WO2012029949A1 - Method of producing tetrahydrofuran derivatives by hydrogenation of furans - Google Patents

Method of producing tetrahydrofuran derivatives by hydrogenation of furans Download PDF

Info

Publication number
WO2012029949A1
WO2012029949A1 PCT/JP2011/070039 JP2011070039W WO2012029949A1 WO 2012029949 A1 WO2012029949 A1 WO 2012029949A1 JP 2011070039 W JP2011070039 W JP 2011070039W WO 2012029949 A1 WO2012029949 A1 WO 2012029949A1
Authority
WO
WIPO (PCT)
Prior art keywords
reaction
furfuryl alcohol
alcohol
furfural
hydrogenation
Prior art date
Application number
PCT/JP2011/070039
Other languages
French (fr)
Japanese (ja)
Inventor
誠之 白井
智美 守屋
由香 村上
修 佐藤
有朋 山口
範人 日吉
Original Assignee
独立行政法人産業技術総合研究所
Priority date (The priority date is an assumption and is not a legal conclusion. Google has not performed a legal analysis and makes no representation as to the accuracy of the date listed.)
Filing date
Publication date
Application filed by 独立行政法人産業技術総合研究所 filed Critical 独立行政法人産業技術総合研究所
Publication of WO2012029949A1 publication Critical patent/WO2012029949A1/en

Links

Classifications

    • CCHEMISTRY; METALLURGY
    • C07ORGANIC CHEMISTRY
    • C07DHETEROCYCLIC COMPOUNDS
    • C07D307/00Heterocyclic compounds containing five-membered rings having one oxygen atom as the only ring hetero atom
    • C07D307/02Heterocyclic compounds containing five-membered rings having one oxygen atom as the only ring hetero atom not condensed with other rings
    • C07D307/04Heterocyclic compounds containing five-membered rings having one oxygen atom as the only ring hetero atom not condensed with other rings having no double bonds between ring members or between ring members and non-ring members
    • C07D307/10Heterocyclic compounds containing five-membered rings having one oxygen atom as the only ring hetero atom not condensed with other rings having no double bonds between ring members or between ring members and non-ring members with substituted hydrocarbon radicals attached to ring carbon atoms
    • C07D307/12Radicals substituted by oxygen atoms

Definitions

  • the present invention relates to a technique for producing a tetrahydrofuran derivative by hydrogenation reaction of furans, and more specifically, efficiently hydrogenates furans using water, carbon dioxide, and a highly active supported palladium catalyst.
  • the present invention relates to a technology for producing a tetrahydrofuran derivative such as furfuryl alcohol or tetrahydrofurfuryl alcohol, which is a hydride thereof, by a new environmentally conscious process that enables the production of hydride.
  • the present invention relates to the production of tetrahydrofuran derivatives by the hydrogenation process of furans.
  • the reaction temperature is high, so that the catalyst is severely deteriorated and by-products are generated.
  • the liquid phase method using an organic solvent there are problems such as a distillation process that consumes a lot of energy, and the toxicity of the solvent used is high, and there is a strong demand for its solution. Therefore, by using water, carbon dioxide, and a supported palladium catalyst, it is possible to efficiently produce a tetrahydrofuran derivative such as furfuryl alcohol or tetrahydrofurfuryl alcohol that is a hydride thereof.
  • the new manufacturing technology is provided.
  • the present invention relates to a technology for producing a tetrahydrofuran derivative, which is a very industrially important substance that is strongly required to introduce the technology, particularly in developing countries, etc., and does not use an organic solvent under low temperature conditions.
  • the present invention provides a new technology relating to a production technique of the tetrahydrofuran derivative, which makes it possible to efficiently produce the tetrahydrofuran derivative by an environmentally friendly process.
  • Furfuryl alcohol which is a hydride of furfural obtained from biomass such as corn cobs, is used as a solvent for oils and resins. These are particularly important substances as environmentally conscious solvents because they are obtained from biomass and are biodegradable. Furthermore, tetrahydrofurfuryl alcohol, which is a hydride of furfuryl alcohol, is a very important substance that is used as a raw material for fats and oils, resin solvents, 1,5-pentanediol, and perfumes.
  • the present inventors have conducted intensive research with the goal of developing a new furan hydrogenation technology capable of reliably solving the problems in the prior art in view of the above prior art.
  • a tetrahydrofuran derivative can be efficiently produced by using water, carbon dioxide, and a supported palladium catalyst, and completed the present invention.
  • INDUSTRIAL APPLICABILITY The present invention makes it possible to efficiently produce a tetrahydrofuran derivative by an environmentally friendly process that can replace a conventional highly environmentally friendly production technique for a tetrahydrofuran derivative, which is an industrially very important substance.
  • An object of the present invention is to provide a new production technique for the tetrahydrofuran derivative.
  • the present invention for solving the above-described problems comprises the following technical means.
  • a method for producing furfuryl alcohol or tetrahydrofurfuryl alcohol, which is a hydride, by hydrogenating furfural or furfuryl alcohol as a starting material, using water as a solvent, furfural or furfuryl alcohol A method for producing a hydride, characterized in that the hydride is produced by carrying out a hydrogenation reaction using a supported palladium catalyst and hydrogen, or by introducing carbon dioxide into these reaction systems. .
  • the present invention uses water as a solvent and further performs the hydrogenation reaction under a condition in which carbon dioxide is pressurized. It is characterized by providing a new hydrogenation technology for furans that can achieve high tetrafurfuryl alcohol yield in a low environmental load process and efficiently compared to conventional hydrogenation methods using organic solvents. It is.
  • a process for hydrogenation of furans according to the present invention is shown in Chemical Formula 1.
  • furan such as furfural or furfuryl alcohol is used as a starting material.
  • Furfural is obtained from biomass such as corn cobs
  • furfuryl alcohol is obtained as a hydride of the furfural
  • these furans are industrially used as environmentally friendly solvents obtained from biomass. It is a very important substance.
  • an activated carbon-supported palladium catalyst or an alumina-supported palladium catalyst is used as a catalyst in the reaction system of the hydrogenation reaction.
  • these supported palladium catalysts those having a metal loading amount (including the activated carbon loading amount) of 5 wt% are preferably used, but this metal loading amount can be appropriately changed according to the reaction conditions.
  • the amount of metal supported can be arbitrarily set.
  • water is used as a solvent
  • hydrogen is introduced into the reaction system
  • carbon dioxide is introduced into the reaction system under pressurized conditions.
  • carbon dioxide is preferably introduced into the reaction system at a pressure of 0.1 to 30 MPa, more preferably at a pressure of 0.1 to 15 MPa, but it is also possible not to introduce carbon dioxide.
  • the hydrogenation reaction is preferably carried out at a reaction time of 15 to 120 minutes and a reaction temperature of 30 to 80 ° C.
  • the inside of the reactor is replaced with argon, and the reactor is preferably heated to about 30 to 50 ° C., and then, for example, hydrogen at a pressure of 0.1 to 5.0 MPa is supplied.
  • the reaction is usually carried out for about 15 to 90 minutes, but the inside of the reactor is replaced with carbon dioxide, and the reactor can be heated to, for example, about 30 to 50 ° C., and then hydrogen can be introduced. It is.
  • a reaction product After completion of the reaction, hydrogen is released from the reactor to obtain a reaction product.
  • the product can be recovered using a solvent such as acetone.
  • the product is analyzed using gas chromatography.
  • a furfural conversion rate of 84 to 97% is obtained by a hydrogenation reaction of furfural using an activated carbon-supported palladium catalyst (metal loading 5 wt%).
  • the furfural conversion when no solvent is used in the furfural hydrogenation reaction, or when an organic solvent such as methanol, ethanol, 2-propanol, or heptane is used as the solvent, the furfural conversion is 14 to 61%. It can be seen that it is important to use water as the solvent.
  • the furfuryl alcohol conversion when no solvent is used or when an organic solvent such as methanol, ethanol, 2-propanol, heptane is used as the solvent, the furfuryl alcohol conversion is 10 to 19%. It can be seen that it is important to use water as the solvent.
  • the furfuryl alcohol conversion rate is greatly increased.
  • hydrogenation reaction with 10 mL of H 2 O or 10 mL of CO 2 or 15 mL of CO 2 and 10 mL of H 2 O at a catalyst amount of 0.01 g, a furfuryl alcohol charge of 0.3432 g, a hydrogen pressure of 3 MPa, a reaction temperature of 40 ° C., and a reaction time of 30 minutes.
  • the furfuryl alcohol conversion% increases from 83.6% to 95.3%, and the yield of tetrahydrofurfuryl alcohol also increases from 76.5% to 82.2%.
  • Tetrahydrofurfuryl alcohol a hydride of furfuryl alcohol
  • the present invention provides a new production technology for tetrahydrofuran derivatives such as furfuryl alcohol and tetrahydrofurfuryl alcohol, which makes it possible to synthesize such industrially important substances in a high yield by an environmentally friendly process. It is useful as a thing to provide.
  • Table 1 shows the yield of hydride when a hydrogenation reaction is performed using various solvents and a reaction time of 30 minutes. Table 1 shows no solvent, as the solvent, water, methanol, ethanol, 2-propanol, heptane, CO 2 without, or CO 2 have, the results for. From the results, it can be seen that the yield of furfuryl alcohol is high in a reaction system using water as a solvent, and the yield of tetrahydrofurfuryl alcohol is high in a reaction system using water as a solvent and carbon dioxide.
  • a method for producing furfuryl alcohol by hydrogenating furfural is widely known.
  • the method of producing is widely known.
  • the reaction temperature is high, the catalyst is severely deteriorated, a large amount of by-products are formed, the energy-consuming distillation process is involved, the solvent has a problem of toxicity, etc.
  • the present invention makes it possible to solve such problems, and is a low-environmental load type that can be substituted for the conventional method as an environmentally friendly production technique that does not have the problems as described above.
  • it has high technical significance as a new low-environmental load production technology that is strongly demanded by developing countries.
  • the present invention has the following effects. (1) It is possible to provide a new technique for producing a tetrahydrofuran derivative that enables an efficient production of a tetrahydrofuran derivative, which is an industrially very important substance, by an environmentally friendly process. (2) A tetrahydrofuran derivative can be efficiently produced by using water, carbon dioxide, and a supported palladium catalyst. (3) High tetrafurfuryl alcohol yield compared with the conventional hydrogenation method using an organic solvent by carrying out the hydrogenation reaction using water as a solvent and further pressurizing carbon dioxide. Can be obtained. (4) It is possible to provide a new hydrogenation technology for low environmental load furans that does not use an organic solvent under low temperature conditions as compared with the conventional method. (5) The present invention makes it possible to provide a new technology relating to the production of tetrahydrofuran derivatives by the hydrogenation reaction of furans, which can replace the conventional high environmental load production technology.
  • reaction conditions Substrate raw material: Furfural 0.3mL Amount of distilled water: 0.5mL Hydrogen pressure: 3.0 MPa Carbon dioxide pressure: 15MPa Catalyst: Activated carbon supported palladium catalyst (metal loading 5%, Wako Pure Chemical Industries, Ltd.) 0.020 g Reaction temperature: 40 ° C Reaction time: 30 minutes
  • the reaction product was analyzed using a gas chromatograph. As a result, the conversion of furfural was 84%, the yield of the product terahydrofurfuryl alcohol was 26%, and the yield of furfuryl alcohol was 40%.
  • the reaction product was analyzed using a gas chromatograph. As a result, the conversion of furfural was 14%, the yield of the product terahydrofurfuryl alcohol was 2%, and the yield of furfuryl alcohol was 3%.
  • the reaction product was analyzed using a gas chromatograph. As a result, the conversion of furfural was 26%, the yield of the product terahydrofurfuryl alcohol was 3%, and the yield of furfuryl alcohol was 3%.
  • the reaction product was analyzed using a gas chromatograph. As a result, the conversion of furfural was 61%, the yield of the product terahydrofurfuryl alcohol was 13%, and the yield of furfuryl alcohol was 27%.
  • the reaction product was analyzed using a gas chromatograph. As a result, the conversion of furfural was 48%, the yield of the product terahydrofurfuryl alcohol was 8%, and the yield of furfuryl alcohol was 12%.
  • the reaction product was analyzed using a gas chromatograph. As a result, the conversion rate of furfural was 36%, the yield of the product terahydrofurfuryl alcohol was 5%, and the yield of furfuryl alcohol was 7%.
  • the reaction product was analyzed using a gas chromatograph. As a result, the conversion of furfural was 21%, the yield of the product terahydrofurfuryl alcohol was 4%, and the yield of furfuryl alcohol was 5%.
  • the reaction product was analyzed using a gas chromatograph. As a result, the conversion of furfuryl alcohol was 15.1%, and the yield of the product terrorahydrofurfuryl alcohol was 14.5%.
  • the reaction product was analyzed using a gas chromatograph. As a result, the conversion of furfuryl alcohol was 17%, and the yield of the product terahydrofurfuryl alcohol was 17%.
  • the reaction product was analyzed using a gas chromatograph. As a result, the conversion of furfuryl alcohol was 12%, and the yield of the product terahydrofurfuryl alcohol was 12%.
  • the reaction product was analyzed using a gas chromatograph. As a result, the conversion of furfuryl alcohol was 19%, and the yield of the product terahydrofurfuryl alcohol was 19%.
  • Table 2 summarizes the results of hydrogenation of furfuryl alcohol in Examples 5 and 6 and Comparative Examples 7 to 11.
  • the substrate raw material was reacted to obtain a product.
  • an alumina-supported palladium catalyst (metal supported amount 5%, Wako Pure Chemical Industries, Ltd.) was used, and a hydrogenation reaction was performed under the following reaction conditions.
  • Reaction conditions Substrate raw material: Furfuryl alcohol 0.3mL Amount of water: 10 mL Hydrogen pressure: 3.0 MPa Carbon dioxide pressure: 0.1 MPa Catalyst: Alumina-supported palladium catalyst (metal loading 5%, Wako Pure Chemical Industries, Ltd.) 0.010 g Reaction temperature: 40 ° C Reaction time: 30 minutes
  • the reaction product was analyzed using a gas chromatograph. As a result, the conversion of furfuryl alcohol was 100%, and the yield of the product terahydrofurfuryl alcohol was 98%.
  • Example 6 the substrate raw material was reacted to obtain a product.
  • an alumina-supported palladium catalyst (metal supported amount 5%, Wako Pure Chemical Industries, Ltd.) was used, and a hydrogenation reaction was performed under the following reaction conditions.
  • Reaction conditions Substrate raw material: Furfuryl alcohol 0.3mL Amount of water: 10 mL Hydrogen pressure: 3.0 MPa Carbon dioxide pressure: 15 MPa Catalyst: Alumina-supported palladium catalyst (metal loading 5%, Wako Pure Chemical Industries, Ltd.) 0.010 g Reaction temperature: 40 ° C Reaction time: 30 minutes
  • the reaction product was analyzed using a gas chromatograph. As a result, the conversion of furfuryl alcohol was 98%, and the yield of the product terahydrofurfuryl alcohol was 96%.
  • the present invention relates to a technique for producing a tetrahydrofuran derivative by hydrogenation reaction of furans, and according to the present invention, a tetrahydrofuran derivative, which is an industrially very important substance, is environmentally friendly. It is an object of the present invention to provide a new tetrahydrofuran production technology that enables efficient production by a process. According to the present invention, a tetrahydrofuran derivative can be efficiently produced by using water, carbon dioxide, and a supported palladium catalyst.
  • the present invention relates to a tetrahydrofuran derivative by an environmentally conscious process, which makes it possible to produce hydrides by efficiently hydrogenating furans using water, carbon dioxide and a highly active supported palladium catalyst. This is useful as a new manufacturing technology.

