WO2015100540A1 - 双反射面微波天线 - Google Patents

双反射面微波天线 Download PDF

Info

Publication number
WO2015100540A1
WO2015100540A1 PCT/CN2013/090895 CN2013090895W WO2015100540A1 WO 2015100540 A1 WO2015100540 A1 WO 2015100540A1 CN 2013090895 W CN2013090895 W CN 2013090895W WO 2015100540 A1 WO2015100540 A1 WO 2015100540A1
Authority
WO
WIPO (PCT)
Prior art keywords
reflecting surface
microwave antenna
feed
annular
dual
Prior art date
Application number
PCT/CN2013/090895
Other languages
English (en)
French (fr)
Inventor
罗伟
唐科
姜世栋
王丽萍
Original Assignee
华为技术有限公司
Priority date (The priority date is an assumption and is not a legal conclusion. Google has not performed a legal analysis and makes no representation as to the accuracy of the date listed.)
Filing date
Publication date
Application filed by 华为技术有限公司 filed Critical 华为技术有限公司
Priority to CN201380003602.6A priority Critical patent/CN105009368A/zh
Priority to PCT/CN2013/090895 priority patent/WO2015100540A1/zh
Publication of WO2015100540A1 publication Critical patent/WO2015100540A1/zh

Links

Classifications

    • HELECTRICITY
    • H01ELECTRIC ELEMENTS
    • H01QANTENNAS, i.e. RADIO AERIALS
    • H01Q19/00Combinations of primary active antenna elements and units with secondary devices, e.g. with quasi-optical devices, for giving the antenna a desired directional characteristic
    • H01Q19/10Combinations of primary active antenna elements and units with secondary devices, e.g. with quasi-optical devices, for giving the antenna a desired directional characteristic using reflecting surfaces
    • H01Q19/18Combinations of primary active antenna elements and units with secondary devices, e.g. with quasi-optical devices, for giving the antenna a desired directional characteristic using reflecting surfaces having two or more spaced reflecting surfaces
    • H01Q19/19Combinations of primary active antenna elements and units with secondary devices, e.g. with quasi-optical devices, for giving the antenna a desired directional characteristic using reflecting surfaces having two or more spaced reflecting surfaces comprising one main concave reflecting surface associated with an auxiliary reflecting surface
    • H01Q19/193Combinations of primary active antenna elements and units with secondary devices, e.g. with quasi-optical devices, for giving the antenna a desired directional characteristic using reflecting surfaces having two or more spaced reflecting surfaces comprising one main concave reflecting surface associated with an auxiliary reflecting surface with feed supported subreflector

