而并非限制本发明所描述的技术方案;因此,尽管本说明书参照上述的各个实施例对本发明已进行了详细的说明,但是,本领域的普通技术人员应当理解,仍然可以对本发明进行修改或者等同替换;而一切不脱离本发明的精神和范围的技术方案及其改进,其均应涵盖在本发明的权利要求范围当中。

Claims (10)

  1. 一种超高性能微波天线的馈源组件,呈旋转对称结构,包括副反射面、介质头、波导管及底座,波导管一端插置于底座中,另一端供介质头第一端插置,介质头第二端依照该端的端面形状覆盖设置所述副反射面,其特征在于,所述介质头:
    其插置于波导管部分具有至少一级圆柱体;
    其外露于波导管外的侧面部分设有多个具有不同直径的圆柱面;
    其第二端的端面上设有置中且朝向其第一端凹陷的斜锥面,沿斜锥面外围形成有圆环平面,该斜锥面上设置有至少一级微扰结构。
  2. 根据权利要求1所述的超高性能微波天线的馈源组件,其特征在于:该微扰结构呈向上凸起或向下凹陷状。
  3. 根据权利要求1所述的超高性能微波天线的馈源组件,其特征在于,所述介质头的外露于波导管外的侧面部分的多个圆柱面自介质头第二端向第一端以直径渐小的方式台阶式排列。
  4. 根据权利要求1所述的超高性能微波天线的馈源组件,其特征在于,所述介质头的外露于波导管外的侧面部分的多个圆柱面中,至少有一个靠近介质头第一端的圆柱面的直径大于相对靠近介质头第二端的一个圆柱面的直径。
  5. 根据权利要求1所述的超高性能微波天线的馈源组件,其特征在于,所述介质头的外露于波导管外的侧面部分中的多个圆柱面中,至少有一个圆柱面在其外围有间距地设置圆管状介质齿,该介质齿与该圆柱面紧邻的一个圆柱面相连接。
  6. 根据权利要求1所述的超高性能微波天线的馈源组件,其特征在于,所述介质头的外露于波导外的侧面部分中的多个圆柱面中,至少一个圆柱面套设有金属圆环。
  7. 根据权利要求1或6所述的超高性能微波天线的馈源组件,其特征在于,所述金属圆环为金属镀层或金属成型件。
  8. 根据权利要求1至6中任意一项所述的超高性能微波天线的馈源组件,其特征在于:所述副反射面由覆盖设置在介质头第二端端面上的金属镀层或金属成型件形成。
  9. 根据权利要求1至6中任意一项所述的超高性能微波天线的馈源组件,其特征在于:所述底座呈中空结构以供波导管插置其中,其形成有包围波导管用于减小主反射面对馈源组件的阻抗匹配性能影响的圆环台阶。
  10. 一种超高性能微波天线,包括提供主反射面的反射件、天线罩以及馈源组件,其特征在于,所述馈源组件为权利要求1至9中任意一项所述的馈源组件。
PCT/CN2010/078647 2010-09-07 2010-11-11 超高性能微波天线及其馈源组件 WO2012031426A1 (zh)

Priority Applications (2)

Application Number Priority Date Filing Date Title
BR112013005522A BR112013005522A2 (pt) 2010-09-07 2010-11-11 antena de micro-ondas com desempenho ultra-alto e componente de alimentação da mesma
EP10856888.2A EP2615691B1 (en) 2010-09-07 2010-11-11 Feed component for a microwave antenna

Applications Claiming Priority (2)

Application Number Priority Date Filing Date Title
CN201010273991.2 2010-09-07
CN201010273991.2A CN101976766B (zh) 2010-09-07 2010-09-07 超高性能微波天线及其馈源组件

Publications (1)

Publication Number Publication Date
WO2012031426A1 true WO2012031426A1 (zh) 2012-03-15

Family

ID=43576625

Family Applications (1)

Application Number Title Priority Date Filing Date
PCT/CN2010/078647 WO2012031426A1 (zh) 2010-09-07 2010-11-11 超高性能微波天线及其馈源组件

Country Status (4)

Country Link
EP (1) EP2615691B1 (zh)
CN (1) CN101976766B (zh)
BR (1) BR112013005522A2 (zh)
WO (1) WO2012031426A1 (zh)

Cited By (4)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
TWI506848B (zh) * 2013-11-15 2015-11-01 Metal Ind Res &Development Ct Method for manufacturing waveguide with high aspect ratio microchannel
US10992041B2 (en) 2017-07-11 2021-04-27 Rosenberger Technologies Co., Ltd. Dual-frequency feed source assembly and dual-frequency microwave antenna
CN114583437A (zh) * 2020-11-18 2022-06-03 稜研科技股份有限公司 超宽带非金属号角天线
CN115128366A (zh) * 2022-05-18 2022-09-30 西北核技术研究所 一种高功率微波系统等效全向辐射功率测试系统及方法

