JP6310326B2 - Method for producing δ-valerolactone - Google Patents

Method for producing δ-valerolactone Download PDF

Info

Publication number
JP6310326B2
JP6310326B2 JP2014108790A JP2014108790A JP6310326B2 JP 6310326 B2 JP6310326 B2 JP 6310326B2 JP 2014108790 A JP2014108790 A JP 2014108790A JP 2014108790 A JP2014108790 A JP 2014108790A JP 6310326 B2 JP6310326 B2 JP 6310326B2
Authority
JP
Japan
Prior art keywords
valerolactone
palladium
ethyl
unsaturated
pyran
Prior art date
Legal status (The legal status is an assumption and is not a legal conclusion. Google has not performed a legal analysis and makes no representation as to the accuracy of the status listed.)
Active
Application number
JP2014108790A
Other languages
Japanese (ja)
Other versions
JP2015224206A (en
Inventor
進悦 武藤
進悦 武藤
亮太 増田
亮太 増田
Original Assignee
富士フレーバー株式会社
Priority date (The priority date is an assumption and is not a legal conclusion. Google has not performed a legal analysis and makes no representation as to the accuracy of the date listed.)
Filing date
Publication date
Application filed by 富士フレーバー株式会社 filed Critical 富士フレーバー株式会社
Priority to JP2014108790A priority Critical patent/JP6310326B2/en
Publication of JP2015224206A publication Critical patent/JP2015224206A/en
Application granted granted Critical
Publication of JP6310326B2 publication Critical patent/JP6310326B2/en
Active legal-status Critical Current
Anticipated expiration legal-status Critical

Links

Description

本発明は、γδ不飽和−δ−バレロラクトンから水素化反応によりδ−バレロラクトンを製造する方法に関する。   The present invention relates to a method for producing δ-valerolactone from γδ unsaturated-δ-valerolactone by hydrogenation reaction.

δ−バレロラクトンは、香料、農薬、医薬などの合成中間体や材料として有用である。特にメチル基やエチル基などの置換基を持ったδ−バレロラクトンは利用価値が高い。このようなδ−バレロラクトンの製造方法として、γδ不飽和−δ−バレロラクトンを水素化してδ−バレロラクトンを得る方法が知られている。   δ-valerolactone is useful as a synthetic intermediate or material for fragrances, agricultural chemicals, medicines and the like. In particular, δ-valerolactone having a substituent such as a methyl group or an ethyl group has a high utility value. As a method for producing such δ-valerolactone, a method of obtaining δ-valerolactone by hydrogenating γδ unsaturated-δ-valerolactone is known.

γδ不飽和−δ−バレロラクトンは、例えば、Journal of Organic Chemistry、1989年、54巻、2364−2369頁に記載されている方法により、簡便かつ高収率で合成することができ、様々な置換基を持ったγδ不飽和−δ−バレロラクトンを容易に合成することができる。γδ不飽和−δ−バレロラクトンの水素化反応としては、Tetrahedron Letters、2010年、第51巻、3827−3829頁に記載のようにパラジウム−カーボンを水素化触媒として用いた方法(製造方法1)が知られている。   The γδ unsaturated-δ-valerolactone can be synthesized easily and in high yield by, for example, the method described in Journal of Organic Chemistry, 1989, 54, 2364-2369, and various substitutions can be made. Γδ unsaturated-δ-valerolactone having a group can be easily synthesized. As a hydrogenation reaction of γδ unsaturated-δ-valerolactone, a method using palladium-carbon as a hydrogenation catalyst as described in Tetrahedron Letters, 2010, Vol. 51, pages 3827-3829 (Production Method 1) It has been known.

