WO2012029183A1 - Vehicle control system and controller - Google Patents

Vehicle control system and controller Download PDF

Info

Publication number
WO2012029183A1
WO2012029183A1 PCT/JP2010/065181 JP2010065181W WO2012029183A1 WO 2012029183 A1 WO2012029183 A1 WO 2012029183A1 JP 2010065181 W JP2010065181 W JP 2010065181W WO 2012029183 A1 WO2012029183 A1 WO 2012029183A1
Authority
WO
WIPO (PCT)
Prior art keywords
vehicle
roll
temperature
tire
distribution
Prior art date
Application number
PCT/JP2010/065181
Other languages
French (fr)
Japanese (ja)
Inventor
淳介 木方
伸吾 香村
Original Assignee
トヨタ自動車株式会社
Priority date (The priority date is an assumption and is not a legal conclusion. Google has not performed a legal analysis and makes no representation as to the accuracy of the date listed.)
Filing date
Publication date
Application filed by トヨタ自動車株式会社 filed Critical トヨタ自動車株式会社
Priority to PCT/JP2010/065181 priority Critical patent/WO2012029183A1/en
Publication of WO2012029183A1 publication Critical patent/WO2012029183A1/en

Links

Images

Classifications

    • BPERFORMING OPERATIONS; TRANSPORTING
    • B60VEHICLES IN GENERAL
    • B60GVEHICLE SUSPENSION ARRANGEMENTS
    • B60G17/00Resilient suspensions having means for adjusting the spring or vibration-damper characteristics, for regulating the distance between a supporting surface and a sprung part of vehicle or for locking suspension during use to meet varying vehicular or surface conditions, e.g. due to speed or load
    • B60G17/015Resilient suspensions having means for adjusting the spring or vibration-damper characteristics, for regulating the distance between a supporting surface and a sprung part of vehicle or for locking suspension during use to meet varying vehicular or surface conditions, e.g. due to speed or load the regulating means comprising electric or electronic elements
    • B60G17/016Resilient suspensions having means for adjusting the spring or vibration-damper characteristics, for regulating the distance between a supporting surface and a sprung part of vehicle or for locking suspension during use to meet varying vehicular or surface conditions, e.g. due to speed or load the regulating means comprising electric or electronic elements characterised by their responsiveness, when the vehicle is travelling, to specific motion, a specific condition, or driver input
    • B60G17/0162Resilient suspensions having means for adjusting the spring or vibration-damper characteristics, for regulating the distance between a supporting surface and a sprung part of vehicle or for locking suspension during use to meet varying vehicular or surface conditions, e.g. due to speed or load the regulating means comprising electric or electronic elements characterised by their responsiveness, when the vehicle is travelling, to specific motion, a specific condition, or driver input mainly during a motion involving steering operation, e.g. cornering, overtaking
    • BPERFORMING OPERATIONS; TRANSPORTING
    • B60VEHICLES IN GENERAL
    • B60GVEHICLE SUSPENSION ARRANGEMENTS
    • B60G21/00Interconnection systems for two or more resiliently-suspended wheels, e.g. for stabilising a vehicle body with respect to acceleration, deceleration or centrifugal forces
    • B60G21/02Interconnection systems for two or more resiliently-suspended wheels, e.g. for stabilising a vehicle body with respect to acceleration, deceleration or centrifugal forces permanently interconnected
    • B60G21/04Interconnection systems for two or more resiliently-suspended wheels, e.g. for stabilising a vehicle body with respect to acceleration, deceleration or centrifugal forces permanently interconnected mechanically
    • B60G21/05Interconnection systems for two or more resiliently-suspended wheels, e.g. for stabilising a vehicle body with respect to acceleration, deceleration or centrifugal forces permanently interconnected mechanically between wheels on the same axle but on different sides of the vehicle, i.e. the left and right wheel suspensions being interconnected
    • B60G21/055Stabiliser bars
    • B60G21/0551Mounting means therefor
    • B60G21/0553Mounting means therefor adjustable
    • B60G21/0555Mounting means therefor adjustable including an actuator inducing vehicle roll
    • BPERFORMING OPERATIONS; TRANSPORTING
    • B60VEHICLES IN GENERAL
    • B60GVEHICLE SUSPENSION ARRANGEMENTS
    • B60G2400/00Indexing codes relating to detected, measured or calculated conditions or factors
    • B60G2400/50Pressure
    • B60G2400/52Pressure in tyre
    • BPERFORMING OPERATIONS; TRANSPORTING
    • B60VEHICLES IN GENERAL
    • B60GVEHICLE SUSPENSION ARRANGEMENTS
    • B60G2400/00Indexing codes relating to detected, measured or calculated conditions or factors
    • B60G2400/70Temperature of vehicle part or in the vehicle
    • BPERFORMING OPERATIONS; TRANSPORTING
    • B60VEHICLES IN GENERAL
    • B60GVEHICLE SUSPENSION ARRANGEMENTS
    • B60G2800/00Indexing codes relating to the type of movement or to the condition of the vehicle and to the end result to be achieved by the control action
    • B60G2800/01Attitude or posture control
    • B60G2800/012Rolling condition
    • BPERFORMING OPERATIONS; TRANSPORTING
    • B60VEHICLES IN GENERAL
    • B60GVEHICLE SUSPENSION ARRANGEMENTS
    • B60G2800/00Indexing codes relating to the type of movement or to the condition of the vehicle and to the end result to be achieved by the control action
    • B60G2800/90System Controller type
    • B60G2800/91Suspension Control
    • B60G2800/912Attitude Control; levelling control
    • B60G2800/9122ARS - Anti-Roll System Control

Definitions

  • the present invention relates to a vehicle control system and a control device.
  • Patent Document 1 discloses an active suspension that reduces the roll during turning of the vehicle and improves the steering performance of the vehicle.
  • An active suspension device for a vehicle that increases the distribution ratio of the hydraulic control pressure of the suspension is disclosed.
  • the active suspension device for a vehicle described in Patent Document 1 as described above has room for further improvement, for example, for suppressing vibration against road surface input.
  • the present invention has been made in view of the above circumstances, and an object thereof is to provide a vehicle control system and a control device capable of suppressing vibrations generated in a vehicle.
  • a vehicle control system includes an actuator that can change a roll characteristic of a vehicle, a temperature detection device that detects a temperature of a tire of a wheel of the vehicle, and a detection by the temperature detection device. And a control device that controls the actuator based on the temperature of the tire and changes the roll characteristics.
  • the temperature detection device may detect a temperature inside the tread of the tire.
  • control device controls the actuator and changes the roll characteristics based on cornering power of the wheel according to the temperature of the tire detected by the temperature detection device. can do.
  • the vehicle control system further includes a vehicle speed detection device that detects a vehicle speed of the vehicle, and the control device includes a temperature of the tire detected by the temperature detection device and a vehicle speed of the vehicle detected by the vehicle speed detection device. Based on the above, the actuator can be controlled to change the roll characteristics.
  • the actuator can adjust the roll rigidity of the vehicle.
  • the actuator may be capable of adjusting a roll damping force of the vehicle.
  • the control device can control the actuator to adjust the distribution ratio between the roll stiffness on the front wheel side and the roll stiffness on the rear wheel side of the vehicle, and the temperature detection device detects When the tire temperature is relatively high, the distribution of the roll rigidity on the front wheel side of the vehicle is reduced and the distribution of the roll rigidity on the rear wheel side is compared with the case where the temperature of the tire is relatively low. Can be large.
  • the control device is capable of adjusting the distribution ratio between the roll damping force on the front wheel side and the roll damping force on the rear wheel side by controlling the actuator, and the temperature detecting device.
  • the actuator controls the actuator, and the temperature detecting device.
  • the distribution of the roll damping force on the front wheel side of the vehicle is made smaller and the roll damping on the rear wheel side compared to the case where the tire temperature is relatively low.
  • the distribution of power can be increased.
  • a control device is an actuator capable of changing the roll characteristics of a vehicle based on the temperature of the tire detected by a temperature detection device that detects the temperature of a tire of a vehicle wheel. And the roll characteristics are changed.
  • the vehicle control system and the control device according to the present invention have an effect that vibration generated in the vehicle can be suppressed.
  • FIG. 1 is a schematic diagram illustrating a schematic configuration of a vehicle control system according to an embodiment.
  • FIG. 2 is a diagram showing an example of the relationship between the frequency of road surface input and body displacement / road surface input.
  • FIG. 3 is a diagram showing an example of the relationship between the road surface input frequency, the lateral acceleration, and the yaw angular velocity.
  • FIG. 4 is a diagram showing an example of the relationship between cornering power, vertical load, and tire temperature.
  • FIG. 5 is a schematic diagram showing a simple model of a vehicle.
  • FIG. 6 is a diagram illustrating an example of a relationship between road surface input and forcing force.
  • FIG. 7 is a diagram showing an example of the relationship between the vehicle speed, the front / rear roll stiffness distribution, the front / rear roll damping distribution, and the phase difference between the front and rear wheel forcing forces.
  • FIG. 8 is a diagram showing an example of the relationship between the road surface input frequency and the body displacement / road surface input when the vehicle speed is high.
  • FIG. 9 is a diagram showing an example of the relationship between the road surface input frequency and the body displacement / road surface input when the vehicle speed is low.
  • FIG. 10 is a diagram illustrating an example of the front and rear roll stiffness distribution map.
  • FIG. 11 is a flowchart illustrating an example of front and rear roll stiffness distribution control.
  • FIG. 12 is a diagram illustrating an example of the front and rear roll attenuation distribution map.
  • FIG. 13 is a flowchart illustrating an example of front and rear roll damping distribution control.
  • FIG. 1 is a schematic diagram showing a schematic configuration of a vehicle control system according to the embodiment
  • FIG. 2 is a diagram showing an example of a relationship between a frequency of road surface input and body displacement / road surface input
  • FIG. 3 is a diagram of road surface input
  • FIG. 4 is a diagram showing an example of the relationship between frequency, lateral acceleration, and yaw angular velocity
  • FIG. 4 is a diagram showing an example of the relationship between cornering power, vertical load, and tire temperature
  • FIG. 5 is a schematic diagram showing a simple model of the vehicle.
  • Fig. 6 is a diagram showing an example of the relationship between road surface input and forcing force
  • FIG. 7 is a diagram showing the relationship between vehicle speed, front and rear roll stiffness distribution and front and rear roll damping distribution, and phase difference of front and rear wheel forcing force.
  • FIG. 8 is a diagram showing an example
  • FIG. 8 is a diagram showing an example of the relationship between the frequency of road surface input and the body displacement / road surface input when the vehicle speed is high (for example, 80 km / h), and FIG. (For example, 20 km / h) Road surface input frequency and body
  • FIG. 10 is a diagram illustrating an example of a front / rear roll stiffness distribution map
  • FIG. 11 is a flowchart illustrating an example of a front / rear roll stiffness distribution control
  • FIG. 12 is a front / rear roll.
  • FIG. 13 is a flowchart illustrating an example of the attenuation distribution map
  • FIG. 13 is a flowchart illustrating an example of front and rear roll attenuation distribution control.
  • the vehicle control system 1 of this embodiment is a system for controlling the vehicle 2 that is mounted on the vehicle 2 as shown in FIG. 1. Typically, the temperature of the tire 4 of the wheel 3 of the vehicle 2 is controlled. Based on this, the vehicle behavior control device controls the behavior of the vehicle 2 by making the roll characteristics of the vehicle 2 variable.
  • the vehicle 2 includes a left front wheel 3FL, a right front wheel 3FR, a left rear wheel 3RL, and a right rear wheel 3RR as the wheels 3, but these are simply referred to as wheels 3 when it is not necessary to separate them.
  • a driving source for driving acts on the wheels 3 (for example, the left front wheel 3 FL and the right front wheel 3 FR) as drive wheels, thereby A driving force [N] is generated on the ground contact surface with the road surface, and thus the vehicle can travel. Further, the vehicle 2 can steer the wheels 3 (for example, the left front wheel 3FL and the right front wheel 3FR) as steering wheels by operating the steering wheel 5 through a power steering device (not shown). Can be turned.
  • a driving source for driving for example, an internal combustion engine or an electric motor
  • the front-rear direction of the vehicle 2 described below is a direction along the traveling direction of the vehicle 2, and the left-right direction of the vehicle 2 is the width direction of the vehicle 2 orthogonal to the front-rear direction and the vertical direction.
