JP6057376B2 - Method for reducing hydroxymethylfurfural and / or furfural - Google Patents

Method for reducing hydroxymethylfurfural and / or furfural Download PDF

Info

Publication number
JP6057376B2
JP6057376B2 JP2013158138A JP2013158138A JP6057376B2 JP 6057376 B2 JP6057376 B2 JP 6057376B2 JP 2013158138 A JP2013158138 A JP 2013158138A JP 2013158138 A JP2013158138 A JP 2013158138A JP 6057376 B2 JP6057376 B2 JP 6057376B2
Authority
JP
Japan
Prior art keywords
reaction
dimethylfuran
carbon dioxide
mpa
solid catalyst
Prior art date
Legal status (The legal status is an assumption and is not a legal conclusion. Google has not performed a legal analysis and makes no representation as to the accuracy of the status listed.)
Active
Application number
JP2013158138A
Other languages
Japanese (ja)
Other versions
JP2015027966A (en
Inventor
川波 肇
肇 川波
チャタジー マヤ
チャタジー マヤ
孝之 石坂
孝之 石坂
Current Assignee (The listed assignees may be inaccurate. Google has not performed a legal analysis and makes no representation or warranty as to the accuracy of the list.)
National Institute of Advanced Industrial Science and Technology AIST
Original Assignee
National Institute of Advanced Industrial Science and Technology AIST
Priority date (The priority date is an assumption and is not a legal conclusion. Google has not performed a legal analysis and makes no representation as to the accuracy of the date listed.)
Filing date
Publication date
Application filed by National Institute of Advanced Industrial Science and Technology AIST filed Critical National Institute of Advanced Industrial Science and Technology AIST
Priority to JP2013158138A priority Critical patent/JP6057376B2/en
Publication of JP2015027966A publication Critical patent/JP2015027966A/en
Application granted granted Critical
Publication of JP6057376B2 publication Critical patent/JP6057376B2/en
Active legal-status Critical Current
Anticipated expiration legal-status Critical

Links

Images

Classifications

    • YGENERAL TAGGING OF NEW TECHNOLOGICAL DEVELOPMENTS; GENERAL TAGGING OF CROSS-SECTIONAL TECHNOLOGIES SPANNING OVER SEVERAL SECTIONS OF THE IPC; TECHNICAL SUBJECTS COVERED BY FORMER USPC CROSS-REFERENCE ART COLLECTIONS [XRACs] AND DIGESTS
    • Y02TECHNOLOGIES OR APPLICATIONS FOR MITIGATION OR ADAPTATION AGAINST CLIMATE CHANGE
    • Y02PCLIMATE CHANGE MITIGATION TECHNOLOGIES IN THE PRODUCTION OR PROCESSING OF GOODS
    • Y02P20/00Technologies relating to chemical industry
    • Y02P20/50Improvements relating to the production of bulk chemicals
    • Y02P20/54Improvements relating to the production of bulk chemicals using solvents, e.g. supercritical solvents or ionic liquids

Landscapes

  • Low-Molecular Organic Synthesis Reactions Using Catalysts (AREA)

Description

本発明は、5−ヒドロキシメチル−2−フルフラール(ヒドロキシメチルフルフラール)及び/又はフルフラールの還元方法に関する。詳しくは、これらヒドロキシメチルフルフラール及び/又はフルフラールを出発原料として、水素化によりジメチルフラン及び/又はメチルフランを製造する方法に関する。   The present invention relates to a method for reducing 5-hydroxymethyl-2-furfural (hydroxymethylfurfural) and / or furfural. Specifically, the present invention relates to a process for producing dimethylfuran and / or methylfuran by hydrogenation using these hydroxymethylfurfural and / or furfural as starting materials.

近年、バイオ燃料として注目されているジメチルフラン(DMF)の合成方法は、バイオマス原料であるフルクトースやグルコースからC6ルートとして得られるヒドロキシメチルフルフラール(HMF)を、還元してジヒドロキシメチルフラン(DHMF)へと変換し、最後に水素化分解によりジメチルフラン(DMF)を合成する方法が知られている。特にヒドロキシメチルフルフラール(HMF)はフルクトースやグルコースなど糖鎖から容易に合成できることから、バイオマスを原料とした製造方法が盛んに検討されている(非特許文献1)。更に、C6ルートと同時に、C5ルートを経て得られるフルフラールから、還元して得られるメチルフランも、同様にバイオ燃料等への利用が期待されている(図1、2参照)。   In recent years, a method for synthesizing dimethylfuran (DMF), which has attracted attention as a biofuel, reduces hydroxymethylfurfural (HMF) obtained as a C6 route from fructose and glucose, which are biomass raw materials, to dihydroxymethylfuran (DHMF). And finally dimethylfuran (DMF) is synthesized by hydrogenolysis. In particular, since hydroxymethylfurfural (HMF) can be easily synthesized from sugar chains such as fructose and glucose, production methods using biomass as a raw material have been actively studied (Non-patent Document 1). Furthermore, methylfuran obtained by reduction from furfural obtained through the C5 route simultaneously with the C6 route is also expected to be used for biofuels and the like (see FIGS. 1 and 2).

ヒドロキシメチルフルフラールもしくはフルフラールの還元から得られる生成物は、様々な化合物が得られジメチルフランまたはメチルフランを選択的に得ることは難しい。特に多くの場合は、フラン環が還元され、ヒドロフラン骨格を有する化合物(2,5−ジヒドロキシメチルテトラヒドロフラン:DHMTHF;2−メチルテトラヒドロフラン−5−メタノール:MTHFM;2,5−ジメチルテトラヒドロフラン:DMTHF;2−メチルテトラヒドロフラン:MTHF;テトラヒドロフラン:THF)が得られやすく、ジメチルフランまたはメチルフランを選択的に得ることは困難であった。   Hydroxymethylfurfural or the product obtained from the reduction of furfural is difficult to obtain dimethylfuran or methylfuran selectively from various compounds. In many cases, a compound having a furan skeleton and a hydrofuran skeleton (2,5-dihydroxymethyltetrahydrofuran: DHMTHF; 2-methyltetrahydrofuran-5-methanol: MTHFM; 2,5-dimethyltetrahydrofuran: DMTHF; 2- Methyltetrahydrofuran: MTHF; tetrahydrofuran: THF) was easily obtained, and it was difficult to selectively obtain dimethylfuran or methylfuran.

その中で、ヒドロキシメチルフルフラールからジメチルフランへの直接変換方法として、幾つかの手法が報告されている。特許文献1では、ヒドロキシメチルフルフラールからジメチルフランを得る際に、ギ酸を水素源に、テトラヒドロフランを溶媒として、Pd/Cを触媒にして15時間加熱還流させて反応させている。収率は88%と比較的良好な値であるが、硫酸を用いているため後処理が必要であること、テトラヒドロフランを用いており有機溶媒を除去する必要があること、更にギ酸を用いているため反応が著しく遅いという問題がある。特許文献2は、ブタノール中での反応で、触媒はCu−Ru/Cを用いることで、高い転化率を示している。しかし、ジメチルフランの選択率は最大でも71%で、かつ反応時間も10時間以上を要するという問題がある。   Among them, several methods have been reported as a direct conversion method from hydroxymethylfurfural to dimethylfuran. In Patent Document 1, when dimethylfuran is obtained from hydroxymethylfurfural, formic acid is used as a hydrogen source, tetrahydrofuran is used as a solvent, Pd / C is used as a catalyst, and the reaction is performed by refluxing for 15 hours. The yield is 88%, which is a relatively good value. However, since sulfuric acid is used, post-treatment is necessary, tetrahydrofuran is used to remove the organic solvent, and formic acid is used. Therefore, there is a problem that the reaction is extremely slow. Patent Document 2 shows a high conversion rate by using Cu—Ru / C as a catalyst in a reaction in butanol. However, there is a problem that the selectivity of dimethylfuran is 71% at the maximum and the reaction time requires 10 hours or more.

また、非特許文献2は、水中での反応でジメチルフランの収率が25%程度と低い。非特許文献3は、超臨界メタノール中での水添になるものの、ジメチルフランの収率は50%程度である。更に、非特許文献4は、ジメチルフランの収率は95%と良いものの、水素源はギ酸であり、硫酸を酸触媒とする反応条件である。そのため、有機溶媒(テトラヒドロフラン)中での加熱還流を15時間行う必要があり、更にギ酸を還元剤として用いているため、二酸化炭素も多く発生するという問題がある。   In Non-Patent Document 2, the yield of dimethylfuran is as low as about 25% by reaction in water. Although Non-Patent Document 3 is hydrogenated in supercritical methanol, the yield of dimethylfuran is about 50%. Furthermore, Non-Patent Document 4 is a reaction condition in which the yield of dimethylfuran is as good as 95%, but the hydrogen source is formic acid and sulfuric acid is the acid catalyst. Therefore, it is necessary to heat and reflux in an organic solvent (tetrahydrofuran) for 15 hours. Further, since formic acid is used as a reducing agent, a large amount of carbon dioxide is generated.