しかしながら、γδ不飽和−δ−バレロラクトンの水素化反応は、加水素分解が起こりやすいため、δ−バレロラクトンの実用的な製造方法はほとんどない。例えば、Organic Letters、2009年、第11巻、1623−1625頁に記載のように、γδ不飽和−δ−バレロラクトンにパラジウム−カーボン触媒を用いた水素化反応ではδ−バレロラクトンは得られず、加水素分解されたカルボン酸が高収率で得られている。上記の製造方法1においても加水素分解が起きているため、δ−バレロラクトンの収率が低く、実用的でない。   However, since the hydrogenation reaction of γδ unsaturated-δ-valerolactone is likely to undergo hydrogenolysis, there are few practical methods for producing δ-valerolactone. For example, as described in Organic Letters, 2009, Vol. 11, pages 1623-1625, δ-valerolactone cannot be obtained by hydrogenation reaction using a palladium-carbon catalyst for γδ unsaturated-δ-valerolactone. The hydrogenolysis carboxylic acid is obtained in high yield. In the production method 1 described above, since hydrogenolysis occurs, the yield of δ-valerolactone is low and not practical.

「Tetrahedron Letters」 Elsevier Ltd.出版、2010年、第51巻、3827−3829頁“Tetrahedron Letters” Elsevier Ltd. Publication, 2010, 51, 3827-3829 「Organic Letters」 ACS Publications出版、2009年、第11巻、1623−1625頁"Organic Letters" ACS Publications, 2009, Vol. 11, 1623-1625

本発明は、γδ不飽和−δ−バレロラクトンの水素化反応における副反応である加水素分解を抑え、γδ不飽和−δ−バレロラクトンからδ−バレロラクトンを高収率で製造することを目的とする。   The present invention aims to produce δ-valerolactone in high yield from γδ unsaturated-δ-valerolactone by suppressing hydrogenolysis, which is a side reaction in the hydrogenation reaction of γδ unsaturated-δ-valerolactone. And

本発明者らは、上記課題を解決するために鋭意検討を行った結果、γδ不飽和−δ−バレロラクトンをパラジウム−アルミナ触媒存在下で水素化反応させるとδ−バレロラクトンを収率よく得られることを見出した。   As a result of intensive studies to solve the above problems, the present inventors obtained δ-valerolactone in a high yield when hydrogenation reaction of γδ unsaturated-δ-valerolactone is carried out in the presence of a palladium-alumina catalyst. I found out that

さらに、本発明者らは、γδ不飽和−δ−バレロラクトンをパラジウム−アルミナ触媒存在下、エステル系溶媒中で水素化反応させるとδ−バレロラクトンを非常に収率よく得られることを見出し、本発明を完成するに至った。   Furthermore, the present inventors have found that when γδ unsaturated-δ-valerolactone is hydrogenated in an ester solvent in the presence of a palladium-alumina catalyst, δ-valerolactone can be obtained in a very high yield. The present invention has been completed.

すなわち、本発明は第一に、式(1)

Figure 0006310326
(式中R1〜R3は、水素原子、メチル基、エチル基を表す。)で表されるγδ不飽和−δ−バレロラクトンをパラジウム−アルミナ触媒の存在下で水素化反応させることを特徴とする式(2)
Figure 0006310326
(式中R1〜R3は、水素原子、メチル基、エチル基を表す。)で表されるδ−バレロラクトンの製造方法である。
第二に、前記水素化反応で使用される溶媒が、R1COOR2(式中R1は炭素数1〜3の分岐していてもよいアルキル基、R2は炭素数1〜2のアルキル基を表す。)で表されるエステルであることを特徴とする、上記第一に記載のδ−バレロラクトンの製造方法である。 That is, the present invention firstly has the formula (1)
Figure 0006310326
(Wherein R 1 to R 3 represent a hydrogen atom, a methyl group, and an ethyl group), and γδ-unsaturated-δ-valerolactone is hydrogenated in the presence of a palladium-alumina catalyst. Equation (2)
Figure 0006310326
(Wherein R 1 to R 3 represent a hydrogen atom, a methyl group, and an ethyl group).
Second, the solvent used in the hydrogenation reaction is R 1 COOR 2 (wherein R 1 is an alkyl group having 1 to 3 carbon atoms which may be branched, and R 2 is alkyl having 1 to 2 carbon atoms). The method for producing δ-valerolactone according to the first aspect, wherein the ester is represented by the following formula:

以下、本発明に係るδ−バレロラクトンの製造方法についてさらに詳細に説明する。   Hereinafter, the method for producing δ-valerolactone according to the present invention will be described in more detail.

