WO2012030115A1 - 저수용량 증대 및 에너지 순환형 저수지 시공방법 - Google Patents

저수용량 증대 및 에너지 순환형 저수지 시공방법 Download PDF

Info

Publication number
WO2012030115A1
WO2012030115A1 PCT/KR2011/006349 KR2011006349W WO2012030115A1 WO 2012030115 A1 WO2012030115 A1 WO 2012030115A1 KR 2011006349 W KR2011006349 W KR 2011006349W WO 2012030115 A1 WO2012030115 A1 WO 2012030115A1
Authority
WO
WIPO (PCT)
Prior art keywords
water
reservoir
pipe
dam
water storage
Prior art date
Application number
PCT/KR2011/006349
Other languages
English (en)
French (fr)
Inventor
박길종
김원조
Original Assignee
Park Kil Jong
Kim Won Cho
Priority date (The priority date is an assumption and is not a legal conclusion. Google has not performed a legal analysis and makes no representation as to the accuracy of the date listed.)
Filing date
Publication date
Application filed by Park Kil Jong, Kim Won Cho filed Critical Park Kil Jong
Publication of WO2012030115A1 publication Critical patent/WO2012030115A1/ko

Links

Images

Classifications

    • FMECHANICAL ENGINEERING; LIGHTING; HEATING; WEAPONS; BLASTING
    • F03MACHINES OR ENGINES FOR LIQUIDS; WIND, SPRING, OR WEIGHT MOTORS; PRODUCING MECHANICAL POWER OR A REACTIVE PROPULSIVE THRUST, NOT OTHERWISE PROVIDED FOR
    • F03BMACHINES OR ENGINES FOR LIQUIDS
    • F03B13/00Adaptations of machines or engines for special use; Combinations of machines or engines with driving or driven apparatus; Power stations or aggregates
    • F03B13/06Stations or aggregates of water-storage type, e.g. comprising a turbine and a pump
    • EFIXED CONSTRUCTIONS
    • E02HYDRAULIC ENGINEERING; FOUNDATIONS; SOIL SHIFTING
    • E02BHYDRAULIC ENGINEERING
    • E02B9/00Water-power plants; Layout, construction or equipment, methods of, or apparatus for, making same
    • FMECHANICAL ENGINEERING; LIGHTING; HEATING; WEAPONS; BLASTING
    • F03MACHINES OR ENGINES FOR LIQUIDS; WIND, SPRING, OR WEIGHT MOTORS; PRODUCING MECHANICAL POWER OR A REACTIVE PROPULSIVE THRUST, NOT OTHERWISE PROVIDED FOR
    • F03BMACHINES OR ENGINES FOR LIQUIDS
    • F03B13/00Adaptations of machines or engines for special use; Combinations of machines or engines with driving or driven apparatus; Power stations or aggregates
    • F03B13/08Machine or engine aggregates in dams or the like; Conduits therefor, e.g. diffusors
    • FMECHANICAL ENGINEERING; LIGHTING; HEATING; WEAPONS; BLASTING
    • F03MACHINES OR ENGINES FOR LIQUIDS; WIND, SPRING, OR WEIGHT MOTORS; PRODUCING MECHANICAL POWER OR A REACTIVE PROPULSIVE THRUST, NOT OTHERWISE PROVIDED FOR
    • F03BMACHINES OR ENGINES FOR LIQUIDS
    • F03B15/00Controlling
    • YGENERAL TAGGING OF NEW TECHNOLOGICAL DEVELOPMENTS; GENERAL TAGGING OF CROSS-SECTIONAL TECHNOLOGIES SPANNING OVER SEVERAL SECTIONS OF THE IPC; TECHNICAL SUBJECTS COVERED BY FORMER USPC CROSS-REFERENCE ART COLLECTIONS [XRACs] AND DIGESTS
    • Y02TECHNOLOGIES OR APPLICATIONS FOR MITIGATION OR ADAPTATION AGAINST CLIMATE CHANGE
    • Y02EREDUCTION OF GREENHOUSE GAS [GHG] EMISSIONS, RELATED TO ENERGY GENERATION, TRANSMISSION OR DISTRIBUTION
    • Y02E10/00Energy generation through renewable energy sources
    • Y02E10/20Hydro energy
    • YGENERAL TAGGING OF NEW TECHNOLOGICAL DEVELOPMENTS; GENERAL TAGGING OF CROSS-SECTIONAL TECHNOLOGIES SPANNING OVER SEVERAL SECTIONS OF THE IPC; TECHNICAL SUBJECTS COVERED BY FORMER USPC CROSS-REFERENCE ART COLLECTIONS [XRACs] AND DIGESTS
    • Y02TECHNOLOGIES OR APPLICATIONS FOR MITIGATION OR ADAPTATION AGAINST CLIMATE CHANGE
    • Y02EREDUCTION OF GREENHOUSE GAS [GHG] EMISSIONS, RELATED TO ENERGY GENERATION, TRANSMISSION OR DISTRIBUTION
    • Y02E60/00Enabling technologies; Technologies with a potential or indirect contribution to GHG emissions mitigation
    • Y02E60/16Mechanical energy storage, e.g. flywheels or pressurised fluids

