WO2019011096A1 - 一种双频馈源组件及双频微波天线 - Google Patents

一种双频馈源组件及双频微波天线 Download PDF

Info

Publication number
WO2019011096A1
WO2019011096A1 PCT/CN2018/090754 CN2018090754W WO2019011096A1 WO 2019011096 A1 WO2019011096 A1 WO 2019011096A1 CN 2018090754 W CN2018090754 W CN 2018090754W WO 2019011096 A1 WO2019011096 A1 WO 2019011096A1
Authority
WO
WIPO (PCT)
Prior art keywords
waveguide
dual
reflecting surface
frequency
antenna
Prior art date
Application number
PCT/CN2018/090754
Other languages
English (en)
French (fr)
Inventor
J萨伊德
S希姆斯
Original Assignee
罗森伯格技术(昆山)有限公司
Priority date (The priority date is an assumption and is not a legal conclusion. Google has not performed a legal analysis and makes no representation as to the accuracy of the date listed.)
Filing date
Publication date
Application filed by 罗森伯格技术(昆山)有限公司 filed Critical 罗森伯格技术(昆山)有限公司
Priority to US16/615,730 priority Critical patent/US10992041B2/en
Priority to EP18831241.7A priority patent/EP3654451A4/en
Publication of WO2019011096A1 publication Critical patent/WO2019011096A1/zh

Links

Images

Classifications

    • HELECTRICITY
    • H01ELECTRIC ELEMENTS
    • H01QANTENNAS, i.e. RADIO AERIALS
    • H01Q5/00Arrangements for simultaneous operation of antennas on two or more different wavebands, e.g. dual-band or multi-band arrangements
    • H01Q5/40Imbricated or interleaved structures; Combined or electromagnetically coupled arrangements, e.g. comprising two or more non-connected fed radiating elements
    • H01Q5/45Imbricated or interleaved structures; Combined or electromagnetically coupled arrangements, e.g. comprising two or more non-connected fed radiating elements using two or more feeds in association with a common reflecting, diffracting or refracting device
    • H01Q5/47Imbricated or interleaved structures; Combined or electromagnetically coupled arrangements, e.g. comprising two or more non-connected fed radiating elements using two or more feeds in association with a common reflecting, diffracting or refracting device with a coaxial arrangement of the feeds
    • HELECTRICITY
    • H01ELECTRIC ELEMENTS
    • H01QANTENNAS, i.e. RADIO AERIALS
    • H01Q19/00Combinations of primary active antenna elements and units with secondary devices, e.g. with quasi-optical devices, for giving the antenna a desired directional characteristic
    • H01Q19/10Combinations of primary active antenna elements and units with secondary devices, e.g. with quasi-optical devices, for giving the antenna a desired directional characteristic using reflecting surfaces
    • H01Q19/12Combinations of primary active antenna elements and units with secondary devices, e.g. with quasi-optical devices, for giving the antenna a desired directional characteristic using reflecting surfaces wherein the surfaces are concave
    • H01Q19/13Combinations of primary active antenna elements and units with secondary devices, e.g. with quasi-optical devices, for giving the antenna a desired directional characteristic using reflecting surfaces wherein the surfaces are concave the primary radiating source being a single radiating element, e.g. a dipole, a slot, a waveguide termination
    • H01Q19/132Horn reflector antennas; Off-set feeding
    • HELECTRICITY
    • H01ELECTRIC ELEMENTS
    • H01QANTENNAS, i.e. RADIO AERIALS
    • H01Q19/00Combinations of primary active antenna elements and units with secondary devices, e.g. with quasi-optical devices, for giving the antenna a desired directional characteristic
    • H01Q19/10Combinations of primary active antenna elements and units with secondary devices, e.g. with quasi-optical devices, for giving the antenna a desired directional characteristic using reflecting surfaces
    • H01Q19/18Combinations of primary active antenna elements and units with secondary devices, e.g. with quasi-optical devices, for giving the antenna a desired directional characteristic using reflecting surfaces having two or more spaced reflecting surfaces
    • H01Q19/19Combinations of primary active antenna elements and units with secondary devices, e.g. with quasi-optical devices, for giving the antenna a desired directional characteristic using reflecting surfaces having two or more spaced reflecting surfaces comprising one main concave reflecting surface associated with an auxiliary reflecting surface
    • H01Q19/193Combinations of primary active antenna elements and units with secondary devices, e.g. with quasi-optical devices, for giving the antenna a desired directional characteristic using reflecting surfaces having two or more spaced reflecting surfaces comprising one main concave reflecting surface associated with an auxiliary reflecting surface with feed supported subreflector
    • HELECTRICITY
    • H01ELECTRIC ELEMENTS
    • H01QANTENNAS, i.e. RADIO AERIALS
    • H01Q13/00Waveguide horns or mouths; Slot antennas; Leaky-waveguide antennas; Equivalent structures causing radiation along the transmission path of a guided wave
    • H01Q13/02Waveguide horns