  • the roll direction is a direction around the front-rear axis that is an axis along the front-rear direction of the vehicle 2
  • the yaw direction is a direction around the vertical axis that is an axis along the vertical direction of the vehicle 2.
  • the vehicle control system 1 of the present embodiment includes an actuator 6, a temperature sensor 7 as a temperature detection device, a vehicle speed sensor 8 as a vehicle speed detection device, and an ECU 9 as a control device.
  • the actuator 6 can change the roll characteristics of the vehicle 2.
  • the actuator 6 of the present embodiment includes an active stabilizer 10 that can adjust the roll rigidity of the vehicle 2 and a damping force variable device (AVS: Adaptive Variable Suspension system) 11 that can adjust the roll damping force of the vehicle 2.
  • AVS Adaptive Variable Suspension system
  • both roll rigidity and roll damping force can be changed.
  • the roll rigidity of the vehicle 2 corresponds to the rigidity along the roll direction of the vehicle 2
  • the roll damping force of the vehicle 2 corresponds to a damping force along the roll direction of the vehicle 2.
  • the active stabilizer 10 secures the roll rigidity of the vehicle 2 to suppress the roll motion (roll vibration) that rotates the vehicle body (body) 2A of the vehicle 2 in the roll direction to ensure a stable posture of the vehicle 2 and
  • the steering stability of the vehicle 2 can be improved by making the roll rigidity variable and adjusting according to the driving state of the vehicle 2.
  • the active stabilizer 10 is provided with respect to the left front wheel 3FL and the right front wheel 3FR, and is provided with respect to the front wheel active stabilizer 10F capable of adjusting the roll rigidity on the front wheel side, the left rear wheel 3RL, and the right rear wheel 3RR.
  • the rear wheel active stabilizer 10R which can adjust the roll rigidity, is configured to be referred to as an active stabilizer 10 when it is not necessary to separate them.
  • the active stabilizer 10 includes a stabilizer bar 12 and a drive unit 13, and uses the torsional reaction force of the stabilizer bar 12 to suppress the roll of the vehicle body 2A of the vehicle 2.
  • a pair of left and right torsion bar portions are coupled to each other by a drive unit 13 so as to be relatively rotatable, and a pair of left and right arm portions are bent and coupled to a suspension 14 corresponding to each wheel 3 (for example, a lower arm of the suspension 14).
  • the suspension 14 is a suspension device interposed between the wheel 3 and the vehicle body 2A. The suspension 14 mitigates shock and vibration transmitted from the road surface to the vehicle body 2A, and forms a part of the damping force variable device 11 described later.
  • the drive unit 13 is connected to the ECU 9 and is controlled by the ECU 9.
  • the active stabilizer 10 is driven by a drive unit 13 including an electric motor or the like, and relatively rotates the torsion bar portions of the stabilizer bar 12 that is divided into left and right portions, thereby making the relative rotation of the left and right torsion bar portions relative to each other.
  • the roll rigidity of the vehicle 2 can be adjusted by adjusting the twist amount and thereby adjusting the twist reaction force.
  • the active stabilizer 10 adjusts the amount of twist of the stabilizer bar 12, in other words, the torsional rigidity by the drive unit 13 to adjust the spring characteristics, and adjusts the roll rigidity of the vehicle body 2 ⁇ / b> A of the vehicle 2 to control the roll motion. Do.
  • the active stabilizer 10 increases the output torque (rotational driving force) of the drive unit 13 and increases the rotation angle of the drive unit 13, thereby increasing the amount of twist of the stabilizer bar 12 and acting on the stabilizer bar 12.
  • the torsional reaction force increases, and the roll rigidity of the vehicle body 2A of the vehicle 2 increases.
  • the damping force variable device 11 is a so-called damping force control suspension system.
  • the damping force characteristic of the shock absorber of the suspension 14 that buffers the road surface input from the road surface to the wheel 3 is made variable, thereby changing the roll damping force.
  • the damping force varying device 11 is provided for the left front wheel 3FL and can adjust the roll damping force on the left front wheel 3FL side.
  • the damping force varying device 11FL is provided for the right front wheel 3FR and the roll damping force on the right front wheel 3FR side.
  • the damping force variable device 11FR capable of adjusting the left rear wheel 3RL, the damping force variable device 11RL capable of adjusting the roll damping force on the left rear wheel 3RL side, and the right rear wheel 3RR provided to the right
  • a damping force variable device 11RR capable of adjusting the roll damping force on the rear wheel 3RR side
  • the damping force variable device 11 can use, for example, a device that realizes a change in damping force by switching the size of the orifice through which hydraulic oil flows in and out with the reciprocating motion of the piston, but is not limited thereto. An electric type may be used.
  • the temperature sensor 7 detects the temperature of the tire 4 of the wheel 3 of the vehicle 2, and for example, a thermocouple, a thermistor, or the like can be used. More specifically, the temperature sensor 7 detects the temperature inside the tread of the tire 4, for example, the temperature of a carcass layer, a belt layer, or a tread rubber that is a structural member inside the tread. Preferably, the temperature sensor 7 may detect the temperature inside the tread rubber between the tread surface of the tire 4 and the upper surface of the belt layer.
  • the temperature sensor 7 is electrically connected to the ECU 9 and transmits the detected temperature signal of the tire 4 to the ECU 9.
  • the temperature sensor 7 may be a non-contact type temperature sensor using infrared rays or the like. Further, the temperature sensor 7 may detect, for example, the temperature of the wheel on which the tire 4 is mounted, and detect and estimate the temperature inside the tread of the tire 4 based on this.
  • the vehicle speed sensor 8 detects a vehicle speed that is the traveling speed of the vehicle 2.
  • the vehicle speed sensor 8 is electrically connected to the ECU 9 and transmits the detected vehicle speed signal of the vehicle 2 to the ECU 9.
  • the vehicle speed detection device may be a wheel speed sensor that detects the wheel speed of each wheel 3.
  • the ECU 9 detects the vehicle 2 based on each wheel speed detected by each wheel speed sensor provided on each wheel 3. The vehicle speed may be obtained.
  • the ECU 9 controls driving of each part of the vehicle 2.
  • the ECU 9 is an electronic circuit mainly composed of a known microcomputer including a CPU, a ROM, a RAM, and an interface.
  • the ECU 9 is electrically connected to various sensors and detection devices provided in each part of the vehicle 2 such as the temperature sensor 7 and the vehicle speed sensor 8 described above, and includes an active stabilizer 10 and a damping force variable device 11.
  • Each part of the vehicle 2 is electrically connected.
  • the ECU 9 receives electric signals corresponding to detection results detected by various sensors and detection devices, and outputs drive signals to the respective parts of the vehicle 2 in accordance with the input detection results to control the driving thereof.
  • the ECU 9 can control the roll stiffness on the front wheel side and the roll stiffness on the rear wheel side by controlling the drive of the drive unit 13 of the front wheel active stabilizer 10F and the drive unit 13 of the rear wheel active stabilizer 10R.
  • the ECU 9 can control the control amount of the drive unit 13 of the front wheel active stabilizer 10F and the control amount of the drive unit 13 of the rear wheel active stabilizer 10R independently of each other.
  • the front wheel active stabilizer 10F and the rear wheel active stabilizer 10R thus, for example, the front-rear roll rigidity distribution, which is the distribution ratio between the roll rigidity on the front wheel side and the roll rigidity on the rear wheel side, of the vehicle 2 can be appropriately changed.
  • the ECU 9 controls the driving of the damping force varying devices 11FL, FR, RL, and RR, so that the roll damping force on the left front wheel 3FL side, the roll damping force on the right front wheel 3FR side, the roll damping force on the left rear wheel 3RL side, The roll damping force on the right rear wheel 3RR side can be adjusted.
  • the ECU 9 can control the control amounts of the damping force variable devices 11FL, FR, RL, RR independently of each other, and, for example, rolls on the front wheel side of the vehicle 2 by the damping force variable devices 11FL, FR, RL, RR.
  • the front and rear roll damping distribution which is the distribution ratio between the damping force and the roll damping force on the rear wheel side, can be appropriately changed.
  • the ECU9 of this embodiment controls the actuator 6 based on the temperature of the tire 4 which the temperature sensor 7 detected, and changes the roll characteristic of the vehicle 2, and suppresses the vibration which arises in the vehicle 2 appropriately. ing.
  • the ECU 9 may use an average value of the temperatures of the four wheels, or any one temperature.
  • the vehicle control system 1 is sensuously expressed as vibration in the roll direction, yaw direction, and left-right direction of the vehicle 2 (so-called clutter vibration) with respect to road surface input in the low frequency region (input from the road surface to the wheels 3).
  • vibrations in the roll direction, yaw direction, and left-right direction of the vehicle 2 tend to be easily affected by the left-right force (lateral force) acting on the tire 4.
  • the solid line L11, the dotted line L12, and the solid line L13 are the relationship between the road surface frequency in the left-right direction and the body displacement / road surface input
  • the solid line R11, the dotted line R12, and the solid line R13 are rolls (Roll).
  • the relationship between the frequency of the road surface input in the direction and the body displacement / road surface input, solid line Y11, dotted line Y12, and solid line Y13 show examples of the relationship between the frequency of the road surface input in the yaw direction and the body displacement / road surface input, respectively. Is.
  • the solid line L12, the solid line R12, and the solid line Y12 are front wheel side normalized cornering power / rear wheel.
  • the normalized cornering power can be expressed by, for example, [cornering power / axle load].
  • the cornering power of the tire 4 corresponds to a cornering force per unit slip angle (side slip angle).
  • the cornering force is a component force applied in a direction perpendicular to the traveling direction of the tire 4 when the vehicle 2 is cornered (turned).
  • FIG. 3 shows the influence of the front wheel side normalized cornering power and the rear wheel side normalized cornering power using an example of the frequency response of the lateral acceleration and yaw angular velocity with respect to the roll angle.
  • the horizontal axis represents the vertical load and the vertical axis represents the cornering power.
  • the tire characteristics including the cornering power tend to be relatively high in temperature. Therefore, the cornering power of the tire 4 changes according to the temperature of the tire 4 even if the tire 4 is the same. For example, if the vertical load is the same, the cornering power tends to increase as the tire temperature decreases. As a result, the roll, yaw, and left-right vibrations of the vehicle 2 may change as the temperature of the tire 4 changes and the cornering power changes.
  • the ECU 9 of this embodiment is based on the temperature of the tire 4 detected by the temperature sensor 7, in other words, based on the cornering power of the wheel 3 corresponding to the temperature of the tire 4 detected by the temperature sensor 7.
  • the ECU 9 controls the active stabilizer 10 based on the temperature of the tire 4, controls the front / rear roll rigidity distribution of the vehicle 2, and controls the damping force variable device 11 based on the temperature of the tire 4,
  • the front and rear roll damping distribution of the vehicle 2 is controlled.
  • the ECU 9 controls the actuator 6 based on the temperature of the tire 4 detected by the temperature sensor 7 and the vehicle speed of the vehicle 2 detected by the vehicle speed sensor 8, and the roll characteristics of the vehicle 2, that is, the roll of the vehicle 2.
  • the rigidity and roll damping force are changed, and typically, vibrations in the low frequency region in the roll direction, yaw direction, and left-right direction of the vehicle 2 are effectively suppressed.
  • the roll stiffness K ⁇ i corresponds to a parameter indicating the spring characteristic of the active stabilizer 10
  • the roll damping coefficient C ⁇ i corresponds to a parameter indicating the damping characteristic of the damping force varying device 11.
  • the vehicle control system 1 reduces the left-right force ⁇ Hs of the rear wheel with respect to the front wheel when the cornering power of the wheel 3, particularly the cornering power on the rear wheel side becomes relatively small.
  • the generation delay is reduced, and the damping effect is increased by moving the tire contact point in the left-right direction, so that vibrations in the yaw direction, the left-right direction, and the like are significantly suppressed.
  • the tire characteristics including the cornering power change as the tire temperature changes as illustrated in FIG. 4, so that the degree of vibration suppression also changes as the tire temperature changes.
  • Ride comfort may change.
  • the cornering power when the tire temperature is the lowest temperature illustrated in FIG. 4 and the cornering power when the tire temperature is the highest are greatly different.
