WO2012029542A1 - Échangeur de chaleur et appareil de conditionnement d'air pour véhicule pourvu de celui-ci - Google Patents

Échangeur de chaleur et appareil de conditionnement d'air pour véhicule pourvu de celui-ci Download PDF

Info

Publication number
WO2012029542A1
WO2012029542A1 PCT/JP2011/068610 JP2011068610W WO2012029542A1 WO 2012029542 A1 WO2012029542 A1 WO 2012029542A1 JP 2011068610 W JP2011068610 W JP 2011068610W WO 2012029542 A1 WO2012029542 A1 WO 2012029542A1
Authority
WO
WIPO (PCT)
Prior art keywords
flat tube
heat exchanger
refrigerant
flat
refrigerant flow
Prior art date
Application number
PCT/JP2011/068610
Other languages
English (en)
Japanese (ja)
Inventor
仲戸 宏治
上坊寺 康修
克弘 齊藤
Original Assignee
三菱重工業株式会社
Priority date (The priority date is an assumption and is not a legal conclusion. Google has not performed a legal analysis and makes no representation as to the accuracy of the date listed.)
Filing date
Publication date
Application filed by 三菱重工業株式会社 filed Critical 三菱重工業株式会社
Priority to US13/695,106 priority Critical patent/US20130043014A1/en
Priority to CN201180021737.6A priority patent/CN103038596B/zh
Priority to EP11821559.9A priority patent/EP2613116B1/fr
Publication of WO2012029542A1 publication Critical patent/WO2012029542A1/fr

Links

Images

Classifications

    • FMECHANICAL ENGINEERING; LIGHTING; HEATING; WEAPONS; BLASTING
    • F28HEAT EXCHANGE IN GENERAL
    • F28DHEAT-EXCHANGE APPARATUS, NOT PROVIDED FOR IN ANOTHER SUBCLASS, IN WHICH THE HEAT-EXCHANGE MEDIA DO NOT COME INTO DIRECT CONTACT
    • F28D1/00Heat-exchange apparatus having stationary conduit assemblies for one heat-exchange medium only, the media being in contact with different sides of the conduit wall, in which the other heat-exchange medium is a large body of fluid, e.g. domestic or motor car radiators
    • F28D1/02Heat-exchange apparatus having stationary conduit assemblies for one heat-exchange medium only, the media being in contact with different sides of the conduit wall, in which the other heat-exchange medium is a large body of fluid, e.g. domestic or motor car radiators with heat-exchange conduits immersed in the body of fluid
    • F28D1/04Heat-exchange apparatus having stationary conduit assemblies for one heat-exchange medium only, the media being in contact with different sides of the conduit wall, in which the other heat-exchange medium is a large body of fluid, e.g. domestic or motor car radiators with heat-exchange conduits immersed in the body of fluid with tubular conduits
    • F28D1/053Heat-exchange apparatus having stationary conduit assemblies for one heat-exchange medium only, the media being in contact with different sides of the conduit wall, in which the other heat-exchange medium is a large body of fluid, e.g. domestic or motor car radiators with heat-exchange conduits immersed in the body of fluid with tubular conduits the conduits being straight
    • F28D1/0535Heat-exchange apparatus having stationary conduit assemblies for one heat-exchange medium only, the media being in contact with different sides of the conduit wall, in which the other heat-exchange medium is a large body of fluid, e.g. domestic or motor car radiators with heat-exchange conduits immersed in the body of fluid with tubular conduits the conduits being straight the conduits having a non-circular cross-section
    • F28D1/05366Assemblies of conduits connected to common headers, e.g. core type radiators
    • F28D1/05391Assemblies of conduits connected to common headers, e.g. core type radiators with multiple rows of conduits or with multi-channel conduits combined with a particular flow pattern, e.g. multi-row multi-stage radiators
    • FMECHANICAL ENGINEERING; LIGHTING; HEATING; WEAPONS; BLASTING
    • F28HEAT EXCHANGE IN GENERAL
    • F28FDETAILS OF HEAT-EXCHANGE AND HEAT-TRANSFER APPARATUS, OF GENERAL APPLICATION
    • F28F1/00Tubular elements; Assemblies of tubular elements
    • F28F1/02Tubular elements of cross-section which is non-circular
    • F28F1/022Tubular elements of cross-section which is non-circular with multiple channels
    • FMECHANICAL ENGINEERING; LIGHTING; HEATING; WEAPONS; BLASTING
    • F28HEAT EXCHANGE IN GENERAL
    • F28FDETAILS OF HEAT-EXCHANGE AND HEAT-TRANSFER APPARATUS, OF GENERAL APPLICATION
    • F28F1/00Tubular elements; Assemblies of tubular elements
    • F28F1/10Tubular elements and assemblies thereof with means for increasing heat-transfer area, e.g. with fins, with projections, with recesses
    • F28F1/12Tubular elements and assemblies thereof with means for increasing heat-transfer area, e.g. with fins, with projections, with recesses the means being only outside the tubular element
    • F28F1/126Tubular elements and assemblies thereof with means for increasing heat-transfer area, e.g. with fins, with projections, with recesses the means being only outside the tubular element consisting of zig-zag shaped fins
    • FMECHANICAL ENGINEERING; LIGHTING; HEATING; WEAPONS; BLASTING
    • F28HEAT EXCHANGE IN GENERAL
    • F28DHEAT-EXCHANGE APPARATUS, NOT PROVIDED FOR IN ANOTHER SUBCLASS, IN WHICH THE HEAT-EXCHANGE MEDIA DO NOT COME INTO DIRECT CONTACT
    • F28D21/00Heat-exchange apparatus not covered by any of the groups F28D1/00 - F28D20/00
    • F28D2021/0019Other heat exchangers for particular applications; Heat exchange systems not otherwise provided for
    • F28D2021/008Other heat exchangers for particular applications; Heat exchange systems not otherwise provided for for vehicles
    • F28D2021/0084Condensers