Definitions

  • the present invention relates to a reservoir construction method, and more particularly, to a reservoir construction method capable of increasing a low capacity and improving water utilization efficiency at a lower construction cost while using an existing reservoir facility.
  • Hydro power generation is described in more detail as a method of power supply.
  • Hydrogen power generation is a method of generating electricity in the process of converting potential energy of water affected by gravity into kinetic energy.
  • hydroelectric power generation depends on the topographical conditions.
  • hydroelectric power generation is classified into waterway power generation, dam power generation, dam and waterway power generation, basin-type power generation, pumping power generation, tidal power generation, etc., depending on the size of the reservoir and the amount of free fall.
  • hydroelectric power generation is a method of converting the potential energy of water located at a high place into the kinetic energy of a generator turbine and obtaining electric power by using electromagnetic induction phenomenon inside the generator. This has the disadvantage of being heavily influenced by terrain, season and rainfall.
  • dam-type power generation is used to maintain a stable amount of power generation and increase the drop.
  • Dam-type power generation is a method of constructing a large dam in the main stream of the river to block the flow of water and using the water level difference generated between the upstream and downstream of the dam.
  • the size of the dam must be increased in order to increase the flow rate, so that the submerged area due to the construction of the dam has to be enlarged.
  • the dam-waterway power generation is a method in which the power generation and dam-type power generations are compromised.
  • dam-water power generation basically, a dam is constructed to form a large drop, and a reservoir is formed, and a water channel capable of passing as much water as needed for power generation from the reservoir and a hydraulic pipe that can withstand high pressure are placed on a solid terrain.
  • the power plant is built at the end of the hydraulic pipe and the water wheel generator and various accessories are installed therein.
  • Dam and hydroelectric power generation has the advantage that a large drop can be obtained and abundant amount of water can be used than when adopting either hydroelectric or dam power generation.
  • the reservoir can store a large amount of water, the stored water can be supplied to the surrounding farmland, production site, and residential water through the drainage pipe connected from the lower part of the reservoir to each demand source. This is a very important facility.
  • Korea has a severe variation in seasonality, year, and region, and at the same time, 65% of the country's land is mountainous topography.
  • a discharge passage should be established to discharge the water around the dam.
  • a large water gate to open and close the passage to selectively discharge water from the reservoir is required, and a large passage through which the water can be discharged, that is, a drainage channel, must be constructed.
  • FIG. 1 is a plan view showing a waterway constructed in an existing water storage facility, and the waterway 13 for discharging water in the reservoir 11 has to be constructed with concrete, etc. by providing a separate space around the dam 12. Hundreds of billions of construction costs, manpower, and equipment are required, and the environment and environment of the surrounding area where air is added and water is discharged are considered.
  • FIG. 2 is an exemplary view illustrating a construction state in which a dam is added to secure a low capacity, and as shown in FIG. 2, a large-scale additional dam 13 needs to be installed in order to increase the height of the existing dam 12.
  • the Yeosu channel which is a separate discharge passage for discharging water around the dam, should be built on a large scale.
  • the present invention was invented to solve the problems as described above, the construction of a separate additional water storage in the existing water storage facilities, but newly established, the existing water storage facilities and aggregates generated during the construction of the new additional water storage facilities It can be used to build an expansion dam to increase the water storage capacity, and it is possible to increase the water storage at low cost compared to the conventional one by enabling power generation and water level control of each water storage facility while circulating water between existing and new water storage facilities. In addition, it is possible to smoothly supply the soil and aggregate required for the expansion of existing dams, and to provide a reservoir operating system and method that can greatly improve the use efficiency of water as water.
  • the present invention to establish a separate reservoir including a reservoir to have a reservoir and a drop of the pre-built reservoir, and between the pre-built reservoir and the newly established reservoir, a hydraulic pipe and a water pipe And a water turbine generator for producing electric power by moving water from the upper reservoir in the previously constructed reservoir and the newly established reservoir to the lower reservoir in the two reservoirs through the pressure pipes, and pumping water from the lower reservoir.
  • a pressurized pump pumped to the upper reservoir through the water generator and the pressure pump is characterized in that the water level between the upper reservoir and the lower reservoir is circulated by the pressure pump is configured so that the water level control and generation of each reservoir can be made Provide reservoir operating system.
  • the existing dam portion in order to increase the dam of the previously installed water storage facility, includes a dam extension portion additionally constructed without a waterway when the height is increased and the storage capacity is increased, and the additionally constructed dam extension portion Soils and aggregates from ground excavation are used to construct new reservoirs.
  • a pressure pipe constructed to have a free fall along the already built waterway is buried in the underground portion of the dam extension part in the previously constructed water storage facility, and power is supplied to the lower end of the pressure pipe by water discharged through the pressure pipe.
  • Produced aberration generator it can be configured to generate power by the water discharged through the pressure pipe when the water level of the previously constructed reservoir exceeds a certain level.
  • control device may be provided to control the driving of the pressure pump based on the detection value of the level gauge for detecting the water level in each reservoir.
  • control device drives the pressure pump to maintain a constant circulation of water between the upper reservoir and the lower reservoir. Can be controlled.
  • a drainage pipe for supplying water to the demand destination is installed and connected to the water stored in the previously constructed reservoir, and the drainage pipe is installed with a water turbine generator for generating electric power by water discharged through the drainage pipe. It may be configured to generate power by the water supplied from the reservoir to the water.
  • the present invention the step of establishing a separate reservoir 200 including the reservoir 210 to have a drop in the reservoir 110 of the previously installed reservoir 100;
  • the upper reservoir 210 and the lower reservoir 110 are controlled by controlling the driving of the pressure pump 261 by the control device 300 that receives the detection values of the level gauges 111 and 211 for detecting the water level in the reservoirs 110 and 210.
  • each reservoir (110,210) In order to adjust the water level of each reservoir (110,210) while allowing the water to circulate between, between the reservoir (110) and the newly established reservoir 210 from the upper reservoir 210 to the lower reservoir (110) Installing a water supply pipe and a pressure pump 261 for moving water from the water pressure pipe 230 for moving the water and the water reservoir 110 at the lower portion to the upper reservoir 210; Connecting the PC pipes to form a water channel along the existing channel of the existing waterway that was previously installed in the reservoir 110, thereby forming a pressure pipe 141 for the previously constructed reservoir 110 as the PC pipe; After transporting the soil and aggregates generated by excavating the ground during the establishment of the separate water storage facility 200 to the pre-installed water storage facility 100, the hydraulic pipe 141 is embedded using the transported soil and aggregates.
  • a pressure pipe buried step including, the pressure pipe 141 connected to the existing existing expansion facility And a storage facility for controlling water circulation through the water pressure pipes 230 installed in the new water storage facility so as to perform the water level control and generation of each water storage facility.
  • a control device controls the driving of the pressure pump, the control device receives the detection value of the level gauge for detecting the water level in each reservoir to control the driving of the pressure pump based on this. Can be.
  • control device drives the pressure pump to maintain a constant circulation of water between the upper reservoir and the lower reservoir. Can be controlled.
  • the water pipe is installed in the drain pipe to produce power by the water discharged through the drain pipe, It is desirable to generate power by water supplied from the reservoir to the water.
  • the construction of a separate additional storage facility in the existing storage facility, but newly established, the sediment and aggregate generated during the construction of the new additional storage facility to store the existing storage facility It can be used to build an expansion dam for increase, and it is possible to increase the water storage at low cost compared to the conventional one by enabling power generation and water level control of each water storage facility while circulating water between existing and new water storage facilities. It is possible to smoothly supply the soil and aggregate required for the expansion of existing dams, and greatly improve the efficiency of using water as water.
  • the water supplied from the lower reservoir to the demand source through the drainage pipe can also be used to generate power, thereby greatly improving the power supply and demand problem.
  • 1 is a plan view showing a waterway constructed in an existing water storage facility.
  • FIG. 2 is an exemplary view showing a construction state in which a dam is added to secure a low capacity.
  • FIG 3 is a plan view showing a reservoir operating system according to an embodiment of the present invention.
  • FIG. 4 is a cross-sectional view showing a reservoir operating system according to an embodiment of the present invention.
  • the present invention is to install a separate additional water storage in the existing water storage facility, but the soil and aggregates generated during the construction of the new water storage system is used for the expansion of the dam for the storage of the existing water storage facilities, and the existing water storage and By circulating water between new water facilities, power generation and water level control of each water storage facility can be carried out, which enables the storage of water to be increased at a lower cost than before, and the smooth supply of soil and aggregates required for dam expansion of existing water facilities.
  • the present invention relates to a reservoir operating system and method capable of greatly improving the use efficiency of water as water (generated water, domestic water, agricultural water, industrial water).
  • the present invention is not a way to discharge the water through the construction of the newly built Yeosu at the time of construction of the new reservoir, the present invention is to install the water pressure pipe that acts as a Yeosu without the Yeosu at the time of construction of the new reservoir to discharge the water through Systems and methods.
  • FIG 3 is a plan view showing a reservoir operating system according to an embodiment of the present invention
  • Figure 4 is a cross-sectional view showing a reservoir operating system according to an embodiment of the present invention.
  • a separate additional water storage facility 200 is newly installed in the previously installed water storage facility 100.
  • the newly constructed water reservoir 200 may be constructed by constructing a reservoir 220 by constructing a dam 220 as in the case of the construction of the existing water reservoir 100 after excavating the ground. 200 may be installed on the upper or lower terrain of the existing water storage (100).
  • the newly constructed reservoir 210 is constructed to have a drop with the reservoir 110 of the existing reservoir 100.
  • FIGS. 3 and 4 illustrate an example in which the newly constructed reservoir 200 is installed on the upper terrain. will be.
  • a sheet waterproof material 212 may be installed at the bottom of the newly formed reservoir 210 to prevent water from the newly formed reservoir 210 from penetrating into the ground, and when the sheet waterproof material 212 is constructed, the reservoir The water stored in 210 can be prevented from being lost to the ground.
  • the reservoir 200 and the reservoir 210 newly established in the upper terrain will be referred to as the upper reservoir and the upper reservoir, and the existing reservoir 100 and the reservoir which are located at a lower position therefrom. 110 will be referred to as a bottom reservoir, a bottom reservoir.
  • the hydraulic pipe 230 and the water supply pipe 250 are connected to each other, the hydraulic pipe 230 is the water stored in the upper reservoir 210 Constructed as a passage that can be moved to the lower reservoir 110, it can be constructed in a conventional pipe structure in which the power generation water is supplied, the water pipe 250 is constructed separately is the water stored in the lower reservoir 110 It is constructed as a passage that can be pumped to the reservoir 210.
  • the first power plant 240 is constructed to produce electric power using a drop of water discharged from the upper reservoir 210 through the hydraulic pipe 230, and the first power plant 240 is the lower reservoir 110. It is built around the outlet portion where the water pressure pipe 230 ends, and the first power plant 240 is installed with a conventional water generator 241 and various accessories.
  • a valve device 242 for selectively opening and closing the flow path of water flowing into the water turbine generator 241 from the water pressure pipe 230, and a control device 300 for controlling the opening and closing operation of the valve device 242. Etc. may be installed.
  • a plurality of hydraulic pipes are branched from the hydraulic pipe connected to the outlet of the upper reservoir 210. It is possible to provide a water generator and a valve device in each hydraulic pipe, and to provide a plurality of water generators and a valve device as a whole.
  • a pump station 260 is pumped to pump water from the lower reservoir 110 to the upper reservoir 210 through the water pipe 250, and the pump station 260 is constructed around the lower reservoir 110. It is built in the inlet 250 is started, the pump station 260 is to install a pressure pump 261 and various accessories.
  • the driving of the pressure pump 261 is controlled by the control device 300, wherein the control device 300 is a water level gauge (111, 211) for detecting the water level in each reservoir (110, 210), and the pressure pipe from the upper reservoir (210)
  • the flow rate of the water discharged through the 230 or the flow rate of the water flowing into the lower reservoir 110 through the pressure pipe 230 is provided to receive the detection values of the flow meters (243, 244).
  • control device 300 controls the driving of the pressure pump 261 so that the amount of circulation of water is kept constant based on the detection values of the water gauges 111 and 211 and the flow meters 243 and 244. Level control will be performed.
  • a plurality of water pipes are constructed by branching from the main pipe connected to the outlet of the lower reservoir 110, and a pressure pump is installed in each water pipe. It is possible to do
  • the driving of the valve device 242 is controlled based on the detection values of the detection devices such as the water gauges 111 and 211 and the flow meters 243 and 244, including the driving of the pressure pump 261 for circulating water.
  • the device 300 is properly controlled, whereby the control device 300 may be configured to the unmanned automatic control system for controlling the overall operating state of the hydroelectric power system, such as the movement of water and the power generation drive.
  • the water circulating process that is, by using the pressure pump 261 to raise the water of the lower reservoir 110 to the upper reservoir 210 and the water of the upper reservoir 210 to the hydraulic pipe 230
  • the pressure pump 261 In the process of circulating the water to generate power through the aberration generator 241 of the first power plant 240 through the water, during the day when the demand for power is high, the water of the upper reservoir 210 is discharged through the pressure pipe 230
  • the power is produced through the aberration generator 241 of the first power plant 240, and during the night when the demand for power is low, the pressure pump 261 is driven to supply water from the lower reservoir 110 to the upper reservoir 210. It is possible to move to and save it.
  • a drainage pipe 130 for supplying the stored water to the lower portion of the lower reservoir 110 is constructed to be connected to the surrounding stream 101, and at the time of needing a dry season or other water, Water is drained from the reservoir 110 through the drainage pipe 130 to be supplied to living water, agricultural water, and industrial water to surrounding farmland, production site, and residential area.
  • the dam of the pre-installed reservoir 100 may be enlarged to increase the height and storage capacity, and at this time, the lower reservoir in which the soil and aggregates generated by the ground excavation during construction of the newly constructed upper reservoir 210 are constructed. It will be used for the expansion of the dam in (110).
  • the dam constructed in the existing lower reservoir 100 is added to the dam extension portion 140, which is constructed without a large free passage to increase the height and increase the capacity of the existing dam portion 120, and additionally constructed the dam. Soil and aggregate generated by the ground excavation during the construction of the reservoir 210 of the upper reservoir 200 in which the enlarged portion 140 is newly established will be expanded.
  • a pressure pipe constructed by connecting PC (Precast Concrete) pipes to form a channel along the existing channel of the existing channel ( 141), the earth and aggregate transported from the upper reservoir 210 can be stacked on the connected PC pipe to expand the dam, thereby forming the inner passage of the connected PC pipe, that is, formed by the PC pipes.
  • the inner passage of the pressure pipe 141 may serve to serve as existing Yeosu.
  • the water pressure pipe 141 constructed by connecting the PC pipes in the ground of the dam extension part 140 to a predetermined discharge destination such as a river, a water channel, a valley, and the water level of the water in the lower reservoir 110 has a predetermined level If it does, it serves as the existing Yeosu to discharge water.
  • the PC pipe is a concrete pipe manufactured in the factory, in the present invention can use a circular PC pipe having a constant diameter and length, and after the construction of a plurality of PC pipes along the existing Yeosu location, and build a dam to expand In the middle of the dam extension portion 140, the water pressure pipe 141 serving as a channel of water formed by the PC pipe is formed.
  • the pressure pipe 141 is constructed to have a drop
  • the lower end of the pressure pipe 141 is a second to produce electric power by using the drop of water discharged from the lower reservoir 110 Power plant 150 may be built.
  • the second power plant 150 may be built at the outlet portion at which the hydraulic pipe 141 ends, and the second power plant 150 is provided with a conventional water generator 151 and various accessories.
  • a valve device 152 or the like may be installed to selectively open and close the flow path of water flowing from the water pressure pipe 141 to the water generator generator 151.
  • the opening and closing operation of the valve device 152 is a control device. 300 to control.
  • FIGS. 3 and 4 illustrate that a single hydraulic pipe 141 is constructed.
  • a plurality of hydraulic pipes 141 passing through the second power plant 150 may be constructed in parallel so as to form a plurality of water channels from the outlet point provided at the lower reservoir 110 to the discharge destination, and in this case, the second power plant It is possible to provide each of the hydraulic generators 151 and the valve device 152 in each of the hydraulic pipes 141 in the 150 and to include a plurality of hydraulic generators and the valve device as a whole.
  • the water in the lower reservoir 110 exceeds a predetermined level, such as during flooding, the water is discharged and discharged through the water pressure pipe 141 serving as an existing Yeosu channel embedded in the dam extension part 140.
  • the water pressure pipe 141 serving as an existing Yeosu channel embedded in the dam extension part 140.
  • the drain pipe 130 connected from the lower portion of the lower reservoir 110 may also be constructed to pass through the second power plant 150 with a drop, in which the second power plant 150 is Additional apparatuses such as a separate aberration generator 153 and a valve device 154 for generating electric power by using a drop of water discharged through the drainage pipe 130 are additionally installed.
  • additional power may be produced using water from the lower reservoir 110 supplied to living water, agricultural water, and industrial water through the drainage pipe 130 at the time when water is required, such as a dry season.
  • power generation using surplus water and power generation using water supplied to the water can contribute to solving the power supply and demand problem in the surrounding area.
  • the power produced by the first power plant 240 is supplied to the surrounding area for use, thereby solving the power supply and demand problem of the surrounding area.
  • the soil and aggregate of the upper reservoir 210 is used for dam expansion of the lower reservoir 110, there is no difficulty in treating the soil and aggregate during construction of the upper reservoir, and it is necessary to create a separate soil field. There is no great difficulty in obtaining the soil and aggregate necessary for the expansion of the lower reservoir.
  • both the expansion of the dam and the increase of the storage capacity can be facilitated, and the storage can be increased at a low cost, and the amount of storage that can be secured in the entire storage system can be greatly increased.
  • the dam reservoir of the lower reservoir 110 when the dam reservoir of the lower reservoir 110 is expanded, the PC pipe is built along the position of the existing Yeosu channel, which is built in the existing, and the water pressure pipe 141 is constructed, and the water is discharged through the water pressure pipe 141.
  • the construction of a new Yeosu channel due to the expansion of the dam is not necessary (the construction cost of the Yeosu can be reduced), the power generation and power supply using surplus water, and the electric power accordingly
  • the water utilization efficiency can be increased.
  • the water supplied from the lower reservoir 110 to the demand source through the drainage pipe 130 is also configured to be used to produce power, thereby greatly improving the power supply and supply problem.
  • a new water storage system 200 is newly established, for example, a reservoir for storing water by constructing a dam 220 after excavating the ground in the upper terrain. To form 210.
  • a water pressure pipe 230 may be constructed to discharge the power generation water from the upper reservoir to move to the lower reservoir. It should be constructed on solid terrain to withstand the high pressures while allowing the water to pass through.
  • the first power plant 240 is built, and the water generator 241, the valve device 242, and the control device 300 are installed.
  • the construction of the water pipe 250 that can move the water of the lower reservoir to the upper reservoir, and the pump station 260 in the inlet to the start of the water pipe 250 Build and install the pressure pump 261 and various accessories therein.
  • the soil and aggregates generated by the ground excavation during the construction of the upper reservoir 210 for the dam expansion of the lower reservoir 110 is transported to the lower reservoir 110 after transported to the outside, and then in the lower reservoir 110 Transported soil and aggregates are used to increase the height of the dam.
  • the soil and aggregate generated during the construction of the newly established upper reservoir 210 is to be used to expand the dam of the existing lower reservoir 110.
  • the pre-fabricated PC pipe to the existing Yeosu channel to form a hydraulic pressure pipe 141, and then pile up the soil and aggregates thereon to expand the dam, the lower reservoir 110 at the lower end of the hydraulic pipe 141
  • the second power plant 150 for generating electric power by using the free fall of the water discharged from the building is built, and accessories such as the water generator 151 and the valve device 152 are installed.
  • the drainage pipe 130 for supplying water from the lower portion of the lower reservoir 110 the drainage pipe 130 is constructed to pass through the second power plant 150, and then the lower reservoir in the second power plant Install accessories such as a water generator and a valve device for producing electric power by using the water discharged through the drain pipe 130 from the (110).
  • the water stored in the upper reservoir 210 is moved from the aberration generator 241 of the first power plant 240 while moving to the lower reservoir 110 through the hydraulic pipe 230. It produces electricity and supplies it to the surrounding area.
  • the pressure pump 261 the water of the lower reservoir 110 is pumped to the upper reservoir 210 through the water pipe 250, to move the water moved to the lower reservoir for power generation to the upper reservoir to both sides reservoir Allow it to cycle between
  • the valve device 152 is opened to be discharged through the pressure pipe 141 from the lower reservoir 110.
  • the excess water causes the aberration generator 151 of the second power plant 150 to be rotated. At this time, the generated power is supplied to the surrounding area.
  • the water supplied from the lower reservoir 110 by opening the valve device 154 of the drainage pipe 130 is aberration in the second power plant 150.
  • the generator 153 is to be rotated to supply the generated power to the surrounding area.