γδ不飽和−δ−バレロラクトンである上記式(1)におけるR1〜R3は水素原子、メチル基、エチル基を表し、その組み合わせは自在に選択できる。 R 1 to R 3 in the above formula (1) which is γδ unsaturated-δ-valerolactone represents a hydrogen atom, a methyl group or an ethyl group, and the combination thereof can be freely selected.

水素化触媒は、市販のパラジウム−アルミナ触媒を使用することができる。パラジウム−アルミナ触媒の使用量は、上記式(1)で表されるγδ不飽和−δ−バレロラクトンの重量に対して、0.01〜0.3倍量の範囲で使用でき、好ましくは0.02〜0.15倍量である。   A commercially available palladium-alumina catalyst can be used as the hydrogenation catalyst. The amount of the palladium-alumina catalyst used can be 0.01 to 0.3 times the weight of the γδ unsaturated-δ-valerolactone represented by the above formula (1), preferably 0. 0.02 to 0.15 times the amount.

水素の反応圧力は、常圧から高圧まで使用可能であり、具体的には常圧から5MPaの範囲であり、好ましくは常圧から3MPaの範囲である。   The reaction pressure of hydrogen can be used from normal pressure to high pressure. Specifically, the reaction pressure is from normal pressure to 5 MPa, preferably from normal pressure to 3 MPa.

反応温度は、10℃〜60℃が好ましく、より好ましくは20℃〜45℃である。   The reaction temperature is preferably 10 ° C to 60 ° C, more preferably 20 ° C to 45 ° C.

水素化反応における溶媒としては、エステル系やアルコール系など特に制限はないが、パラジウム−アルミナ触媒とエステル系の溶媒との組み合わせが加水素分解を顕著に抑えることができるため、δ−バレロラクトンの収率が格段に向上するので、エステル系の溶媒が特に好適である。エステル系の溶媒としては、具体的には酢酸メチル、酢酸エチル、プロピオン酸メチル、プロピオン酸エチル、酪酸メチル、酪酸エチル、イソ酪酸メチル、イソ酪酸エチルの中から1種類または複数種類の組み合わせで使用することができる。溶媒の使用量は、上記式(1)で表されるγδ不飽和−δ−バレロラクトンの重量に対して、1〜20倍量であり、好ましくは3〜10倍量である。   The solvent in the hydrogenation reaction is not particularly limited, such as ester-based or alcohol-based solvents. However, since the combination of a palladium-alumina catalyst and an ester-based solvent can remarkably suppress hydrogenolysis, δ-valerolactone Since the yield is remarkably improved, an ester solvent is particularly suitable. Specific examples of ester solvents include methyl acetate, ethyl acetate, methyl propionate, ethyl propionate, methyl butyrate, ethyl butyrate, methyl isobutyrate, and ethyl isobutyrate. can do. The usage-amount of a solvent is 1-20 times amount with respect to the weight of (gamma) delta unsaturated-delta-valerolactone represented by the said Formula (1), Preferably it is 3-10 times amount.

反応終了後は、触媒を濾過し、濾液を減圧濃縮することにより、上記式(2)で表されるδ−バレロラクトンを高収率で得ることができる。   After completion of the reaction, the catalyst is filtered, and the filtrate is concentrated under reduced pressure, whereby δ-valerolactone represented by the above formula (2) can be obtained in high yield.

