WO2012029388A1 - 二次電池 - Google Patents

二次電池 Download PDF

Info

Publication number
WO2012029388A1
WO2012029388A1 PCT/JP2011/064408 JP2011064408W WO2012029388A1 WO 2012029388 A1 WO2012029388 A1 WO 2012029388A1 JP 2011064408 W JP2011064408 W JP 2011064408W WO 2012029388 A1 WO2012029388 A1 WO 2012029388A1
Authority
WO
WIPO (PCT)
Prior art keywords
secondary battery
negative electrode
metal
battery according
metal oxide
Prior art date
Application number
PCT/JP2011/064408
Other languages
English (en)
French (fr)
Inventor
緑 志村
川崎 大輔
須黒 雅博
洋子 橋詰
和明 松本
Original Assignee
日本電気株式会社
Priority date (The priority date is an assumption and is not a legal conclusion. Google has not performed a legal analysis and makes no representation as to the accuracy of the date listed.)
Filing date
Publication date
Application filed by 日本電気株式会社 filed Critical 日本電気株式会社
Priority to US13/820,289 priority Critical patent/US20130157119A1/en
Priority to JP2012531726A priority patent/JP5867397B2/ja
Publication of WO2012029388A1 publication Critical patent/WO2012029388A1/ja

Links

Images

Classifications

    • HELECTRICITY
    • H01ELECTRIC ELEMENTS
    • H01MPROCESSES OR MEANS, e.g. BATTERIES, FOR THE DIRECT CONVERSION OF CHEMICAL ENERGY INTO ELECTRICAL ENERGY
    • H01M4/00Electrodes
    • H01M4/02Electrodes composed of, or comprising, active material
    • H01M4/13Electrodes for accumulators with non-aqueous electrolyte, e.g. for lithium-accumulators; Processes of manufacture thereof
    • H01M4/131Electrodes based on mixed oxides or hydroxides, or on mixtures of oxides or hydroxides, e.g. LiCoOx
    • HELECTRICITY
    • H01ELECTRIC ELEMENTS
    • H01MPROCESSES OR MEANS, e.g. BATTERIES, FOR THE DIRECT CONVERSION OF CHEMICAL ENERGY INTO ELECTRICAL ENERGY
    • H01M4/00Electrodes
    • H01M4/02Electrodes composed of, or comprising, active material
    • H01M4/36Selection of substances as active materials, active masses, active liquids
    • H01M4/38Selection of substances as active materials, active masses, active liquids of elements or alloys
    • H01M4/386Silicon or alloys based on silicon
    • HELECTRICITY
    • H01ELECTRIC ELEMENTS
    • H01MPROCESSES OR MEANS, e.g. BATTERIES, FOR THE DIRECT CONVERSION OF CHEMICAL ENERGY INTO ELECTRICAL ENERGY
    • H01M10/00Secondary cells; Manufacture thereof
    • H01M10/05Accumulators with non-aqueous electrolyte
    • H01M10/052Li-accumulators
    • HELECTRICITY
    • H01ELECTRIC ELEMENTS
    • H01MPROCESSES OR MEANS, e.g. BATTERIES, FOR THE DIRECT CONVERSION OF CHEMICAL ENERGY INTO ELECTRICAL ENERGY
    • H01M10/00Secondary cells; Manufacture thereof
    • H01M10/05Accumulators with non-aqueous electrolyte
    • H01M10/056Accumulators with non-aqueous electrolyte characterised by the materials used as electrolytes, e.g. mixed inorganic/organic electrolytes
    • H01M10/0564Accumulators with non-aqueous electrolyte characterised by the materials used as electrolytes, e.g. mixed inorganic/organic electrolytes the electrolyte being constituted of organic materials only
    • H01M10/0566Liquid materials
    • H01M10/0567Liquid materials characterised by the additives
    • HELECTRICITY
    • H01ELECTRIC ELEMENTS
    • H01MPROCESSES OR MEANS, e.g. BATTERIES, FOR THE DIRECT CONVERSION OF CHEMICAL ENERGY INTO ELECTRICAL ENERGY
    • H01M10/00Secondary cells; Manufacture thereof
    • H01M10/05Accumulators with non-aqueous electrolyte
    • H01M10/056Accumulators with non-aqueous electrolyte characterised by the materials used as electrolytes, e.g. mixed inorganic/organic electrolytes
    • H01M10/0564Accumulators with non-aqueous electrolyte characterised by the materials used as electrolytes, e.g. mixed inorganic/organic electrolytes the electrolyte being constituted of organic materials only
    • H01M10/0566Liquid materials
    • H01M10/0569Liquid materials characterised by the solvents
    • HELECTRICITY
    • H01ELECTRIC ELEMENTS
    • H01MPROCESSES OR MEANS, e.g. BATTERIES, FOR THE DIRECT CONVERSION OF CHEMICAL ENERGY INTO ELECTRICAL ENERGY
    • H01M10/00Secondary cells; Manufacture thereof
    • H01M10/05Accumulators with non-aqueous electrolyte
    • H01M10/058Construction or manufacture
    • H01M10/0585Construction or manufacture of accumulators having only flat construction elements, i.e. flat positive electrodes, flat negative electrodes and flat separators
    • HELECTRICITY
    • H01ELECTRIC ELEMENTS
    • H01MPROCESSES OR MEANS, e.g. BATTERIES, FOR THE DIRECT CONVERSION OF CHEMICAL ENERGY INTO ELECTRICAL ENERGY
    • H01M4/00Electrodes
    • H01M4/02Electrodes composed of, or comprising, active material
    • H01M4/13Electrodes for accumulators with non-aqueous electrolyte, e.g. for lithium-accumulators; Processes of manufacture thereof
    • H01M4/133Electrodes based on carbonaceous material, e.g. graphite-intercalation compounds or CFx
    • HELECTRICITY
    • H01ELECTRIC ELEMENTS
    • H01MPROCESSES OR MEANS, e.g. BATTERIES, FOR THE DIRECT CONVERSION OF CHEMICAL ENERGY INTO ELECTRICAL ENERGY
    • H01M4/00Electrodes
    • H01M4/02Electrodes composed of, or comprising, active material
    • H01M4/13Electrodes for accumulators with non-aqueous electrolyte, e.g. for lithium-accumulators; Processes of manufacture thereof
    • H01M4/134Electrodes based on metals, Si or alloys
    • HELECTRICITY
    • H01ELECTRIC ELEMENTS
    • H01MPROCESSES OR MEANS, e.g. BATTERIES, FOR THE DIRECT CONVERSION OF CHEMICAL ENERGY INTO ELECTRICAL ENERGY
    • H01M4/00Electrodes
    • H01M4/02Electrodes composed of, or comprising, active material
    • H01M4/36Selection of substances as active materials, active masses, active liquids
    • H01M4/362Composites
    • H01M4/364Composites as mixtures
    • HELECTRICITY
    • H01ELECTRIC ELEMENTS
    • H01MPROCESSES OR MEANS, e.g. BATTERIES, FOR THE DIRECT CONVERSION OF CHEMICAL ENERGY INTO ELECTRICAL ENERGY
    • H01M4/00Electrodes
    • H01M4/02Electrodes composed of, or comprising, active material
    • H01M4/36Selection of substances as active materials, active masses, active liquids
    • H01M4/58Selection of substances as active materials, active masses, active liquids of inorganic compounds other than oxides or hydroxides, e.g. sulfides, selenides, tellurides, halogenides or LiCoFy; of polyanionic structures, e.g. phosphates, silicates or borates
    • H01M4/583Carbonaceous material, e.g. graphite-intercalation compounds or CFx
    • H01M4/587Carbonaceous material, e.g. graphite-intercalation compounds or CFx for inserting or intercalating light metals
    • HELECTRICITY
    • H01ELECTRIC ELEMENTS
    • H01MPROCESSES OR MEANS, e.g. BATTERIES, FOR THE DIRECT CONVERSION OF CHEMICAL ENERGY INTO ELECTRICAL ENERGY
    • H01M4/00Electrodes
    • H01M4/02Electrodes composed of, or comprising, active material
    • H01M4/62Selection of inactive substances as ingredients for active masses, e.g. binders, fillers
    • H01M4/621Binders
    • H01M4/622Binders being polymers
    • HELECTRICITY
    • H01ELECTRIC ELEMENTS
    • H01MPROCESSES OR MEANS, e.g. BATTERIES, FOR THE DIRECT CONVERSION OF CHEMICAL ENERGY INTO ELECTRICAL ENERGY
    • H01M50/00Constructional details or processes of manufacture of the non-active parts of electrochemical cells other than fuel cells, e.g. hybrid cells
    • H01M50/10Primary casings; Jackets or wrappings
    • H01M50/102Primary casings; Jackets or wrappings characterised by their shape or physical structure
    • H01M50/105Pouches or flexible bags
    • HELECTRICITY
    • H01ELECTRIC ELEMENTS
    • H01MPROCESSES OR MEANS, e.g. BATTERIES, FOR THE DIRECT CONVERSION OF CHEMICAL ENERGY INTO ELECTRICAL ENERGY
    • H01M2300/00Electrolytes
    • H01M2300/0017Non-aqueous electrolytes
    • H01M2300/0025Organic electrolyte
    • YGENERAL TAGGING OF NEW TECHNOLOGICAL DEVELOPMENTS; GENERAL TAGGING OF CROSS-SECTIONAL TECHNOLOGIES SPANNING OVER SEVERAL SECTIONS OF THE IPC; TECHNICAL SUBJECTS COVERED BY FORMER USPC CROSS-REFERENCE ART COLLECTIONS [XRACs] AND DIGESTS
    • Y02TECHNOLOGIES OR APPLICATIONS FOR MITIGATION OR ADAPTATION AGAINST CLIMATE CHANGE
    • Y02EREDUCTION OF GREENHOUSE GAS [GHG] EMISSIONS, RELATED TO ENERGY GENERATION, TRANSMISSION OR DISTRIBUTION
    • Y02E60/00Enabling technologies; Technologies with a potential or indirect contribution to GHG emissions mitigation
    • Y02E60/10Energy storage using batteries
    • YGENERAL TAGGING OF NEW TECHNOLOGICAL DEVELOPMENTS; GENERAL TAGGING OF CROSS-SECTIONAL TECHNOLOGIES SPANNING OVER SEVERAL SECTIONS OF THE IPC; TECHNICAL SUBJECTS COVERED BY FORMER USPC CROSS-REFERENCE ART COLLECTIONS [XRACs] AND DIGESTS
    • Y02TECHNOLOGIES OR APPLICATIONS FOR MITIGATION OR ADAPTATION AGAINST CLIMATE CHANGE
    • Y02PCLIMATE CHANGE MITIGATION TECHNOLOGIES IN THE PRODUCTION OR PROCESSING OF GOODS
    • Y02P70/00Climate change mitigation technologies in the production process for final industrial or consumer products
    • Y02P70/50Manufacturing or production processes characterised by the final manufactured product
    • YGENERAL TAGGING OF NEW TECHNOLOGICAL DEVELOPMENTS; GENERAL TAGGING OF CROSS-SECTIONAL TECHNOLOGIES SPANNING OVER SEVERAL SECTIONS OF THE IPC; TECHNICAL SUBJECTS COVERED BY FORMER USPC CROSS-REFERENCE ART COLLECTIONS [XRACs] AND DIGESTS
    • Y02TECHNOLOGIES OR APPLICATIONS FOR MITIGATION OR ADAPTATION AGAINST CLIMATE CHANGE
    • Y02TCLIMATE CHANGE MITIGATION TECHNOLOGIES RELATED TO TRANSPORTATION
    • Y02T10/00Road transport of goods or passengers
    • Y02T10/60Other road transportation technologies with climate change mitigation effect
    • Y02T10/70Energy storage systems for electromobility, e.g. batteries