Landscapes

  • Engineering & Computer Science (AREA)
  • General Engineering & Computer Science (AREA)
  • Mechanical Engineering (AREA)
  • Chemical & Material Sciences (AREA)
  • Combustion & Propulsion (AREA)
  • Civil Engineering (AREA)
  • Structural Engineering (AREA)
  • Sewage (AREA)

Abstract

본 발명은 저비용으로 저수용량 증대가 가능한 저수지 운영 시스템 및 방법에 관한 것으로서, 기존 저수시설에 별도의 추가 저수시설을 시공하여 신설하되, 신설되는 추가 저수시설의 시공시에 발생하는 토사 및 골재를 기존 저수시설의 저수 증대를 위한 증설 댐을 건설하는데 사용하고, 기존 저수시설과 신설 저수시설 사이에 물을 순환시키면서 발전과 각 저수시설의 수위 조절을 시행할 수 있도록 함으로써, 종래에 비해 저비용으로 저수 증대가 가능하고, 기존 저수시설의 댐 증설시 소요되는 토사 및 골재의 원활한 공급이 가능해지며, 용수로서 물의 이용 효율을 크게 향상시킬 수 있는 저수지 운영 시스템 및 방법에 관한 것이다.

Description

저수용량 증대 및 에너지 순환형 저수지 시공방법
본 발명은 저수지 시공방법에 관한 것으로서, 더욱 상세하게는 기존 저수시설을 이용하면서 보다 저렴한 시공비용으로 저수용량의 증대가 가능하고 물의 이용 효율을 향상시킬 수 있는 저수지 시공방법에 관한 것이다.
오늘날 전기에너지의 수요량이 해마다 증가하고 있고 전력의 자유화도 추진되어 기설 전력회사 이외의 발전사업자가 자가용 발전설비 등으로부터 전력을 공급하는 등 전력공급의 다양화가 행하여지고 있다.
또한 그린 전력사업의 촉진으로 태양광 발전, 풍력 발전, 조수력 발전, 수력 발전 등의 자연에너지를 이용하는 발전 및 전력공급도 이루어지고 있고, 이를 통해 전력수급의 다양화가 촉진되고 있다.
자연에너지를 이용하는 발전에서는 그 발전량이 일일 혹은 시간에 따라 변화되고 또한 수요에 관계없이 발전이 이루어지므로 수급의 균형이 잡히지 않는 것은 물론 생산된 전기에너지의 유효 이용이 곤란하다.
대부분의 수요 전력을 공급하는 전력회사의 화력, 수력, 원자력 발전에 의한 전력공급에 있어서도 주야에서의 수요차이가 심하여 야간에서는 잉여송전이 되고 있고, 이에 에너지를 효율적으로 사용할 수 없는 것이 큰 문제로 되고 있다.
잉여전력을 효율적으로 이용하기 위해서는 전력에너지의 축적이 필요하지만 이 축적에 요하는 비용이 엄청나다.
예를 들면, 야간전력을 이용하는 양수 발전이 잉여전력의 축적수단으로서 이용되고 있지만, 댐의 건설비용이 막대하여 비용적으로 채산성을 맞출 수 없고, 피크 전력 소비시에 대한 서비스 향상의 목적으로 이용하고 있는 것에 지나지 않는다.
전력공급의 방법 중 수력 발전에 대해 좀더 설명하면, 중력의 영향을 받는 물이 가지고 있는 위치에너지를 운동에너지로 변환시키는 과정에서 전력을 생산하는 발전 방법을 수력 발전이라고 한다.
이러한 수력 발전은 여러 지표수 중에서도 하천에 흐르는 물에 의존하는 경우가 많기 때문에 물의 유량이 풍부하고 낙차가 큰 지형일수록 경제성이 좋은 수력 발전의 후보지로 평가될 수 있다.
보통 수력 발전은 지형조건에 따라 그 구체적인 발전 방법이 달라진다.
즉, 수력 발전은 저수지의 저수용량의 크기 및 낙차를 조성하는 방법에 따라 수로식 발전, 댐식 발전, 댐ㆍ수로식 발전, 유역 변경식 발전, 양수 발전, 조력 발전 등으로 분류되고 있다.
이 중에서, 수로식 발전은 높은 곳에 위치한 물의 위치에너지를 발전기 터빈의 운동에너지로 변환하고 발전기 내부의 전자기 유도 현상을 이용하여 전력을 얻는 방법으로서, 자연적으로 형성되는 낙차와 자연적인 물의 흐름을 이용하므로 발전량이 지형, 계절 및 강우량의 영향을 많이 받는 단점이 있다.
따라서, 안정적인 발전량을 유지하고 낙차도 크게 하기 위해서는 댐식 발전이 이용된다.
댐식 발전은 하천의 본류에 커다란 댐을 건설하여 물의 흐름을 막고 댐의 상ㆍ하류 사이에 생기는 수위차를 이용하는 방식으로서, 물의 유량을 크게 할 수 있으므로 발전량을 크게 늘릴 수 있다.
그러나, 댐식 발전의 경우에는 유량을 크게 하기 위해 댐의 크기가 커져야 하기 때문에 댐의 건설로 인한 수몰 지역이 넓어질 수밖에 없다는 단점이 있다.
위와 같은 수로식 발전과 댐식 발전이 절충된 형태의 발전 방법이 댐ㆍ수로식 발전이다.
댐ㆍ수로식 발전의 경우에는 기본적으로 큰 낙차를 형성하기 위해 댐을 건설하여 저수지를 만들고, 저수지로부터 발전에 필요한 만큼의 물을 통과시킬 수 있는 수로와 높은 압력에 견딜 수 있는 수압관을 견고한 지형에 설치하며, 수압관이 끝나는 부분에 발전소를 건축하여 그 안에 수차발전기와 각종 부속장치들을 설치하게 된다.
또한 댐 주변에는 저수지에 저장된 물이 일정 수위를 넘어설 경우 물을 방류하기 위한 여수로를 설치한다.
댐ㆍ수로식 발전은 수로식 발전이나 댐식 발전 중 어느 하나만 채택하는 경우보다 더 큰 낙차를 얻을 수 있고 풍부한 양의 물을 이용할 수 있다는 장점이 있다.
한편, 저수시설, 즉 댐 등을 건설하여 저수지를 조성한 뒤 물을 저장하는 시설에서는 충분한 물을 확보하여 저장한 뒤 필요 시점에서 주변지역에 용수를 공급할 수 있어야 한다.
저수지에는 많은 양의 물을 저장할 수 있으므로, 저장된 물을 저수지 하부로부터 각 수요처로 연결된 배수관로를 통해 주변 농지나 생산지, 주거지 등에 용수로 공급할 수 있고, 특히 갈수기에는 생활용수, 농업용수, 공업용수로 기여하는 바가 매우 크므로 중요한 시설이 된다.
더욱이 우리나라는 계절별, 연도별, 지역별 강수량의 편차가 심한 동시에 국토의 65%가 산악지형이면서, 하천경사가 급한 지리적 특성으로 비가 내리면 내린 물이 육지에 머물러 있지 않고 한꺼번에 바다로 빠져나가는 지형적 특성을 가지고 있고, 육지에 머무르는 물의 양이 적음으로 인해 비가 적게 내리는 시기(가을 ~ 겨울 등)에는 물이 부족하여 수자원의 이용 면에서 불리한 자연조건을 안고 있다.
또한 세계적인 이상 기후현상과 지구 온난화로 인하여 장래의 물부족에 대비하는 효율적인 물관리가 요구되고 있는 것이 현실이다.
따라서, 물부족 현상과 앞으로 다가올 기후변화에 따른 수자원 문제를 효과적으로 대비하기 위하여, 정부에서는 자연과 어우러지고 환경에 관한 문제를 해결할 수 있는 친환경식의 건설, 충분한 용수 확보, 수자원 운영시스템의 효율화, 광역상수도의 여유물량을 신규 수요처 및 물부족 지역으로 전환하는 등의 급수체계 조정에 많은 노력을 기울이고 있다.
또한 충분한 용수의 확보를 위하여 기존의 저수시설을 증설하는 등의 방법을 통하여 최대한의 물을 확보하기 위해 노력하고 있다.
그러나, 종래의 저수시설 및 이를 이용한 수력 발전시스템에서는 다음과 같은 문제점이 있었다.
첫째, 댐을 건설하여 조성한 저수지에 물의 수위가 일정 수위를 넘어가게 되면 댐 주변으로 물을 방류하기 위한 방류 통로를 구축해야 한다.
이러한 방류 통로를 구축하기 위해서는 저수지로부터 필요한 시기에 물을 선택적으로 배출하도록 통로를 개폐하는 대형 수문을 설치해야 하는 것과 더불어, 물이 방류될 수 있는 대규모의 통로, 즉 여수로를 시공해야 한다.
도 1은 기존의 저수시설에 시공된 여수로를 나타내는 평면도로서, 저수지(11)의 물을 방류하기 위한 여수로(13)는 댐(12)의 주변에 별도 공간을 마련하여 콘크리트 등으로 시공해야 하므로 수백억의 막대한 시공비와 인력, 장비가 소요되고, 공기 추가와 물이 배출되는 주변지역의 상황이나 환경을 고려해야 하는 문제 등이 있다.
특히, 저수된 물을 이용 없이 방류하는 것이므로 물의 이용률 제고 및 확보 측면에서 불리하게 작용한다.
둘째, 정부의 시행 명령에 따라 물 확보와 저수시설의 저수용량 증대를 위하여 관련 기관 및 업체에서 기 시공된 댐의 높이를 증설하는 방안을 시행하고 있으나, 이는 기존 댐의 높이에서 높이가 높아지는 만큼의 새로운 댐을 시공하는 것이므로 막대한 시공비를 필요로 한다.
도 2는 저수용량 확보를 위해 댐을 증설한 시공상태의 예시도로서, 도시된 바와 같이 기존 댐(12)의 높이를 증설하기 위해서는 대규모의 추가적인 댐(13) 시공이 필요하다.
또한 댐을 증설 및 신축 건설하여 조성한 저수지에도 물의 수위가 일정 수위를 넘어가게 되면 댐 주변으로 물을 방류하기 위한 별도의 방류 통로인 여수로를 대규모로 구축해야 한다.
이로 인해 막대한 시공비, 인력, 장비를 부담해야 하는 문제가 있고, 기존 댐(12)의 주변으로 증설 댐(13)을 새로이 시공하는 과정에서 환경문제가 발생하게 된다.
또한 댐 증설에는 막대한 양의 토사 및 골재가 필요한데, 소요되는 토사 및 골재를 외부에서 운반하여 기존 댐이 시공된 저수시설로 공급해야 한다.
그러나, 주변에서 댐 증설에 필요한 막대한 양의 토사 및 골재를 구하기가 어렵고, 이 토사 및 골재를 얻기 위해 주변 지형을 훼손해야 하므로 토사 및 골재의 공급에 어려움이 있는 것이 사실이다.
