WO2012029930A1 - Tin borate glass and sealing component - Google Patents

Tin borate glass and sealing component Download PDF

Info

Publication number
WO2012029930A1
WO2012029930A1 PCT/JP2011/069956 JP2011069956W WO2012029930A1 WO 2012029930 A1 WO2012029930 A1 WO 2012029930A1 JP 2011069956 W JP2011069956 W JP 2011069956W WO 2012029930 A1 WO2012029930 A1 WO 2012029930A1
Authority
WO
WIPO (PCT)
Prior art keywords
glass
mass
tin borate
less
temperature
Prior art date
Application number
PCT/JP2011/069956
Other languages
French (fr)
Japanese (ja)
Inventor
松本 修治
満 渡邉
Original Assignee
旭硝子株式会社
Priority date (The priority date is an assumption and is not a legal conclusion. Google has not performed a legal analysis and makes no representation as to the accuracy of the date listed.)
Filing date
Publication date
Application filed by 旭硝子株式会社 filed Critical 旭硝子株式会社
Priority to JP2012531970A priority Critical patent/JPWO2012029930A1/en
Publication of WO2012029930A1 publication Critical patent/WO2012029930A1/en

Links

Classifications

    • HELECTRICITY
    • H01ELECTRIC ELEMENTS
    • H01JELECTRIC DISCHARGE TUBES OR DISCHARGE LAMPS
    • H01J9/00Apparatus or processes specially adapted for the manufacture, installation, removal, maintenance of electric discharge tubes, discharge lamps, or parts thereof; Recovery of material from discharge tubes or lamps
    • H01J9/24Manufacture or joining of vessels, leading-in conductors or bases
    • H01J9/26Sealing together parts of vessels
    • CCHEMISTRY; METALLURGY
    • C03GLASS; MINERAL OR SLAG WOOL
    • C03CCHEMICAL COMPOSITION OF GLASSES, GLAZES OR VITREOUS ENAMELS; SURFACE TREATMENT OF GLASS; SURFACE TREATMENT OF FIBRES OR FILAMENTS MADE FROM GLASS, MINERALS OR SLAGS; JOINING GLASS TO GLASS OR OTHER MATERIALS
    • C03C3/00Glass compositions
    • C03C3/12Silica-free oxide glass compositions
    • C03C3/16Silica-free oxide glass compositions containing phosphorus
    • C03C3/19Silica-free oxide glass compositions containing phosphorus containing boron
    • CCHEMISTRY; METALLURGY
    • C03GLASS; MINERAL OR SLAG WOOL
    • C03CCHEMICAL COMPOSITION OF GLASSES, GLAZES OR VITREOUS ENAMELS; SURFACE TREATMENT OF GLASS; SURFACE TREATMENT OF FIBRES OR FILAMENTS MADE FROM GLASS, MINERALS OR SLAGS; JOINING GLASS TO GLASS OR OTHER MATERIALS
    • C03C8/00Enamels; Glazes; Fusion seal compositions being frit compositions having non-frit additions
    • C03C8/02Frit compositions, i.e. in a powdered or comminuted form
    • C03C8/08Frit compositions, i.e. in a powdered or comminuted form containing phosphorus
    • CCHEMISTRY; METALLURGY
    • C03GLASS; MINERAL OR SLAG WOOL
    • C03CCHEMICAL COMPOSITION OF GLASSES, GLAZES OR VITREOUS ENAMELS; SURFACE TREATMENT OF GLASS; SURFACE TREATMENT OF FIBRES OR FILAMENTS MADE FROM GLASS, MINERALS OR SLAGS; JOINING GLASS TO GLASS OR OTHER MATERIALS
    • C03C8/00Enamels; Glazes; Fusion seal compositions being frit compositions having non-frit additions
    • C03C8/24Fusion seal compositions being frit compositions having non-frit additions, i.e. for use as seals between dissimilar materials, e.g. glass and metal; Glass solders