Definitions

  • the present invention relates to a heat exchanger and a vehicle air conditioner equipped with the heat exchanger.
  • the vehicle air conditioner is provided with a condenser (heat exchanger) that condenses the refrigerant by heat exchange with air.
  • a condenser heat exchanger
  • a typical multi-flow type is often used in which flat tubes and corrugated fins are alternately stacked.
  • a plurality of coolant circulation holes are formed inside the flat tube, and each convex portion of the corrugated fin is fixed to the flat surface of the flat tube so that air passes over the surface of the corrugated fin.
  • Patent Document 1 discloses a multi-flow type refrigerant condenser for the purpose of obtaining the maximum heat radiation performance in consideration of both ventilation resistance and in-pipe pressure loss.
  • Patent Document 1 no consideration is given to the dimension of the refrigerant condenser in the air flow direction (tube width direction). That is, no strict examination has been made on changes in the state quantity caused by air passing through the fins (for example, air ventilation resistance and heat exchange in the air flow direction). Therefore, in the specification of the shape of the refrigerant condenser described in the document, the performance of the heat exchanger depending on the ventilation resistance cannot be strictly evaluated.
  • Air pressure loss ventilation resistance
  • a heat exchanger with large heat exchange amount
  • a vehicle air conditioner provided with the same.
  • the heat exchanger of the present invention and the vehicle air conditioner including the heat exchanger employ the following means.
  • the heat exchanger according to the first aspect of the present invention includes a flat tube having a plurality of refrigerant flow holes formed therein, a fin fixed to the flat surface of the flat tube, and air passing over the surface thereof,
  • the equivalent diameter of the plurality of refrigerant circulation holes is de
  • the width of the flat tubes is W
  • One end side wall thickness corresponding to the distance between the one end of the flat tube and the nearest refrigerant circulation hole is t1
  • the other end side wall thickness corresponding to the distance between the other end in the width direction of the flat tube and the nearest refrigerant circulation hole is t1
  • the height in the stacking direction of the flat tubes is Hp
  • the height in the stacking direction of the fins is Hf
  • the number of the coolant circulation holes is N
  • the equivalent diameter de is 0.5 or more and 0.8 or less
  • Flat tube width W is 12mm or less If it is a 16mm or less, (W-t1-t2) ⁇ Hp ⁇ Hf / N, characterized in that there is a 3.95 to 10.0.
  • a polynomial using the flat tube width W was used when evaluating the heat exchange performance of the heat exchanger.
  • the state change for example, the ventilation resistance of air and the heat exchange of an air flow direction
  • heat exchange performance can be reflected more strictly.
  • the shape of the heat exchanger is determined in consideration of not only the shape of the flat tube such as the flat tube width W and the flat tube height Hp but also the fin height Hf.
  • a pneumatic loss can be considered more strictly.
  • the performance per refrigerant circulation hole can be evaluated. It has been found that a heat exchanger having a small air pressure loss and a large amount of heat exchange can be realized by using the polynomial as described above and setting the value between 3.95 and 10.0.
  • the flat tube is preferably manufactured by extrusion.
  • the equivalent diameter de is preferably 0.55 or more and 0.76 or less.
  • the air pressure loss can be further reduced and the heat exchange amount can be increased.
  • the fins have a corrugated shape, and the pitch is preferably 1.6 mm or more and 2.0 mm or less.
  • the air pressure loss can be further reduced and the heat exchange amount can be increased.
  • the vehicle air conditioner according to the second aspect of the present invention includes any one of the above heat exchangers.
  • the heat exchanger of the present invention is preferably used as a condenser for a vehicle air conditioner.
  • the present invention it is possible to provide a heat exchanger having a small air pressure loss and a heat exchange amount and a vehicle air conditioner equipped with the heat exchanger.