따라서, 본 발명은 상기와 같은 문제점을 해결하기 위하여 발명한 것으로서, 기존 저수시설에 별도의 추가 저수시설을 시공하여 신설하되, 신설되는 추가 저수시설의 시공시에 발생하는 토사 및 골재를 기존 저수시설의 저수 증대를 위한 증설 댐을 건설하는데 사용하고, 기존 저수시설과 신설 저수시설 사이에 물을 순환시키면서 발전과 각 저수시설의 수위 조절을 시행할 수 있도록 함으로써, 종래에 비해 저비용으로 저수 증대가 가능하고, 기존 저수시설의 댐 증설시 소요되는 토사 및 골재의 원활한 공급이 가능해지며, 용수로서 물의 이용 효율을 크게 향상시킬 수 있는 저수지 운영 시스템 및 방법을 제공하는데 그 목적이 있다.
상기한 목적을 달성하기 위해, 본 발명은, 기 시공된 저수시설의 저수지와 낙차를 가지도록 저수지를 포함하는 별도의 저수시설을 신설하고, 기 시공된 저수지와 신설된 저수지 사이에는 수압관 및 송수관을 연결 시공하며, 상기 기 시공된 저수지와 신설된 저수지 중의 상부 저수지로부터 상기 수압관을 통해 두 저수지 중의 하부 저수지로 이동되는 물에 의해 전력을 생산하는 수차발전기와, 하부 저수지로부터 물을 펌핑하여 송수관을 통해 상부 저수지로 압송하는 가압펌프를 설치하여, 상기 수차발전기와 가압펌프에 의해 상부 저수지와 하부 저수지 사이에서 물이 순환되도록 하면서 각 저수지의 수위 조절과 발전이 이루어질 수 있도록 구성되는 것을 특징으로 하는 저수지 운영 시스템을 제공한다.
바람직한 실시예에서, 상기 기 시공된 저수시설의 댐을 증축하기 위하여 기존의 댐 부분에 높이 증설 및 저수용량의 증대시 여수로 없이 추가 시공된 댐 증설부분을 포함하며, 상기 추가 시공된 댐 증설부분은 신설 저수지의 시공시에 지반 굴착으로 발생한 토사 및 골재가 사용되어 증설된다.
또한 상기 기 시공된 저수시설에서 댐 증설부분의 지중에는 기 구축되어 있던 여수로를 따라 낙차를 가지도록 시공된 수압관이 매립되고, 상기 수압관의 하단부에는 수압관을 통해 배출되는 물에 의해 전력을 생산하는 수차발전기가 설치되어, 상기 기 시공된 저수지의 수위가 일정 수위를 넘어갈 경우 상기 수압관을 통해 배출되는 물에 의해 발전이 이루어질 수 있도록 구성될 수 있다.
또한 상기 가압펌프의 구동은 제어장치에 의해 제어되며, 상기 제어장치는 각 저수지에서 수위를 검출하는 수위계의 검출값을 입력받아 이를 기초로 가압펌프의 구동을 제어하도록 구비될 수 있다.
또한 상기 제어장치가 상부 저수지로부터 배출되는 물의 유량 또는 하부 저수지로 유입되는 물의 유량을 검출하는 유량계의 검출값을 추가로 이용하여 상부 저수지와 하부 저수지 사이에 물의 순환량이 일정하게 유지되도록 가압펌프의 구동을 제어할 수 있다.
또한 상기 기 시공된 저수지에 저장된 물을 수요처로 용수 공급하기 위한 배수관로가 연결 시공되고, 상기 배수관로에는 배수관로를 통해 배출되는 물에 의해 전력을 생산하는 수차발전기가 설치되어, 상기 기 시공된 저수지에서 용수로 공급되는 물에 의해 발전이 이루어질 수 있도록 구성될 수 있다.
그리고, 본 발명은, 기 시공된 저수시설(100)의 저수지(110)에 낙차를 가지도록 저수지(210)를 포함하는 별도의 저수시설(200)을 신설하는 단계; 상기 각 저수지(110,210)에서 수위를 검출하는 수위계(111,211)의 검출값을 입력받는 제어장치(300)로 가압펌프(261)의 구동을 제어하여 상부의 저수지(210)와 하부의 저수지(110) 사이에서 물이 순환되도록 하면서 각 저수지(110,210)의 수위를 조절하기 위해, 상기 기 시공된 저수지(110)와 신설된 저수지(210) 사이에 상부의 저수지(210)로부터 하부의 저수지(110)로 물을 이동시키기 위한 수압관(230)과 하부의 저수지(110)로부터 상부의 저수지(210)로 물을 이동시키기 위한 송수관 및 가압펌프(261)를 설치하는 단계; 기 시공된 저수지(110)에 시공되어 있던 기존의 여수로 위치를 따라 수로를 형성하도록 PC 관들을 연결하여 기 시공된 저수지(110)에 대한 수압관(141)을 상기 PC 관으로 형성하는 단계; 상기 별도의 저수시설(200)의 신설시 지반을 굴착하여 발생하는 토사 및 골재를 기 시공된 저수시설(100)로 운반한 후, 운반된 토사와 골재를 사용하여 상기 수압관(141)을 매립하도록 상기 수압관(141) 위로 상기 저수시설(200)에서 운반된 토사 및 골재를 쌓아 댐을 증설하는 댐 증설 및 수압관 매립 단계;를 포함하며, 증설된 기존 저수시설에 연결된 수압관(141) 및 신설 저수시설에 설치된 수압관(230)을 각각 통과하는 물의 순환을 제어하여 각 저수시설의 수위 조절 및 발전을 수행할 수 있도록 저수시설을 시공하는 것을 특징으로 하는 저수용량 증대 및 에너지 순환형 저수지 시공방법을 제공한다.
또한 상기 기 시공된 저수지의 댐을 증설하는 과정에서 저수지의 기 구축된 여수로를 따라 저수지의 수위가 일정 수위를 넘어갈 경우 물을 배출하기 위한 수압관을 시공한 뒤 상기 운반된 토사 및 골재로 수압관을 매립하여 댐을 증설하고, 상기 수압관의 하단부에는 수압관을 통해 배출되는 물에 의해 전력을 생산하는 수차발전기를 설치하여, 상기 수압관을 통해 배출되는 물에 의해 발전이 이루어지도록 함이 바람직하다.
또한 상기 수위 조절을 시행하는 단계에서, 제어장치가 상기 가압펌프의 구동을 제어하되, 상기 제어장치는 각 저수지에서 수위를 검출하는 수위계의 검출값을 입력받아 이를 기초로 가압펌프의 구동을 제어할 수 있다.
또한 상기 제어장치가 상부 저수지로부터 배출되는 물의 유량 또는 하부 저수지로 유입되는 물의 유량을 검출하는 유량계의 검출값을 추가로 이용하여 상부 저수지와 하부 저수지 사이에 물의 순환량이 일정하게 유지되도록 가압펌프의 구동을 제어할 수 있다.
또한 상기 기 시공된 저수지에 저장된 물을 수요처로 용수 공급하기 위한 배수관로를 연결 시공하고, 상기 배수관로에는 배수관로를 통해 배출되는 물에 의해 전력을 생산하는 수차발전기를 설치하여, 상기 기 시공된 저수지에서 용수로 공급되는 물에 의해 발전이 이루어지도록 함이 바람직하다.
이에 따라, 본 발명에 따른 저수지 운영 시스템 및 방법에 의하면, 기존 저수시설에 별도의 추가 저수시설을 시공하여 신설하되, 신설되는 추가 저수시설의 시공시에 발생하는 토사 및 골재를 기존 저수시설의 저수 증대를 위한 증설 댐을 건설하는데 사용하고, 기존 저수시설과 신설 저수시설 사이에 물을 순환시키면서 발전과 각 저수시설의 수위 조절을 시행할 수 있도록 함으로써, 종래에 비해 저비용으로 저수 증대가 가능하고, 기존 저수시설의 댐 증설시 소요되는 토사 및 골재의 원활한 공급이 가능해지며, 용수로서 물의 이용 효율을 크게 향상시킬 수 있게 된다.
또한 신설된 저수시설에 의한 물량 증대와 기존 저수시설의 댐 증설로 인한 물량 증대를 통하여 전체 저수시설의 저수용량을 크게 증대시킬 수 있고, 더욱 용이한 물량 증대와 확보가 가능해진다.
또한 기존 저수지의 댐 증설시 기존에 구축되어 있던 여수로를 따라 수압관을 시공하고, 이 수압관을 통해 배출되는 물을 이용하여 제2발전소에서 전력을 생산하도록 함으로써, 댐 증설로 인한 새로운 여수로의 시공이 불필요해짐은 물론(댐 증설시 대규모의 여수로를 신설하는데 소요되는 막대한 비용을 절감할 수 있음), 잉여의 물을 이용한 발전 및 전력 공급, 그에 따른 전력수급 문제의 해소가 가능해지는 바, 물의 이용 효율을 증대시킬 수 있게 된다.
이와 더불어 하부 저수지에서 배수관로를 통해 수요처로 공급되는 용수 역시 전력을 생산하는데 이용할 수 있도록 구성됨으로써 전력수급 문제를 크게 개선할 수 있게 된다.
도 1은 기존의 저수시설에 시공된 여수로를 나타내는 평면도이다.
도 2는 저수용량 확보를 위해 댐을 증설한 시공상태의 예시도이다.
도 3은 본 발명의 실시예에 따른 저수지 운영 시스템을 나타내는 평면도이다.
도 4는 본 발명의 실시예에 따른 저수지 운영 시스템을 나타내는 단면도이다.
◎ 부호의 설명 ◎
100 : 하부 저수시설(기 시공된 저수시설)
110 : 하부 저수지(기 시공된 저수지)
111 : 수위계
120 : 기존 댐 부분
130 : 배수관로
140 : 댐 증설부분
200 : 상부 저수시설(신설된 저수시설)
210 : 상부 저수지(신설된 저수지)
211 : 수위계
220 : 댐
230 : 수압관
240 : 제1발전소
241 : 수차발전기
242 : 밸브장치
243, 244 : 유량계
250 : 송수관
260 : 펌프장
261 : 가압펌프
300 : 제어장치
이하, 첨부한 도면을 참조하여 본 발명의 바람직한 실시예에 대해 본 발명이 속하는 기술분야에서 통상의 지식을 가진 자가 용이하게 실시할 수 있도록 상세히 설명하기로 한다.
본 발명은 기존 저수시설에 별도의 추가 저수시설을 시공하여 신설하되, 신설되는 저수시설의 시공시에 발생하는 토사 및 골재를 기존 저수시설의 저수 증대를 위한 댐 증설에 사용하고, 기존 저수시설과 신설 저수시설 사이에 물을 순환시키면서 발전과 각 저수시설의 수위 조절을 시행하도록 함으로써, 종래에 비해 저비용으로 저수 증대가 가능하고, 기존 저수시설의 댐 증설시 소요되는 토사 및 골재의 원활한 공급이 가능해지며, 용수(발전용수, 생활용수, 농업용수, 공업용수)로서 물의 이용 효율을 크게 향상시킬 수 있는 저수지 운영 시스템 및 방법에 관한 것이다.