Landscapes

  • Chemical & Material Sciences (AREA)
  • Organic Chemistry (AREA)
  • Furan Compounds (AREA)
  • Low-Molecular Organic Synthesis Reactions Using Catalysts (AREA)
  • Organic Low-Molecular-Weight Compounds And Preparation Thereof (AREA)

Abstract

In the disclosed novel technique for producing, by hydrogenation of furans, tetrahydrofuran derivatives, which are hydrogenated products produced by hydrogenation of the starting materials furfural or furfuryl alcohol. The method of producing the aforementioned hydrogenated products involves a step of using furfural or furfuryl alcohol, a supported palladium catalyst and hydrogen, with carbon dioxide optionally added to these, in a hydrogenation reaction with water as a solvent to produce tetrahydrofuran derivatives, the hydrogenated products. The disclosed novel technique for producing industrially important tetrahydrofuran derivatives such as furfuryl alcohol and tetrahydrofurfuryl alcohol makes it possible to efficiently produce said tetrahydrofuran derivatives with an environmentally friendly process.

Description

フラン類の水素化反応によるテトラヒドロフラン誘導体の製造方法Method for producing tetrahydrofuran derivative by hydrogenation of furans
 本発明は、フラン類の水素化反応によるテトラヒドロフラン誘導体の製造技術に関するものであり、更に詳しくは、水と二酸化炭素と、高活性の担持パラジウム触媒を用いて、フラン類を効率よく水素化することを可能とする新しい環境調和型プロセスにより、その水素化物であるフルフリルアルコール又はテトラヒドロフルフリルアルコールなどのテトラヒドロフラン誘導体を製造する技術に関するものである。 The present invention relates to a technique for producing a tetrahydrofuran derivative by hydrogenation reaction of furans, and more specifically, efficiently hydrogenates furans using water, carbon dioxide, and a highly active supported palladium catalyst. The present invention relates to a technology for producing a tetrahydrofuran derivative such as furfuryl alcohol or tetrahydrofurfuryl alcohol, which is a hydride thereof, by a new environmentally conscious process that enables the production of hydride.
 本発明は、フラン類の水素化プロセスによるテトラヒドロフラン誘導体製造技術の分野において、従来のプロセスは、気相法で行う場合には、反応温度が高いために、触媒の劣化が激しいことや副生物が多くできてしまうこと、有機溶媒を用いる液相法では、エネルギーを多く消費する蒸留プロセスを伴うこと、また、使用する溶媒の毒性が大きいこと、などの問題が有り、その解決が強く求められていることを踏まえ、水と二酸化炭素と、担持パラジウム触媒を用いることで、効率的に、その水素化物であるフルフリルアルコール又はテトラヒドロフルフリルアルコールなどのテトラヒドロフラン誘導体を製造することを可能とする当該化合物の新規製造技術を提供するものである。 The present invention relates to the production of tetrahydrofuran derivatives by the hydrogenation process of furans. In the conventional process, when the gas phase method is used, the reaction temperature is high, so that the catalyst is severely deteriorated and by-products are generated. In the liquid phase method using an organic solvent, there are problems such as a distillation process that consumes a lot of energy, and the toxicity of the solvent used is high, and there is a strong demand for its solution. Therefore, by using water, carbon dioxide, and a supported palladium catalyst, it is possible to efficiently produce a tetrahydrofuran derivative such as furfuryl alcohol or tetrahydrofurfuryl alcohol that is a hydride thereof. The new manufacturing technology is provided.
 本発明は、特に、発展途上国などにおいて、その技術導入が強く求められている、工業的に非常に重要な物質であるテトラヒドロフラン誘導体の生産技術について、低温条件下で、かつ有機溶媒を使用しない、環境に優しいプロセスで、効率的にテトラヒドロフラン誘導体を生産することを可能とする当該テトラヒドロフラン誘導体の生産技術に関する新技術を提供するものである。 The present invention relates to a technology for producing a tetrahydrofuran derivative, which is a very industrially important substance that is strongly required to introduce the technology, particularly in developing countries, etc., and does not use an organic solvent under low temperature conditions. The present invention provides a new technology relating to a production technique of the tetrahydrofuran derivative, which makes it possible to efficiently produce the tetrahydrofuran derivative by an environmentally friendly process.
 トウモロコシの穂軸などのバイオマスから得られるフルフラールの水素化物であるフルフリルアルコールは、油脂や樹脂の溶剤として用いられている。これらは、特に、バイオマスから得られることや、生分解性であることから、環境調和型の溶剤として非常に重要な物質である。更に、フルフリルアルコールの水素化物であるテトラヒドロフルフリルアルコールは、油脂や樹脂の溶剤や、1,5-ペンタンジオールや、香料の原料として用いられている非常に重要な物質である。 Furfuryl alcohol, which is a hydride of furfural obtained from biomass such as corn cobs, is used as a solvent for oils and resins. These are particularly important substances as environmentally conscious solvents because they are obtained from biomass and are biodegradable. Furthermore, tetrahydrofurfuryl alcohol, which is a hydride of furfuryl alcohol, is a very important substance that is used as a raw material for fats and oils, resin solvents, 1,5-pentanediol, and perfumes.
 フルフラールを水素化して、フルフリルアルコールを得る方法は、広く知られている。例えば、MCM-41に銅とランタンを担持した触媒を用い、気相法により、固定床流通装置を用い、フルフラール供給量1.4mL/h、水素/フルフラール比=5、温度413Kで反応を行い、フルフラール転化率98.2%で、選択性99%以上で、フルフリルアルコールが得られている(非特許文献1)。しかし、この方法では、MCM-41に銅とランタンを担持した触媒は、高い反応温度を必要とするために、触媒の劣化が進行し、フルフラールの転化率及びフルフリルアルコール選択性が低下するという問題がある。 A method for hydrogenating furfural to obtain furfuryl alcohol is widely known. For example, using a catalyst in which copper and lanthanum are supported on MCM-41, using a fixed bed flow apparatus by a gas phase method, the reaction is performed at a furfural supply rate of 1.4 mL / h, a hydrogen / furfural ratio = 5, and a temperature of 413K. Furfuryl alcohol is obtained with a furfural conversion of 98.2% and a selectivity of 99% or more (Non-patent Document 1). However, in this method, since the catalyst in which copper and lanthanum are supported on MCM-41 requires a high reaction temperature, the catalyst is deteriorated, and the conversion rate of furfural and the furfuryl alcohol selectivity are reduced. There's a problem.
 また、他の方法として、ラネーニッケルに、銅、リン、モリブデンからなるヘテロポリ酸(Cu1.5PMo1240)を7.1%担持した触媒0.5gを用い、75mLのオートクレーブ中で、エタノール溶液中(フルフラール/エタノール=10mL/10mL)で、水素圧2.0MPa、温度353Kで、1時間反応を行い、フルフラール転化率98.1%、選択性98.5%で、フルフリルアルコール得ている(非特許文献2)。しかし、この方法では、フルフリルアルコールを単離するために、溶媒であるエタノールを取り除くための蒸留操作が必要となるという問題がある。 As another method, 0.5 g of a catalyst in which 7.1% of a heteropolyacid (Cu 1.5 PMo 12 O 40 ) composed of copper, phosphorus, and molybdenum is supported on Raney nickel is used, and ethanol is added in a 75 mL autoclave. In the solution (furfural / ethanol = 10 mL / 10 mL), the reaction was carried out at a hydrogen pressure of 2.0 MPa and a temperature of 353 K for 1 hour to obtain furfuryl alcohol with a furfural conversion of 98.1% and a selectivity of 98.5%. (Non-Patent Document 2). However, this method has a problem that a distillation operation for removing ethanol as a solvent is required in order to isolate furfuryl alcohol.
 更に、他の方法として、ステンレス製オートクレーブ(内容積100cc)に、チタニアに5%のルテニウム金属を担持した触媒0.075g、フルフリルアルコール12.5mmol、2-プロパノール溶媒50cc、水素2.72MPaを加え、温度363Kで、30分反応を行い、フルフリルアルコール転化率40%、選択性92%で、テトラヒドロフルフリルアルコールを得ている(非特許文献3)。しかし、この方法では、フルフリルアルコールを得るために、2-プロパノール溶媒を取り除くための蒸留操作が必要となるという問題がある。このような技術背景に鑑みて、当技術分野においては、これらの問題がなく、より低温条件下で、かつ有機溶媒の使用を制限することが可能な、環境調和型の生産技術の開発が強く要請されていた。 As another method, 0.075 g of a catalyst in which 5% ruthenium metal is supported on titania, 12.5 mmol of furfuryl alcohol, 50 cc of 2-propanol solvent, and 2.72 MPa of hydrogen are added to a stainless steel autoclave (internal volume 100 cc). In addition, the reaction was carried out at a temperature of 363 K for 30 minutes, and tetrahydrofurfuryl alcohol was obtained with a furfuryl alcohol conversion of 40% and a selectivity of 92% (Non-patent Document 3). However, this method has a problem that a distillation operation for removing the 2-propanol solvent is required to obtain furfuryl alcohol. In view of such a technical background, in this technical field, development of environment-friendly production technology that does not have these problems, can be used under a lower temperature condition, and can limit the use of an organic solvent is strong. It was requested.
 このような状況の中で、本発明者らは、上記従来技術に鑑みて、従来技術における諸問題を確実に解消することができる新しいフラン類の水素化技術を開発することを目標として鋭意研究を積み重ねた結果、水と二酸化炭素と、担持パラジウム触媒を用いることで、効率的にテトラヒドロフラン誘導体を製造することができることを見出し、本発明を完成するに至った。本発明は、工業的に非常に重要な物質であるテトラヒドロフラン誘導体について、従来の高環境負荷型の生産技術に代替できる、環境に優しいプロセスで、効率的にテトラヒドロフラン誘導体を製造することを可能とする当該テトラヒドロフラン誘導体の新しい生産技術を提供することを目的とするものである。 Under such circumstances, the present inventors have conducted intensive research with the goal of developing a new furan hydrogenation technology capable of reliably solving the problems in the prior art in view of the above prior art. As a result, the inventors found that a tetrahydrofuran derivative can be efficiently produced by using water, carbon dioxide, and a supported palladium catalyst, and completed the present invention. INDUSTRIAL APPLICABILITY The present invention makes it possible to efficiently produce a tetrahydrofuran derivative by an environmentally friendly process that can replace a conventional highly environmentally friendly production technique for a tetrahydrofuran derivative, which is an industrially very important substance. An object of the present invention is to provide a new production technique for the tetrahydrofuran derivative.
 上記課題を解決するための本発明は、以下の技術的手段から構成される。
(1)出発原料のフルフラール又はフルフリルアルコールを水素化して、その水素化物であるフルフリルアルコール又はテトラヒドロフルフリルアルコールを製造する方法であって、水を溶媒に用い、フルフラール又はフルフリルアルコールと、担持パラジウム触媒と、水素を用いて、あるいは、更に、これらの反応系に、二酸化炭素を導入して、水素化反応を行うことにより上記水素化物を製造することを特徴とする水素化物の製造方法。
(2)水を溶媒とした反応系で、フルフリルアルコールの収量を高め、水を溶媒とし、かつ二酸化炭素を導入した反応系で、テトラヒドロフルフリルアルコールの収量を高める、前記(1)に記載の水素化物の製造方法。