一方、超臨界二酸化炭素を反応媒体に用いる水素化還元法について、本発明者らは各種方法を提案している(特許文献3、4、5、6)。超臨界二酸化炭素は水素を無限大に溶解するため、従来の水添法に対して、任意の水素濃度に調整することができる。それにより、気液平衡などの問題が一切ないため、100℃以下の低温で効率的に水素化することが可能である。但し、これらの水素化還元は、水素付加型の還元であり、例えばアルデヒドの水素付加型還元によるアルコールの合成、ニトリルの水素付加型還元によるアミンの生成、ニトロ基の水素付加型によるアミンの生成などが検討されている。   On the other hand, the present inventors have proposed various methods for hydroreduction using supercritical carbon dioxide as a reaction medium (Patent Documents 3, 4, 5, and 6). Since supercritical carbon dioxide dissolves hydrogen infinitely, it can be adjusted to an arbitrary hydrogen concentration with respect to the conventional hydrogenation method. Thereby, since there are no problems such as gas-liquid equilibrium, it is possible to efficiently hydrogenate at a low temperature of 100 ° C. or lower. However, these hydrogenation reductions are hydrogenation-type reductions. For example, alcohols are synthesized by hydrogenation-type reduction of aldehydes, amines are produced by hydrogenation-type reduction of nitriles, and amines are produced by hydrogenation-type of nitro groups. Etc. are being considered.

更に、本発明者らは水素付加型還元では無く、脱水型還元法も提案している。その一例は、ヒドロキシメチルフルフラールおよびヒドロキシメチルフルフラール誘導体を超臨界二酸化炭素中で還元することで、選択的にアルカン類を得る技術を提案した(特許文献7)。これは、ヒドロキシメチルフルフラールまたはヒドロキシメチルフルフラール誘導体を原料にして還元を完結させる、最終的にはフラン環を水素化により開環させ、更に脱水によりアルカン類を得る手法である。この手法を用いることで、ガソリンなどのオクタン価の高い燃料が一気に得られる画期的な技術である。しかし、多段階の還元を一気に完結させる手法であるため、更には反応ルートも複数あると考えられる。そのため、この手法において還元を途中で止めても、選択的にジメチルフランを得ることは難しい。   Furthermore, the present inventors have proposed a dehydration-type reduction method instead of a hydrogenation-type reduction. For example, a technique for selectively obtaining alkanes by reducing hydroxymethylfurfural and hydroxymethylfurfural derivatives in supercritical carbon dioxide has been proposed (Patent Document 7). This is a technique for completing reduction by using hydroxymethylfurfural or a hydroxymethylfurfural derivative as a raw material, finally opening a furan ring by hydrogenation, and further obtaining alkanes by dehydration. By using this method, it is an epoch-making technology that can quickly obtain fuel with high octane number such as gasoline. However, since it is a technique that completes multi-stage reduction at once, it is considered that there are a plurality of reaction routes. Therefore, it is difficult to selectively obtain dimethylfuran even if the reduction is stopped halfway in this method.

また、特許文献8では、水中でフラン類の水素化が提案されている。その際に、二酸化炭素を加えることで水素化が促進されると報告されているが、反応が促進しすぎてジメチルフランの生成は一切認められず、一番還元されたテトラヒドロフランが生成しており、十分な反応制御には至っていない。   Patent Document 8 proposes hydrogenation of furans in water. At that time, it was reported that hydrogenation was promoted by adding carbon dioxide, but the reaction was promoted too much and no formation of dimethylfuran was observed, and the most reduced tetrahydrofuran was produced. The reaction has not been sufficiently controlled.

このため、バイオ燃料としてだけでなく、各種中間原料として注目されているジメチルフラン(DMF)、メチルフランの合成方法を、強酸や強塩基、あるいは各種有機溶媒を用いることなく、また反応後の廃液処理の問題なく簡便に製造することができれば、クリーンで省エネルギーな製造方法として有用であり、製造技術の確立が望まれている。   For this reason, the synthesis method of dimethylfuran (DMF) and methylfuran, which are attracting attention not only as biofuels but also as various intermediate raw materials, can be used without using strong acids, strong bases, or various organic solvents, and waste liquid after reaction. If it can be easily produced without any problem of processing, it is useful as a clean and energy-saving production method, and establishment of production technology is desired.

米国公開第2011/263880号公報US Publication No. 2011/163880 国際公開第2007/146636号パンフレットInternational Publication No. 2007/146636 Pamphlet 特開2011−225502号公報JP 2011-225502 A 特開2010−241691号公報JP 2010-241691 A 特開2005−289875号公報JP 2005-289875 A 特開2006−137740号公報JP 2006-137740 A 特開2010−047543号公報JP 2010-047543 A 特開2012−51853号公報JP 2012-51853 A

Yuriy Roman-Leshkov et al., "Production of dimethylfuran for liquid fuels from biomass-derived carbohydrates". Nature 2007,447 (7147): p.982-986.Yuriy Roman-Leshkov et al., "Production of dimethylfuran for liquid fuels from biomass-derived carbohydrates". Nature 2007,447 (7147): p.982-986. Jean Marcel R.Gallo et al.,Green Chemistry, 2013, vol. 15, p. 85-90.Jean Marcel R. Gallo et al., Green Chemistry, 2013, vol. 15, p. 85-90. Thomas S. Hansen et al.,Green Chemistry, 2012, vol. 14, p. 2457-2461.Thomas S. Hansen et al., Green Chemistry, 2012, vol. 14, p. 2457-2461. Todsapon Thananatthanachon et al., Angewandte Chemie, International Edition, 2010, vol. 49, p. 6616-6618.Todsapon Thananatthanachon et al., Angewandte Chemie, International Edition, 2010, vol. 49, p. 6616-6618.

本発明は、上記事情に鑑みてなされたものであり、ジメチルフラン(DMF)、メチルフランの合成方法を、強酸や強塩基、あるいは各種有機溶媒を用いることなく、また反応後の廃液処理の問題なく簡便に製造することができ、クリーンで省エネルギーな製造方法を提供することを目的とする。   The present invention has been made in view of the above circumstances, and the method of synthesizing dimethylfuran (DMF) and methylfuran without using a strong acid, a strong base, or various organic solvents, and the problem of waste liquid treatment after the reaction. An object of the present invention is to provide a clean and energy-saving production method that can be easily produced without any problems.

そこで、本発明者らは、超臨界二酸化炭素を媒体とする還元反応において、各種条件を検討した結果、少量の水の存在が選択性を大きく変えることを見出し、本発明に至った。即ち、水が存在しないとほとんど目的とする生成物が得られず、又大量の水が存在していても、加水分解等が起こりやすくなるため、副反応が起きやすい。その上、水自体が媒体となることで、反応機構が全く異なってくるため、生成物が異なってしまい、目的とする生成物が得られない。   Therefore, the present inventors have studied various conditions in the reduction reaction using supercritical carbon dioxide as a medium, and as a result, have found that the presence of a small amount of water greatly changes the selectivity, and have reached the present invention. That is, in the absence of water, the desired product is hardly obtained, and even in the presence of a large amount of water, hydrolysis and the like are likely to occur, and side reactions are likely to occur. In addition, since the reaction mechanism is completely different when water itself becomes a medium, the product is different and the desired product cannot be obtained.

本発明では、超臨界二酸化炭素を反応媒体とし、固体触媒の存在下において、超臨界二酸化炭素と基質との混合溶液に溶解する少量の水によって、オレフィンの水素付加型還元が抑えられ、脱水型の還元を進行させやすくすることで、オーバーリアクションを抑えつつ、ジメチルフラン(DMF)またはメチルフランを選択的に得ることが可能となった。   In the present invention, supercritical carbon dioxide is used as a reaction medium, and in the presence of a solid catalyst, hydrogenation-type reduction of olefins is suppressed by a small amount of water dissolved in a mixed solution of supercritical carbon dioxide and a substrate. By facilitating the reduction of dimethylfuran, it was possible to selectively obtain dimethylfuran (DMF) or methylfuran while suppressing overreaction.