Definitions

  • the present invention relates to a microwave antenna, and more particularly to a dual frequency feed component and a dual frequency microwave antenna operating in two frequency bands.
  • a microwave antenna is a device responsible for receiving and transmitting electromagnetic wave signals.
  • Microwave antennas used in the 5 GHz to 80 GHz band typically include four components: a feed, a reflective surface commonly known as a reflector, an antenna cover commonly known as a radome, and an auxiliary mount.
  • the mounting member functions to fix the antenna on the pole or the iron tower; the radome protects the antenna from the natural environment such as rain, snow, ice, etc., and requires the radome to have as little influence on the electrical performance of the antenna. .
  • the reflecting surface and the feeding source mainly determine the electrical performance of the antenna.
  • the receiving antenna When the receiving antenna is used as the receiving antenna, the electromagnetic wave propagating from the independent source is reflected and concentrated by the reflecting surface, and then the receiving source receives the closed transmission line through the waveguide to the receiver; when used as the transmitting antenna, The electromagnetic wave signal emitted by the signal source is closed to the feed source via a waveguide or the like, and then radiated by the feed source and illuminates the reflective surface according to a certain amplitude and phase distribution requirement, and finally reflected to the free space radiation through the reflective surface.
  • the microwave antenna With the development of microwave communication, the demand for microwave antennas is increasing, and the performance requirements for antennas are also increasing. Not only does the microwave antenna require strict electrical performance indicators as well as mechanical performance indicators such as size, weight, and wind load, but also requires low cost in manufacturing, transportation, and installation.
  • a microwave antenna feed and a microwave antenna disclosed in the patent document CN201758183U including a feed horn, a support frame and a secondary reflecting surface.
  • the support frame fixes the feeding horn and the auxiliary reflecting surface on the same central axis
  • the supporting frame includes a first connecting portion connecting the feeding horn and a second connecting portion connecting the auxiliary reflecting surface, the first connection
  • the portion and the second connecting portion are fixedly connected by at least one support post.
  • the antenna radiation pattern using the feed meets the envelope requirements of the ETSI Class 3 standard, and its structure and processing technology can ensure the consistency of performance, and the cost is very low, which is convenient for mass production.
  • An ultra-high performance microwave antenna and a feed component thereof disclosed in the patent document CN101976766B wherein the feed component has a rotationally symmetrical structure, including a sub-reflecting surface, a dielectric block, a waveguide and a base, and the waveguide is inserted at one end.
  • the other end is inserted into the first end of the dielectric block, and the second end of the dielectric block covers the sub-reflecting surface according to the shape of the end surface of the end, and the dielectric block has a minimum of one-stage cylinder inserted in the waveguide portion.
  • a side surface exposed to the outside of the waveguide is provided with a plurality of cylindrical surfaces having different diameters; and an end surface of the second end thereof is provided with a tapered surface which is centered and recessed toward the first end thereof, and is formed along the periphery of the inclined cone surface There is a circular plane on which at least one level of perturbation structure is disposed.
  • the microwave antenna and its feed component in the scheme have good electrical performance, the physical structure is simple and compact, and the cost is relatively low.
  • antenna structures are only suitable for operation under single-band conditions, and are not suitable for operation in dual-band mode, so the scope of use thereof is limited to some extent.
  • a dual-frequency feed assembly including a first waveguide, a second waveguide, and a secondary reflecting surface, the second waveguide being located in the first waveguide and first The waveguide is coaxially disposed, the secondary reflecting surface being located outside the opening of the first waveguide terminal and connected to the first waveguide, the first waveguide and the second waveguide sharing the secondary reflecting surface.
  • the ends of the first and second waveguides each adopt a tapered bell mouth.
  • the secondary reflecting surface is a curved surface formed by rotating the axis of the first and second waveguides as a central axis and rotating in the circumferential direction of the central axis.
  • the secondary reflecting surface and the first waveguide are connected by a support structure.
  • a dual-frequency feed assembly includes a first waveguide, and a first waveguide coaxial with the first waveguide is disposed in the first waveguide, the first Both the terminals of the second waveguide and the second waveguide use a tapered antenna as the feed structure.
  • the ends of the first and second waveguides each adopt a tapered bell mouth.
  • the first and second waveguides are respectively connected to a transmission duct for receiving or transmitting microwave energy microwave energy.
  • the transfer conduit is curved and approximately J-shaped.
  • the transmission conduit employs a rectangular waveguide.
  • the present invention also proposes another technical solution: a dual-frequency feed assembly comprising a first waveguide, a second waveguide, and a dielectric block, the second waveguide being located in the first waveguide and coaxial with the first waveguide Providing that a bottom portion of the dielectric block is inserted into the first waveguide and/or a second waveguide, and an upper end surface of the dielectric block forms a sub-reflecting surface, and the first waveguide and the second waveguide are shared by the first waveguide and the second waveguide. Said secondary reflecting surface.
  • the shape of the secondary reflecting surface is the same as the shape of the upper end surface of the dielectric block.
  • the terminals of the first and second waveguides each have a cylindrical opening.
  • the present invention also proposes another technical solution: a dual-frequency microwave antenna comprising a dual-frequency feed component and a reflective surface, and the dual-frequency feed component uses any of the above-described dual-frequency feed components.