(3)活性炭担持パラジウム触媒を用いて、フルフラール又はフルフリルアルコールを水素化して、その水素化物であるフルフリルアルコール又はテトラヒドロフルフリルアルコールを製造する、前記(1)又は(2)に記載の水素化物の製造方法。
(4)アルミナ担持パラジウム触媒を用いて、フルフラール又はフルフリルアルコールを水素化して、その水素化物であるフルフリルアルコール又はテトラヒドロフルフリルアルコールを製造する、前記(1)又は(2)に記載の水素化物の製造方法。
(5)反応系に、0.1~30MPaの二酸化炭素を導入して、水素化反応を行う、前記(1)から(4)のいずれかに記載の水素化物の製造方法。
(6)反応温度が、30~80℃、反応時間が15~120分である、前記(1)から(5)のいずれかに記載の水素化物の製造方法。
The present invention for solving the above-described problems comprises the following technical means.
(1) A method for producing furfuryl alcohol or tetrahydrofurfuryl alcohol, which is a hydride, by hydrogenating furfural or furfuryl alcohol as a starting material, using water as a solvent, furfural or furfuryl alcohol, A method for producing a hydride, characterized in that the hydride is produced by carrying out a hydrogenation reaction using a supported palladium catalyst and hydrogen, or by introducing carbon dioxide into these reaction systems. .
(2) In the reaction system using water as a solvent, the yield of furfuryl alcohol is increased, and in the reaction system using water as a solvent and carbon dioxide is introduced, the yield of tetrahydrofurfuryl alcohol is increased. The manufacturing method of the hydride of.
(3) Hydrogen as described in (1) or (2) above, wherein furfural or furfuryl alcohol is hydrogenated using an activated carbon-supported palladium catalyst to produce furfuryl alcohol or tetrahydrofurfuryl alcohol which is a hydride thereof. Method for producing chemicals.
(4) Hydrogen according to (1) or (2) above, wherein furfural or furfuryl alcohol is hydrogenated using an alumina-supported palladium catalyst to produce furfuryl alcohol or tetrahydrofurfuryl alcohol which is a hydride thereof. Method for producing chemicals.
(5) The method for producing a hydride according to any one of (1) to (4) above, wherein a hydrogenation reaction is carried out by introducing 0.1 to 30 MPa of carbon dioxide into the reaction system.
(6) The method for producing a hydride according to any one of (1) to (5) above, wherein the reaction temperature is 30 to 80 ° C. and the reaction time is 15 to 120 minutes.
 次に、本発明について更に詳細に説明する。
 本発明は、担持パラジウムを用いたフラール又はフルフリルアルコールなどのフラン類の水素化反応において、水を溶媒に用い、更に、二酸化炭素を加圧した条件で、水素化反応を実施することにより、従来の有機溶媒を用いた水素化法に比べて、環境低負荷プロセスで、かつ効率よく、高いテトラフルフリルアルコール収率が得られるフラン類の新規水素化技術を提供することを特徴とするものである。本発明によるフラン類の水素化のプロセスを、化1に示す。
Next, the present invention will be described in more detail.
In the hydrogenation reaction of furan such as fural or furfuryl alcohol using supported palladium, the present invention uses water as a solvent and further performs the hydrogenation reaction under a condition in which carbon dioxide is pressurized. It is characterized by providing a new hydrogenation technology for furans that can achieve high tetrafurfuryl alcohol yield in a low environmental load process and efficiently compared to conventional hydrogenation methods using organic solvents. It is. A process for hydrogenation of furans according to the present invention is shown in Chemical Formula 1.
Figure JPOXMLDOC01-appb-C000001
Figure JPOXMLDOC01-appb-C000001
 本発明では、出発原料として、フルフラール又はフルフリルアルコールなどのフラン類が用いられる。フルフラールは、例えば、トウモロコシの穂軸などのバイオマスから得られ、フルフリルアルコールは、当該フルフラールの水素化物として得られ、これらのフラン類は、バイオマスから得られる環境調和型の溶剤として、工業的に非常に重要な物質である。 In the present invention, furan such as furfural or furfuryl alcohol is used as a starting material. Furfural is obtained from biomass such as corn cobs, furfuryl alcohol is obtained as a hydride of the furfural, and these furans are industrially used as environmentally friendly solvents obtained from biomass. It is a very important substance.
 本発明では、水素化反応の反応系において、触媒として、活性炭担持パラジウム触媒や、アルミナ担持パラジウム触媒が用いられる。これらの担持パラジウム触媒としては、金属担持量(活性炭担持量を含む)5wt%のものが好適に用いられるが、この金属担持量については、反応条件に合わせて、適宜、変更することが可能であり、本発明では、金属担持量については、任意に設定することができる。 In the present invention, an activated carbon-supported palladium catalyst or an alumina-supported palladium catalyst is used as a catalyst in the reaction system of the hydrogenation reaction. As these supported palladium catalysts, those having a metal loading amount (including the activated carbon loading amount) of 5 wt% are preferably used, but this metal loading amount can be appropriately changed according to the reaction conditions. In the present invention, the amount of metal supported can be arbitrarily set.
 本発明では、水を溶媒に用い、水素を反応系に導入し、更に、必要に応じて、二酸化炭素を、加圧した条件で、反応系に導入することが好適である。二酸化炭素は、例えば、圧力0.1~30MPa、より好ましくは、圧力0.1~15MPaで、反応系に導入することが好適であるが、二酸化炭素を導入しないことも可能である。水素化反応は、例えば、好適には、反応時間が15~120分、反応温度が30~80℃で実施される。 In the present invention, it is preferable that water is used as a solvent, hydrogen is introduced into the reaction system, and, if necessary, carbon dioxide is introduced into the reaction system under pressurized conditions. For example, carbon dioxide is preferably introduced into the reaction system at a pressure of 0.1 to 30 MPa, more preferably at a pressure of 0.1 to 15 MPa, but it is also possible not to introduce carbon dioxide. For example, the hydrogenation reaction is preferably carried out at a reaction time of 15 to 120 minutes and a reaction temperature of 30 to 80 ° C.
 水素化反応の反応は、例えば、反応器内をアルゴンで置換し、この反応器を、好適には、30~50℃程度まで加熱した後、例えば、圧力0.1~5.0MPaの水素を導入して、通常、15~90分間程度反応を行うが、反応器内を二酸化炭素で置換し、この反応器を、例えば、30~50℃程度まで加熱した後、水素を導入することも可能である。 In the hydrogenation reaction, for example, the inside of the reactor is replaced with argon, and the reactor is preferably heated to about 30 to 50 ° C., and then, for example, hydrogen at a pressure of 0.1 to 5.0 MPa is supplied. The reaction is usually carried out for about 15 to 90 minutes, but the inside of the reactor is replaced with carbon dioxide, and the reactor can be heated to, for example, about 30 to 50 ° C., and then hydrogen can be introduced. It is.
 反応終了後、反応器から水素を放出させて、反応生成物を得るが、その場合、例えば、生成物をアセトンなどの溶媒を用いて回収することが可能である。生成物は、ガスクロマトグラフィーを用いて、分析する。本発明では、活性炭担持パラジウム触媒(金属担持量5wt%)を用いた、フルフラールの水素化反応により、例えば、フルフラールの転化率は、84~97%の結果が得られている。 After completion of the reaction, hydrogen is released from the reactor to obtain a reaction product. In this case, for example, the product can be recovered using a solvent such as acetone. The product is analyzed using gas chromatography. In the present invention, for example, a furfural conversion rate of 84 to 97% is obtained by a hydrogenation reaction of furfural using an activated carbon-supported palladium catalyst (metal loading 5 wt%).
 次に、フルフリルアルコールの水素化反応では、活性炭担持パラジウム触媒(金属担持量5wt%)を用いた場合、フルフリルアルコールの転化率は、84~95%の結果が得られており、また、アルミナ担持触媒(金属担持量5wt%)を用いた場合、フルフリルアルコールの転化率は、98~100%の結果が得られている。 Next, in the hydrogenation reaction of furfuryl alcohol, when using an activated carbon-supported palladium catalyst (metal support amount 5 wt%), the conversion of furfuryl alcohol was 84 to 95%. When an alumina-supported catalyst (metal loading 5 wt%) was used, the conversion rate of furfuryl alcohol was 98 to 100%.
 本発明では、フルフラールの水素化反応において、溶媒を用いない場合、あるいは溶媒として、メタノール、エタノール、2-プロパノール、ヘプタンなどの有機溶媒を用いた場合、フルフラール転化率は、14~61%であり、溶媒として水を用いることが重要であることが分かる。また、フルフリルアルコールの水素化反応において、溶媒を用いない場合、あるいは溶媒として、メタノール、エタノール、2-プロパノール、ヘプタンなどの有機溶媒を用いた場合、フルフリルアルコール転化率は、10~19%であり、溶媒として水を用いることが重要であることが分かる。 In the present invention, when no solvent is used in the furfural hydrogenation reaction, or when an organic solvent such as methanol, ethanol, 2-propanol, or heptane is used as the solvent, the furfural conversion is 14 to 61%. It can be seen that it is important to use water as the solvent. In the hydrogenation reaction of furfuryl alcohol, when no solvent is used or when an organic solvent such as methanol, ethanol, 2-propanol, heptane is used as the solvent, the furfuryl alcohol conversion is 10 to 19%. It can be seen that it is important to use water as the solvent.
 本発明においては、水を溶媒に用い、更に、水素化反応の反応系に二酸化炭素を導入した場合、フルフリルアルコール転化率は、大幅に増加する。また、例えば、触媒量0.01g、フルフリルアルコール仕込量0.3432g、水素圧力3MPa、反応温度40℃、反応時間30分で、HO10mL、あるいはCO15MPa及びHO10mLで水素化反応を行った場合、フルフリルアルコール転化率%は、83.6%から95.3%に増加し、テトラヒドロフルフリルアルコールの収率も76.5%から82.2%に増加する。 In the present invention, when water is used as a solvent and carbon dioxide is further introduced into the reaction system of the hydrogenation reaction, the furfuryl alcohol conversion rate is greatly increased. Also, for example, hydrogenation reaction with 10 mL of H 2 O or 10 mL of CO 2 or 15 mL of CO 2 and 10 mL of H 2 O at a catalyst amount of 0.01 g, a furfuryl alcohol charge of 0.3432 g, a hydrogen pressure of 3 MPa, a reaction temperature of 40 ° C., and a reaction time of 30 minutes. , The furfuryl alcohol conversion% increases from 83.6% to 95.3%, and the yield of tetrahydrofurfuryl alcohol also increases from 76.5% to 82.2%.
 フルフリルアルコールの水素化物であるテトラヒドロフルフリルアルコールは、油脂や樹脂の溶剤、あるいは1.5-ペンタンジオールや香料の原料として用いられる工業的に重要な物質である。本発明は、このような工業的に重要な物質を、環境に優しいプロセスで、高収率で合成することを可能とする、フルフリルアルコールや、テトラヒドロフルフリルアルコールなどのテトラヒドロフラン誘導体の新しい製造技術を提供するものとして有用である。 Tetrahydrofurfuryl alcohol, a hydride of furfuryl alcohol, is an industrially important substance used as a raw material for fats and oils, resin solvents, or 1.5-pentanediol and fragrance. The present invention provides a new production technology for tetrahydrofuran derivatives such as furfuryl alcohol and tetrahydrofurfuryl alcohol, which makes it possible to synthesize such industrially important substances in a high yield by an environmentally friendly process. It is useful as a thing to provide.