Definitions

  • the present embodiment relates to a secondary battery, and more particularly to a lithium ion secondary battery.
  • Examples of means for obtaining a high energy density secondary battery include a method using a negative electrode material having a large capacity, a method using a non-aqueous electrolyte having excellent stability, and the like.
  • Patent Document 1 discloses that silicon oxide or silicate is used as a negative electrode active material of a secondary battery.
  • Patent Document 2 discloses a negative electrode for a secondary battery including an active material layer including carbon material particles capable of inserting and extracting lithium ions, metal particles capable of being alloyed with lithium, and oxide particles capable of inserting and extracting lithium ions. Is disclosed.
  • Patent Document 3 discloses a negative electrode material for a secondary battery in which the surface of particles having a structure in which silicon microcrystals are dispersed in a silicon compound is coated with carbon.
  • Patent Document 4 discloses that a negative electrode capable of inserting and extracting lithium is used, and a nitrile compound having a carbon-carbon unsaturated bond is used in an electrolytic solution.
  • Patent Document 5 discloses using an electrolytic solution containing a nitrile compound having a specific structure.
  • Patent Document 6 discloses using an electrolytic solution containing a fluorinated nitrile compound.
  • Patent Document 7 discloses the use of an electrolyte containing a nitrile compound having a chain saturated hydrocarbon group having 2 or more carbon atoms, a fluorinated cyclic carbonate, and a carboxylic acid ester, using a negative electrode active material that is alloyed with lithium. Has been.
  • the negative electrode for a secondary battery described in Patent Document 2 has an effect of relaxing the volume change of the entire negative electrode when lithium is occluded and released due to the difference in charge / discharge potential of the three components.
  • Patent Document 2 the relationship in the coexistence state of the three components, and the binder, electrolyte solution, electrode element structure, and exterior body, which are indispensable for forming a lithium ion secondary battery, are sufficiently studied. There was no point.
  • Patent Document 3 shows that the binder, electrolyte solution, electrode element structure, and exterior body, which are indispensable for forming a lithium ion secondary battery, have not been sufficiently studied.
  • Patent Documents 4 to 7 it has been found that the negative electrode active material, the negative electrode binder, the electrode element structure, and the exterior body that are indispensable for forming a lithium ion secondary battery are not sufficiently studied.
  • the distortion of the electrode element increases when gas is generated, compared to a secondary battery using a metal can as the exterior body. This is because the laminate film is more easily deformed by the internal pressure of the secondary battery than the metal can. Furthermore, when sealing a secondary battery using a laminate film as an exterior body, the internal pressure of the battery is usually lower than the atmospheric pressure, so there is no extra space inside, and if gas is generated, it is immediately It tends to lead to battery volume changes and electrode element deformation.
  • an object of the present embodiment is to provide a secondary battery in which decomposition of the electrolytic solution is suppressed and gas generation is reduced even when a laminate film is used as an exterior body.
  • a laminated laminate type secondary battery having an electrode element in which a positive electrode and a negative electrode are opposed to each other, an electrolytic solution, and an exterior body containing the electrode element and the electrolytic solution,
  • the negative electrode includes a metal that can be alloyed with lithium (a), a metal oxide (b) that can occlude and release lithium ions, and a negative electrode active material that includes a carbon material (c) that can occlude and release lithium ions.
  • the negative electrode current collector is bound by at least one selected from polyimide and polyamideimide,
  • the electrolytic solution includes a nitrile compound represented by the following general formula (1).
  • R 1 represents a substituted or unsubstituted saturated hydrocarbon group or a substituted or unsubstituted aromatic hydrocarbon group.
  • decomposition of the electrolytic solution can be suppressed by using an electrolytic solution containing a predetermined nitrile compound. Therefore, even when a laminate film is used as the outer package, it is possible to provide a high-performance secondary battery in which the battery volume change and the electrode element deformation are suppressed.
  • FIG. 3 is a schematic cross-sectional view showing a structure of an electrode element included in a laminated laminate type secondary battery.
  • an electrode element in which a positive electrode and a negative electrode are arranged to face each other and an electrolytic solution are included in an outer package.
  • the shape of the secondary battery is a laminated laminate type.
  • a laminated laminate type secondary battery will be described.
  • FIG. 1 is a schematic cross-sectional view showing a structure of an electrode element included in a laminated laminate type secondary battery.
  • the electrode element has a laminated structure in which a planar positive electrode and a negative electrode are arranged to face each other.
  • the electrode element shown in FIG. 1 is formed by alternately stacking a plurality of positive electrodes c and a plurality of negative electrodes a with a separator b interposed therebetween. ing.
  • the positive electrode current collector e of each positive electrode c is welded to and electrically connected to each other at an end portion not covered with the positive electrode active material, and a positive electrode terminal f is welded to the welded portion.
  • the negative electrode current collector d of each negative electrode a is welded and electrically connected to each other at an end portion not covered with the negative electrode active material, and a negative electrode terminal g is welded to the welded portion.
  • an electrode element having such a planar laminated structure does not have a portion with a small R (a region close to the winding core of the wound structure), the electrode element associated with charge / discharge is compared with an electrode element having a wound structure. There is an advantage that it is hardly affected by the volume change.
  • an electrode element having a planar laminated structure has a problem that when a gas is generated between the electrodes, the generated gas tends to stay between the electrodes. This is because, in the case of an electrode element having a wound structure, the distance between the electrodes is difficult to widen because tension is applied to the electrodes, whereas in the case of an electrode element having a laminated structure, the distance between the electrodes is widened. This is because it is easy. This problem is particularly noticeable when the outer package is a laminate film.
  • Negative electrode The negative electrode is formed by binding a negative electrode active material to a negative electrode current collector with a negative electrode binder.
  • the negative electrode active material in the present embodiment includes a metal (a) that can be alloyed with lithium, a metal oxide (b) that can occlude and release lithium ions, and a carbon material (c) that can occlude and release lithium ions. .
  • metal (a) Al, Si, Pb, Sn, In, Bi, Ag, Ba, Ca, Hg, Pd, Pt, Te, Zn, La, or an alloy of two or more thereof can be used. .
  • silicon (Si) is included as the metal (a).
  • silicon oxide, aluminum oxide, tin oxide, indium oxide, zinc oxide, lithium oxide, or a composite thereof can be used as the metal oxide (b).
  • silicon oxide is preferably included as the metal oxide (b). This is because silicon oxide is relatively stable and hardly causes a reaction with other compounds.
  • one or more elements selected from nitrogen, boron and sulfur may be added to the metal oxide (b), for example, 0.1 to 5% by mass. By carrying out like this, the electrical conductivity of a metal oxide (b) can be improved.
  • carbon material (c) graphite, amorphous carbon, diamond-like carbon, carbon nanotube, or a composite thereof can be used.
  • graphite with high crystallinity has high electrical conductivity, and is excellent in adhesiveness and voltage flatness with a positive electrode current collector made of a metal such as copper.
  • amorphous carbon having low crystallinity has a relatively small volume expansion, it has a high effect of relaxing the volume expansion of the entire negative electrode, and deterioration due to non-uniformity such as crystal grain boundaries and defects hardly occurs.
  • the metal oxide (b) has an amorphous structure.
  • the metal oxide (b) having an amorphous structure can suppress the volume expansion of the carbon material (c) and the metal (a), and can also suppress the decomposition of the electrolytic solution containing a phosphate ester compound. Although this mechanism is not clear, it is presumed that the metal oxide (b) has an amorphous structure, so that it has some influence on the film formation at the interface between the carbon material (c) and the electrolytic solution.
  • the amorphous structure is considered to have relatively few elements due to non-uniformity such as crystal grain boundaries and defects.
  • the metal oxide (b) has an amorphous structure. Specifically, when the metal oxide (b) does not have an amorphous structure, a peak specific to the metal oxide (b) is observed, but all or part of the metal oxide (b) is amorphous. In the case of having a structure, the intrinsic peak is observed broad in the metal oxide (b).
  • a negative electrode active material in which all or part of the metal oxide (b) has an amorphous structure and all or part of the metal (a) is dispersed in the metal oxide (b) is disclosed in, for example, Patent Literature 3 can be prepared. That is, by performing a CVD process on the metal oxide (b) in an atmosphere containing an organic gas such as methane gas, the metal (a) in the metal oxide (b) is nanoclustered and the surface is a carbon material (c ) Can be obtained. Moreover, the said negative electrode active material is producible also by mixing a carbon material (c), a metal (a), and a metal oxide (b) by mechanical milling.
  • the metal oxide (b) is preferably a metal oxide constituting the metal (a).
  • the metal (a) and the metal oxide (b) are preferably silicon (Si) and silicon oxide (SiO), respectively.
  • all or part of the metal (a) is dispersed in the metal oxide (b).
  • the metal oxide (b) By dispersing at least a part of the metal (a) in the metal oxide (b), volume expansion as the whole negative electrode can be further suppressed, and decomposition of the electrolytic solution can also be suppressed.
  • all or part of the metal (a) is dispersed in the metal oxide (b) because of observation with a transmission electron microscope (general TEM observation) and energy dispersive X-ray spectroscopy (general). This can be confirmed by using a combination of a standard EDX measurement.
  • the cross section of the sample containing the metal particles (a) is observed, the oxygen concentration of the metal particles (a) dispersed in the metal oxide (b) is measured, and the metal particles (a) are configured. It can be confirmed that the metal being used is not an oxide.
  • each metal (a), metal oxide (b) and carbon material (c) with respect to the total of metal (a), metal oxide (b) and carbon material (c) is respectively It is preferable that they are 5 mass% or more and 90 mass% or less, 5 mass% or more and 90 mass% or less, and 2 mass% or more and 80 mass% or less.
  • each metal (a), metal oxide (b), and carbon material (c) content with respect to the sum total of a metal (a), a metal oxide (b), and a carbon material (c) is 20 masses, respectively. % To 50% by mass, 40% to 70% by mass, and 2% to 30% by mass are more preferable.
  • the metal (a), the metal oxide (b), and the carbon material (c) are not particularly limited, but particulate materials can be used.
  • the average particle diameter of the metal (a) may be smaller than the average particle diameter of the carbon material (c) and the average particle diameter of the metal oxide (b). In this way, the metal (a) having a small volume change during charge / discharge has a relatively small particle size, and the carbon material (c) and the metal oxide (b) having a large volume change have a relatively large particle size. Therefore, dendrite formation and alloy pulverization are more effectively suppressed.
  • the average particle diameter of the metal (a) can be, for example, 20 ⁇ m or less, and is preferably 15 ⁇ m or less.
  • the average particle diameter of a metal oxide (b) is 1/2 or less of the average particle diameter of a carbon material (c), and the average particle diameter of a metal (a) is an average of a metal oxide (b). It is preferable that it is 1/2 or less of a particle diameter. Furthermore, the average particle diameter of the metal oxide (b) is 1 ⁇ 2 or less of the average particle diameter of the carbon material (c), and the average particle diameter of the metal (a) is the average particle diameter of the metal oxide (b). It is more preferable that it is 1/2 or less.
  • the average particle diameter of the silicon oxide (b) is set to 1/2 or less of the average particle diameter of the graphite (c), and the average particle diameter of the silicon (a) is the average particle of the silicon oxide (b). It is preferable to make it 1/2 or less of the diameter. More specifically, the average particle diameter of silicon (a) can be, for example, 20 ⁇ m or less, and is preferably 15 ⁇ m or less.