本発明によれば、γδ不飽和−δ−バレロラクトンの水素化反応における副反応である加水素分解を抑え、γδ不飽和−δ−バレロラクトンからδ−バレロラクトンを高収率で製造することができる。   According to the present invention, production of δ-valerolactone in high yield from γδ unsaturated-δ-valerolactone is suppressed by suppressing hydrogenolysis, which is a side reaction in the hydrogenation reaction of γδ unsaturated-δ-valerolactone. Can do.

以下に実施例を挙げて本発明を詳細に説明するが、本発明はこれに限定されるものではない。   Hereinafter, the present invention will be described in detail with reference to examples, but the present invention is not limited thereto.

50mlのナスフラスコに6−エチル−3,5−ジメチル−3,4−ジヒドロ−2H−ピラン−2−オン(1.0g)、5%パラジウム−アルミナ触媒(100mg)、酢酸エチル(10ml)を加え、水素で置換し、水素圧力は常圧とした。室温で5時間撹拌後、反応容器を窒素で置換した。反応溶液を濾過し、濾液を減圧濃縮し、粗生成物(1.0g)を得た。ガスクロマトグラフィー分析によると、6−エチル−3,5−ジメチルテトラヒドロ−2H−ピラン−2−オンが96%、加水素分解物であるカルボン酸が4%であった。   In a 50 ml eggplant flask, 6-ethyl-3,5-dimethyl-3,4-dihydro-2H-pyran-2-one (1.0 g), 5% palladium-alumina catalyst (100 mg), ethyl acetate (10 ml) were added. In addition, the hydrogen pressure was replaced with normal pressure. After stirring at room temperature for 5 hours, the reaction vessel was replaced with nitrogen. The reaction solution was filtered, and the filtrate was concentrated under reduced pressure to obtain a crude product (1.0 g). According to gas chromatography analysis, 96% of 6-ethyl-3,5-dimethyltetrahydro-2H-pyran-2-one and 4% of carboxylic acid as a hydrogenolysis product were found.

酢酸エチルの代わりにイソ酪酸メチルを溶媒として用いた以外は実施例1と同様の操作を行った。6−エチル−3,5−ジメチルテトラヒドロ−2H−ピラン−2−オンの収率は96%であった。   The same operation as in Example 1 was performed except that methyl isobutyrate was used as a solvent instead of ethyl acetate. The yield of 6-ethyl-3,5-dimethyltetrahydro-2H-pyran-2-one was 96%.

酢酸エチルの代わりにプロピオン酸メチルを溶媒として用いた以外は実施例1と同様の操作を行った。6−エチル−3,5−ジメチルテトラヒドロ−2H−ピラン−2−オンの収率は95%であった。   The same operation as in Example 1 was performed except that methyl propionate was used as a solvent instead of ethyl acetate. The yield of 6-ethyl-3,5-dimethyltetrahydro-2H-pyran-2-one was 95%.

水素圧力を常圧の代わりに0.4MPaとした以外は実施例1と同様の操作を行った。6−エチル−3,5−ジメチルテトラヒドロ−2H−ピラン−2−オンの収率は97%であった。   The same operation as in Example 1 was performed except that the hydrogen pressure was changed to 0.4 MPa instead of normal pressure. The yield of 6-ethyl-3,5-dimethyltetrahydro-2H-pyran-2-one was 97%.

水素圧力を常圧の代わりに1.0MPaとした以外は実施例1と同様の操作を行った。6−エチル−3,5−ジメチルテトラヒドロ−2H−ピラン−2−オンの収率は97%であった。   The same operation as in Example 1 was performed except that the hydrogen pressure was changed to 1.0 MPa instead of normal pressure. The yield of 6-ethyl-3,5-dimethyltetrahydro-2H-pyran-2-one was 97%.

水素圧力を常圧の代わりに3.0MPaとした以外は実施例1と同様の操作を行った。6−エチル−3,5−ジメチルテトラヒドロ−2H−ピラン−2−オンの収率は91%であった。   The same operation as in Example 1 was performed except that the hydrogen pressure was changed to 3.0 MPa instead of the normal pressure. The yield of 6-ethyl-3,5-dimethyltetrahydro-2H-pyran-2-one was 91%.