 表1に、種々の溶媒を用いて、反応時間30分で、水素化反応を行った場合の水素化物の収率を示す。表1は、溶媒なし、溶媒として、水、メタノール、エタノール、2-プロパノール、ヘプタン、COなし、又はCOあり、の場合の結果を示す。その結果から、水を溶媒とした反応系で、フルフリルアルコールの収量が高く、水を溶媒とし、かつ二酸化炭素を導入した反応系で、テトラヒドロフルフリルアルコールの収率が高いことが分かる。 Table 1 shows the yield of hydride when a hydrogenation reaction is performed using various solvents and a reaction time of 30 minutes. Table 1 shows no solvent, as the solvent, water, methanol, ethanol, 2-propanol, heptane, CO 2 without, or CO 2 have, the results for. From the results, it can be seen that the yield of furfuryl alcohol is high in a reaction system using water as a solvent, and the yield of tetrahydrofurfuryl alcohol is high in a reaction system using water as a solvent and carbon dioxide.
 従来、フルフラールを水素化して、フルフリルアルコールを製造する方法は、広く知られており、例えば、固定床流通装置を用いた気相法や、有機溶媒を用いた液相法により、その水素化物を生産する方法が広く知られている。しかし、従来法は、反応温度が高く、触媒の劣化が激しいこと、副生成物が多くできてしまうこと、エネルギー高消費の蒸留工程を伴うこと、使用する溶媒の毒性の問題があること、などの問題から、当技術分野においては、これらの問題を低減し得る新しい生産技術を確立することが強く求められていた。本発明は、このような課題を解決することを可能にするもので、上述の従来法のような問題のない、環境に優しい生産技術として、従来法に代替可能な、低環境負荷型の、とりわけ、発展途上国などがその技術導入を強く求めている新しい低環境負荷の生産技術として、高い技術的意義を有するものである。 Conventionally, a method for producing furfuryl alcohol by hydrogenating furfural is widely known. For example, a hydride thereof by a gas phase method using a fixed bed flow apparatus or a liquid phase method using an organic solvent. The method of producing is widely known. However, in the conventional method, the reaction temperature is high, the catalyst is severely deteriorated, a large amount of by-products are formed, the energy-consuming distillation process is involved, the solvent has a problem of toxicity, etc. In view of these problems, there has been a strong demand in the art to establish a new production technique that can reduce these problems. The present invention makes it possible to solve such problems, and is a low-environmental load type that can be substituted for the conventional method as an environmentally friendly production technique that does not have the problems as described above. In particular, it has high technical significance as a new low-environmental load production technology that is strongly demanded by developing countries.
 本発明により、次のような効果が奏される。
(1)工業的に非常に重要な物質であるテトラヒドロフラン誘導体を、環境に優しいプロセスで、効率的に製造することを可能とするテトラヒドロフラン誘導体の新しい製造技術を提供することができる。
(2)水と二酸化炭素と、担持パラジウム触媒を用いることで、効率的に、テトラヒドロフラン誘導体を製造することができる。
(3)水を溶媒に用い、更に、二酸化炭素を加圧した条件で、水素化反応を実施することにより、従来の有機溶媒を用いた水素化法に比べて、高いテトラフルフリルアルコール収率を得ることができる。
(4)従来法に比べて、低温度条件下で、有機溶媒を使用しない、低環境負荷型のフラン類の新しい水素化技術を提供することができる。
(5)本発明は、従来法の高環境負荷型の生産技術に代替可能な、フラン類の水素化反応によるテトラヒドロフラン誘導体生産に関する新技術の提供を可能とするものである。
The present invention has the following effects.
(1) It is possible to provide a new technique for producing a tetrahydrofuran derivative that enables an efficient production of a tetrahydrofuran derivative, which is an industrially very important substance, by an environmentally friendly process.
(2) A tetrahydrofuran derivative can be efficiently produced by using water, carbon dioxide, and a supported palladium catalyst.
(3) High tetrafurfuryl alcohol yield compared with the conventional hydrogenation method using an organic solvent by carrying out the hydrogenation reaction using water as a solvent and further pressurizing carbon dioxide. Can be obtained.
(4) It is possible to provide a new hydrogenation technology for low environmental load furans that does not use an organic solvent under low temperature conditions as compared with the conventional method.
(5) The present invention makes it possible to provide a new technology relating to the production of tetrahydrofuran derivatives by the hydrogenation reaction of furans, which can replace the conventional high environmental load production technology.
 次に、実施例に基づいて本発明を具体的に説明するが、本発明は、以下の実施例によって何ら限定されるものではない。 Next, the present invention will be specifically described based on examples, but the present invention is not limited to the following examples.
 内容積50mLのステンレス製高圧反応器に、基質原料として、フルフラール(アルドリッチ製品)0.3mLと、活性炭担持パラジウム触媒(金属担持量5wt%、和光純薬工業製品)0.020gと、蒸留水10mLを入れ、次いで、該反応器内をアルゴンで置換した。この反応器を、40℃まで加熱した後、該反応器に、圧力3.0MPaの水素を導入して、30分間水素化反応を行った。 In a high-pressure reactor made of stainless steel with an internal volume of 50 mL, as a substrate raw material, 0.3 mL of furfural (Aldrich product), 0.020 g of activated carbon-supported palladium catalyst (metal loading 5 wt%, Wako Pure Chemical Industries, Ltd.), and 10 mL of distilled water Then, the inside of the reactor was replaced with argon. After heating this reactor to 40 degreeC, hydrogen of pressure 3.0MPa was introduce | transduced into this reactor, and hydrogenation reaction was performed for 30 minutes.
 反応終了後、上記反応器から水素を放出させて、反応生成物を得たが、その量が少ないため、アセトンを用いて生成物を回収し、ガスクロマトグラフを用いて、分析した。その結果、フルフラールの転化率は97%であり、生成物のテロラヒドロフルフリルアルコールの収率は38%、フルフリルアルコールの収率は39%であった。 After completion of the reaction, hydrogen was released from the reactor to obtain a reaction product, but since the amount was small, the product was collected using acetone and analyzed using a gas chromatograph. As a result, the conversion of furfural was 97%, the yield of the product terahydrofurfuryl alcohol was 38%, and the yield of furfuryl alcohol was 39%.
 内容積50mLのステンレス製高圧反応器に、基質原料として、フルフラール(アルドリッチ製品)0.3mLと、活性炭担持パラジウム触媒(金属担持量5wt%、和光純薬工業製品)0.020gと、蒸留水10mLを入れ、次いで、該反応器内を二酸化炭素で置換した。この反応器を、40℃まで加熱した後、該反応器に、圧力3.0MPaの水素を導入して、30分間水素化反応を行った。 In a high-pressure reactor made of stainless steel with an internal volume of 50 mL, as a substrate raw material, 0.3 mL of furfural (Aldrich product), 0.020 g of activated carbon-supported palladium catalyst (metal loading 5 wt%, Wako Pure Chemical Industries, Ltd.), and 10 mL of distilled water Then, the inside of the reactor was replaced with carbon dioxide. After heating this reactor to 40 degreeC, hydrogen of pressure 3.0MPa was introduce | transduced into this reactor, and hydrogenation reaction was performed for 30 minutes.
 反応終了後、上記反応器から水素を放出させて、反応生成物を得たが、その量が少ないため、アセトンを用いて生成物を回収し、ガスクロマトグラフを用いて、分析した。その結果、フルフラールの転化率は95%であり、生成物のテロラヒドロフルフリルアルコールの収率は32%、フルフリルアルコールの収率は40%であった。 After completion of the reaction, hydrogen was released from the reactor to obtain a reaction product, but since the amount was small, the product was collected using acetone and analyzed using a gas chromatograph. As a result, the conversion of furfural was 95%, the yield of the product terahydrofurfuryl alcohol was 32%, and the yield of furfuryl alcohol was 40%.
 内容積50mLのステンレス製高圧反応器に、基質原料として、フルフラール(アルドリッチ製品)0.3mLと、活性炭担持パラジウム触媒(金属担持量5wt%、和光純薬工業製品)0.020gと、蒸留水10mLを入れ、次いで、該反応器内を二酸化炭素で置換した。この反応器を、40℃まで加熱した後、該反応器に、圧力3.0MPaの水素及び圧力15MPaの二酸化炭素を導入して、30分間水素化反応を行った。 In a high-pressure reactor made of stainless steel with an internal volume of 50 mL, as a substrate raw material, 0.3 mL of furfural (Aldrich product), 0.020 g of activated carbon-supported palladium catalyst (metal loading 5 wt%, Wako Pure Chemical Industries, Ltd.), and 10 mL of distilled water Then, the inside of the reactor was replaced with carbon dioxide. After this reactor was heated to 40 ° C., hydrogen at a pressure of 3.0 MPa and carbon dioxide at a pressure of 15 MPa were introduced into the reactor, and a hydrogenation reaction was performed for 30 minutes.
 反応終了後、上記反応器から水素を放出させて、反応生成物を得たが、その量が少ないため、アセトンを用いて生成物を回収し、ガスクロマトグラフを用いて、分析した。その結果、フルフラールの転化率は99%であり、生成物のテロラヒドロフルフリルアルコールの収率は56%、フルフリルアルコールの収率は5%であった。 After completion of the reaction, hydrogen was released from the reactor to obtain a reaction product, but since the amount was small, the product was collected using acetone and analyzed using a gas chromatograph. As a result, the conversion of furfural was 99%, the yield of the product terahydrofurfuryl alcohol was 56%, and the yield of furfuryl alcohol was 5%.
 実施例3と同様に、基質原料を反応させて、生成物を得た。ただし、蒸留水の量を、0.5mLに変更して、以下の反応条件により水素化反応を実施した。
     (反応条件)
基質原料: フルフラール 0.3mL
蒸留水の量:0.5mL
水素圧力: 3.0MPa
二酸化炭素圧力: 15MPa
触媒:活性炭担持パラジウム触媒(金属担持量5%、和光純薬工業製品)0.020g
反応温度: 40℃
反応時間: 30分
In the same manner as in Example 3, the substrate raw material was reacted to obtain a product. However, the amount of distilled water was changed to 0.5 mL, and the hydrogenation reaction was carried out under the following reaction conditions.
(Reaction conditions)
Substrate raw material: Furfural 0.3mL
Amount of distilled water: 0.5mL
Hydrogen pressure: 3.0 MPa
Carbon dioxide pressure: 15MPa
Catalyst: Activated carbon supported palladium catalyst (metal loading 5%, Wako Pure Chemical Industries, Ltd.) 0.020 g
Reaction temperature: 40 ° C
Reaction time: 30 minutes
 反応生成物を、ガスクロマトグラフを用いて、分析した。その結果、フルフラールの転化率は84%であり、生成物のテロラヒドロフルフリルアルコールの収率は26%、フルフリルアルコールの収率は40%であった。 The reaction product was analyzed using a gas chromatograph. As a result, the conversion of furfural was 84%, the yield of the product terahydrofurfuryl alcohol was 26%, and the yield of furfuryl alcohol was 40%.
(比較例1)
 実施例1と同様に、基質原料を反応させて、生成物を得た。ただし、蒸留水の添加を行わず、以下の反応条件により水素化反応を実施した。
     (反応条件)
基質原料: フルフラール 0.3mL
水素圧力: 3.0MPa
触媒:活性炭担持パラジウム触媒(金属担持量5%、和光純薬工業製品)0.020g
反応温度: 40℃
反応時間: 30分
(Comparative Example 1)