  • FIG. 1 shows a front view of a condenser (heat exchanger) 1 according to the present embodiment.
  • the condenser 1 cools and condenses the high-temperature and high-pressure superheated gas refrigerant discharged from the compressor (not shown) in the refrigeration cycle of the vehicle air conditioner.
  • the condenser 1 is arrange
  • the condenser 1 is cooled by cooling air (outside air) blown by a cooling fan.
  • the condenser 1 includes a pair of a first header tank 11 and a second header tank 12 that are arranged at a predetermined interval. These header tanks 11 and 12 are formed in a cylindrical shape, and are arranged in a state where the longitudinal direction thereof is substantially in the vertical direction. Between these header tanks 11 and 12, a core portion 13 for exchanging heat between air and refrigerant is disposed.
  • the condenser 1 is a multi-flow type in which refrigerant flows through a plurality of parallel flow paths provided between the header tanks 11 and 12.
  • the core portion 13 includes a flat tube 14 extending horizontally between the header tanks 11 and 12 and a corrugated fin 15 fixed to the flat surface of the flat tube 14.
  • the flat tube 14 and the corrugated fin 15 are alternately stacked in the vertical direction, whereby the core portion 13 is formed.
  • FIG. 2 shows a cross section of the flat tube 14.
  • a plurality of independent refrigerant flow holes 20 are formed in the longitudinal direction inside the flat tube 14.
  • the flat tube 14 having the plurality of refrigerant flow holes 20 can be manufactured by extruding a material made of an aluminum alloy.
  • One end of the flat tube 14 in the longitudinal direction is connected to the first header tank 11, and the other end is connected to the second header tank 12.
  • the refrigerant flows between the header tanks 11 and 12 through the plurality of refrigerant flow holes 20.
  • FIG. 3 shows a front view of the corrugated fin 15.
  • the corrugated fin 15 has a wave shape.
  • the corrugated fin 15 can be manufactured by pressing a plate material made of an aluminum alloy.
  • the peaks 15 a and valleys 15 b of the corrugated fins 15 are joined to the flat surface of the flat tube 14 by brazing. Air flows on the surface of the corrugated fins 15 and heat exchange between the air and the refrigerant is promoted.
  • the height of the corrugated fins 15 is Hf
  • the fin pitch is Pf.
  • the inside of the first header tank 11 is divided into two chambers 17 and 18 by a separator 16, and the gas refrigerant from the compressor is introduced into the upper first chamber 17. .
  • the gas refrigerant flows into the second header tank 12 via the upper flat tube 14 communicating with the first chamber 17, makes a U-turn in the second header tank 12, and then flattenes the remaining portion located below. It flows into the second chamber 18 below through the tube 14.
  • the gas refrigerant is cooled by exchanging heat with air passing through the space between the flat tubes 14 and condensed, and the refrigerant becomes a gas-liquid two-phase flow in the refrigerant flow holes 20 of the flat tubes 14 as the refrigerant condenses. .
  • the heat exchange amount Q and the air pressure loss ⁇ Pa were determined by the following relational expression.
  • Pf is the fin pitch (see FIG. 3)
  • A, B, C, and D are constants.
  • the pressure loss of the refrigerant flowing through the refrigerant passage hole 20 of the flat tube 14 is also taken into consideration.
  • the refrigerant pressure loss is calculated based on the pipe friction coefficient of the refrigerant flow hole 20, the physical properties of the gas refrigerant and the liquid refrigerant, and the like.
  • the change in the state quantity of the refrigerant p (pressure)-h (enthalpy) diagram during heat exchange changes from ideal horizontal (ie, constant pressure and constant temperature) to the left.
  • the refrigerant moves down and the average temperature CTm of the refrigerant at the time of condensation decreases.
  • the following polynomial was used as a parameter for defining the shape of the condenser 1.
  • W width t1 of the flat tube 14; one end side wall thickness t2 corresponding to the distance between the one end (left end in FIG. 2) in the width direction of the flat tube 14 and the closest refrigerant flow hole 20; other in the width direction of the flat tube 14 Thickness Hp on the other end side corresponding to the distance between the end (right end in FIG. 3) and the nearest refrigerant circulation hole 20