또한 신설 저수지의 구축시에 여수로를 신설하여 이를 통해 물을 방류하는 방식이 아닌, 본 발명은 신설 저수지의 구축시에도 여수로 없이 여수로 역할하는 수압관을 설치하여 이를 통해 물을 방류하면서 발전하는 시스템 및 방법을 포함한다.
이러한 본 발명에서는 신설된 저수시설에 의한 저수용량 증대와 기존 저수시설의 댐 증설로 인한 저수용량 증대를 통하여 전체 저수시설의 저수용량을 크게 증대시킬 수 있는 바, 용이한 물량 확보와 증대가 가능해진다.
또한 물의 적절한 순환을 통해 각 저수시설의 수위를 조절할 수 있는 저수지 유지관리의 장점이 있고, 기존과 같은 대규모의 여수로가 불필요하고, 따라서 댐 증설시 대규모의 여수로를 신설하는데 소요되는 막대한 비용을 절감할 수 있게 된다.
도 3은 본 발명의 실시예에 따른 저수지 운영 시스템을 나타내는 평면도이고, 도 4는 본 발명의 실시예에 따른 저수지 운영 시스템을 나타내는 단면도이다.
도시된 바와 같이, 본 발명에서는 기 시공된 저수시설(100)에 별도의 추가적인 저수시설(200)을 시공하여 신설한다.
여기서, 신설되는 저수시설(200)은 지반을 굴착한 뒤 기존 저수시설(100)의 시공시와 마찬가지로 댐(220)을 건설하여 저수지(210)를 조성함으로써 시공될 수 있는데, 신설되는 저수시설(200)은 기존 저수시설(100)의 상부 또는 하부 지형에 시공될 수 있다.
즉, 신설되는 저수지(210)가 기존 저수시설(100)의 저수지(110)와 낙차를 가지도록 시공되는데, 도 3 및 도 4는 신설되는 저수시설(200)을 상부 지형에 시공한 예를 나타낸 것이다.
신설되는 저수지(210)의 바닥에는 시트(sheet) 방수재(212)를 시공하여 신설된 저수지(210)의 물이 지중으로 스며들지 않도록 하는 것이 바람직하며, 이러한 시트 방수재(212)를 시공할 경우 저수지(210)에 저장된 물이 지중으로 손실되는 것을 막을 수 있게 된다.
이하, 본 명세서에서는 명확한 설명을 위하여 상부 지형에 신설된 저수시설(200)과 저수지(210)를 상부 저수시설, 상부 저수지라 칭하기로 하며, 이보다 낮은 곳에 위치하게 되는 기존 저수시설(100)과 저수지(110)를 하부 저수시설, 하부 저수지라 칭하기로 한다.
본 발명에서 낙차를 가지는 상부 저수지(210)와 하부 저수지(110) 사이에는 수압관(230)과 송수관(250)이 각각 연결 시공되는데, 수압관(230)은 상부 저수지(210)에 저장된 물이 하부 저수지(110)로 이동될 수 있는 통로로서 시공되는 것으로, 발전용수가 공급되는 통상의 배관 구조로 시공될 수 있고, 이와 별도로 시공되는 송수관(250)은 하부 저수지(110)에 저장된 물이 상부 저수지(210)로 압송될 수 있는 통로로서 시공되는 것이다.
또한 본 발명에서는 수압관(230)을 통해 상부 저수지(210)에서 방류되는 물의 낙차를 이용하여 전력을 생산하는 제1발전소(240)가 건축되는데, 제1발전소(240)는 하부 저수지(110) 주변에서 수압관(230)이 끝나는 출구부에 건축되며, 제1발전소(240)에는 통상의 수차발전기(241)와 각종 부속장치들을 설치하게 된다.
부속장치로는 수압관(230)으로부터 수차발전기(241)로 유입되는 물의 유로를 선택적으로 개폐하기 위한 밸브장치(242)와, 밸브장치(242)의 개폐 구동을 제어하기 위한 제어장치(300) 등이 설치될 수 있다.
수압관(230)과 제1발전소(240)를 시공하고 수차발전기(241) 및 각 부속장치를 설치함에 있어서, 상부 저수지(210)의 배출구에 연결된 수압관에서 복수의 수압관을 분기시켜 시공하고, 각 수압관에 수차발전기와 밸브장치를 설치하여, 전체적으로 복수의 수차발전기와 밸브장치를 구비하는 것이 가능하다.
이와 더불어, 하부 저수지(110)에서 물을 펌핑하여 송수관(250)을 통해 상부 저수지(210)로 압송하는 펌프장(260)이 건축되는데, 이 펌프장(260)은 하부 저수지(110) 주변에서 송수관(250)이 시작되는 입구부에 건축되며, 펌프장(260) 내에는 가압펌프(261)와 각종 부속장치들을 설치하게 된다.
상기 가압펌프(261)의 구동은 제어장치(300)에 의해 제어되며, 이때 제어장치(300)는 각 저수지(110,210)에서 수위를 검출하는 수위계(111,211), 및 상부 저수지(210)로부터 수압관(230)을 통해 배출되는 물의 유량 또는 수압관(230)을 통해 하부 저수지(110)로 유입되는 물의 유량을 검출하는 유량계(243,244)의 검출값을 입력받도록 구비된다.
이때, 제어장치(300)는 수위계(111,211) 및 유량계(243,244)의 검출값을 기초로 하여 물의 순환량이 일정하게 유지되도록 가압펌프(261)의 구동을 제어하게 되며, 각 저수지(110,210)의 적절한 수위 조절을 시행하게 된다.
물의 순환을 위한 구성부, 즉 송수관(250)과 가압펌프(261)를 설치함에 있어서도 하부 저수지(110)의 배출구에 연결된 메인관에서 복수의 송수관을 분기시켜 시공하고, 각 송수관에 가압펌프를 설치하는 것이 가능하다.
이와 같이 본 발명의 발전시스템에서는 물을 순환시키는 가압펌프(261)의 구동을 포함하여 밸브장치(242)의 구동을 수위계(111,211) 및 유량계(243,244) 등 검출장치의 검출값을 기초로 하여 제어장치(300)가 적절히 제어하게 되며, 이로써 제어장치(300)가 물의 이동 및 발전 구동 등 수력 발전시스템의 전반적인 작동상태를 제어하는 무인자동제어시스템이 구성될 수 있다.
또한 본 발명의 발전시스템에서 물의 순환 과정, 즉 가압펌프(261)를 이용하여 하부 저수지(110)의 물을 상부 저수지(210)로 끌어올리고 상부 저수지(210)의 물을 수압관(230)을 통해 배출하여 제1발전소(240)의 수차발전기(241)를 통해 전력을 생산하는 물의 순환 과정에서, 전력의 수요가 많은 낮 동안에는 상부 저수지(210)의 물을 수압관(230)을 통해 배출하여 제1발전소(240)의 수차발전기(241)를 통해 전력의 생산이 이루어지도록 하고, 전력의 수요가 적은 밤 동안에는 가압펌프(261)를 구동하여 하부 저수지(110)의 물을 상부 저수지(210)로 이동시킨 뒤 저장하는 것이 가능하다.
그리고, 하부 저수지(110)의 하부에는 저장된 물을 용수로 공급하기 위한 배수관로(130)가 주변 하천(101)으로 연결 시공되며, 갈수기나 기타 물을 필요로 하는 시점에서 주변 몽리자의 요청 등에 의해 하부 저수지(110)로부터 상기 배수관로(130)를 통해 물을 배수하여, 주변 농지나 생산지, 주거지 등에 생활용수, 농업용수, 공업용수로 공급될 수 있게 한다.
또한 기 시공된 저수시설(100)의 댐은 높이 및 저수용량 증대를 위해 증설될 수 있으며, 이때 신설된 상부 저수지(210)의 시공시 지반 굴착으로 인해 발생하는 토사 및 골재를 기 시공된 하부 저수지(110)의 댐 증설에 사용하게 된다.
이로써 기존의 하부 저수시설(100)에 시공된 댐은 기존 댐 부분(120)에 높이 증설 및 저수용량 증대를 위해 대규모의 여수로 없이 시공된 댐 증설부분(140)이 추가되며, 추가 시공된 댐 증설부분(140)이 신설된 상부 저수시설(200)의 저수지(210) 시공시 지반 굴착으로 발생한 토사 및 골재가 사용되어 증설된 것이 된다.
그리고, 상기와 같이 하부 저수시설(200)의 댐을 증설하는 경우, 종래에는 댐 증설부분(140)이 신설됨으로써 하부 저수시설(100)의 댐 주변으로 시공되어 있던 기존의 여수로가 폐쇄되어, 상기의 댐 증설부분(140)에 별도의 여수로를 막대한 비용을 들여 새로이 시공해야 했다.
그러나, 본 발명에서는 댐 증설부분(140)의 주변에 별도의 여수로를 새로이 시공하지 않고 그 대신, 기존의 여수로 위치를 따라 수로를 형성하도록 PC(Precast Concrete) 관들을 연결하여 시공한 수압관(141)을 구축한 뒤, 연결 시공된 PC 관 위로 상부 저수지(210)에서 운반된 토사 및 골재를 쌓아 댐을 증설할 수 있으며, 이로써 연결 시공된 PC 관들의 내부통로, 즉 PC 관들에 의해 형성되는 수압관(141)의 내부 통로가 기존의 여수로 역할을 하도록 할 수 있다.
즉, 댐 증설부분(140)의 지중에 PC 관들을 매립하여 주변 하천이나 수로, 계곡 등 소정의 방류처까지 연결되도록 시공한 수압관(141)이 하부 저수지(110) 내 물의 수위가 일정 수위를 넘어갈 경우 물을 방류시키는 기존의 여수로 역할을 하도록 하는 것이다.
상기 PC 관은 공장에서 제작한 콘크리트관으로서, 본 발명에서 일정한 직경 및 길이를 가지는 원형의 PC 관을 사용할 수 있고, 다수개의 PC 관을 기존의 여수로 위치를 따라 시공한 뒤 적토하여 댐을 증설하는 바, 댐 증설부분(140)의 지중에는 PC 관에 의해 형성되는 여수로 역할의 수압관(141)이 형성되게 된다.