Definitions

  • the present invention generally relates to the field of antennas, and more particularly to a dual-reflecting surface microwave antenna.
  • BACKGROUND With the increasing application of microwave antennas, the density of microwave stations is getting higher and higher. To enhance the efficiency of microwave antennas and better satisfy microwave communication, it is necessary to obtain microwave antennas that meet the characteristics of high gain, low voltage standing wave ratio, and the like. .
  • the voltage standing wave ratio is the ratio of the maximum value to the minimum value of the antenna load voltage. In the case of short-circuit load and open-circuit load, the voltage standing wave ratio is 1 to infinity, respectively, and the voltage standing wave ratio is related to the reflection coefficient of the antenna.
  • the existing microwave antenna usually adopts a double-reflecting surface microwave antenna, and the specific structure is as shown in FIG. 1, and includes a main reflecting surface 101, a feeding tube 102, a feed source 103, a medium support 104, and a sub-reflecting surface 105.
  • the shaped surface of the media support 104 is generally curved.
  • the signal is reflected on the shaped curved surface of the medium support 104.
  • the angle of the signal after reflection is greatly deflected, which is not easy to control, and the partial signal is very It is easy to deviate from the signal receiving range, affecting the efficiency and reflection coefficient of the microwave antenna, reducing the antenna radiation efficiency, reducing the antenna gain, and affecting the voltage standing wave ratio to some extent.
  • the voltage standing wave ratio is the largest. The value is usually taken to be 1.3.
  • a lateral choke groove 201 is provided on one side of the sub-reflecting surface 105.
  • the direction of the horizontal choke groove 201 is perpendicular to the central axis direction of the feed pipe 102, but the lateral turbulence When the lateral length of the slot 201 is large, the occlusion of the feed source 103 is increased, and the radiation efficiency of the antenna is low.
  • An embodiment of the present invention provides a dual-reflecting surface microwave antenna for improving the radiation efficiency of an antenna.
  • a dual-reflecting surface microwave antenna including a main reflective surface and a secondary reflective surface of a metal material, a feed tube connected to the main reflective surface, and a feed connected to an end of the feed tube located inside the main reflective surface, And a medium support connected between the feed and the secondary reflecting surface, the secondary reflecting surface being adjacent to the medium support.
  • the dual-reflecting surface microwave antenna further includes an annular surface disposed at a periphery of the secondary reflecting surface and adjacent to an outer edge of the secondary reflecting surface, the annular surface being located outside the medium support.
  • the secondary reflecting surface comprises a conical surface, the apex of the conical surface being adjacent to the medium support.
  • the secondary reflective surface further includes an annular plane adjacent to a periphery of the conical surface, and the annular plane is provided with an annular groove.
  • the annular groove surrounds the conical surface, and the annular groove extends from its opening in a direction parallel to a central axis of the sub-reflecting surface and away from the feed.
  • the width of the annular groove is one quarter of the wavelength of the signal propagating in the dielectric support.
  • the annular surface is disposed on a periphery of the annular plane and adjacent to an outer edge of the annular plane.
  • the annular surface has a width in the range of 0.1 ⁇ 0 ⁇ 0.3 ⁇ 0, where ⁇ is a signal wavelength propagating in free space.
  • the diameter of the feed is a
  • the distance between the feed and the apex of the conical surface of the sub-reflecting surface is dl
  • a diameter of an outer edge of the secondary reflection surface is D2
  • an apex angle of the conical surface is A
  • the distance between the feed and the apex of the conical surface of the secondary reflecting surface is equal to the height of the conical surface.
  • the outer surface of the medium support is a shaped surface, and the shaped surface is curved or stepped.
  • the material of the main reflective surface and the secondary reflective surface is aluminum.
  • the medium support is a solid structure. In combination with any of the possible implementations of the first to the ninth, in the thirteenth possible implementation, the medium support is made of aluminum.
  • the feed system of the microwave antenna of the embodiment of the invention simultaneously shapes the sub-reflecting surface and the medium support, optimizes the amplitude and phase distribution of the feed pattern, and improves the radiation efficiency of the antenna, thereby finally achieving a low side-lobe antenna.
  • the secondary reflecting surface of the embodiment of the invention increases the annular surface, which has a very positive suppression effect on the edge diffraction of the feed, optimizes the illumination taper of the primary pattern, and further improves the radiation efficiency of the antenna.
  • FIG. 1 is a schematic structural view of a dual-reflection surface microwave antenna provided by the prior art
  • FIG. 2 is a schematic view showing the position of a lateral chute provided by the prior art
  • FIG. 3 is a schematic diagram of a dual-reflection surface microwave antenna according to an embodiment of the present invention.
  • Figure 4 is a schematic view showing a cross section of a sub-reflecting surface in the double-reflecting surface-child antenna of Figure 3;
  • Figure 5 is an enlarged schematic view of a portion V of Figure 3;
  • FIG. 6 is a schematic diagram of a dual-reflecting surface microwave antenna according to another embodiment of the present invention.
  • the technical solutions in the embodiments of the present invention are clearly and completely described in the following with reference to the accompanying drawings in the embodiments of the present invention. It is obvious that the described embodiments are only a part of the embodiments of the present invention, and not all of the embodiments. example. All other embodiments obtained by a person of ordinary skill in the art based on the embodiments of the present invention without departing from the inventive scope are the scope of the present invention. Referring to FIG. 3 to FIG.
  • a dual-reflecting surface microwave antenna 300 includes a main reflective surface 3011, a secondary reflective surface 3021, a feed tube 303 connected to the main reflective surface 3011, and a connection.