  • Hp stacking direction (vertical direction) height of the flat tube 14
  • Hf stacking direction (vertical direction) of the corrugated fin 15 )
  • Height N Number of refrigerant circulation holes 20
  • the one end side wall thickness t1 and the other end side wall thickness t2 are subtracted from the flat tube width W because heat exchange is not substantially performed in the range of these wall thicknesses t2 and t2. is there.
  • the reason why the stacking direction height Hp of the flat tube 14 and the stacking direction height Hf of the corrugated fin 15 are made into a product form together with the flat tube width W is that these parameters are proportional to the heat exchange amount.
  • the reason for dividing by the number N of refrigerant circulation holes is to evaluate the performance per one refrigerant circulation hole 20.
  • FIG. 4 shows the simulation result.
  • the vertical axis represents the heat exchange performance index Q / Fa / ⁇ Pa described above
  • the horizontal axis represents a polynomial (W ⁇ t1 ⁇ t2) ⁇ Hp ⁇ Hf / N.
  • the cases where the flat tube width is 12 mm, 14 mm, 15 mm and 16 mm are shown.
  • the polynomial is 3.95 or more and 10 or less
  • the maximum points of all the curves are included. Therefore, if the polynomial is selected to be 3.95 or more and 10 or less, a high-performance condenser 1 can be obtained.
  • the polynomial of the present embodiment was calculated for the condenser specified in Patent Document 1.
  • the one-end-side wall thickness t1 and the other-end-side wall thickness t2 are 0.133 mm, respectively, calculated from the flat tube width of 16 mm, the 14 refrigerant circulation holes, and the refrigerant circulation hole diameter of 1 mm.
  • the condenser disclosed in Patent Document 1 is outside the range of 3.95 or more and 10 or less, which is the range of the polynomial defined in the present embodiment.
  • FIG. 5 shows the simulation result.
  • the vertical axis represents the heat exchange performance index Q / Fa / ⁇ Pa described above
  • the horizontal axis represents the equivalent diameter de of the plurality of refrigerant flow holes 20 formed in the flat tube 14.
  • the equivalent diameter de means a diameter when a plurality of refrigerant flow holes 20 formed in one flat tube 14 are converted into one equivalent circular pipe.
  • the cases where the flat tube width is 12 mm, 14 mm, 15 mm and 16 mm are shown.
  • the equivalent diameter de is 0.5 or more and 0.8 or less, preferably 0.55 or more and 0.76, the maximum points of all the curves are included. Therefore, if the equivalent diameter de is selected as described above, a high-performance condenser 1 can be obtained.
  • the heat exchange performance of the condenser 1 When evaluating the heat exchange performance of the condenser 1, a polynomial using the flat tube width W was used. Thereby, the state change (for example, the ventilation resistance of air and the heat exchange of an air flow direction) by the air which passes the corrugated fin 15 can also be considered, and heat exchange performance can be reflected more strictly.
  • the shape of the heat exchanger is determined in consideration of not only the shape of the flat tube such as the flat tube width W and the flat tube height Hp but also the fin height Hf. Thereby, a pneumatic loss can be considered more strictly.
  • the performance per refrigerant circulation hole can be evaluated.
  • the heat exchange amount Q with respect to the front area Fa and air pressure loss ⁇ Pa was used as a heat exchange performance index, and the above polynomial was used for evaluation.
  • the air pressure loss was sufficiently taken into consideration. Thereby, the performance close to the actual use state can be evaluated. Further, since the heat exchange amount Q is calculated by considering the refrigerant pressure loss in the simulation, the performance closer to the actual use state can be evaluated.
  • the above polynomial is evaluated as a parameter, and when the value of the polynomial is 3.95 or more and 10.0 or less, the above heat exchange performance index is large (the air pressure loss is small and the heat exchange amount is large). It was. Thus, by defining the shape of the high-performance condenser with a polynomial, a high-performance condenser can be obtained with good reproducibility.