  • the negative electrode binder at least one selected from polyimide (PI) and polyamideimide (PAI) can be used.
  • PI polyimide
  • PAI polyamideimide
  • the content of the negative electrode binder is preferably in the range of 1 to 30% by mass and more preferably 2 to 25% by mass with respect to the total amount of the negative electrode active material and the negative electrode binder.
  • the content is preferably in the range of 1 to 30% by mass and more preferably 2 to 25% by mass with respect to the total amount of the negative electrode active material and the negative electrode binder.
  • the negative electrode current collector is not particularly limited, but aluminum, nickel, copper, silver, and alloys thereof are preferable from the viewpoint of electrochemical stability.
  • Examples of the shape include foil, flat plate, and mesh.
  • the negative electrode can be produced by forming a negative electrode active material layer containing a negative electrode active material and a negative electrode binder on a negative electrode current collector.
  • Examples of the method for forming the negative electrode active material layer include a doctor blade method, a die coater method, a CVD method, and a sputtering method.
  • a thin film of aluminum, nickel, or an alloy thereof may be formed by a method such as vapor deposition or sputtering to form a negative electrode current collector.
  • the positive electrode is formed, for example, by binding a positive electrode active material so as to cover the positive electrode current collector with a positive electrode binder.
  • lithium manganate having a layered structure such as LiMnO 2 , Li x Mn 2 O 4 (0 ⁇ x ⁇ 2) or lithium manganate having a spinel structure; LiCoO 2 , LiNiO 2 or a transition metal thereof Lithium transition metal oxides in which a specific transition metal such as LiNi 1/3 Co 1/3 Mn 1/3 O 2 does not exceed half the lithium transition metal oxides; In which Li is made excessive in comparison with the stoichiometric composition.
  • a positive electrode active material can be used individually by 1 type or in combination of 2 or more types.
  • the positive electrode binder the same as the negative electrode binder can be used.
  • polyvinylidene fluoride is preferable from the viewpoint of versatility and low cost.
  • the content of the positive electrode binder is 1 to 20% by mass with respect to the total amount of the positive electrode active material and the positive electrode binder from the viewpoints of “sufficient binding force” and “high energy” which are in a trade-off relationship.
  • the range is preferable, and 2 to 10% by mass is more preferable.
  • the positive electrode current collector the same as the negative electrode current collector can be used.
  • a conductive auxiliary material may be added to the positive electrode active material layer containing the positive electrode active material for the purpose of reducing impedance.
  • the conductive auxiliary material include carbonaceous fine particles such as graphite, carbon black, and acetylene black.
  • Electrolytic Solution used in the present embodiment includes a nitrile compound including a nitrile compound represented by the following general formula (1).
  • a film can be formed on the negative electrode surface, and decomposition of the electrolytic solution can be suppressed.
  • R 1 represents a substituted or unsubstituted saturated hydrocarbon group or a substituted or unsubstituted aromatic hydrocarbon group.
  • the saturated hydrocarbon group is preferably a saturated hydrocarbon group having 1 to 18 carbon atoms in total, and more preferably a saturated hydrocarbon group having 1 to 12 carbon atoms in total.
  • a saturated hydrocarbon group having 1 to 6 carbon atoms in total is more preferable.
  • the aromatic hydrocarbon group is preferably an aromatic hydrocarbon group having 6 to 18 carbon atoms in total, more preferably an aromatic hydrocarbon group having 6 to 12 carbon atoms in total, and 6 to 10 carbon atoms in total. The aromatic hydrocarbon group is more preferable.
  • saturated hydrocarbon group is preferably a straight chain.
  • the substituent is selected from the group consisting of an alkyl group, an aryl group, an alkoxy group, an amino group, a cyano group, and a halogen atom.
  • an alkyl group having 1 to 6 carbon atoms for example, a methyl group, an ethyl group, a propyl group, an isopropyl group, a butyl group
  • an aryl group having 6 to 10 carbon atoms for example, phenyl group, naphthyl group
  • alkoxy group having 1 to 6 carbon atoms for example, methoxy group, ethoxy group, n-propoxy group, iso-propoxy group, n-butoxy group, tert-butoxy group
  • amino group A dimethylamino group, a methylamino group, an ethylamino group, and a diethylamino group
  • a cyano group for example, a fluorine atom, a chlorine atom, and a bromine atom.
  • alkyl group, aryl group, or alkoxy group as a substituent at least one hydrogen atom may be substituted with a halogen atom, and is preferably substituted with a fluorine atom or a chlorine atom.
  • the amino group as a substituent also includes an alkyl-substituted amino group substituted with an alkyl group, and at least one hydrogen atom of the alkyl group of the alkyl-substituted amino group may be substituted with a cyano group.
  • nitrile compounds can be used alone or in combination of two or more.
  • R 1 preferably has at least one halogen atom, and more preferably has at least one fluorine atom.
  • the nitrile compound is preferably a compound represented by the following general formula (2).
  • Ra to Re each independently represents a hydrogen group, an alkyl group, a cyano group, or a halogen atom.
  • Any one of Ra to Re is preferably a fluorine atom.
  • the nitrile compound preferably functions as a solvent.
  • the content of the nitrile compound in the electrolytic solution is not particularly limited, but is preferably 0.1 to 30% by mass, more preferably 0.5 to 20% by mass, and 1 to More preferably, it is 5 mass%.
  • the content of the nitrile compound is not particularly limited, but is preferably 0.1 to 30% by mass, more preferably 0.5 to 20% by mass, and 1 to More preferably, it is 5 mass%.
  • Electrolyte generally contains non-aqueous electrolyte in addition to nitrile compounds.
  • cyclic carbonates such as propylene carbonate (PC), ethylene carbonate (EC), butylene carbonate (BC), vinylene carbonate (VC); DMC), chain carbonates such as diethyl carbonate (DEC), ethyl methyl carbonate (EMC) and dipropyl carbonate (DPC); propylene carbonate derivatives; aliphatic carboxylic acid esters such as methyl formate, methyl acetate and ethyl propionate Aprotic organic solvents such as;
  • Non-aqueous electrolytes include ethylene carbonate (EC), propylene carbonate (PC), butylene carbonate (BC), vinylene carbonate (VC), dimethyl carbonate (DMC), diethyl carbonate (DEC), ethyl methyl carbonate (MEC), Cyclic or chain carbonates such
  • cyclic or chain carbonates as the non-aqueous electrolyte. Since carbonates have a large relative dielectric constant, the ion dissociation property of the electrolytic solution is improved. Further, since the viscosity of the electrolytic solution is lowered, there is an advantage that the ion mobility is improved. However, when carbonates having a carbonate structure are used as the electrolytic solution, the carbonates are easily decomposed to generate CO 2 gas. In particular, in the case of a laminated laminate type secondary battery, when gas is generated inside, a problem of swelling appears remarkably, which tends to lead to performance degradation.
  • the nitrile compound can suppress decomposition of the electrolytic solution and suppress generation of gas. Therefore, in the present embodiment, the electrolytic solution preferably contains a nitrile compound and a cyclic or chain carbonate.
  • the content of the nitrile compound is preferably 1 to 30% by mass, more preferably 1 to 20% by mass, and more preferably 1 to 5% by mass based on the total amount of the nitrile compound and the carbonates. Is more preferable.
  • the electrolytic solution further includes a supporting salt.
  • the supporting salt include LiPF 6 , LiAsF 6 , LiAlCl 4 , LiClO 4 , LiBF 4 , LiSbF 6 , LiCF 3 SO 3 , LiC 4 F 9 SO 3 , Li (CF 3 SO 2 ) 2 , LiN (CF 3 And a lithium salt such as SO 2 ) 2 .
  • a supporting salt can be used individually by 1 type or in combination of 2 or more types.
  • separator a porous film such as polypropylene or polyethylene or a nonwoven fabric can be used. Moreover, what laminated
  • Exterior Body is a laminate film.
  • the material for the laminate film is not particularly limited, and aluminum, silica-coated polypropylene, polyethylene, and the like can be used. In particular, it is preferable to use an aluminum laminate film from the viewpoint of suppressing volume expansion.
  • the generation of gas is suppressed, so that deformation such as swelling due to the internal pressure of the secondary battery can be suppressed.
  • Example 1 Silicon having an average particle diameter of 5 ⁇ m as the metal (a), amorphous silicon oxide (SiO x , 0 ⁇ x ⁇ 2) having an average particle diameter of 13 ⁇ m as the metal oxide (b), and carbon material (c) And graphite having an average particle size of 30 ⁇ m were weighed at a mass ratio of 29:61:10. And these materials were mixed by what is called mechanical milling for 24 hours, and the negative electrode active material was obtained.
  • silicon as the metal (a) is dispersed in silicon oxide (SiO x , 0 ⁇ x ⁇ 2) as the metal oxide (b).
  • the content (%) of the negative electrode binder indicates the content (% by mass) of the negative electrode binder in the negative electrode active material and the negative electrode binder.
  • a mass ratio of lithium nickelate (LiNi 0.80 Co 0.15 Al 0.15 O 2 ) as the positive electrode active material, carbon black as the conductive auxiliary material, and polyvinylidene fluoride as the positive electrode binder is 90: 5: 5 Weighed with. These materials were mixed with n-methylpyrrolidone to prepare a positive electrode slurry. The positive electrode slurry was applied to an aluminum foil having a thickness of 20 ⁇ m, dried, and further pressed to produce a positive electrode.
  • 3 layers of the obtained positive electrode and 4 layers of the negative electrode were alternately stacked while sandwiching a polypropylene porous film as a separator.
  • the ends of the positive electrode current collector not covered with the positive electrode active material and the negative electrode current collector not covered with the negative electrode active material were welded.
  • the positive electrode terminal made from aluminum and the negative electrode terminal made from nickel were each welded to the welding location, and the electrode element which has a planar laminated structure was obtained.
  • butyronitrile as a nitrile compound and carbonate-based non-aqueous electrolyte were mixed at a ratio of 2 parts by mass and 98 parts by mass, respectively, to prepare a mixed solution.
  • LiPF 6 as a supporting salt was dissolved in this mixed solution at a concentration of 1 mol / l to prepare an electrolytic solution.
  • a mixed solvent of EC / PC / DMC / EMC / DEC 20/20/20/20/20 (volume ratio) was used as the carbonate-based nonaqueous electrolytic solution.
  • the content (%) indicates the content (% by mass) of the nitrile compound in the nitrile compound and the carbonate-based nonaqueous electrolytic solution.
  • the electrode element was wrapped with an aluminum laminate film as an exterior body, an electrolyte solution was poured into the inside, and then sealed while reducing the pressure to 0.1 atm to prepare a secondary battery.
  • Examples 2 to 58 A secondary battery was prepared and evaluated in the same manner as in Example 1 except that the type of the negative electrode binder and the type of the nitrile compound were as shown in Tables 1 to 3. The results are shown in Tables 1 to 3.
  • Example 59 In accordance with the method described in Patent Document 3, a negative electrode active material containing silicon, amorphous silicon oxide (SiO x , 0 ⁇ x ⁇ 2), and carbon in a mass ratio of 29:61:10 was obtained.
  • silicon that is metal (a) is dispersed in amorphous silicon oxide that is metal oxide (b).
  • it implemented similarly to Example 1 except having used this negative electrode active material. The results are shown in Table 3.
  • Example 60 The same operation as in Example 4 was performed except that the negative electrode active material used in Example 59 was used. The results are shown in Table 3.
  • Example 61 The same operation as in Example 7 was performed except that the negative electrode active material used in Example 59 was used. The results are shown in Table 4.
  • Example 62 The same operation as in Example 11 was performed except that the negative electrode active material used in Example 59 was used. The results are shown in Table 4.
  • Example 63 The same operation as in Example 16 was performed except that the negative electrode active material used in Example 59 was used. The results are shown in Table 4.
  • Example 64 The same operation as in Example 22 was performed except that the negative electrode active material used in Example 59 was used. The results are shown in Table 4.
  • Example 4 A secondary battery was prepared and evaluated in the same manner as in Example 1 except that the type of the negative electrode binder and the type of the nitrile compound were as shown in Table 3. The results are shown in Table 4.
  • This embodiment can be used in all industrial fields that require a power source and in industrial fields related to the transport, storage, and supply of electrical energy.
  • power supplies for mobile devices such as mobile phones and notebook computers
  • power supplies for transportation and transportation media such as trains, satellites, and submarines, including electric vehicles such as electric cars, hybrid cars, electric bikes, and electric assist bicycles
  • a backup power source such as a UPS
  • a power storage facility for storing power generated by solar power generation, wind power generation, etc .