Definitions

  • the present invention relates to a tin borate glass, and more particularly to a tin borate glass and a sealing part that are suitably used as a sealing material for a sealing material such as alumina or soda lime glass.
  • sealing material for sealing various materials such as glass, ceramics, and metals, and electronic parts such as semiconductor elements, sealing materials mainly composed of glass are used.
  • sealing material when sealing electronic parts, it is required to lower the sealing temperature as much as possible in order to prevent damage to the sealing material due to heat. For this reason, what has a lower melting point is calculated
  • thermal stress may occur between the two due to temperature changes, which may cause cracks in the sealing material and the sealing material. There is. For this reason, the sealing material is required to have a thermal property that is similar to the sealing material.
  • Patent Document 1 discloses that “SnO, B 2 O 3 and P 2 O 5 are the main components, SnO 30 to 80% in terms of mol%, and B 2 O 3 5 to 60%.
  • a tin borophosphate-based glass having a composition of 5 to 24% of P 2 O 5 is disclosed.
  • Patent Document 2 discloses SnO—P 2 O 5 glass used for a phosphor composite material. Comparative Example 10 includes SnO 73%, P 2 O in terms of mol%. 5 A glass having a composition of 19.4%, B 2 O 3 10% is described.
  • the tin borophosphate-based glass described in Patent Document 1 has a thermal expansion coefficient of 94 ⁇ 10 ⁇ 7 to 103 ⁇ 10 ⁇ 7 / ° C., and is variously used as a sealing material.
  • materials for example, soda lime glass and alumina
  • the difference in thermal expansion coefficient is excessive.
  • soda lime glass substrates for plasma display panels (PDP) tend to be used with a low thermal expansion coefficient (for example, the thermal expansion coefficient of soda lime glass widely used for PDP is 85 ⁇ 10 ⁇ 7 / ° C.), Therefore, when the fixation was gradually cooled to sealing material, by thermal stress caused by the difference in thermal properties of both, there is a possibility that cracks occur in the sealing material or the like.
  • the glass of Example 10 (Comparative Example) is in the composition range disclosed in Patent Document 1, and the thermal expansion coefficient is 94 ⁇ 10 ⁇ 7 to 103 ⁇ 10 ⁇ 7 / It can be estimated that it is ° C. Furthermore, from the Example of patent document 1, it exists in the tendency for a thermal expansion coefficient to be high, so that SnO content increases.
  • the SnO content described in Patent Document 2 has a SnO content of 72 mol% or more, and even if B 2 O 3 and ZnO, which have the effect of lowering the thermal expansion coefficient, are 5 mol% or less, the thermal expansion coefficient is It is considered that it greatly exceeds 103 ⁇ 10 ⁇ 7 / ° C.
  • the thermal expansion coefficient difference is excessive compared to the case of Patent Document 1, and when the sealing material is slowly cooled and fixed, the thermal characteristics of the two are obtained. The risk of cracking in the sealing material and the like due to the thermal stress associated with the difference becomes more serious.
  • filler such as alumina powder is mixed with the glass powder to reduce the thermal expansion coefficient of the entire sealing material. ing.
  • the blending ratio of the filler with respect to the glass powder is increased, the fluidity of the glass is lowered and sealing may be difficult.
  • the light entering the glass is scattered by the filler, which may impair the transparency as a sealing material, and is used for sealing light-emitting diodes that require transparency. It may become impossible.
  • the present invention has been made in order to solve the above-described problems, has a low melting point, and has a small difference in thermal characteristics from the sealing material, more specifically, a difference in thermal expansion coefficient, and A tin borate-based glass that has a glass transition temperature within a predetermined range and that can provide a sealing material in which generation of cracks and the like during sealing is suppressed without adding an additive such as a filler.
  • the purpose is to provide wearing parts.
  • the tin borate-based glass of the present invention has a SnO content of 62 to 73%, a B 2 O 3 content of 19 to 25%, a P 2 O 5 content of 0.1 to 7%, and a ZnO content in terms of oxide mass%. 0 to 6%, CaO 0 to 3%, SrO 0 to 7%, and Al 2 O 3 0 to 4%.
  • “to” indicating the numerical range described above is used to mean that the numerical values described before and after it are used as a lower limit value and an upper limit value, and hereinafter “to” Used with meaning.
  • the tin borate-based glass preferably has a mass ratio of P 2 O 5 / B 2 O 3 satisfying 0.10 to 0.35.
  • the tin borate-based glass preferably has a P 2 O 5 / (B 2 O 3 + SnO) ratio of 0.01 to 0.10 as a mass ratio in terms of oxide.
  • the tin borate glass preferably has a thermal expansion coefficient at 50 to 250 ° C. of less than 90 ⁇ 10 ⁇ 7 / ° C., preferably 50 ⁇ 10 ⁇ 7 / ° C. or more and 90 ⁇ 10 ⁇ 7. More preferably, it is less than / ° C.
  • the tin borate-based glass preferably has a glass transition temperature (Tg) of 370 ° C. or lower, more preferably 300 ° C. or higher and 370 ° C. or lower.
  • the difference between the crystallization peak temperature (Tc) and the glass transition temperature (Tg) is preferably 150 ° C. or higher.
  • the tin borate-based glass of the present invention contains SnO and B 2 O 3 as main components, and contains 0.1 to 7% of P 2 O 5 in terms of mass% in terms of oxide, at 50 to 250 ° C.
  • the thermal expansion coefficient is less than 90 ⁇ 10 ⁇ 7 / ° C.
  • the thermal expansion coefficient at 50 to 250 ° C. is preferably 50 ⁇ 10 ⁇ 7 / ° C. or more and less than 90 ⁇ 10 ⁇ 7 / ° C.
  • the tin borate-based glass is Sn-O 62-72%, B 2 O 3 19-25%, ZnO 0-6%, CaO 0-3% and SrO 0 It is preferable to have a composition of ⁇ 7% and Al 2 O 3 of 0 ⁇ 4%.
  • the sealing part of the present invention is characterized in that the surface or joint portion of a sealing member made of soda lime glass or alumina is sealed with the tin borate glass.
  • sealing at a low temperature is possible, and since the difference in thermal characteristics from the material to be sealed is small, cracks accompanying temperature changes can be obtained without adding additives such as fillers.
  • a tin borate-based glass from which a sealing material with suppressed generation can be obtained, and a sealing part using the same can be provided.
  • the tin borate glass according to one embodiment of the present invention is mainly composed of SnO and B 2 O 3 , SnO is 62 to 73% and B 2 O 3 is 19 to 25 in terms of oxide mass%. %, P 2 O 5 0.1 to 7%, ZnO 0 to 6%, CaO 0 to 3%, SrO 0 to 7%, and Al 2 O 3 0 to 4%.
  • the coefficient of thermal expansion can be reduced as compared with the conventional glass used as a sealing material by setting the content of each component within a predetermined range. For this reason, it is possible to reduce the difference in thermal expansion coefficient with alumina, soda lime glass, etc., which are widely used as sealing materials, and with temperature changes at the time of sealing without adding fillers, etc. A sealing material in which generation of cracks and the like is suppressed can be obtained.
  • SnO is a component that is paired with B 2 O 3 and / or P 2 O 5 and becomes the main skeleton (network former) of glass, and is an essential component.
  • the content of SnO in the tin borate glass is 62% by mass or more.
  • Tg glass transition temperature
  • the sealing temperature becomes high.
  • the content of SnO in the tin borate glass is preferably 65% by mass or more, and more preferably 66.5% by mass or more. .
  • the content of SnO in the tin borate glass is 73% by mass or less.
  • SnO exceeds 73 mass% glass will become unstable and water resistance and a weather resistance will come to fall. Further, the coefficient of thermal expansion becomes excessively high, and the difference in coefficient of thermal expansion from the sealing member increases.
  • the content of SnO is preferably 70% by mass or less, and more preferably 68% by mass or less.
  • B 2 O 3 is a component that becomes a main skeleton (network former) of glass and is an essential component.
  • the content of B 2 O 3 in the tin borate glass is 19% by mass or more. If the content of B 2 O 3 is less than 19% by mass, it is difficult to obtain a stable glass, and vitrification may be difficult. From the viewpoint of more excellent stability, the content of B 2 O 3 is preferably 20% by mass or more, and more preferably 21% by mass or more.
  • the content of B 2 O 3 in the tin borate glass is 25% by mass or less.
  • the glass transition temperature (Tg) becomes higher, the sealing temperature increases.
  • the content of B 2 O 3 is preferably 24% by mass or less, and more preferably 23% by mass or less.
  • P 2 O 5 is a component that suppresses the crystallization of glass to improve stability and improves weather resistance, and is an essential component.
  • the content of P 2 O 5 in the tin borate glass is 0.1% by mass or more.
  • the content of P 2 O 5 is less than 0.1 wt%, there is a possibility that water resistance, weather resistance decreases.
  • the glass may be easily crystallized.
  • the content of P 2 O 5 is preferably 3% by mass or more, and more preferably 5% by mass or more.
  • the content of P 2 O 5 in the tin borate glass is 7% by mass or less. If the content of P 2 O 5 exceeds 7% by mass, the glass tends to phase-separate and there is a possibility that a homogeneous glass cannot be obtained. Moreover, there exists a possibility that the thermal expansion coefficient of glass may become high too much.
  • the content of P 2 O 5 in the tin borate-based glass is preferably 6.5% by mass or less, and more preferably 6.0% by mass or less from the viewpoint of obtaining a homogeneous glass that is more difficult to separate phases.
  • Al 2 O 3 is a component that increases the stability of the glass and improves the weather resistance.
  • the content of Al 2 O 3 in the tin borate glass is 4% by mass or less.
  • the glass transition temperature (Tg) becomes excessively high and the sealing temperature may be increased.
  • the content of Al 2 O 3 is preferably 3% by mass or less, and more preferably 2% by mass or less.
  • ZnO is a component that increases the stability of glass to improve water resistance and weather resistance, and reduces the coefficient of thermal expansion.
  • the content of ZnO in the tin borate glass is 6% by mass or less.
  • Tg glass transition temperature
  • the content of ZnO is preferably 5% by mass or less, and more preferably 4% by mass or less.
  • CaO suppresses the crystallization of the glass by suppressing the diffusion of Sn ions (Sn 2+ ) in the glass.
  • the content of CaO in the tin borate glass is 3% by mass or less.
  • the glass transition temperature (Tg) becomes excessively high and the sealing temperature may be increased.
  • the content of CaO is preferably 2% by mass or less.
  • SrO suppresses the crystallization of the glass by suppressing the diffusion of Sn ions (Sn 2+ ) in the glass.
  • the content of SrO in the tin borate glass is 7% by mass or less. If the content of SrO exceeds 7% by mass, the glass transition temperature (Tg) becomes excessively high and the sealing temperature may be increased. From the viewpoint of obtaining a sealing material that can be sealed at a lower temperature, the content of SrO is preferably 5% by mass or less, and more preferably 3% by mass or less.
  • the ratio P 2 O 5 / B 2 O 3 between the content of P 2 O 5 and the content of B 2 O 3 contained in the tin borate glass is 0.10 to 0.35 by mass ratio. Is preferred.
  • the mass ratio of P 2 O 5 / B 2 O 3 exceeds 0.35, the presence of P—O—P bonding sites becomes excessive, and the proportion of components in the melt increases (clustering). Glass tends to phase-separate and there is a possibility that a homogeneous glass cannot be obtained.
  • the above clustering means a state in which a plurality of PO 4 tetrahedron units are locally connected, and the same applies to the following.
  • P 2 O 5 / B 2 O 3 is less than 0.10, water resistance and weather resistance may be lowered.
  • the ratio of the content of P 2 O 5 and the content of (B 2 O 3 + SnO) contained in the tin borate-based glass, that is, P 2 O 5 / (B 2 O 3 + SnO) is 0. It is preferably 01 to 0.10.
  • the mass ratio of P 2 O 5 / (B 2 O 3 + SnO) exceeds 0.10, the thermal expansion coefficient may be excessively increased. Further, the presence of P—O—P bonding sites becomes excessive, and the ratio of clustering of components in the melt increases, so that the glass tends to phase-separate and there is a possibility that a homogeneous glass cannot be obtained.
  • P 2 O 5 / (B 2 O 3 + SnO) is more preferably 0.08 or less.
  • the mass ratio of P 2 O 5 / (B 2 O 3 + SnO) is less than 0.01, water resistance and weather resistance may be lowered.
  • P 2 O 5 / (B 2 O 3 + SnO) is 0.05 or more.
  • the glass powder of tin borate-based glass can usually be produced by producing glass having the above composition by a melting method and then pulverizing the glass.
  • the pulverization method is not particularly limited, and may be dry pulverization or wet pulverization. In the case of wet pulverization, it is preferable to use water as a solvent.
  • a pulverizer such as a roll mill, a ball mill, or a jet mill can be appropriately used. After pulverization, the glass may be dried and classified as necessary.
  • the thermal expansion coefficient of tin borate glass at 50 to 250 ° C. is preferably 50 ⁇ 10 ⁇ 7 / ° C. or more and less than 90 ⁇ 10 ⁇ 7 / ° C.
  • alumina or soda lime glass generally used as a sealing material
  • the difference in coefficient of thermal expansion from various materials such as (ie, the sealing material) becomes large, and thermal stress tends to occur between these sealing materials, so that cracks and the like are likely to occur.
  • the soda lime glass described above is a so-called soda lime glass in a broad sense, and refers to soda lime silicate glass having a composition containing SiO 2 , Na 2 O and CaO as main components.
  • Such soda-lime glass may contain Al 2 O 3 , K 2 O, alkaline earth oxides, and other components that are appropriately added according to the purpose.
  • the soda lime glass in the present specification means the above-mentioned soda lime glass.
  • the upper limit of the thermal expansion coefficient of tin borate glass at 50 to 250 ° C. is more preferably 87 ⁇ 10 ⁇ 7 / ° C. or less, further preferably 85 ⁇ 10 ⁇ 7 / ° C.
  • the lower limit of the coefficient of thermal expansion of tin borate glass at 50 to 250 ° C. is more preferably 60 ⁇ 10 ⁇ 7 / ° C. or more.
  • the glass transition temperature (Tg) of the tin borate glass is preferably 300 to 370 ° C.
  • the glass transition temperature (Tg) of the tin borate glass exceeds 370 ° C., the temperature required for sealing (that is, the sealing temperature) becomes excessively high. There is a risk of damaging certain electronic components.
  • the glass transition temperature (Tg) of the tin borate glass is preferably 360 ° C. or lower.
  • the glass transition temperature (Tg) of the tin borate glass is less than 300 ° C., the glass becomes unstable and the weather resistance may be lowered.
  • the glass transition temperature (Tg) of the tin borate glass is more preferably 320 ° C. or higher, and further preferably 340 ° C. or higher.
  • the difference between the crystallization peak temperature (Tc) and the glass transition temperature (Tg), which is measured by a differential thermal analyzer (DTA), is preferably 150 ° C. or higher. If the difference between the crystallization peak temperature (Tc) and the glass transition temperature (Tg) is less than 150 ° C., the temperature range that can be sealed is too narrow, and efficient production may be difficult. Since the difference between the crystallization peak temperature (Tc) and the glass transition temperature (Tg) is within the above range, the temperature range in which an amorphous state can be obtained is widened, and the sealing by heat treatment is stabilized in a wide temperature range. Can be performed.
  • the difference between the crystallization peak temperature (Tc) and the glass transition temperature (Tg) is more preferably 160 ° C. or higher, further preferably 165 ° C. or higher, and most preferably 170 ° C. or higher.
  • the crystallization peak temperature (Tc) is not detected by measurement with a differential thermal analyzer (DTA), the temperature range in which the amorphous state can be obtained becomes wider, and the sealing by heat treatment is stable in a wider temperature range. Can be performed. If the crystallization peak temperature (Tc) is not detected, it can be interpreted that the temperature difference is infinite ( ⁇ ). In this case, the crystallization peak temperature (Tc) and the glass transition temperature (Tg) ) There is no particular upper limit to the temperature difference.
  • DTA differential thermal analyzer
  • the thus obtained tin borate-based glass has a predetermined mass ratio of fillers such as alumina powder and zirconia powder, and other components as required, as long as the fluidity and transparency of the glass are not impaired. It is also possible to use as a composition prepared by blending and mixing.
  • the tin borate glass according to the present embodiment contains SnO and B 2 O 3 as main components, and contains 0.1 to 7% of P 2 O 5 in terms of mass% in terms of oxides, and 50 to 250
  • the thermal expansion coefficient at 0 ° C. is less than 90 ⁇ 10 ⁇ 7 / ° C.
  • the thermal expansion coefficient is within a predetermined range, so that the heat of the sealing material such as alumina and soda lime glass can be increased compared to the conventional glass used as the sealing material.
  • the difference in characteristic characteristics can be reduced. For this reason, even if it does not add a filler, the sealing material by which generation
  • thermal expansion coefficient at 50 to 250 ° C. is 90 ⁇ 10 ⁇ 7 / ° C. or more (that is, sealing materials)
  • the thermal characteristic difference between the two and the sealing material increases, and thermal stress is likely to occur between these materials to be sealed.
  • the upper limit of the thermal expansion coefficient of tin borate glass at 50 to 250 ° C. is more preferably 87 ⁇ 10 ⁇ 7 / ° C. or less, further preferably 85 ⁇ 10 ⁇ 7 / ° C. or less, and most preferably It is 82 ⁇ 10 ⁇ 7 / ° C. or lower.
  • the thermal expansion coefficient of tin borate glass at 50 to 250 ° C. is preferably 50 ⁇ 10 ⁇ 7 / ° C. or higher.
  • heat with various materials such as alumina and soda lime glass, which are generally used as sealing materials Since the difference in expansion coefficient becomes large and thermal stress is likely to occur between these materials to be sealed, cracks and the like may be easily generated.
  • the lower limit of the thermal expansion coefficient of tin borate glass at 50 to 250 ° C. is more preferably 60 ⁇ 10 ⁇ 7 / ° C. or more.
  • the ratio of the content of P 2 O 5 and the content of (B 2 O 3 + SnO) contained in the tin borate-based glass, that is, P 2 O 5 / (B 2 O 3 + SnO) is 0. It is preferably 01 to 0.10.
  • the mass ratio of P 2 O 5 / (B 2 O 3 + SnO) exceeds 0.10, the thermal expansion coefficient may be excessively increased. Further, the presence of P—O—P bonding sites becomes excessive, and the ratio of clustering of components in the melt increases, so that the glass tends to phase-separate and there is a possibility that a homogeneous glass cannot be obtained.
  • P 2 O 5 / (B 2 O 3 + SnO) is more preferably 0.08 or less.
  • the mass ratio of P 2 O 5 / (B 2 O 3 + SnO) is less than 0.01, water resistance and weather resistance may be lowered.
  • P 2 O 5 / (B 2 O 3 + SnO) is 0.05 or more.
  • SnO is a component that is paired with B 2 O 3 and / or P 2 O 5 and becomes the main skeleton (network former) of glass, and is an essential component.
  • the SnO content in the tin borate glass is preferably 62% by mass or more.
  • Tg glass transition temperature
  • the content of SnO in the tin borate glass is preferably 65% by mass or more, and more preferably 66.5% by mass or more. .
  • the SnO content in the tin borate-based glass is preferably 72% by mass or less.
  • SnO exceeds 72 mass%, glass will become unstable and water resistance and weather resistance will fall.
  • the coefficient of thermal expansion increases, and the difference in coefficient of thermal expansion from the sealing member increases.
  • the content of SnO is preferably 70% by mass or less, and more preferably 68% by mass or less.
  • B 2 O 3 is a component that becomes a main skeleton (network former) of glass and is an essential component.
  • the content of B 2 O 3 in the tin borate glass is preferably 19% by mass or more. If the content of B 2 O 3 is less than 19% by mass, it is difficult to obtain a stable glass, and vitrification may be difficult. From the viewpoint of more excellent stability, the content of B 2 O 3 is preferably 20% by mass or more, and more preferably 21% by mass or more.
  • the content of B 2 O 3 in the tin borate glass is preferably 25% by mass or less.
  • the glass transition temperature (Tg) becomes higher, the sealing temperature increases.
  • the content of B 2 O 3 is preferably 24% by mass or less, and more preferably 23% by mass or less.
  • P 2 O 5 is a component that suppresses the crystallization of glass to improve stability and improves weather resistance, and is an essential component.
  • the content of P 2 O 5 in the tin borate glass is 0.1% by mass or more.
  • the content of P 2 O 5 is less than 0.1 wt%, there is a possibility that water resistance, weather resistance decreases.
  • the glass may be easily crystallized.
  • the content of P 2 O 5 is preferably 3% by mass or more, and more preferably 5% by mass or more.
  • the content of P 2 O 5 in the tin borate glass is 7% by mass or less. If the content of P 2 O 5 exceeds 7% by mass, the glass tends to phase-separate and there is a possibility that a homogeneous glass cannot be obtained. Moreover, there exists a possibility that the thermal expansion coefficient of glass may become high too much.
  • the content of P 2 O 5 in the tin borate-based glass is preferably 6.5% by mass or less, and more preferably 6.0% by mass or less from the viewpoint of obtaining a homogeneous glass that is more difficult to separate phases.
  • Al 2 O 3 is a component that increases the stability of the glass and improves the weather resistance.
  • the content of Al 2 O 3 in the tin borate glass is preferably 4% by mass or less.
  • the glass transition temperature (Tg) becomes excessively high and the sealing temperature may be increased.
  • the content of Al 2 O 3 is preferably 3% by mass or less, and more preferably 2% by mass or less.
  • ZnO is a component that increases the stability of glass to improve water resistance and weather resistance, and reduces the coefficient of thermal expansion.
  • the content of ZnO in the tin borate glass is preferably 6% by mass or less.
  • Tg glass transition temperature
  • the content of ZnO is preferably 5% by mass or less, and more preferably 4% by mass or less.
  • CaO suppresses the crystallization of the glass by suppressing the diffusion of Sn ions (Sn 2+ ) in the glass.
  • the content of CaO in the tin borate glass is preferably 3% by mass or less.
  • the glass transition temperature (Tg) becomes excessively high and the sealing temperature may be increased.
  • the content of CaO is preferably 2% by mass or less.
  • SrO suppresses the crystallization of the glass by suppressing the diffusion of Sn ions (Sn 2+ ) in the glass.
  • the content of SrO in the tin borate glass is preferably 7% by mass or less. If the content of SrO exceeds 7% by mass, the glass transition temperature (Tg) becomes excessively high and the sealing temperature may be increased. From the viewpoint of obtaining a sealing material that can be sealed at a lower temperature, the content of SrO is preferably 5% by mass or less, and more preferably 3% by mass or less.
  • the glass powder of tin borate-based glass can usually be produced by producing glass having the above composition by a melting method and then pulverizing the glass.
  • the pulverization method is not particularly limited, and may be dry pulverization or wet pulverization. In the case of wet pulverization, it is preferable to use water as a solvent.
  • a pulverizer such as a roll mill, a ball mill, or a jet mill can be appropriately used. After pulverization, the glass may be dried and classified as necessary.
  • the glass transition temperature (Tg) of the tin borate glass is preferably 300 to 370 ° C.
  • the glass transition temperature (Tg) of the tin borate glass exceeds 370 ° C., the temperature required for sealing (that is, the sealing temperature) becomes excessively high. There is a risk of damaging certain electronic components.
  • the glass transition temperature (Tg) of the tin borate glass is preferably 360 ° C. or lower.
  • the glass transition temperature (Tg) of the tin borate glass is less than 300 ° C., the glass becomes unstable and the weather resistance may be lowered.
  • the glass transition temperature (Tg) of the tin borate glass is more preferably 320 ° C. or higher, and further preferably 340 ° C. or higher.
  • the difference between the crystallization peak temperature (Tc) and the glass transition temperature (Tg), which is measured by a differential thermal analyzer (DTA), is preferably 150 ° C. or higher. If the difference between the crystallization peak temperature (Tc) and the glass transition temperature (Tg) is less than 150 ° C., the temperature range that can be sealed is too narrow, and efficient production may be difficult. Since the difference between the crystallization peak temperature (Tc) and the glass transition temperature (Tg) is within the above range, the temperature range in which an amorphous state can be obtained is widened, and the sealing by heat treatment is stabilized in a wide temperature range. Can be performed.
  • the difference between the crystallization peak temperature (Tc) and the glass transition temperature (Tg) is more preferably 160 ° C. or higher, further preferably 165 ° C. or higher, and most preferably 170 ° C. or higher.
  • DTA differential thermal analyzer
  • the temperature range in which the amorphous state can be obtained becomes wider, and the sealing by heat treatment is performed in a wider temperature range. It is possible to perform wearing stably. If the crystallization peak temperature (Tc) is not detected, it can be interpreted that the temperature difference is infinite ( ⁇ ). In this case, the crystallization peak temperature (Tc) and the glass transition temperature (Tg) ) There is no particular upper limit to the temperature difference.
  • the thus obtained tin borate-based glass has a predetermined mass ratio of fillers such as alumina powder and zirconia powder, and other components as required, as long as the fluidity and transparency of the glass are not impaired. It is also possible to use as a composition prepared by blending and mixing.
  • the tin borate glass of the present invention thus obtained is used for sealing electronic parts such as light emitting diode elements (LEDs) in addition to sealing general substrate materials such as soda lime glass and alumina. It is also possible to use it as a sealing material that is sealed using laser light. Furthermore, it can also be used as a binder for solar cell electrodes.
  • LEDs light emitting diode elements
  • the sealing part of the present invention is formed by sealing the surface or bonding portion of the above-mentioned sealed member made of soda lime glass or alumina with the tin borate glass of the present invention.
  • the sealing component of the present invention the use of tin borate-based glass having a small difference in thermal characteristics from the sealing material as a sealing material results in less defects such as cracks and warpage, and the sealing material It can be sealed with high airtightness.
  • Examples 1 to 20 and Comparative Examples 1 to 4 Formulated raw materials such as stannous oxide, tin pyrophosphate, zinc metaphosphate, calcium metaphosphate, aluminum metaphosphate, anhydrous boric acid and strontium carbonate so that the glass after mixing has the glass composition shown in Tables 1-3.
  • the mixed raw material was put into a quartz crucible and heated and melted at 1100 ° C. for 40 minutes, and then the molten glass was poured into a carbon mold and cooled.
  • the operations from preparation and mixing of the raw material compounds to cooling after heating and melting were all performed in a glove box (dew point temperature: ⁇ 60 to ⁇ 100 ° C.) in a dry nitrogen atmosphere.
  • Tg Glass transition temperature
  • Tc Crystallization peak temperature
  • the glass powders obtained by pulverizing the glass of each Example and Comparative Example were each subjected to a rate of 10 ° C./min using the same differential thermal analyzer as that used for measuring the glass transition temperature (Tg).
  • the temperature of the crystallization exothermic peak (unit: ° C.) was measured.
  • Bending point (Tf) The yield point (Tf) was measured by the following method. That is, the glass of each example and comparative example was processed into a cylindrical shape having a diameter of 5 mm and a length of 20 mm, respectively, and a horizontal differential detection type thermal dilatometer (Bruker AXS, trade name: TD5010) was used.
  • the average thermal expansion coefficient ( ⁇ ) was measured by the following method. That is, with respect to each of the glass of each example and comparative example, the amount of elongation was measured with the above-mentioned horizontal differential detection type thermal dilatometer at a temperature rising rate of 10 ° C./min, and the average thermal expansion from 50 to 250 ° C. The coefficient (unit: / ° C.) was calculated. (5) Weather resistance Weather resistance was evaluated by the following method.
  • the glass of each example and comparative example was made into a glass block having a size of about 20 mm ⁇ 20 mm and a thickness of 2 mm, and both surfaces were mirror-polished, and the constant temperature and constant temperature set at 80 ° C. and relative humidity of 80%. Holding in a damp bath and taking out as appropriate, the spectral transmittance at 460 nm was measured using a spectrophotometer (manufactured by Perkin Elmer, product name “Lambda 950”), and the elapsed time with respect to the initial value T0 of the spectral transmittance The ratio of the subsequent spectral transmittance T1 was calculated based on the formula [(T1 / T0) ⁇ 100 (%)].
  • the tin borate glasses having the specific compositions of Examples 1 to 20 exhibit a thermal expansion coefficient of less than 90 ⁇ 10 ⁇ 7 / ° C., and are the sealing materials.
  • the difference in thermal expansion coefficient from the soda-lime glass (83 ⁇ 10 ⁇ 7 / ° C. to 85 ⁇ 10 ⁇ 7 / ° C.) and alumina (73 ⁇ 10 ⁇ 7 / ° C. to 81 ⁇ 10 ⁇ 7 / ° C.) It can be seen that cracks are less likely to occur when these materials are sealed. Further, since the glass powders of Examples 1 to 20 have a low yield point of 400 ° C. or lower, they can be sealed at a low temperature.
  • the tin borate glasses of Comparative Examples 1 to 3 containing P 2 O 5 in excess of 7% by mass caused phase separation when vitrified and could not obtain a stable glass state.
  • the tin borate glass of Comparative Example 4 containing 22% by mass of P 2 O 5 has a thermal expansion coefficient of 103 ⁇ 10 ⁇ 7 / ° C., and the difference in thermal expansion coefficient from the soda lime glass or alumina described above. It can be seen that cracks are likely to occur when these materials are sealed.
  • Example 21 It has a composition of the glass powder described in Example 6, MnO 42% by mass, CuO 26% by mass, Fe 2 O 3 15% by mass, Al 2 O 3 8% by mass, SiO 2 5% by mass, and an average particle diameter was prepared with a 1.2 ⁇ m laser absorber.
  • a sealing material was prepared by mixing 95% by mass of the glass powder and 5% by mass of the laser absorbing material.
  • two glass substrates (dimensions: 100 mm ⁇ 100 mm ⁇ 0.55 mm thickness) made of soda lime glass (thermal expansion coefficient: 87 ⁇ 10 ⁇ 7 / ° C.) are prepared and sealed on one glass substrate. The material was dispersed and applied, and the other glass substrate was laminated.
  • the soda-lime glass substrate formed by laminating the coating layer of the sealing material was placed on the sample holder of the laser irradiation apparatus.
  • a circular laser beam having a wavelength of 808 nm, an output density of 0.56 kW / cm 2 , and a beam shape of 1.5 mm is applied to the sealing material coating layer at a position where the sealing material is applied at a scanning speed of 3 mm / second. Irradiation formed a sealing material layer.
  • the sealing material layer of Reference Example 1 obtained by irradiation at an output density of 0.85 kW / cm 2 was generally well vitrified, although the two glass substrates were bonded together, it was confirmed that they were partially crystallized.
  • the sealing material layer of Reference Example 2 obtained by irradiation while changing the power density from 0.56 kW / cm 2 to 2.26 kW / cm 2 is crystallized in the entire laser irradiation region, and the substrate is It could not be adhered.
  • Example 21 and Reference Examples 1 and 2 described above only the example in which sealing by laser irradiation (laser sealing) was performed was described. However, in the tin borate glass of the present invention, such laser irradiation is performed.
  • the sealing is not limited to the above, and the sealing can be performed by optimizing the temperature condition using, for example, a general electric furnace.
  • the filler has a low melting point, has a small difference in thermal expansion coefficient from the material to be sealed, and has a glass transition temperature within a predetermined range suitable for sealing with the material to be sealed. Even without the addition of additives such as, it is possible to obtain a tin borate glass for sealing materials in which the occurrence of cracks during sealing is suppressed, and the periphery of a soda-lime glass substrate for a plasma display panel It is useful for sealing of electronic parts such as light-emitting diode elements or other soda-lime glass substrates or alumina substrates.

