WO2015168989A1 - 平板阵列天线 - Google Patents

平板阵列天线 Download PDF

Info

Publication number
WO2015168989A1
WO2015168989A1 PCT/CN2014/082788 CN2014082788W WO2015168989A1 WO 2015168989 A1 WO2015168989 A1 WO 2015168989A1 CN 2014082788 W CN2014082788 W CN 2014082788W WO 2015168989 A1 WO2015168989 A1 WO 2015168989A1
Authority
WO
WIPO (PCT)
Prior art keywords
array antenna
flat panel
waveguide
panel array
antenna
Prior art date
Application number
PCT/CN2014/082788
Other languages
English (en)
French (fr)
Inventor
陈志兴
杨华
云宇
杨坚
Original Assignee
广东盛路通信科技股份有限公司
陈志兴
杨华
云宇
杨坚
Priority date (The priority date is an assumption and is not a legal conclusion. Google has not performed a legal analysis and makes no representation as to the accuracy of the date listed.)
Filing date
Publication date
Application filed by 广东盛路通信科技股份有限公司, 陈志兴, 杨华, 云宇, 杨坚 filed Critical 广东盛路通信科技股份有限公司
Publication of WO2015168989A1 publication Critical patent/WO2015168989A1/zh

Links

Images

Classifications

    • HELECTRICITY
    • H01ELECTRIC ELEMENTS
    • H01QANTENNAS, i.e. RADIO AERIALS
    • H01Q21/00Antenna arrays or systems