即ち、本発明は、
[1] ヒドロキシメチルフルフラール及び/又はフルフラールを出発原料とし、固体触媒の存在下、水素化により2,5−ジメチルフラン及び/又は2−メチルフランを製造する方法において、
超臨界二酸化炭素を反応溶媒として用いるとともに、反応系に、前記出発原料と超臨界二酸化炭素との混合溶液に溶解する量の水を加えることを特徴とする2,5−ジメチルフラン及び/又は2−メチルフランの製造方法。
[2] 前記加える水の量が、該超臨界二酸化炭素の容量に対して1容量%以上8容量%以下である上記[1]に記載の2,5−ジメチルフラン及び/又は2−メチルフランの製造方法。
[3] 超臨界二酸化炭素の圧力を、臨界圧力又は7.3MPa以上16MPa以下とすることを特徴とする上記[1]又は[2]に記載の2,5−ジメチルフラン及び/又は2−メチルフランの製造方法。
[4] 水素の圧力を、0.2MPa以上2MPa以下とすることを特徴とする上記[1]〜[3]のいずれか1項に記載の2,5−ジメチルフラン及び/又は2−メチルフランの製造方法。
[5] 前記固体触媒として、パラジウムをカーボンに担持した固体触媒、白金をカーボンに担持した固体触媒、又はロジウムをカーボンに担持した固体触媒を用いることを特徴とする上記[1]〜[4]のいずれか1項に記載の2,5−ジメチルフラン及び/又は2−メチルフランの製造方法。
[6] 反応温度を、50℃以上100℃以下とすることを特徴とする上記[1]〜[5]のいずれか1項に記載の2,5−ジメチルフラン及び/又は2−メチルフランの製造方法。
That is, the present invention
[1] In a method for producing 2,5-dimethylfuran and / or 2-methylfuran by hydrogenation in the presence of a solid catalyst using hydroxymethylfurfural and / or furfural as a starting material,
2,5-dimethylfuran and / or 2 characterized in that supercritical carbon dioxide is used as a reaction solvent, and an amount of water dissolved in a mixed solution of the starting material and supercritical carbon dioxide is added to the reaction system. -Method for producing methyl furan.
[2] The 2,5-dimethylfuran and / or 2-methylfuran according to the above [1], wherein the amount of water added is 1% by volume or more and 8% by volume or less based on the volume of the supercritical carbon dioxide. Manufacturing method.
[3] The 2,5-dimethylfuran and / or 2-methyl according to the above [1] or [2], wherein the pressure of the supercritical carbon dioxide is a critical pressure or 7.3 MPa to 16 MPa. A manufacturing method for furan.
[4] The 2,5-dimethylfuran and / or 2-methylfuran according to any one of the above [1] to [3], wherein the hydrogen pressure is 0.2 MPa or more and 2 MPa or less. Manufacturing method.
[5] The above [1] to [4], wherein the solid catalyst is a solid catalyst in which palladium is supported on carbon, a solid catalyst in which platinum is supported on carbon, or a solid catalyst in which rhodium is supported on carbon. The method for producing 2,5-dimethylfuran and / or 2-methylfuran according to any one of the above.
[6] The 2,5-dimethylfuran and / or 2-methylfuran according to any one of [1] to [5] above, wherein the reaction temperature is 50 ° C. or higher and 100 ° C. or lower. Production method.

本発明は、ジメチルフラン(DMF)、メチルフランの合成方法を、強酸や強塩基、あるいは各種有機溶媒を用いることなく、また反応後の廃液処理の問題なく簡便に製造することができ、クリーンで省エネルギーな合成方法を提供できる。また、超臨界二酸化炭素を使うことで、反応時間も短く、反応温度を大幅に低くすることができ、更に、生成物の分離精製も容易で、かつ転化率・収率も高くできる。   In the present invention, a method for synthesizing dimethylfuran (DMF) and methylfuran can be easily produced without using a strong acid, a strong base, or various organic solvents, and without the problem of waste liquid treatment after the reaction. An energy-saving synthesis method can be provided. In addition, by using supercritical carbon dioxide, the reaction time is short, the reaction temperature can be significantly lowered, the product can be easily separated and purified, and the conversion rate and yield can be increased.

バイオマス原料からバイオマス燃料への合成経路C6を示す反応図。The reaction diagram which shows the synthetic | combination path | route C6 from biomass raw material to biomass fuel. バイオマス原料からバイオマス燃料への合成経路C5を示す反応図。The reaction diagram which shows the synthetic | combination path | route C5 from biomass raw material to biomass fuel. 実施例1の反応時間2時間での生成物である2,5−ジメチルフランが示すGCチャートとマススペクトルである。It is a GC chart and a mass spectrum which 2,5-dimethylfuran which is a product in reaction time 2 hours of Example 1 shows. 2,5−ジメチルフランの標準物質が示すGCチャートとマススペクトルである。It is the GC chart and mass spectrum which the standard substance of 2, 5- dimethylfuran shows.

本発明は、ヒドロキシメチルフルフラール(HMF)及び/又はフルフラールを出発原料として、超臨界二酸化炭素を媒体とし、固体触媒の存在下において、超臨界二酸化炭素と出発原料との混合溶液に溶解する少量の水によって、オレフィンの水素付加型還元が抑えられ、脱水型の還元を進行させやすくすることで、オーバーリアクションを抑えつつ、ジメチルフラン(DMF)またはメチルフランを選択的に得るものである。出発原料から最終生成物への反応としては、次の式のとおりである。   The present invention uses a small amount of hydroxymethylfurfural (HMF) and / or furfural as a starting material, dissolved in a mixed solution of supercritical carbon dioxide and the starting material in the presence of a solid catalyst using supercritical carbon dioxide as a medium. By water, hydrogenation-type reduction of olefins is suppressed, and dehydration-type reduction is facilitated, so that dimethylfuran (DMF) or methylfuran is selectively obtained while suppressing overreaction. The reaction from the starting material to the final product is as follows:

Figure 0006057376
Figure 0006057376

本発明において原料として用いるヒドロキシメチルフルフラール及び/又はフルフラールは、いかなる由来、方法により製造されたものでも用いることができる。なかでもバイオマス原料であるフルクトースやグルコース等から製造されたものを出発原料とすることが好ましい。   Hydroxymethyl furfural and / or furfural used as a raw material in the present invention can be produced by any origin and method. In particular, it is preferable to use a raw material produced from fructose, glucose or the like which is a biomass raw material.

本発明は、反応媒体として超臨界二酸化炭素を用いる。超臨界二酸化炭素とは、温度31℃の臨界温度および7.38MPaの臨界圧力、及びこれを超えている温度および圧力において存在する二酸化炭素のことである。本発明で用いる超臨界二酸化炭素は、臨界点以上の温度と圧力を有すれば、いずれの状態でも用いることができる。通常、温度は31℃以上200℃以下、圧力は7MPa以上27MPa以下の範囲から選ばれる。好ましくは、温度は35℃以上100℃以下、圧力は7MPa以上16MPa以下である。より好ましくは、温度は50℃以上100℃以下、圧力は7.3MPa以上16MPa以下の二酸化炭素の温度、圧力である。   The present invention uses supercritical carbon dioxide as the reaction medium. Supercritical carbon dioxide is carbon dioxide present at a critical temperature of 31 ° C. and a critical pressure of 7.38 MPa, and at temperatures and pressures above this. The supercritical carbon dioxide used in the present invention can be used in any state as long as it has a temperature and pressure above the critical point. Usually, the temperature is selected from the range of 31 ° C. to 200 ° C., and the pressure is selected from the range of 7 MPa to 27 MPa. Preferably, the temperature is 35 ° C. or more and 100 ° C. or less, and the pressure is 7 MPa or more and 16 MPa or less. More preferably, the temperature is 50 ° C. or more and 100 ° C. or less, and the pressure is a temperature or pressure of carbon dioxide of 7.3 MPa or more and 16 MPa or less.

本発明においては反応媒体として超臨界二酸化炭素を用いることにより、反応後に二酸化炭素の超臨界状態を開放して常温、常圧にするだけで、二酸化炭素はガス化し、生成物と固体触媒とが分離するため生成物、触媒の分離、回収が可能となり、触媒の再利用が容易である。又従来、用いていた強酸や強塩基、あるいは各種有機溶媒を用いることがなく、また反応後の廃液処理の問題なく簡便に合成することができる。これにより、反応装置としての反応器および周辺機器の材料に耐腐食性の高い材料を用いる必要がなく、安価なものとすることができる。   In the present invention, by using supercritical carbon dioxide as a reaction medium, carbon dioxide is gasified only by releasing the supercritical state of carbon dioxide after the reaction to normal temperature and normal pressure, and the product and the solid catalyst are separated. Separation makes it possible to separate and recover the product and the catalyst, and it is easy to reuse the catalyst. Moreover, it can synthesize | combine easily, without using the strong acid and strong base which were used conventionally, or various organic solvents, and the problem of the waste liquid treatment after reaction. Thereby, it is not necessary to use a material having high corrosion resistance as a material for a reactor as a reaction apparatus and peripheral equipment, and it can be made inexpensive.