또한 본 발명의 바람직한 실시예에서, 상기 수압관(141)이 낙차를 가지도록 시공되고, 수압관(141)의 하단부에는 하부 저수지(110)에서 방류되는 물의 낙차를 이용하여 전력을 생산하는 제2발전소(150)가 건축될 수 있다.
상기 제2발전소(150)는 수압관(141)이 끝나는 출구부에 건축될 수 있고, 이러한 제2발전소(150)에는 통상의 수차발전기(151)와 각종 부속장치들을 설치하게 된다.
부속장치로는 수압관(141)으로부터 수차발전기(151)로 유입되는 물의 유로를 선택적으로 개폐하기 위한 밸브장치(152) 등이 설치될 수 있으며, 이 밸브장치(152)의 개폐 구동은 제어장치(300)가 제어하도록 한다.
상기 수압관(141)과 제2발전소(150)를 시공하고 수차발전기(151) 및 각 부속장치를 설치함에 있어서, 도 3 및 도 4에서는 단수의 수압관(141)이 시공됨을 예시하고 있으나, 하부 저수지(110)에 마련된 출구지점부터 방류처까지 복수의 수로를 형성하도록, 상기 제2발전소(150)를 통과하는 복수의 수압관(141)을 병렬로 시공하는 것이 가능하며, 이때 제2발전소(150) 내에서 각 수압관(141)에 각각의 수차발전기(151)와 밸브장치(152)를 설치하여, 전체적으로 복수의 수차발전기와 밸브장치를 구비하는 것이 가능하다.
이와 같이 본 발명에서는 홍수시 등과 같이 하부 저수지(110)의 물이 일정 수위를 넘어갈 경우 댐 증설부분(140)에 매립된 기존 여수로 역할의 수압관(141)을 통해 물을 방류하여 배출하되, 이때 각 수압관(141)을 통해 배출되는 물의 낙차를 이용하여 제2발전소(150)의 각 수차발전기(151)를 통해 전력을 생산하게 되며, 결국 하부 저수지(110)에서 방류처로 버려지는 잉여의 물을 발전용수로 사용하여 전력을 생산한 뒤 주변지역으로 공급할 수 있는 바, 주변지역의 전력수급 문제를 해소할 수 있게 된다.
더욱 바람직하게는 하부 저수지(110)의 하부로부터 연결 시공된 배수관로(130) 역시 낙차를 가지면서 상기의 제2발전소(150)를 통과하도록 시공될 수 있으며, 이때 제2발전소(150) 내에는 배수관로(130)를 통해 배출되는 물의 낙차를 이용하여 전력을 생산하는 별도의 수차발전기(153)와 밸브장치(154) 등의 부속장치가 추가로 설치된다.
결국, 갈수기 등 물을 필요로 하는 시점에서 배수관로(130)를 통해 주변 농지나 생산지, 주거지 등에 생활용수, 농업용수, 공업용수로 공급되는 하부 저수지(110)의 물을 이용하여 추가적인 전력을 생산할 수 있으며, 이와 같이 잉여의 물을 이용한 발전과 더불어 용수로 공급되는 물을 이용한 발전을 시행함으로써 주변지역의 전력수급 문제를 해소하는데 큰 기여를 할 수 있게 된다.
이와 같이 하여, 본 발명에서는 상부 저수지(210)에 저장된 물을 하부 저수지(110)로 이동시켜 제1발전소(240)에서 전력을 생산하도록 하면서 물의 적절한 순환을 통해 각 저수시설(100,200)의 수위를 적절히 조절할 수 있게 된다.
제1발전소(240)에서 생산된 전력은 주변지역으로 공급하여 사용하도록 하며, 이로써 주변지역의 전력수급 문제를 해소할 수 있게 된다.
상기와 같이 상부 저수지(210)와 하부 저수지(110) 사이에 물을 순환시키면서 각 저수지의 수위가 조절되도록 하면 기존과 같은 대규모의 여수로가 불필요하다.
더불어 하부 저수지(110)에서 잉여의 물을 불필요하게 방류하지 않으면서 상부 저수지(210)로 이동시켜 다시 전력생산에 이용할 수 있으므로 물의 이용 효율을 증대시킬 수 있다.
또한 본 발명에서는 상부 저수지(210)의 토사 및 골재를 하부 저수지(110)의 댐 증설에 사용하게 되므로 상부 저수지의 시공시에 토사 및 골재를 처리하는데 어려움이 없고, 별도의 사토장을 조성할 필요가 없으며, 하부 저수지의 댐 증설시에도 필요한 토사 및 골재를 구하는데 큰 어려움이 없게 된다.
따라서, 댐 증설과 저수용량의 증대가 모두 용이해지고, 저비용으로 저수 증대가 가능해지면서 전체 저수시설에서 확보할 수 있는 저수량이 크게 증대될 수 있게 된다.
또한 하부 저수지(110)의 댐 증설시 기존에 구축되어 있던 여수로 위치를 따라 PC 관을 매립하여 수압관(141)을 시공하고, 이 수압관(141)을 통해 배출되는 물을 이용하여 제2발전소(150)에서 전력을 생산하도록 함으로써, 댐 증설로 인한 새로운 여수로의 시공이 불필요해짐은 물론(막대한 여수로 시공비용을 절감할 수 있음), 잉여의 물을 이용한 발전 및 전력 공급, 그에 따른 전력수급 문제의 해소가 가능해지는 바, 물의 이용 효율을 증대시킬 수 있게 된다.
이와 더불어 하부 저수지(110)에서 배수관로(130)를 통해 수요처로 공급되는 용수 역시 전력을 생산하는데 이용할 수 있도록 구성됨으로써 전력수급 문제를 크게 개선할 수 있게 된다.
이하, 본 발명에 따른 수력 발전방법에 대해 상술하면 다음과 같다.
우선, 전체 저수용량을 증대시키기 위하여 기존의 저수시설(100) 외에 추가로 저수시설(200)을 신설하는데, 예컨대 상부 지형에서 지반을 굴착한 뒤 댐(220)을 시공하여 물을 저장할 수 있는 저수지(210)를 조성한다.
이어 신설된 상부 저수지(210)와 기존의 하부 저수지(110) 사이에 상부 저수지로부터 발전용수를 배출시켜 하부 저수지로 이동시킬 수 있는 수압관(230)을 시공하며, 이 수압관(230)은 발전에 필요한 물을 통과시킬 수 있으면서 높은 압력에 견딜 수 있도록 견고한 지형에 시공한다.
또한 수압관(230)이 끝나는 부분에는 제1발전소(240)를 건축하고, 수차발전기(241)와 밸브장치(242), 제어장치(300) 등을 설치한다.
이와 함께 상부 저수지(210)와 하부 저수지(110) 사이에 상부 저수지로 하부 저수지의 물을 이동시킬 수 있는 송수관(250)을 시공하며, 송수관(250)이 시작되는 입구부에 펌프장(260)을 건축하여 그 안에 가압펌프(261)와 각종 부속장치들을 설치한다.
또한 하부 저수지(110)의 댐 증설을 위하여 상부 저수지(210)의 시공시에 지반 굴착으로 발생하는 토사 및 골재는 외부로 반출한 뒤 하부 저수지(110)로 운반시키며, 이후 하부 저수지(110)에서 운반된 토사 및 골재를 사용하여 댐의 높이를 증설하는데 사용한다.
즉, 신설된 상부 저수지(210)의 시공시 발생한 토사 및 골재를 기존 하부 저수지(110)의 댐을 증설하는데 사용하는 것이다.
또한 댐 증설시에 하부 저수지(110)에 시공되어 있던 기존의 여수로 위치를 따라 PC 관들을 연결하여 수압관(141)을 시공한 뒤, 연결된 PC 관 위로 상부 저수지(210)에서 운반된 토사 및 골재를 쌓아 댐을 증설하게 된다.
이때, 선 제작된 PC 관들을 기존의 여수로로 운반하여 연결함으로써 수압관(141)을 형성한 뒤 그 위로 토사 및 골재를 쌓아 댐을 증설하며, 수압관(141)의 하단부에는 하부 저수지(110)에서 방류되는 물의 낙차를 이용하여 전력을 생산하는 제2발전소(150)를 건축하고, 수차발전기(151)와 밸브장치(152) 등의 부속장치를 설치한다.
이와 함께 하부 저수지(110)의 하부로부터 용수 공급을 위한 배수관로(130)를 연결 시공하며, 이 배수관로(130)는 제2발전소(150)를 통과하도록 시공한 뒤, 제2발전소 내에 하부 저수지(110)로부터 배수관로(130)를 통해 배출되는 물을 이용하여 전력을 생산하기 위한 수차발전기와 밸브장치 등의 부속장치를 설치한다.
상기와 같이 저수시설의 신설 및 증축이 완료되면, 상부 저수지(210)에 저장된 물을 수압관(230)을 통해 하부 저수지(110)로 이동시키면서 제1발전소(240)의 수차발전기(241)로부터 전력을 생산하고, 생산된 전력은 주변지역에 공급한다.
또한 가압펌프(261)를 이용하여 하부 저수지(110)의 물을 송수관(250)을 통해 상부 저수지(210)로 압송하며, 이에 발전을 위해 하부 저수지로 이동된 물을 상부 저수지로 이동시켜 양측 저수지 사이에서 순환되도록 한다.
또한 갈수기나 기타 물을 필요로 하는 시점에서 주변 몽리자의 요청 등에 의해 하부 저수지(110)로부터 연결된 배수관로(130)를 통해 주변 하천(101)으로 물을 배수하여 주변 농지나 생산지, 주거지 등에 생활용수, 농업용수, 공업용수로 공급하게 된다.
또한 하부 저수지(110)에 저장된 물이 일정 수위를 넘어갈 경우 수압관(141)을 통해 물을 배출하되, 이때는 밸브장치(152)를 열어 하부 저수지(110)로부터 수압관(141)을 통해 배출되는 잉여의 물이 제2발전소(150)의 수차발전기(151)를 회전시키도록 하는 바, 이때 생산된 전력을 주변지역에 공급한다.
또한 하부 저수지(110)의 배수관로(130)를 통해 용수를 공급함에 있어서도 배수관로(130)의 밸브장치(154)를 열어 하부 저수지(110)로부터 공급되는 용수가 제2발전소(150) 내 수차발전기(153)를 회전시키도록 하는 바, 이때 생산된 전력을 주변지역에 공급한다.
이상으로 본 발명의 실시예에 대해 상세히 설명하였는 바, 본 발명의 권리범위는 상술한 실시예에 한정되지 않으며, 다음의 특허청구범위에서 정의하고 있는 본 발명의 기본 개념을 이용한 당업자의 여러 변형 및 개량 형태 또한 본 발명의 권리범위에 포함된다.