Abstract

Provided is a tin borate glass having a low melting point and capable of producing a sealing material that has a small difference in thermal characteristics from the material to be sealed and that is kept from causing cracks etc. at the time of sealing, even without blending an additive such as a filler. The tin borate glass is characterized by having a composition containing 62-73% by mass of SnO, 19-25% by mass of B2O3, 0.1-7% by mass of P2O5, 0-6% by mass of ZnO, 0-3% by mass of CaO, 0-7% by mass of SrO, and 0-4% by mass of Al2O3.

Description

ホウ酸スズ系ガラス及び封着部品Tin borate glass and sealing parts
 本発明は、ホウ酸スズ系ガラスに係り、特にアルミナ、ソーダライムガラスなどの被封着材料の封着材料として好適に用いられるホウ酸スズ系ガラス及び封着部品に関する。 The present invention relates to a tin borate glass, and more particularly to a tin borate glass and a sealing part that are suitably used as a sealing material for a sealing material such as alumina or soda lime glass.
 ガラス、セラミックス、金属等の各種材料や、半導体素子等の電子部品を封止する封着材料として、ガラスを主成分とする封着材料が用いられている。 As a sealing material for sealing various materials such as glass, ceramics, and metals, and electronic parts such as semiconductor elements, sealing materials mainly composed of glass are used.
 特に電子部品を封着する場合には、被封着材料の熱による損傷を防ぐため、封着温度を可能な限り低くすることが求められる。このため、封着材料としては、より低融点を有するものが求められている。
 また、封着材料と被封着材料との間の熱的特性差が大きいと、温度変化に伴って両者の間に熱応力が生じ、封着材料や被封着材料にクラック等が生じるおそれがある。このため、封着材料は、被封着材料と熱的特性が近似していることが求められる。
In particular, when sealing electronic parts, it is required to lower the sealing temperature as much as possible in order to prevent damage to the sealing material due to heat. For this reason, what has a lower melting point is calculated | required as sealing material.
In addition, if there is a large difference in thermal characteristics between the sealing material and the sealing material, thermal stress may occur between the two due to temperature changes, which may cause cracks in the sealing material and the sealing material. There is. For this reason, the sealing material is required to have a thermal property that is similar to the sealing material.
 低融点の封着用ガラスとして、例えば特許文献1には、「SnO、B及びPを主成分とし、モル%表示でSnO 30~80%、B 5~60%、P 5~24%の組成を有することを特徴とするホウリン酸スズ系ガラス」が開示されている。
 又、特許文献2には、蛍光体複合材料に用いられるSnO-P系ガラスについて開示されており、その比較例である例10には、モル%表示でSnO 73%、P 19.4%、B 10%の組成を有するガラスについて記載されている。
As a glass having a low melting point, for example, Patent Document 1 discloses that “SnO, B 2 O 3 and P 2 O 5 are the main components, SnO 30 to 80% in terms of mol%, and B 2 O 3 5 to 60%. , A tin borophosphate-based glass having a composition of 5 to 24% of P 2 O 5 is disclosed.
Patent Document 2 discloses SnO—P 2 O 5 glass used for a phosphor composite material. Comparative Example 10 includes SnO 73%, P 2 O in terms of mol%. 5 A glass having a composition of 19.4%, B 2 O 3 10% is described.
日本特許第3845853号Japanese Patent No. 3845853 日本特開2010-229002号Japanese Unexamined Patent Publication No. 2010-229002
 しかしながら、特許文献1(実施例参照)に記載のホウリン酸スズ系ガラスでは、熱膨張係数が94×10-7~103×10-7/℃であり、被封着材料として汎用されている各種材料(例えばソーダライムガラス、アルミナ)と比較して、熱膨張係数差が過大となる。
 特に、プラズマディスプレイパネル(PDP)用のソーダライムガラス基板には熱膨張係数の小さいものが用いられる傾向にあり(例えば、PDP用に汎用されているソーダライムガラスの熱膨張係数は85×10-7/℃)、このため、封着材料を徐冷して固着する際に、両者の熱的特性の差異に伴う熱応力により、封着材料等にクラックが生じるおそれがある。
 また、特許文献2に記載のガラスでは、例えば例10(比較例)のガラスは特許文献1で開示されている組成範囲にあり、熱膨張係数が94×10-7~103×10-7/℃であると推定できる。さらに特許文献1の実施例から、SnO含有量が増すほど、熱膨張係数は高い傾向にある。特許文献2に記載のSnO含有量はSnO含有量が72モル%以上であり、さらに熱膨脹係数を下げる効果があるBおよびZnOを合わせても5モル%以下であるため、熱膨脹係数は103×10-7/℃を大きく上回ると考えられる。したがって特許文献1の場合以上に、各種材料(例えばソーダライムガラス、アルミナ)と比較して、熱膨張係数差が過大となり、封着材料を徐冷して固着する際に、両者の熱的特性の差異に伴う熱応力により、封着材料等にクラックが生じるおそれはより深刻となる。
However, the tin borophosphate-based glass described in Patent Document 1 (see Examples) has a thermal expansion coefficient of 94 × 10 −7 to 103 × 10 −7 / ° C., and is variously used as a sealing material. Compared with materials (for example, soda lime glass and alumina), the difference in thermal expansion coefficient is excessive.
In particular, soda lime glass substrates for plasma display panels (PDP) tend to be used with a low thermal expansion coefficient (for example, the thermal expansion coefficient of soda lime glass widely used for PDP is 85 × 10 − 7 / ° C.), Therefore, when the fixation was gradually cooled to sealing material, by thermal stress caused by the difference in thermal properties of both, there is a possibility that cracks occur in the sealing material or the like.
Further, in the glass described in Patent Document 2, for example, the glass of Example 10 (Comparative Example) is in the composition range disclosed in Patent Document 1, and the thermal expansion coefficient is 94 × 10 −7 to 103 × 10 −7 / It can be estimated that it is ° C. Furthermore, from the Example of patent document 1, it exists in the tendency for a thermal expansion coefficient to be high, so that SnO content increases. The SnO content described in Patent Document 2 has a SnO content of 72 mol% or more, and even if B 2 O 3 and ZnO, which have the effect of lowering the thermal expansion coefficient, are 5 mol% or less, the thermal expansion coefficient is It is considered that it greatly exceeds 103 × 10 −7 / ° C. Therefore, compared with various materials (for example, soda lime glass, alumina), the thermal expansion coefficient difference is excessive compared to the case of Patent Document 1, and when the sealing material is slowly cooled and fixed, the thermal characteristics of the two are obtained. The risk of cracking in the sealing material and the like due to the thermal stress associated with the difference becomes more serious.
 一方、封着材料と被封着材料との熱的特性差異を低減するため、ガラス粉末にアルミナ粉末等のフィラーを配合して、封着材料全体としての熱膨張係数を低減することが行われている。
 しかしながら、ガラス粉末に対するフィラーの配合比率が高まると、ガラスの流動性が低下して、封着が困難となるおそれがある。また、この場合、ガラスへの侵入光がフィラーによって散乱されて、封着材料としての透明性が損なわれるおそれもあり、透明性が必要とされる発光ダイオードの発光部位などの封着には使用できないものとなるおそれがある。
On the other hand, in order to reduce the difference in thermal characteristics between the sealing material and the sealing material, filler such as alumina powder is mixed with the glass powder to reduce the thermal expansion coefficient of the entire sealing material. ing.
However, when the blending ratio of the filler with respect to the glass powder is increased, the fluidity of the glass is lowered and sealing may be difficult. Also, in this case, the light entering the glass is scattered by the filler, which may impair the transparency as a sealing material, and is used for sealing light-emitting diodes that require transparency. It may become impossible.
 本発明は、上記した課題を解決するためになされたものであって、低融点であり、また被封着材料との熱的特性差、より具体的には熱膨張係数の差が小さく、かつガラス転移点の温度が所定範囲内にあり、フィラーなどの添加剤を配合しなくても、封着時のクラック等の発生が抑制された封着材料を得られるホウ酸スズ系ガラス、及び封着部品を提供することを目的としている。 The present invention has been made in order to solve the above-described problems, has a low melting point, and has a small difference in thermal characteristics from the sealing material, more specifically, a difference in thermal expansion coefficient, and A tin borate-based glass that has a glass transition temperature within a predetermined range and that can provide a sealing material in which generation of cracks and the like during sealing is suppressed without adding an additive such as a filler. The purpose is to provide wearing parts.
 すなわち、本発明のホウ酸スズ系ガラスは、酸化物換算の質量%表示でSnOを62~73%、Bを19~25%、Pを0.1~7%、ZnOを0~6%、CaOを0~3%、SrOを0~7%、Alを0~4%の組成を有することを特徴とする。
 上記した数値範囲を示す「~」とは、特段の定めがない限り、その前後に記載された数値を下限値及び上限値として含む意味で使用され、以下本明細書において「~」は、同様の意味をもって使用される。
That is, the tin borate-based glass of the present invention has a SnO content of 62 to 73%, a B 2 O 3 content of 19 to 25%, a P 2 O 5 content of 0.1 to 7%, and a ZnO content in terms of oxide mass%. 0 to 6%, CaO 0 to 3%, SrO 0 to 7%, and Al 2 O 3 0 to 4%.
Unless otherwise specified, “to” indicating the numerical range described above is used to mean that the numerical values described before and after it are used as a lower limit value and an upper limit value, and hereinafter “to” Used with meaning.
 また、前記ホウ酸スズ系ガラスは、質量比でP/Bが0.10~0.35を満たすことが好ましい。また、前記ホウ酸スズ系ガラスは、酸化物換算の質量比でP/(B+SnO)が0.01~0.10を満たすことが好ましい。また、前記ホウ酸スズ系ガラスは、50~250℃での熱膨張係数は、90×10-7/℃未満であることが、好ましく、50×10-7/℃以上、90×10-7/℃未満であることがより好ましい。また、前記ホウ酸スズ系ガラスは、ガラス転移温度(Tg)が370℃以下であることが好ましく、300℃以上、370℃以下であることがより好ましい。また、結晶化ピーク温度(Tc)とガラス転移温度(Tg)との差が150℃以上であることが好ましい。 The tin borate-based glass preferably has a mass ratio of P 2 O 5 / B 2 O 3 satisfying 0.10 to 0.35. In addition, the tin borate-based glass preferably has a P 2 O 5 / (B 2 O 3 + SnO) ratio of 0.01 to 0.10 as a mass ratio in terms of oxide. The tin borate glass preferably has a thermal expansion coefficient at 50 to 250 ° C. of less than 90 × 10 −7 / ° C., preferably 50 × 10 −7 / ° C. or more and 90 × 10 −7. More preferably, it is less than / ° C. The tin borate-based glass preferably has a glass transition temperature (Tg) of 370 ° C. or lower, more preferably 300 ° C. or higher and 370 ° C. or lower. The difference between the crystallization peak temperature (Tc) and the glass transition temperature (Tg) is preferably 150 ° C. or higher.
 本発明のホウ酸スズ系ガラスは、主成分としてSnO及びBを含有し、かつ酸化物換算の質量%表示でPを0.1~7%含み、50~250℃における熱膨張係数が90×10-7/℃未満であることを特徴とする。50~250℃での熱膨張係数は、50×10-7/℃以上、90×10-7/℃未満であることが好ましい。 The tin borate-based glass of the present invention contains SnO and B 2 O 3 as main components, and contains 0.1 to 7% of P 2 O 5 in terms of mass% in terms of oxide, at 50 to 250 ° C. The thermal expansion coefficient is less than 90 × 10 −7 / ° C. The thermal expansion coefficient at 50 to 250 ° C. is preferably 50 × 10 −7 / ° C. or more and less than 90 × 10 −7 / ° C.
 前記ホウ酸スズ系ガラスは、酸化物換算の質量%表示でSnOを62~72%、Bを19~25%、ZnOを0~6%、CaOを0~3%、SrOを0~7%、Alを0~4%の組成を有することが好ましい。 The tin borate-based glass is Sn-O 62-72%, B 2 O 3 19-25%, ZnO 0-6%, CaO 0-3% and SrO 0 It is preferable to have a composition of ˜7% and Al 2 O 3 of 0˜4%.
 また、本発明の封着部品は、ソーダライムガラス又はアルミナからなる被封着部材の表面又は接合部を、前記ホウ酸スズ系ガラスで封着してなることを特徴とする。 Further, the sealing part of the present invention is characterized in that the surface or joint portion of a sealing member made of soda lime glass or alumina is sealed with the tin borate glass.
 本発明によれば、低温での封着が可能であり、また被封着材料との熱的特性差が小さいため、フィラー等の添加剤を添加しなくても、温度変化に伴うクラック等の発生が抑制された封着材料が得られるホウ酸スズ系ガラス、及びこれを用いた封着部品を提供することができる。 According to the present invention, sealing at a low temperature is possible, and since the difference in thermal characteristics from the material to be sealed is small, cracks accompanying temperature changes can be obtained without adding additives such as fillers. A tin borate-based glass from which a sealing material with suppressed generation can be obtained, and a sealing part using the same can be provided.
 以下、本発明の実施形態について説明する。
本発明の一の実施形態に係るホウ酸スズ系ガラスは、SnO及びBを主成分とし、酸化物換算の質量%表示でSnOを62~73%、Bを19~25%、Pを0.1~7%、ZnOを0~6%、CaOを0~3%、SrOを0~7%、Alを0~4%の組成を有する。
Hereinafter, embodiments of the present invention will be described.
The tin borate glass according to one embodiment of the present invention is mainly composed of SnO and B 2 O 3 , SnO is 62 to 73% and B 2 O 3 is 19 to 25 in terms of oxide mass%. %, P 2 O 5 0.1 to 7%, ZnO 0 to 6%, CaO 0 to 3%, SrO 0 to 7%, and Al 2 O 3 0 to 4%.
 このようなホウ酸スズ系ガラスによれば、各成分の含有量を所定の範囲内とすることで、封着材料として用いる従来のガラスよりも、熱膨張係数を低減することができる。このため、被封着材料として汎用されている、アルミナやソーダライムガラス等との熱膨張係数の差を低減することができ、フィラー等を添加しなくても、封着時の温度変化に伴うクラック等の発生が抑制された封着材料を得ることができる。 According to such a tin borate glass, the coefficient of thermal expansion can be reduced as compared with the conventional glass used as a sealing material by setting the content of each component within a predetermined range. For this reason, it is possible to reduce the difference in thermal expansion coefficient with alumina, soda lime glass, etc., which are widely used as sealing materials, and with temperature changes at the time of sealing without adding fillers, etc. A sealing material in which generation of cracks and the like is suppressed can be obtained.
 ホウ酸スズ系ガラスの各成分について説明する。なお、本明細書において、各成分の含有量は、酸化物換算の質量%表示で表記する。 Each component of tin borate glass will be described. In addition, in this specification, content of each component is described with the mass% display of oxide conversion.
 SnOは、Bおよび/またはPと対になってガラスの主骨格(ネットワークフォーマ)となる成分であり、必須成分である。ホウ酸スズ系ガラスにおけるSnOの含有量は62質量%以上である。
 SnOが62質量%未満であると、ガラス転移温度(Tg)が過度に高くなり、封止温度が高くなる。より低温で封止可能な封着材料を得る観点からは、ホウ酸スズ系ガラスにおけるSnOの含有量は、65質量%以上であることが好ましく、66.5質量%以上であることがより好ましい。
SnO is a component that is paired with B 2 O 3 and / or P 2 O 5 and becomes the main skeleton (network former) of glass, and is an essential component. The content of SnO in the tin borate glass is 62% by mass or more.
When SnO is less than 62% by mass, the glass transition temperature (Tg) becomes excessively high, and the sealing temperature becomes high. From the viewpoint of obtaining a sealing material that can be sealed at a lower temperature, the content of SnO in the tin borate glass is preferably 65% by mass or more, and more preferably 66.5% by mass or more. .
 一方、ホウ酸スズ系ガラスにおけるSnOの含有量は73質量%以下である。
 SnOが73質量%を超えると、ガラスが不安定となり、耐水性、耐候性が低下するようになる。また、熱膨張係数が過度に高くなり被封着部材との熱膨張係数の差が大きくなる。より安定性、耐候性に優れたものとする観点から、SnOの含有量は70質量%以下が好ましく、68質量%以下がより好ましい。
On the other hand, the content of SnO in the tin borate glass is 73% by mass or less.
When SnO exceeds 73 mass%, glass will become unstable and water resistance and a weather resistance will come to fall. Further, the coefficient of thermal expansion becomes excessively high, and the difference in coefficient of thermal expansion from the sealing member increases. From the viewpoint of more excellent stability and weather resistance, the content of SnO is preferably 70% by mass or less, and more preferably 68% by mass or less.
 Bは、ガラスの主骨格(ネットワークフォーマ)となる成分であり、必須成分である。ホウ酸スズ系ガラスにおけるBの含有量は19質量%以上である。Bの含有量が19質量%未満であると、安定なガラスを得るのが難しく、ガラス化が困難となるおそれがある。より安定性に優れたものとする観点から、Bの含有量は、20質量%以上であることが好ましく、21質量%以上であることがより好ましい。 B 2 O 3 is a component that becomes a main skeleton (network former) of glass and is an essential component. The content of B 2 O 3 in the tin borate glass is 19% by mass or more. If the content of B 2 O 3 is less than 19% by mass, it is difficult to obtain a stable glass, and vitrification may be difficult. From the viewpoint of more excellent stability, the content of B 2 O 3 is preferably 20% by mass or more, and more preferably 21% by mass or more.
 一方、ホウ酸スズ系ガラスにおけるBの含有量は25質量%以下である。
 Bの含有量が25質量%を超えると、ガラス転移温度(Tg)が高くなり、封止温度が高くなる。より低温で封止可能な封着材料を得る観点から、Bの含有量は、24質量%以下であることが好ましく、23質量%以下がより好ましい。
On the other hand, the content of B 2 O 3 in the tin borate glass is 25% by mass or less.
When the content of B 2 O 3 exceeds 25 mass%, the glass transition temperature (Tg) becomes higher, the sealing temperature increases. From the viewpoint of obtaining a sealing material that can be sealed at a lower temperature, the content of B 2 O 3 is preferably 24% by mass or less, and more preferably 23% by mass or less.