  • the cornering power is relatively higher as the tire temperature is lower. There is a risk that it will become larger and the ride comfort will deteriorate.
  • the horizontal axis represents the time axis
  • the vertical axis represents the road surface input ⁇ i and the forcing force Fi.
  • the forcing force Fi is a force that generates a roll motion in the vehicle body 2A of the vehicle 2 in accordance with the road surface input ⁇ i, and can be represented by, for example, [(K ⁇ i + C ⁇ is ) ⁇ i].
  • the forcing force Fi has a relationship in which a phase advance ⁇ 2 is generated with respect to the road surface input ⁇ i.
  • the phase of the forcing force Fi advances by an amount corresponding to [tan ⁇ 1 (C ⁇ i s / K ⁇ i )] with respect to the road surface input ⁇ i.
  • the vehicle control system 1 can relatively increase the phase advance ⁇ 2 by relatively increasing the roll damping coefficient C ⁇ i, and can relatively increase the roll rigidity K ⁇ i.
  • the advance ⁇ 2 can be made relatively small.
  • the influence of the front / rear roll stiffness distribution and the front / rear roll damping distribution on the forcing force Fi according to the vehicle speed U is exemplified in FIG. That is, when the upper vehicle speed in the figure is 80 km / h and the lower vehicle speed in the figure is 20 km / h, for example, the phase delay ⁇ 1 at a relatively high speed of 80 km / h is relatively high. The phase delay ⁇ 1 becomes relatively large when the speed is 20 km / h, which is relatively low.
  • the front and rear roll stiffness distribution of the vehicle 2 on the left side in the figure is 70% for the front wheel roll stiffness and the rear wheel roll stiffness distribution is 30%.
  • the front and rear roll damping distribution of the vehicle 2 is 30% and the rear wheel roll damping distribution is 30%.
  • the phase advance ⁇ 2F of the forcing force F1 with respect to is relatively large, and the phase advance ⁇ 2R of the forcing force F2 with respect to the road input ⁇ 2 on the rear wheel side is relatively small.
  • the phase difference between the forcing force on the front wheel side and the forcing force on the rear wheel side is such that the front wheel roll stiffness distribution is 30% when the vehicle speed is 80 km / h, which is relatively high.
  • the vehicle control system 1 distributes the front and rear roll stiffness distribution of the vehicle 2 closer to the rear wheel (relatively larger roll stiffness on the rear wheel side) when the vehicle speed is relatively high.
  • the phase difference between the forcing force on the front wheel side and the forcing force on the rear wheel side is such that when the vehicle speed is 20 km / h, which is a relatively low speed, the front wheel roll stiffness distribution is 70%.
  • the vehicle control system 1 allows the front and rear roll stiffness distribution of the vehicle 2 to be closer to the front wheels (relatively increasing the roll stiffness on the front wheels) when the vehicle speed is relatively low.
  • the ECU 9 controls the active stabilizer 10 and the damping force variable device 11 based on the temperature dependence of the tire characteristics including the cornering power described above, and the roll characteristics of the vehicle 2, here, The front / rear roll stiffness distribution and front / rear roll damping distribution of the vehicle 2 are controlled.
  • the vehicle control system 1 further determines that the ECU 9 takes into account the effect of the tire 2 on the vibration of the front and rear roll stiffness distribution and the front and rear roll damping distribution according to the vehicle speed as well as the temperature dependence of the tire characteristics. Control the roll characteristics.
  • the ECU 9 can control the active stabilizer 10 that is the actuator 6 to adjust the distribution ratio between the roll rigidity on the front wheel side and the roll rigidity on the rear wheel side of the vehicle 2, and the temperature of the tire 4 detected by the temperature sensor 7 can be adjusted.
  • the temperature is relatively high, the distribution of roll rigidity on the front wheel side of the vehicle 2 is reduced and the distribution of roll rigidity on the rear wheel side is increased as compared with the case where the temperature of the tire 4 is relatively low.
  • the ECU 9 reduces the distribution of roll rigidity on the front wheel side of the vehicle 2 when the vehicle speed of the vehicle 2 detected by the vehicle speed sensor 8 is relatively high compared to when the vehicle speed of the vehicle 2 is relatively low. Increase the distribution of roll rigidity on the rear wheel side.
  • ECU9 calculates
  • the horizontal axis indicates the tire temperature of the tire 4
  • the vertical axis indicates the front wheel roll stiffness distribution.
  • the front and rear roll stiffness distribution map m1 describes the relationship between the tire temperature of the tire 4 at each vehicle speed (in other words, cornering power according to the tire temperature) and the front wheel roll stiffness distribution.
  • the front / rear roll stiffness distribution map m1 indicates that the relationship between the tire temperature and the front wheel roll stiffness distribution is related to the temperature dependency of the tire characteristics and the vibration of the front / rear roll stiffness distribution and the front / rear roll damping distribution of the vehicle 2 according to the vehicle speed. It is set in advance based on the influence and stored in the storage unit of the ECU 9.
  • the front wheel roll stiffness distribution decreases as the tire temperature increases, in other words, decreases as the cornering power decreases, and decreases as the vehicle speed increases.
  • the rear wheel roll stiffness distribution increases as the tire temperature increases, in other words, increases as the cornering power decreases, and increases as the vehicle speed increases.
  • the ECU 9 obtains the front wheel roll stiffness distribution and the rear wheel roll stiffness distribution from the temperature of the tire 4 detected by the temperature sensor 7 and the vehicle speed of the vehicle 2 detected by the vehicle speed sensor 8 based on the front and rear roll stiffness distribution map m1. And ECU9 controls the active stabilizer 10 based on the calculated
  • the ECU 9 calculates the front wheel roll stiffness distribution and the rear wheel roll stiffness distribution using the front and rear roll stiffness distribution map m1 illustrated in FIG. 10, but the present embodiment is not limited to this.
  • the ECU 9 may obtain the front wheel roll stiffness distribution and the rear wheel roll stiffness distribution based on a mathematical expression corresponding to the front and rear roll stiffness distribution map m1 illustrated in FIG. The same applies to the front and rear roll attenuation distribution map described below.
  • the ECU 9 acquires the tire temperature of the tire 4 detected by the temperature sensor 7 and the vehicle speed of the vehicle 2 detected by the vehicle speed sensor 8 (ST1).
  • the ECU 9 obtains the front wheel roll stiffness distribution from the front and rear roll stiffness distribution map m1 of FIG. 10 based on the tire temperature of the tire 4 and the vehicle speed of the vehicle 2 acquired in ST1, and determines the front and rear roll stiffness distribution ( ST2).
  • the ECU 9 controls the active stabilizer 10 based on the front / rear roll stiffness distribution determined in ST2 to adjust the front / rear roll stiffness distribution of the vehicle 2 (ST3), ends the current control cycle, and then proceeds to the next control cycle.
  • the front and rear roll stiffness distribution map m1 in FIG. 10 may describe a relationship between cornering power and front wheel roll stiffness distribution according to the tire temperature of the tire 4.
  • the ECU 9 estimates the current cornering power based on the tire temperature, and in ST2, uses the estimated cornering power and the vehicle speed to roll back and forth. What is necessary is just to determine rigidity distribution. The same applies to the front and rear roll damping distribution control described below.
  • the ECU 9 can control the damping force varying device 11 that is the actuator 6 to adjust the distribution ratio between the roll damping force on the front wheel side and the roll damping force on the rear wheel side of the vehicle 2, and is detected by the temperature sensor 7.
  • the temperature of the tire 4 is relatively high, the distribution of the roll damping force on the front wheel side of the vehicle 2 is reduced compared to the case where the temperature of the tire 4 is relatively low, and the roll damping force on the rear wheel side is reduced.
  • Increase distribution Further, the ECU 9 increases the distribution of the roll damping force on the front wheel side of the vehicle 2 when the vehicle speed of the vehicle 2 detected by the vehicle speed sensor 8 is relatively high compared to when the vehicle speed of the vehicle 2 is relatively low. And reducing the distribution of the roll damping force on the rear wheel side.
  • ECU9 calculates
  • the horizontal axis indicates the tire temperature of the tire 4
  • the vertical axis indicates the front wheel roll attenuation distribution.
  • the front and rear roll damping distribution map m2 describes the relationship between the tire temperature of the tire 4 at each vehicle speed (in other words, cornering power according to the tire temperature) and the front wheel roll damping distribution.
  • the front and rear roll damping distribution map m2 is stored in the storage unit of the ECU 9 after the relationship between the tire temperature and the front wheel roll damping distribution is set in advance in the same manner as the front and rear roll stiffness distribution map m1.
  • the front wheel roll attenuation distribution decreases as the tire temperature increases, in other words, decreases as the cornering power decreases, and increases as the vehicle speed increases. That is, in this case, the rear wheel roll damping distribution increases as the tire temperature increases, in other words, increases as the cornering power decreases, and decreases as the vehicle speed increases.
  • the ECU 9 obtains the front wheel roll attenuation distribution and the rear wheel roll attenuation distribution from the temperature of the tire 4 detected by the temperature sensor 7 and the vehicle speed of the vehicle 2 detected by the vehicle speed sensor 8 based on the front and rear roll attenuation distribution map m2. Then, the ECU 9 controls the damping force variable device 11 based on, for example, the obtained front wheel roll damping distribution and rear wheel roll damping distribution to adjust the front and rear roll damping distribution of the vehicle 2.
  • the ECU 9 acquires the tire temperature of the tire 4 detected by the temperature sensor 7 and the vehicle speed of the vehicle 2 detected by the vehicle speed sensor 8 (ST21).
  • the ECU 9 obtains the front wheel roll attenuation distribution from the front and rear roll attenuation distribution map m2 of FIG. 12 based on the tire temperature of the tire 4 and the vehicle speed of the vehicle 2 acquired in ST21, and determines the front and rear roll attenuation distribution ( ST22).
  • the ECU 9 controls the damping force variable device 11 based on the front / rear roll attenuation distribution determined in ST22 (AVS control), adjusts the front / rear roll attenuation distribution of the vehicle 2 (ST23), and ends the current control cycle. Then, the next control cycle is started.
  • the vehicle control system 1 configured as described above detects the internal temperature of the tire 4, and based on the tire temperature, in other words, the cornering power corresponding to the tire temperature and the vehicle speed, the front / rear roll rigidity distribution and the front / rear roll By controlling roll characteristics such as attenuation distribution, vibrations in the low frequency region in the roll direction, yaw direction, and left-right direction of the vehicle 2, so-called clutter vibration can be effectively suppressed. As a result, the vehicle control system 1 can effectively suppress the vibration with respect to the road surface input in the low frequency region, and can suppress the deterioration of the riding comfort due to the change in the tire temperature.
  • the vehicle control system 1 detects the temperature inside the tread where the temperature sensor 7 easily affects the tire characteristics including the cornering power of the tire 4, typically the temperature inside the tread rubber, and detects the temperature of the roll characteristics. By using it for the adjustment control, the accuracy of the control can be further improved, and the vibration with respect to the road surface input in the low frequency region can be more effectively suppressed.
  • the actuator 6 that can change the roll characteristics of the vehicle 2, the temperature sensor 7 that detects the temperature of the tire 4 of the wheel 3 of the vehicle 2, and the temperature sensor 7. And an ECU 9 that controls the actuator 6 based on the temperature of the tire 4 detected by the engine and changes the roll characteristics.
  • ECU9 which concerns on embodiment described above, based on the temperature of the tire 4 which the temperature sensor 7 which detects the temperature of the tire 4 of the wheel 3 of the vehicle 2 detected, the actuator which can change the roll characteristic of the vehicle 2 6 to change the roll characteristics. Therefore, the vehicle control system 1 and the ECU 9 can suppress vibration generated in the vehicle 2.
  • the actuator has been described as including the active stabilizer 10 and the damping force variable device 11, but may be either one, that is, in the above description, the vehicle control system.
  • the control device has been described as adjusting both the roll rigidity and the roll damping force as the roll characteristics.
  • the present invention is not limited to this, and only one of them may be adjusted.
  • control device has been described as controlling the actuator based on the tire temperature detected by the temperature detection device and the vehicle speed detected by the vehicle speed detection device, and changing the roll characteristics of the vehicle.