本発明においては、超臨界二酸化炭素の媒体、固体触媒の存在下において、目的とする反応生成物を得るためには、出発原料と超臨界二酸化炭素との混合溶液に溶解する量の水が必要である。水が存在しないとほとんど目的とする生成物が得られない。又水の量が多いと、出発原料が水によく溶解するので、加水分解等が起こりやすくなる。又副反応が起きやすい上に、水自体が媒体となることで、超臨界二酸化炭素を媒体とする反応機構ではなくなってしまう。このため、反応制御ができなくなり、又目的とする生成物が得られなくなる。本発明では、超臨界二酸化炭素と出発原料との混合溶液に溶解する数%から十数%程度の少量の水によって、オレフィンの水素付加型還元が抑えられ、脱水型の還元が進行させやすくすることで、オーバーリアクションを抑えつつ、生成物を選択的に得ることが可能となった。   In the present invention, in order to obtain a target reaction product in the presence of a supercritical carbon dioxide medium and a solid catalyst, an amount of water that is dissolved in a mixed solution of the starting material and supercritical carbon dioxide is required. It is. In the absence of water, the desired product is hardly obtained. On the other hand, when the amount of water is large, the starting material dissolves well in water, so that hydrolysis and the like easily occur. In addition, side reactions are likely to occur, and water itself becomes a medium, so that the reaction mechanism using supercritical carbon dioxide as a medium is lost. For this reason, the reaction cannot be controlled and the desired product cannot be obtained. In the present invention, the hydrogenation-type reduction of olefins is suppressed and the dehydration-type reduction is facilitated by a small amount of water of about several to tens of percent dissolved in a mixed solution of supercritical carbon dioxide and a starting material. As a result, it was possible to selectively obtain a product while suppressing overreaction.

出発原料と超臨界二酸化炭素との混合溶液に溶解する量の水とは、加水分解等が起こらず、副反応が起きにくい状態である範囲の量、又水自体が媒体とならない範囲の量である。即ち、溶解する水の量としては、超臨界二酸化炭素の容量に対して、0.1容量%以上10容量%以下の量を加える。好ましくは、1溶量%以上8容量%以下である。   The amount of water that dissolves in the mixed solution of the starting material and supercritical carbon dioxide is an amount that does not cause hydrolysis or the like and is in a state where side reactions are unlikely to occur, or an amount that does not cause water itself to become a medium. is there. That is, as the amount of water to be dissolved, an amount of 0.1 volume% or more and 10 volume% or less is added with respect to the volume of supercritical carbon dioxide. Preferably, it is 1% by volume or more and 8% by volume or less.

本発明において反応に用いる水素は、所定の圧力で反応系内に導入すればよい。水素圧は、0.1MPa以上であれば特に限定されないが、余り水素圧が高すぎると還元反応が進みすぎるので上限は3MPaである。反応系内に導入する水素圧は好ましくは、0.2MPa以上2MPaである。より好ましくは、0.2MPa以上1.5MPaである。   Hydrogen used for the reaction in the present invention may be introduced into the reaction system at a predetermined pressure. The hydrogen pressure is not particularly limited as long as it is 0.1 MPa or more, but if the hydrogen pressure is too high, the reduction reaction proceeds too much, so the upper limit is 3 MPa. The hydrogen pressure introduced into the reaction system is preferably 0.2 MPa or more and 2 MPa. More preferably, it is 0.2 MPa or more and 1.5 MPa.

本発明において用いる固体触媒は、触媒活性成分の一つである担持金属として遷移金属を用い、該金属はアルミナ、シリカ、炭素又は活性炭、炭酸バリウム、ケイソウ土、マグネシア、チタニア、ジルコニア等の無機担体に担持される。なかでもアルミナ、活性炭、シリカ、メソポーラスシリカ(MCM−41)、アルミニウムまたはガリウム含有メソポーラスシリカ(Al−MCM−41、Ga−MCM−41)の担体を用いるのが好ましい。触媒活性成分の一つである担持金属種は、バナジウム、クロム、マンガン、鉄、ニッケル、銅、ニオブ、モリブデン、ルテニウム、ロジウム、パラジウム、銀、タンタル、タングステン、レニウム、オスミウム、イリジウム、白金、金が挙げられるが、好適には、クロム、ニッケル、パラジウム、白金、ロジウム、ルテニウムが用いられ、より好ましくは、パラジウム、白金、ロジウム、ルテニウムが用いられる。   The solid catalyst used in the present invention uses a transition metal as a supported metal which is one of the catalytic active components, and the metal is an inorganic carrier such as alumina, silica, carbon or activated carbon, barium carbonate, diatomaceous earth, magnesia, titania, zirconia and the like. It is carried on. Among these, it is preferable to use a support of alumina, activated carbon, silica, mesoporous silica (MCM-41), aluminum or gallium-containing mesoporous silica (Al-MCM-41, Ga-MCM-41). The supported metal species that are one of the catalytically active components are vanadium, chromium, manganese, iron, nickel, copper, niobium, molybdenum, ruthenium, rhodium, palladium, silver, tantalum, tungsten, rhenium, osmium, iridium, platinum, gold Preferably, chromium, nickel, palladium, platinum, rhodium, and ruthenium are used, and more preferably, palladium, platinum, rhodium, and ruthenium are used.

好ましくは固体触媒として、パラジウム、白金、ロジウム、ルテニウムを主触媒成分とし、アルミナ、シリカ、メソポーラスシリカ(MCM−41)、活性炭、炭酸バリウム、ケイソウ土、マグネシア、チタニア、ジルコニア等の無機担体に担持したものである。この中でも、パラジウムをカーボンに担持した固体触媒、白金をカーボンに担持した固体触媒、又はロジウムをカーボンに担持した固体触媒を用いるのがより好ましい。   Preferably, as a solid catalyst, palladium, platinum, rhodium, ruthenium is the main catalyst component, and supported on an inorganic carrier such as alumina, silica, mesoporous silica (MCM-41), activated carbon, barium carbonate, diatomaceous earth, magnesia, titania, zirconia. It is a thing. Among these, it is more preferable to use a solid catalyst in which palladium is supported on carbon, a solid catalyst in which platinum is supported on carbon, or a solid catalyst in which rhodium is supported on carbon.

上記固体触媒の形状は特に限定されないが、ペレット状、球状、リング状、顆粒状、粉末状等を用いることができ、触媒の粒径は、反応管の内径等によって最適な値を選べばよく、特に制限を受けない。又、触媒の使用量には特に制限はなく、反応速度、除熱、触媒コストなどを考慮して定めることができるが、触媒活性に有効な量であってできるだけ少量であることが望ましい。   The shape of the solid catalyst is not particularly limited, but a pellet, a sphere, a ring, a granule, a powder, etc. can be used, and the catalyst particle size may be selected according to the inner diameter of the reaction tube. Not particularly restricted. The amount of the catalyst used is not particularly limited and can be determined in consideration of the reaction rate, heat removal, catalyst cost, etc., but is preferably an amount effective for catalyst activity and as small as possible.

固体触媒は、従来から公知の合成法により製造することができる。例えば、ゾル・ゲル法、共沈法、含浸法等が例示される。固体触媒の使用量は、原料1重量部に対して0.01重量部から1重量部が好ましく、さらに0.1重量部から1重量部がより好ましい。より好ましくは、0.1重量部から0.5重量部である。   The solid catalyst can be produced by a conventionally known synthesis method. For example, sol-gel method, coprecipitation method, impregnation method and the like are exemplified. The amount of the solid catalyst used is preferably 0.01 to 1 part by weight, more preferably 0.1 to 1 part by weight with respect to 1 part by weight of the raw material. More preferably, it is 0.1 to 0.5 parts by weight.

本発明においては、固体触媒を用いているので、反応系から触媒を分離する後処理が容易である。即ち、固体触媒であるため濾過により容易に回収でき、また触媒活性の低下が少なく再使用が可能である。本固体触媒には有害な金属等を用いておらず、安全で安価で高選択性を有する触媒系である。   In the present invention, since a solid catalyst is used, post-treatment for separating the catalyst from the reaction system is easy. That is, since it is a solid catalyst, it can be easily recovered by filtration and can be reused with little decrease in catalyst activity. This solid catalyst does not use harmful metals or the like, and is a safe, inexpensive and highly selective catalyst system.