 Pはガラスの結晶化を抑制して安定性を向上させるとともに、耐候性を向上させる成分であり、必須成分である。ホウ酸スズ系ガラスにおけるPの含有量は0.1質量%以上である。Pの含有量が0.1質量%未満であると、耐水性、耐候性が低下するおそれがある。また、ガラスが結晶化し易くなるおそれもある。
 より耐候性に優れたものとする観点からは、Pの含有量は3質量%以上であることが好ましく、5質量%以上であることがより好ましい。
P 2 O 5 is a component that suppresses the crystallization of glass to improve stability and improves weather resistance, and is an essential component. The content of P 2 O 5 in the tin borate glass is 0.1% by mass or more. When the content of P 2 O 5 is less than 0.1 wt%, there is a possibility that water resistance, weather resistance decreases. In addition, the glass may be easily crystallized.
From the viewpoint of more excellent weather resistance, the content of P 2 O 5 is preferably 3% by mass or more, and more preferably 5% by mass or more.
 一方、ホウ酸スズ系ガラスにおけるPの含有量は7質量%以下である。
 Pの含有量が7質量%を超えると、ガラスが分相し易くなり、均質なガラスを得られなくなるおそれがある。また、ガラスの熱膨張係数が過度に高くなるおそれがある。
 より分相しにくく、均質なガラスを得る観点から、ホウ酸スズ系ガラスのPの含有量は、6.5質量%以下が好ましく、6.0質量%以下がより好ましい。
On the other hand, the content of P 2 O 5 in the tin borate glass is 7% by mass or less.
If the content of P 2 O 5 exceeds 7% by mass, the glass tends to phase-separate and there is a possibility that a homogeneous glass cannot be obtained. Moreover, there exists a possibility that the thermal expansion coefficient of glass may become high too much.
The content of P 2 O 5 in the tin borate-based glass is preferably 6.5% by mass or less, and more preferably 6.0% by mass or less from the viewpoint of obtaining a homogeneous glass that is more difficult to separate phases.
 Alは、ガラスの安定性を高めて耐候性を向上させる成分である。ホウ酸スズ系ガラスにおけるAlの含有量は4質量%以下である。
 Alの含有量が4質量%を超えると、ガラス転移温度(Tg)が過度に高くなり、封止温度が高くなるおそれがある。より低温で封止可能な封着材料を得る観点から、Alの含有量は、3質量%以下が好ましく、2質量%以下がより好ましい。
Al 2 O 3 is a component that increases the stability of the glass and improves the weather resistance. The content of Al 2 O 3 in the tin borate glass is 4% by mass or less.
When the content of Al 2 O 3 exceeds 4% by mass, the glass transition temperature (Tg) becomes excessively high and the sealing temperature may be increased. From the viewpoint of obtaining a sealing material that can be sealed at a lower temperature, the content of Al 2 O 3 is preferably 3% by mass or less, and more preferably 2% by mass or less.
 ZnOは、ガラスの安定性を高めて耐水性、耐候性を向上させるとともに、熱膨張係数を低減する成分である。ホウ酸スズ系ガラスにおけるZnOの含有量は6質量%以下である。ZnOの含有量が6質量%を超えると、ガラス転移温度(Tg)が過度に高くなり、封止温度が高くなるおそれがある。
 より低温で封止可能な封着材料を得る観点から、ZnOの含有量は、5質量%以下が好ましく、4質量%以下がより好ましい。
ZnO is a component that increases the stability of glass to improve water resistance and weather resistance, and reduces the coefficient of thermal expansion. The content of ZnO in the tin borate glass is 6% by mass or less. When the content of ZnO exceeds 6% by mass, the glass transition temperature (Tg) becomes excessively high and the sealing temperature may be increased.
From the viewpoint of obtaining a sealing material that can be sealed at a lower temperature, the content of ZnO is preferably 5% by mass or less, and more preferably 4% by mass or less.
 CaOは、ガラス内でのSnイオン(Sn2+)の拡散を抑えてガラスの結晶化を抑制するものである。ホウ酸スズ系ガラスにおけるCaOの含有量は3質量%以下である。
 CaOの含有量が3質量%を超えると、ガラス転移温度(Tg)が過度に高くなり、封止温度が高くなるおそれがある。より低温で封止可能な封着材料を得る観点から、CaOの含有量は、2質量%以下が好ましい。
CaO suppresses the crystallization of the glass by suppressing the diffusion of Sn ions (Sn 2+ ) in the glass. The content of CaO in the tin borate glass is 3% by mass or less.
When the content of CaO exceeds 3% by mass, the glass transition temperature (Tg) becomes excessively high and the sealing temperature may be increased. From the viewpoint of obtaining a sealing material that can be sealed at a lower temperature, the content of CaO is preferably 2% by mass or less.
 SrOは、ガラス内でのSnイオン(Sn2+)の拡散を抑えてガラスの結晶化を抑制するものである。ホウ酸スズ系ガラスにおけるSrOの含有量は7質量%以下である。SrOの含有量が7質量%を超えると、ガラス転移温度(Tg)が過度に高くなり、封止温度が高くなるおそれがある。より低温で封止可能な封着材料を得る観点から、SrOの含有量は、5質量%以下が好ましく、3質量%以下がより好ましい。 SrO suppresses the crystallization of the glass by suppressing the diffusion of Sn ions (Sn 2+ ) in the glass. The content of SrO in the tin borate glass is 7% by mass or less. If the content of SrO exceeds 7% by mass, the glass transition temperature (Tg) becomes excessively high and the sealing temperature may be increased. From the viewpoint of obtaining a sealing material that can be sealed at a lower temperature, the content of SrO is preferably 5% by mass or less, and more preferably 3% by mass or less.
 ホウ酸スズ系ガラスに含まれるPの含有量とBの含有量との比率P/Bは、質量比で0.10~0.35であることが好ましい。
 P/Bの質量比が0.35を超えると、P-O-P結合部位の存在が過多となり、融液中の成分がクラスタリング(clustering)する割合が高くなるため、ガラスが分相し易くなり、均質なガラスを得られなくなるおそれがある。上記したクラスタリングするとは、PO四面体ユニットが局所的に複数個連結した状態を示し、以下においても同様である。一方、P/Bが0.10未満であると、耐水性、耐候性が低下するおそれがある。
The ratio P 2 O 5 / B 2 O 3 between the content of P 2 O 5 and the content of B 2 O 3 contained in the tin borate glass is 0.10 to 0.35 by mass ratio. Is preferred.
When the mass ratio of P 2 O 5 / B 2 O 3 exceeds 0.35, the presence of P—O—P bonding sites becomes excessive, and the proportion of components in the melt increases (clustering). Glass tends to phase-separate and there is a possibility that a homogeneous glass cannot be obtained. The above clustering means a state in which a plurality of PO 4 tetrahedron units are locally connected, and the same applies to the following. On the other hand, when P 2 O 5 / B 2 O 3 is less than 0.10, water resistance and weather resistance may be lowered.
 ホウ酸スズ系ガラスに含まれるPの含有量と(B+SnO)の含有量との比率、すなわちP/(B+SnO)は、質量比で0.01~0.10であることが好ましい。P/(B+SnO)の質量比が0.10を超えると、熱膨張係数が過度に高くなるおそれがある。また、P-O-P結合部位の存在が過多となり、融液中の成分がクラスタリングする割合が高くなるため、ガラスが分相し易くなり、均質なガラスを得られなくなるおそれもある。均質なガラスを得やすくするためには、P/(B+SnO)は0.08以下がより好ましい。
 一方、P/(B+SnO)の質量比が0.01未満であると、耐水性、耐候性が低下するおそれがある。耐水性をより高めるためには、P/(B+SnO)は0.05以上であることがより好ましい。
The ratio of the content of P 2 O 5 and the content of (B 2 O 3 + SnO) contained in the tin borate-based glass, that is, P 2 O 5 / (B 2 O 3 + SnO) is 0. It is preferably 01 to 0.10. When the mass ratio of P 2 O 5 / (B 2 O 3 + SnO) exceeds 0.10, the thermal expansion coefficient may be excessively increased. Further, the presence of P—O—P bonding sites becomes excessive, and the ratio of clustering of components in the melt increases, so that the glass tends to phase-separate and there is a possibility that a homogeneous glass cannot be obtained. In order to make it easy to obtain homogeneous glass, P 2 O 5 / (B 2 O 3 + SnO) is more preferably 0.08 or less.
On the other hand, when the mass ratio of P 2 O 5 / (B 2 O 3 + SnO) is less than 0.01, water resistance and weather resistance may be lowered. In order to further increase the water resistance, it is more preferable that P 2 O 5 / (B 2 O 3 + SnO) is 0.05 or more.
 ホウ酸スズ系ガラスのガラス粉末は、通常、溶融法によって上記組成を有するガラスを製造した後、このガラスを粉砕することによって製造することができる。粉砕方法は、特に限定されるものではなく、乾式粉砕でもよいし湿式粉砕でもよい。湿式粉砕の場合には溶媒として水を用いることが好ましい。また粉砕にはロールミル、ボールミル、ジェットミル等の粉砕機を適宜用いることができる。ガラスは粉砕後、必要に応じて乾燥し、分級してもよい。 The glass powder of tin borate-based glass can usually be produced by producing glass having the above composition by a melting method and then pulverizing the glass. The pulverization method is not particularly limited, and may be dry pulverization or wet pulverization. In the case of wet pulverization, it is preferable to use water as a solvent. For pulverization, a pulverizer such as a roll mill, a ball mill, or a jet mill can be appropriately used. After pulverization, the glass may be dried and classified as necessary.
 ホウ酸スズ系ガラスの、50~250℃での熱膨張係数は、50×10-7/℃以上90×10-7/℃未満であることが好ましい。50~250℃での熱膨張係数が90×10-7/℃以上であるか、または50×10-7/℃より小さいと、被封着材料として一般に汎用されている、アルミナ、ソーダライムガラスなどの各種材料(すなわち、被封着材料)との熱膨張係数差が大きくなり、これら被封着材料との間に熱応力が生じ易くなるため、クラック等が生じ易くなるおそれがある。なお、上記したソーダライムガラスとは、一般的に謂われる広義のソーダライムガラスであり、SiO、NaO及びCaOを主成分として含む組成のソーダライムシリケートガラスを指す。かかるソーダライムガラスとしては、Al、KO、アルカリ土類酸化物、その他目的に応じて適宜加えられる成分を含んでもよい。以下、本明細書においてソーダライムガラスとは、上記したソーダライムガラスを意味する。
 ホウ酸スズ系ガラスの50~250℃での熱膨張係数の上限は、より好ましくは87×10-7/℃以下であり、さらに好ましくは85×10-7/℃以下であり、最も好ましくは82×10-7/℃以下である。また、ホウ酸スズ系ガラスの、50~250℃での熱膨張係数の下限は、より好ましくは60×10-7/℃以上である。
The thermal expansion coefficient of tin borate glass at 50 to 250 ° C. is preferably 50 × 10 −7 / ° C. or more and less than 90 × 10 −7 / ° C. When the thermal expansion coefficient at 50 to 250 ° C. is 90 × 10 −7 / ° C. or more or smaller than 50 × 10 −7 / ° C., alumina or soda lime glass generally used as a sealing material The difference in coefficient of thermal expansion from various materials such as (ie, the sealing material) becomes large, and thermal stress tends to occur between these sealing materials, so that cracks and the like are likely to occur. The soda lime glass described above is a so-called soda lime glass in a broad sense, and refers to soda lime silicate glass having a composition containing SiO 2 , Na 2 O and CaO as main components. Such soda-lime glass may contain Al 2 O 3 , K 2 O, alkaline earth oxides, and other components that are appropriately added according to the purpose. Hereinafter, the soda lime glass in the present specification means the above-mentioned soda lime glass.
The upper limit of the thermal expansion coefficient of tin borate glass at 50 to 250 ° C. is more preferably 87 × 10 −7 / ° C. or less, further preferably 85 × 10 −7 / ° C. or less, and most preferably It is 82 × 10 −7 / ° C. or lower. The lower limit of the coefficient of thermal expansion of tin borate glass at 50 to 250 ° C. is more preferably 60 × 10 −7 / ° C. or more.
 ホウ酸スズ系ガラスのガラス転移温度(Tg)は、300~370℃であることが好ましい。
 ホウ酸スズ系ガラスのガラス転移温度(Tg)が370℃を超えると、封着に要する温度(すなわち、封止温度)が過度に高くなり、封着の際の熱処理によって、被封着材料である電子部品等の損傷を招くおそれがある。より低温で封止可能な封着材料を得る観点から、ホウ酸スズ系ガラスのガラス転移温度(Tg)は、360℃以下であることが好ましい。
 一方、ホウ酸スズ系ガラスのガラス転移温度(Tg)が300℃未満であると、ガラスが不安定となり、耐候性が低下するおそれがある。ホウ酸スズ系ガラスのガラス転移温度(Tg)は、より好ましくは320℃以上であり、さらに好ましくは340℃以上である。
The glass transition temperature (Tg) of the tin borate glass is preferably 300 to 370 ° C.
When the glass transition temperature (Tg) of the tin borate glass exceeds 370 ° C., the temperature required for sealing (that is, the sealing temperature) becomes excessively high. There is a risk of damaging certain electronic components. From the viewpoint of obtaining a sealing material that can be sealed at a lower temperature, the glass transition temperature (Tg) of the tin borate glass is preferably 360 ° C. or lower.
On the other hand, if the glass transition temperature (Tg) of the tin borate glass is less than 300 ° C., the glass becomes unstable and the weather resistance may be lowered. The glass transition temperature (Tg) of the tin borate glass is more preferably 320 ° C. or higher, and further preferably 340 ° C. or higher.
 示差熱分析装置(DTA)により測定される、結晶化ピーク温度(Tc)とガラス転移温度(Tg)との差は150℃以上であることが好ましい。
 結晶化ピーク温度(Tc)とガラス転移温度(Tg)との差が150℃未満であると、封着可能な温度域が狭すぎて、効率的な生産が困難となるおそれがある。
 結晶化ピーク温度(Tc)とガラス転移温度(Tg)との差が上記範囲内であることにより、アモルファス状態を得られる温度域が広くなり、広範な温度域で、熱処理による封着を安定して行うことが可能となる。
 結晶化ピーク温度(Tc)とガラス転移温度(Tg)との差は、より好ましくは160℃以上、さらに好ましくは165℃以上、最も好ましくは170℃以上である。
The difference between the crystallization peak temperature (Tc) and the glass transition temperature (Tg), which is measured by a differential thermal analyzer (DTA), is preferably 150 ° C. or higher.
If the difference between the crystallization peak temperature (Tc) and the glass transition temperature (Tg) is less than 150 ° C., the temperature range that can be sealed is too narrow, and efficient production may be difficult.
Since the difference between the crystallization peak temperature (Tc) and the glass transition temperature (Tg) is within the above range, the temperature range in which an amorphous state can be obtained is widened, and the sealing by heat treatment is stabilized in a wide temperature range. Can be performed.
The difference between the crystallization peak temperature (Tc) and the glass transition temperature (Tg) is more preferably 160 ° C. or higher, further preferably 165 ° C. or higher, and most preferably 170 ° C. or higher.
 なお、示差熱分析装置(DTA)による測定で結晶化ピーク温度(Tc)が検出されない場合は、アモルファス状態を得られる温度範囲はさらに広くなり、より広範な温度域で、熱処理による封着を安定して行うことが可能となる。結晶化ピーク温度(Tc)が検出されないことは、温度差が無限大(∞)であると解釈することが可能であり、この場合には、結晶化ピーク温度(Tc)とガラス転移温度(Tg)の温度差に、特に上限はない。 If the crystallization peak temperature (Tc) is not detected by measurement with a differential thermal analyzer (DTA), the temperature range in which the amorphous state can be obtained becomes wider, and the sealing by heat treatment is stable in a wider temperature range. Can be performed. If the crystallization peak temperature (Tc) is not detected, it can be interpreted that the temperature difference is infinite (∞). In this case, the crystallization peak temperature (Tc) and the glass transition temperature (Tg) ) There is no particular upper limit to the temperature difference.
 このようにして得られたホウ酸スズ系ガラスは、ガラスの流動性、透明性を損なわない範囲で、アルミナ粉末、ジルコニア粉末等のフィラーや、必要に応じてその他の成分を所定の質量割合で配合し、混合することによって調製した組成物として用いることも可能である。 The thus obtained tin borate-based glass has a predetermined mass ratio of fillers such as alumina powder and zirconia powder, and other components as required, as long as the fluidity and transparency of the glass are not impaired. It is also possible to use as a composition prepared by blending and mixing.
 以下、本発明の別の実施形態について説明する。
 本実施形態に係るホウ酸スズ系ガラスは、主成分としてSnO及びBを含有し、かつ酸化物換算の質量%表示でPを0.1~7%含み、50~250℃における熱膨張係数が90×10-7/℃未満である。
Hereinafter, another embodiment of the present invention will be described.
The tin borate glass according to the present embodiment contains SnO and B 2 O 3 as main components, and contains 0.1 to 7% of P 2 O 5 in terms of mass% in terms of oxides, and 50 to 250 The thermal expansion coefficient at 0 ° C. is less than 90 × 10 −7 / ° C.
 このようなホウ酸スズ系ガラスによれば、熱膨張係数を所定の範囲内とすることで、封着材料として用いる従来のガラスよりも、アルミナ、ソーダライムガラス等の被封着材料との熱的特性差を低減することができる。このため、フィラーを添加しなくても、上述した各種材料を封着する時のクラック等の発生が抑制された封着材料を得ることができる。 According to such a tin borate-based glass, the thermal expansion coefficient is within a predetermined range, so that the heat of the sealing material such as alumina and soda lime glass can be increased compared to the conventional glass used as the sealing material. The difference in characteristic characteristics can be reduced. For this reason, even if it does not add a filler, the sealing material by which generation | occurrence | production of the crack at the time of sealing various materials mentioned above was suppressed can be obtained.
 50~250℃での熱膨張係数が90×10-7/℃以上であると、被封着材料として一般に汎用されている、アルミナ、ソーダライムガラスなどの各種材料(すなわち、被封着材料)との熱的特性差が大きくなり、これら被封着材料との間に熱応力が生じ易くなるため、クラック等が生じ易くなるおそれがある。ホウ酸スズ系ガラスの50~250℃での熱膨張係数の上限は、より好ましくは87×10-7/℃以下であり、さらに好ましくは85×10-7/℃以下であり、最も好ましくは82×10-7/℃以下である。 Various materials such as alumina and soda lime glass that are generally used as sealing materials when the thermal expansion coefficient at 50 to 250 ° C. is 90 × 10 −7 / ° C. or more (that is, sealing materials) The thermal characteristic difference between the two and the sealing material increases, and thermal stress is likely to occur between these materials to be sealed. The upper limit of the thermal expansion coefficient of tin borate glass at 50 to 250 ° C. is more preferably 87 × 10 −7 / ° C. or less, further preferably 85 × 10 −7 / ° C. or less, and most preferably It is 82 × 10 −7 / ° C. or lower.