  • the actuator may be controlled based on the tire temperature detected by the temperature detection device to change the roll characteristics of the vehicle. .
  • the actuator has been described as including an active stabilizer that can adjust the roll stiffness of the vehicle.
  • the actuator is not limited to this, and an active suspension that can adjust the roll stiffness of the vehicle is used instead of the active stabilizer. It may be configured to include.
  • control device of the vehicle control system has been described as an ECU that controls each part of the vehicle.
  • the present invention is not limited to this, and is configured separately from the ECU, for example. It may be configured to exchange information such as a detection signal, a drive signal, and a control command.
  • the vehicle control system and the control device according to the present invention are suitable for application to a vehicle control system and a control device mounted on various vehicles.

Abstract

A vehicle control system (1) is characterized by including: an actuator (6) capable of changing roll characteristics of a vehicle (2); a temperature detector (7) detecting the temperature of tires (4) of wheels (3) of the vehicle (2); and a controller (9) controlling the actuator (6) to change the roll characteristics on the basis of the temperature of the tires detected by the temperature detector (7). The vehicle control system (1) can thus efficiently suppress vibration caused by road inputs in a low-frequency region, and further suppress degradation in ride comfort caused by a change in the tire temperature.

Description

車両制御システム及び制御装置Vehicle control system and control device
 本発明は、車両制御システム及び制御装置に関する。 The present invention relates to a vehicle control system and a control device.
 従来の車両制御システム、あるいは、制御装置として、例えば、特許文献1には車両の旋回時のロールを低減すると共に、車両の操舵性を改善するアクティブサスペンションにおいて、車速の上昇に伴い後輪側のサスペンションの油圧制御圧の配分率を増加する車両用アクティブサスペンション装置が開示されている。 As a conventional vehicle control system or control device, for example, Patent Document 1 discloses an active suspension that reduces the roll during turning of the vehicle and improves the steering performance of the vehicle. An active suspension device for a vehicle that increases the distribution ratio of the hydraulic control pressure of the suspension is disclosed.
特開平4-081313号公報JP-A-4-081313
 ところで、上述のような特許文献1に記載の車両用アクティブサスペンション装置は、例えば、路面入力に対する振動抑制のために、更なる改善の余地がある。 Incidentally, the active suspension device for a vehicle described in Patent Document 1 as described above has room for further improvement, for example, for suppressing vibration against road surface input.
 本発明は、上記の事情に鑑みてなされたものであって、車両に生じる振動を抑制することができる車両制御システム及び制御装置を提供することを目的とする。 The present invention has been made in view of the above circumstances, and an object thereof is to provide a vehicle control system and a control device capable of suppressing vibrations generated in a vehicle.
 上記目的を達成するために、本発明に係る車両制御システムは、車両のロール特性を変更可能なアクチュエータと、前記車両の車輪のタイヤの温度を検出する温度検出装置と、前記温度検出装置が検出した前記タイヤの温度に基づいて、前記アクチュエータを制御し、前記ロール特性を変更する制御装置とを備えることを特徴とする。 In order to achieve the above object, a vehicle control system according to the present invention includes an actuator that can change a roll characteristic of a vehicle, a temperature detection device that detects a temperature of a tire of a wheel of the vehicle, and a detection by the temperature detection device. And a control device that controls the actuator based on the temperature of the tire and changes the roll characteristics.
 また、上記車両制御システムでは、前記温度検出装置は、前記タイヤのトレッド内部の温度を検出するものとすることができる。 In the vehicle control system, the temperature detection device may detect a temperature inside the tread of the tire.
 また、上記車両制御システムでは、前記制御装置は、前記温度検出装置が検出した前記タイヤの温度に応じた前記車輪のコーナリングパワーに基づいて、前記アクチュエータを制御し、前記ロール特性を変更するものとすることができる。 In the vehicle control system, the control device controls the actuator and changes the roll characteristics based on cornering power of the wheel according to the temperature of the tire detected by the temperature detection device. can do.
 また、上記車両制御システムでは、前記車両の車速を検出する車速検出装置を備え、前記制御装置は、前記温度検出装置が検出した前記タイヤの温度と前記車速検出装置が検出した前記車両の車速とに基づいて、前記アクチュエータを制御し、前記ロール特性を変更するものとすることができる。 The vehicle control system further includes a vehicle speed detection device that detects a vehicle speed of the vehicle, and the control device includes a temperature of the tire detected by the temperature detection device and a vehicle speed of the vehicle detected by the vehicle speed detection device. Based on the above, the actuator can be controlled to change the roll characteristics.
 また、上記車両制御システムでは、前記アクチュエータは、前記車両のロール剛性を調節可能であるものとすることができる。 In the vehicle control system, the actuator can adjust the roll rigidity of the vehicle.
 また、上記車両制御システムでは、前記アクチュエータは、前記車両のロール減衰力を調節可能であるものとすることができる。 In the vehicle control system, the actuator may be capable of adjusting a roll damping force of the vehicle.
 また、上記車両制御システムでは、前記制御装置は、前記アクチュエータを制御して前記車両の前輪側のロール剛性と後輪側のロール剛性との配分比率を調節可能であり、前記温度検出装置が検出した前記タイヤの温度が相対的に高い場合、前記タイヤの温度が相対的に低い場合と比較して、前記車両の前輪側のロール剛性の配分を小さくし、後輪側のロール剛性の配分を大きくするものとすることができる。 In the vehicle control system, the control device can control the actuator to adjust the distribution ratio between the roll stiffness on the front wheel side and the roll stiffness on the rear wheel side of the vehicle, and the temperature detection device detects When the tire temperature is relatively high, the distribution of the roll rigidity on the front wheel side of the vehicle is reduced and the distribution of the roll rigidity on the rear wheel side is compared with the case where the temperature of the tire is relatively low. Can be large.
 また、上記車両制御システムでは、前記制御装置は、前記アクチュエータを制御して前記車両の前輪側のロール減衰力と後輪側のロール減衰力との配分比率を調節可能であり、前記温度検出装置が検出した前記タイヤの温度が相対的に高い場合、前記タイヤの温度が相対的に低い場合と比較して、前記車両の前輪側のロール減衰力の配分を小さくし、後輪側のロール減衰力の配分を大きくするものとすることができる。 In the vehicle control system, the control device is capable of adjusting the distribution ratio between the roll damping force on the front wheel side and the roll damping force on the rear wheel side by controlling the actuator, and the temperature detecting device. When the tire temperature detected by the vehicle is relatively high, the distribution of the roll damping force on the front wheel side of the vehicle is made smaller and the roll damping on the rear wheel side compared to the case where the tire temperature is relatively low. The distribution of power can be increased.
 上記目的を達成するために、本発明に係る制御装置は、車両の車輪のタイヤの温度を検出する温度検出装置が検出した当該タイヤの温度に基づいて、前記車両のロール特性を変更可能なアクチュエータを制御し、前記ロール特性を変更することを特徴とする。 In order to achieve the above object, a control device according to the present invention is an actuator capable of changing the roll characteristics of a vehicle based on the temperature of the tire detected by a temperature detection device that detects the temperature of a tire of a vehicle wheel. And the roll characteristics are changed.
 本発明に係る車両制御システム及び制御装置は、車両に生じる振動を抑制することができる、という効果を奏する。 The vehicle control system and the control device according to the present invention have an effect that vibration generated in the vehicle can be suppressed.
図1は、実施形態に係る車両制御システムの概略構成を示す模式図である。FIG. 1 is a schematic diagram illustrating a schematic configuration of a vehicle control system according to an embodiment. 図2は、路面入力の周波数とボデー変位/路面入力との関係の一例を表す線図である。FIG. 2 is a diagram showing an example of the relationship between the frequency of road surface input and body displacement / road surface input. 図3は、路面入力の周波数と左右加速度、ヨー角速度との関係の一例を表す線図である。FIG. 3 is a diagram showing an example of the relationship between the road surface input frequency, the lateral acceleration, and the yaw angular velocity. 図4は、コーナリングパワーと垂直荷重、タイヤ温度との関係の一例を表す線図である。FIG. 4 is a diagram showing an example of the relationship between cornering power, vertical load, and tire temperature. 図5は、車両の簡易モデルを示す模式図である。FIG. 5 is a schematic diagram showing a simple model of a vehicle. 図6は、路面入力と強制力との関係の一例を表す線図である。FIG. 6 is a diagram illustrating an example of a relationship between road surface input and forcing force. 図7は、車速、前後ロール剛性配分及び前後ロール減衰配分と、前後輪の強制力の位相差との関係の一例を表す線図である。FIG. 7 is a diagram showing an example of the relationship between the vehicle speed, the front / rear roll stiffness distribution, the front / rear roll damping distribution, and the phase difference between the front and rear wheel forcing forces. 図8は、車速が高速である場合の路面入力の周波数とボデー変位/路面入力との関係の一例を表す線図である。FIG. 8 is a diagram showing an example of the relationship between the road surface input frequency and the body displacement / road surface input when the vehicle speed is high. 図9は、車速が低速である場合の路面入力の周波数とボデー変位/路面入力との関係の一例を表す線図である。FIG. 9 is a diagram showing an example of the relationship between the road surface input frequency and the body displacement / road surface input when the vehicle speed is low. 図10は、前後ロール剛性配分マップの一例を示す図である。FIG. 10 is a diagram illustrating an example of the front and rear roll stiffness distribution map. 図11は、前後ロール剛性配分制御の一例を示すフローチャートである。FIG. 11 is a flowchart illustrating an example of front and rear roll stiffness distribution control. 図12は、前後ロール減衰配分マップの一例を示す図である。FIG. 12 is a diagram illustrating an example of the front and rear roll attenuation distribution map. 図13は、前後ロール減衰配分制御の一例を示すフローチャートである。FIG. 13 is a flowchart illustrating an example of front and rear roll damping distribution control.
 以下に、本発明に係る実施形態を図面に基づいて詳細に説明する。なお、この実施形態によりこの発明が限定されるものではない。また、下記実施形態における構成要素には、当業者が置換可能かつ容易なもの、或いは実質的に同一のものが含まれる。 Hereinafter, embodiments of the present invention will be described in detail with reference to the drawings. In addition, this invention is not limited by this embodiment. In addition, constituent elements in the following embodiments include those that can be easily replaced by those skilled in the art or those that are substantially the same.
[実施形態]
 図1は、実施形態に係る車両制御システムの概略構成を示す模式図、図2は、路面入力の周波数とボデー変位/路面入力との関係の一例を表す線図、図3は、路面入力の周波数と左右加速度、ヨー角速度との関係の一例を表す線図、図4は、コーナリングパワーと垂直荷重、タイヤ温度との関係の一例を表す線図、図5は、車両の簡易モデルを示す模式図、図6は、路面入力と強制力との関係の一例を表す線図、図7は、車速、前後ロール剛性配分及び前後ロール減衰配分と、前後輪の強制力の位相差との関係の一例を表す線図、図8は、車速が高速(例えば80km/h)である場合の路面入力の周波数とボデー変位/路面入力との関係の一例を表す線図、図9は、車速が低速(例えば20km/h)である場合の路面入力の周波数とボデー変位/路面入力との関係の一例を表す線図、図10は、前後ロール剛性配分マップの一例を示す図、図11は、前後ロール剛性配分制御の一例を示すフローチャート、図12は、前後ロール減衰配分マップの一例を示す図、図13は、前後ロール減衰配分制御の一例を示すフローチャートである。
[Embodiment]
FIG. 1 is a schematic diagram showing a schematic configuration of a vehicle control system according to the embodiment, FIG. 2 is a diagram showing an example of a relationship between a frequency of road surface input and body displacement / road surface input, and FIG. 3 is a diagram of road surface input. FIG. 4 is a diagram showing an example of the relationship between frequency, lateral acceleration, and yaw angular velocity, FIG. 4 is a diagram showing an example of the relationship between cornering power, vertical load, and tire temperature, and FIG. 5 is a schematic diagram showing a simple model of the vehicle. Fig. 6 is a diagram showing an example of the relationship between road surface input and forcing force, and Fig. 7 is a diagram showing the relationship between vehicle speed, front and rear roll stiffness distribution and front and rear roll damping distribution, and phase difference of front and rear wheel forcing force. FIG. 8 is a diagram showing an example, FIG. 8 is a diagram showing an example of the relationship between the frequency of road surface input and the body displacement / road surface input when the vehicle speed is high (for example, 80 km / h), and FIG. (For example, 20 km / h) Road surface input frequency and body FIG. 10 is a diagram illustrating an example of a front / rear roll stiffness distribution map, FIG. 11 is a flowchart illustrating an example of a front / rear roll stiffness distribution control, and FIG. 12 is a front / rear roll. FIG. 13 is a flowchart illustrating an example of the attenuation distribution map, and FIG. 13 is a flowchart illustrating an example of front and rear roll attenuation distribution control.