  • the feed source 304 of the feed tube 303 is located at one end of the inner side of the main reflection surface 3011, and the medium support 305 is disposed between the feed source 304 and the sub-reflection surface 3021.
  • the main reflecting surface 3011 is generally a paraboloid, and the sub-reflecting surface 3021 is adjacent to the medium support 305.
  • the main reflecting surface 3011 and the sub-reflecting surface 3021 are made of a metal material, generally aluminum.
  • the outer side of the medium support 305 has a shaped curved surface 3051. In the present embodiment, the shape of the shaped curved surface 3051 is curved.
  • the signal from the feed 304 is reflected by the sub-reflecting surface 3021 and transmitted to the main reflecting surface 3011.
  • the partial signal is radiated by the main reflecting surface 3011, and the other portion is reflected to the shaped curved surface 3051 of the medium supporting 305.
  • the medium support 305 is a solid structure, and the material of the medium support 305 may be a metal, a plastic, a resin or the like. Specifically, the medium support 305 is made of aluminum.
  • the secondary reflecting surface 3021 includes a conical surface 3025 and an annular plane 3026 adjacent to the periphery of the conical surface 3025.
  • the top end of the conical surface 3025 is adjacent to the medium support 305.
  • the angular range of the apex angle A of the conical surface 3025 is It is preferably from 100 to 110 degrees (10 dB opening angle).
  • the inner edge of the annular plane 3026 is adjacent the outer edge of the conical surface 3025, the annular plane 3026 is perpendicular to the central axis 0 of the secondary reflecting surface 3021, and the center of the annular plane 3026 and the apex of the conical surface 3025 are both at the center of the secondary reflecting surface 3021.
  • annular groove 3022 is defined in the annular plane 3026, the annular groove 3022 surrounds the conical surface 3025, and the annular groove 3022 extends from the opening along a direction parallel to the central axis 0 of the secondary reflecting surface 3021 and away from the feed 304.
  • the shape of the annular groove 3022 is a circular ring having a central axis 0 of the secondary reflecting surface 3021 as an axis of symmetry.
  • the width w1 of the annular groove 3022 is preferably ⁇ /4, where ⁇ is the wavelength of the signal propagating in the dielectric support 305.
  • the back-reflection superimposes and cancels, which reduces the primary overflow of the feed 304 radiation, improves the sidelobe level of the microwave antenna 300, and improves the envelope of the microwave antenna 300 radiation. performance.
  • the dual-reflecting surface microwave antenna 300 further includes an annular flange 3023 disposed around the periphery of the annular plane 3026, the annular flange 3023 having a central axis 0 perpendicular to the secondary reflecting surface 3021 and being co-located with the secondary reflecting surface 3021.
  • Annular surface 3024 in the present embodiment, annular flange 3023 is located outside of media support 305, and annular surface 3024 is adjacent the outer edge of annular plane 3026.
  • the width W of the annular surface 3024 and the annular flange 3023 ranges from 0.1 ⁇ 0 to 0.3 ⁇ 0, where ⁇ ⁇ is the wavelength of the signal propagating in free space.
  • the design of the annular flange 3023 suppresses the edge diffraction of the feed 304, making the edge of the secondary reflecting surface 3021 more tapered. Reason.
  • the design of the annular flange 3023 effectively ensures that the microwave antenna 300 meets the technical requirements of the C4 antenna sidelobe envelope.
  • the C4 antenna refers to an antenna whose radiation pattern satisfies the ETSI Class 4 rating.
  • the medium support 305 When the medium support 305 is fabricated, the medium support 305 can be formed with an annular protrusion 3051 that matches the shape and size of the annular groove 3022; when the medium support 305 and the secondary reflective surface 3021 are fixed to each other, the colloid is first applied to the medium.
  • the surface of the sub-reflecting surface 3021, the surface coated by the colloid includes the inner surface of the annular groove 3022, and then the medium support 305 is attached to the sub-reflecting surface, wherein the annular protrusion 3051 is embedded in the annular groove 3022, after the colloid is solidified Then, the mutual fixation of the medium support 305 and the sub-reflecting surface 3021 can be completed.
  • the medium support 305 and the secondary reflecting surface 3021 can be more firmly fixed.
  • the side of the sub-reflecting surface 3021 away from the medium support 305 has a columnar grip portion 3027 to facilitate gripping while the glue is being applied.
  • the outer edge of the annular surface 3024 has a diameter D1
  • the outer edge of the secondary reflective surface 3021 has a diameter D2.
  • a dual-reflecting surface microwave antenna 400 is provided in the second embodiment of the present invention.
  • the microwave antenna 400 is different from the microwave antenna 300 in that the shaped curved surface 4051 of the dielectric support 405 of the microwave antenna 400 is Stepped shape.
  • the shaped curved surface 4051 reflects the signal emitted via the feed 404 or the signal reflected via the primary reflective surface 4011 multiple times.
  • the shaped curved surface 4051 of the medium support 405 is changed in a stepped shape so that the signal reflected by the main reflective surface 4011 is reflected multiple times on the shaped curved surface 4051 of the medium support 405, and a part of the signal deviating from the signal receiving range is on the shaped curved surface.
  • the microwave antenna 400 After multiple reflections on the 4051, some of the signals can enter the signal receiving range, increasing the total amount of signals received by the microwave antenna 400.
  • the signal emitted by the feed 404 can be reflected multiple times on the shaped curved surface 4051, which can increase the radiation range of the signal.
  • the feeding systems of the microwave antennas 300 and 400 of the embodiment of the present invention simultaneously shape the surface of the sub-reflecting surface and the medium support, optimize the amplitude and phase distribution of the feed pattern, and improve the radiation efficiency of the antenna, which is ultimately achieved.
  • the sidelobe antenna provides good primary illumination.
  • the auxiliary reflecting surface of the embodiment of the invention increases the annular surface and the annular groove, and has a very positive inhibitory effect on the edge diffraction of the feed, and optimizes the illumination taper of the primary pattern.
  • the radiation efficiency of the antenna is further improved, so that the antenna can obtain an ultra-low sidelobe level, which effectively ensures that the microwave antenna satisfies the technical requirements of the C4 antenna sidelobe envelope.