 ホウ酸スズ系ガラスの、50~250℃での熱膨張係数は、50×10-7/℃以上であることが好ましい。50~250℃での熱膨張係数が50×10-7/℃より小さいと、被封着材料として一般に汎用されている、アルミナ、ソーダライムガラスなどの各種材料(被封着材料)との熱膨張係数差が大きくなり、これら被封着材料との間に熱応力が生じ易くなるため、クラック等が生じ易くなるおそれがある。
 ホウ酸スズ系ガラスの50~250℃での熱膨張係数の下限は、より好ましくは60×10-7/℃以上である。
The thermal expansion coefficient of tin borate glass at 50 to 250 ° C. is preferably 50 × 10 −7 / ° C. or higher. When the thermal expansion coefficient at 50 to 250 ° C. is less than 50 × 10 −7 / ° C., heat with various materials (sealing materials) such as alumina and soda lime glass, which are generally used as sealing materials Since the difference in expansion coefficient becomes large and thermal stress is likely to occur between these materials to be sealed, cracks and the like may be easily generated.
The lower limit of the thermal expansion coefficient of tin borate glass at 50 to 250 ° C. is more preferably 60 × 10 −7 / ° C. or more.
 以下に、本実施形態に係るホウ酸スズ系ガラスの各成分について説明する。 Hereinafter, each component of the tin borate glass according to the present embodiment will be described.
 ホウ酸スズ系ガラスに含まれるPの含有量と(B+SnO)の含有量との比率、すなわちP/(B+SnO)は、質量比で0.01~0.10であることが好ましい。P/(B+SnO)の質量比が0.10を超えると、熱膨張係数が過度に高くなるおそれがある。また、P-O-P結合部位の存在が過多となり、融液中の成分がクラスタリングする割合が高くなるため、ガラスが分相し易くなり、均質なガラスを得られなくなるおそれもある。均質なガラスを得やすくするためには、P/(B+SnO)は0.08以下がより好ましい。
 一方、P/(B+SnO)の質量比が0.01未満であると、耐水性、耐候性が低下するおそれがある。耐水性をより高めるためには、P/(B+SnO)は0.05以上であることがより好ましい。
The ratio of the content of P 2 O 5 and the content of (B 2 O 3 + SnO) contained in the tin borate-based glass, that is, P 2 O 5 / (B 2 O 3 + SnO) is 0. It is preferably 01 to 0.10. When the mass ratio of P 2 O 5 / (B 2 O 3 + SnO) exceeds 0.10, the thermal expansion coefficient may be excessively increased. Further, the presence of P—O—P bonding sites becomes excessive, and the ratio of clustering of components in the melt increases, so that the glass tends to phase-separate and there is a possibility that a homogeneous glass cannot be obtained. In order to make it easy to obtain homogeneous glass, P 2 O 5 / (B 2 O 3 + SnO) is more preferably 0.08 or less.
On the other hand, when the mass ratio of P 2 O 5 / (B 2 O 3 + SnO) is less than 0.01, water resistance and weather resistance may be lowered. In order to further increase the water resistance, it is more preferable that P 2 O 5 / (B 2 O 3 + SnO) is 0.05 or more.
 SnOは、Bおよび/またはPと対になってガラスの主骨格(ネットワークフォーマ)となる成分であり、必須成分である。ホウ酸スズ系ガラスにおけるSnOの含有量は62質量%以上であることが好ましい。
 SnOが62質量%未満であると、ガラス転移温度(Tg)が過度に高くなり、封止温度が高くなる。より低温で封止可能な封着材料を得る観点からは、ホウ酸スズ系ガラスにおけるSnOの含有量は、65質量%以上であることが好ましく、66.5質量%以上であることがより好ましい。
SnO is a component that is paired with B 2 O 3 and / or P 2 O 5 and becomes the main skeleton (network former) of glass, and is an essential component. The SnO content in the tin borate glass is preferably 62% by mass or more.
When SnO is less than 62% by mass, the glass transition temperature (Tg) becomes excessively high, and the sealing temperature becomes high. From the viewpoint of obtaining a sealing material that can be sealed at a lower temperature, the content of SnO in the tin borate glass is preferably 65% by mass or more, and more preferably 66.5% by mass or more. .
 一方、ホウ酸スズ系ガラスにおけるSnOの含有量は72質量%以下であることが好ましい。
 SnOが72質量%を超えると、ガラスが不安定となり、耐水性、耐候性が低下するようになる。また、熱膨張係数が高くなり被封着部材との熱膨張係数の差が大きくなる。より安定性、耐候性に優れたものとする観点から、SnOの含有量は70質量%以下が好ましく、68質量%以下がより好ましい。
On the other hand, the SnO content in the tin borate-based glass is preferably 72% by mass or less.
When SnO exceeds 72 mass%, glass will become unstable and water resistance and weather resistance will fall. In addition, the coefficient of thermal expansion increases, and the difference in coefficient of thermal expansion from the sealing member increases. From the viewpoint of more excellent stability and weather resistance, the content of SnO is preferably 70% by mass or less, and more preferably 68% by mass or less.
 Bは、ガラスの主骨格(ネットワークフォーマ)となる成分であり、必須成分である。ホウ酸スズ系ガラスにおけるBの含有量は19質量%以上であることが好ましい。Bの含有量が19質量%未満であると、安定なガラスを得るのが難しく、ガラス化が困難となるおそれがある。より安定性に優れたものとする観点から、Bの含有量は、20質量%以上であることが好ましく、21質量%以上であることがより好ましい。 B 2 O 3 is a component that becomes a main skeleton (network former) of glass and is an essential component. The content of B 2 O 3 in the tin borate glass is preferably 19% by mass or more. If the content of B 2 O 3 is less than 19% by mass, it is difficult to obtain a stable glass, and vitrification may be difficult. From the viewpoint of more excellent stability, the content of B 2 O 3 is preferably 20% by mass or more, and more preferably 21% by mass or more.
 一方、ホウ酸スズ系ガラスにおけるBの含有量は25質量%以下であることが好ましい。
 Bの含有量が25質量%を超えると、ガラス転移温度(Tg)が高くなり、封止温度が高くなる。より低温で封止可能な封着材料を得る観点から、Bの含有量は、24質量%以下であることが好ましく、23質量%以下がより好ましい。
On the other hand, the content of B 2 O 3 in the tin borate glass is preferably 25% by mass or less.
When the content of B 2 O 3 exceeds 25 mass%, the glass transition temperature (Tg) becomes higher, the sealing temperature increases. From the viewpoint of obtaining a sealing material that can be sealed at a lower temperature, the content of B 2 O 3 is preferably 24% by mass or less, and more preferably 23% by mass or less.
 Pはガラスの結晶化を抑制して安定性を向上させるとともに、耐候性を向上させる成分であり、必須成分である。ホウ酸スズ系ガラスにおけるPの含有量は0.1質量%以上である。Pの含有量が0.1質量%未満であると、耐水性、耐候性が低下するおそれがある。また、ガラスが結晶化し易くなるおそれもある。
 より耐候性に優れたものとする観点からは、Pの含有量は3質量%以上であることが好ましく、5質量%以上であることがより好ましい。
P 2 O 5 is a component that suppresses the crystallization of glass to improve stability and improves weather resistance, and is an essential component. The content of P 2 O 5 in the tin borate glass is 0.1% by mass or more. When the content of P 2 O 5 is less than 0.1 wt%, there is a possibility that water resistance, weather resistance decreases. In addition, the glass may be easily crystallized.
From the viewpoint of more excellent weather resistance, the content of P 2 O 5 is preferably 3% by mass or more, and more preferably 5% by mass or more.
 一方、ホウ酸スズ系ガラスにおけるPの含有量は7質量%以下である。
 Pの含有量が7質量%を超えると、ガラスが分相し易くなり、均質なガラスを得られなくなるおそれがある。また、ガラスの熱膨張係数が過度に高くなるおそれがある。
 より分相しにくく、均質なガラスを得る観点から、ホウ酸スズ系ガラスのPの含有量は、6.5質量%以下が好ましく、6.0質量%以下がより好ましい。
On the other hand, the content of P 2 O 5 in the tin borate glass is 7% by mass or less.
If the content of P 2 O 5 exceeds 7% by mass, the glass tends to phase-separate and there is a possibility that a homogeneous glass cannot be obtained. Moreover, there exists a possibility that the thermal expansion coefficient of glass may become high too much.
The content of P 2 O 5 in the tin borate-based glass is preferably 6.5% by mass or less, and more preferably 6.0% by mass or less from the viewpoint of obtaining a homogeneous glass that is more difficult to separate phases.
 Alは、ガラスの安定性を高めて耐候性を向上させる成分である。ホウ酸スズ系ガラスにおけるAlの含有量は4質量%以下であることが好ましい。
 Alの含有量が4質量%を超えると、ガラス転移温度(Tg)が過度に高くなり、封止温度が高くなるおそれがある。より低温で封止可能な封着材料を得る観点から、Alの含有量は、3質量%以下が好ましく、2質量%以下がより好ましい。
Al 2 O 3 is a component that increases the stability of the glass and improves the weather resistance. The content of Al 2 O 3 in the tin borate glass is preferably 4% by mass or less.
When the content of Al 2 O 3 exceeds 4% by mass, the glass transition temperature (Tg) becomes excessively high and the sealing temperature may be increased. From the viewpoint of obtaining a sealing material that can be sealed at a lower temperature, the content of Al 2 O 3 is preferably 3% by mass or less, and more preferably 2% by mass or less.
 ZnOは、ガラスの安定性を高めて耐水性、耐候性を向上させるとともに、熱膨張係数を低減する成分である。ホウ酸スズ系ガラスにおけるZnOの含有量は6質量%以下であることが好ましい。ZnOの含有量が6質量%を超えると、ガラス転移温度(Tg)が過度に高くなり、封止温度が高くなるおそれがある。
 より低温で封止可能な封着材料を得る観点から、ZnOの含有量は、5質量%以下が好ましく、4質量%以下がより好ましい。
ZnO is a component that increases the stability of glass to improve water resistance and weather resistance, and reduces the coefficient of thermal expansion. The content of ZnO in the tin borate glass is preferably 6% by mass or less. When the content of ZnO exceeds 6% by mass, the glass transition temperature (Tg) becomes excessively high and the sealing temperature may be increased.
From the viewpoint of obtaining a sealing material that can be sealed at a lower temperature, the content of ZnO is preferably 5% by mass or less, and more preferably 4% by mass or less.
 CaOは、ガラス内でのSnイオン(Sn2+)の拡散を抑えてガラスの結晶化を抑制するものである。ホウ酸スズ系ガラスにおけるCaOの含有量は3質量%以下であることが好ましい。
 CaOの含有量が3質量%を超えると、ガラス転移温度(Tg)が過度に高くなり、封止温度が高くなるおそれがある。より低温で封止可能な封着材料を得る観点から、CaOの含有量は、2質量%以下が好ましい。
CaO suppresses the crystallization of the glass by suppressing the diffusion of Sn ions (Sn 2+ ) in the glass. The content of CaO in the tin borate glass is preferably 3% by mass or less.
When the content of CaO exceeds 3% by mass, the glass transition temperature (Tg) becomes excessively high and the sealing temperature may be increased. From the viewpoint of obtaining a sealing material that can be sealed at a lower temperature, the content of CaO is preferably 2% by mass or less.
 SrOは、ガラス内でのSnイオン(Sn2+)の拡散を抑えてガラスの結晶化を抑制するものである。ホウ酸スズ系ガラスにおけるSrOの含有量は7質量%以下であることが好ましい。SrOの含有量が7質量%を超えると、ガラス転移温度(Tg)が過度に高くなり、封止温度が高くなるおそれがある。より低温で封止可能な封着材料を得る観点から、SrOの含有量は、5質量%以下が好ましく、3質量%以下がより好ましい。 SrO suppresses the crystallization of the glass by suppressing the diffusion of Sn ions (Sn 2+ ) in the glass. The content of SrO in the tin borate glass is preferably 7% by mass or less. If the content of SrO exceeds 7% by mass, the glass transition temperature (Tg) becomes excessively high and the sealing temperature may be increased. From the viewpoint of obtaining a sealing material that can be sealed at a lower temperature, the content of SrO is preferably 5% by mass or less, and more preferably 3% by mass or less.
 ホウ酸スズ系ガラスのガラス粉末は、通常、溶融法によって上記組成を有するガラスを製造した後、このガラスを粉砕することによって製造することができる。粉砕方法は、特に限定されるものではなく、乾式粉砕でもよいし湿式粉砕でもよい。湿式粉砕の場合には溶媒として水を用いることが好ましい。また粉砕にはロールミル、ボールミル、ジェットミル等の粉砕機を適宜用いることができる。ガラスは粉砕後、必要に応じて乾燥し、分級してもよい。 The glass powder of tin borate-based glass can usually be produced by producing glass having the above composition by a melting method and then pulverizing the glass. The pulverization method is not particularly limited, and may be dry pulverization or wet pulverization. In the case of wet pulverization, it is preferable to use water as a solvent. For pulverization, a pulverizer such as a roll mill, a ball mill, or a jet mill can be appropriately used. After pulverization, the glass may be dried and classified as necessary.
 ホウ酸スズ系ガラスのガラス転移温度(Tg)は、300~370℃であることが好ましい。ホウ酸スズ系ガラスのガラス転移温度(Tg)が370℃を超えると、封着に要する温度(すなわち、封止温度)が過度に高くなり、封着の際の熱処理によって、被封着材料である電子部品等の損傷を招くおそれがある。より低温で封止可能な封着材料を得る観点から、ホウ酸スズ系ガラスのガラス転移温度(Tg)は、360℃以下であることが好ましい。
 一方、ホウ酸スズ系ガラスのガラス転移温度(Tg)が300℃未満であると、ガラスが不安定となり、耐候性が低下するおそれがある。ホウ酸スズ系ガラスのガラス転移温度(Tg)は、より好ましくは320℃以上であり、さらに好ましくは340℃以上である。
The glass transition temperature (Tg) of the tin borate glass is preferably 300 to 370 ° C. When the glass transition temperature (Tg) of the tin borate glass exceeds 370 ° C., the temperature required for sealing (that is, the sealing temperature) becomes excessively high. There is a risk of damaging certain electronic components. From the viewpoint of obtaining a sealing material that can be sealed at a lower temperature, the glass transition temperature (Tg) of the tin borate glass is preferably 360 ° C. or lower.
On the other hand, if the glass transition temperature (Tg) of the tin borate glass is less than 300 ° C., the glass becomes unstable and the weather resistance may be lowered. The glass transition temperature (Tg) of the tin borate glass is more preferably 320 ° C. or higher, and further preferably 340 ° C. or higher.
 示差熱分析装置(DTA)により測定される、結晶化ピーク温度(Tc)とガラス転移温度(Tg)との差は150℃以上であることが好ましい。
 結晶化ピーク温度(Tc)とガラス転移温度(Tg)との差が150℃未満であると、封着可能な温度域が狭すぎて、効率的な生産が困難となるおそれがある。
 結晶化ピーク温度(Tc)とガラス転移温度(Tg)との差が上記範囲内であることにより、アモルファス状態を得られる温度域が広くなり、広範な温度域で、熱処理による封着を安定して行うことが可能となる。
 結晶化ピーク温度(Tc)とガラス転移温度(Tg)との差は、より好ましくは160℃以上、さらに好ましくは165℃以上、最も好ましくは170℃以上である。
 前述したように、示差熱分析装置(DTA)による測定で結晶化ピーク温度(Tc)が検出されない場合は、アモルファス状態を得られる温度範囲はさらに広くなり、より広範な温度域で、熱処理による封着を安定して行うことが可能となる。結晶化ピーク温度(Tc)が検出されないことは、温度差が無限大(∞)であると解釈することが可能であり、この場合には、結晶化ピーク温度(Tc)とガラス転移温度(Tg)の温度差に、特に上限はない。
The difference between the crystallization peak temperature (Tc) and the glass transition temperature (Tg), which is measured by a differential thermal analyzer (DTA), is preferably 150 ° C. or higher.
If the difference between the crystallization peak temperature (Tc) and the glass transition temperature (Tg) is less than 150 ° C., the temperature range that can be sealed is too narrow, and efficient production may be difficult.
Since the difference between the crystallization peak temperature (Tc) and the glass transition temperature (Tg) is within the above range, the temperature range in which an amorphous state can be obtained is widened, and the sealing by heat treatment is stabilized in a wide temperature range. Can be performed.
The difference between the crystallization peak temperature (Tc) and the glass transition temperature (Tg) is more preferably 160 ° C. or higher, further preferably 165 ° C. or higher, and most preferably 170 ° C. or higher.
As described above, when the crystallization peak temperature (Tc) is not detected by measurement with a differential thermal analyzer (DTA), the temperature range in which the amorphous state can be obtained becomes wider, and the sealing by heat treatment is performed in a wider temperature range. It is possible to perform wearing stably. If the crystallization peak temperature (Tc) is not detected, it can be interpreted that the temperature difference is infinite (∞). In this case, the crystallization peak temperature (Tc) and the glass transition temperature (Tg) ) There is no particular upper limit to the temperature difference.
 このようにして得られたホウ酸スズ系ガラスは、ガラスの流動性、透明性を損なわない範囲で、アルミナ粉末、ジルコニア粉末等のフィラーや、必要に応じてその他の成分を所定の質量割合で配合し、混合することによって調製した組成物として用いることも可能である。 The thus obtained tin borate-based glass has a predetermined mass ratio of fillers such as alumina powder and zirconia powder, and other components as required, as long as the fluidity and transparency of the glass are not impaired. It is also possible to use as a composition prepared by blending and mixing.
 このようにして得られた本発明のホウ酸スズ系ガラスは、ソーダライムガラスやアルミナ等の一般的な基板材料の封着の他、発光ダイオード素子(LED)等の電子部品の封着に用いることが可能であり、またレーザー光を用いて封着する封着材料として用いることも可能である。さらに、太陽電池の電極用バインダーとして用いることも可能である。 The tin borate glass of the present invention thus obtained is used for sealing electronic parts such as light emitting diode elements (LEDs) in addition to sealing general substrate materials such as soda lime glass and alumina. It is also possible to use it as a sealing material that is sealed using laser light. Furthermore, it can also be used as a binder for solar cell electrodes.