 本実施形態の車両制御システム1は、図1に示すように車両2に搭載され、この車両2を制御するためのシステムであり、典型的には、車両2の車輪3のタイヤ4の温度に基づいて、車両2のロール特性を可変とすることで、車両2の挙動を制御する車両挙動制御装置である。車両2は、車輪3として、左前輪3FL、右前輪3FR、左後輪3RL、右後輪3RRを備えるが、これらを特に分ける必要がない場合には単に車輪3という。車両2は、走行用駆動源(原動機)、例えば、内燃機関や電動機等が発生させる動力が駆動輪である車輪3(例えば、左前輪3FL、右前輪3FR)に作用することで、車輪3の路面との接地面に駆動力[N]が生じ、これにより走行することができる。また、車両2は、ステアリングホイール5を操作することでパワーステアリング装置(不図示)等を介して操舵輪である車輪3(例えば、左前輪3FL、右前輪3FR)を操舵することができ、これにより、旋回することができる。 The vehicle control system 1 of this embodiment is a system for controlling the vehicle 2 that is mounted on the vehicle 2 as shown in FIG. 1. Typically, the temperature of the tire 4 of the wheel 3 of the vehicle 2 is controlled. Based on this, the vehicle behavior control device controls the behavior of the vehicle 2 by making the roll characteristics of the vehicle 2 variable. The vehicle 2 includes a left front wheel 3FL, a right front wheel 3FR, a left rear wheel 3RL, and a right rear wheel 3RR as the wheels 3, but these are simply referred to as wheels 3 when it is not necessary to separate them. In the vehicle 2, power generated by a driving source for driving (a prime mover), for example, an internal combustion engine or an electric motor, acts on the wheels 3 (for example, the left front wheel 3 FL and the right front wheel 3 FR) as drive wheels, thereby A driving force [N] is generated on the ground contact surface with the road surface, and thus the vehicle can travel. Further, the vehicle 2 can steer the wheels 3 (for example, the left front wheel 3FL and the right front wheel 3FR) as steering wheels by operating the steering wheel 5 through a power steering device (not shown). Can be turned.
 なお、以下で説明する車両2の前後方向とは、車両2の走行方向に沿った方向であり、車両2の左右方向とは、前後方向及び鉛直方向と直交する車両2の幅方向である。また、ロール方向とは、車両2の前後方向に沿った軸である前後軸まわり方向であり、ヨー方向とは、車両2の鉛直方向に沿った軸である上下軸まわり方向である。 Note that the front-rear direction of the vehicle 2 described below is a direction along the traveling direction of the vehicle 2, and the left-right direction of the vehicle 2 is the width direction of the vehicle 2 orthogonal to the front-rear direction and the vertical direction. The roll direction is a direction around the front-rear axis that is an axis along the front-rear direction of the vehicle 2, and the yaw direction is a direction around the vertical axis that is an axis along the vertical direction of the vehicle 2.
 本実施形態の車両制御システム1は、アクチュエータ6と、温度検出装置としての温度センサ7と、車速検出装置としての車速センサ8と、制御装置としてのECU9とを備える。 The vehicle control system 1 of the present embodiment includes an actuator 6, a temperature sensor 7 as a temperature detection device, a vehicle speed sensor 8 as a vehicle speed detection device, and an ECU 9 as a control device.
 アクチュエータ6は、車両2のロール特性を変更可能なものである。本実施形態のアクチュエータ6は、車両2のロール剛性を調節可能であるアクティブスタビライザ10と、車両2のロール減衰力を調節可能である減衰力可変装置(AVS:Adaptive Variable Suspension system)11とを含んで構成され、車両2のロール特性として、ロール剛性とロール減衰力との両方を変更可能である。ここで、車両2のロール剛性とは、車両2のロール方向に沿った剛性に相当し、車両2のロール減衰力とは、車両2のロール方向に沿った減衰力に相当する。 The actuator 6 can change the roll characteristics of the vehicle 2. The actuator 6 of the present embodiment includes an active stabilizer 10 that can adjust the roll rigidity of the vehicle 2 and a damping force variable device (AVS: Adaptive Variable Suspension system) 11 that can adjust the roll damping force of the vehicle 2. As a roll characteristic of the vehicle 2, both roll rigidity and roll damping force can be changed. Here, the roll rigidity of the vehicle 2 corresponds to the rigidity along the roll direction of the vehicle 2, and the roll damping force of the vehicle 2 corresponds to a damping force along the roll direction of the vehicle 2.
 アクティブスタビライザ10は、車両2のロール剛性を確保することで車両2の車体(ボデー)2Aをロール方向に回転させるロール運動(ロール振動)を抑制し車両2の安定した姿勢を確保すると共に、このロール剛性を可変とし車両2の運転状態に応じて調節することで車両2の操縦安定性を向上することができるものである。アクティブスタビライザ10は、左前輪3FL、右前輪3FRに対して設けられ前輪側のロール剛性を調節可能な前輪アクティブスタビライザ10Fと、左後輪3RL、右後輪3RRに対して設けられ後輪側のロール剛性を調節可能な後輪アクティブスタビライザ10Rとを含んで構成されるが、これらを特に分ける必要がない場合には単にアクティブスタビライザ10という。 The active stabilizer 10 secures the roll rigidity of the vehicle 2 to suppress the roll motion (roll vibration) that rotates the vehicle body (body) 2A of the vehicle 2 in the roll direction to ensure a stable posture of the vehicle 2 and The steering stability of the vehicle 2 can be improved by making the roll rigidity variable and adjusting according to the driving state of the vehicle 2. The active stabilizer 10 is provided with respect to the left front wheel 3FL and the right front wheel 3FR, and is provided with respect to the front wheel active stabilizer 10F capable of adjusting the roll rigidity on the front wheel side, the left rear wheel 3RL, and the right rear wheel 3RR. The rear wheel active stabilizer 10R, which can adjust the roll rigidity, is configured to be referred to as an active stabilizer 10 when it is not necessary to separate them.
 アクティブスタビライザ10は、スタビライザバー12と、駆動部13とを含んで構成され、スタビライザバー12の捩り反力を利用して、車両2の車体2Aのロールを抑制するものである。スタビライザバー12は、左右一対のトーションバー部が駆動部13により相対回転可能に連結され、左右一対のアーム部が屈曲して各車輪3に対応したサスペンション14(例えばサスペンション14のロアアーム)に連結されている。サスペンション14は、車輪3と車体2Aとの間に介在する懸架装置であり、路面から車体2Aに伝わる衝撃や振動を緩和するものであり、後述の減衰力可変装置11の一部をなす。駆動部13は、ECU9に接続されており、ECU9により制御される。 The active stabilizer 10 includes a stabilizer bar 12 and a drive unit 13, and uses the torsional reaction force of the stabilizer bar 12 to suppress the roll of the vehicle body 2A of the vehicle 2. In the stabilizer bar 12, a pair of left and right torsion bar portions are coupled to each other by a drive unit 13 so as to be relatively rotatable, and a pair of left and right arm portions are bent and coupled to a suspension 14 corresponding to each wheel 3 (for example, a lower arm of the suspension 14). ing. The suspension 14 is a suspension device interposed between the wheel 3 and the vehicle body 2A. The suspension 14 mitigates shock and vibration transmitted from the road surface to the vehicle body 2A, and forms a part of the damping force variable device 11 described later. The drive unit 13 is connected to the ECU 9 and is controlled by the ECU 9.
 アクティブスタビライザ10は、電動モータ等を含んで構成される駆動部13が駆動し、左右に二分割されたスタビライザバー12の各トーションバー部を相対回転させることで左右のトーションバー部の相対的な捩れ量を調節し、これにより、捩り反力を調節して車両2のロール剛性を調整可能である。つまり、アクティブスタビライザ10は、スタビライザバー12の捩れ量、言い換えれば、捩れ剛性を駆動部13で調節することでバネ特性を調節し、車両2の車体2Aのロール剛性を調節しロール運動の制御を行う。アクティブスタビライザ10は、例えば、駆動部13の出力トルク(回転駆動力)が大きくなり駆動部13の回転角度が大きくなることで、スタビライザバー12の捩れ量が大きくなり、このスタビライザバー12に作用する捩れ反力が大きくなり、車両2の車体2Aのロール剛性が高くなる。 The active stabilizer 10 is driven by a drive unit 13 including an electric motor or the like, and relatively rotates the torsion bar portions of the stabilizer bar 12 that is divided into left and right portions, thereby making the relative rotation of the left and right torsion bar portions relative to each other. The roll rigidity of the vehicle 2 can be adjusted by adjusting the twist amount and thereby adjusting the twist reaction force. In other words, the active stabilizer 10 adjusts the amount of twist of the stabilizer bar 12, in other words, the torsional rigidity by the drive unit 13 to adjust the spring characteristics, and adjusts the roll rigidity of the vehicle body 2 </ b> A of the vehicle 2 to control the roll motion. Do. For example, the active stabilizer 10 increases the output torque (rotational driving force) of the drive unit 13 and increases the rotation angle of the drive unit 13, thereby increasing the amount of twist of the stabilizer bar 12 and acting on the stabilizer bar 12. The torsional reaction force increases, and the roll rigidity of the vehicle body 2A of the vehicle 2 increases.
 減衰力可変装置11は、いわゆる減衰力制御サスペンションシステムであり、例えば、路面から車輪3への路面入力を緩衝するサスペンション14のショックアブソーバの減衰力特性を可変とし、これにより、ロール減衰力を可変とし車両2の運転状態に応じて調節することで、車両2の乗り心地や走行性能を変化させることができるものである。減衰力可変装置11は、左前輪3FLに対して設けられ左前輪3FL側のロール減衰力を調節可能な減衰力可変装置11FLと、右前輪3FRに対して設けられ右前輪3FR側のロール減衰力を調節可能な減衰力可変装置11FRと、左後輪3RLに対して設けられ左後輪3RL側のロール減衰力を調節可能な減衰力可変装置11RLと、右後輪3RRに対して設けられ右後輪3RR側のロール減衰力を調節可能な減衰力可変装置11RRとを含んで構成されるが、これらを特に分ける必要がない場合には単に減衰力可変装置11という。減衰力可変装置11は、例えばピストンの往復運動に伴って作動油が流出入するオリフィスの径を大小切り替えることによって減衰力の変更を実現させるものなどを用いることができるが、これに限らず、電動式のものを用いてもよい。 The damping force variable device 11 is a so-called damping force control suspension system. For example, the damping force characteristic of the shock absorber of the suspension 14 that buffers the road surface input from the road surface to the wheel 3 is made variable, thereby changing the roll damping force. By adjusting according to the driving state of the vehicle 2, the riding comfort and running performance of the vehicle 2 can be changed. The damping force varying device 11 is provided for the left front wheel 3FL and can adjust the roll damping force on the left front wheel 3FL side. The damping force varying device 11FL is provided for the right front wheel 3FR and the roll damping force on the right front wheel 3FR side. The damping force variable device 11FR capable of adjusting the left rear wheel 3RL, the damping force variable device 11RL capable of adjusting the roll damping force on the left rear wheel 3RL side, and the right rear wheel 3RR provided to the right Although it is configured to include a damping force variable device 11RR capable of adjusting the roll damping force on the rear wheel 3RR side, these are simply referred to as the damping force variable device 11 when it is not necessary to separate them. The damping force variable device 11 can use, for example, a device that realizes a change in damping force by switching the size of the orifice through which hydraulic oil flows in and out with the reciprocating motion of the piston, but is not limited thereto. An electric type may be used.