本発明におけるヒドロキシメチルフルフラール及び/又はフルフラールから2,5−ジメチルフラン及び/又は2−メチルフランを形成する反応機構は、超臨界状態下での二酸化炭素を反応媒体とした還元反応である。即ち、ヒドロキシメチルフルフラール及び/又はフルフラールを出発原料とし、固体触媒の存在下、水素化により2,5−ジメチルフラン及び/又は2−メチルフランへの脱水素反応である。二酸化炭素を反応媒体とし、原料物質から最終生成物への反応が一段で起こり、2,5−ジメチルフラン又は2−メチルフランが簡単に生成する。通常、ヒドロキシメチルフルフラール又はフルフラールから2,5−ジメチルフラン又は2−メチルフランを形成するには、ギ酸が良く用いられるが、本発明では、水と二酸化炭素により生成する炭酸がギ酸としての役割を果たしていると考えられる。   The reaction mechanism for forming 2,5-dimethylfuran and / or 2-methylfuran from hydroxymethylfurfural and / or furfural in the present invention is a reduction reaction using carbon dioxide as a reaction medium in a supercritical state. That is, it is a dehydrogenation reaction to 2,5-dimethylfuran and / or 2-methylfuran by hydrogenation in the presence of a solid catalyst using hydroxymethylfurfural and / or furfural as a starting material. Using carbon dioxide as a reaction medium, the reaction from the raw material to the final product occurs in one step, and 2,5-dimethylfuran or 2-methylfuran is easily produced. Usually, formic acid is often used to form 2,5-dimethylfuran or 2-methylfuran from hydroxymethylfurfural or furfural. In the present invention, carbonic acid produced by water and carbon dioxide plays a role as formic acid. It is considered to have played.

本発明におけるヒドロキシメチルフルフラール(HMF)から2,5−ジメチルフラン(DMF)を形成する反応機構は、固体触媒の存在下、水素化、脱水素反応であり、反応経路を化2に示す。   The reaction mechanism for forming 2,5-dimethylfuran (DMF) from hydroxymethylfurfural (HMF) in the present invention is a hydrogenation and dehydrogenation reaction in the presence of a solid catalyst.

Figure 0006057376
Figure 0006057376

本発明における2,5−ジメチルフランを形成する反応機構は、出発物質であるヒドロキシメチルフルフラール(HMF)から還元により2,5−ジヒドロキシメチルフラン(DHMF)を経て、水素化分解により2−メチル−5−ヒドロキシメチルフラン(HMMF)を経て、2,5−ジメチルフラン(DMF)を生成する反応経路と、ヒドロキシメチルフルフラール(HMF)から5−メチルフルフラール(MF)を経て、2−メチル−5−ヒドロキシメチルフラン(HMMF)を経て、2,5−ジメチルフラン(DMF)を生成する反応経路の2つが考えられる。本発明はいずれの反応経路によっても、1段階で原料物質から2,5−ジメチルフラン(DMF)を、短時間で生成することができる。   In the present invention, the reaction mechanism for forming 2,5-dimethylfuran is the reduction of hydroxymethylfurfural (HMF) as a starting material through 2,5-dihydroxymethylfuran (DHMF) by reduction, and 2-methyl-furan by hydrogenolysis. A reaction pathway for producing 2,5-dimethylfuran (DMF) via 5-hydroxymethylfuran (HMMF), and 2-methyl-5-methylfurfural (HMF) through 5-methylfurfural (MF). There are two possible reaction routes for producing 2,5-dimethylfuran (DMF) via hydroxymethylfuran (HMMF). According to the present invention, 2,5-dimethylfuran (DMF) can be generated from the raw material in a short time by any reaction route.

本発明におけるフルフラールから2−メチルフランを形成する反応機構は、固体触媒の存在下、還元によりヒドロキシメチルフラン(MFA)を形成し、ヒドロキシメチルフランを脱水素する反応であり、反応経路を化3に示す。1段階で、出発原料であるフルフラールから2−メチルフランを短時間で生成することができる。   The reaction mechanism for forming 2-methylfuran from furfural in the present invention is a reaction in which hydroxymethylfuran (MFA) is formed by reduction in the presence of a solid catalyst to dehydrogenate hydroxymethylfuran. Shown in In one step, 2-methylfuran can be produced in a short time from furfural as a starting material.

Figure 0006057376
Figure 0006057376

本発明における反応装置は、回分式反応装置または連続式反応装置を用いることができる。連続式では、例えば固定床流通式反応装置、流動床式反応装置などを用いることができる。   As the reaction apparatus in the present invention, a batch reaction apparatus or a continuous reaction apparatus can be used. In the continuous type, for example, a fixed bed flow type reaction apparatus, a fluidized bed type reaction apparatus or the like can be used.

本発明において、反応生成物の2,5−ジメチルフラン又は2−メチルフランは反応系からの分離精製として、従来から存在している分離技術を用いて簡単に分離することができる。例えば、沸点の差を利用する蒸留法を用い分離することができる。   In the present invention, the reaction product 2,5-dimethylfuran or 2-methylfuran can be easily separated using separation techniques that exist in the past as separation and purification from the reaction system. For example, the separation can be performed using a distillation method using a difference in boiling points.

本発明において生成する2,5−ジメチルフラン又は2−メチルフランは、バイオ燃料としてエネルギー密度がエタノールより約40%高く、ガソリンと同程度である。化学的に安定であり水とも混ざらないため、空気中の水分を吸収することもなく、又沸点がエタノールよりも14℃高いにもかかわらず、製造後に2,5−ジメチルフランを単離する際に必要なエネルギーは、エタノールの単離に必要なエネルギーの1/3で済み有用である。それだけでなく、各種中間原料として利用できる。   2,5-Dimethylfuran or 2-methylfuran produced in the present invention is about 40% higher in energy density than ethanol as a biofuel and is similar to gasoline. When isolating 2,5-dimethylfuran after production, because it is chemically stable and does not mix with water, it does not absorb moisture in the air and its boiling point is 14 ° C higher than ethanol. The energy required for this is only 1/3 of that required for ethanol isolation and is useful. In addition, it can be used as various intermediate materials.

以下、実施例によって、本発明を具体的に説明するが、本発明はそれに限定されるものではない。   Hereinafter, the present invention will be specifically described by way of examples, but the present invention is not limited thereto.

<分析手段(GC/MS)>
ブルカーダルトニクス社製ガスクロマトグラフ/質量分析装置GC/MS(GC3800−Saturn2200)、アジレント社製ガスクロマトグラフ/水素炎イオン化検出器GC/FID(GC−2010)により生成物の定性、定量分析を行なった。カラムは島津ジーエルシー株式会社製DB−5を用い、注入量は、1.0μL、気化室温度を250℃、カラムオーブン温度を40℃に設定し、カラム温度は40℃で5minホールドし、10℃/minの速度で150℃まで昇温させ5minホールドし分析した。目的生成物と思われるピークの保持時間と標準物質のものとが一致することを確かめたのち、当該ピーク部分をマススペクトルで分析し、主たる部分の分子量および分解物のパターンが、標準物質のものと一致することで定性分析を行った。
<Analytical means (GC / MS)>
Qualitative and quantitative analysis of the product was performed using a gas chromatograph / mass spectrometer GC / MS (GC3800-Saturn2200) manufactured by Bruker Daltonics and a gas chromatograph / flame ionization detector GC / FID (GC-2010) manufactured by Agilent. . The column is DB-5 manufactured by Shimadzu GL Corporation, the injection volume is 1.0 μL, the vaporization chamber temperature is set to 250 ° C., the column oven temperature is set to 40 ° C., the column temperature is held at 40 ° C. for 5 minutes, and 10 The temperature was raised to 150 ° C. at a rate of ° C./min, held for 5 min and analyzed. After confirming that the retention time of the peak considered to be the target product matches that of the standard substance, the peak part is analyzed by mass spectrum, and the molecular weight of the main part and the pattern of decomposition products are those of the standard substance. Qualitative analysis was performed by agreeing with.