Landscapes

  • Aerials With Secondary Devices (AREA)

Abstract

本发明公开了一种双反射面微波天线,包括金属材质的主反射面和副反射面、与主反射面连接的馈源管、与馈源管位于主反射面内侧的一端连接的馈源、及连接于馈源与副反射面之间的介质支撑,所述副反射面邻近于所述介质支撑的。所述双反射面微波天线进一步包括设置于所述副反射面外围且与所述副反射面的外侧边缘相邻的环形表面,所述环形表面位于所述介质支撑的外侧。微波天线的馈源系统同时对副反射面和介质支撑进行表面赋形,优化了馈源方向图的幅度及相位分布,提升了天线的辐射效率,为最终实现低旁瓣天线提供了良好的初级照射。另外,本发明实施例的副反射面增加了环形表面,对馈源的边缘绕射起到非常积极的抑制作用,优化了初级方向图的照射锥削,进一步提升了天线的辐射效率。

Description

双反射面孩 ί波天线 技术领域 本发明涉及一种天线领域, 尤其涉及一种双反射面微波天线。 背景技术 随着微波天线应用逐渐增多,微波站点的密集度越来越高,为增强微波天线的功效, 更好地满足微波通信, 需要获得符合高增益、 低电压驻波比等特性的微波天线。 电压驻 波比是指天线负载电压的最大值与最小值的比, 短路负载和开路负载情况下, 电压驻波 比分别为 1 到无穷大, 并且, 电压驻波比和天线的反射系数相关联。
现有的微波天线通常釆用双反射面微波天线,具体结构如图 1 所示, 包括主反射面 101、 馈源管 102、 馈源 103、 介质支撑 104 以及副反射面 105。 其中, 介质支撑 104 的 赋形曲面通常为弧形。双反射面微波天线在工作时,信号在介质支撑 104 的赋形曲面上 进行反射, 在弧形的赋形曲面上, 信号反射后的角度偏折较大, 不容易控制, 会导致部 分信号很容易偏离信号接收范围, 影响微波天线的功效和反射系数, 降低了天线辐射效 率, 降低了天线增益, 并在一定程度上影响到电压驻波比, 对于微波天线而言, 电压驻 波比的最大值通常取值为 1.3。 现有技术中虽然可以通过在馈源 103 的端口针对阻抗做 出精确匹配来获取较低的电压驻波比, 但是, 实施难度较大, 且耗费极大的成本。
信号经馈源 103 向外界辐射时,为避免部分信号经折射或反射或直接环绕至副反射 面 105 外, 影响微波天线的功效, 降低了天线辐射效率, 现有技术提出一种解决方法, 如图 2 所示, 在副反射面 105 的一侧设置横向扼流槽 201 , 从图 2 可以看出, 横向扼 流槽 201 的排列方向与馈源管 102 中心轴方向垂直, 但是, 横向扼流槽 201 横向长度 较大时, 会导致对馈源 103 的遮挡增大, 天线辐射效率低。
另外, 双反射面微波天线在接收信号时, 为了降低副反射面 105 对经主反射面 101 反射过来的信号的反射, 保障电压驻波比, 现有技术还提出了一种增加匹配环的解决方 法, 但是, 匹配环的固定会带来附加的物料成本, 增加了设计的难度, 而且匹配环的形 状及材质对接收的信号也可能产生不良影响。 发明内容 本发明实施例一方面提供了一种双反射面微波天线, 用于提升天线的辐射效率。 一方面, 提供一种双反射面微波天线, 包括金属材质的主反射面和副反射面、 与主 反射面连接的馈源管、 与馈源管位于主反射面内侧的一端连接的馈源、 及连接于馈源与 副反射面之间的介质支撑, 所述副反射面邻近于所述介质支撑。 所述双反射面微波天线 进一步包括设置于所述副反射面外围且与所述副反射面的外侧边缘相邻的环形表面, 所 述环形表面位于所述介质支撑的外侧。
在第一种可能的实现方式中, 所述副反射面包括圆锥面, 所述圆锥面的顶点与所述 介质支撑相邻。
结合第一种可能的实现方式, 在第二种可能的实现方式中, 所述副反射面进一步包 括与所述圆锥面外围相邻的环形平面, 所述环形平面上开设有环形凹槽, 所述环形凹槽 围绕所述圆锥面,且所述环形凹槽自其开口处沿平行于所述副反射面的中心轴且远离所 述馈源的方向延伸。
结合第二种可能的实现方式, 在第三种可能的实现方式中, 所述环形凹槽的宽度为 在所述介质支撑中传播的信号波长的四分之一。
结合第二种可能的实现方式, 在第四种可能的实现方式中, 所述环形表面设置于所 述环形平面外围且与所述环形平面的外侧边缘相邻。
在第五种可能的实现方式中, 所述环形表面的宽度范围为 0.1λ0^0.3λ0, 其中 λθ 为自由空间中传播的信号波长。
在第六种可能的实现方式中, 所述环形表面外侧边缘的直径 D1 满足以下关系 D1=0.045*D, 其中 D为所述主反射面的开口口径。