 温度センサ7は、車両2の車輪3のタイヤ4の温度を検出するものであり、例えば熱電対、サーミスタ等を用いることができる。より詳細には、温度センサ7は、タイヤ4のトレッド内部の温度、例えば、トレッド内部の構造部材であるカーカス層、ベルト層、あるいは、トレッドゴムなどの温度を検出する。好ましくは、温度センサ7は、タイヤ4のトレッド表面とベルト層上面との間のトレッドゴム内部の温度を検出するとよい。ここでは、温度センサ7は、1つのみを図示しているが、4つの車輪3にそれぞれ対応して設けられていてもよい。温度センサ7は、ECU9に電気的に接続されており、検出したタイヤ4の温度信号をECU9に送信する。なお、温度センサ7は、赤外線等を利用した非接触式の温度センサを用いることもできる。また、温度センサ7は、例えば、タイヤ4が装着されたホイールの温度を検出し、これに基づいてタイヤ4のトレッド内部の温度を検出、推定するようにしてもよい。 The temperature sensor 7 detects the temperature of the tire 4 of the wheel 3 of the vehicle 2, and for example, a thermocouple, a thermistor, or the like can be used. More specifically, the temperature sensor 7 detects the temperature inside the tread of the tire 4, for example, the temperature of a carcass layer, a belt layer, or a tread rubber that is a structural member inside the tread. Preferably, the temperature sensor 7 may detect the temperature inside the tread rubber between the tread surface of the tire 4 and the upper surface of the belt layer. Here, although only one temperature sensor 7 is illustrated, it may be provided corresponding to each of the four wheels 3. The temperature sensor 7 is electrically connected to the ECU 9 and transmits the detected temperature signal of the tire 4 to the ECU 9. The temperature sensor 7 may be a non-contact type temperature sensor using infrared rays or the like. Further, the temperature sensor 7 may detect, for example, the temperature of the wheel on which the tire 4 is mounted, and detect and estimate the temperature inside the tread of the tire 4 based on this.
 車速センサ8は、車両2の走行速度である車速を検出するものである。車速センサ8は、ECU9に電気的に接続されており、検出した車両2の車速信号をECU9に送信する。なお、車速検出装置は、各車輪3の車輪速度を検出する車輪速度センサであってもよく、ECU9は、各車輪3にそれぞれ設けられる各車輪速度センサが検出した各車輪速度に基づいて車両2の車速を求めてもよい。 The vehicle speed sensor 8 detects a vehicle speed that is the traveling speed of the vehicle 2. The vehicle speed sensor 8 is electrically connected to the ECU 9 and transmits the detected vehicle speed signal of the vehicle 2 to the ECU 9. The vehicle speed detection device may be a wheel speed sensor that detects the wheel speed of each wheel 3. The ECU 9 detects the vehicle 2 based on each wheel speed detected by each wheel speed sensor provided on each wheel 3. The vehicle speed may be obtained.
 ECU9は、車両2の各部の駆動を制御するものである。ECU9は、CPU、ROM、RAM及びインターフェースを含む周知のマイクロコンピュータを主体とする電子回路である。ECU9は、例えば、上述の温度センサ7、車速センサ8等の車両2の各部に設けられた種々のセンサ、検出装置が電気的に接続されると共に、アクティブスタビライザ10、減衰力可変装置11等の車両2の各部が電気的に接続される。ECU9は、種々のセンサ、検出装置が検出した検出結果に対応した電気信号が入力され、入力された検出結果に応じて車両2の各部に駆動信号を出力しこれらの駆動を制御する。 The ECU 9 controls driving of each part of the vehicle 2. The ECU 9 is an electronic circuit mainly composed of a known microcomputer including a CPU, a ROM, a RAM, and an interface. For example, the ECU 9 is electrically connected to various sensors and detection devices provided in each part of the vehicle 2 such as the temperature sensor 7 and the vehicle speed sensor 8 described above, and includes an active stabilizer 10 and a damping force variable device 11. Each part of the vehicle 2 is electrically connected. The ECU 9 receives electric signals corresponding to detection results detected by various sensors and detection devices, and outputs drive signals to the respective parts of the vehicle 2 in accordance with the input detection results to control the driving thereof.
 ECU9は、前輪アクティブスタビライザ10Fの駆動部13と後輪アクティブスタビライザ10Rの駆動部13との駆動を制御することで、前輪側のロール剛性、後輪側のロール剛性をそれぞれ調節することができる。ECU9は、前輪アクティブスタビライザ10Fの駆動部13の制御量と後輪アクティブスタビライザ10Rの駆動部13の制御量とを互いに独立して制御することができ、前輪アクティブスタビライザ10Fと後輪アクティブスタビライザ10Rとにより、例えば、車両2の前輪側のロール剛性と後輪側のロール剛性との配分比率である前後ロール剛性配分を適宜変更可能である。 The ECU 9 can control the roll stiffness on the front wheel side and the roll stiffness on the rear wheel side by controlling the drive of the drive unit 13 of the front wheel active stabilizer 10F and the drive unit 13 of the rear wheel active stabilizer 10R. The ECU 9 can control the control amount of the drive unit 13 of the front wheel active stabilizer 10F and the control amount of the drive unit 13 of the rear wheel active stabilizer 10R independently of each other. The front wheel active stabilizer 10F and the rear wheel active stabilizer 10R Thus, for example, the front-rear roll rigidity distribution, which is the distribution ratio between the roll rigidity on the front wheel side and the roll rigidity on the rear wheel side, of the vehicle 2 can be appropriately changed.
 ECU9は、減衰力可変装置11FL、FR、RL、RRの駆動を制御することで、左前輪3FL側のロール減衰力、右前輪3FR側のロール減衰力、左後輪3RL側のロール減衰力、右後輪3RR側のロール減衰力をそれぞれ調節することができる。ECU9は、減衰力可変装置11FL、FR、RL、RRの制御量を互いに独立して制御することができ、減衰力可変装置11FL、FR、RL、RRにより、例えば、車両2の前輪側のロール減衰力と後輪側のロール減衰力との配分比率である前後ロール減衰配分を適宜変更可能である。 The ECU 9 controls the driving of the damping force varying devices 11FL, FR, RL, and RR, so that the roll damping force on the left front wheel 3FL side, the roll damping force on the right front wheel 3FR side, the roll damping force on the left rear wheel 3RL side, The roll damping force on the right rear wheel 3RR side can be adjusted. The ECU 9 can control the control amounts of the damping force variable devices 11FL, FR, RL, RR independently of each other, and, for example, rolls on the front wheel side of the vehicle 2 by the damping force variable devices 11FL, FR, RL, RR. The front and rear roll damping distribution, which is the distribution ratio between the damping force and the roll damping force on the rear wheel side, can be appropriately changed.
 そして、本実施形態のECU9は、温度センサ7が検出したタイヤ4の温度に基づいて、アクチュエータ6を制御し、車両2のロール特性を変更することで、車両2に生じる振動を適正に抑制している。ECU9は、温度センサ7が検出したタイヤ4の温度を用いる場合、4輪の温度の平均値を用いてもよいし、いずれか1つの温度を用いてもよい。 And ECU9 of this embodiment controls the actuator 6 based on the temperature of the tire 4 which the temperature sensor 7 detected, and changes the roll characteristic of the vehicle 2, and suppresses the vibration which arises in the vehicle 2 appropriately. ing. When the temperature of the tire 4 detected by the temperature sensor 7 is used, the ECU 9 may use an average value of the temperatures of the four wheels, or any one temperature.
 この車両制御システム1は、例えば、低周波領域の路面入力(路面から車輪3への入力)に対して、車両2のロール方向、ヨー方向、左右方向の振動(いわゆるクラクラ振動と官能表現される振動)を効果的に抑制することで、乗り心地要求品質の向上を図っている。そして、この車両2のロール方向、ヨー方向、左右方向の振動は、タイヤ4に作用する左右力(横力)の影響を受けやすい傾向にある。 For example, the vehicle control system 1 is sensuously expressed as vibration in the roll direction, yaw direction, and left-right direction of the vehicle 2 (so-called clutter vibration) with respect to road surface input in the low frequency region (input from the road surface to the wheels 3). By effectively suppressing (vibration), the ride quality required is improved. The vibrations in the roll direction, yaw direction, and left-right direction of the vehicle 2 tend to be easily affected by the left-right force (lateral force) acting on the tire 4.
 例えば、図2中、実線L11、点線L12、実線L13は、左右(Lateral)方向の路面入力の周波数とボデー変位/路面入力との関係、実線R11、点線R12、実線R13は、ロール(Roll)方向の路面入力の周波数とボデー変位/路面入力との関係、実線Y11、点線Y12、実線Y13は、ヨー(Yaw)方向の路面入力の周波数とボデー変位/路面入力との関係の一例をそれぞれ示すものである。そして、実線L11、実線R11、実線Y11は、前輪側正規化コーナリングパワー/後輪側正規化コーナリングパワー=15/30、実線L12、実線R12、実線Y12は、前輪側正規化コーナリングパワー/後輪側正規化コーナリングパワー=10/30、実線L13、実線R13、実線Y13は、前輪側正規化コーナリングパワー/後輪側正規化コーナリングパワー=15/16の場合をそれぞれ示すものである。なお、正規化コーナリングパワーは、例えば、[コーナリングパワー/車軸荷重]によって表すことができる。タイヤ4のコーナリングパワーとは、単位スリップ角(横滑り角)当たりのコーナリングフォースに相当する。コーナリングフォースとは、車両2のコーナリング(旋回)時にタイヤ4の進行方向に対して直角方向へかかる分力である。 For example, in FIG. 2, the solid line L11, the dotted line L12, and the solid line L13 are the relationship between the road surface frequency in the left-right direction and the body displacement / road surface input, and the solid line R11, the dotted line R12, and the solid line R13 are rolls (Roll). The relationship between the frequency of the road surface input in the direction and the body displacement / road surface input, solid line Y11, dotted line Y12, and solid line Y13 show examples of the relationship between the frequency of the road surface input in the yaw direction and the body displacement / road surface input, respectively. Is. The solid line L11, the solid line R11, and the solid line Y11 are front wheel side normalized cornering power / rear wheel side normalized cornering power = 15/30, the solid line L12, the solid line R12, and the solid line Y12 are front wheel side normalized cornering power / rear wheel. The side normalized cornering power = 10/30, the solid line L13, the solid line R13, and the solid line Y13 respectively indicate the case where the front wheel side normalized cornering power / rear wheel side normalized cornering power = 15/16. The normalized cornering power can be expressed by, for example, [cornering power / axle load]. The cornering power of the tire 4 corresponds to a cornering force per unit slip angle (side slip angle). The cornering force is a component force applied in a direction perpendicular to the traveling direction of the tire 4 when the vehicle 2 is cornered (turned).
 この図2に例示するように、車両2は、タイヤ4のコーナリングパワーが増大すると、車両2のヨー方向、左右方向等の振動が大きくなり悪化する傾向にある(詳細は『題名:「路面入力に対するロール・左右方向の車両挙動解析」、著者:香村伸吾、大北剛史、出典「2007年自動車技術会秋季大会学術講演会20075777」』を参照)。 As illustrated in FIG. 2, when the cornering power of the tire 4 increases, the vehicle 2 tends to increase and deteriorate the vibration of the vehicle 2 in the yaw direction, the left-right direction, etc. Analysis of vehicle behavior in rolls and left and right directions ”, authors: Shingo Kamura, Takeshi Ohkita, source“ 2007 Academic Lecture Meeting of the Automotive Engineering Society of Japan 2007007577 ”).