Definitions

  • the present invention relates to an antenna system, and more particularly to a mobile backhaul back-haul system, and can be used for wireless WIFI point-to-point (point-point) Link)
  • An antenna is a transducer that transforms a guided wave propagating on a transmission line into an electromagnetic wave propagating in an unbounded medium, or vice versa.
  • the antennas commonly used in the world mainly have the following schemes: 1)
  • the microstrip line scheme is characterized by simple processing, low cost and small volume; but the loss is large and the bandwidth is narrow, which is an insurmountable short board of such an antenna, and thus impossible Used in E-band systems.
  • 2) Based on the slab-printed substrate integrated waveguide SIW technology, the loss and bandwidth performance of such antennas is much better than the microstrip line scheme.
  • the loss and bandwidth performance can not meet the requirements of engineering systems.
  • such antennas must adopt multi-layer printed circuit solutions and multi-layer board through-hole technology to increase the processing cost. So far, it has not been seen in the literature that such technologies are mature and feasible. sample.
  • Multilayer slab waveguide technology Multilayer slab waveguide technology.
  • the simulated telecommunication index can be very good, but the processing technology is very demanding.
  • the actual measured performance indicators, especially the loss index are poor in the literature.
  • an object of the present invention is to provide a planar array antenna having low loss, simple processing and assembly, and a wide operating band range.
  • the present invention adopts the following technical solutions.
  • a flat panel array antenna comprising: a flat reflector, a waveguide splitter connected to a signal output end of the flat reflector, and an antenna radiating unit connected to the waveguide splitter signal;
  • the flat reflector has a reflective side of a multi-point smooth transition, and the reflective side is located in the H-plane of the planar array antenna, and performs amplitude-weighted distribution on the H-plane of the planar array antenna;
  • the waveguide power splitter is connected to one end of the reflective side, and is located in the E plane of the planar array antenna, and is equally distributed for the E plane of the flat panel array antenna;
  • the antenna radiating element includes a rectangular waveguide and a dielectric grid assembled orthogonally to the rectangular waveguide.
  • the waveguide splitter is a supermode waveguide splitter having a waveguide aspect ratio of not less than 30.
  • the rectangular waveguide in the antenna radiating unit is a cavity structure formed by inserting a metal rod into the cavity wall, and the dielectric grid is orthogonally inserted into the opening of the cavity structure.
  • the rectangular waveguides are a plurality of parallel rows, and the openings of the rectangular waveguides have a flare shape.
  • the antenna radiating unit is formed by a plastic molding and a surface plating process.
  • a rectangular waveguide, a dielectric grid, and a cavity wall of a corresponding shape are formed by using a mold, and then the rectangular waveguide and the dielectric grille are formed.
  • the surface of the cavity wall is coated with a layer of metal and finally assembled.
  • each smooth transition point on the flat reflector is determined based on the phase of each power branch of the waveguide splitter, providing waves of the same phase for each power branch.
  • the array antenna is used in a frequency range of 10 GHz to 100 GHz.
  • the high frequency flat panel array antenna provided by the present invention has the following beneficial effects:
  • the antenna radiating element is formed by a rectangular rectangular waveguide and a dielectric grid to form a connected tree structure, so that the loss of the antenna is very low, and the antenna radiating unit itself has a large operating band width while ensuring the gain of the antenna radiating unit itself.
  • the structure of the connecting tree greatly reduces the precision of processing and assembly, and is very suitable for the plastic forming and metal plating process, which has low processing cost and light weight.
  • the waveguide power splitter is a supermode waveguide power splitter with a waveguide aspect ratio of not less than 30, the loss will be very small when used for high frequency transmission, effectively reducing the microwave transmission loss of the frequency band and ensuring the overall gain of the antenna array. .
  • the waveguide power splitter is used to divide the 1 signal into multiple signals to the antenna radiating unit at the end, and the equal amplitude distribution of the E plane of the antenna array is realized.
  • FIG. 1 is a schematic structural view of a planar array antenna provided by the present invention.
  • Figure 2 is a schematic view showing the structure of a flat reflector
  • Figure 3 is a schematic structural view of a waveguide power divider
  • Figure 4 is a schematic view showing the structure of an antenna radiating unit
  • Figure 5 shows a reflection coefficient of standing wave
  • Figure 6 shows the antenna radiation pattern
  • a flat panel array antenna is used for a frequency range of 10 GHz to 100 GHz, and is composed of a flat panel reflector 1, a waveguide power divider 2, and an antenna radiating unit 3.
  • the input port of the flat panel array antenna is fed by a WR/15 standard waveguide (3.16 ⁇ 1.88mm2), the input port is connected to the flat reflector 1 to realize the amplitude distribution of the H plane, and the rear end of the flat reflector 1 is connected to the waveguide splitter 2 to realize power distribution.
  • the flat panel array antenna terminal employs an antenna radiating unit 3 of a rectangular waveguide plus a dielectric grid. Compared with the prior art, this type of antenna has low antenna loss, simple process requirements, low processing precision, good manufacturability, and is suitable for using dielectric materials to achieve low cost, which is a very good high. Frequency plate array antenna solution.
  • the flat reflector 1 has a multi-point smooth transitional reflection side 11 which is located in the H-plane of the planar array antenna and is amplitude-weighted for the H-plane of the planar array antenna.
  • the smooth transition points on the reflective side 11 are determined after phase compensation, which provides waves of the same phase for the respective power branches of the waveguide splitter 2.
  • the waveguide power divider 2 is disposed in the plane of the planar array antenna E, and has a waveguide aspect ratio of not less than 30.
  • the advantage of using such a waveguide power divider is to effectively reduce the microwave transmission loss in the frequency band and ensure the overall gain of the antenna array.
  • the waveguide power divider since the waveguide power divider is located at the rear end of the reflective side of the flat reflector, the signal is reflected and output by the reflective side, and then enters the waveguide power splitter, and the signal of one channel is divided into multiple signals to be output to the antenna radiating unit at the end.
  • the equal-amplitude distribution of the E-plane of the antenna array since the waveguide power divider is located at the rear end of the reflective side of the flat reflector, the signal is reflected and output by the reflective side, and then enters the waveguide power splitter, and the signal of one channel is divided into multiple signals to be output to the antenna radiating unit at the end.
  • the antenna radiating unit 3 is assembled by a rectangular waveguide 31 and a dielectric grating 32 into a connected tree structure, and the rectangular waveguide 31 is a cavity structure formed by inserting a metal rod into a cavity wall for mounting.
  • the opening of the cavity structure is flared; the dielectric grid 32 is orthogonally inserted into the opening of the cavity structure.
  • the antenna radiating unit adopts a connecting tree structure, which greatly reduces the precision of processing and assembly, and is particularly suitable for the plastic forming and metal plating process, the processing cost is low, and the weight is light.
  • FIG. 5 shows a test result of a standing wave reflection coefficient of the planar array antenna produced in the present embodiment. It can be seen from the figure that the standing wave reflection loss is less than 4 dB in an operating frequency range of 50 GHz to 70 GHz.
  • Figure 6 shows the radiation pattern of the planar array antenna produced in the present embodiment. It can be seen from the figure that the width of the main lobe does not exceed 80°, and the side lobe suppression is relatively obvious, and the whole radiation wave has good directivity and anti-interference ability. Strong.