[比較例1]
5%パラジウム−アルミナの代わりに5%パラジウム−カーボンを触媒として用い、酢酸エチルの代わりに2−プロパノールを溶媒として用いた以外は実施例1と同様の操作を行った。6−エチル−3,5−ジメチルテトラヒドロ−2H−ピラン−2−オンの収率は69%であった。
[Comparative Example 1]
The same operation as in Example 1 was performed except that 5% palladium-carbon was used as a catalyst instead of 5% palladium-alumina and 2-propanol was used as a solvent instead of ethyl acetate. The yield of 6-ethyl-3,5-dimethyltetrahydro-2H-pyran-2-one was 69%.

[比較例2]
5%パラジウム−アルミナの代わりに5%パラジウム−炭酸カルシウムを触媒として用い、酢酸エチルの代わりに2−プロパノールを溶媒として用いた以外は実施例1と同様の操作を行った。6−エチル−3,5−ジメチルテトラヒドロ−2H−ピラン−2−オンの収率は59%であった。
[Comparative Example 2]
The same operation as in Example 1 was performed except that 5% palladium-calcium carbonate was used as a catalyst instead of 5% palladium-alumina, and 2-propanol was used as a solvent instead of ethyl acetate. The yield of 6-ethyl-3,5-dimethyltetrahydro-2H-pyran-2-one was 59%.

[比較例3]
5%パラジウム−アルミナの代わりに5%パラジウム−硫酸バリウムを触媒として用い、酢酸エチルの代わりに2−プロパノールを溶媒として用いた以外は実施例1と同様の操作を行った。6−エチル−3,5−ジメチルテトラヒドロ−2H−ピラン−2−オンの収率は69%であった。
[Comparative Example 3]
The same operation as in Example 1 was performed except that 5% palladium-barium sulfate was used as a catalyst instead of 5% palladium-alumina, and 2-propanol was used as a solvent instead of ethyl acetate. The yield of 6-ethyl-3,5-dimethyltetrahydro-2H-pyran-2-one was 69%.

[比較例4]
5%パラジウム−アルミナの代わりに5%パラジウム−カーボンを触媒として用い、酢酸エチルの代わりにメタノールを溶媒として用いた以外は実施例1と同様の操作を行った。6−エチル−3,5−ジメチルテトラヒドロ−2H−ピラン−2−オンの収率は62%であった。
[Comparative Example 4]
The same operation as in Example 1 was performed except that 5% palladium-carbon was used as a catalyst instead of 5% palladium-alumina and methanol was used as a solvent instead of ethyl acetate. The yield of 6-ethyl-3,5-dimethyltetrahydro-2H-pyran-2-one was 62%.

[比較例5]
5%パラジウム−アルミナの代わりに5%パラジウム−カーボンを触媒として用い、酢酸エチルの代わりにエタノールを溶媒として用いた以外は実施例1と同様の操作を行った。6−エチル−3,5−ジメチルテトラヒドロ−2H−ピラン−2−オンの収率は64%であった。
[Comparative Example 5]
The same operation as in Example 1 was performed except that 5% palladium-carbon was used as a catalyst instead of 5% palladium-alumina and ethanol was used as a solvent instead of ethyl acetate. The yield of 6-ethyl-3,5-dimethyltetrahydro-2H-pyran-2-one was 64%.