Families Citing this family (13)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
CN102751589A (zh) * 2011-04-20 2012-10-24 深圳光启高等理工研究院 一种超材料制成的微波天线
CN102770008B (zh) * 2011-04-30 2015-10-28 深圳光启高等理工研究院 一种吸波装置
FR2986376B1 (fr) 2012-01-31 2014-10-31 Alcatel Lucent Reflecteur secondaire d'antenne a double reflecteur
JP5877894B2 (ja) 2012-04-02 2016-03-08 古野電気株式会社 アンテナ
US9698490B2 (en) * 2012-04-17 2017-07-04 Commscope Technologies Llc Injection moldable cone radiator sub-reflector assembly
CN103094714B (zh) * 2013-02-26 2015-05-13 四川省视频电子有限责任公司 一种高效率介质导抛物面天线
US9831563B2 (en) * 2013-08-12 2017-11-28 Commscope Technologies Llc Sub-reflector assembly with extended dielectric radiator
WO2015100540A1 (zh) * 2013-12-30 2015-07-09 华为技术有限公司 双反射面微波天线
JP6198647B2 (ja) * 2014-03-19 2017-09-20 三菱電機株式会社 アンテナ装置
CN105932735A (zh) * 2016-05-20 2016-09-07 深圳天珑无线科技有限公司 一种充电方法和装置
CN106384874A (zh) * 2016-11-11 2017-02-08 广东盛路通信科技股份有限公司 扇形天线馈源装置
CN106961000B (zh) * 2017-04-06 2019-08-23 上海航天测控通信研究所 一种基于新型支撑副反的星载环焦天线
CN108281751A (zh) * 2018-03-22 2018-07-13 陕西维萨特科技股份有限公司 一种高性能微波溅散板馈源天线

Citations (3)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
CN101383451A (zh) * 2008-05-28 2009-03-11 广东盛路通信科技股份有限公司 超高性能天线的微波馈源
CN100536230C (zh) * 2003-06-17 2009-09-02 阿尔卡特公司 反射天线馈源
CN201805004U (zh) * 2010-09-07 2011-04-20 京信通信系统(中国)有限公司 超高性能微波天线及其馈源组件

Family Cites Families (3)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
DE4002913A1 (de) * 1990-02-01 1991-08-08 Ant Nachrichtentech Doppelreflektor-antenne
BR9811241A (pt) * 1997-08-21 2000-08-15 Kildal Antenna Consulting Ab Antena refletora melhorada com alimentação auto-suportada
US7907097B2 (en) * 2007-07-17 2011-03-15 Andrew Llc Self-supporting unitary feed assembly

Patent Citations (3)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
CN100536230C (zh) * 2003-06-17 2009-09-02 阿尔卡特公司 反射天线馈源
CN101383451A (zh) * 2008-05-28 2009-03-11 广东盛路通信科技股份有限公司 超高性能天线的微波馈源
CN201805004U (zh) * 2010-09-07 2011-04-20 京信通信系统(中国)有限公司 超高性能微波天线及其馈源组件

Cited By (5)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
TWI506848B (zh) * 2013-11-15 2015-11-01 Metal Ind Res &Development Ct Method for manufacturing waveguide with high aspect ratio microchannel
US10992041B2 (en) 2017-07-11 2021-04-27 Rosenberger Technologies Co., Ltd. Dual-frequency feed source assembly and dual-frequency microwave antenna
CN114583437A (zh) * 2020-11-18 2022-06-03 稜研科技股份有限公司 超宽带非金属号角天线
CN114583437B (zh) * 2020-11-18 2024-02-06 稜研科技股份有限公司 超宽带非金属号角天线
CN115128366A (zh) * 2022-05-18 2022-09-30 西北核技术研究所 一种高功率微波系统等效全向辐射功率测试系统及方法

Also Published As

Publication number Publication date
BR112013005522A2 (pt) 2016-05-03
EP2615691B1 (en) 2018-01-10
EP2615691A4 (en) 2014-11-26
CN101976766B (zh) 2014-06-11
EP2615691A1 (en) 2013-07-17
CN101976766A (zh) 2011-02-16

Similar Documents

Publication Publication Date Title
WO2012031426A1 (zh) 超高性能微波天线及其馈源组件
WO2012031427A1 (zh) 微波天线及其外罩
US20030038753A1 (en) High gain, low slide lobe dual reflector microwave antenna
CN104246351B (zh) 电灯泡型光源装置和透光性盖
US6020859A (en) Reflector antenna with a self-supported feed
CN105470651B (zh) 一种基于介质加载的超宽带紧缩场馈源
CN104024724A (zh) 电灯泡型光源设备
WO2015168989A1 (zh) 平板阵列天线
CN206878184U (zh) 一种双频馈源组件及双频微波天线
CN108242587A (zh) 天线、照明系统及通信系统
CN109244676B (zh) 一种双频馈源组件及双频微波天线
CN102931493B (zh) 天线及其馈源组件
CN206301950U (zh) 后馈式的双极化抛物面天线馈源
CN102956976A (zh) 天线及其馈源组件
CN114300851A (zh) 一种e波段双频段短焦抛物面天线及无线通信系统
CN114400440B (zh) 一种用于光电探测的宽频太赫兹电磁结构
JPH01500790A (ja) 自己支持フィーダを備えた反射アンテナ
WO2013063899A1 (zh) 超宽频全向天线单元及天线
CN213520309U (zh) 一种新型圆极化微波天线
WO2022104741A1 (zh) 一种双频馈源及双频天线
CN210723350U (zh) 一种立体的蓝牙耳机天线
CN203166094U (zh) 一种户外大型喇叭状高增益定向性路由器天线
CN207217789U (zh) 天线阵列侧馈式馈电网络
CN207217758U (zh) 螺旋天线系统
CN213124722U (zh) 一种宽带全向天线及组合天线

Legal Events

Date Code Title Description
121 Ep: the epo has been informed by wipo that ep was designated in this application

Ref document number: 10856888

Country of ref document: EP

Kind code of ref document: A1

NENP Non-entry into the national phase

Ref country code: DE

WWE Wipo information: entry into national phase

Ref document number: 2010856888

Country of ref document: EP

REG Reference to national code

Ref country code: BR

Ref legal event code: B01A

Ref document number: 112013005522

Country of ref document: BR

ENP Entry into the national phase

Ref document number: 112013005522

Country of ref document: BR

Kind code of ref document: A2

Effective date: 20130307