Landscapes

  • Aerials With Secondary Devices (AREA)
  • Waveguide Aerials (AREA)
  • Variable-Direction Aerials And Aerial Arrays (AREA)

Abstract

本发明公开一种平板阵列天线,用于10GHz~100GHz的频率范围,其特征在于,包括:平板反射器,与平板反射器信号输出端连接的波导功分器,及与波导功分器信号连接的天线辐射单元;所述平板反射器具有多点平滑过渡的反射侧边,该反射侧边位于平板阵列天线的H面内,为平板阵列天线H面做幅度加权分布;所述波导功分器连接在反射侧边的一端,并位于平板阵列天线的E面内,为平板阵列天线E面做等幅分布;所述天线辐射单元包括矩形波导,及与矩形波导正交组装的介质格栅。与现有技术相比,本发明提供的平板阵列天线具有损耗低,工艺要求简单,加工精度要求不高,可制造性好的特点。

Description

平板阵列天线 技术领域
本发明涉及天线系统,尤其涉及一种用于移动通讯微波接力回传(back-haul)系统,同时可用于无线WIFI点对点(point-point link)基站间信号传输的平板阵列天线。
背景技术
天线是一种变换器,它把传输线上传播的导行波,变换成在无界媒介中传播的电磁波,或者进行相反的变换。在无线电设备中用来发射或接收电磁波的部件。无线电通信、广播、电视、雷达、导航、电子对抗、遥感、射电天文等工程系统,凡是利用电磁波来传递信息的,都依靠天线来进行工作。
目前世界上常用的天线主要有如下几种方案,1)微带线方案,特点是加工简单,成本低,体积小;但损耗大,带宽窄是这类天线不可克服的短板,因而不可能在E波段系统中采用。2)基于平板印刷电路的基片集成波导SIW技术,这类天线的损耗和带宽性能要比微带线方案好很多。但损耗和带宽性能还不能满足工程系统要求,同时这类天线必须采用多层印刷电路方案以及多层板通孔技术,使加工成本上升;至今还未在文献中看到这类技术成熟可行的样品。3)多层板波导技术。仿真的电讯指标可以很好,但加工工艺要求很高,在文献中看到的实际测量的性能指标,特别是损耗指标较差。
由此可见,现有的天线都不同时具备可实现的电性能和良好的可制造性。另外,在V波段和E波段也没有成熟的可借鉴的平板阵列天线设计技术。
技术问题
针对现有技术中存在的缺陷,本发明的目的在于提供一种损耗低,加工组装简单,工作频带范围宽的平板阵列天线。
技术解决方案
为达到以上目的,本发明采用如下技术方案。
一种平板阵列天线,其特征在于,包括:平板反射器,与平板反射器信号输出端连接的波导功分器,及与波导功分器信号连接的天线辐射单元;
所述平板反射器具有多点平滑过渡的反射侧边,该反射侧边位于平板阵列天线的H面内,为平板阵列天线H面做幅度加权分布;
所述波导功分器连接在反射侧边的一端,并位于平板阵列天线的E面内,为平板阵列天线E面做等幅分布;
所述天线辐射单元包括矩形波导,及与矩形波导正交组装的介质格栅。
作为上述方案的进一步说明,所述波导功分器为波导长宽比不小于30的超模波导功分器。
作为上述方案的进一步说明,所述天线辐射单元中的矩形波导为金属棒插入腔体壁进行安装后形成的空腔结构,所述介质格栅正交插在空腔结构的开口上。
作为上述方案的进一步说明,所述矩形波导为平行并排的多个,各矩形波导的开口呈喇叭状。
作为上述方案的进一步说明,所述天线辐射单元采用塑料成型和表面镀层工艺制得,首先利用模具成型相应形状的矩形波导、介质格栅和腔体壁,然后在成型的矩形波导、介质格栅和腔体壁表面镀上一层金属,最后组装成型即可。