Landscapes

  • Chemical & Material Sciences (AREA)
  • Chemical Kinetics & Catalysis (AREA)
  • Electrochemistry (AREA)
  • General Chemical & Material Sciences (AREA)
  • Engineering & Computer Science (AREA)
  • Manufacturing & Machinery (AREA)
  • Inorganic Chemistry (AREA)
  • Materials Engineering (AREA)
  • Composite Materials (AREA)
  • Physics & Mathematics (AREA)
  • Condensed Matter Physics & Semiconductors (AREA)
  • General Physics & Mathematics (AREA)
  • Secondary Cells (AREA)
  • Battery Electrode And Active Subsutance (AREA)
  • Sealing Battery Cases Or Jackets (AREA)

Abstract

 外装体としてラミネートフィルムを用いた場合でも、電解液の分解が抑制され、ガス発生が低減される二次電池を提供することを目的とする。 本実施形態は、正極および負極が対向配置された電極素子と、電解液と、前記電極素子および前記電解液を内包する外装体と、を有する積層ラミネート型の二次電池であって、前記負極は、リチウムと合金可能な金属(a)、リチウムイオンを吸蔵、放出し得る金属酸化物(b)、及びリチウムイオンを吸蔵、放出し得る炭素材料(c)を含む負極活物質が、ポリイミド及びポリアミドイミドから選ばれる少なくとも1種によって負極集電体と結着されてなり、前記電解液は所定のニトリル系化合物を含むことを特徴とする二次電池である。