 本発明の封着部品は、上述したソーダライムガラス又はアルミナからなる被封着部材の表面又は接合部を、本発明のホウ酸スズ系ガラスで封着してなるものである。
 本発明の封着部品によれば、被封着材料との熱的特性差が小さいホウ酸スズ系ガラスを封着材として用いることで、クラックや反り等の不具合が少なく、被封着材料を高い気密性で封着することができる。
The sealing part of the present invention is formed by sealing the surface or bonding portion of the above-mentioned sealed member made of soda lime glass or alumina with the tin borate glass of the present invention.
According to the sealing component of the present invention, the use of tin borate-based glass having a small difference in thermal characteristics from the sealing material as a sealing material results in less defects such as cracks and warpage, and the sealing material It can be sealed with high airtightness.
 実施例1~20、比較例1~4
 混合後のガラスが表1~3のガラス組成となるように、原料化合物である酸化第一錫、ピロリン酸錫、メタリン酸亜鉛、メタリン酸カルシウム、メタリン酸アルミニウム、無水ホウ酸及び炭酸ストロンチウムを調合・混合した。混合された原料を石英ルツボに入れて1100℃で40分間加熱溶融後、溶融ガラスをカーボン型に流し出し冷却した。
 なお、原料化合物の調合・混合から、加熱溶融後の冷却までの操作は、全て、乾燥した窒素雰囲気としたグローブボックス内(露点温度:-60~-100℃)で実施した。
Examples 1 to 20 and Comparative Examples 1 to 4
Formulated raw materials such as stannous oxide, tin pyrophosphate, zinc metaphosphate, calcium metaphosphate, aluminum metaphosphate, anhydrous boric acid and strontium carbonate so that the glass after mixing has the glass composition shown in Tables 1-3. Mixed. The mixed raw material was put into a quartz crucible and heated and melted at 1100 ° C. for 40 minutes, and then the molten glass was poured into a carbon mold and cooled.
The operations from preparation and mixing of the raw material compounds to cooling after heating and melting were all performed in a glove box (dew point temperature: −60 to −100 ° C.) in a dry nitrogen atmosphere.
 得られた各実施例及び比較例のガラスについて、以下に示す方法で、ガラス転移温度(Tg)、結晶化ピーク温度(Tc)、屈伏点(Tf)、熱膨張係数(α)の測定、及び耐候性、失透の有無の評価を行った。
 なお、ガラス転移温度(Tg)の測定後、屈伏点(Tf)及び平均熱膨張係数(α)の測定、及び耐候性の評価で加工作業に供する各実施例および比較例のガラスについて、それぞれのガラス転移温度(Tg)より15~25℃高い温度で約1時間のアニール処理を行った。結果を表1~3に示す。
 なお、表3において、「/」は、ガラス転移点(Tg)等が測定不能(比較例1~3で「/」と表記した欄)であるか、または未測定であることを示す。
About the obtained glass of each Example and Comparative Example, by the method shown below, measurement of glass transition temperature (Tg), crystallization peak temperature (Tc), yield point (Tf), thermal expansion coefficient (α), and The weather resistance and the presence or absence of devitrification were evaluated.
In addition, after measuring the glass transition temperature (Tg), with respect to the glass of each Example and Comparative Example that are subjected to processing operations by measuring the yield point (Tf) and the average thermal expansion coefficient (α) and evaluating the weather resistance, Annealing treatment was performed at a temperature 15 to 25 ° C. higher than the glass transition temperature (Tg) for about 1 hour. The results are shown in Tables 1 to 3.
In Table 3, “/” indicates that the glass transition point (Tg) or the like is not measurable (the column indicated as “/” in Comparative Examples 1 to 3) or not measured.
(1)ガラス転移温度(Tg)
 ガラス転移温度は以下に示す方法により測定した。
 すなわち、各実施例及び比較例のガラスをそれぞれ、アルミナ製乳鉢で粉砕して、ガラス粉末を得た。得られたそれぞれのガラス粉末100mgをアルミナパンに充填し、示差熱分析装置(セイコーインスツル社製、商品名「EXSTAR6000TG/DTA」)により、10℃/分の速度で昇温してガラス転移温度(Tg)(単位:℃)を測定した。
(2)結晶化ピーク温度(Tc)
 結晶化ピーク温度(Tc)は以下に示す方法により測定した。
 すなわち、各実施例及び比較例のガラスを粉砕して得たガラス粉末をそれぞれ、ガラス転移温度(Tg)の測定で用いたのと同様の示差熱分析装置を用いて、10℃/分の速度で昇温して、結晶化の発熱ピークの温度(単位:℃)を測定した。
(3)屈伏点(Tf)
 屈伏点(Tf)は以下に示す方法により測定した。
 すわなち、各実施例及び比較例のガラスをそれぞれ、直径5mm、長さ20mmの円柱状に加工し、水平示差検出式熱膨張計(ブルカーエイエックスエス社製、商品名:TD5010)を用いて、10℃/分の速度で昇温して屈伏点(Tf)(単位:℃)を測定した。
(4)平均熱膨張係数(α)
 平均熱膨張係数(α)は、以下に示す方法により測定した。
 すなわち、各実施例及び比較例のガラスのそれぞれについて、上記の水平示差検出式熱膨張計により昇温速度10℃/分の条件で伸びの量を測定し、50~250℃までの平均熱膨張係数(単位:/℃)を算出した。
(5)耐候性
 耐候性は、以下に示す方法により評価した。
 すなわち、各実施例及び比較例のガラスを、それぞれ大きさ約20mm×20mm、厚さ2mmのガラスブロックとし、両面を鏡面研磨したものを、温度80℃、相対湿度80%に設定された恒温恒湿槽内に保持し、適宜取り出して、460nmの分光透過率を分光光度計(パーキンエルマー社製、製品名「ラムダ950」)を用いて測定し、分光透過率の初期値T0に対する、経過時間後の分光透過率T1の割合を、[(T1/T0)×100(%)]の式に基づいて算出した。算出した値が90%以下になる時間を「耐候性[時間]」として、表1~3に表記した。
(6)失透の有無
 ガラス作製後の失透の有無は、以下の方法により評価した。
すなわち、混合後のガラスが表1~3のガラス組成となるように、酸化第一錫、ピロリン酸錫、メタリン酸亜鉛、メタリン酸カルシウム、メタリン酸アルミニウム、無水ホウ酸および炭酸ストロンチウムを調合・混合した。
 混合された原料化合物を、石英ルツボに入れて1100℃で40分間加熱溶融後、溶融ガラスをカーボン型に流し出し、冷却して固化するまでの間の結晶の析出の有無を目視で確認した。結晶の析出が確認されなかったものを「○」、一部又は全体に結晶の析出による白濁(分相)が確認されたものを「×」として、表1~表3に表記した。
(1) Glass transition temperature (Tg)
The glass transition temperature was measured by the method shown below.
That is, the glass of each Example and Comparative Example was pulverized with an alumina mortar to obtain glass powder. 100 mg of each glass powder obtained was filled in an alumina pan, and the glass transition temperature was raised by a differential thermal analyzer (trade name “EXSTAR6000TG / DTA” manufactured by Seiko Instruments Inc.) at a rate of 10 ° C./min. (Tg) (unit: ° C.) was measured.
(2) Crystallization peak temperature (Tc)
The crystallization peak temperature (Tc) was measured by the method shown below.
That is, the glass powders obtained by pulverizing the glass of each Example and Comparative Example were each subjected to a rate of 10 ° C./min using the same differential thermal analyzer as that used for measuring the glass transition temperature (Tg). The temperature of the crystallization exothermic peak (unit: ° C.) was measured.
(3) Bending point (Tf)
The yield point (Tf) was measured by the following method.
That is, the glass of each example and comparative example was processed into a cylindrical shape having a diameter of 5 mm and a length of 20 mm, respectively, and a horizontal differential detection type thermal dilatometer (Bruker AXS, trade name: TD5010) was used. Then, the temperature was raised at a rate of 10 ° C./min, and the yield point (Tf) (unit: ° C.) was measured.
(4) Average thermal expansion coefficient (α)
The average thermal expansion coefficient (α) was measured by the following method.
That is, with respect to each of the glass of each example and comparative example, the amount of elongation was measured with the above-mentioned horizontal differential detection type thermal dilatometer at a temperature rising rate of 10 ° C./min, and the average thermal expansion from 50 to 250 ° C. The coefficient (unit: / ° C.) was calculated.
(5) Weather resistance Weather resistance was evaluated by the following method.
That is, the glass of each example and comparative example was made into a glass block having a size of about 20 mm × 20 mm and a thickness of 2 mm, and both surfaces were mirror-polished, and the constant temperature and constant temperature set at 80 ° C. and relative humidity of 80%. Holding in a damp bath and taking out as appropriate, the spectral transmittance at 460 nm was measured using a spectrophotometer (manufactured by Perkin Elmer, product name “Lambda 950”), and the elapsed time with respect to the initial value T0 of the spectral transmittance The ratio of the subsequent spectral transmittance T1 was calculated based on the formula [(T1 / T0) × 100 (%)]. The time when the calculated value is 90% or less is shown in Tables 1 to 3 as “weather resistance [time]”.
(6) Presence or absence of devitrification Presence or absence of devitrification after glass production was evaluated by the following method.
That is, stannous oxide, tin pyrophosphate, zinc metaphosphate, calcium metaphosphate, aluminum metaphosphate, anhydrous boric acid and strontium carbonate were mixed and mixed so that the glass after mixing had the glass composition shown in Tables 1 to 3. .
The mixed raw material compound was put in a quartz crucible and heated and melted at 1100 ° C. for 40 minutes, and then the molten glass was poured out into a carbon mold, and the presence or absence of crystals was visually confirmed before being cooled and solidified. Tables 1 to 3 are shown as “◯” when no crystal precipitation was confirmed, and “X” when white turbidity (phase separation) due to crystal precipitation was confirmed partially or entirely.
Figure JPOXMLDOC01-appb-T000001
Figure JPOXMLDOC01-appb-T000001
Figure JPOXMLDOC01-appb-T000002
Figure JPOXMLDOC01-appb-T000002
Figure JPOXMLDOC01-appb-T000003
Figure JPOXMLDOC01-appb-T000003
 表1~3から明らかなように、実施例1~20の特定組成からなるホウ酸スズ系ガラスについては、90×10-7/℃未満の熱膨張係数を示し、被封着材料である前述したソーダライムガラス(83×10-7/℃~85×10-7/℃)やアルミナ(73×10-7/℃~81×10-7/℃)等との熱膨張係数差が小さく、これら被封着材料に封着したときクラックが生じにくいことがわかる。また、実施例1~20のガラス粉末は、屈伏点が400℃以下と低いため、低温での封着が可能である。 As is apparent from Tables 1 to 3, the tin borate glasses having the specific compositions of Examples 1 to 20 exhibit a thermal expansion coefficient of less than 90 × 10 −7 / ° C., and are the sealing materials. The difference in thermal expansion coefficient from the soda-lime glass (83 × 10 −7 / ° C. to 85 × 10 −7 / ° C.) and alumina (73 × 10 −7 / ° C. to 81 × 10 −7 / ° C.) It can be seen that cracks are less likely to occur when these materials are sealed. Further, since the glass powders of Examples 1 to 20 have a low yield point of 400 ° C. or lower, they can be sealed at a low temperature.
 一方、Pが7質量%を超えて含有される比較例1~3のホウ酸スズ系ガラスは、ガラス化するときに分相が生じ、安定なガラス状態を得ることができなかった。
 また、Pを22質量%含有する比較例4のホウ酸スズ系ガラスは、熱膨張係数が103×10-7/℃であり、前述したソーダライムガラスやアルミナとの熱膨張係数差が大きく、これら被封着材料に封着したときのクラックが生じやすいことがわかる。
On the other hand, the tin borate glasses of Comparative Examples 1 to 3 containing P 2 O 5 in excess of 7% by mass caused phase separation when vitrified and could not obtain a stable glass state. .
The tin borate glass of Comparative Example 4 containing 22% by mass of P 2 O 5 has a thermal expansion coefficient of 103 × 10 −7 / ° C., and the difference in thermal expansion coefficient from the soda lime glass or alumina described above. It can be seen that cracks are likely to occur when these materials are sealed.
(実施例21)
 実施例6に記載のガラス粉末と、MnO 42質量%、CuO 26質量%、Fe15質量%、Al 8質量%、SiO 5質量%の組成を有し、平均粒径が1.2μmのレーザー吸収材とを用意した。
(Example 21)
It has a composition of the glass powder described in Example 6, MnO 42% by mass, CuO 26% by mass, Fe 2 O 3 15% by mass, Al 2 O 3 8% by mass, SiO 2 5% by mass, and an average particle diameter Was prepared with a 1.2 μm laser absorber.
 上記したガラス粉末95質量%と、上記したレーザー吸収材5質量%とを混合して封着材料を作製した。 A sealing material was prepared by mixing 95% by mass of the glass powder and 5% by mass of the laser absorbing material.
 次に、ソーダライムガラス(熱膨張係数:87×10-7/℃)からなる2枚のガラス基板(寸法:100mm×100mm×0.55mm厚)を用意し、一方のガラス基板上に封着材料を分散塗布し、他方のガラス基板を積層した。 Next, two glass substrates (dimensions: 100 mm × 100 mm × 0.55 mm thickness) made of soda lime glass (thermal expansion coefficient: 87 × 10 −7 / ° C.) are prepared and sealed on one glass substrate. The material was dispersed and applied, and the other glass substrate was laminated.
 次いで、封着材料の塗布層を形成して積層したソーダライムガラス基板を、レーザー照射装置のサンプルホルダ上に配置した。
 封着材料の塗布層に、波長808nm、出力密度0.56kW/cm、ビーム形状が直径1.5mmの円形のレーザー光を、走査速度3mm/秒の速度で封着材料を塗布した位置に照射して、封着材料層を形成した。
Next, the soda-lime glass substrate formed by laminating the coating layer of the sealing material was placed on the sample holder of the laser irradiation apparatus.
A circular laser beam having a wavelength of 808 nm, an output density of 0.56 kW / cm 2 , and a beam shape of 1.5 mm is applied to the sealing material coating layer at a position where the sealing material is applied at a scanning speed of 3 mm / second. Irradiation formed a sealing material layer.
 得られた封着材料層の状態をSEMで確認したところ、封着材料層全体が良好にガラス化し、2枚のガラス基板がともに密着していることが確認された。 When the state of the obtained sealing material layer was confirmed by SEM, it was confirmed that the entire sealing material layer was vitrified well and the two glass substrates were adhered together.
(参考例1~2)
 出力密度を0.85kW/cmに変更したこと以外は、実施例21と同様にして、レーザー照射を行った。(参考例1)
 また、出力密度を0.56kW/cm、1.13kW/cm、1.70kW/cm、2.26kW/cmの順に変化させながら、波長808nm、ビーム形状が直径1.5mmの円形のレーザー光を、封着材料を塗布した位置に定点照射した。なお、レーザー光の照射時間は、出力密度毎に、10秒ずつ照射した。(参考例2)
(Reference Examples 1-2)
Laser irradiation was performed in the same manner as in Example 21 except that the output density was changed to 0.85 kW / cm 2 . (Reference Example 1)
Also, output density 0.56kW / cm 2, while changing the order of 1.13kW / cm 2, 1.70kW / cm 2, 2.26kW / cm 2, wavelength 808 nm, beam shape with a diameter of 1.5mm circular A fixed point was irradiated to the position where the sealing material was applied. The laser beam was irradiated for 10 seconds for each output density. (Reference Example 2)
 得られた各封着材料層の状態をSEMで確認したところ、出力密度0.85kW/cmで照射して得られた参考例1の封着材料層は、概ね良好にガラス化しており、2枚のガラス基板がともに接着したものの、一部に結晶化していることが確認された。
 また、出力密度を0.56kW/cmから2.26kW/cmまで変化させて照射して得られた参考例2の封着材料層では、レーザー照射領域全体で結晶化しており、基板を接着させることができなかった。
When the state of each obtained sealing material layer was confirmed by SEM, the sealing material layer of Reference Example 1 obtained by irradiation at an output density of 0.85 kW / cm 2 was generally well vitrified, Although the two glass substrates were bonded together, it was confirmed that they were partially crystallized.
In addition, the sealing material layer of Reference Example 2 obtained by irradiation while changing the power density from 0.56 kW / cm 2 to 2.26 kW / cm 2 is crystallized in the entire laser irradiation region, and the substrate is It could not be adhered.
 なお、上述した実施例21および参考例1、2では、レーザー照射による封着(レーザー封着)を行った例のみを記載したが、本発明のホウ酸スズ系ガラスでは、このようなレーザー照射による封着に限定されず、例えば一般的な電気炉を用いて、温度条件を最適化することでも封着することができる。 In Example 21 and Reference Examples 1 and 2 described above, only the example in which sealing by laser irradiation (laser sealing) was performed was described. However, in the tin borate glass of the present invention, such laser irradiation is performed. The sealing is not limited to the above, and the sealing can be performed by optimizing the temperature condition using, for example, a general electric furnace.
 本発明によれば、低融点であり、被封着材料との熱膨張係数の差が小さく、かつガラス転移点の温度が被封着材料との封着に好適な所定範囲内にあり、フィラーなどの添加剤を配合しなくても、封着時のクラック等の発生が抑制された封着材料用のホウ酸スズ系ガラスを得ることができ、プラズマディスプレイパネル用のソーダライムガラス基板の周辺の封着用、あるいは発光ダイオード素子等の電子部品の封着用、あるいはその他のソーダライムガラス基板やアルミナ基板の封着用として有用である。
 なお、2010年9月3日に出願された日本特許出願2010-198255号、および2010年9月3日に出願された日本特許出願2010-198256号の明細書、特許請求の範囲及び要約書の全内容をここに引用し、本発明の開示として取り入れるものである。
According to the present invention, the filler has a low melting point, has a small difference in thermal expansion coefficient from the material to be sealed, and has a glass transition temperature within a predetermined range suitable for sealing with the material to be sealed. Even without the addition of additives such as, it is possible to obtain a tin borate glass for sealing materials in which the occurrence of cracks during sealing is suppressed, and the periphery of a soda-lime glass substrate for a plasma display panel It is useful for sealing of electronic parts such as light-emitting diode elements or other soda-lime glass substrates or alumina substrates.
The specification, claims and abstract of Japanese Patent Application 2010-198255 filed on September 3, 2010 and Japanese Patent Application 2010-198256 filed on September 3, 2010 The entire contents are hereby incorporated by reference into the present disclosure.