结合第一种可能的实现方式, 在第七种可能的实现方式中, 所述馈源的直径为 a, 所述馈源与副反射面的圆锥面的顶点的距离为 dl , dl 和 a 满足以下关系: dl = (a2A)+3mm, 其中 λ为所述介质支撑中传播的信号波长。
在第八种可能的实现方式中, 所述副反射面外侧边缘的直径为 D2、 所述圆锥面顶 角为 A, 所述馈源与副反射面的圆锥面的顶点的距离为 dl , D2、 dl及 A满足以下关系: D2=2*dl*tg(A/2)。
结合第一种可能的实现方式, 在第九种可能的实现方式中, 所述馈源与副反射面的 圆锥面的顶点的距离, 与所述圆锥面的高度相等。
结合上述任意一种可能的实现方式, 在第十种可能的实现方式中, 所述介质支撑的 外表面为赋形表面, 所述赋形表面为弧形或阶梯形。 结合上述第一至第九种中任意一种可能的实现方式, 在第十一种可能的实现方式 中, 所述主反射面和副反射面的材质为铝。
结合上述第一至第九种中任意一种可能的实现方式, 在第十二种可能的实现方式 中, 所述介质支撑为实心结构。 结合上述第一至第九种中任意一种可能的实现方式, 在第十三种可能的实现方式 中, 所述介质支撑为釆用铝制成。
本发明实施例的微波天线的馈源系统同时对副反射面和介质支撑进行表面赋形,优 化了馈源方向图的幅度及相位分布, 提升了天线的辐射效率, 为最终实现低旁瓣天线提 供了良好的初级照射。 另外, 本发明实施例的副反射面增加了环形表面, 对馈源的边缘 绕射起到非常积极的抑制作用, 优化了初级方向图的照射锥削, 进一步提升了天线的辐 射效率。 附图说明 为了更清楚地说明本发明实施例或现有技术中的技术方案, 下面将对实施例或现有 技术描述中所需要使用的附图作筒单地介绍, 显而易见地, 下面描述中的附图仅仅是本 发明的一些实施例, 对于本领域普通技术人员来讲, 在不付出创造性劳动的前提下, 还 可以根据这些附图获得其他的附图。
图 1 是现有技术提供的双反射面微波天线的结构示意图;
图 2是现有技术提供的横向扼流槽的位置示意图;
图 3是本发明实施例提供的双反射面微波天线的示意图;
图 4是图 3的双反射面孩 ί波天线中的副反射面的截面的示意图;
图 5是图 3中 V部分的放大示意图;
图 6是本发明实施例提供的另一实施方式的双反射面微波天线的示意图。 具体实施方式 下面将结合本发明实施例中的附图, 对本发明实施例中的技术方案进行清楚、 完整 地描述, 显然, 所描述的实施例仅仅是本发明一部分实施例, 而不是全部的实施例。 基 于本发明中的实施例,本领域普通技术人员在没有作出创造性劳动前提下所获得的所有 其他实施例, 都属于本发明保护的范围。 请参阅图 3至图 5 , 为本发明第一实施方式提供的一种双反射面微波天线 300, 包 括主反射面 3011、 副反射面 3021、 与主反射面 3011 连接的馈源管 303、 连接于馈源管 303的位于主反射面 3011 内侧一端的馈源 304、 及设置于馈源 304与副反射面 3021之 间的介质支撑 305。
主反射面 3011—般为抛物面, 副反射面 3021相邻于介质支撑 305 , 主反射面 3011 和副反射面 3021为金属材质, 一般为铝。 介质支撑 305的外侧具有赋形曲面 3051 , 本 实施方式中, 赋形曲面 3051的形状为弧形。 馈源 304发出的信号经副反射面 3021的反 射后传输至主反射面 3011 , 部分信号由主反射面 3011辐射出去, 另一部分反射至介质 支撑 305的赋形曲面 3051 ; 赋形曲面 3051又将信号反射回主反射面 3011 , 最终由主反 射面 3011辐射出去, 完成微波天线 300的信号辐射功能。 本实施方式中, 所述介质支 撑 305是实心结构, 所述介质支撑 305的材质可以是金属、 塑料、树脂等材料。具体地, 所述介质支撑 305釆用铝制成。
副反射面 3021包括圆锥面 3025及与圆锥面 3025外围相邻的环形平面 3026, 圆锥 面 3025的顶端邻近于所述介质支撑 305 , 本实施方式中, 所述圆锥面 3025顶角 A的角 度范围优选为 100度至 110度 (10dB张角)。环形平面 3026的内侧边缘与圆锥面 3025的 外侧边缘相邻, 环形平面 3026垂直于副反射面 3021的中心轴 0, 且环形平面 3026的 中心和圆锥面 3025的顶点均位于副反射面 3021的中心轴 0上。 环形平面 3026上开设 环形凹槽 3022, 环形凹槽 3022围绕所述圆锥面 3025 , 且环形凹槽 3022 自开口处沿平 行于副反射面 3021的中心轴 0且远离所述馈源 304的方向延伸。优选地,环形凹槽 3022 的形状为以副反射面 3021的中心轴 0为对称轴的圆环。 所述环形凹槽 3022的宽度 wl 优选 λ/4, 其中 λ为在所述介质支撑 305中传播的信号波长。 当入射波进入该环形凹槽 3022后, 来回反射叠加与抵消, 降低了馈源 304辐射的初级溢出, 很好的改善了微波天 线 300的旁瓣电平, 提升了微波天线 300辐射的包络性能。