Description

二次電池
 本実施形態は、二次電池に関し、特にリチウムイオン二次電池に関する。
 ノート型パソコン、携帯電話、電気自動車などの急速な市場拡大に伴い、高エネルギー密度の二次電池が求められている。高エネルギー密度の二次電池を得る手段として、容量の大きな負極材料を用いる方法や、安定性に優れた非水電解液を使用する方法などが挙げられる。
 特許文献1には、ケイ素の酸化物またはケイ酸塩を二次電池の負極活物質に利用することが開示されている。特許文献2には、リチウムイオンを吸蔵、放出し得る炭素材料粒子、リチウムと合金可能な金属粒子、リチウムイオンを吸蔵、放出し得る酸化物粒子を含む活物質層を備えた二次電池用負極が開示されている。特許文献3には、ケイ素の微結晶がケイ素化合物に分散した構造を有する粒子の表面を炭素でコーティングした二次電池用負極材料が開示されている。
 特許文献4では、リチウムを吸蔵、放出することができる負極を用い、電解液に炭素-炭素不飽和結合を有するニトリル化合物を用いることが開示されている。
 特許文献5では、特定の構造を有するニトリル化合物を含む電解液を用いることが開示されている。
 特許文献6では、フッ素化されたニトリル化合物を含む電解液を用いることが開示されている。
 特許文献7では、リチウムと合金化する負極活物質を用い、炭素数が2以上の鎖状飽和炭化水素基を有するニトリル化合物、フッ素化環状カーボネート及びカルボン酸エステルを含む電解液を用いることが開示されている。
特開平6-325765号公報 特開2003-123740号公報 特開2004-47404号公報 特開2003-86247号公報 特開2008-166271号公報 特開2003-7336号公報 特開2009-231261号公報
 しかしながら、特許文献1に記載されたケイ素の酸化物を負極活物質に利用した二次電池を45℃以上で充放電させると、充放電サイクルに伴う容量低下が著しく大きくなる場合があった。
 特許文献2に記載された二次電池用負極は、3種の成分の充放電電位の違いにより、リチウムを吸蔵、放出する際、負極全体としての体積変化を緩和させる効果がある。しかしながら、特許文献2では3種の成分の共存状態における関係や、リチウムイオン二次電池を形成する上で不可欠な結着剤、電解液、電極素子構造、および外装体について、十分に検討されていない点が見られた。
 特許文献3に記載された二次電池用負極材料も、負極全体として体積変化を緩和させる効果がある。しかしながら、特許文献3では、リチウムイオン二次電池を形成する上で不可欠な結着剤、電解液、電極素子構造、および外装体について、十分に検討されていない点が見られた。
 特許文献4乃至7では、リチウムイオン二次電池を形成する上で不可欠な負極活物質、負極結着剤、電極素子構造、および外装体について、十分に検討されていない点が見られた。
 また、外装体としてラミネートフィルムを用いた二次電池の場合、外装体として金属缶を用いた二次電池に比べて、ガスが発生すると電極素子の歪みが大きくなる。これは、ラミネートフィルムが金属缶に比べて二次電池の内圧により変形しやすいためである。さらに、外装体としてラミネートフィルムを用いた二次電池を封止する際には、通常、電池内圧を大気圧より低くするため、内部に余分な空間がなく、ガスが発生した場合にそれが直ちに電池の体積変化や電極素子の変形につながりやすい。
 そこで、本実施形態は、外装体としてラミネートフィルムを用いた場合でも、電解液の分解が抑制され、ガス発生が低減される二次電池を提供することを目的とする。
 本実施形態は、
 正極および負極が対向配置された電極素子と、電解液と、前記電極素子および前記電解液を内包する外装体と、を有する積層ラミネート型の二次電池であって、
 前記負極は、リチウムと合金可能な金属(a)、リチウムイオンを吸蔵、放出し得る金属酸化物(b)、及びリチウムイオンを吸蔵、放出し得る炭素材料(c)を含む負極活物質が、ポリイミド及びポリアミドイミドから選ばれる少なくとも1種によって負極集電体と結着されてなり、
 前記電解液は下記一般式(1)で表されるニトリル系化合物を含むことを特徴とする二次電池である。
   R-CN     (1)
[Rは、置換若しくは無置換の飽和炭化水素基、又は置換若しくは無置換の芳香族炭化水素基を表す。]
 本実施形態において、所定のニトリル系化合物を含む電解液を用いることにより電解液の分解を抑制することができる。したがって、外装体としてラミネートフィルムを用いた場合でも電池の体積変化や電極素子の変形の発生が抑制された高性能の二次電池を提供することができる。
積層ラミネート型の二次電池が有する電極素子の構造を示す模式的断面図である。
 以下、本実施形態について、詳細に説明する。
 本実施形態に係る二次電池は、正極および負極が対向配置された電極素子と、電解液とが外装体に内包されている。二次電池の形状は、積層ラミネート型である。以下、積層ラミネート型の二次電池について説明する。
 図1は、積層ラミネート型の二次電池が有する電極素子の構造を示す模式的断面図である。電極素子は平面状の正極及び負極が対向配置された積層構造を有し、図1に示す電極素子は、正極cの複数および負極aの複数がセパレータbを挟みつつ交互に積み重ねられて形成されている。各正極cが有する正極集電体eは、正極活物質に覆われていない端部で互いに溶接されて電気的に接続され、さらにその溶接箇所に正極端子fが溶接されている。各負極aが有する負極集電体dは、負極活物質に覆われていない端部で互いに溶接されて電気的に接続され、さらにその溶接箇所に負極端子gが溶接されている。
 このような平面状の積層構造を有する電極素子は、Rの小さい部分(捲回構造の巻き芯に近い領域)がないため、捲回構造を持つ電極素子に比べて、充放電に伴う電極の体積変化に対する影響を受けにくいという利点がある。ところが、平面状の積層構造を持つ電極素子には、電極間にガスが発生した際に、その発生したガスが電極間に滞留しやすい問題点がある。これは、捲回構造を持つ電極素子の場合には電極に張力が働いているため電極間の間隔が広がりにくいのに対して、積層構造を持つ電極素子の場合には電極間の間隔が広がりやすいためである。外装体がラミネートフィルムであった場合、この問題は特に顕著となる。
 本実施形態では、外装体としてラミネートフィルムを選択し、電極素子が平面状の積層構造を有する場合でも、上述の問題が解決され、高エネルギー型の負極を用いた積層ラミネート型のリチウムイオン二次電池においても長寿命駆動が可能となる。
 [1]負極
 負極は、負極活物質が負極用結着剤によって負極集電体に結着されてなる。
 本実施形態における負極活物質は、リチウムと合金可能な金属(a)、リチウムイオンを吸蔵、放出し得る金属酸化物(b)、及びリチウムイオンを吸蔵、放出し得る炭素材料(c)を含む。
 金属(a)としては、Al、Si、Pb、Sn、In、Bi、Ag、Ba、Ca、Hg、Pd、Pt、Te、Zn、La、またはこれらの2種以上の合金を用いることができる。特に、金属(a)としてシリコン(Si)を含むことが好ましい。
 金属酸化物(b)としては、酸化シリコン、酸化アルミニウム、酸化スズ、酸化インジウム、酸化亜鉛、酸化リチウム、またはこれらの複合物を用いることができる。特に、金属酸化物(b)として酸化シリコンを含むことが好ましい。これは、酸化シリコンは、比較的安定で他の化合物との反応を引き起こしにくいからである。また、金属酸化物(b)に、窒素、ホウ素およびイオウの中から選ばれる一種または二種以上の元素を、例えば0.1~5質量%添加することもできる。こうすることで、金属酸化物(b)の電気伝導性を向上させることができる。
 炭素材料(c)としては、黒鉛、非晶質炭素、ダイヤモンド状炭素、カーボンナノチューブ、またはこれらの複合物を用いることができる。ここで、結晶性の高い黒鉛は、電気伝導性が高く、銅などの金属からなる正極集電体との接着性および電圧平坦性が優れている。一方、結晶性の低い非晶質炭素は、体積膨張が比較的小さいため、負極全体の体積膨張を緩和する効果が高く、かつ結晶粒界や欠陥といった不均一性に起因する劣化が起きにくい。
 金属酸化物(b)はその全部または一部がアモルファス構造を有することが好ましい。アモルファス構造の金属酸化物(b)は、炭素材料(c)や金属(a)の体積膨張を抑制することができ、リン酸エステル化合物を含むような電解液の分解を抑制することもできる。このメカニズムは明確ではないが、金属酸化物(b)がアモルファス構造であることにより、炭素材料(c)と電解液の界面への被膜形成に何らかの影響があるものと推定される。また、アモルファス構造は、結晶粒界や欠陥といった不均一性に起因する要素が比較的少ないと考えられる。なお、金属酸化物(b)の全部または一部がアモルファス構造を有することは、エックス線回折測定(一般的なXRD測定)にて確認することができる。具体的には、金属酸化物(b)がアモルファス構造を有しない場合には、金属酸化物(b)に固有のピークが観測されるが、金属酸化物(b)の全部または一部がアモルファス構造を有する場合が、金属酸化物(b)に固有ピークがブロードとなって観測される。
 金属酸化物(b)の全部または一部がアモルファス構造であり、金属(a)の全部または一部が金属酸化物(b)中に分散しているような負極活物質は、例えば、特許文献3で開示されているような方法で作製することができる。すなわち、金属酸化物(b)をメタンガスなどの有機物ガスを含む雰囲気下でCVD処理を行うことで、金属酸化物(b)中の金属(a)がナノクラスター化し、かつ表面が炭素材料(c)で被覆された複合体を得ることができる。また、炭素材料(c)と金属(a)と金属酸化物(b)とをメカニカルミリングで混合することでも、上記負極活物質を作製することができる。
 金属酸化物(b)は、金属(a)を構成する金属の酸化物であることが好ましい。また、金属(a)及び金属酸化物(b)は、それぞれシリコン(Si)及び酸化シリコン(SiO)であることが好ましい。