Landscapes

  • Engineering & Computer Science (AREA)
  • Physics & Mathematics (AREA)
  • Thermal Sciences (AREA)
  • Mechanical Engineering (AREA)
  • General Engineering & Computer Science (AREA)
  • Geometry (AREA)
  • Heat-Exchange Devices With Radiators And Conduit Assemblies (AREA)
  • Air-Conditioning For Vehicles (AREA)

Abstract

La présente invention se rapporte à un échangeur de chaleur qui entraîne une faible perte de pression d'air et qui est conçu pour échanger une grande quantité de chaleur. Un échangeur de chaleur est pourvu de tubes plats dans lesquels sont formés des trous d'écoulement de fluide frigorigène et qui comportent des ailettes fixées aux surfaces plates des tubes plats, et l'échangeur de chaleur est formé par l'empilement en alternance des tubes plats et des ailettes. L'échangeur de chaleur est configuré de sorte que (W-t1-t2)×Hp×Hf/N soit compris entre 3,95 et 10,0 inclus, où de est le diamètre équivalent des trous d'écoulement de fluide frigorigène, W est la largeur de chaque tube plat, t1 est l'épaisseur de paroi du tube plat au niveau d'une première extrémité dans le sens de sa largeur, l'épaisseur de paroi correspondant à la distance entre la première extrémité et le trou d'écoulement de fluide frigorigène situé le plus près de la première extrémité, t2 est l'épaisseur de paroi du tube plat au niveau de l'autre extrémité dans le sens de sa largeur, l'épaisseur de paroi correspondant à la distance entre l'autre extrémité et le trou d'écoulement de fluide frigorigène situé le plus près de l'autre extrémité, Hp est la hauteur du tube plat dans la direction d'empilement, Hf est la hauteur des ailettes dans la direction d'empilement, et N est le nombre des trous d'écoulement de fluide frigorigène, le diamètre équivalent de étant fixé entre 0,5 et 0,8 inclus et la largeur W des tubes plats étant fixée entre 12 mm et 16 mm inclus.
PCT/JP2011/068610 2010-09-01 2011-08-17 Échangeur de chaleur et appareil de conditionnement d'air pour véhicule pourvu de celui-ci WO2012029542A1 (fr)

Priority Applications (3)

Application Number Priority Date Filing Date Title
US13/695,106 US20130043014A1 (en) 2010-09-01 2011-08-17 Heat exchanger and vehicle air conditioner equipped with the same
CN201180021737.6A CN103038596B (zh) 2010-09-01 2011-08-17 热交换器及具备热交换器的车辆用空调装置
EP11821559.9A EP2613116B1 (fr) 2010-09-01 2011-08-17 Procédé de détermination d'une configuration d'un échangeur de chaleur

Applications Claiming Priority (2)

Application Number Priority Date Filing Date Title
JP2010195658A JP5562769B2 (ja) 2010-09-01 2010-09-01 熱交換器およびこれを備えた車両用空調装置
JP2010-195658 2010-09-01

Publications (1)