作为上述方案的进一步说明,平板反射器上的各平滑过渡点根据波导功分器各功分枝节的相位来确定,为各功分枝节提供相同相位的波。
作为上述方案的进一步说明,所述阵列天线用于10GHz~100GHz的频率范围。
有益效果
与现有技术相比,本发明提供的高频平板阵列天线具有以下有益效果:
一、天线辐射单元由正交的矩形波导和介质格栅形成连栅树结构,使得天线的损耗很低,在保证天线辐射单元本身增益的同时,也具备很大的工作频带宽度。此外,这种连栅树结构大大降低了加工和组装的精度要求,非常适合采用塑料成型加金属镀层工艺,加工成本很低,重量很轻。
二、由于波导功分器为波导长宽比不小于30的超模波导功分器,用于高频传输时,损耗会非常小,有效降低该频段的微波传输损耗,保证天线阵整体的增益。同时,利用波导功分器将1路信号分成多路信号输出给末端的天线辐射单元,实现了天线阵列E面的等幅分布。
附图说明
图1所示为本发明提供的平板阵列天线结构示意图;
图2所示为平板反射器结构示意图;
图3所示为波导功分器结构示意图;
图4所示为天线辐射单元结构示意图;
图5所示为驻波反射系数图;
图6所示为天线辐射方向图。
附图标记说明:
1、平板反射器, 2、波导功分器, 3、天线辐射单元;
11、反射侧边;
31、矩形波导, 32、介质格栅。
本发明的最佳实施方式
为方便本领域普通技术人员更好地理解本发明实质,下面结合附图对本发明的具体实施方式进行详细阐述。
如图1所示,一种平板阵列天线,用于10GHz~100GHz的频率范围,由平板反射器1,波导功分器2和天线辐射单元3级联构成。平板阵列天线输入端口采用WR/15标准波导(3.16×1.88mm2)馈电,输入端口连接平板反射器1实现H面的幅度分布,平板反射器1后端连接波导功分器2实现功率分配,平板阵列天线终端采用矩形波导加介质格栅的天线辐射单元3。与已有的技术比较,这种形式的天线损耗低,工艺要求简单,加工精度要求不高,可制造性好,适于采用介质材料以达到低成本化的目的,是一种非常好的高频平板阵列天线解决方案。
其中,如图2所示,所述平板反射器1具有多点平滑过渡的反射侧边11,该反射侧边11位于平板阵列天线的H面内,为平板阵列天线H面做幅度加权分布。实际制备时,反射侧边11上各平滑过渡点是考虑了相位补偿后确定的,其为波导功分器2的各功分枝节提供相同相位的波。
如图3所示,所述波导功分器2设置在平板阵列天线E面内,其波导长宽比不小于30。采用这种波导功分器的好处是,有效降低该频段的微波传输损耗,保证天线阵整体的增益。同时,由于波导功分器位于平板反射器反射侧边的后端,信号由反射侧边反射输出后,进入波导功分器,将1路信号分成多路信号输出给末端的天线辐射单元,实现了天线阵列E面的等幅分布。
如图4所示,所述天线辐射单元3由矩形波导31和介质格栅32组装在一起成连栅树结构,所述矩形波导31为金属棒插入腔体壁进行安装后形成的空腔结构,该空腔结构的开口呈喇叭状;所述介质格栅32正交插在空腔结构的开口上。天线辐射单元采用连栅树结构,大大降低了加工和组装的精度要求,特别适合采用塑料成型加金属镀层工艺,加工成本很低,同时重量很轻。
图5所示为本实施例制得平板阵列天线的一个驻波反射系数测试结果,从图中可以看出,在50GHz~70GHz的一个工作频率范围内,驻波反射损耗低于4dB。
图6所示为本实施例制得平板阵列天线的辐射方向图,从图中可以看出:主瓣宽度不超过80°,且旁瓣抑制比较明显,整个辐射波方向性好,抗干扰能力强。
以上具体实施方式对本发明的实质进行了详细说明,但并不能以此来对本发明的保护范围进行限制。但凡依照本发明之实质,所做的简单改进、修饰或等效变换,都落在本发明的权利要求保护范围之内。