転化率は、出発原料の仕込み量に対して、反応して消費された出発原料の量の割合をいい、選択率は、全生成物量に対して、目的とする生成物量の割合をいい下記式により求めた。
転化率%(mol%)=原料の消費量(mol)/原料の使用量(mol)×100
選択率%(mol%)=生成物量(mol)/全生成物量(mol)×100
The conversion rate refers to the ratio of the amount of the starting material consumed by reaction with respect to the charged amount of the starting material, and the selectivity refers to the ratio of the target product amount to the total product amount. Determined by
Conversion% (mol%) = Consumption of raw material (mol) / Amount of raw material used (mol) × 100
Selectivity% (mol%) = product amount (mol) / total product amount (mol) × 100

[実施例1]
50mLのオートクレーブに触媒0.02gとヒドロキシメチルフルフラール(HMF:アルドリッチ社製)0.1gを重量で1:5の比で入れ、更に水1mLを入れた後、容器を温度80℃まで加熱した。次に、水素を所定の圧力(1MPa)の圧力まで導入し、その後、ポンプを用いて二酸化炭素を導入し10MPaの圧力まで達したら、スターラーで撹拌させ反応開始させた。2時間後、反応容器を氷冷し、ゆっくりと二酸化炭素を常圧に戻した。反応後、オートクレーブ内に残った化合物をアセトンまたはクロロホルムで抽出し、触媒をろ過してから、GC−MSで定性分析を、GCで定量分析を行った。触媒を表1のとおり変えて行い、それぞれ実施例1−1から実施例1−6とした。結果を表1に示す。
[Example 1]
A 50 mL autoclave was charged with 0.02 g of catalyst and 0.1 g of hydroxymethylfurfural (HMF: Aldrich) at a weight ratio of 1: 5, and further with 1 mL of water, and the container was heated to a temperature of 80 ° C. Next, hydrogen was introduced to a predetermined pressure (1 MPa), and then carbon dioxide was introduced using a pump. When the pressure reached 10 MPa, the reaction was started by stirring with a stirrer. After 2 hours, the reaction vessel was ice-cooled, and the carbon dioxide was slowly returned to normal pressure. After the reaction, the compound remaining in the autoclave was extracted with acetone or chloroform, the catalyst was filtered, qualitative analysis was performed by GC-MS, and quantitative analysis was performed by GC. The catalyst was changed as shown in Table 1 to give Examples 1-1 to 1-6, respectively. The results are shown in Table 1.

反応生成物を定性分析、定量分析したクロマトグラムおよびマススペクトルの結果を図に示す。図3の上段は、反応時間2時間後の生成物のGCクロマトグラムで、横軸は保持時間であり、下段は保持時間RTが1.9分のマススペクトルであり、横軸は分子量を示している。図4の上段は、標準物質としての純物質2,5−ジメチルフランのGCクロマトグラムで、横軸は保持時間であり、下段はマススペクトルであり、横軸は分子量を示している。以上の結果から2,5−ジメチルフランが生成しているのが確認できた。   The chromatogram and mass spectrum results of the qualitative analysis and quantitative analysis of the reaction product are shown in the figure. The upper part of FIG. 3 is a GC chromatogram of the product after 2 hours of reaction time, the horizontal axis is the retention time, the lower part is a mass spectrum with a retention time RT of 1.9 minutes, and the horizontal axis indicates the molecular weight. ing. The upper part of FIG. 4 is a GC chromatogram of the pure substance 2,5-dimethylfuran as a standard substance, the horizontal axis is the retention time, the lower part is the mass spectrum, and the horizontal axis indicates the molecular weight. From the above results, it was confirmed that 2,5-dimethylfuran was produced.

本実施例では、固体触媒としてPd/C(Palladium on activated carbon,金属担持率5%、アルドリッチ社製)、Pd/Al−MCM−41(産総研:発明者が調整、以下「発明者が調整」とする)、Pd/Ga−MCM−41(発明者が調整)、Pt/C(Platinum on carbon,金属担持率5%,アルドリッチ社)、Rh/C(Rhodium on carbon,金属担時率5%,アルドリッチ社製)、Ru/MCM−41(発明者が調整)を用いると、2,5−ジメチルフランを転化率100%から32.7%、選択率100%から1.7%とすることができた。より好ましい固体触媒としてPd/C、Pt/C、Rh/Cがあげられ、Pd/C触媒では、転化率100%、選択率100%と良好であった。なお、2−メチル−5−ヒドロキシメチルメチルフラン(HMMF)、5−メチルフルフラール(MF)は、水素化分解反応の途中での反応物であって、これらが生成する場合は、2,5−ジメチルフランに対して不純物となってしまうが、分離精製することで、2,5−ジメチルフランのみを分離することができる。なお、上記触媒の発明者が調製は、例えば、「触媒調製ハンドブック」(エヌ・ティ・エス社、2011年4月20日発行、p.272-273)に記載の方法で調製できる。   In this example, Pd / C (Palladium on activated carbon, 5% metal supported by Aldrich), Pd / Al-MCM-41 (AIST: adjusted by the inventor, hereinafter referred to as “inventor adjusted”) Pd / Ga-MCM-41 (adjusted by the inventor), Pt / C (Platinum on carbon, metal loading 5%, Aldrich), Rh / C (Rhodium on carbon, metal loading 5) %, Manufactured by Aldrich) and Ru / MCM-41 (adjusted by the inventor), conversion of 2,5-dimethylfuran from 100% to 32.7% and selectivity from 100% to 1.7% I was able to. More preferable solid catalysts include Pd / C, Pt / C, and Rh / C. The Pd / C catalyst had good conversion rate of 100% and selectivity of 100%. In addition, 2-methyl-5-hydroxymethylmethylfuran (HMMF) and 5-methylfurfural (MF) are reactants in the middle of the hydrocracking reaction. Although it becomes an impurity with respect to dimethylfuran, only 2,5-dimethylfuran can be separated by separation and purification. The above-mentioned catalyst can be prepared by the method described in “Catalyst Preparation Handbook” (NTS, April 20, 2011, p.272-273).

Figure 0006057376
Figure 0006057376

[比較例1、2]
実施例1−1において、水1mLを入れないで、かつ二酸化炭素を導入しない以外は、実施例1−1と同じ条件で行ったものを比較例1とした。また、実施例1−1において、水1mLを入れないで、反応時間を4時間とする以外は、実施例1−1と同じ条件で行ったものを比較例2とした。その時の転化率、選択率を表2に示す。水を用いない場合は、2,5−ジメチルフラン(DMF)の生成はなかった。
[Comparative Examples 1 and 2]
In Example 1-1, Comparative Example 1 was performed under the same conditions as Example 1-1 except that 1 mL of water was not added and carbon dioxide was not introduced. In Example 1-1, Comparative Example 2 was performed under the same conditions as Example 1-1 except that 1 mL of water was not added and the reaction time was 4 hours. Table 2 shows the conversion and selectivity at that time. When water was not used, 2,5-dimethylfuran (DMF) was not produced.

Figure 0006057376
Figure 0006057376

[実施例2、比較例3]
50mLのオートクレーブに触媒Pd/C(Palladium on activated carbon,金属担持率5%、アルドリッチ社製)0.02gとヒドロキシメチルフルフラール(HMF:アルドリッチ社製)0.1gを重量で1:5の比で入れ、更に水1mLを入れた後、容器を温度80℃まで加熱した。次に、水素を所定の圧力(1MPa)の圧力まで導入し、その後、ポンプを用いて二酸化炭素の導入量を0から16MPaまでを導入し、所定の圧力まで達したら、スターラーで撹拌させ反応開始させた。2時間後、反応容器を氷冷し、ゆっくりと二酸化炭素を常圧に戻した。反応後、オートクレーブ内に残った化合物をアセトンまたはクロロホルムで抽出し、触媒をろ過してから、GC−MSで定性分析を、GCで定量分析を行った。二酸化炭素圧を0MPa〜16MPaとしたものをそれぞれ、比較例3、実施例2−1〜実施例2−6とした。その時の二酸化炭素圧、転化率、選択率を表3に示す。
[Example 2, Comparative Example 3]
In a 50 mL autoclave, 0.02 g of catalyst Pd / C (Palladium on activated carbon, 5% metal supported by Aldrich) and 0.1 g of hydroxymethylfurfural (HMF: Aldrich) were used at a ratio of 1: 5 by weight. After adding 1 mL of water, the container was heated to a temperature of 80 ° C. Next, hydrogen is introduced to a predetermined pressure (1 MPa), and then the introduction amount of carbon dioxide is introduced from 0 to 16 MPa using a pump. When the pressure reaches the predetermined pressure, the reaction is started by stirring with a stirrer. I let you. After 2 hours, the reaction vessel was ice-cooled, and the carbon dioxide was slowly returned to normal pressure. After the reaction, the compound remaining in the autoclave was extracted with acetone or chloroform, the catalyst was filtered, qualitative analysis was performed by GC-MS, and quantitative analysis was performed by GC. Those having a carbon dioxide pressure of 0 MPa to 16 MPa were designated as Comparative Example 3 and Example 2-1 to Example 2-6, respectively. Table 3 shows the carbon dioxide pressure, conversion rate, and selectivity at that time.