Publication Number Publication Date
WO2012029542A1 true WO2012029542A1 (fr) 2012-03-08

Family

ID=45772646

Family Applications (1)

Application Number Title Priority Date Filing Date
PCT/JP2011/068610 WO2012029542A1 (fr) 2010-09-01 2011-08-17 Échangeur de chaleur et appareil de conditionnement d'air pour véhicule pourvu de celui-ci

Country Status (5)

Country Link
US (1) US20130043014A1 (fr)
EP (1) EP2613116B1 (fr)
JP (1) JP5562769B2 (fr)
CN (1) CN103038596B (fr)
WO (1) WO2012029542A1 (fr)

Families Citing this family (3)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
KR102400223B1 (ko) * 2017-12-21 2022-05-23 한온시스템 주식회사 열교환기
CN111692894B (zh) * 2019-12-30 2021-11-16 浙江三花智能控制股份有限公司 微通道扁管及微通道换热器
EP3786565B1 (fr) 2019-05-05 2022-08-31 Hangzhou Sanhua Research Institute Co., Ltd. Tube plat à microcanaux et échangeur de chaleur à microcanaux

Citations (9)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
JPS5572795A (en) * 1978-11-21 1980-05-31 Nippon Denso Co Ltd Corrugated fin type heat exchanger
JPS63243688A (ja) * 1986-11-04 1988-10-11 Showa Alum Corp 凝縮器
JPH02287094A (ja) * 1989-04-26 1990-11-27 Zexel Corp 熱交換器
JPH06142755A (ja) * 1992-11-05 1994-05-24 Nippondenso Co Ltd 多穴管押出用ダイスおよびこの多穴管押出用ダイスを用いて製造された多穴管
JP2001324290A (ja) * 1999-06-04 2001-11-22 Denso Corp 冷媒蒸発器
WO2002042706A1 (fr) * 2000-11-24 2002-05-30 Showa Denko K. K. Tube d'echangeur de chaleur et echangeur de chaleur
JP2005195325A (ja) * 2005-03-14 2005-07-21 Denso Corp 冷媒凝縮器
JP2006336873A (ja) * 2002-10-02 2006-12-14 Showa Denko Kk 熱交換器用チューブ及び熱交換器
JP2009229025A (ja) * 2008-03-25 2009-10-08 Showa Denko Kk オイルクーラ

Family Cites Families (12)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
US5482112A (en) * 1986-07-29 1996-01-09 Showa Aluminum Kabushiki Kaisha Condenser
JP2001165532A (ja) * 1999-12-09 2001-06-22 Denso Corp 冷媒凝縮器
DE10054158A1 (de) * 2000-11-02 2002-05-08 Behr Gmbh Mehrkammerrohr mit kreisförmigen Strömungskanälen
KR100906769B1 (ko) * 2002-01-31 2009-07-10 한라공조주식회사 오뚜기형 유로를 갖는 열교환기용 튜브 및 이를 이용한열교환기
JP4419140B2 (ja) * 2002-07-09 2010-02-24 株式会社ヴァレオサーマルシステムズ 熱交換器用チューブ
US7337832B2 (en) * 2003-04-30 2008-03-04 Valeo, Inc. Heat exchanger
JP3821113B2 (ja) * 2003-05-23 2006-09-13 株式会社デンソー 熱交換用チューブ
US6904963B2 (en) * 2003-06-25 2005-06-14 Valeo, Inc. Heat exchanger
JP4898300B2 (ja) * 2006-05-30 2012-03-14 昭和電工株式会社 エバポレータ
CN101510533B (zh) * 2009-03-24 2011-06-15 赵耀华 新型微电子器件散热器
CN101515572B (zh) * 2009-03-24 2012-04-18 赵耀华 用于led及大功率散热器件的散热器
CN201434549Y (zh) * 2009-06-25 2010-03-31 大洋昭和汽车空调(大连)有限公司 奥迪b8平台车用冷凝器