 例えば、図3は、前輪側正規化コーナリングパワー及び後輪側正規化コーナリングパワーの影響について、ロール角に対する左右加速度及びヨー角速度の周波数応答の一例を用いて表している。図中、点線L21、点線L31は、前輪側正規化コーナリングパワー/後輪側正規化コーナリングパワー=15/30、実線L22、実線L32は、前輪側正規化コーナリングパワー/後輪側正規化コーナリングパワー=12/30、実線L23、実線L33は、前輪側正規化コーナリングパワー/後輪側正規化コーナリングパワー=15/20の場合をそれぞれ示すものである。この図3及び上記の図2に例示するように、ここでは、特に後輪側のコーナリングパワーの影響が大きく、後輪側のコーナリングパワーが増大すると、ヨー方向、左右方向等の振動が大幅に悪化する傾向にある。なお、本図中、縦軸の「β」は車両重心横滑り角、「r」は車両ヨー角速度、「φ」は車両ロール角、「U」は車速、「H」は重心高、「s」はラプラス演算子、「U(βs+r)」は車両左右加速度を表す。 For example, FIG. 3 shows the influence of the front wheel side normalized cornering power and the rear wheel side normalized cornering power using an example of the frequency response of the lateral acceleration and yaw angular velocity with respect to the roll angle. In the figure, dotted line L21 and dotted line L31 are front wheel side normalized cornering power / rear wheel side normalized cornering power = 15/30, solid line L22 and solid line L32 are front wheel side normalized cornering power / rear wheel side normalized cornering power. = 12/30, solid line L23, and solid line L33 respectively show the cases of front wheel side normalized cornering power / rear wheel side normalized cornering power = 15/20. As illustrated in FIG. 3 and FIG. 2 described above, here, the influence of the cornering power on the rear wheel side is particularly large, and when the cornering power on the rear wheel side increases, vibrations in the yaw direction, the left and right direction, etc. are greatly increased. It tends to get worse. In the figure, “β” on the vertical axis represents the vehicle center of gravity side slip angle, “r” represents the vehicle yaw angular velocity, “φ” represents the vehicle roll angle, “U” represents the vehicle speed, “H” represents the center of gravity height, and “s”. Represents a Laplace operator, and “U (βs + r)” represents vehicle lateral acceleration.
 また、図4は、横軸を垂直荷重、縦軸をコーナリングパワーとしており、この図4に例示するように、コーナリングパワーを含むタイヤ特性は、温度依存性が相対的に高い傾向にあり、このため、タイヤ4のコーナリングパワーは、同じタイヤ4であっても、タイヤ4の温度に応じて変化する。コーナリングパワーは、例えば、垂直荷重が同等であれば、タイヤ温度が低いほど大きくなる傾向にある。この結果、車両2のロール方向、ヨー方向、左右方向の振動は、タイヤ4の温度が変化しコーナリングパワーが変化することに伴って変化するおそれがある。 In FIG. 4, the horizontal axis represents the vertical load and the vertical axis represents the cornering power. As illustrated in FIG. 4, the tire characteristics including the cornering power tend to be relatively high in temperature. Therefore, the cornering power of the tire 4 changes according to the temperature of the tire 4 even if the tire 4 is the same. For example, if the vertical load is the same, the cornering power tends to increase as the tire temperature decreases. As a result, the roll, yaw, and left-right vibrations of the vehicle 2 may change as the temperature of the tire 4 changes and the cornering power changes.
 しかしながら、本実施形態のECU9は、温度センサ7が検出したタイヤ4の温度に基づいて、言い換えれば、温度センサ7が検出したタイヤ4の温度に応じた車輪3のコーナリングパワーに基づいて、アクチュエータ6を制御し、車両2のロール特性を変更することで、タイヤ4の温度、車輪3のコーナリングパワーに応じた最適なロール特性に調節することができ、車両2のロール方向、ヨー方向、左右方向の振動を効果的に抑制することができる。 However, the ECU 9 of this embodiment is based on the temperature of the tire 4 detected by the temperature sensor 7, in other words, based on the cornering power of the wheel 3 corresponding to the temperature of the tire 4 detected by the temperature sensor 7. By controlling the roll characteristics of the vehicle 2 and changing the roll characteristics of the vehicle 2, it is possible to adjust to the optimum roll characteristics according to the temperature of the tire 4 and the cornering power of the wheels 3. Can be effectively suppressed.
 具体的には、ECU9は、タイヤ4の温度に基づいてアクティブスタビライザ10を制御し、車両2の前後ロール剛性配分を制御すると共に、タイヤ4の温度に基づいて減衰力可変装置11を制御し、車両2の前後ロール減衰配分を制御する。ここでは、ECU9は、温度センサ7が検出したタイヤ4の温度と車速センサ8が検出した車両2の車速とに基づいて、アクチュエータ6を制御し、車両2のロール特性、すなわち、車両2のロール剛性、ロール減衰力を変更し、典型的には、車両2のロール方向、ヨー方向、左右方向の低周波領域の振動を効果的に抑制する。 Specifically, the ECU 9 controls the active stabilizer 10 based on the temperature of the tire 4, controls the front / rear roll rigidity distribution of the vehicle 2, and controls the damping force variable device 11 based on the temperature of the tire 4, The front and rear roll damping distribution of the vehicle 2 is controlled. Here, the ECU 9 controls the actuator 6 based on the temperature of the tire 4 detected by the temperature sensor 7 and the vehicle speed of the vehicle 2 detected by the vehicle speed sensor 8, and the roll characteristics of the vehicle 2, that is, the roll of the vehicle 2. The rigidity and roll damping force are changed, and typically, vibrations in the low frequency region in the roll direction, yaw direction, and left-right direction of the vehicle 2 are effectively suppressed.
 図5は、車両2の簡易モデルを示す模式図であり、本図中、「φ」は車両ロール角、「H」は重心高、「hi」は各車軸ロールセンタ高(例えばi=1が前輪、i=2が後輪を表す。以下、特に断りのない限り同様。)、「φi」は各車軸路面上下変位すなわち各車軸路面入力、「Kφi」は各車軸ロール剛性、「Cφi」は各車軸ロール減衰係数、「s」はラプラス演算子を表す。ロール剛性Kφiは、アクティブスタビライザ10のバネ特性を示すパラメータに相当し、ロール減衰係数Cφiは、減衰力可変装置11の減衰特性を示すパラメータに相当する。 FIG. 5 is a schematic diagram showing a simplified model of the vehicle 2, in which “φ” is the vehicle roll angle, “H” is the height of the center of gravity, and “hi” is the height of each axle roll center (for example, i = 1). Front wheel, i = 2 represents rear wheel, and so on unless otherwise specified.), “Φi” is the vertical displacement of each axle road surface, that is, each axle road surface input, “K φi ” is the axle roll rigidity, “C φi "Represents each axle roll damping coefficient, and" s "represents a Laplace operator. The roll stiffness K φi corresponds to a parameter indicating the spring characteristic of the active stabilizer 10, and the roll damping coefficient C φi corresponds to a parameter indicating the damping characteristic of the damping force varying device 11.
 この図5に例示するように、タイヤ4は、ロール運動を伴う路面からの路面入力φiが作用すると、タイヤ接地点において左右力φHsが発生し、この左右力φHsがバネ上の車体2Aに伝達される。このとき、車両制御システム1は、図2、図3でも例示したように、車輪3のコーナリングパワー、特に、後輪側のコーナリングパワーが相対的に小さくなると、前輪に対する後輪の左右力φHsの発生遅れが低減され、タイヤ接地点の左右方向移動により減衰効果が増加することによって、ヨー方向、左右方向等の振動が大幅に抑制される。 As illustrated in FIG. 5, in the tire 4, when the road surface input φi from the road surface accompanied by the roll motion acts, a left / right force φHs is generated at the tire contact point, and the left / right force φHs is transmitted to the vehicle body 2A on the spring. Is done. At this time, as illustrated in FIGS. 2 and 3, the vehicle control system 1 reduces the left-right force φHs of the rear wheel with respect to the front wheel when the cornering power of the wheel 3, particularly the cornering power on the rear wheel side becomes relatively small. The generation delay is reduced, and the damping effect is increased by moving the tire contact point in the left-right direction, so that vibrations in the yaw direction, the left-right direction, and the like are significantly suppressed.
 そして、コーナリングパワーを含むタイヤ特性は、図4でも例示したように、タイヤ温度の変化に伴って変化するので、これにより、タイヤ温度の変化に伴って振動の抑制度合いも変化し、車両2の乗り心地が変化してしまうおそれがある。例えば、タイヤ温度が図4で例示した最低温度であるときのコーナリングパワーと、最高温度であるときのコーナリングパワーとは、大きく異なり、典型的には、タイヤ温度が下がるほどコーナリングパワーが相対的に大きくなり、乗り心地が悪化するおそれがある。 The tire characteristics including the cornering power change as the tire temperature changes as illustrated in FIG. 4, so that the degree of vibration suppression also changes as the tire temperature changes. Ride comfort may change. For example, the cornering power when the tire temperature is the lowest temperature illustrated in FIG. 4 and the cornering power when the tire temperature is the highest are greatly different. Typically, the cornering power is relatively higher as the tire temperature is lower. There is a risk that it will become larger and the ride comfort will deteriorate.
 ここで、図6は、横軸を時間軸、縦軸を路面入力φi、強制力Fiとしている。強制力Fiは、路面入力φiに応じて車両2の車体2Aにロール運動を発生させる力であり、例えば、[(Kφi+Cφis)φi]によって表すことができる。この図6に例示するように、前輪への路面入力φ1と後輪への路面入力φ2とは、車両2のホイルベースL/車速Uに応じて遅れΔ1が生じる。つまり、後輪への路面入力φ2は、前輪への路面入力φ1に対して、位相遅れΔ1=L/Uが生じ、車速Uが高くなるほどこの位相遅れΔ1は小さくなる。 Here, in FIG. 6, the horizontal axis represents the time axis, and the vertical axis represents the road surface input φi and the forcing force Fi. The forcing force Fi is a force that generates a roll motion in the vehicle body 2A of the vehicle 2 in accordance with the road surface input φi, and can be represented by, for example, [(K φi + C φis ) φi]. As illustrated in FIG. 6, the road surface input φ1 to the front wheel and the road surface input φ2 to the rear wheel have a delay Δ1 according to the wheel base L / vehicle speed U of the vehicle 2. That is, the road surface input φ2 to the rear wheel has a phase delay Δ1 = L / U with respect to the road surface input φ1 to the front wheel, and the phase delay Δ1 decreases as the vehicle speed U increases.
 一方、図6に例示するように、強制力Fiは、路面入力φiに対して位相進みΔ2が発生する関係にある。このとき、強制力Fiは、路面入力φiに対して、[tan-1(Cφis/Kφi)]に相当する分だけ位相が進む。このため、車両制御システム1は、ロール減衰係数Cφiを相対的に大きくすることで、位相進みΔ2を相対的に大きくすることができ、ロール剛性Kφiを相対的に大きくすることで、位相進みΔ2を相対的に小さくすることができる。 On the other hand, as illustrated in FIG. 6, the forcing force Fi has a relationship in which a phase advance Δ2 is generated with respect to the road surface input φi. At this time, the phase of the forcing force Fi advances by an amount corresponding to [tan −1 (C φi s / K φi )] with respect to the road surface input φi. For this reason, the vehicle control system 1 can relatively increase the phase advance Δ2 by relatively increasing the roll damping coefficient Cφi, and can relatively increase the roll rigidity Kφi. The advance Δ2 can be made relatively small.
 したがって、車速Uに応じた車両2の前後ロール剛性配分、前後ロール減衰配分の強制力Fiへの影響は、例えば、図7に例示するようになる。すなわち、図中上段の車速が80km/hの場合と図中下段の車速が20km/hの場合とを例とすると、相対的に高速である80km/hの場合の位相遅れΔ1が相対的に小さくなり、相対的に低速である20km/hの場合の位相遅れΔ1が相対的に大きくなる。そして例えば、図中左側の車両2の前後ロール剛性配分を前輪ロール剛性配分=70%、後輪ロール剛性配分=30%とし車両2の前後ロール減衰配分を前輪ロール減衰配分=30%、後輪ロール減衰配分=70%とした場合、前輪側の路面入力φ1に対する強制力F1の位相進みΔ2Fが相対的に小さくなり、後輪側の路面入力φ2に対する強制力F2の位相進みΔ2Rが相対的に大きくなる。一方、図中右側の前輪ロール剛性配分=30%、後輪ロール剛性配分=70%とし、前輪ロール減衰配分=70%、後輪ロール減衰配分=30%とした場合、前輪側の路面入力φ1に対する強制力F1の位相進みΔ2Fが相対的に大きくなり、後輪側の路面入力φ2に対する強制力F2の位相進みΔ2Rが相対的に小さくなる。 Therefore, the influence of the front / rear roll stiffness distribution and the front / rear roll damping distribution on the forcing force Fi according to the vehicle speed U is exemplified in FIG. That is, when the upper vehicle speed in the figure is 80 km / h and the lower vehicle speed in the figure is 20 km / h, for example, the phase delay Δ1 at a relatively high speed of 80 km / h is relatively high. The phase delay Δ1 becomes relatively large when the speed is 20 km / h, which is relatively low. For example, the front and rear roll stiffness distribution of the vehicle 2 on the left side in the figure is 70% for the front wheel roll stiffness and the rear wheel roll stiffness distribution is 30%. The front and rear roll damping distribution of the vehicle 2 is 30% and the rear wheel roll damping distribution is 30%. When roll damping distribution = 70%, the phase advance Δ2F of the forcing force F1 with respect to the road surface input φ1 on the front wheel side is relatively small, and the phase advance Δ2R of the forcing force F2 with respect to the road surface input φ2 on the rear wheel side is relatively growing. On the other hand, when the front wheel roll stiffness distribution = 30% and the rear wheel roll stiffness distribution = 70% on the right side in the figure, the front wheel roll damping distribution = 70% and the rear wheel roll damping distribution = 30%, the road surface input φ1 on the front wheel side is shown. The phase advance Δ2F of the forcing force F1 with respect to is relatively large, and the phase advance Δ2R of the forcing force F2 with respect to the road input φ2 on the rear wheel side is relatively small.