  • the invention has the beneficial effects that the present invention forms a plurality of microwave antenna structures by providing two coaxial waveguides, including feedforward and feedforward, and the user can select the antenna of the corresponding structure according to actual needs;
  • the two waveguides feed the microwave energy so that the antenna can work in two frequency bands at the same time, such as one frequency band for transmitting signals and the other for receiving signals, thereby greatly expanding the application range of the microwave antenna.
  • FIG. 1 is a schematic structural diagram of a dual-frequency microwave antenna according to Embodiment 1 of the present invention.
  • FIG. 2 is a schematic structural view of the dual frequency feed assembly of FIG. 1;
  • FIG. 3 is a schematic structural diagram of a dual frequency feed component according to Embodiment 2 of the present invention.
  • FIG. 4 is a side view showing the structure of a dual frequency feed assembly according to Embodiment 2 of the present invention.
  • FIG. 5 is a schematic structural diagram of a dual-frequency microwave antenna according to Embodiment 2 of the present invention.
  • FIG. 6 is a schematic structural diagram of a dual frequency feed component according to Embodiment 3 of the present invention.
  • FIG. 7 is a schematic structural diagram of a dual-frequency microwave antenna according to Embodiment 3 of the present invention.
  • a dual-frequency microwave antenna disclosed in the present invention can simultaneously operate in two different frequency bands (such as an E-band and a K-band), as shown in FIG. 1, FIG. 5 and FIG. 7, including a dual-frequency feed.
  • the assembly and the reflecting surface 1, the reflecting surface 1 is entirely parabolic and symmetrical along its own axis (i.e., the axis y1 or y2 or y3 below).
  • the electromagnetic signal generated by the transmitter is transmitted by the dual-frequency feed component and radiated to the reflecting surface 1, and finally radiated by the reflecting surface 1 to the free space; the working principle of the antenna in the receiving state is opposite: incidence
  • the electromagnetic wave to the antenna is reflected by the reflecting surface 1 to the dual frequency feed component, and finally received by the dual frequency feed component and input to the receiver.
  • the dual-frequency feed assembly mainly includes two coaxially disposed waveguides, and the two waveguides respectively provide energy of two different frequency bands to the radiated portion of the feed, so that the antenna can work in different frequency bands at the same time.
  • the combination of two coaxial waveguides, reflective surface 1 and other structures can form various types of microwave antennas, such as feedforward dual-frequency microwave antennas, feed-back parabolic dual-frequency microwave antennas, and feed-back tapered dual-frequency antennas. Microwave antennas, etc.
  • the structure of the dual frequency feed assembly of the present invention is described in detail below with specific embodiments of several dual frequency feed assemblies.
  • a dual-frequency feed assembly disclosed in Embodiment 1 of the present invention includes a first waveguide 2, a second waveguide 3, and a secondary reflecting surface. 4.
  • the second waveguide 3 is located within the first waveguide 2 and is disposed coaxially with the first waveguide 2, ie both have the same axis of rotational symmetry, labeled as axis y1.
  • the first waveguide 2 and the second waveguide 3 are each composed of a cylindrical tubular body 21, 31 and bell mouths 22, 32 which are formed by outwardly gradual opening of the tubular body, and the tubular bodies 21, 31 are formed therein for forming
  • the inner wall radiating surfaces 24, 34 of the bell mouths 22, 32 radiate.
  • the first waveguide 2 and the second waveguide 3 function as primary sources of radiation.
  • the bell mouths 22 and 32 of the two waveguides 2 and 3 are both conical, and the two bell mouths 22 and 32 are open upward.
  • the secondary reflecting surface 4 is located above the bell mouths 22, 32 of the two waveguides and is connected to the first bell mouth 22. Specifically, the secondary reflecting surface 4 and the first bell mouth 22 are connected by a supporting surface 5 located therebetween, the supporting surface 5 connecting the outermost bottom end of the secondary reflecting surface 4 and the bell mouth 22 of the first waveguide 2 Upper end.
  • the sub-reflecting surface 4 is a curved surface formed by rotating the shaft y1 as a central axis and rotating in the circumferential direction of the central axis; the supporting surface 5 is also a gradually opened surface, and the taper angle formed by the surface It is smaller than the taper angle formed by the first bell mouth 22.
  • the shape of the support surface 5 is not limited to the horn surface defined herein, and other shapes are also suitable for the present invention as long as the connection of the sub-reflecting surface 4 to the first bell mouth 22 can be achieved. Further, the sub-reflecting surface 4 is directly connected to the first bell mouth 22, that is, a structure having no supporting surface 5 therebetween is also applicable to the present invention.
  • the microwave energy radiated from the bell mouths 22, 32 of the two waveguides is reflected by the sub-reflecting surface 4 to the reflecting surface 1 (i.e., the main reflecting surface), and finally radiated from the main reflecting surface 1 to the free space.
  • the opposite ends of the two waveguides 2, 3 are connected to a mounting member 6, and the entire feeding assembly can be mounted to the reflecting surface 1 through the mounting member 6.
  • the entire feed assembly and the reflecting surface 1 are rotationally symmetric along the axis y1.
  • the first embodiment can be applied to the Cassegrain antenna configuration, and the antenna structure formed in the first embodiment can work not only in two different frequency bands, but also can obtain the radiation direction of the antenna compared with the feedforward microwave antenna.
  • the minimum effect of the graph and gain improves the efficiency of the antenna.
  • a dual-frequency feed assembly disclosed in Embodiment 2 of the present invention includes a first waveguide 2 and a second waveguide 3, and the second waveguide 3 is located in the first waveguide 2. And coaxially with the first waveguide 2, that is, both have the same axis of rotational symmetry, labeled as axis y2.
  • the terminals of the first and second waveguides 2, 3 each employ a tapered antenna as a feed structure.
  • the first waveguide 2 and the second waveguide 3 are each composed of a cylindrical tubular body 21, 31 and bell mouths 22, 32 which are formed by outwardly gradual opening of the tubular body, and the tubular bodies 21, 31 are formed therein for forming