In the same manner as in Example 1, the substrate raw material was reacted to obtain a product. However, the hydrogenation reaction was carried out under the following reaction conditions without adding distilled water.
(Reaction conditions)
Substrate raw material: Furfural 0.3mL
Hydrogen pressure: 3.0 MPa
Catalyst: Activated carbon supported palladium catalyst (metal loading 5%, Wako Pure Chemical Industries, Ltd.) 0.020 g
Reaction temperature: 40 ° C
Reaction time: 30 minutes
 反応生成物を、ガスクロマトグラフを用いて、分析した。その結果、フルフラールの転化率は14%であり、生成物のテロラヒドロフルフリルアルコールの収率は2%、フルフリルアルコールの収率は3%であった。 The reaction product was analyzed using a gas chromatograph. As a result, the conversion of furfural was 14%, the yield of the product terahydrofurfuryl alcohol was 2%, and the yield of furfuryl alcohol was 3%.
(比較例2)
 実施例2と同様に、基質原料を反応させて、生成物を得た。ただし、蒸留水の添加を行わず、以下の反応条件により水素化反応を実施した。
     (反応条件)
基質原料: フルフラール 0.3mL
水素圧力: 3.0MPa
二酸化炭素圧力:15MPa
触媒:活性炭担持パラジウム触媒(金属担持量5%、和光純薬工業製品)0.020g
反応温度: 40℃
反応時間: 30分
(Comparative Example 2)
In the same manner as in Example 2, the substrate raw material was reacted to obtain a product. However, the hydrogenation reaction was carried out under the following reaction conditions without adding distilled water.
(Reaction conditions)
Substrate raw material: Furfural 0.3mL
Hydrogen pressure: 3.0 MPa
Carbon dioxide pressure: 15 MPa
Catalyst: Activated carbon supported palladium catalyst (metal loading 5%, Wako Pure Chemical Industries, Ltd.) 0.020 g
Reaction temperature: 40 ° C
Reaction time: 30 minutes
 反応生成物を、ガスクロマトグラフを用いて、分析した。その結果、フルフラールの転化率は26%であり、生成物のテロラヒドロフルフリルアルコールの収率は3%、フルフリルアルコールの収率は3%であった。 The reaction product was analyzed using a gas chromatograph. As a result, the conversion of furfural was 26%, the yield of the product terahydrofurfuryl alcohol was 3%, and the yield of furfuryl alcohol was 3%.
(比較例3)
 実施例1と同様に、基質原料を反応させて、生成物を得た。ただし、蒸留水に替えて、メタノールを用い、以下の反応条件により水素化反応を実施した。
     (反応条件)
基質原料: フルフラール 0.3mL
メタノールの量:10mL
水素圧力: 3.0MPa
触媒:活性炭担持パラジウム触媒(金属担持量5%、和光純薬工業製品)0.020g
反応温度: 40℃
反応時間: 30分
(Comparative Example 3)
In the same manner as in Example 1, the substrate raw material was reacted to obtain a product. However, instead of distilled water, methanol was used and a hydrogenation reaction was carried out under the following reaction conditions.
(Reaction conditions)
Substrate raw material: Furfural 0.3mL
Amount of methanol: 10 mL
Hydrogen pressure: 3.0 MPa
Catalyst: Activated carbon supported palladium catalyst (metal loading 5%, Wako Pure Chemical Industries, Ltd.) 0.020 g
Reaction temperature: 40 ° C
Reaction time: 30 minutes
 反応生成物を、ガスクロマトグラフを用いて、分析した。その結果、フルフラールの転化率は61%であり、生成物のテロラヒドロフルフリルアルコールの収率は13%、フルフリルアルコールの収率は27%であった。 The reaction product was analyzed using a gas chromatograph. As a result, the conversion of furfural was 61%, the yield of the product terahydrofurfuryl alcohol was 13%, and the yield of furfuryl alcohol was 27%.
(比較例4)
 実施例1と同様に、基質原料を反応させて、生成物を得た。ただし、蒸留水に替えて、エタノールを用い、以下の反応条件により水素化反応を実施した。
     (反応条件)
基質原料: フルフラール 0.3mL
エタノールの量:10mL
水素圧力: 3.0MPa
触媒:活性炭担持パラジウム触媒(金属担持量5%、和光純薬工業製品)0.020g
反応温度: 40℃
反応時間: 30分
(Comparative Example 4)
In the same manner as in Example 1, the substrate raw material was reacted to obtain a product. However, instead of distilled water, ethanol was used and a hydrogenation reaction was carried out under the following reaction conditions.
(Reaction conditions)
Substrate raw material: Furfural 0.3mL
Amount of ethanol: 10 mL
Hydrogen pressure: 3.0 MPa
Catalyst: Activated carbon supported palladium catalyst (metal loading 5%, Wako Pure Chemical Industries, Ltd.) 0.020 g
Reaction temperature: 40 ° C
Reaction time: 30 minutes
 反応生成物を、ガスクロマトグラフを用いて、分析した。その結果、フルフラールの転化率は48%であり、生成物のテロラヒドロフルフリルアルコールの収率は8%、フルフリルアルコールの収率は12%であった。 The reaction product was analyzed using a gas chromatograph. As a result, the conversion of furfural was 48%, the yield of the product terahydrofurfuryl alcohol was 8%, and the yield of furfuryl alcohol was 12%.
(比較例5)
 実施例1と同様に、基質原料を反応させて、生成物を得た。ただし、蒸留水に替えて、2-プロパノールを用い、以下の反応条件により水素化反応を実施した。
     (反応条件)
基質原料: フルフラール 0.3mL
2-プロパノールの量:10mL
水素圧力: 3.0MPa
触媒:活性炭担持パラジウム触媒(金属担持量5%、和光純薬工業製品)0.020g
反応温度: 40℃
反応時間: 30分
(Comparative Example 5)
In the same manner as in Example 1, the substrate raw material was reacted to obtain a product. However, instead of distilled water, 2-propanol was used and the hydrogenation reaction was carried out under the following reaction conditions.
(Reaction conditions)
Substrate raw material: Furfural 0.3mL
Amount of 2-propanol: 10 mL
Hydrogen pressure: 3.0 MPa
Catalyst: Activated carbon supported palladium catalyst (metal loading 5%, Wako Pure Chemical Industries, Ltd.) 0.020 g
Reaction temperature: 40 ° C
Reaction time: 30 minutes
 反応生成物を、ガスクロマトグラフを用いて、分析した。その結果、フルフラールの転化率は36%であり、生成物のテロラヒドロフルフリルアルコールの収率は5%、フルフリルアルコールの収率は7%であった。 The reaction product was analyzed using a gas chromatograph. As a result, the conversion rate of furfural was 36%, the yield of the product terahydrofurfuryl alcohol was 5%, and the yield of furfuryl alcohol was 7%.
(比較例6)
 実施例1と同様に、基質原料を反応させて、生成物を得た。ただし、蒸留水に替えて、ヘプタンを用い、以下の反応条件により水素化反応を実施した。
     (反応条件)
基質原料: フルフラール 0.3mL
ヘプタンの量:10mL
水素圧力: 3.0MPa
触媒:活性炭担持パラジウム触媒(金属担持量5%、和光純薬工業製品)0.020g
反応温度: 40℃
反応時間: 30分
(Comparative Example 6)
In the same manner as in Example 1, the substrate raw material was reacted to obtain a product. However, instead of distilled water, heptane was used and a hydrogenation reaction was carried out under the following reaction conditions.
(Reaction conditions)
Substrate raw material: Furfural 0.3mL
Amount of heptane: 10 mL
Hydrogen pressure: 3.0 MPa
Catalyst: Activated carbon supported palladium catalyst (metal loading 5%, Wako Pure Chemical Industries, Ltd.) 0.020 g
Reaction temperature: 40 ° C
Reaction time: 30 minutes
 反応生成物を、ガスクロマトグラフを用いて、分析した。その結果、フルフラールの転化率は21%であり、生成物のテロラヒドロフルフリルアルコールの収率は4%、フルフリルアルコールの収率は5%であった。 The reaction product was analyzed using a gas chromatograph. As a result, the conversion of furfural was 21%, the yield of the product terahydrofurfuryl alcohol was 4%, and the yield of furfuryl alcohol was 5%.
 実施例1~4、比較例1~6におけるフルフラールの水素化の結果を、表1にまとめて示す。 The results of hydrogenation of furfural in Examples 1 to 4 and Comparative Examples 1 to 6 are summarized in Table 1.
Figure JPOXMLDOC01-appb-T000002
Figure JPOXMLDOC01-appb-T000002
 内容積50mLのステンレス製高圧反応器に、基質原料として、フルフリルアルコール(和光純薬工業製品)0.3mLと、活性炭担持パラジウム触媒(金属担持量5wt%、和光純薬工業製品)0.010gと、蒸留水10mLを入れ、次いで、該反応器内を二酸化炭素で置換した。この反応器を、40℃まで加熱した後、該反応器に、圧力3.0MPaの水素を導入して、30分間水素化反応を行った。 In a stainless steel high-pressure reactor with an internal volume of 50 mL, as a substrate raw material, 0.3 mL of furfuryl alcohol (Wako Pure Chemical Industries, Ltd.) and activated carbon-supported palladium catalyst (metal loading 5 wt%, Wako Pure Chemical Industries, Ltd.) 0.010 g Then, 10 mL of distilled water was added, and then the inside of the reactor was replaced with carbon dioxide. After heating this reactor to 40 degreeC, hydrogen of pressure 3.0MPa was introduce | transduced into this reactor, and hydrogenation reaction was performed for 30 minutes.
 反応終了後、上記反応器から水素を放出させて、反応生成物を得たが、その量が少ないため、アセトンを用いて生成物を回収し、ガスクロマトグラフを用いて、分析した。その結果、フルフリルアルコールの転化率は84%であり、生成物のテロラヒドロフルフリルアルコールの収率は77%であった。 After completion of the reaction, hydrogen was released from the reactor to obtain a reaction product, but since the amount was small, the product was collected using acetone and analyzed using a gas chromatograph. As a result, the conversion of furfuryl alcohol was 84%, and the yield of the product terahydrofurfuryl alcohol was 77%.
 内容積50mLのステンレス製高圧反応器に、フルフリルアルコール(和光純薬工業製品)0.3mLと、活性炭担持パラジウム触媒(金属担持量5wt%、和光純薬工業製品)0.010gと、蒸留水10mLを入れ、次いで、該反応器内を二酸化炭素で置換した。この反応器を、40℃まで加熱した後、該反応器に、圧力3.0MPaの水素及び圧力15MPaの二酸化炭素を導入して、30分間水素化反応を行った。 In a stainless steel high-pressure reactor with an internal volume of 50 mL, 0.3 mL of furfuryl alcohol (Wako Pure Chemical Industries, Ltd.), activated carbon-supported palladium catalyst (metal loading 5 wt%, Wako Pure Chemical Industries, Ltd.), and distilled water 10 mL was added, and then the inside of the reactor was replaced with carbon dioxide. After this reactor was heated to 40 ° C., hydrogen at a pressure of 3.0 MPa and carbon dioxide at a pressure of 15 MPa were introduced into the reactor, and a hydrogenation reaction was performed for 30 minutes.
 反応終了後、上記反応器から水素を放出させて生成物を得たが、その量が少ないため、アセトンを用いて生成物を回収し、ガスクロマトグラフを用いて、分析した。その結果、フルフリルアルコールの転化率は95%であり、生成物のテロラヒドロフルフリルアルコールの収率は82%であった。 After completion of the reaction, hydrogen was released from the reactor to obtain a product. However, since the amount was small, the product was collected using acetone and analyzed using a gas chromatograph. As a result, the conversion of furfuryl alcohol was 95%, and the yield of the product terahydrofurfuryl alcohol was 82%.
(比較例7)
 内容積50mLのステンレス製高圧反応器に、基質原料として、フルフリルアルコール(和光純薬工業製品)0.3mLと、活性炭担持パラジウム触媒(金属担持量5wt%、和光純薬工業製品)0.010gを入れ、次いで、該反応器内を二酸化炭素で置換した。この反応器を、40℃まで加熱した後、該反応器に、圧力3.0MPaの水素を導入して、30分間水素化反応を行った。
(Comparative Example 7)