 金属(a)は、その全部または一部が金属酸化物(b)中に分散していることが好ましい。金属(a)の少なくとも一部を金属酸化物(b)中に分散させることで、負極全体としての体積膨張をより抑制することができ、電解液の分解も抑制することができる。なお、金属(a)の全部または一部が金属酸化物(b)中に分散していることは、透過型電子顕微鏡観察(一般的なTEM観察)とエネルギー分散型X線分光法測定(一般的なEDX測定)を併用することで確認することができる。具体的には、金属粒子(a)を含むサンプルの断面を観察し、金属酸化物(b)中に分散している金属粒子(a)の酸素濃度を測定し、金属粒子(a)を構成している金属が酸化物となっていないことを確認することができる。
 上述のように、金属(a)、金属酸化物(b)及び炭素材料(c)の合計に対するそれぞれの金属(a)、金属酸化物(b)及び炭素材料(c)の含有量は、それぞれ、5質量%以上90質量%以下、5質量%以上90質量%以下及び2質量%以上80質量%以下であることが好ましい。また、金属(a)、金属酸化物(b)及び炭素材料(c)の合計に対するそれぞれの金属(a)、金属酸化物(b)及び炭素材料(c)の含有量は、それぞれ、20質量%以上50質量%以下、40質量%以上70質量%以下及び2質量%以上30質量%以下であることがより好ましい。
 また、金属(a)、金属酸化物(b)及び炭素材料(c)は、特に制限するものではないが、それぞれ粒子状のものを用いることができる。例えば、金属(a)の平均粒子径は、炭素材料(c)の平均粒子径および金属酸化物(b)の平均粒子径よりも小さい構成とすることができる。このようにすれば、充放電時にともなう体積変化の小さい金属(a)が相対的に小粒径となり、体積変化の大きい炭素材料(c)や金属酸化物(b)が相対的に大粒径となるため、デンドライト生成および合金の微粉化がより効果的に抑制される。また、充放電の過程で大粒径の粒子、小粒径の粒子、大粒径の粒子の順にリチウムが吸蔵、放出されることとなり、この点からも、残留応力、残留歪みの発生が抑制される。金属(a)の平均粒子径は、例えば20μm以下とすることができ、15μm以下とすることが好ましい。
 また、金属酸化物(b)の平均粒子径が炭素材料(c)の平均粒子径の1/2以下であることが好ましく、金属(a)の平均粒子径が金属酸化物(b)の平均粒子径の1/2以下であることが好ましい。さらに、金属酸化物(b)の平均粒子径が炭素材料(c)の平均粒子径の1/2以下であり、かつ金属(a)の平均粒子径が金属酸化物(b)の平均粒子径の1/2以下であることがより好ましい。平均粒子径をこのような範囲に制御すれば、金属および合金相の体積膨脹の緩和効果がより有効に得ることができ、エネルギー密度、サイクル寿命と効率のバランスに優れた二次電池を得ることができる。より具体的には、シリコン酸化物(b)の平均粒子径を黒鉛(c)の平均粒子径の1/2以下とし、シリコン(a)の平均粒子径をシリコン酸化物(b)の平均粒子径の1/2以下とすることが好ましい。またより具体的には、シリコン(a)の平均粒子径は、例えば20μm以下とすることができ、15μm以下とすることが好ましい。
 負極用結着剤としては、ポリイミド(PI)及びポリアミドイミド(PAI)から選ばれる少なくとも1種を用いることができる。負極結着剤としてポリイミド又はポリアミドイミドを用いることによって、負極活物質と集電体との密着性が向上し、充放電を繰り返しても集電体と負極活物質との電気的な接触が良好に保たれるため、良好なサイクル特性を得ることができる。
 負極結着剤の含有量は、負極活物質と負極結着剤の総量に対して1~30質量%の範囲であることが好ましく、2~25質量%であることがより好ましい。1質量%以上とすることにより、活物質同士あるいは活物質と集電体との密着性が向上し、サイクル特性が良好になる。また、30質量%以下とすることにより、活物質比率が向上し、負極容量を向上することができる。
 負極集電体としては、特に制限されるものではないが、電気化学的な安定性から、アルミニウム、ニッケル、銅、銀、およびそれらの合金が好ましい。その形状としては、箔、平板状、メッシュ状が挙げられる。
 負極は、負極集電体上に、負極活物質と負極用結着剤を含む負極活物質層を形成することで作製することができる。負極活物質層の形成方法としては、ドクターブレード法、ダイコーター法、CVD法、スパッタリング法などが挙げられる。予め負極活物質層を形成した後に、蒸着、スパッタ等の方法でアルミニウム、ニッケルまたはそれらの合金の薄膜を形成して、負極集電体としてもよい。
 [2]正極
 正極は、例えば、正極活物質が正極用結着剤によって正極集電体を覆うように結着されてなる。
 正極活物質としては、LiMnO、LiMn(0<x<2)等の層状構造を持つマンガン酸リチウムまたはスピネル構造を有するマンガン酸リチウム;LiCoO、LiNiOまたはこれらの遷移金属の一部を他の金属で置き換えたもの;LiNi1/3Co1/3Mn1/3などの特定の遷移金属が半数を超えないリチウム遷移金属酸化物;これらのリチウム遷移金属酸化物において化学量論組成よりもLiを過剰にしたもの等が挙げられる。特に、LiαNiβCoγAlδ(1≦α≦1.2、β+γ+δ=1、β≧0.7、γ≦0.2)またはLiαNiβCoγMnδ(1≦α≦1.2、β+γ+δ=1、β≧0.6、γ≦0.2)が好ましい。正極活物質は、一種を単独で、または二種以上を組み合わせて使用することができる。
 正極用結着剤としては、負極用結着剤と同様のものと用いることができる。中でも、汎用性や低コストの観点から、ポリフッ化ビニリデンが好ましい。正極結着剤の含有量は、トレードオフの関係にある「十分な結着力」と「高エネルギー化」の観点から、正極活物質と正極結着剤の総量に対して1~20質量%の範囲であることが好ましく、2~10質量%であることがより好ましい。
 正極集電体としては、負極集電体と同様のものを用いることができる。
 正極活物質を含む正極活物質層には、インピーダンスを低下させる目的で、導電補助材を添加してもよい。導電補助材としては、グラファイト、カーボンブラック、アセチレンブラック等の炭素質微粒子が挙げられる。
 [3]電解液
 本実施形態で用いる電解液は、下記一般式(1)で表されるニトリル系化合物を含むニトリル系化合物を含む。このようなニトリル系化合物を含む電解液を用いることにより、負極表面に被膜を形成することができ、電解液の分解を抑制することができる。
   R-CN     (1)
[Rは、置換若しくは無置換の飽和炭化水素基、又は置換若しくは無置換の芳香族炭化水素基を示す。]
 上記一般式(1)のRにおいて、飽和炭化水素基は、総炭素数1~18の飽和炭化水素基であることが好ましく、総炭素数1~12の飽和炭化水素基であることがより好ましく、総炭素数1~6の飽和炭化水素基であることがさらに好ましい。芳香族炭化水素基は、総炭素数6~18の芳香族炭化水素基であることが好ましく、総炭素数6~12の芳香族炭化水素基であることがより好ましく、総炭素数6~10の芳香族炭化水素基であることがさらに好ましい。
 また、飽和炭化水素基は、直鎖状のものが好ましい。
 Rにおいて、置換基としては、アルキル基、アリール基、アルコキシ基、アミノ基、シアノ基、及びハロゲン原子からなる群から選ばれる。
 これらの置換基として、より具体的には、例えば、炭素数1~6のアルキル基(例えば、メチル基、エチル基、プロピル基、イソプロピル基、ブチル基)、炭素数6~10のアリール基(例えば、フェニル基、ナフチル基)、炭素数1~6のアルコキシ基(例えば、メトキシ基、エトキシ基、n-プロポキシ基、iso-プロポキシ基、n-ブトキシ基、tert-ブトキシ基)、アミノ基(ジメチルアミノ基、メチルアミノ基、エチルアミノ基、ジエチルアミノ基を含む)、シアノ基、並びにハロゲン原子(例えば、フッ素原子、塩素原子、臭素原子)等が挙げられる。また、置換基としてのアルキル基、アリール基、又はアルコキシ基は、少なくとも1つの水素原子がハロゲン原子で置換さていてもよく、フッ素原子若しくは塩素原子で置換されていることが好ましい。また、置換基としてのアミノ基はアルキル基で置換されたアルキル置換アミノ基も含み、このアルキル置換アミノ基のアルキル基の少なくとも1つの水素原子はシアノ基で置換されていてもよい。
 これらのニトリル系化合物は1種を単独で又は2種以上を混合して用いることができる。
 また、Rは、少なくとも1つのハロゲン原子を有することが好ましく、少なくとも1つのフッ素原子を有することがより好ましい。
 また、前記ニトリル系化合物は、下記一般式(2)で表される化合物であることが好ましい。
Figure JPOXMLDOC01-appb-C000002
[Ra乃至Reは、それぞれ独立に、水素基、アルキル基、シアノ基又はハロゲン原子を表す。]
 Ra乃至Reのいずれか1つはフッ素原子であることが好ましい。
 また、上記ニトリル系化合物は溶媒としても機能することが好ましい。
 ニトリル系化合物の電解液中の含有量は、特に制限されるものではないが、0.1~30質量%であることが好ましく、0.5~20質量%であることがより好ましく、1~5質量%であることがさらに好ましい。ニトリル系化合物の含有量を0.1質量%以上とすることにより、負極表面において効果的に被膜を形成することができ、電解液の分解をより効果的に抑制することができる。また、ニトリル系化合物の含有量を30質量%以下とすることにより、SEI膜の過剰な成長による電池の内部抵抗上昇が抑えられる。