Claims (18)

  1.  酸化物換算の質量%表示でSnOを62~73%、Bを19~25%、Pを0.1~7%、ZnOを0~6%、CaOを0~3%、SrOを0~7%、Alを0~4%の組成を有することを特徴とするホウ酸スズ系ガラス。 SnO 62-73%, B 2 O 3 19-25%, P 2 O 5 0.1-7%, ZnO 0-6%, CaO 0-3% A tin borate-based glass having a composition of 0 to 7% of SrO and 0 to 4% of Al 2 O 3 .
  2.  酸化物換算の質量比でP/Bが0.10~0.35を満たすことを特徴とする請求項1に記載のホウ酸スズ系ガラス。 The tin borate-based glass according to claim 1, wherein P 2 O 5 / B 2 O 3 satisfies 0.10 to 0.35 in terms of mass ratio in terms of oxide.
  3.  酸化物換算の質量比でP/(B+SnO)が0.01~0.10を満たすことを特徴とする請求項1又は2に記載のホウ酸スズ系ガラス。 3. The tin borate-based glass according to claim 1, wherein P 2 O 5 / (B 2 O 3 + SnO) satisfies 0.01 to 0.10 in terms of an oxide-converted mass ratio.
  4.  50~250℃での熱膨張係数が、90×10-7/℃未満であることを特徴とする請求項1乃至3のいずれか1項に記載のホウ酸スズ系ガラス。 The tin borate-based glass according to any one of claims 1 to 3, wherein the thermal expansion coefficient at 50 to 250 ° C is less than 90 × 10 -7 / ° C.
  5.  50~250℃での熱膨張係数が、50×10-7/℃以上、90×10-7/℃未満であることを特徴とする請求項1乃至4のいずれか1項に記載のホウ酸スズ系ガラス。 The boric acid according to any one of claims 1 to 4, wherein the thermal expansion coefficient at 50 to 250 ° C is 50 x 10 -7 / ° C or more and less than 90 x 10 -7 / ° C. Tin-based glass.
  6.  ガラス転移温度(Tg)が370℃以下であることを特徴とする請求項1乃至5のいずれか1項に記載のホウ酸スズ系ガラス。 The glass transition temperature (Tg) is 370 ° C. or lower, the tin borate-based glass according to any one of claims 1 to 5.
  7.  ガラス転移温度(Tg)が300℃以上、370℃以下であることを特徴とする請求項1乃至6のいずれか1項に記載のホウ酸スズ系ガラス。 The glass transition temperature (Tg) is 300 ° C. or higher and 370 ° C. or lower, and the tin borate-based glass according to any one of claims 1 to 6.
  8.  結晶化ピーク温度(Tc)とガラス転移温度(Tg)との差が150℃以上であることを特徴とする請求項1乃至7のいずれか1項に記載のホウ酸スズ系ガラス。 The tin borate glass according to any one of claims 1 to 7, wherein a difference between a crystallization peak temperature (Tc) and a glass transition temperature (Tg) is 150 ° C or more.
  9.  主成分としてSnO及びBを含有し、かつ酸化物換算の質量%表示でPを0.1~7%含み、50~250℃における熱膨張係数が90×10-7/℃未満であることを特徴とするホウ酸スズ系ガラス。 It contains SnO and B 2 O 3 as main components, contains 0.1 to 7% of P 2 O 5 in terms of mass% in terms of oxide, and has a thermal expansion coefficient of 90 × 10 −7 / 50 at 50 to 250 ° C. A tin borate-based glass characterized by a temperature of less than ° C.
  10.  50~250℃での熱膨張係数が、50×10-7/℃以上、90×10-7/℃未満であることを特徴とする請求項9に記載のホウ酸スズ系ガラス。 10. The tin borate glass according to claim 9, wherein the thermal expansion coefficient at 50 to 250 ° C. is 50 × 10 −7 / ° C. or more and less than 90 × 10 −7 / ° C.
  11.  ガラス転移温度(Tg)が370℃以下であることを特徴とする請求項9又は10に記載のホウ酸スズ系ガラス。 The glass transition temperature (Tg) is 370 ° C or lower, the tin borate glass according to claim 9 or 10.
  12.  ガラス転移温度(Tg)が300℃以上、370℃以下であることを特徴とする請求項9乃至11のいずれか1項に記載のホウ酸スズ系ガラス。 12. The tin borate glass according to claim 9, wherein the glass transition temperature (Tg) is 300 ° C. or more and 370 ° C. or less.
  13.  結晶化ピーク温度(Tc)とガラス転移温度(Tg)との差が150℃以上であることを特徴とする請求項9乃至12のいずれか1項に記載のホウ酸スズ系ガラス。 The tin borate glass according to any one of claims 9 to 12, wherein a difference between a crystallization peak temperature (Tc) and a glass transition temperature (Tg) is 150 ° C or higher.
  14.  酸化物換算の質量比でP/(B+SnO)が0.01~0.10を満たすことを特徴とする請求項9乃至13のいずれか1項に記載のホウ酸スズ系ガラス。 The tin borate according to any one of claims 9 to 13, wherein P 2 O 5 / (B 2 O 3 + SnO) satisfies 0.01 to 0.10 in terms of an oxide-converted mass ratio. Glass.
  15.  酸化物換算の質量比でP/(B+SnO)が0.05~0.08を満たすことを特徴とする請求項9乃至14のいずれか1項に記載のホウ酸スズ系ガラス。 The tin borate according to any one of claims 9 to 14, wherein P 2 O 5 / (B 2 O 3 + SnO) satisfies 0.05 to 0.08 in terms of an oxide-converted mass ratio. Glass.
  16.  酸化物換算の質量%表示でSnOを62~72%、Bを19~25%、ZnOを0~6%、CaOを0~3%、SrOを0~7%、Alを0~4%の組成を有することを特徴とする請求項9乃至15のいずれか1項に記載のホウ酸スズ系ガラス。 SnO 62-72%, B 2 O 3 19-25%, ZnO 0-6%, CaO 0-3%, SrO 0-7%, Al 2 O 3 The tin borate-based glass according to any one of claims 9 to 15, which has a composition of 0 to 4%.
  17.  酸化物換算の質量%表示でSnOを65~70%、Bを20~24%、Pを3~6.5%、ZnOを0~5%、CaOを0~3%、SrOを0~5%、Alを0~2%の組成を有することを特徴とする請求項9乃至16のいずれか1項に記載のホウ酸スズ系ガラス。 SnO is 65 to 70%, B 2 O 3 is 20 to 24%, P 2 O 5 is 3 to 6.5%, ZnO is 0 to 5%, and CaO is 0 to 3% in terms of mass% in terms of oxide. The tin borate-based glass according to any one of claims 9 to 16, which has a composition of 0 to 5% of SrO and 0 to 2 % of Al 2 O 3 .
  18.  ソーダライムガラス又はアルミナからなる被封着部材の表面又は接合部を、請求項1乃至17のいずれか1項に記載のホウ酸スズ系ガラスで封着してなることを特徴とする封着部品。 A sealed part formed by sealing the surface or bonded portion of a sealed member made of soda lime glass or alumina with the tin borate-based glass according to any one of claims 1 to 17. .
PCT/JP2011/069956 2010-09-03 2011-09-01 Tin borate glass and sealing component WO2012029930A1 (en)