In a stainless steel high-pressure reactor with an internal volume of 50 mL, as a substrate raw material, 0.3 mL of furfuryl alcohol (Wako Pure Chemical Industries, Ltd.) and activated carbon-supported palladium catalyst (metal loading 5 wt%, Wako Pure Chemical Industries, Ltd.) 0.010 g Then, the inside of the reactor was replaced with carbon dioxide. After heating this reactor to 40 degreeC, hydrogen of pressure 3.0MPa was introduce | transduced into this reactor, and hydrogenation reaction was performed for 30 minutes.
 反応終了後、上記反応器から水素を放出させて反応生成物を得たが、その量が少ないため、アセトンを用いて生成物を回収し、ガスクロマトグラフを用いて、分析した。その結果、フルフリルアルコールの転化率は10%であり、生成物のテロラヒドロフルフリルアルコールの収率は10%であった。 After completion of the reaction, hydrogen was released from the reactor to obtain a reaction product. Since the amount was small, the product was collected using acetone and analyzed using a gas chromatograph. As a result, the conversion of furfuryl alcohol was 10%, and the yield of the product terahydrofurfuryl alcohol was 10%.
(比較例8)
 実施例5と同様に、基質原料を反応させて、生成物を得た。ただし、蒸留水に替えて、メタノールを用い、以下の反応条件により水素化反応を実施した。
     (反応条件)
基質原料: フルフリルアルコール 0.3mL
メタノールの量:10mL
水素圧力: 3.0MPa
二酸化炭素圧力:0.1MPa
触媒:活性炭担持パラジウム触媒(金属担持量5%、和光純薬工業製品)0.010g
反応温度: 40℃
反応時間: 30分
(Comparative Example 8)
In the same manner as in Example 5, the substrate raw material was reacted to obtain a product. However, instead of distilled water, methanol was used and a hydrogenation reaction was carried out under the following reaction conditions.
(Reaction conditions)
Substrate raw material: Furfuryl alcohol 0.3mL
Amount of methanol: 10 mL
Hydrogen pressure: 3.0 MPa
Carbon dioxide pressure: 0.1 MPa
Catalyst: Activated carbon supported palladium catalyst (metal loading 5%, Wako Pure Chemical Industries, Ltd.) 0.010 g
Reaction temperature: 40 ° C
Reaction time: 30 minutes
 反応生成物を、ガスクロマトグラフを用いて、分析した。その結果、フルフリルアルコールの転化率は15.1%であり、生成物のテロラヒドロフルフリルアルコールの収率は14.5%であった。 The reaction product was analyzed using a gas chromatograph. As a result, the conversion of furfuryl alcohol was 15.1%, and the yield of the product terrorahydrofurfuryl alcohol was 14.5%.
(比較例9)
 実施例5と同様に、基質原料を反応させて、生成物を得た。ただし、蒸留水に替えて、エタノールを用い、以下の反応条件により水素化反応を実施した。
     (反応条件)
基質原料: フルフリルアルコール 0.3mL
エタノールの量:10mL
水素圧力: 3.0MPa
二酸化炭素圧力:0.1MPa
触媒:活性炭担持パラジウム触媒(金属担持量5%、和光純薬工業製品)0.010g
反応温度: 40℃
反応時間: 30分
(Comparative Example 9)
In the same manner as in Example 5, the substrate raw material was reacted to obtain a product. However, instead of distilled water, ethanol was used and a hydrogenation reaction was carried out under the following reaction conditions.
(Reaction conditions)
Substrate raw material: Furfuryl alcohol 0.3mL
Amount of ethanol: 10 mL
Hydrogen pressure: 3.0 MPa
Carbon dioxide pressure: 0.1 MPa
Catalyst: Activated carbon supported palladium catalyst (metal loading 5%, Wako Pure Chemical Industries, Ltd.) 0.010 g
Reaction temperature: 40 ° C
Reaction time: 30 minutes
 反応生成物を、ガスクロマトグラフを用いて、分析した。その結果、フルフリルアルコールの転化率は17%であり、生成物のテロラヒドロフルフリルアルコールの収率は17%であった。 The reaction product was analyzed using a gas chromatograph. As a result, the conversion of furfuryl alcohol was 17%, and the yield of the product terahydrofurfuryl alcohol was 17%.
(比較例10)
 実施例5と同様に、基質原料を反応させて、生成物を得た。ただし、蒸留水に替えて、2-プロパノールを用い、以下の反応条件により水素化反応を実施した。
     (反応条件)
基質原料: フルフリルアルコール 0.3mL
2-プロパノールの量:10mL
水素圧力: 3.0MPa
二酸化炭素圧力:0.1MPa
触媒:活性炭担持パラジウム触媒(金属担持量5%、和光純薬工業製品)0.010g
反応温度: 40℃
反応時間: 30分
(Comparative Example 10)
In the same manner as in Example 5, the substrate raw material was reacted to obtain a product. However, instead of distilled water, 2-propanol was used and the hydrogenation reaction was carried out under the following reaction conditions.
(Reaction conditions)
Substrate raw material: Furfuryl alcohol 0.3mL
Amount of 2-propanol: 10 mL
Hydrogen pressure: 3.0 MPa
Carbon dioxide pressure: 0.1 MPa
Catalyst: Activated carbon supported palladium catalyst (metal loading 5%, Wako Pure Chemical Industries, Ltd.) 0.010 g
Reaction temperature: 40 ° C
Reaction time: 30 minutes
 反応生成物を、ガスクロマトグラフを用いて、分析した。その結果、フルフリルアルコールの転化率は12%であり、生成物のテロラヒドロフルフリルアルコールの収率は12%であった。 The reaction product was analyzed using a gas chromatograph. As a result, the conversion of furfuryl alcohol was 12%, and the yield of the product terahydrofurfuryl alcohol was 12%.
(比較例11)
 実施例5と同様に、基質原料を反応させて、生成物を得た。ただし、蒸留水に替えて、ヘプタンを用い、以下の反応条件により水素化反応を実施した。
     (反応条件)
基質原料: フルフリルアルコール 0.3mL
ヘプタンの量:10mL
水素圧力: 3.0MPa
二酸化炭素圧力:0.1MPa
触媒:活性炭担持パラジウム触媒(金属担持量5%、和光純薬工業製品)0.010g
反応温度: 40℃
反応時間: 30分
(Comparative Example 11)
In the same manner as in Example 5, the substrate raw material was reacted to obtain a product. However, instead of distilled water, heptane was used and a hydrogenation reaction was carried out under the following reaction conditions.
(Reaction conditions)
Substrate raw material: Furfuryl alcohol 0.3mL
Amount of heptane: 10 mL
Hydrogen pressure: 3.0 MPa
Carbon dioxide pressure: 0.1 MPa
Catalyst: Activated carbon supported palladium catalyst (metal loading 5%, Wako Pure Chemical Industries, Ltd.) 0.010 g
Reaction temperature: 40 ° C
Reaction time: 30 minutes
 反応生成物を、ガスクロマトグラフを用いて、分析した。その結果、フルフリルアルコールの転化率は19%であり、生成物のテロラヒドロフルフリルアルコールの収率は19%であった。 The reaction product was analyzed using a gas chromatograph. As a result, the conversion of furfuryl alcohol was 19%, and the yield of the product terahydrofurfuryl alcohol was 19%.
 実施例5、6、及び比較例7~11におけるフルフリルアルコールの水素化の結果を、表2にまとめて示す。 Table 2 summarizes the results of hydrogenation of furfuryl alcohol in Examples 5 and 6 and Comparative Examples 7 to 11.
Figure JPOXMLDOC01-appb-T000003
Figure JPOXMLDOC01-appb-T000003
 実施例5と同様に、基質原料を反応させて、生成物を得た。ただし、活性炭担持パラジウム触媒に替えて、アルミナ担持パラジウム触媒(金属担持量5%、和光純薬工業製品)を用い、以下の反応条件により水素化反応を実施した。
     (反応条件)
基質原料: フルフリルアルコール 0.3mL
水の量:10mL
水素圧力: 3.0MPa
二酸化炭素圧力:0.1MPa
触媒:アルミナ担持パラジウム触媒(金属担持量5%、和光純薬工業製品)0.010g
反応温度: 40℃
反応時間: 30分
In the same manner as in Example 5, the substrate raw material was reacted to obtain a product. However, instead of the activated carbon-supported palladium catalyst, an alumina-supported palladium catalyst (metal supported amount 5%, Wako Pure Chemical Industries, Ltd.) was used, and a hydrogenation reaction was performed under the following reaction conditions.
(Reaction conditions)
Substrate raw material: Furfuryl alcohol 0.3mL
Amount of water: 10 mL
Hydrogen pressure: 3.0 MPa
Carbon dioxide pressure: 0.1 MPa
Catalyst: Alumina-supported palladium catalyst (metal loading 5%, Wako Pure Chemical Industries, Ltd.) 0.010 g
Reaction temperature: 40 ° C
Reaction time: 30 minutes
 反応生成物を、ガスクロマトグラフを用いて、分析した。その結果、フルフリルアルコールの転化率は100%であり、生成物のテロラヒドロフルフリルアルコールの収率は98%であった。 The reaction product was analyzed using a gas chromatograph. As a result, the conversion of furfuryl alcohol was 100%, and the yield of the product terahydrofurfuryl alcohol was 98%.
 実施例6と同様に、基質原料を反応させて、生成物を得た。ただし、活性炭担持パラジウム触媒に替えて、アルミナ担持パラジウム触媒(金属担持量5%、和光純薬工業製品)を用い、以下の反応条件により水素化反応を実施した。
     (反応条件)
基質原料: フルフリルアルコール 0.3mL
水の量:10mL
水素圧力: 3.0MPa
二酸化炭素圧力:15MPa
触媒:アルミナ担持パラジウム触媒(金属担持量5%、和光純薬工業製品)0.010g
反応温度: 40℃
反応時間: 30分
In the same manner as in Example 6, the substrate raw material was reacted to obtain a product. However, instead of the activated carbon-supported palladium catalyst, an alumina-supported palladium catalyst (metal supported amount 5%, Wako Pure Chemical Industries, Ltd.) was used, and a hydrogenation reaction was performed under the following reaction conditions.
(Reaction conditions)
Substrate raw material: Furfuryl alcohol 0.3mL
Amount of water: 10 mL
Hydrogen pressure: 3.0 MPa
Carbon dioxide pressure: 15 MPa
Catalyst: Alumina-supported palladium catalyst (metal loading 5%, Wako Pure Chemical Industries, Ltd.) 0.010 g
Reaction temperature: 40 ° C
Reaction time: 30 minutes
 反応生成物を、ガスクロマトグラフを用いて、分析した。その結果、フルフリルアルコールの転化率は98%であり、生成物のテロラヒドロフルフリルアルコールの収率は96%であった。 The reaction product was analyzed using a gas chromatograph. As a result, the conversion of furfuryl alcohol was 98%, and the yield of the product terahydrofurfuryl alcohol was 96%.
 実施例7、8におけるフルフリルアルコールの水素化の結果を、表3にまとめて示す。 Results of hydrogenation of furfuryl alcohol in Examples 7 and 8 are summarized in Table 3.
Figure JPOXMLDOC01-appb-T000004
Figure JPOXMLDOC01-appb-T000004
 以上詳述したように、本発明は、フラン類の水素化反応によるテトラヒドロフラン誘導体の製造技術に係るものであり、本発明により、工業的に非常に重要な物質であるテトラヒドロフラン誘導体を、環境に優しいプロセスで、効率的に製造することを可能とする新しいテトラヒドロフラン類の製造技術を提供することを実現するものである。本発明により、水と二酸化炭素と、担持パラジウム触媒を用いることで、効率的に、テトラヒドロフラン誘導体を製造することが可能である。本発明は、水と二酸化炭素と、高活性の担持パラジウム触媒を用い、フラン類を、効率よく水素化することにより、その水素化物を製造することを可能とする、環境調和型プロセスによるテトラヒドロフラン誘導体の新規製造技術を提供するものとして有用である。 As described above in detail, the present invention relates to a technique for producing a tetrahydrofuran derivative by hydrogenation reaction of furans, and according to the present invention, a tetrahydrofuran derivative, which is an industrially very important substance, is environmentally friendly. It is an object of the present invention to provide a new tetrahydrofuran production technology that enables efficient production by a process. According to the present invention, a tetrahydrofuran derivative can be efficiently produced by using water, carbon dioxide, and a supported palladium catalyst. The present invention relates to a tetrahydrofuran derivative by an environmentally conscious process, which makes it possible to produce hydrides by efficiently hydrogenating furans using water, carbon dioxide and a highly active supported palladium catalyst. This is useful as a new manufacturing technology.