双反射面微波天线 300还包括围绕所述环形平面 3026外围设置的环形凸缘 3023 , 环形凸缘 3023具有垂直于所述副反射面 3021的中心轴 0且与所述副反射面 3021位于 同一侧的环形表面 3024, 本实施方式中, 环形凸缘 3023位于介质支撑 305的外侧, 且 环形表面 3024与环形平面 3026的外侧边缘相邻。 所述环形表面 3024和环形凸缘 3023 的宽度 W的范围为 0.1λ0~0.3λ0,其中 λθ为自由空间中传播的信号波长。环形凸缘 3023 的设计, 对馈源 304的边缘绕射起到抑制作用, 使副反射面 3021边缘照射锥削更加合 理。环形凸缘 3023的设计有效地保证了微波天线 300满足 C4天线旁瓣包络的技术要求。 C4天线是指辐射方向图满足 ETSI Class4等级的天线。
在制作介质支撑 305时, 可使介质支撑 305形成与环形凹槽 3022形状与大小相匹 配的环状凸起 3051 ; 在将介质支撑 305与副反射面 3021相互固定时, 先将胶体涂覆于 副反射面 3021的表面, 被胶体涂覆的表面包括环形凹槽 3022的内表面, 然后介质支撑 305贴附于副反射面, 其中环状凸起 3051嵌入环形凹槽 3022内, 待胶体固化后, 即可 完成介质支撑 305与副反射面 3021的相互固定。 由于环形凹槽 3022与环状凸起 3051 的相互配合, 可使介质支撑 305与副反射面 3021更加牢固地固定。 本实施方式中, 副 反射面 3021的远离介质支撑 305的一侧具有柱状的握持部 3027, 以便于在进行粘胶时 握持。
如图 5所示, 所述环形表面 3024外侧边缘的直径为 D1 , 副反射面 3021外侧边缘 的直径为 D2, 所述环形表面 3024的宽度满足以下关系: W=(D2-Dl)/2。 其中副反射面 302的直径满足以下关系 D1=0.045*D, 其中 D为主反射面 3011 的开口口径, 如图 3 所示。 馈源 304的直径为 a, 馈源 303与副反射面 3021的圆锥面 3025的顶点的距离为 dl , dl和 a满足以下关系: dl = (a2/ )+3mm。 副反射面 3021外侧边缘的直径 D2、 圆锥 面顶角 A以及距离 dl满足以下关系: D2=2*dl*tg(A/2)。 另外, 圆锥面 3025的高度 d2 与距离 dl相等。
如图 6所示, 为本发明第二实施方式提供的一种双反射面微波天线 400, 微波天线 400与微波天线 300的不同之处在于, 微波天线 400的介质支撑 405的赋形曲面 4051 为阶梯形。 所述赋形曲面 4051对经由馈源 404发出的信号或经由主反射面 4011 反射 的信号进行多次反射。 改变介质支撑 405 的赋形曲面 4051为阶梯形, 使得经由主反射 面 4011反射的信号,在介质支撑 405 的赋形曲面 4051上进行多次反射,偏离了信号接 收范围的部分信号在赋形曲面 4051上经多次反射后, 其中的一部分信号可以进入到信 号接收范围, 增加微波天线 400接收的信号总量。 另外, 经由馈源 404发出的信号能够 在赋形曲面 4051上进行多次反射, 能够增加信号的辐射范围。
本发明实施例的微波天线 300和 400的馈源系统同时对副反射面和介质支撑进行表 面赋形, 优化了馈源方向图的幅度及相位分布, 提升了天线的辐射效率, 为最终实现低 旁瓣天线提供了良好的初级照射。 另外, 本发明实施例的副反射面增加了环形表面和环 形凹槽, 对馈源的边缘绕射起到非常积极的抑制作用, 优化了初级方向图的照射锥削, 进一步提升了天线的辐射效率, 使天线能获得超低旁瓣电平, 有效地保证了微波天线满 足 C4天线旁瓣包络的技术要求。
最后应说明的是: 以上实施例仅用以说明本发明的技术方案, 而非对其限制; 尽管 参照前述实施例对本发明进行了详细的说明, 本领域的普通技术人员应当理解: 其依然 可以对前述各实施例所记载的技术方案进行修改,或者对其中部分技术特征进行等同替 换; 而这些修改或者替换, 并不使相应技术方案的本质脱离本发明各实施例技术方案的 精神和范围。