Claims (7)

  1. 平板阵列天线,其特征在于,包括:平板反射器,与平板反射器信号输出端连接的波导功分器,及与波导功分器信号连接的天线辐射单元;
    所述平板反射器具有多点平滑过渡的反射侧边,该反射侧边位于平板阵列天线的H面内,为平板阵列天线H面做幅度加权分布;
    所述波导功分器连接在反射侧边的一端,并位于平板阵列天线的E面内,为平板阵列天线E面做等幅分布;
    所述天线辐射单元包括矩形波导,及与矩形波导正交组装的介质格栅。
  2. 根据权利要求1所述的平板阵列天线,其特征在于,所述波导功分器为波导长宽比不小于30的超模波导功分器。
  3. 根据权利要求1所述的平板阵列天线,其特征在于,所述天线辐射单元中的矩形波导为金属棒插入腔体壁进行安装后形成的空腔结构,所述介质格栅正交插在空腔结构的开口上。
  4. 根据权利要求1所述的平板阵列天线,其特征在于,所述矩形波导为平行并排的多个,各矩形波导的开口呈喇叭状。
  5. 根据权利要求1所述的平板阵列天线,其特征在于,所述天线辐射单元采用塑料成型和表面镀层工艺制得,首先利用模具成型相应形状的矩形波导、介质格栅和腔体壁,然后在成型的矩形波导、介质格栅和腔体壁表面镀上一层金属,最后组装成型即可。
  6. 根据权利要求1所述的平板阵列天线,其特征在于,平板反射器上的各平滑过渡点根据波导功分器各功分枝节的相位来确定,为各功分枝节提供相同相位的波。
  7. 根据权利要求1所述的平板阵列天线,其特征在于,用于10GHz~100GHz的频率范围。
PCT/CN2014/082788 2014-05-04 2014-07-23 平板阵列天线 WO2015168989A1 (zh)

Applications Claiming Priority (2)

Application Number Priority Date Filing Date Title
CN201410186001.XA CN103956586B (zh) 2014-05-04 2014-05-04 平板阵列天线
CN201410186001.X 2014-05-04

Publications (1)

Publication Number Publication Date
WO2015168989A1 true WO2015168989A1 (zh) 2015-11-12

Family

ID=51333834

Family Applications (1)

Application Number Title Priority Date Filing Date
PCT/CN2014/082788 WO2015168989A1 (zh) 2014-05-04 2014-07-23 平板阵列天线

Country Status (2)