実施例1〜6より、γδ不飽和−δ−バレロラクトンをパラジウム−アルミナ触媒存在下、エステル系溶媒中で水素化反応させると、δ−バレロラクトンが91%以上という非常に高い収率で得られた。一方、パラジウム−アルミナ触媒以外の触媒存在下、アルコール系溶媒中で水素化反応させた比較例1〜5では、δ−バレロラクトンが最大69%という低い収率であった。   From Examples 1 to 6, when γδ unsaturated-δ-valerolactone was hydrogenated in an ester solvent in the presence of a palladium-alumina catalyst, δ-valerolactone was obtained in a very high yield of 91% or more. It was. On the other hand, in Comparative Examples 1 to 5 in which hydrogenation reaction was performed in an alcohol solvent in the presence of a catalyst other than the palladium-alumina catalyst, the yield of δ-valerolactone was as low as 69% at the maximum.

6−エチル−3,5−ジメチル−3,4−ジヒドロ−2H−ピラン−2−オンの代わりに6−メチル−3,4−ジヒドロ−2H−ピラン−2−オンを原料として用いた以外は実施例1と同様の操作を行い、粗生成物(1.0g)を得た。ガスクロマトグラフィー分析によると、6−メチルテトラヒドロ−2H−ピラン−2−オンが92%、加水素分解物であるカルボン酸が8%であった。   Except that 6-methyl-3,4-dihydro-2H-pyran-2-one was used as a raw material instead of 6-ethyl-3,5-dimethyl-3,4-dihydro-2H-pyran-2-one The same operation as in Example 1 was performed to obtain a crude product (1.0 g). According to gas chromatography analysis, it was found that 92% of 6-methyltetrahydro-2H-pyran-2-one and 8% of carboxylic acid as a hydrogenolysis product.

[比較例6]
50mlのナスフラスコに実施例7と同様の原料である6−メチル−3,4−ジヒドロ−2H−ピラン−2−オン(1.0g)、5%パラジウム−カーボン触媒(100mg)、2−プロパノール(10ml)を加え、水素で置換し、水素圧力は常圧とした。室温で5時間撹拌後、反応容器を窒素で置換した。反応溶液を濾過し、濾液を減圧濃縮し、粗生成物(1.0g)を得た。ガスクロマトグラフィー分析によると、6−メチルテトラヒドロ−2H−ピラン−2−オンが68%、加水素分解物であるカルボン酸が32%であった。
[Comparative Example 6]
6-Methyl-3,4-dihydro-2H-pyran-2-one (1.0 g), 5% palladium-carbon catalyst (100 mg), 2-propanol, which are the same raw materials as in Example 7, in a 50 ml eggplant flask (10 ml) was added and replaced with hydrogen, and the hydrogen pressure was adjusted to normal pressure. After stirring at room temperature for 5 hours, the reaction vessel was replaced with nitrogen. The reaction solution was filtered, and the filtrate was concentrated under reduced pressure to obtain a crude product (1.0 g). According to gas chromatographic analysis, 6-methyltetrahydro-2H-pyran-2-one was 68%, and carboxylic acid as a hydrogenolysis product was 32%.

実施例7と比較例6より、実施例1とは置換基が異なるγδ不飽和−δ−バレロラクトンを原料としてパラジウム−アルミナ触媒存在下、エステル系溶媒中で水素化反応させてもδ−バレロラクトンが非常に高い収率で得られた。   From Example 7 and Comparative Example 6, γ-valero can be obtained by subjecting a hydrogenation reaction in an ester solvent in the presence of a palladium-alumina catalyst using γδ unsaturated-δ-valerolactone having a different substituent as in Example 1 as a raw material. The lactone was obtained in very high yield.

酢酸エチルの代わりに2−プロパノールを溶媒として用いた以外は実施例1と同様の操作を行った。6−エチル−3,5−ジメチルテトラヒドロ−2H−ピラン−2−オンの収率は86%であった。   The same operation as in Example 1 was performed except that 2-propanol was used as a solvent instead of ethyl acetate. The yield of 6-ethyl-3,5-dimethyltetrahydro-2H-pyran-2-one was 86%.