二酸化炭素を導入しない場合は、2,5−ジメチルフランの転化率が4%と選択率は非常に低く比較例3とした。なかでも二酸化炭素圧が10〜12MPaにおいては、転化率、選択率を100%とすることができ、2,5−ジメチルフランの収率は非常に良かった。   When carbon dioxide was not introduced, the conversion rate of 2,5-dimethylfuran was 4% and the selectivity was very low, and Comparative Example 3 was used. In particular, when the carbon dioxide pressure was 10 to 12 MPa, the conversion rate and selectivity could be 100%, and the yield of 2,5-dimethylfuran was very good.

Figure 0006057376
Figure 0006057376

[実施例3]
実施例1−1において、水素を0.2MPa〜2MPaの圧力まで変える以外は実施例1−1と同じ条件で行ったものを実施例3−1〜実施例3−5とした。その時の水素圧、転化率、選択率を表4に示す。水素圧は、0.2MPa以上であるならば十分2,5−ジメチルフランを得ることができた。一方、水素圧が2MPaになると還元反応が進みすぎ転化率が下がってしまった。
[Example 3]
In Example 1-1, Example 3-1 to Example 3-5 were performed under the same conditions as Example 1-1 except that hydrogen was changed to a pressure of 0.2 MPa to 2 MPa. Table 4 shows the hydrogen pressure, conversion rate, and selectivity at that time. If the hydrogen pressure was 0.2 MPa or more, 2,5-dimethylfuran could be obtained sufficiently. On the other hand, when the hydrogen pressure was 2 MPa, the reduction reaction proceeded too much and the conversion rate was lowered.

Figure 0006057376
Figure 0006057376

[実施例4]
実施例1−1において、反応温度を35℃〜100℃まで変える以外は実施例1−1と同じ条件で行ったものを実施例4−1〜実施例4−4とした。その時の反応温度、転化率、選択率を表5に示す。
[Example 4]
In Example 1-1, Example 4-1 to Example 4-4 were performed under the same conditions as in Example 1-1 except that the reaction temperature was changed from 35 ° C. to 100 ° C. Table 5 shows the reaction temperature, conversion rate, and selectivity at that time.

反応温度80℃において、2,5−ジメチルフランの転化率、選択率は100%であり、収率は非常に良かった。超臨界温度の下限である35℃でも反応は進行した。又従来の120℃、220℃を超えた反応温度に比べて、100℃までの温度条件で十分反応が進行していることがわかった。 At a reaction temperature of 80 ° C., the conversion and selectivity of 2,5-dimethylfuran were 100%, and the yield was very good. The reaction proceeded even at 35 ° C., the lower limit of the supercritical temperature. In addition, it was found that the reaction proceeded sufficiently under the temperature conditions up to 100 ° C. compared to the conventional reaction temperatures exceeding 120 ° C. and 220 ° C.

Figure 0006057376
Figure 0006057376

[実施例5]
実施例1−1において、水の添加量を0.5mL〜4.0mLまで変える以外は実施例1−1と同じ条件で行ったものを実施例5−1〜実施例5−4とした。その時の水の添加量と、転化率、選択率を表6に示す。
[Example 5]
In Example 1-1, Examples 5-1 to 5-4 were performed under the same conditions as Example 1-1 except that the amount of water added was changed from 0.5 mL to 4.0 mL. Table 6 shows the amount of water added, the conversion rate, and the selectivity.

添加する水の量は、超臨界二酸化炭素の容量に対して1容量%から8容量%に相当している。なかでも添加量0.5〜1.0mLが最適であり、この量は、超臨界二酸化炭素の容量に対して1容量%から2容量%に相当している。   The amount of water added corresponds to 1% to 8% by volume with respect to the volume of supercritical carbon dioxide. Among these, the addition amount of 0.5 to 1.0 mL is optimal, and this amount corresponds to 1% by volume to 2% by volume with respect to the volume of supercritical carbon dioxide.

Figure 0006057376
Figure 0006057376

[実施例6]
実施例1−1において、固体触媒と原料の重量割合いを1:2〜1:10までで変える以外は実施例1−1と同じ条件で行ったものを実施例6−1〜実施例6−3とした。その時の固体触媒と原料の割合い、転化率、選択率を表7に示す。
[Example 6]
In Example 1-1, Examples 6-1 to 6 were carried out under the same conditions as Example 1-1 except that the weight ratio of the solid catalyst and the raw material was changed from 1: 2 to 1:10. -3. Table 7 shows the ratio of the solid catalyst to the raw material, the conversion rate, and the selectivity.

出発原料と固体触媒との重量割合として、出発原料1に対して固体触媒0.1〜0.5としたものである。この範囲の固体触媒量ではいずれも最適な2,5−ジメチルフランの収率となっていた。   The weight ratio of the starting material to the solid catalyst is 0.1 to 0.5 with respect to the starting material 1. In any amount of the solid catalyst in this range, the yield of 2,5-dimethylfuran was optimum.

Figure 0006057376
Figure 0006057376

[実施例7]
50mLのオートクレーブに原料として、フルフラール(アルドリッチ社製)を0.1g、固体触媒としてPd/C(Palladium on activated carbon,金属担持率5%,アルドリッチ社製)0.02gを用いて、水素圧力0.2MPa、二酸化炭素圧力を10MPa、反応温度を80℃で反応を行った。反応時間を10分、15分としたものを実施例7−1、実施例7−2とした。その時の転化率、選択率を表8に示す。反応は短時間ですみ、反応時間15分では転化率、選択率も非常に良好であった。
[Example 7]
Using 50 g of autoclave as raw material with 0.1 g of furfural (Aldrich) and 0.02 g of Pd / C (Palladium on activated carbon, 5% metal loading, Aldrich) as the solid catalyst, hydrogen pressure 0 The reaction was conducted at 2 MPa, a carbon dioxide pressure of 10 MPa, and a reaction temperature of 80 ° C. The reaction time of 10 minutes and 15 minutes was designated as Example 7-1 and Example 7-2. Table 8 shows the conversion and selectivity at that time. The reaction was short, and the conversion and selectivity were very good at a reaction time of 15 minutes.

Figure 0006057376
Figure 0006057376

バイオ燃料、各種中間原料として注目されているジメチルフラン、メチルフランの合成方法を、強酸や強塩基、あるいは各種有機溶媒を用いることなく、また反応後の廃液処理の問題なく簡便に製造することができ、クリーンで省エネルギーな製造方法として有用である。   The synthesis method of dimethylfuran and methylfuran, which are attracting attention as biofuels and various intermediate raw materials, can be easily produced without the use of strong acids, strong bases, or various organic solvents, and without the problem of waste liquid treatment after the reaction. It is useful as a clean and energy-saving manufacturing method.

Claims (6)

ヒドロキシメチルフルフラール及び/又はフルフラールを出発原料とし、固体触媒の存在下、水素化により2,5−ジメチルフラン及び/又は2−メチルフランを製造する方法において、
超臨界二酸化炭素を反応溶媒として用いるとともに、反応系に、前記出発原料と超臨界二酸化炭素との混合溶液に溶解する量の水を加えることを特徴とする2,5−ジメチルフラン及び/又は2−メチルフランの製造方法。
In a method for producing 2,5-dimethylfuran and / or 2-methylfuran by hydrogenation in the presence of a solid catalyst using hydroxymethylfurfural and / or furfural as a starting material,
2,5-dimethylfuran and / or 2 characterized in that supercritical carbon dioxide is used as a reaction solvent, and an amount of water dissolved in a mixed solution of the starting material and supercritical carbon dioxide is added to the reaction system. -Method for producing methyl furan.
前記加える水の量が、該超臨界二酸化炭素の容量に対して1容量%以上8容量%以下である請求項1に記載の2,5−ジメチルフラン及び/又は2−メチルフランの製造方法。   2. The method for producing 2,5-dimethylfuran and / or 2-methylfuran according to claim 1, wherein the amount of water to be added is 1% by volume or more and 8% by volume or less based on the volume of the supercritical carbon dioxide. 超臨界二酸化炭素の圧力を、臨界圧力又は7.3MPa以上16MPa以下とすることを特徴とする請求項1又は2に記載の2,5−ジメチルフラン及び/又は2−メチルフランの製造方法。   The method for producing 2,5-dimethylfuran and / or 2-methylfuran according to claim 1 or 2, wherein the pressure of supercritical carbon dioxide is a critical pressure or 7.3 MPa to 16 MPa. 水素の圧力を、0.2MPa以上2MPa以下とすることを特徴とする請求項1〜3のいずれか1項に記載の2,5−ジメチルフラン及び/又は2−メチルフランの製造方法。   The method for producing 2,5-dimethylfuran and / or 2-methylfuran according to any one of claims 1 to 3, wherein the hydrogen pressure is 0.2 MPa or more and 2 MPa or less. 前記固体触媒として、パラジウムをカーボンに担持した固体触媒、白金をカーボンに担持した固体触媒、又はロジウムをカーボンに担持した固体触媒を用いることを特徴とする請求項1〜4のいずれか1項に記載の2,5−ジメチルフラン及び/又は2−メチルフランの製造方法。   5. The solid catalyst according to claim 1, wherein a solid catalyst in which palladium is supported on carbon, a solid catalyst in which platinum is supported on carbon, or a solid catalyst in which rhodium is supported on carbon is used as the solid catalyst. The manufacturing method of 2, 5- dimethyl furan and / or 2-methyl furan of description. 反応温度を、50℃以上100℃以下とすることを特徴とする請求項1〜5のいずれか1項に記載の2,5−ジメチルフラン及び/又は2−メチルフランの製造方法。   The method for producing 2,5-dimethylfuran and / or 2-methylfuran according to any one of claims 1 to 5, wherein the reaction temperature is 50 ° C or higher and 100 ° C or lower.
JP2013158138A 2013-07-30 2013-07-30 Method for reducing hydroxymethylfurfural and / or furfural Active JP6057376B2 (en)