Country Link
CN (1) CN103956586B (zh)
WO (1) WO2015168989A1 (zh)

Cited By (4)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
CN109786968A (zh) * 2019-03-21 2019-05-21 成都赛康宇通科技有限公司 一种可调扇形波束victs阵列天线
RU2703926C1 (ru) * 2019-03-21 2019-10-22 Федеральное государственное автономное образовательное учреждение высшего образования "Санкт-Петербургский государственный электротехнический университет "ЛЭТИ" им. В.И. Ульянова (Ленина) (СПбГЭТУ "ЛЭТИ") Волноводная отражательная антенная решетка
CN112086735A (zh) * 2020-09-10 2020-12-15 浙江金乙昌科技股份有限公司 内部集成放大电路的微带功分电路
CN115036679A (zh) * 2022-07-14 2022-09-09 西安航天天绘数据技术有限公司 一种多子阵拼装的平板天线

Families Citing this family (4)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
CN106025574B (zh) * 2016-06-28 2018-07-13 中国电子科技集团公司第三十九研究所 一种低副瓣水平极化平板阵列天线
CN106505288B (zh) * 2016-12-05 2022-02-11 安徽四创电子股份有限公司 一种三十二路波导e面功分器
CN106450643B (zh) * 2016-12-05 2022-06-07 安徽四创电子股份有限公司 E面波导定向耦合器及应用该耦合器的十六路波导功分器
CN110311219A (zh) * 2019-07-18 2019-10-08 中国电子科技集团公司第三十八研究所 一种用于毫米波雷达的串馈微带阵列天线及系统

Citations (5)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
US5327150A (en) * 1993-03-03 1994-07-05 Hughes Aircraft Company Phased array antenna for efficient radiation of microwave and thermal energy
CN1155354A (zh) * 1994-06-09 1997-07-23 闭合型“鲁桑特”股份公司 平面天线阵及其微带辐射器
CN201266675Y (zh) * 2008-08-26 2009-07-01 东南大学 低损耗高增益多波束智能天线
CN102820542A (zh) * 2012-08-28 2012-12-12 重庆绿色智能技术研究院 波导缝隙天线及无线通信系统
CN103326135A (zh) * 2013-05-09 2013-09-25 北京航空航天大学 一种宽波束圆波导双模圆极化天线

Family Cites Families (5)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
US7352335B2 (en) * 2005-12-20 2008-04-01 Honda Elesys Co., Ltd. Radar apparatus having arrayed horn antenna parts communicated with waveguide
JP5468085B2 (ja) * 2008-12-12 2014-04-09 ナンヤン テクノロジカル ユニヴァーシティ グリッドアレイアンテナおよび一体化構造
CN202205886U (zh) * 2011-04-29 2012-04-25 刘建江 并馈阵列天线的辐射单元及并馈阵列天线
CN203085756U (zh) * 2012-12-20 2013-07-24 山东国威卫星通信有限公司 一种加载左手材料的高增益高效率的平板天线
CN203826563U (zh) * 2014-05-04 2014-09-10 广东盛路通信科技股份有限公司 平板阵列天线

Patent Citations (5)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
US5327150A (en) * 1993-03-03 1994-07-05 Hughes Aircraft Company Phased array antenna for efficient radiation of microwave and thermal energy
CN1155354A (zh) * 1994-06-09 1997-07-23 闭合型“鲁桑特”股份公司 平面天线阵及其微带辐射器
CN201266675Y (zh) * 2008-08-26 2009-07-01 东南大学 低损耗高增益多波束智能天线
CN102820542A (zh) * 2012-08-28 2012-12-12 重庆绿色智能技术研究院 波导缝隙天线及无线通信系统
CN103326135A (zh) * 2013-05-09 2013-09-25 北京航空航天大学 一种宽波束圆波导双模圆极化天线