  • the channels 23, 33 for transmitting microwave energy, the inner walls of the bells 22, 32 form radiating surfaces 24, 34 of microwave energy, and the electromagnetic waves are transmitted to the bell mouth through the inner passages 23, 33 of the tubes 21, 31 of the waveguides 2, 3.
  • the inner wall radiating surfaces 24, 34 of the bell mouths 22, 32 radiate.
  • the first waveguide 2 and the second waveguide 3 function as primary sources of radiation.
  • the bell mouths 22 and 32 of the two waveguides 2 and 3 are both conical, and both bell mouths are open downward, that is, facing the reflecting surface.
  • first waveguide 2 and the second waveguide 3 are respectively connected to a transmission duct, and the two receive or transmit microwave energy through respective transmission ducts.
  • the transmission pipe corresponding to the first waveguide 2 is defined as the first transmission pipe 7, and the transmission pipe corresponding to the second waveguide 3 is the second transmission pipe 8.
  • One ends of the first and second transfer conduits 7, 8 are in communication with the tubes 21, 31 of the respective waveguides, and the other ends are connected to a mounting member 6, through which the entire feed of the embodiment 2 can be used.
  • the assembly is mounted to a reflector that provides a reflective surface 1.
  • the microwave energy radiated from the bell mouths 22, 32 of the two waveguides is directly radiated to the reflecting surface 1, and finally radiated from the reflecting surface 1 to the free space.
  • first and second transfer conduits 7 and 8 are each curved and substantially J-shaped.
  • their shapes are not limited to the J-shaped curved shape defined herein, and other shapes are also suitable for the present invention.
  • a rectangular waveguide having a rectangular cross section may be employed as long as the support connection of the waveguide and the reflecting surface 1 is achieved.
  • the microwave antenna formed in the second embodiment is feedforward, and the antenna structure formed in the first embodiment can operate in two different frequency bands, and is electrically designed from the antenna structure formed in the first embodiment.
  • the angle is also relatively simple, but because the bell mouth of the waveguide is not suitable for providing energy when the bending angle is greater than 180 degrees, it is not suitable for effectively radiating energy to the edge of the deep reflecting surface (usually the focal length ratio F/D ⁇ 0.25). That is, the solution of the second embodiment is more suitable for a shallow reflecting surface (usually a focal length ratio F/D > 0.25).
  • a dual-frequency feed assembly disclosed in Embodiment 3 of the present invention includes a first waveguide 2, a second waveguide 3, and a dielectric block 9, and the second waveguide 3 is located at the first
  • the waveguide 2 is disposed coaxially with the first waveguide 2, that is, both have the same axis of rotational symmetry, labeled as axis y3.
  • the upper end surface of the dielectric block 9 forms a sub-reflecting surface 4', the bottom portion is inserted into the tube body 21 at the end of the first waveguide 2 and/or the tube body 31 at the end of the second waveguide 3, the first waveguide 2 and the second The waveguide 3 shares the sub-reflecting surface 4'.
  • the dielectric block 9 as a whole is rotationally symmetrical along the axis y3, and the shape of the sub-reflecting surface 4' is the same as the shape of the upper end surface of the dielectric block 9.
  • the secondary reflecting surface 4 ′ includes a first inclined tapered surface 41 ′ and a second inclined tapered surface 42 ′, and the first inclined tapered surface 41 ′ is disposed adjacent to the axis y3 and is formed to be recessed toward the bottom of the dielectric block 9 ,
  • the two inclined tapered surfaces 42' are located on the outer sides of the first inclined tapered surface 41'.
  • the first inclined tapered surface 41' and the second inclined tapered surface 42' are also rotationally symmetric along the axis y3.
  • the shape of the secondary reflecting surface 4' is not limited to the shape structure including the first inclined tapered surface 41' and the second inclined tapered surface 42' as defined herein, and the other shape of the secondary reflecting surface 4' may be tapered. The same structure is also applicable to the present invention.
  • the outer side surface of the portion of the dielectric block 9 inserted into the first waveguide 2 is a stepped surface having at least one step, wherein, in the third embodiment, the outer surface 91 of the step surface closest to the opening of the first waveguide 2 is first
  • the inner wall of the waveguide 2 is in close contact with each other, and the outer diameter of the remaining step faces is smaller than the inner diameter of the first waveguide 2; the outer side of the portion of the dielectric block 9 exposed outside the first waveguide 2 has a conical shape.
  • the first waveguide 2 and the second waveguide 3 are integrally formed into a cylindrical tubular body 21, 31.
  • the tubular body 21 has a cavity 23, 33 for transmitting microwave energy therein, and the terminal end of the second waveguide 3 is inserted into Inside the bottom of the dielectric block 9. Electromagnetic waves are transmitted to the dielectric block 9 through the inner tube passages 23, 33 of the waveguide, and are radiated from the upper end surface of the dielectric block 9.
  • the first waveguide 2 and the second waveguide 3 function as primary sources of radiation.
  • the microwave energy of the upper end surface of the dielectric block 9 is reflected by the sub-reflecting surface 4' to the reflecting surface 1 (i.e., the main reflecting surface), and finally radiated by the main reflecting surface 1 to the free space.
  • the terminal openings of the two waveguides 2, 3 are all facing upward.
  • the opposite ends of the two waveguides 2, 3 are connected to a mounting member 6, by which the entire feed assembly can be mounted to provide reflection of the reflecting surface.
  • the entire feed assembly and the reflecting surface 1 are rotationally symmetric along the axis y3.
  • the antenna structure formed in Embodiment 3 of the present invention is also a feed-forward dual-frequency microwave antenna, that is, not only can work in two different frequency bands, but also can obtain antenna radiation pattern and gain, compared with the antenna structure formed in Embodiment 2.
  • the minimum impact increases the efficiency of the antenna.
  • the diameter of the secondary reflecting surface is too large, low-band performance requirements are required, so reducing the diameter of the secondary reflecting surface during design can prevent excessive blocking of the E-band energy.