Claims (6)

  1.  出発原料のフルフラール又はフルフリルアルコールを水素化して、その水素化物であるフルフリルアルコール又はテトラヒドロフルフリルアルコールを製造する方法であって、水を溶媒に用い、フルフラール又はフルフリルアルコールと、担持パラジウム触媒と、水素を用いて、あるいは、更に、これらの反応系に、二酸化炭素を導入して、水素化反応を行うことにより上記水素化物を製造することを特徴とする水素化物の製造方法。 A method for producing a furfuryl alcohol or a tetrahydrofurfuryl alcohol which is a hydride by hydrogenating furfural or furfuryl alcohol as a starting material, using water as a solvent, furfural or furfuryl alcohol and a supported palladium catalyst And a method for producing a hydride, wherein the hydride is produced by using hydrogen or by introducing carbon dioxide into these reaction systems and performing a hydrogenation reaction.
  2.  水を溶媒とした反応系で、フルフリルアルコールの収量を高め、水を溶媒とし、かつ二酸化炭素を導入した反応系で、テトラヒドロフルフリルアルコールの収量を高める、請求項1に記載の水素化物の製造方法。 The reaction system using water as a solvent increases the yield of furfuryl alcohol, and the reaction system using water as a solvent and carbon dioxide increases the yield of tetrahydrofurfuryl alcohol. Production method.
  3.  活性炭担持パラジウム触媒を用いて、フルフラール又はフルフリルアルコールを水素化して、その水素化物であるフルフリルアルコール又はテトラヒドロフルフリルアルコールを製造する、請求項1又は2に記載の水素化物の製造方法。 The method for producing a hydride according to claim 1 or 2, wherein a furfural or furfuryl alcohol is hydrogenated using an activated carbon-supported palladium catalyst to produce furfuryl alcohol or tetrahydrofurfuryl alcohol as a hydride thereof.
  4.  アルミナ担持パラジウム触媒を用いて、フルフラール又はフルフリルアルコールを水素化して、その水素化物であるフルフリルアルコール又はテトラヒドロフルフリルアルコールを製造する、請求項1又は2に記載の水素化物の製造方法。 The method for producing a hydride according to claim 1 or 2, wherein furfural or furfuryl alcohol is hydrogenated using an alumina-supported palladium catalyst to produce furfuryl alcohol or tetrahydrofurfuryl alcohol which is a hydride thereof.
  5.  反応系に、0.1~30MPaの二酸化炭素を導入して、水素化反応を行う、請求項1から4のいずれかに記載の水素化物の製造方法。 The method for producing a hydride according to any one of claims 1 to 4, wherein a hydrogenation reaction is carried out by introducing carbon dioxide of 0.1 to 30 MPa into the reaction system.
  6.  反応温度が、30~80℃、反応時間が15~120分である、請求項1から5のいずれかに記載の水素化物の製造方法。 6. The method for producing a hydride according to claim 1, wherein the reaction temperature is 30 to 80 ° C. and the reaction time is 15 to 120 minutes.
PCT/JP2011/070039 2010-09-02 2011-09-02 Method of producing tetrahydrofuran derivatives by hydrogenation of furans WO2012029949A1 (en)