Claims

权利要求
1. 一种双反射面微波天线, 包括金属材质的主反射面和副反射面、 与主反射面连 接的馈源管、 与馈源管位于主反射面内侧的一端连接的馈源、 及连接于馈源与副反射面 之间的介质支撑, 所述副反射面邻近于所述介质支撑, 其特征在于: 所述双反射面微波 天线进一步包括设置于所述副反射面外围且与所述副反射面的外侧边缘相邻的环形表 面, 所述环形表面位于所述介质支撑的外侧。
2. 如权利要求 1所述的双反射面微波天线,其特征在于,所述副反射面包括圆锥面, 所述圆锥面的顶点与所述介质支撑相邻。
3. 如权利要求 2所述的双反射面微波天线,其特征在于,所述副反射面进一步包括 与所述圆锥面外围相邻的环形平面, 所述环形平面上开设有环形凹槽, 所述环形凹槽围 绕所述圆锥面,且所述环形凹槽自其开口处沿平行于所述副反射面的中心轴且远离所述 馈源的方向延伸, 所述介质支撑具有与所述环形凹槽相匹配的环状凸起, 所述环状凸起 嵌设于所述环形凹槽内。
4. 如权利要求 3所述的双反射面微波天线, 其特征在于, 所述环形凹槽的宽度为 在所述介质支撑中传播的信号波长的四分之一。
5. 如权利要求 3所述的双反射面微波天线,其特征在于,所述环形表面设置于所述 环形平面外围且与所述环形平面的外侧边缘相邻。
6. 如权利要求 1所述的双反射面微波天线,其特征在于,所述环形表面的宽度范围 为 0.1λ0^0.3λ0, 其中 λθ为自由空间中传播的信号波长。
7. 如权利要求 1所述的双反射面微波天线,其特征在于,所述环形表面外侧边缘的 直径 D1满足以下关系 D1=0.045*D, 其中 D为所述主反射面的开口口径。
8. 如权利要求 2所述的双反射面微波天线, 其特征在于, 所述馈源的直径为 a, 所 述馈源与副反射面的圆锥面的顶点的距离为 dl , dl和 a满足以下关系: dl = (a¼)+3mm, 其中 λ为所述介质支撑中传播的信号波长。
9. 如权利要求 2所述的双反射面微波天线,其特征在于,所述副反射面外侧边缘的 直径为 D2、 所述圆锥面顶角为 A, 所述馈源与副反射面的圆锥面的顶点的距离为 dl ,
D2、 dl及 A满足以下关系: D2=2*dl*tg(A/2)。
10. 如权利要求 2所述的双反射面微波天线, 其特征在于, 所述馈源与副反射面的 圆锥面的顶点的距离, 与所述圆锥面的高度相等。
11. 如权利要求 1至 10任一项所述的双反射面微波天线, 其特征在于, 所述介质 支撑的外表面为赋形表面, 所述赋形表面为弧形或阶梯形。
12. 如权利要求 1至 10任一项所述的双反射面微波天线,其特征在于,所述主反射 面和副反射面的材质为铝。
13. 如权利要求 1至 10任一项所述的双反射面微波天线,其特征在于,所述介质支 撑为实心结构。
14. 如权利要求 1至 10任一项所述的双反射面微波天线,其特征在于,所述介质支 撑为釆用铝制成。
PCT/CN2013/090895 2013-12-30 2013-12-30 双反射面微波天线 WO2015100540A1 (zh)

Priority Applications (2)

Application Number Priority Date Filing Date Title
CN201380003602.6A CN105009368A (zh) 2013-12-30 2013-12-30 双反射面微波天线
PCT/CN2013/090895 WO2015100540A1 (zh) 2013-12-30 2013-12-30 双反射面微波天线