Claims (6)

  1. 기 시공된 저수시설(100)의 저수지(110)에 낙차를 가지도록 저수지(210)를 포함하는 별도의 저수시설(200)을 신설하는 단계;
    상기 각 저수지(110,210)에서 수위를 검출하는 수위계(111,211)의 검출값을 입력받는 제어장치(300)로 가압펌프(261)의 구동을 제어하여 상부의 저수지(210)와 하부의 저수지(110) 사이에서 물이 순환되도록 하면서 각 저수지(110,210)의 수위를 조절하기 위해, 상기 기 시공된 저수지(110)와 신설된 저수지(210) 사이에 상부의 저수지(210)로부터 하부의 저수지(110)로 물을 이동시키기 위한 수압관(230)과 하부의 저수지(110)로부터 상부의 저수지(210)로 물을 이동시키기 위한 송수관 및 가압펌프(261)를 설치하는 단계;
    기 시공된 저수지(110)에 시공되어 있던 기존의 여수로 위치를 따라 수로를 형성하도록 PC 관들을 연결하여 기 시공된 저수지(110)에 대한 수압관(141)을 상기 PC 관으로 형성하는 단계;
    상기 별도의 저수시설(200)의 신설시 지반을 굴착하여 발생하는 토사 및 골재를 기 시공된 저수시설(100)로 운반한 후, 운반된 토사와 골재를 사용하여 상기 수압관(141)을 매립하도록 상기 수압관(141) 위로 상기 저수시설(200)에서 운반된 토사 및 골재를 쌓아 댐을 증설하는 댐 증설 및 수압관 매립 단계;
    를 포함하며, 증설된 기존 저수시설에 연결된 수압관(141) 및 신설 저수시설에 설치된 수압관(230)을 각각 통과하는 물의 순환을 제어하여 각 저수시설의 수위 조절 및 발전을 수행할 수 있도록 저수시설을 시공하는 것을 특징으로 하는 저수용량 증대 및 에너지 순환형 저수지 시공방법.
  2. 청구항 1에 있어서, 상기 상부의 저수지(210)와 하부의 저수지(110) 사이에 수압관(230)을 시공하는 과정에서, 수압관(230)을 통해 배출되는 물을 이용하여 발전을 하기 위해 상기 수압관(230)이 끝나는 출구부에 수차발전기(241)가 설치되어 있는 제1발전소(240)를 건축하는 단계를 포함하는 것을 특징으로 하는 저비용으로 저수용량 증대가 가능한 저수지 시공방법.
  3. 청구항 1에 있어서, 상기 댐 증설시 수압관(141)을 시공하는 과정에서, 상기 기 시공된 저수지(110)의 수위가 일정 수위를 넘어갈 경우 상기 수압관(141)을 통해 배출되는 물을 이용하여 발전을 하기 위해 상기 수압관(141)의 하단부에 이 수압관(141)을 통해 배출되는 물에 의해 전력을 생산하는 수차발전기(151)를 설치하는 단계를 포함하는 것을 특징으로 하는 저비용으로 저수용량 증대가 가능한 저수지 시공방법.
  4. 청구항 1에 있어서, 상기 기 시공된 저수지(110)의 댐을 증설하는 과정에서, 기 시공된 저수지(110)에서 용수로 공급되는 물을 이용하여 발전을 하기 위해 상기 기 시공된 저수지(110)에 저장된 물을 수요처로 용수 공급하기 위한 배수관로(130)를 연결 시공하고, 상기 배수관로(130)에는 이 배수관로(130)를 통해 배출되는 물에 의해 전력을 생산하는 수차발전기(153)를 설치하는 단계를 포함하는 것을 특징으로 하는 저비용으로 저수용량 증대가 가능한 저수지 시공방법.
  5. 청구항 1에 있어서, 상기 각 저수지(110,210)의 수위를 조절하는 과정에서, 상부의 저수지(210)로부터 배출되는 물의 유량 또는 하부의 저수지(110)로부터 배출되는 물의 유량을 검출하는 유량계(243,244)의 검출값을 입력받는 제어장치(300)를 구비하고, 상기 제어장치(300)로 가압펌프(261)의 구동을 제어하여 상부의 저수지(210)와 하부의 저수지(110) 사이에서 물이 순환되도록 하면서 각 저수지(110,210)의 수위를 조절하는 단계를 포함하는 것을 특징으로 하는 저비용으로 저수용량 증대가 가능한 저수지 시공방법.
  6. 청구항 1에 있어서, 상기 별도의 저수시설(200)을 신설하는 단계에서, 신설된 저수지(210)의 바닥에 시트 방수재(212)를 시공하여 물이 지중으로 스며들지 않도록 하는 과정을 포함하는 것을 특징으로 하는 저비용으로 저수용량 증대가 가능한 저수지 시공방법.
PCT/KR2011/006349 2010-08-30 2011-08-27 저수용량 증대 및 에너지 순환형 저수지 시공방법 WO2012030115A1 (ko)