Abstract

本发明揭示了一种双频馈源组件及双频微波天线,其中,双频馈源组件主要包括两个同轴设置的波导管,两个波导管分别提供两个不同频带的微波能量给馈电的辐射部分,以使天线可同时工作于不同的频段。两个同轴波导管、反射面及其他结构的结合,可形成不同的微波天线,如前馈式双频微波天线、后馈式卡塞格伦双频微波天线等。本发明通过两个波导来馈送微波能量,使得天线可同时工作于两个频段,从而大大扩大了微波天线的应用范围。

Description

一种双频馈源组件及双频微波天线 技术领域
本发明涉及一种微波天线,尤其是涉及一种工作于两个频带的双频馈源组件及双频微波天线。
背景技术
在微波点对点或者点对多点的通信网络中,微波天线是负责接收和发射电磁波信号的装置。应用在5GHz到80GHz频带内的微波天线通常包括四个组件:馈源、俗称反射面器的反射面、俗称天线罩的天线外罩以及辅助的安装件等。安装件起将天线安装固定在抱杆或铁塔上的作用;天线罩则起保护天线免受雨、雪、冰冻等自然环境影响的作用,同时要求天线罩对天线电性能的影响尽可能地小。反射面和馈源则主要决定天线的电性能,作接收天线时,从独立源传播过来的电磁波经反射面反射汇聚,再由馈源接收经波导等封闭传输线至接收机;作发射天线时,由信号源发出的电磁波信号经波导等封闭传输线至馈源,再由馈源辐射并按照一定幅度和相位分布要求照亮反射面,最后经反射面反射至自由空间辐射。随着微波通信的发展,市场对微波天线的需求量越来越大,同时对天线的性能要求也越来越高。不仅要求微波天线满足严格的电性能指标以及尺寸、重量、风荷等机械性能指标,同时也要求在制造、运输、安装等环节的成本低。
目前已经发展出了多种实现超高性能微波天线的技术方案,如专利号为CN201758183U的专利文献中公开的一种微波天线的馈源及微波天线,包括馈电喇叭、支撑架和副反射面,该支撑架将所述的馈电喇叭和副反射面固定在同一中轴线上,支撑架包括连接该馈电喇叭的第一连接部和连接该副反射面的第二连接部,第一连接部和第二连接部由至少一根支撑柱固 定连接。采用本馈源的天线辐射方向图满足ETSIClass3标准的包络要求,其结构和加工工艺能很好的保证性能的一致性,且成本非常低,便于大批量生产。
专利号为CN101976766B的专利文献中公开的一种超高性能微波天线及其馈源组件,其馈源组件呈旋转对称结构,包括副反射面、介质块、波导管及底座,波导管一端插置于底座中,另一端供介质块第一端插置,介质块第二端依照该端的端面形状覆盖设置所述副反射面,所述介质块:其插置于波导管部分具有至少一级圆柱体;其外露于波导管外的侧面部分设有多个具有不同直径的圆柱面;其第二端的端面上设有置中且朝向其第一端凹陷的斜锥面,沿斜锥面外围形成有圆环平面,该斜锥面上设置有至少一级微扰结构。该方案中的微波天线及其馈源组件电气性能表现良好,物理结构简单紧凑,造价相对低廉。
但是,上述天线结构均只适用于在单频段条件下工作,不适用于在双频带模式下工作,所以一定程度上限制了其使用范围。
发明内容
本发明的目的在于克服现有技术的缺陷,提供一种双频馈源组件及双频微波天线,以使天线可工作于不同频带。
为实现上述目的,本发明提出如下技术方案:一种双频馈源组件,包括第一波导管、第二波导管和副反射面,所述第二波导管位于第一波导管内且与第一波导管同轴设置,所述副反射面位于第一波导管终端开口的外侧且与第一波导管相连,所述第一波导管和第二波导管共用所述副反射面。
优选地,所述第一和第二波导管的终端均采用锥形喇叭口。
优选地,所述副反射面为以第一和第二波导管的轴线为中心轴,沿所述中心轴的圆周方向旋转一周形成的曲面。
优选地,所述副反射面与第一波导管之间通过支撑结构连接。
本发明还提出另一技术方案:一种双频馈源组件,包括第一波导管, 所述第一波导管内设置一与所述第一波导管同轴的第二波导管,所述第一和第二波导管的终端均采用锥形天线作为馈送结构。
优选地,所述第一和第二波导管的终端均采用锥形喇叭口。
优选地,所述第一和第二波导管分别连通一传输管道,所述传输管道用于接收或发射微波能量微波能量。
优选地,所述传输管道呈弯曲状,近似呈J形。
优选地,所述传输管道采用矩形波导。
本发明还提出另一技术方案:一种双频馈源组件,包括第一波导管、第二波导管和介质块,所述第二波导管位于第一波导管内且与第一波导管同轴设置,所述介质块的底部插入到所述第一波导管内和/或第二波导管内,且所述介质块的上端面形成副反射面,所述第一波导管和第二波导管共用所述副反射面。
优选地,所述副反射面的形状与所述介质块上端面的形状相同。
优选地,所述第一和第二波导管的终端均具有圆筒状开口。
本发明还提出另一技术方案:一种双频微波天线,包括双频馈源组件和反射面,所述双频馈源组件采用上述任意一种双频馈源组件。
本发明的有益效果是:本发明通过设置两个同轴的波导,形成了多种微波天线结构,包括前馈式和后馈式的,用户可根据实际需要选择相应结构的天线;另外,通过两个波导来馈送微波能量,使得天线可同时工作于两个频段,如一个频段用来发射信号,另一个用来接收信号,从而大大扩大了微波天线的应用范围。
附图说明
图1是本发明实施例1双频微波天线的结构示意图;
图2是图1中双频馈源组件的结构示意图;
图3是本发明实施例2双频馈源组件的结构示意图;
图4是本发明实施例2双频馈源组件的侧视结构示意图;
图5是本发明实施例2双频微波天线的结构示意图;
图6是本发明实施例3双频馈源组件的结构示意图;
图7是本发明实施例3双频微波天线的结构示意图。
附图标记:
1、反射面,2、第一波导管,21、第一波导管的管体,22、第一波导管的喇叭口,23、第一波导管的腔道,24、第一波导管的辐射面,3、第二波导管,31、第二波导管的管体,32、第二波导管的喇叭口,33、第二波导管的腔道,34、第二波导管的辐射面,4、副反射面,5、副反射支撑面,6、安装件,7、第一传输管道,8、第二传输管道,9、介质块,91、阶梯面,4'、副反射面,41'、第一斜锥面,42'、第二斜锥面。
具体实施方式
下面将结合本发明的附图,对本发明实施例的技术方案进行清楚、完整的描述。
本发明所揭示的一种双频微波天线,可同时工作于两个不同的频带(如E-频带和K-频带),结合图1、图5和图7所示,其包括双频馈源组件和反射面1,反射面1整体呈抛物面状且沿自身的轴线(即下文中的轴y1或y2或y3)对称。天线在发射状态下,由发射机产生的电磁信号经双频馈源组件传输并辐射到反射面1,最后由反射面1向自由空间辐射;天线在接收状态下的工作原理与之相反:入射到天线上的电磁波经反射面1反射给双频馈源组件,最后由双频馈源组件接收并输入给接收机。
其中,双频馈源组件主要包括两个同轴设置的波导管,两个波导管分别提供两个不同频带的能量给馈电的辐射部分,以使天线可同时工作于不同的频段。两个同轴波导管、反射面1及其他结构的结合,可形成多种类型的微波天线,如前馈式双频微波天线、后馈式抛物面双频微波天线、后 馈式锥形双频微波天线等。下面以几个双频馈源组件的具体实施例,来详细描述本发明双频馈源组件的结构。