Applications Claiming Priority (1)

Application Number Priority Date Filing Date Title
PCT/CN2013/090895 WO2015100540A1 (zh) 2013-12-30 2013-12-30 双反射面微波天线

Publications (1)

Publication Number Publication Date
WO2015100540A1 true WO2015100540A1 (zh) 2015-07-09

Family

ID=53492900

Family Applications (1)

Application Number Title Priority Date Filing Date
PCT/CN2013/090895 WO2015100540A1 (zh) 2013-12-30 2013-12-30 双反射面微波天线

Country Status (2)

Country Link
CN (1) CN105009368A (zh)
WO (1) WO2015100540A1 (zh)

Cited By (1)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
US20220247085A1 (en) * 2021-02-04 2022-08-04 Orbit Communication Systems Ltd. Ring Focus Antenna System with an Ultra-Wide Bandwidth

Citations (2)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
CN101615723A (zh) * 2009-08-06 2009-12-30 北京天瑞星际技术有限公司 超薄超高性能微波天线
CN101976766A (zh) * 2010-09-07 2011-02-16 京信通信系统(中国)有限公司 超高性能微波天线及其馈源组件

Family Cites Families (3)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
CN1151590C (zh) * 1997-08-21 2004-05-26 基尔达尔天线咨询公司 具有自支撑馈送器的改进的反射器天线
US6724349B1 (en) * 2002-11-12 2004-04-20 L-3 Communications Corporation Splashplate antenna system with improved waveguide and splashplate (sub-reflector) designs
US9019164B2 (en) * 2011-09-12 2015-04-28 Andrew Llc Low sidelobe reflector antenna with shield

Patent Citations (2)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
CN101615723A (zh) * 2009-08-06 2009-12-30 北京天瑞星际技术有限公司 超薄超高性能微波天线
CN101976766A (zh) * 2010-09-07 2011-02-16 京信通信系统(中国)有限公司 超高性能微波天线及其馈源组件

Cited By (2)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
US20220247085A1 (en) * 2021-02-04 2022-08-04 Orbit Communication Systems Ltd. Ring Focus Antenna System with an Ultra-Wide Bandwidth
US11791562B2 (en) * 2021-02-04 2023-10-17 Orbit Communication Systems Ltd. Ring focus antenna system with an ultra-wide bandwidth

Also Published As

Publication number Publication date
CN105009368A (zh) 2015-10-28

Similar Documents

Publication Publication Date Title
US5959590A (en) Low sidelobe reflector antenna system employing a corrugated subreflector
US3983560A (en) Cassegrain antenna with improved subreflector for terrestrial communication systems
US6697027B2 (en) High gain, low side lobe dual reflector microwave antenna
US5973652A (en) Reflector antenna with improved return loss
US4626863A (en) Low side lobe Gregorian antenna
WO2018064835A1 (zh) 一种喇叭天线
US4673945A (en) Backfire antenna feeding
US20080094298A1 (en) Antenna with Shaped Asymmetric Main Reflector and Subreflector with Asymmetric Waveguide Feed
US6184840B1 (en) Parabolic reflector antenna
US7187340B2 (en) Simultaneous multi-band ring focus reflector antenna-broadband feed
WO2012113293A1 (zh) 双反射面天线
WO1999010950A2 (en) Improved reflector antenna with a self-supported feed
Theron et al. The design of the MeerKAT dish optics
WO2019011096A1 (zh) 一种双频馈源组件及双频微波天线
WO2015100540A1 (zh) 双反射面微波天线
CN110739547B (zh) 一种卡塞格伦天线
CN211062865U (zh) 一种环焦反射面天线
TWI449445B (zh) 束波調整裝置
CN104577345B (zh) 喇叭天线
JP5266314B2 (ja) オフセットパラボラアンテナ
USRE32485E (en) Wide-beam horn feed for parabolic antennas
CN107069225A (zh) 一种卡赛格伦天线馈源结构及卡赛格伦天线
KR102124016B1 (ko) 혼합 부반사판을 가지는 이중 반사판 안테나
CN206628598U (zh) 双频复合卡赛格伦天线馈源结构及卡赛格伦天线
KR20100049933A (ko) 유전체 장하혼 및 이를 이용한 이중 반사판 안테나

Legal Events

Date Code Title Description
121 Ep: the epo has been informed by wipo that ep was designated in this application

Ref document number: 13900687

Country of ref document: EP

Kind code of ref document: A1

NENP Non-entry into the national phase

Ref country code: DE

122 Ep: pct application non-entry in european phase

Ref document number: 13900687

Country of ref document: EP

Kind code of ref document: A1