Applications Claiming Priority (2)

Application Number Priority Date Filing Date Title
JP2010-197169 2010-09-02
JP2010197169A JP4916038B2 (en) 2010-09-02 2010-09-02 Method for producing tetrahydrofuran derivative by hydrogenation of furans

Publications (1)

Publication Number Publication Date
WO2012029949A1 true WO2012029949A1 (en) 2012-03-08

Family

ID=45773023

Family Applications (1)

Application Number Title Priority Date Filing Date
PCT/JP2011/070039 WO2012029949A1 (en) 2010-09-02 2011-09-02 Method of producing tetrahydrofuran derivatives by hydrogenation of furans

Country Status (2)

Country Link
JP (1) JP4916038B2 (en)
WO (1) WO2012029949A1 (en)

Cited By (4)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
WO2013133208A1 (en) * 2012-03-09 2013-09-12 宇部興産株式会社 Method for producing tetrahydrofuran compound
WO2014209595A1 (en) * 2013-06-28 2014-12-31 Archer Daniels Midland Company Tetrahydrofuran-2,5-dicarbaldehydes (diformyl-tetrahydrofuran, dfthf) and process for making the same
CN104662009A (en) * 2012-09-27 2015-05-27 罗盖特公司 Method for synthesising 2,5-di(hydroxymethyl)furan and 2,5-di(hydroxymethyl)tetrahydrofuran by selective hydrogenation of furan-2,5-dialdehyde
CN105348228A (en) * 2015-09-28 2016-02-24 李沛轩 Industrial continuous production method and apparatus for tetrahydrofurfuryl alcohol diethyl ether

Families Citing this family (4)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
JP6037209B2 (en) * 2012-08-30 2016-12-07 国立大学法人東北大学 Method for producing tetrahydrofuran compound, hydrogenation catalyst and method for producing the same
JP2015003892A (en) * 2013-06-24 2015-01-08 宇部興産株式会社 Method for producing polyol compound
JP6310326B2 (en) * 2014-05-27 2018-04-11 富士フレーバー株式会社 Method for producing δ-valerolactone
CN108059594B (en) * 2017-11-17 2021-03-12 中山大学 Method for converting biomass monomer into clean fuel by green synthesis of Pd catalyst

Citations (1)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
WO2009156439A1 (en) * 2008-06-24 2009-12-30 Shell Internationale Research Maatschappij B.V. Process for the hydrogenolysis of furfuryl derivatives

Patent Citations (1)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
WO2009156439A1 (en) * 2008-06-24 2009-12-30 Shell Internationale Research Maatschappij B.V. Process for the hydrogenolysis of furfuryl derivatives

Non-Patent Citations (4)

* Cited by examiner, † Cited by third party
Title
LUIJKX, G.C. ET AL.: "Ether formation in the hydrogenolysis of hydroxymethylfurfural over palladium catalysts in alcoholic solution", HETEROCYCLES, vol. 77, no. 2, 2009, pages 1037 - 1044 *
MERAT, N. ET AL.: "High selective production of tetrahydrofurfuryl alcohol: catalytic hydrogenation of furfural and furfuryl alcohol", JOURNAL OF CHEMICAL TECHNOLOGY AND BIOTECHNOLOGY, vol. 48, no. 2, 1990, pages 145 - 159 *
TIKE, M.A. ET AL.: "Kinetics of Liquid-Phase Hydrogenation of Furfuryl Alcohol to Tetrahydrofurfuryl Alcohol over a Ru/Ti02 Catalyst", INDUSTRIAL & ENGINEERING CHEMISTRY RESEARCH, vol. 46, no. 10, 2007, pages 3275 - 3282 *
WU, X. ET AL.: "On water and in air: fast and highly chemoselective transfer hydrogenation of aldehydes with iridium catalysts", ANGEWANDTE CHEMIE, INTERNATIONAL EDITION, vol. 45, no. 40, 2006, pages 6718 - 6722 *

Cited By (7)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
WO2013133208A1 (en) * 2012-03-09 2013-09-12 宇部興産株式会社 Method for producing tetrahydrofuran compound
JPWO2013133208A1 (en) * 2012-03-09 2015-07-30 宇部興産株式会社 Method for producing tetrahydrofuran compound
CN104662009A (en) * 2012-09-27 2015-05-27 罗盖特公司 Method for synthesising 2,5-di(hydroxymethyl)furan and 2,5-di(hydroxymethyl)tetrahydrofuran by selective hydrogenation of furan-2,5-dialdehyde
WO2014209595A1 (en) * 2013-06-28 2014-12-31 Archer Daniels Midland Company Tetrahydrofuran-2,5-dicarbaldehydes (diformyl-tetrahydrofuran, dfthf) and process for making the same
CN105324030A (en) * 2013-06-28 2016-02-10 阿彻丹尼尔斯米德兰德公司 Tetrahydrofuran-2,5-dicarbaldehydes (diformyl-tetrahydrofuran, DFTHF) and process for making the same
CN105348228A (en) * 2015-09-28 2016-02-24 李沛轩 Industrial continuous production method and apparatus for tetrahydrofurfuryl alcohol diethyl ether
CN105348228B (en) * 2015-09-28 2024-04-16 尤学民 Method and device for industrially and continuously producing tetrahydrofurfuryl alcohol diethyl ether

Also Published As

Publication number Publication date
JP2012051853A (en) 2012-03-15
JP4916038B2 (en) 2012-04-11

Similar Documents

Publication Publication Date Title
JP4916038B2 (en) Method for producing tetrahydrofuran derivative by hydrogenation of furans
Xie et al. Ambient reductive amination of levulinic acid to pyrrolidones over Pt nanocatalysts on porous TiO2 nanosheets
He et al. New catalytic strategies for α, ω-diols production from lignocellulosic biomass
Mehdi et al. Integration of homogeneous and heterogeneous catalytic processes for a multi-step conversion of biomass: from sucrose to levulinic acid, γ-valerolactone, 1, 4-pentanediol, 2-methyl-tetrahydrofuran, and alkanes
Krishna et al. Hydrogenation of levoglucosenone to renewable chemicals
Mizugaki et al. Direct transformation of furfural to 1, 2-pentanediol using a hydrotalcite-supported platinum nanoparticle catalyst
Cai et al. Biomass into chemicals: One-pot production of furan-based diols from carbohydrates via tandem reactions
Wright et al. Development of heterogeneous catalysts for the conversion of levulinic acid to γ‐valerolactone
Rodriguez-Padron et al. Benign-by-design orange peel-templated nanocatalysts for continuous flow conversion of levulinic acid to N-heterocycles
Jiang et al. Selective synthesis of THF-derived amines from biomass-derived carbonyl compounds
Hsiao et al. Selective hydrodeoxygenation of 5-hydroxymethylfurfural (HMF) to 2, 5-dimethylfuran (DMF) over carbon supported copper catalysts using isopropyl alcohol as a hydrogen donor
Liu et al. Co-catalyzed hydrogenation of levulinic acid to γ-valerolactone under atmospheric pressure
Ma et al. Selective liquid-phase hydrogenation of maleic anhydride to succinic anhydride on biosynthesized Ru-based catalysts
Fang et al. Hydrogenolysis and hydrogenation of β-O-4 ketones by a simple photocatalytic hydrogen transfer reaction
Cui et al. A catalytic oxidative valorization of biomass-derived furfural with ethanol by copper/azodicarboxylate system
Cucciniello et al. Efficient and selective conversion of glycidol to 1, 2-propanediol over Pd/C catalyst
Wu et al. Quasi-catalytic approach to N-unprotected lactams via transfer hydro-amination/cyclization of biobased keto acids
Yun et al. Microwave irradiation-enhanced catalytic transfer hydrogenation of levulinic acid to γ-valerolactone using Ruthenium: a comparative study with conventional heating processes
Gilcher et al. Effects of water addition to isopropanol for hydrogenation of compounds derived from 5-hydroxymethyl furfural over Pd, Ru, and Cu catalysts
Li et al. Aqueous-phase hydrogenation of biomass-derived itaconic acid to methyl-γ-butyrolactone over Pd/C catalysts: effect of pretreatments of active carbon
Huang et al. Selective hydrogenation of levoglucosenone over Pd/C using formic acid as a hydrogen source
Mudhulu et al. Recent advances in heterogeneous catalytic hydrodeoxygenation of biomass-derived oxygenated furanics mediated by formic acid
JP6057376B2 (en) Method for reducing hydroxymethylfurfural and / or furfural
CN108409692A (en) A kind of method that the carbon material supported ruthenium catalyst catalysis levulic acid Hydrogenation of sulfur doping takes gamma-valerolactone
Khajone et al. Recyclable polymer-supported carboxyl functionalized Zn–porphyrin photocatalyst for transfer hydrogenation of levulinic acid to γ-valerolactone

Legal Events

Date Code Title Description
121 Ep: the epo has been informed by wipo that ep was designated in this application

Ref document number: 11821963

Country of ref document: EP

Kind code of ref document: A1

NENP Non-entry into the national phase

Ref country code: DE

122 Ep: pct application non-entry in european phase

Ref document number: 11821963

Country of ref document: EP

Kind code of ref document: A1