実施例8より、γδ不飽和−δ−バレロラクトンをパラジウム−アルミナ触媒存在下、アルコール系溶媒中で水素化反応させると、δ−バレロラクトンが高い収率で得られた。   From Example 8, when γδ unsaturated-δ-valerolactone was hydrogenated in an alcohol solvent in the presence of a palladium-alumina catalyst, δ-valerolactone was obtained in high yield.

以上より、γδ不飽和−δ−バレロラクトンをパラジウム−アルミナ触媒存在下で水素化反応させるとδ−バレロラクトンが高い収率で得られ、さらに、γδ不飽和−δ−バレロラクトンをパラジウム−アルミナ触媒存在下、エステル系溶媒中で水素化反応させるとδ−バレロラクトンが非常に高い収率で得られることが分かった。   As described above, when γδ unsaturated-δ-valerolactone is hydrogenated in the presence of a palladium-alumina catalyst, δ-valerolactone is obtained in a high yield. Further, γδ unsaturated-δ-valerolactone is converted to palladium-alumina. It was found that δ-valerolactone was obtained in a very high yield when hydrogenated in an ester solvent in the presence of a catalyst.

Claims (2)

式(1)
Figure 0006310326
(式中R1〜R3は、水素原子、メチル基、エチル基を表す。)で表されるγδ不飽和−δ−バレロラクトンをパラジウム−アルミナ触媒の存在下で水素化反応させることを特徴とする式(2)
Figure 0006310326
(式中R1〜R3は、水素原子、メチル基、エチル基を表す。)で表されるδ−バレロラクトンの製造方法。
Formula (1)
Figure 0006310326
(Wherein R 1 to R 3 represent a hydrogen atom, a methyl group, and an ethyl group), and γδ-unsaturated-δ-valerolactone is hydrogenated in the presence of a palladium-alumina catalyst. Equation (2)
Figure 0006310326
(Wherein R 1 to R 3 represent a hydrogen atom, a methyl group, and an ethyl group).
前記水素化反応で使用される溶媒が、R1COOR2(式中R1は炭素数1〜3の分岐していてもよいアルキル基、R2は炭素数1〜2のアルキル基を表す。)で表されるエステルであることを特徴とする、請求項1に記載のδ−バレロラクトンの製造方法。 The solvent used in the hydrogenation reaction is R 1 COOR 2 (wherein R 1 represents an alkyl group having 1 to 3 carbon atoms which may be branched, and R 2 represents an alkyl group having 1 to 2 carbon atoms). The method for producing δ-valerolactone according to claim 1, wherein the ester is represented by the following formula:
JP2014108790A 2014-05-27 2014-05-27 Method for producing δ-valerolactone Active JP6310326B2 (en)

Priority Applications (1)

Application Number Priority Date Filing Date Title
JP2014108790A JP6310326B2 (en) 2014-05-27 2014-05-27 Method for producing δ-valerolactone

Applications Claiming Priority (1)

Application Number Priority Date Filing Date Title
JP2014108790A JP6310326B2 (en) 2014-05-27 2014-05-27 Method for producing δ-valerolactone

Publications (2)

Publication Number Publication Date
JP2015224206A JP2015224206A (en) 2015-12-14
JP6310326B2 true JP6310326B2 (en) 2018-04-11

Family

ID=54841241

Family Applications (1)

Application Number Title Priority Date Filing Date
JP2014108790A Active JP6310326B2 (en) 2014-05-27 2014-05-27 Method for producing δ-valerolactone

Country Status (1)

Country Link
JP (1) JP6310326B2 (en)

Family Cites Families (3)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
WO2003084946A1 (en) * 2002-04-03 2003-10-16 E.I. Du Pont De Nemours And Company Production of dihydronepetalactone by hydrogenation of nepetalactone
KR20080007861A (en) * 2006-07-18 2008-01-23 (주)네오팜 Novel microorganisms having biodegradation ability for oil and bioremediation method for oil-contaminated sites
JP4916038B2 (en) * 2010-09-02 2012-04-11 独立行政法人産業技術総合研究所 Method for producing tetrahydrofuran derivative by hydrogenation of furans