实施例1
结合图1和图2所示,作为本发明最优选的实施例,本发明实施例1所揭示的一种双频馈源组件,包括第一波导管2、第二波导管3和副反射面4,第二波导管3位于第一波导管2内且与第一波导管2同轴设置,即两者具有同一旋转对称轴,标记为轴y1。
第一波导管2和第二波导管3均由圆筒状管体21、31和由管体的终端向外渐变张开形成的喇叭口22、32组成,管体21、31内形成用于传输微波能量的腔道23、33,喇叭口22、32的内壁形成微波能量的辐射面24、34,电磁波经波导管2、3的管体21、31内腔道23、33传输至喇叭口22、32处,由喇叭口22、32的内壁辐射面24、34辐射出去。这里第一波导管2和第二波导管3起初级辐射源的作用。本实施例1中,两个波导管2、3的喇叭口22、32均呈圆锥形,且两个喇叭口22、32均开口朝上。
第二波导管3与第一波导管2之间存在一定的间隙,形成第一波导管的微波能量传输腔道23。
副反射面4位于两个波导管的喇叭口22、32上方,且与第一喇叭口22相连。具体地,副反射面4与第一喇叭口22通过位于两者之间的支撑面5连接,该支撑面5连接副反射面4的最外侧底端和第一波导管2的喇叭口22的上端。本实施例1中,副反射面4为以轴y1为中心轴,沿该中心轴的圆周方向旋转一周形成的曲面;支撑面5也呈渐变张开的面,且该面形成的锥角角度小于第一喇叭口22形成的锥角角度。当然,支撑面5的形状不限于这里所限定的喇叭面,其他形状也适用于本发明,只要能实现副反射面4与第一喇叭口22的连接即可。另外,副反射面4与第一喇叭口22直接相连,即两者之间没有支撑面5的结构也适用于本发明。两个波导 管的喇叭口22、32辐射出去的微波能量再经副反射面4反射到反射面1(即主反射面),最后由主反射面1向自由空间辐射。
更进一步地,本实施例1中,两个波导管2、3的相对终端的那一端均连接在一安装件6上,通过该安装件6可将整个馈源组件安装到提供反射面1的反射件上。本实施例1中,整个馈源组件和反射面1均沿轴y1旋转对称。
本实施例1可适用于卡塞格伦天线配置,且本实施例1形成的天线结构不仅可工作于两个不同的频带,且与前馈式微波天线相比,也可获得对天线辐射方向图和增益的最小影响,提高了天线的效率。
实施例2
结合图3~图5所示,本发明实施例2所揭示的一种双频馈源组件,包括第一波导管2和第二波导管3,第二波导管3位于第一波导管2内且与第一波导管2同轴设置,即两者具有同一旋转对称轴,标记为轴y2。
第一和第二波导管2、3的终端均采用锥形天线作为馈送结构。第一波导管2和第二波导管3均由圆筒状管体21、31和由管体的终端向外渐变张开形成的喇叭口22、32组成,管体21、31内形成用于传输微波能量的腔道23、33,喇叭口22、32的内壁形成微波能量的辐射面24、34,电磁波经波导管2、3的管体21、31内腔道23、33传输至喇叭口22、32处,由喇叭口22、32的内壁辐射面24、34辐射出去。这里第一波导管2和第二波导管3起初级辐射源的作用。本实施例2中,两个波导管2、3的喇叭口22、32均呈圆锥形,且两个喇叭口均开口朝下,即对着反射面。
另外,第一波导管2与第二波导管3分别连通一传输管道,两者通过各自的传输管道接收或发射微波能量。为了便于描述,定义第一波导管2对应的传输管道为第一传输管道7,第二波导管3对应的传输管道为第二传输管道8。第一和第二传输管道7、8的一端与各自的波导管的管体21、31连通,另一端均连接在一安装件6上,通过该安装件6可将实施例2的 整个馈源组件安装到提供反射面1的反射件上。两个波导管的喇叭口22、32辐射出去的微波能量直接辐射到反射面1,最后由反射面1向自由空间辐射。
本实施例2中,第一和第二传输管道7、8均呈弯曲状,近似呈J形,当然,它们的形状不限于这里所限定的J形弯曲状,其他形状也适用于本发明,如可采用截面为矩形的矩形波导,只要实现波导管和反射面1的支撑连接即可。
本实施例2形成的微波天线为前馈式的,且作为本实施例1形成的天线结构,可工作于两个不同的频带,且与实施例1形成的天线结构相比,其从电气设计角度看也相对简单,但是因波导管的喇叭口不适合在弯曲角度大于180度时提供能量,所以不适合有效地辐射能量到深反射面的边缘(通常焦径比F/D<0.25),即本实施例2的方案更适用于浅反射面(通常焦径比F/D>0.25)。
实施例3
结合图6和图7所示,本发明实施例3所揭示的一种双频馈源组件,包括第一波导管2、第二波导管3和介质块9,第二波导管3位于第一波导管2内且与第一波导管2同轴设置,即两者具有同一旋转对称轴,标记为轴y3。
介质块9的上端面形成副反射面4',底部插入到第一波导管2终端的管体21内和/或第二波导管3终端的管体31内,第一波导管2和第二波导管3共用该副反射面4'。本实施例3中,介质块9整体沿轴y3旋转对称,副反射面4'的形状与介质块9的上端面的形状相同。具体地,副反射面4'包括第一斜锥面41'和第二斜锥面42',第一斜锥面41'靠近轴y3设置且其是向介质块9的底部方向凹陷形成,第二斜锥面42'位于第一斜锥面41'外侧两边,本实施例3中,第一斜锥面41'和第二斜锥面42'也沿轴y3旋转对称。当然,副反射面4'的形状不限于这里所限定的包括第一斜锥面41'和第 二斜锥面42'的这种形状结构,其他可使副反射面4'整体形状呈锥面的结构也同样适用于本发明。
介质块9插入第一波导管2内的部分的外侧面呈至少有一级台阶的阶梯面,其中,本实施例3中,阶梯面的最靠近第一波导管2开口的外表面91与第一波导管2的内壁紧密贴合,其余阶梯面的外径小于第一波导管2的内径;介质块9露出第一波导管2外的部分的外侧面呈圆锥状。
第一波导管2和第二波导管3整体均呈圆筒状管体21、31,管体21、内形成用于传输微波能量的腔道23、33,第二波导管3的终端插入至介质块9底部内。电磁波经波导管的管体内腔道23、33传输至介质块9处,由介质块9的上端面辐射出去。这里第一波导管2和第二波导管3起初级辐射源的作用。介质块9的上端面的微波能量再经副反射面4'反射到反射面1(即主反射面),最后由主反射面1向自由空间辐射。本实施例1中,两个波导管2、3的终端开口均朝上。
更进一步地,本实施例3中,两个波导管2、3的相对终端的那一端均连接在一安装件6上,通过该安装件6可将整个馈源组件安装到提供反射面的反射件上。本实施例3中,整个馈源组件和反射面1均沿轴y3旋转对称。
本发明实施例3形成的天线结构也是后馈式双频微波天线,即与实施例2形成的天线结构相比,不仅可工作于两个不同的频带,也可获得对天线辐射方向图和增益的最小影响,提高了天线的效率。但是由于副反射面的直径过大,需要低波段性能要求,所以设计时,减小副反射面的直径可以阻止E带能量的过度封锁。
本发明的技术内容及技术特征已揭示如上,然而熟悉本领域的技术人员仍可能基于本发明的教示及揭示而作种种不背离本发明精神的替换及修饰,因此,本发明保护范围应不限于实施例所揭示的内容,而应包括各种不背离本发明的替换及修饰,并为本专利申请权利要求所涵盖。