Priority Applications (1)

Application Number Priority Date Filing Date Title
JP2012531970A JPWO2012029930A1 (en) 2010-09-03 2011-09-01 Tin borate glass and sealing parts

Applications Claiming Priority (4)

Application Number Priority Date Filing Date Title
JP2010-198255 2010-09-03
JP2010-198256 2010-09-03
JP2010198255 2010-09-03
JP2010198256 2010-09-03

Publications (1)

Publication Number Publication Date
WO2012029930A1 true WO2012029930A1 (en) 2012-03-08

Family

ID=45773005

Family Applications (1)

Application Number Title Priority Date Filing Date
PCT/JP2011/069956 WO2012029930A1 (en) 2010-09-03 2011-09-01 Tin borate glass and sealing component

Country Status (3)

Country Link
JP (1) JPWO2012029930A1 (en)
TW (1) TW201219337A (en)
WO (1) WO2012029930A1 (en)

Citations (3)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
JPH11292564A (en) * 1998-04-06 1999-10-26 Nippon Electric Glass Co Ltd Tin borophosphate glass and sealing material
JP2008019421A (en) * 2006-06-14 2008-01-31 Nippon Electric Glass Co Ltd Phosphor composite material and phosphor composite member
JP2008034802A (en) * 2006-07-07 2008-02-14 Nippon Electric Glass Co Ltd Semiconductor sealing material and semiconductor element sealed with it

Patent Citations (3)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
JPH11292564A (en) * 1998-04-06 1999-10-26 Nippon Electric Glass Co Ltd Tin borophosphate glass and sealing material
JP2008019421A (en) * 2006-06-14 2008-01-31 Nippon Electric Glass Co Ltd Phosphor composite material and phosphor composite member
JP2008034802A (en) * 2006-07-07 2008-02-14 Nippon Electric Glass Co Ltd Semiconductor sealing material and semiconductor element sealed with it

Also Published As

Publication number Publication date
TW201219337A (en) 2012-05-16
JPWO2012029930A1 (en) 2013-10-31

Similar Documents

Publication Publication Date Title
JP5413562B2 (en) Sealing material
JP6455801B2 (en) Sealing material
JP2022008627A (en) Alkali-free glass substrate
US20090247385A1 (en) Frit
JP4766444B2 (en) Bismuth-based lead-free sealing material
KR20130025362A (en) Lead-free glass material for organic-el sealing, organic el display formed using same, and process for producing the display
JP2010228998A (en) Glass member with sealing material layer, electronic device using the same, and production method thereof
JPWO2011001987A1 (en) Glass member with sealing material layer, electronic device using the same, and manufacturing method thereof
US9428415B2 (en) Glass and manufacturing method of glass plate
TW201246527A (en) Glass member with sealing material layer, electronic device using same and method for producing same
US20150037594A1 (en) Glass composition, sealing material, and sealed package
JP6075715B2 (en) Bismuth glass and sealing material using the same
KR20200071675A (en) Glass composition, glass powder, sealing material, glass paste, sealing method, sealing package, and organic electroluminescence element
JP2008254974A (en) Bismuth-based low melting point glass composition
JP2007063105A (en) Nonlead glass composition
KR101570310B1 (en) Bismuth-based glass composition
JPWO2001090012A1 (en) Glass composition and glass-forming material containing the composition
JP2008308393A (en) Lead-free low softening point glass, lead-free low softening point glass composition, lead-free low softening point glass paste, and fluorescent display tube
KR101028340B1 (en) Frit composition having softening characteristics at low temperature
WO2012029930A1 (en) Tin borate glass and sealing component
KR20080037889A (en) Hermetically sealed and low melted glass and glass composite in oled
TW201318995A (en) Pb-free glass composition for forming an electric conductor
CN109415244B (en) Bismuth glass, method for producing bismuth glass, and sealing material
JP2008230885A (en) Antimony phosphate-based glass composition
JP2011173735A (en) Bismuth-based glass

Legal Events

Date Code Title Description
121 Ep: the epo has been informed by wipo that ep was designated in this application

Ref document number: 11821945

Country of ref document: EP

Kind code of ref document: A1

WWE Wipo information: entry into national phase

Ref document number: 2012531970

Country of ref document: JP

NENP Non-entry into the national phase

Ref country code: DE

122 Ep: pct application non-entry in european phase

Ref document number: 11821945

Country of ref document: EP

Kind code of ref document: A1