Priority Applications (1)

Application Number Priority Date Filing Date Title
JP2013158138A JP6057376B2 (en) 2013-07-30 2013-07-30 Method for reducing hydroxymethylfurfural and / or furfural

Applications Claiming Priority (1)

Application Number Priority Date Filing Date Title
JP2013158138A JP6057376B2 (en) 2013-07-30 2013-07-30 Method for reducing hydroxymethylfurfural and / or furfural

Publications (2)

Publication Number Publication Date
JP2015027966A JP2015027966A (en) 2015-02-12
JP6057376B2 true JP6057376B2 (en) 2017-01-11

Family

ID=52491954

Family Applications (1)

Application Number Title Priority Date Filing Date
JP2013158138A Active JP6057376B2 (en) 2013-07-30 2013-07-30 Method for reducing hydroxymethylfurfural and / or furfural

Country Status (1)

Country Link
JP (1) JP6057376B2 (en)

Families Citing this family (5)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
CN108654693B (en) 2017-04-01 2021-06-08 南京农业大学 Hydrophobic palladium/metal organic framework material, preparation method thereof and application of hydrophobic palladium/metal organic framework material in synthesis of 2, 5-dimethylfuran
CN110041953A (en) * 2019-04-29 2019-07-23 南开大学 A method of liquid fuel is prepared using biomass
CN112275282B (en) * 2020-11-03 2023-07-04 大连海事大学 Preparation method and application of Pt nanoparticle-loaded biochar catalyst
CN114380678B (en) * 2022-01-28 2023-06-23 广东石油化工学院 Method for preparing cyclopentanone through hydrogenation rearrangement of furfural water solution
CN115518635B (en) * 2022-10-19 2023-11-10 中国科学院大连化学物理研究所 Preparation of supported palladium nanocluster catalyst and application of supported palladium nanocluster catalyst in hydrogenation of 5-hydroxymethylfurfural

Family Cites Families (4)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
CN101422731A (en) * 2007-11-01 2009-05-06 国家纳米技术与工程研究院 2-methylfuran preparation catalyst by gas-phase hydrogenation of furfural
US8324409B2 (en) * 2010-04-23 2012-12-04 The Board Of Trustees Of The University Of Illinois Efficient method for preparing 2,5-dimethylfuran
GB2482887A (en) * 2010-08-18 2012-02-22 Johnson Matthey Plc Catalyst and process for hydrogenation of aldehydes
CN103028405A (en) * 2012-12-27 2013-04-10 珠海凯美科技有限公司 Catalyst for preparing 2-methyl furan through selective furfural hydrogenation and preparation method of catalyst

Also Published As

Publication number Publication date
JP2015027966A (en) 2015-02-12

Similar Documents

Publication Publication Date Title
Cai et al. Biomass into chemicals: One-pot production of furan-based diols from carbohydrates via tandem reactions
Chatterjee et al. Hydrogenation of 5-hydroxymethylfurfural in supercritical carbon dioxide–water: a tunable approach to dimethylfuran selectivity
Sun et al. Production of C4 and C5 alcohols from biomass-derived materials
Sacia et al. Synthesis of biomass-derived methylcyclopentane as a gasoline additive via aldol condensation/hydrodeoxygenation of 2, 5-hexanedione
Ferraz et al. Influence of support basic sites in green oxidation of biobased substrates using Au-promoted catalysts
JP6057376B2 (en) Method for reducing hydroxymethylfurfural and / or furfural
Balakrishnan et al. Etherification and reductive etherification of 5-(hydroxymethyl) furfural: 5-(alkoxymethyl) furfurals and 2, 5-bis (alkoxymethyl) furans as potential bio-diesel candidates
Zheng et al. Efficient aerobic oxidation of 5-hydroxymethylfurfural to 2, 5-furandicarboxylic acid on Ru/C catalysts
Wei et al. One-pot production of 2, 5-dimethylfuran from fructose over Ru/C and a Lewis–Brønsted acid mixture in N, N-dimethylformamide
Li et al. Tailored one-pot production of furan-based fuels from fructose in an ionic liquid biphasic solvent system
EP3154927B1 (en) Method for producing muconic acids and furans from aldaric acids
EP3097087B1 (en) An improved process for the preparation of 2,5-dimethylfuran and furfuryl alcohol over ruthenium supported catalysts
Huang et al. Mechanistic insights into the solvent-driven adsorptive hydrodeoxygenation of biomass derived levulinate acid/ester to 2-methyltetrahydrofuran over bimetallic Cu–Ni catalysts
CN108620127B (en) Catalyst for preparing 1, 5-pentanediol through hydrogenolysis of tetrahydrofurfuryl alcohol, preparation method and application thereof
Shirai et al. One-pot production of 5-hydroxymethylfurfural from cellulose using solid acid catalysts
JP4916038B2 (en) Method for producing tetrahydrofuran derivative by hydrogenation of furans
Cui et al. Production of 4-hydroxymethylfurfural from derivatives of biomass-derived glycerol for chemicals and polymers
CN109134223B (en) Method for preparing 3-hydroxymethylcyclopentanone from 5-hydroxymethylfurfural
JP6345654B2 (en) Method for producing tetrahydrofuran
WO2013144315A9 (en) Method for the production of aliphatic alcohols and/or their ethers, in particular 1-octanol
CN110290870B (en) Catalyst for reduction reaction of 3, 4-dihydroxytetrahydrofuran and method for producing reduced product thereof
US9475742B2 (en) Glycerol conversion by heterogeneous catalysis
JP6369828B2 (en) Method for reducing hydroxymethylfurfural
Park et al. 5‐(Chloromethyl) Furfural as a Potential Source for Continuous Hydrogenation of 5‐(Hydroxymethyl) Furfural to 2, 5‐Bis (Hydroxymethyl) Furan
US9527826B2 (en) Single step process for conversion of furfural to tetrahydrofuran

Legal Events

Date Code Title Description
A621 Written request for application examination

Free format text: JAPANESE INTERMEDIATE CODE: A621

Effective date: 20160328

A977 Report on retrieval

Free format text: JAPANESE INTERMEDIATE CODE: A971007

Effective date: 20161025

TRDD Decision of grant or rejection written
A01 Written decision to grant a patent or to grant a registration (utility model)

Free format text: JAPANESE INTERMEDIATE CODE: A01

Effective date: 20161122

A61 First payment of annual fees (during grant procedure)

Free format text: JAPANESE INTERMEDIATE CODE: A61

Effective date: 20161201

R150 Certificate of patent or registration of utility model

Ref document number: 6057376

Country of ref document: JP

Free format text: JAPANESE INTERMEDIATE CODE: R150

R250 Receipt of annual fees

Free format text: JAPANESE INTERMEDIATE CODE: R250

R250 Receipt of annual fees

Free format text: JAPANESE INTERMEDIATE CODE: R250

R250 Receipt of annual fees

Free format text: JAPANESE INTERMEDIATE CODE: R250

R250 Receipt of annual fees

Free format text: JAPANESE INTERMEDIATE CODE: R250

R250 Receipt of annual fees

Free format text: JAPANESE INTERMEDIATE CODE: R250