Claims (9)

  1. 一种双频馈源组件,其特征在于,包括第一波导管、第二波导管和副反射面,所述第二波导管位于第一波导管内且与第一波导管同轴设置,所述副反射面位于第一波导管终端开口的外侧且与第一波导管相连,所述第一波导管和第二波导管共用所述副反射面。
  2. 根据权利要求1所述的双频馈源组件,其特征在于,所述第一和第二波导管的终端均采用锥形喇叭口。
  3. 根据权利要求1所述的双频馈源组件,其特征在于,所述副反射面为以第一和第二波导管的轴线为中心轴,沿所述中心轴的圆周方向旋转一周形成的曲面。
  4. 一种双频馈源组件,其特征在于,包括第一波导管,所述第一波导管内设置一与所述第一波导管同轴的第二波导管,所述第一和第二波导管的终端均采用锥形天线作为馈送结构。
  5. 根据权利要求4所述的双频馈源组件,其特征在于,所述第一和第二波导管的终端均采用锥形喇叭口。
  6. 根据权利要求4所述的双频馈源组件,其特征在于,所述第一和第二波导管分别连通一传输管道,所述传输管道用于接收或发射微波能量。
  7. 一种双频馈源组件,其特征在于,包括第一波导管、第二波导管和介质块,所述第二波导管位于第一波导管内且与第一波导管同轴设置,所述介质块的底部插入到所述第一波导管内和/或第二波导管内,且所述介质块的上端面形成副反射面,所述第一波导管和第二波导管共用所述副反射面。
  8. 根据权利要求7所述的双频馈源组件,其特征在于,所述第一和第二波导管的的终端均具有圆筒状开口。
  9. 一种双频微波天线,其特征在于,包括双频馈源组件和反射面,所述双频馈源组件为权利要求1~8中任意一项所述的双频馈源组件。
PCT/CN2018/090754 2017-07-11 2018-06-12 一种双频馈源组件及双频微波天线 WO2019011096A1 (zh)

Priority Applications (2)

Application Number Priority Date Filing Date Title
US16/615,730 US10992041B2 (en) 2017-07-11 2018-06-12 Dual-frequency feed source assembly and dual-frequency microwave antenna
EP18831241.7A EP3654451A4 (en) 2017-07-11 2018-06-12 DUAL FREQUENCY POWER SOURCE AND DUAL FREQUENCY MICROWAVE ANTENNA KIT

Applications Claiming Priority (2)

Application Number Priority Date Filing Date Title
CN201710560663.2 2017-07-11
CN201710560663.2A CN109244676A (zh) 2017-07-11 2017-07-11 一种双频馈源组件及双频微波天线

Publications (1)

Publication Number Publication Date
WO2019011096A1 true WO2019011096A1 (zh) 2019-01-17

Family

ID=65001775

Family Applications (1)

Application Number Title Priority Date Filing Date
PCT/CN2018/090754 WO2019011096A1 (zh) 2017-07-11 2018-06-12 一种双频馈源组件及双频微波天线

Country Status (4)

Country Link
US (1) US10992041B2 (zh)
EP (1) EP3654451A4 (zh)
CN (1) CN109244676A (zh)
WO (1) WO2019011096A1 (zh)

Families Citing this family (3)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
EP3641059B1 (en) * 2018-07-26 2023-09-06 Huawei Technologies Co., Ltd. Feed device, dual-frequency microwave antenna and dual-frequency antenna device
US11424538B2 (en) * 2018-10-11 2022-08-23 Commscope Technologies Llc Feed systems for multi-band parabolic reflector microwave antenna systems
CN113131210B (zh) * 2021-04-13 2022-09-06 西北核技术研究所 一种高功率微波用正馈卡塞格伦天线