Cited By (7)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
CN109786968A (zh) * 2019-03-21 2019-05-21 成都赛康宇通科技有限公司 一种可调扇形波束victs阵列天线
RU2703926C1 (ru) * 2019-03-21 2019-10-22 Федеральное государственное автономное образовательное учреждение высшего образования "Санкт-Петербургский государственный электротехнический университет "ЛЭТИ" им. В.И. Ульянова (Ленина) (СПбГЭТУ "ЛЭТИ") Волноводная отражательная антенная решетка
CN109786968B (zh) * 2019-03-21 2023-11-28 成都赛康宇通科技有限公司 一种可调扇形波束victs阵列天线
CN112086735A (zh) * 2020-09-10 2020-12-15 浙江金乙昌科技股份有限公司 内部集成放大电路的微带功分电路
CN112086735B (zh) * 2020-09-10 2023-09-08 浙江金乙昌科技股份有限公司 内部集成放大电路的微带功分电路
CN115036679A (zh) * 2022-07-14 2022-09-09 西安航天天绘数据技术有限公司 一种多子阵拼装的平板天线
CN115036679B (zh) * 2022-07-14 2023-10-20 西安航天天绘数据技术有限公司 一种多子阵拼装的平板天线

Also Published As

Publication number Publication date
CN103956586A (zh) 2014-07-30
CN103956586B (zh) 2016-08-24

Similar Documents

Publication Publication Date Title
WO2015168989A1 (zh) 平板阵列天线
CN201383535Y (zh) 一种矩形波导-基片集成波导信号转换及功率分配器
CN110021805B (zh) 复杂馈电网络中基于空气间隙波导的立体过渡结构
CN107394395B (zh) 基于平面正交模耦合器的双极化喇叭天线
CN113113782B (zh) 一种宽带金属平板阵列天线、雷达、无线通信系统
CN209747698U (zh) 一种新型的sigw功率分配器
CN114335957B (zh) 功率合成/分配器
CN104733853A (zh) 一种多层基片集成波导阵列天线
CN101394016A (zh) 一种一分四带状线功分器及其制备方法
CN109904604B (zh) 一种天线
CN112054275A (zh) 低损耗的基片集成波导端馈天线的转接装置
CN115473025B (zh) 基于微带-波导混合集成的波导差端口魔t
CN104466316A (zh) 一种2x波段缺陷接结构-半模基片集成波导滤波器
CN103633404B (zh) 一种非对称脊波导多路功率分配器及功率分配方法
CN116169477A (zh) 一种基于接收-发射结构的over-2-bit的宽带透射阵列单元、天线及其使用方法
CN203826563U (zh) 平板阵列天线
CN110400999B (zh) 一种直线型e面探针微带波导过渡装置
Wang et al. Broadband substrate integrated waveguide to rectangular waveguide transition at V-band
CN208570879U (zh) X波段大型混合平面电路功分器
CN115207589A (zh) 耦合装置及制造方法、波导天线、雷达、终端、pcb
CN213278351U (zh) 一种定向耦合器
CN219436116U (zh) 一种悬置带状线Gysel 4路功率合成器
CN200976581Y (zh) 定向耦合器
CN110518321B (zh) 一种基片集成波导水平过渡空气矩形波导的转接结构
CN110911836B (zh) 一种x波段数字相控阵分布式子阵t/r组件馈电电路

Legal Events

Date Code Title Description
121 Ep: the epo has been informed by wipo that ep was designated in this application

Ref document number: 14891431

Country of ref document: EP

Kind code of ref document: A1

NENP Non-entry into the national phase

Ref country code: DE

32PN Ep: public notification in the ep bulletin as address of the adressee cannot be established

Free format text: NOTING OF LOSS OF RIGHTS PURSUANT TO RULE 112(1) EPC (EPO FORM 1205A DATED 20.03.2017)

122 Ep: pct application non-entry in european phase

Ref document number: 14891431

Country of ref document: EP

Kind code of ref document: A1