Patent Citations (9)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
JPS5572795A (en) * 1978-11-21 1980-05-31 Nippon Denso Co Ltd Corrugated fin type heat exchanger
JPS63243688A (ja) * 1986-11-04 1988-10-11 Showa Alum Corp 凝縮器
JPH02287094A (ja) * 1989-04-26 1990-11-27 Zexel Corp 熱交換器
JPH06142755A (ja) * 1992-11-05 1994-05-24 Nippondenso Co Ltd 多穴管押出用ダイスおよびこの多穴管押出用ダイスを用いて製造された多穴管
JP2001324290A (ja) * 1999-06-04 2001-11-22 Denso Corp 冷媒蒸発器
WO2002042706A1 (fr) * 2000-11-24 2002-05-30 Showa Denko K. K. Tube d'echangeur de chaleur et echangeur de chaleur
JP2006336873A (ja) * 2002-10-02 2006-12-14 Showa Denko Kk 熱交換器用チューブ及び熱交換器
JP2005195325A (ja) * 2005-03-14 2005-07-21 Denso Corp 冷媒凝縮器
JP2009229025A (ja) * 2008-03-25 2009-10-08 Showa Denko Kk オイルクーラ

Non-Patent Citations (1)

* Cited by examiner, † Cited by third party
Title
See also references of EP2613116A4 *

Also Published As

Publication number Publication date
EP2613116A1 (fr) 2013-07-10
EP2613116B1 (fr) 2019-01-09
CN103038596A (zh) 2013-04-10
EP2613116A4 (fr) 2015-01-14
US20130043014A1 (en) 2013-02-21
JP5562769B2 (ja) 2014-07-30
JP2012052732A (ja) 2012-03-15
CN103038596B (zh) 2015-03-25

Similar Documents

Publication Publication Date Title
JP4679542B2 (ja) フィンチューブ熱交換器、およびそれを用いた熱交換器ユニット並びに空気調和機
JP5858478B2 (ja) パラレルフロー型熱交換器及びそれを搭載した空気調和機
JP4845943B2 (ja) フィンチューブ型熱交換器および冷凍サイクル空調装置
JP2001165532A (ja) 冷媒凝縮器
US20120031601A1 (en) Multichannel tubes with deformable webs
US20090065183A1 (en) Flat heat transfer tube
US7165606B2 (en) Heat exchanging tube and heat exchanger
JP2009281693A (ja) 熱交換器、その製造方法及びこの熱交換器を用いた空調冷凍装置
JP2009085569A (ja) 蒸発器ユニット
JP2010249343A (ja) フィンチューブ型熱交換器及びこれを用いた空気調和機
JP6214670B2 (ja) 熱交換器及びその熱交換器を用いた冷凍サイクル装置
JP5562769B2 (ja) 熱交換器およびこれを備えた車両用空調装置
JP5812997B2 (ja) 冷凍サイクル及び過冷却部付き凝縮器
JP3922288B2 (ja) 冷媒凝縮器
JP2008298391A (ja) 熱交換器コア熱交換器、および冷凍サイクル装置の蒸発器
JP6360791B2 (ja) フィン・アンド・チューブ型熱交換器用伝熱管及びそれを用いたフィン・アンド・チューブ型熱交換器
CN110869690B (zh) 冷凝器
JP5171983B2 (ja) 熱交換器及び冷凍サイクル装置
JP7047361B2 (ja) 熱交換器
JP2010048473A (ja) 熱交換器ユニット及びこれを備えた空気調和機
WO2013061723A1 (fr) Dispositif contenant un échangeur de chaleur, dispositif de climatisation et procédé pour attacher un élément de thermocapteur à un échangeur de chaleur
JP5540816B2 (ja) 蒸発器ユニット
JP4897968B2 (ja) 伝熱管、及び、伝熱管の製造方法
US7650934B2 (en) Heat exchanger
JP7290396B2 (ja) 熱交換器

Legal Events

Date Code Title Description
WWE Wipo information: entry into national phase

Ref document number: 201180021737.6

Country of ref document: CN

121 Ep: the epo has been informed by wipo that ep was designated in this application

Ref document number: 11821559

Country of ref document: EP

Kind code of ref document: A1

WWE Wipo information: entry into national phase

Ref document number: 2011821559

Country of ref document: EP

WWE Wipo information: entry into national phase

Ref document number: 13695106

Country of ref document: US

NENP Non-entry into the national phase

Ref country code: DE