Applications Claiming Priority (2)

Application Number Priority Date Filing Date Title
KR10-2010-0083810 2010-08-30
KR1020100083810A KR101047337B1 (ko) 2010-08-30 2010-08-30 저수용량 증대 및 에너지 순환형 저수지 시공방법

Publications (1)

Publication Number Publication Date
WO2012030115A1 true WO2012030115A1 (ko) 2012-03-08

Family

ID=44923269

Family Applications (1)

Application Number Title Priority Date Filing Date
PCT/KR2011/006349 WO2012030115A1 (ko) 2010-08-30 2011-08-27 저수용량 증대 및 에너지 순환형 저수지 시공방법

Country Status (2)

Country Link
KR (1) KR101047337B1 (ko)
WO (1) WO2012030115A1 (ko)

Cited By (1)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
CN109555090A (zh) * 2019-01-15 2019-04-02 中国电建集团华东勘测设计研究院有限公司 用于抽水蓄能电站的生态流量泄放设施及实施方法

Families Citing this family (5)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
CN104099912A (zh) * 2013-04-11 2014-10-15 段世杰 梯级升管壳堤平拥水力发电站
CN104074178B (zh) * 2014-07-15 2016-06-22 中国电建集团中南勘测设计研究院有限公司 一种阻抗上室式调压室
CN104120691B (zh) * 2014-08-12 2016-04-06 中海阳能源集团股份有限公司 分布式太阳能储水土保抗震水库群
KR101771329B1 (ko) 2015-11-27 2017-08-24 김준기 해수력 발전 시스템
KR102243857B1 (ko) * 2019-08-02 2021-04-23 김준배 부력식 가동보를 구비한 하천 순환식 양수발전용 종단보 저수조

Citations (3)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
KR890000011B1 (ko) * 1981-09-29 1989-03-02 더 쇼위니갠 엔지니어링 컴페니 리미티드 델타 연결 조력 발전 설비
KR20000056282A (ko) * 1999-02-18 2000-09-15 강문규 다단계 수력발전장치
JP2005214187A (ja) * 2004-02-02 2005-08-11 Kyokuto Denko:Kk 水力発電設備

Family Cites Families (1)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
KR20030064685A (ko) * 2003-06-27 2003-08-02 안순균 기존 댐에 보조 댐과 양수 발전소의 결합

Patent Citations (3)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
KR890000011B1 (ko) * 1981-09-29 1989-03-02 더 쇼위니갠 엔지니어링 컴페니 리미티드 델타 연결 조력 발전 설비
KR20000056282A (ko) * 1999-02-18 2000-09-15 강문규 다단계 수력발전장치
JP2005214187A (ja) * 2004-02-02 2005-08-11 Kyokuto Denko:Kk 水力発電設備

Cited By (2)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
CN109555090A (zh) * 2019-01-15 2019-04-02 中国电建集团华东勘测设计研究院有限公司 用于抽水蓄能电站的生态流量泄放设施及实施方法
CN109555090B (zh) * 2019-01-15 2024-04-09 中国电建集团华东勘测设计研究院有限公司 用于抽水蓄能电站的生态流量泄放设施及实施方法

Also Published As

Publication number Publication date
KR101047337B1 (ko) 2011-07-11

Similar Documents

Publication Publication Date Title
WO2012030115A1 (ko) 저수용량 증대 및 에너지 순환형 저수지 시공방법
CN104762937B (zh) 一种应用于生态水库的抽水蓄能水电站及其污水处理方法
CN102518093B (zh) 一种投资少工期短的水电站布局结构及其施工方法
CN115288495B (zh) 将垃圾填埋场改造成光伏和水利发电相结合的治理方法
JP2013053503A (ja) 潮位差海水流発電装置
CN208456765U (zh) 一种承压水发电装置
TWM611102U (zh) 川流式小水力發電系統
US10876265B2 (en) Modular hydropower unit
CN110735447B (zh) 一种用于太阳能发电路面电力沟槽的综合管廊及使用方法
Bogenrieder 2.6. Pumped storage power plants: 2 Hydroelectric power
CN101575845B (zh) 垫水发电站
CN108798967A (zh) 一种承压水发电方法
CN218291864U (zh) 一种基于护城河或自然水源的地下抽水储能系统
CN202440804U (zh) 厂坝分离式水电站
TWI746171B (zh) 川流式小水力發電系統
CN219364477U (zh) 一种水电站厂房防洪墙
KR101338950B1 (ko) 태양광 보완 우수활용 발전장치
CN208267996U (zh) 一种隧道内利用斜井水势能的自发电系统
CN206986862U (zh) 一种水电工程压力管道洞室群布置结构
WO2014204101A1 (ko) 조력 발전장치의 시공방법
POPESCU-BUȘAN et al. HIGH HEAD HYDROPOWER STATION TECHNICAL REHABILITATION AND REFURBISHMENT.
Cook et al. Design of the Eklutna Project, Alaska
Miller et al. Foyers pumped-storage project
JP2023041570A (ja) 下水管等内部設置する送電線用絶縁電気線
CN108644051A (zh) 一种承压水发电装置

Legal Events

Date Code Title Description
121 Ep: the epo has been informed by wipo that ep was designated in this application

Ref document number: 11822090

Country of ref document: EP

Kind code of ref document: A1

NENP Non-entry into the national phase

Ref country code: DE

32PN Ep: public notification in the ep bulletin as address of the adressee cannot be established

Free format text: NOTING OF LOSS OF RIGHTS PURSUANT TO RULE 112(1) EPC (EPO FORM 1205A DATED 17.07.13)

122 Ep: pct application non-entry in european phase

Ref document number: 11822090

Country of ref document: EP

Kind code of ref document: A1