Also Published As

Publication number Publication date
JP2015224206A (en) 2015-12-14

Similar Documents

Publication Publication Date Title
TWI671285B (en) New process for the preparation of high purity prostaglandins
WO2016199174A4 (en) Oxidative dehydrogenation of lactate esters to pyruvate esters
Malhotra et al. Gold catalyzed synthesis of fluorinated tetrahydrofurans and lactones
JP6310326B2 (en) Method for producing δ-valerolactone
WO2008012442A3 (en) Mixture of partial esters of monopentaerythritol, dipentaerythritol and tripentaerythritol, process for obtaining same and cosmetic product containing them
US20170247349A1 (en) Synthesis of chirally enriched 2,4-disubstituted tetrahydropyran-4-ol and its derivatives
JP6028606B2 (en) Method for producing amine compound
JP5055185B2 (en) Method for producing dicyclohexane derivative
Wu et al. Synthesis of 3-pyrroline via domino Heck–aza-Michael reaction
Wei et al. A solvent-free Diels–Alder cycloaddition of piperine on silica gel: synthesis of dimeric amide alkaloid from the roots of Piper nigrum
JP6351123B2 (en) Process for the preparation of 3,7-dimethylnonan-1-ol
EP2415738B1 (en) Method for producing linear saturated alkanes from primary alcohols
WO2019228873A1 (en) Synthesis of a racemic mixture of pantolactone
CN105254530A (en) Method for synthesizing Schiff base compound containing camphenyl
US10183923B2 (en) Method for synthesizing a precursor of a single dairy-lactone isomer
JP4755829B2 (en) Method for producing pyrrolidine derivative
JP2016519139A (en) Method for producing dehydrolinalyl acetate (II)
RU2634000C1 (en) Method of producing 4-(3,5-diphenylfuran-2-yl)butanone-2 derivatives
JP7244510B2 (en) Process of making organic compounds
RU2784618C2 (en) Method of manufacture of organic compounds
JP6621888B2 (en) Method for producing 3-aryloxyquinoline derivative
CN105330628B (en) Method for preparing 4-hydroxy butenolide from keto acid and alkyne
JP6288101B2 (en) Synthesis of tetrahydromyrcenol
RU2728874C2 (en) Method for synthesis of intermediates useful for producing 1,3,4-triazine derivatives
DE10248480A1 (en) Preparation of 3-thienyl-3-hydroxy-1-aminopropane derivatives, useful as intermediates for duloxetin an inhibitor of neurotransmitter uptake, by reacting 1-halo compound with amine in closed system

Legal Events

Date Code Title Description
A621 Written request for application examination

Free format text: JAPANESE INTERMEDIATE CODE: A621

Effective date: 20170313

A977 Report on retrieval

Free format text: JAPANESE INTERMEDIATE CODE: A971007

Effective date: 20171228

A131 Notification of reasons for refusal

Free format text: JAPANESE INTERMEDIATE CODE: A131

Effective date: 20180109

TRDD Decision of grant or rejection written
A01 Written decision to grant a patent or to grant a registration (utility model)

Free format text: JAPANESE INTERMEDIATE CODE: A01

Effective date: 20180313

A61 First payment of annual fees (during grant procedure)

Free format text: JAPANESE INTERMEDIATE CODE: A61

Effective date: 20180316

R150 Certificate of patent or registration of utility model

Ref document number: 6310326

Country of ref document: JP

Free format text: JAPANESE INTERMEDIATE CODE: R150

R250 Receipt of annual fees

Free format text: JAPANESE INTERMEDIATE CODE: R250

R250 Receipt of annual fees

Free format text: JAPANESE INTERMEDIATE CODE: R250

R250 Receipt of annual fees

Free format text: JAPANESE INTERMEDIATE CODE: R250

R250 Receipt of annual fees

Free format text: JAPANESE INTERMEDIATE CODE: R250