 電解液は、一般的に、ニトリル系化合物以外に非水電解液を含む。非水電解液としては、特に制限されるものではないが、例えば、プロピレンカーボネート(PC)、エチレンカーボネート(EC)、ブチレンカーボネート(BC)、ビニレンカーボネート(VC)等の環状カーボネート類;ジメチルカーボネート(DMC)、ジエチルカーボネート(DEC)、エチルメチルカーボネート(EMC)、ジプロピルカーボネート(DPC)等の鎖状カーボネート類;プロピレンカーボネート誘導体;ギ酸メチル、酢酸メチル、プロピオン酸エチル等の脂肪族カルボン酸エステル類;などの非プロトン性有機溶媒が挙げられる。非水電解液は、エチレンカーボネート(EC)、プロピレンカーボネート(PC)、ブチレンカーボネート(BC)、ビニレンカーボネート(VC)、ジメチルカーボネート(DMC)、ジエチルカーボネート(DEC)、エチルメチルカーボネート(MEC)、ジプロピルカーボネート(DPC)等の環状または鎖状カーボネート類が好ましい。非水電解液は、一種を単独で、または二種以上を組み合わせて使用することができる。
 また、本実施形態では、非水電解液として、環状又は鎖状のカーボネート類を用いることが好ましい。カーボネート類は、比誘電率が大きいため電解液のイオン解離性が向上し、さらに、電解液の粘度が下がるのでイオン移動度が向上するという利点がある。しかし、カーボネート構造を有するカーボネート類を電解液として用いると、カーボネート類が分解してCOからなるガスが発生し易い。とくに積層ラミネート型の二次電池の場合、内部でガスが生じると膨れの問題が顕著に現れ、性能低下に繋がりやすい。そこで、本実施形態では、カーボネート類にニトリル系化合物を添加しておくことにより、ニトリル系化合物が電解液の分解を抑制し、ガスの発生を抑制することができる。したがって、本実施形態において、電解液はニトリル系化合物と環状又は鎖状のカーボネート類とを含むことが好ましい。このような構成とすることにより、カーボネート類を電解液に用いてもガス発生などの問題を低減でき、高性能の二次電池を提供することができる。ニトリル系化合物の含有量は、ニトリル系化合物とカーボネート類の総量に対して1~30質量%であることが好ましく、1~20質量%であることがより好ましく、1~5質量%であることがさらに好ましい。
 電解液は、さらに支持塩を含む。支持塩としては、例えば、LiPF、LiAsF、LiAlCl、LiClO、LiBF、LiSbF、LiCFSO、LiCSO、Li(CFSO、LiN(CFSO等のリチウム塩が挙げられる。支持塩は、一種を単独で、または二種以上を組み合わせて使用することができる。
 [4]セパレータ
 セパレータとしては、ポリプロピレン、ポリエチレン等の多孔質フィルムや不織布を用いることができる。また、セパレータとしては、それらを積層したものを用いることもできる。
 [5]外装体
 外装体は、ラミネートフィルムである。ラミネートフィルムの材料としては、特に制限されるものではないが、アルミニウム、シリカをコーティングしたポリプロピレン、ポリエチレン等を用いることができる。特に、体積膨張を抑制する観点から、アルミニウムラミネートフィルムを用いることが好ましい。
 本実施形態では、外装体としてラミネートフィルムを用いた場合でも、ガスの発生が抑制されるため、二次電池の内圧による膨れ等の変形を抑制することができる。それにより、安価かつ積層数の変更によるセル容量の設計の自由度に優れた、積層ラミネート型のリチウムイオン二次電池を提供することができる。
 以下、本実施形態を実施例により具体的に説明する。
 (実施例1)
 金属(a)としての平均粒径5μmのシリコンと、金属酸化物(b)としての平均粒径13μmの非晶質酸化シリコン(SiO、0<x≦2)と、炭素材料(c)としての平均粒径30μmの黒鉛と、を、29:61:10の質量比で計量した。そして、これら材料をいわゆるメカニカルミリングで24時間混合して、負極活物質を得た。なお、この負極活物質において、金属(a)であるシリコンは、金属酸化物(b)である酸化シリコン(SiO、0<x≦2)中に分散している。
 上記負極活物質(平均粒径:D50=5μm)と、負極用結着剤としてのポリイミド(宇部興産株式会社製、商品名:UワニスA)とを、85:15の質量比で計量し、それらをn-メチルピロリドンと混合して、負極スラリーを調製した。負極スラリーを厚さ10μmの銅箔に塗布した後に乾燥し、さらに窒素雰囲気300℃の熱処理を行うことで、負極を作製した。なお、表1において、負極結着剤の含有量(%)は、負極活物質と負極結着剤中の負極結着剤の含有量(質量%)を示す。
 正極活物質としてのニッケル酸リチウム(LiNi0.80Co0.15Al0.152)と、導電補助材としてのカーボンブラックと、正極用結着剤としてのポリフッ化ビニリデンとを、90:5:5の質量比で計量した。そして、これら材料をn-メチルピロリドンと混合して、正極スラリーを調製した。正極スラリーを厚さ20μmのアルミ箔に塗布した後に乾燥し、さらにプレスすることで、正極を作製した。
 得られた正極の3層と負極の4層を、セパレータとしてのポリプロピレン多孔質フィルムを挟みつつ交互に重ねた。正極活物質に覆われていない正極集電体および負極活物質に覆われていない負極集電体の端部をそれぞれ溶接した。さらに、その溶接箇所に、アルミニウム製の正極端子およびニッケル製の負極端子をそれぞれ溶接して、平面状の積層構造を有する電極素子を得た。
 一方、ニトリル系化合物としてのブチロニトリルとカーボネート系非水電解液とをそれぞれ2質量部及び98質量部の割合で混合し、混合溶液を調製した。さらに、この混合溶液中に支持塩としてのLiPFを1モル/lの濃度で溶解させて、電解液を調製した。なお、カーボネート系非水電解液としてEC/PC/DMC/EMC/DEC=20/20/20/20/20(体積比)の混合溶媒を用いた。なお、表1において、含有量(%)は、ニトリル系化合物とカーボネート系非水電界液におけるニトリル系化合物の含有量(質量%)を示す。
 上記電極素子を外装体としてのアルミニウムラミネートフィルムで包み、内部に電解液を注液した後、0.1気圧まで減圧しつつ封止することで、二次電池を作製した。
 <評価>
 (20℃サイクル)
 作製した二次電池に対し、20℃に保った恒温槽中で、2.5Vから4.1Vの電圧範囲で充放電を繰り返す試験を行い、維持率(%)及び膨れ(%)について評価した。結果を表1に示す。表1において、「維持率(%)」は、(150サイクル目の放電容量)/(1サイクル目の放電容量)(単位:%)を表す。また、「膨れ(体積増加)(%)」は、{(150サイクル目の体積容量)/(1サイクル目の体積容量)-1}×100(%)(単位:%)を表す。
 (60℃サイクル)
 作製した二次電池に対し、60℃に保った恒温槽中で、2.5Vから4.1Vの電圧範囲で充放電を繰り返す試験を行い、維持率(%)及び膨れ(%)について評価した。結果を表1に示す。表1において、「維持率(%)」は、(50サイクル目の放電容量)/(1サイクル目の放電容量)(単位:%)を表す。また、「膨れ(体積増加)(%)」は、{(50サイクル目の体積容量)/(1サイクル目の体積容量)-1}×100(%)(単位:%)を表す。
 (実施例2~58)
 負極結着剤の種類、及びニトリル系化合物の種類を表1乃至3に示したものとした以外は実施例1と同様にして二次電池を作製し、評価した。結果を表1乃至3に示す。
 (実施例59)
 特許文献3に記載された方法に準じて、シリコンと非晶質酸化シリコン(SiO、0<x≦2)とカーボンとを29:61:10の質量比で含む負極活物質を得た。なお、この負極活物質において、金属(a)であるシリコンは、金属酸化物(b)である非晶質酸化シリコン中に分散している。そして、この負極活物質を用いたこと以外は、実施例1と同様に実施した。結果を表3に示す。
 (実施例60)
 実施例59で用いた負極活物質を用いたこと以外は、実施例4と同様に実施した。結果を表3に示す。
 (実施例61)
 実施例59で用いた負極活物質を用いたこと以外は、実施例7と同様に実施した。結果を表4に示す。
 (実施例62)
 実施例59で用いた負極活物質を用いたこと以外は、実施例11と同様に実施した。結果を表4に示す。
 (実施例63)
 実施例59で用いた負極活物質を用いたこと以外は、実施例16と同様に実施した。結果を表4に示す。
 (実施例64)
 実施例59で用いた負極活物質を用いたこと以外は、実施例22と同様に実施した。結果を表4に示す。
 (比較例1~3)
 負極結着剤の種類を表3に示したものとし、ニトリル系化合物は用いなかった以外は実施例1と同様にして二次電池を作製し、評価した。結果を表4に示す。
 (比較例4)
 負極結着剤の種類、及びニトリル系化合物の種類を表3に示したものとした以外は実施例1と同様にして二次電池を作製し、評価した。結果を表4に示す。
 (比較例5、6)
 負極活物質として黒鉛を用い、負極結着剤の種類を表4に示したものとし、ニトリル系化合物は用いなかった以外は、実施例1と同様にして二次電池を作製し、評価した。結果を表4に示す。
Figure JPOXMLDOC01-appb-T000003
Figure JPOXMLDOC01-appb-T000004
Figure JPOXMLDOC01-appb-T000005
Figure JPOXMLDOC01-appb-T000006
 この出願は、2010年9月2日に出願された日本出願特願2010-196622を基礎とする優先権を主張し、その開示の全てをここに取り込む。
 以上、実施形態及び実施例を参照して本願発明を説明したが、本願発明は上記実施形態及び実施例に限定されるものではない。本願発明の構成や詳細には、本願発明のスコープ内で当業者が理解し得る様々な変更をすることができる。
 本実施形態は、電源を必要とするあらゆる産業分野、ならびに電気的エネルギーの輸送、貯蔵および供給に関する産業分野にて利用することができる。具体的には、携帯電話、ノートパソコンなどのモバイル機器の電源;電気自動車、ハイブリッドカー、電動バイク、電動アシスト自転車などの電動車両を含む、電車や衛星や潜水艦などの移動・輸送用媒体の電源;UPSなどのバックアップ電源;太陽光発電、風力発電などで発電した電力を貯める蓄電設備;などに、利用することができる。
 a  負極
 b  セパレータ
 c  正極
 d  負極集電体
 e  正極集電体
 f  正極端子
 g  負極端子