Citations (5)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
CN1271470A (zh) * 1997-08-21 2000-10-25 基尔达尔天线咨询公司 具有自支撑馈送器的改进的反射器天线
CN101976766A (zh) 2010-09-07 2011-02-16 京信通信系统(中国)有限公司 超高性能微波天线及其馈源组件
CN201758183U (zh) 2010-05-19 2011-03-09 广东通宇通讯设备有限公司 一种微波天线的馈源及微波天线
US20140368408A1 (en) * 2012-01-31 2014-12-18 Alcatel Lucent Subreflector of a dual-reflector antenna
CN206878184U (zh) * 2017-07-11 2018-01-12 罗森伯格技术(昆山)有限公司 一种双频馈源组件及双频微波天线

Family Cites Families (16)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
US4819005A (en) * 1986-08-21 1989-04-04 Wilkes Brian J Concentric waveguides for a dual-band feed system
US5041840A (en) * 1987-04-13 1991-08-20 Frank Cipolla Multiple frequency antenna feed
US6005528A (en) * 1995-03-01 1999-12-21 Raytheon Company Dual band feed with integrated mode transducer
US6137449A (en) * 1996-09-26 2000-10-24 Kildal; Per-Simon Reflector antenna with a self-supported feed
JP3388694B2 (ja) * 1997-09-01 2003-03-24 シャープ株式会社 2周波共用一次放射器
GB9900411D0 (en) * 1999-01-08 1999-02-24 Cambridge Ind Ltd Multi-frequency antenna feed
EP1158597A1 (en) * 2000-05-23 2001-11-28 Newtec cy. Ka/Ku dual band feedhorn and orthomode transducer (OMT)
US6577283B2 (en) * 2001-04-16 2003-06-10 Northrop Grumman Corporation Dual frequency coaxial feed with suppressed sidelobes and equal beamwidths
US6831613B1 (en) * 2003-06-20 2004-12-14 Harris Corporation Multi-band ring focus antenna system
US6985120B2 (en) * 2003-07-25 2006-01-10 Andrew Corporation Reflector antenna with injection molded feed assembly
US6937201B2 (en) * 2003-11-07 2005-08-30 Harris Corporation Multi-band coaxial ring-focus antenna with co-located subreflectors
US6906676B2 (en) * 2003-11-12 2005-06-14 Harris Corporation FSS feeding network for a multi-band compact horn
CN101383451A (zh) * 2008-05-28 2009-03-11 广东盛路通信科技股份有限公司 超高性能天线的微波馈源
CN102136631B (zh) * 2010-11-01 2014-07-02 西安空间无线电技术研究所 一种s/x双频段圆极化馈源
US8963791B1 (en) * 2012-09-27 2015-02-24 L-3 Communications Corp. Dual-band feed horn
IL258216B (en) * 2018-03-19 2019-03-31 Mti Wireless Edge Ltd Dual band antenna feed

Patent Citations (5)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
CN1271470A (zh) * 1997-08-21 2000-10-25 基尔达尔天线咨询公司 具有自支撑馈送器的改进的反射器天线
CN201758183U (zh) 2010-05-19 2011-03-09 广东通宇通讯设备有限公司 一种微波天线的馈源及微波天线
CN101976766A (zh) 2010-09-07 2011-02-16 京信通信系统(中国)有限公司 超高性能微波天线及其馈源组件
US20140368408A1 (en) * 2012-01-31 2014-12-18 Alcatel Lucent Subreflector of a dual-reflector antenna
CN206878184U (zh) * 2017-07-11 2018-01-12 罗森伯格技术(昆山)有限公司 一种双频馈源组件及双频微波天线

Non-Patent Citations (1)

* Cited by examiner, † Cited by third party
Title
See also references of EP3654451A4

Also Published As

Publication number Publication date
EP3654451A4 (en) 2021-03-17
US20200212573A1 (en) 2020-07-02
US10992041B2 (en) 2021-04-27
CN109244676A (zh) 2019-01-18
EP3654451A1 (en) 2020-05-20

Similar Documents

Publication Publication Date Title
US6020859A (en) Reflector antenna with a self-supported feed
US4626863A (en) Low side lobe Gregorian antenna
WO2012113293A1 (zh) 双反射面天线
CA2379151C (en) Ka/ku dual band feedhorn and orthomode transducer (omt)
US3195137A (en) Cassegrainian antenna with aperture blocking correction
US4168504A (en) Multimode dual frequency antenna feed horn
EP0136818A1 (en) Dual mode feed horn or horn antenna for two or more frequency bands
WO2012031426A1 (zh) 超高性能微波天线及其馈源组件
KR20080028714A (ko) 원편파 유전체 혼 파라볼라 안테나
WO2019011096A1 (zh) 一种双频馈源组件及双频微波天线
CN101615723A (zh) 超薄超高性能微波天线
CN206878184U (zh) 一种双频馈源组件及双频微波天线
CN107046177B (zh) 后馈式的双极化抛物面天线馈源
US3500419A (en) Dual frequency,dual polarized cassegrain antenna
CN112490674B (zh) 一种基于双频馈源馈电的低焦径比反射面天线
US3133284A (en) Paraboloidal antenna with compensating elements to reduce back radiation into feed
CN109411870B (zh) 一种双频共用的抛物面天线馈源
CN115621738B (zh) 一种微波天线馈源结构及微波天线系统
CN210350106U (zh) 一种应用于后馈式抛物面反射面天线的双频段馈源
US3231893A (en) Cassegrainian antenna with aperture blocking compensation
KR20110006953A (ko) 역중앙 급전방식의 헬릭스 급전 광대역 안테나
US4578681A (en) Method and apparatus for optimizing feedhorn performance
CN114300851A (zh) 一种e波段双频段短焦抛物面天线及无线通信系统
JPH10256822A (ja) 2周波共用一次放射器
WO2022104741A1 (zh) 一种双频馈源及双频天线

Legal Events

Date Code Title Description
121 Ep: the epo has been informed by wipo that ep was designated in this application

Ref document number: 18831241

Country of ref document: EP

Kind code of ref document: A1

NENP Non-entry into the national phase

Ref country code: DE

ENP Entry into the national phase

Ref document number: 2018831241

Country of ref document: EP

Effective date: 20200211