Claims (10)

  1.  正極および負極が対向配置された電極素子と、電解液と、前記電極素子および前記電解液を内包する外装体と、を有する積層ラミネート型の二次電池であって、
     前記負極は、リチウムと合金可能な金属(a)、リチウムイオンを吸蔵、放出し得る金属酸化物(b)、及びリチウムイオンを吸蔵、放出し得る炭素材料(c)を含む負極活物質が、ポリイミド及びポリアミドイミドから選ばれる少なくとも1種によって負極集電体と結着されてなり、
     前記電解液は下記一般式(1)で表されるニトリル系化合物を含むことを特徴とする二次電池。
       R-CN     (1)
    [Rは、置換若しくは無置換の飽和炭化水素基、又は置換若しくは無置換の芳香族炭化水素基を表す。]
  2.  前記ニトリル系化合物は、下記一般式(2)で表される化合物である請求項1に記載の二次電池。
    Figure JPOXMLDOC01-appb-C000001
     [Ra乃至Reは、それぞれ独立に、水素原子、アルキル基、シアノ基又はハロゲン原子を表す。]
  3.  前記ニトリル系化合物は、少なくとも1つのフッ素原子を有する請求項1又は2に記載の二次電池。
  4.  前記電解液は、さらに、鎖状又は環状のカーボネート類を含む請求項1乃至3のいずれかに記載の二次電池。
  5.  前記ニトリル系化合物の含有量は、前記ニトリル系化合物と前記カーボネート類の総量に対して1~30質量%である請求項4に記載の二次電池。
  6.  前記金属酸化物(b)の全部又は一部がアモルファス構造を有する請求項1乃至5のいずれかに記載の二次電池。
  7.  前記金属酸化物(b)が前記金属(a)を構成する金属の酸化物である請求項1乃至6のいずれかに記載の二次電池。
  8.  前記金属(a)がシリコンである請求項1乃至7のいずれかに記載の二次電池。
  9.  前記金属(a)の全部又は一部が前記金属酸化物(b)中に分散している請求項1乃至8のいずれかに記載の二次電池。
  10.  前記外装体がアルミニウムラミネートフィルムである請求項1乃至9のいずれかに記載の二次電池。
     
PCT/JP2011/064408 2010-09-02 2011-06-23 二次電池 WO2012029388A1 (ja)

Priority Applications (2)

Application Number Priority Date Filing Date Title
US13/820,289 US20130157119A1 (en) 2010-09-02 2011-06-23 Secondary battery
JP2012531726A JP5867397B2 (ja) 2010-09-02 2011-06-23 二次電池

Applications Claiming Priority (2)

Application Number Priority Date Filing Date Title
JP2010-196622 2010-09-02
JP2010196622 2010-09-02

Publications (1)

Publication Number Publication Date
WO2012029388A1 true WO2012029388A1 (ja) 2012-03-08

Family

ID=45772500

Family Applications (1)

Application Number Title Priority Date Filing Date
PCT/JP2011/064408 WO2012029388A1 (ja) 2010-09-02 2011-06-23 二次電池

Country Status (3)

Country Link
US (1) US20130157119A1 (ja)
JP (1) JP5867397B2 (ja)
WO (1) WO2012029388A1 (ja)

Cited By (3)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
JP2012169253A (ja) * 2011-02-16 2012-09-06 Samsung Sdi Co Ltd リチウム2次電池用電解液およびこれを含むリチウム2次電池
JP2017054637A (ja) * 2015-09-08 2017-03-16 トヨタ自動車株式会社 非水電解液二次電池の製造方法
JP2018523270A (ja) * 2015-06-22 2018-08-16 ソウルブレイン シーオー., エルティーディー. リチウム二次電池用電解質及びこれを含むリチウム二次電池

Families Citing this family (5)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
KR102069212B1 (ko) * 2015-11-03 2020-01-22 주식회사 엘지화학 비수전해액 첨가제, 이를 포함하는 비수전해액 및 이를 구비한 리튬 이차전지
US11780804B2 (en) 2019-05-24 2023-10-10 Ascend Performance Materials Operations Llc Tricyanohexane purification methods
CN110752405A (zh) * 2019-09-16 2020-02-04 南京航空航天大学 一种锂金属系电池负极枝晶抑制剂
EP4061795A1 (en) * 2019-11-22 2022-09-28 Ascend Performance Materials Operations LLC Compositions comprising triscyanohexane
TWI799774B (zh) 2019-12-30 2023-04-21 美商阿散德性能材料營運公司 分離三氰基己烷的方法

Citations (7)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
JPH07176322A (ja) * 1993-12-21 1995-07-14 Mitsubishi Cable Ind Ltd Li二次電池用電解液
JP2003007336A (ja) * 2001-06-22 2003-01-10 Mitsubishi Chemicals Corp 非水系電解液二次電池及びそれに用いる非水系電解液
JP2004253296A (ja) * 2003-02-21 2004-09-09 Nec Corp 二次電池用電解液およびそれを用いた二次電池
JP2005072003A (ja) * 2003-08-20 2005-03-17 Samsung Sdi Co Ltd リチウム二次電池用電解液及びこれを含むリチウム二次電池
JP2005183264A (ja) * 2003-12-22 2005-07-07 Nec Corp 二次電池用負極材料及びその製造方法並びにそれを用いた二次電池
JP2008153117A (ja) * 2006-12-19 2008-07-03 Nec Tokin Corp 非水電解質二次電池用負極およびそれを用いた非水電解質二次電池
JP2009123497A (ja) * 2007-11-14 2009-06-04 Sony Corp 非水電解液組成物及び非水電解液電池

Family Cites Families (5)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
KR100810634B1 (ko) * 2006-11-30 2008-03-06 삼성에스디아이 주식회사 리튬 이차 전지용 전해액 및 이를 포함하는 리튬 이차 전지
US20080145747A1 (en) * 2006-12-15 2008-06-19 Wu Donald P H Safety Structure for a Plastic Battery Case
KR100949332B1 (ko) * 2007-08-24 2010-03-26 삼성에스디아이 주식회사 리튬 이차 전지용 전극 및 이를 포함하는 리튬 이차 전지
US8105718B2 (en) * 2008-03-17 2012-01-31 Shin-Etsu Chemical Co., Ltd. Non-aqueous electrolyte secondary battery, negative electrode material, and making method
JP5169400B2 (ja) * 2008-04-07 2013-03-27 Necエナジーデバイス株式会社 非水電解液およびそれを用いた非水電解液二次電池

Patent Citations (7)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
JPH07176322A (ja) * 1993-12-21 1995-07-14 Mitsubishi Cable Ind Ltd Li二次電池用電解液
JP2003007336A (ja) * 2001-06-22 2003-01-10 Mitsubishi Chemicals Corp 非水系電解液二次電池及びそれに用いる非水系電解液
JP2004253296A (ja) * 2003-02-21 2004-09-09 Nec Corp 二次電池用電解液およびそれを用いた二次電池
JP2005072003A (ja) * 2003-08-20 2005-03-17 Samsung Sdi Co Ltd リチウム二次電池用電解液及びこれを含むリチウム二次電池
JP2005183264A (ja) * 2003-12-22 2005-07-07 Nec Corp 二次電池用負極材料及びその製造方法並びにそれを用いた二次電池
JP2008153117A (ja) * 2006-12-19 2008-07-03 Nec Tokin Corp 非水電解質二次電池用負極およびそれを用いた非水電解質二次電池
JP2009123497A (ja) * 2007-11-14 2009-06-04 Sony Corp 非水電解液組成物及び非水電解液電池

Cited By (4)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
JP2012169253A (ja) * 2011-02-16 2012-09-06 Samsung Sdi Co Ltd リチウム2次電池用電解液およびこれを含むリチウム2次電池
JP2018523270A (ja) * 2015-06-22 2018-08-16 ソウルブレイン シーオー., エルティーディー. リチウム二次電池用電解質及びこれを含むリチウム二次電池
US10720665B2 (en) 2015-06-22 2020-07-21 Soulbrain Co., Ltd. Lithium secondary battery including a perfluoro nitrile compound
JP2017054637A (ja) * 2015-09-08 2017-03-16 トヨタ自動車株式会社 非水電解液二次電池の製造方法

Also Published As

Publication number Publication date
JP5867397B2 (ja) 2016-02-24
US20130157119A1 (en) 2013-06-20
JPWO2012029388A1 (ja) 2013-10-28

Similar Documents

Publication Publication Date Title
JP6070540B2 (ja) 二次電池および電解液
JP5748193B2 (ja) 二次電池
JP6191454B2 (ja) 二次電池および電解液
JP5867395B2 (ja) 二次電池
US9543618B2 (en) Secondary battery
JP5704633B2 (ja) 二次電池
WO2012056765A1 (ja) 二次電池及びその製造方法
JP5867399B2 (ja) 二次電池
JP5867396B2 (ja) 二次電池
JP5867397B2 (ja) 二次電池
WO2013183522A1 (ja) リチウムイオン二次電池
US20120321940A1 (en) Nonaqueous electrolyte secondary battery
JP5920217B2 (ja) 二次電池
JP5811093B2 (ja) 二次電池
WO2012049889A1 (ja) 二次電池およびそれに用いる二次電池用電解液
JP2012033346A (ja) 非プロトン性電解液二次電池
WO2012029645A1 (ja) 二次電池およびそれに用いる二次電池用電解液

Legal Events

Date Code Title Description
121 Ep: the epo has been informed by wipo that ep was designated in this application

Ref document number: 11821406

Country of ref document: EP

Kind code of ref document: A1

ENP Entry into the national phase

Ref document number: 2012531726

Country of ref document: JP

Kind code of ref document: A

WWE Wipo information: entry into national phase

Ref document number: 13820289

Country of ref document: US

NENP Non-entry into the national phase

Ref country code: DE

122 Ep: pct application non-entry in european phase

Ref document number: 11821406

Country of ref document: EP

Kind code of ref document: A1