 この結果、図7の例では、前輪側の強制力と後輪側の強制力との位相差は、車速が相対的に高速である80km/hの場合には前輪ロール剛性配分=30%、後輪ロール剛性配分=70%とし前輪ロール減衰配分=70%、後輪ロール減衰配分=30%とした場合の方が相対的に大きくなる。このため、車両制御システム1は、図7の例では、車速が80km/hの場合に前輪ロール剛性配分=30%、後輪ロール剛性配分=70%とし前輪ロール減衰配分=70%、後輪ロール減衰配分=30%とし前後輪の強制力の位相差を大きくすることで、前輪側の強制力と後輪側の強制力とが打ち消し合って、車両2におけるトータルでの強制力が相対的に小さくなるので、ロール方向、左右方向等の振動を抑制することができる。 As a result, in the example of FIG. 7, the phase difference between the forcing force on the front wheel side and the forcing force on the rear wheel side is such that the front wheel roll stiffness distribution is 30% when the vehicle speed is 80 km / h, which is relatively high. The rear wheel roll stiffness distribution = 70%, the front wheel roll damping distribution = 70%, and the rear wheel roll damping distribution = 30% are relatively larger. Therefore, in the example of FIG. 7, the vehicle control system 1 sets the front wheel roll stiffness distribution = 30% and the rear wheel roll stiffness distribution = 70% when the vehicle speed is 80 km / h, and the front wheel roll damping distribution = 70%. By increasing the roll damping distribution = 30% and increasing the phase difference between the front and rear wheel forcing forces, the front wheel forcing force and the rear wheel forcing force cancel each other, and the total forcing force in the vehicle 2 is relative. Therefore, vibrations in the roll direction, left-right direction, etc. can be suppressed.
 図8中、実線L41、R41、Y41は、前輪ロール剛性配分=70%、後輪ロール剛性配分=30%とし前輪ロール減衰配分=30%、後輪ロール減衰配分=70%とした場合を表し、実線L42、R42、Y42は、前輪ロール剛性配分=30%、後輪ロール剛性配分=70%とし前輪ロール減衰配分=70%、後輪ロール減衰配分=30%とした場合を表している。この図からも明らかなように、車両制御システム1は、車速が相対的に高速である場合には、車両2の前後ロール剛性配分を後輪寄り(後輪側のロール剛性を相対的に大きくする)、前後ロール減衰配分を前輪寄り(前輪側のロール減衰力を相対的に大きくする)とした場合の方が低周波領域(例えば2Hz前後)におけるロール方向、左右方向等の振動をより抑制することができる。 In FIG. 8, solid lines L41, R41, and Y41 represent the case where the front wheel roll stiffness distribution = 70%, the rear wheel roll stiffness distribution = 30%, the front wheel roll damping distribution = 30%, and the rear wheel roll damping distribution = 70%. The solid lines L42, R42, and Y42 represent the case where the front wheel roll stiffness distribution = 30%, the rear wheel roll stiffness distribution = 70%, the front wheel roll damping distribution = 70%, and the rear wheel roll damping distribution = 30%. As is clear from this figure, the vehicle control system 1 distributes the front and rear roll stiffness distribution of the vehicle 2 closer to the rear wheel (relatively larger roll stiffness on the rear wheel side) when the vehicle speed is relatively high. If the front and rear roll damping distribution is closer to the front wheels (relatively increasing the roll damping force on the front wheels), vibrations in the roll direction, left and right direction, etc. in the low frequency region (for example, around 2 Hz) are further suppressed. can do.
 一方、図7の例では、前輪側の強制力と後輪側の強制力との位相差は、車速が相対的に低速である20km/hの場合には前輪ロール剛性配分=70%、後輪ロール剛性配分=30%とし前輪ロール減衰配分=30%、後輪ロール減衰配分=70%とした場合の方が相対的に大きくなる。このため、車両制御システム1は、図7の例では、車速が20km/hの場合に前輪ロール剛性配分=70%、後輪ロール剛性配分=30%とし前輪ロール減衰配分=30%、後輪ロール減衰配分=70%とし前後輪の強制力の位相差を大きくすることで、前輪側の強制力と後輪側の強制力とが打ち消し合って、車両2におけるトータルでの強制力が相対的に小さくなるので、ロール方向、左右方向等の振動を抑制することができる。 On the other hand, in the example of FIG. 7, the phase difference between the forcing force on the front wheel side and the forcing force on the rear wheel side is such that when the vehicle speed is 20 km / h, which is a relatively low speed, the front wheel roll stiffness distribution is 70%. The wheel roll rigidity distribution = 30%, the front wheel roll damping distribution = 30%, and the rear wheel roll damping distribution = 70% are relatively larger. Therefore, in the example of FIG. 7, the vehicle control system 1 sets the front wheel roll stiffness distribution = 70% and the rear wheel roll stiffness distribution = 30% when the vehicle speed is 20 km / h, and the front wheel roll damping distribution = 30%. By increasing the roll damping distribution = 70% and increasing the phase difference between the front and rear wheel forcing forces, the front wheel forcing force and the rear wheel forcing force cancel each other, and the total forcing force in the vehicle 2 is relative. Therefore, vibrations in the roll direction, left-right direction, etc. can be suppressed.
 図9中、実線L51、R51、Y51は、前輪ロール剛性配分=70%、後輪ロール剛性配分=30%とし前輪ロール減衰配分=30%、後輪ロール減衰配分=70%とした場合を表し、実線L52、R52、Y52は、前輪ロール剛性配分=30%、後輪ロール剛性配分=70%とし前輪ロール減衰配分=70%、後輪ロール減衰配分=30%とした場合を表している。この図からも明らかなように、車両制御システム1は、車速が相対的に低速である場合には車両2の前後ロール剛性配分を前輪寄り(前輪側のロール剛性を相対的に大きくする)、前後ロール減衰配分を後輪寄り(後輪側のロール減衰力を相対的に大きくする)とした場合の方が低周波領域(例えば2Hz前後)におけるロール方向、左右方向等の振動をより抑制することができる。 In FIG. 9, solid lines L51, R51, and Y51 represent the case where the front wheel roll stiffness distribution = 70%, the rear wheel roll stiffness distribution = 30%, the front wheel roll damping distribution = 30%, and the rear wheel roll damping distribution = 70%. The solid lines L52, R52, and Y52 represent the case where the front wheel roll stiffness distribution = 30%, the rear wheel roll stiffness distribution = 70%, the front wheel roll damping distribution = 70%, and the rear wheel roll damping distribution = 30%. As is clear from this figure, the vehicle control system 1 allows the front and rear roll stiffness distribution of the vehicle 2 to be closer to the front wheels (relatively increasing the roll stiffness on the front wheels) when the vehicle speed is relatively low. When the front / rear roll damping distribution is closer to the rear wheel (the roll damping force on the rear wheel side is relatively increased), vibrations in the roll direction and the left / right direction in the low frequency region (for example, around 2 Hz) are further suppressed. be able to.
 本実施形態の車両制御システム1は、ECU9が上述のコーナリングパワーを含むタイヤ特性の温度依存性を踏まえて、アクティブスタビライザ10、減衰力可変装置11を制御し、車両2のロール特性、ここでは、車両2の前後ロール剛性配分、前後ロール減衰配分を制御する。ここではさらに、車両制御システム1は、ECU9がタイヤ特性の温度依存性と共に、上述の車速に応じた車両2の前後ロール剛性配分、前後ロール減衰配分の振動への影響を踏まえて、車両2の上記ロール特性を制御する。 In the vehicle control system 1 of the present embodiment, the ECU 9 controls the active stabilizer 10 and the damping force variable device 11 based on the temperature dependence of the tire characteristics including the cornering power described above, and the roll characteristics of the vehicle 2, here, The front / rear roll stiffness distribution and front / rear roll damping distribution of the vehicle 2 are controlled. Here, the vehicle control system 1 further determines that the ECU 9 takes into account the effect of the tire 2 on the vibration of the front and rear roll stiffness distribution and the front and rear roll damping distribution according to the vehicle speed as well as the temperature dependence of the tire characteristics. Control the roll characteristics.
 ECU9は、アクチュエータ6であるアクティブスタビライザ10を制御して車両2の前輪側のロール剛性と後輪側のロール剛性との配分比率を調節可能であり、温度センサ7が検出したタイヤ4の温度が相対的に高い場合、タイヤ4の温度が相対的に低い場合と比較して、車両2の前輪側のロール剛性の配分を小さくし、後輪側のロール剛性の配分を大きくする。また、ECU9は、車速センサ8が検出した車両2の車速が相対的に高い場合、車両2の車速が相対的に低い場合と比較して、車両2の前輪側のロール剛性の配分を小さくし、後輪側のロール剛性の配分を大きくする。 The ECU 9 can control the active stabilizer 10 that is the actuator 6 to adjust the distribution ratio between the roll rigidity on the front wheel side and the roll rigidity on the rear wheel side of the vehicle 2, and the temperature of the tire 4 detected by the temperature sensor 7 can be adjusted. When the temperature is relatively high, the distribution of roll rigidity on the front wheel side of the vehicle 2 is reduced and the distribution of roll rigidity on the rear wheel side is increased as compared with the case where the temperature of the tire 4 is relatively low. In addition, the ECU 9 reduces the distribution of roll rigidity on the front wheel side of the vehicle 2 when the vehicle speed of the vehicle 2 detected by the vehicle speed sensor 8 is relatively high compared to when the vehicle speed of the vehicle 2 is relatively low. Increase the distribution of roll rigidity on the rear wheel side.
 ECU9は、例えば、図10に例示する前後ロール剛性配分マップm1に基づいて、前輪ロール剛性配分、後輪ロール剛性配分を求める。前後ロール剛性配分マップm1は、横軸がタイヤ4のタイヤ温度、縦軸が前輪ロール剛性配分を示す。前後ロール剛性配分マップm1は、各車速におけるタイヤ4のタイヤ温度(言い換えればタイヤ温度に応じたコーナリングパワー)と、前輪ロール剛性配分との関係を記述したものである。前後ロール剛性配分マップm1は、タイヤ温度と前輪ロール剛性配分との関係が、上記のタイヤ特性の温度依存性と、車速に応じた車両2の前後ロール剛性配分、前後ロール減衰配分の振動への影響とを踏まえて予め設定された上で、ECU9の記憶部に格納されている。この前後ロール剛性配分マップm1では、前輪ロール剛性配分は、タイヤ温度の増加に伴って、言い換えれば、コーナリングパワーの減少に伴って減少し、車速の増加に伴って減少する。つまりこの場合、後輪ロール剛性配分は、タイヤ温度の増加に伴って、言い換えれば、コーナリングパワーの減少に伴って増加し、車速の増加に伴って増加する。ECU9は、前後ロール剛性配分マップm1に基づいて、温度センサ7が検出したタイヤ4の温度と車速センサ8が検出した車両2の車速とから前輪ロール剛性配分、後輪ロール剛性配分を求める。そして、ECU9は、例えば、求めた前輪ロール剛性配分、後輪ロール剛性配分に基づいてアクティブスタビライザ10を制御し車両2の前後ロール剛性配分を調節する。 ECU9 calculates | requires front-wheel roll rigidity distribution and rear-wheel roll rigidity distribution based on the front-and-back roll rigidity distribution map m1 illustrated in FIG. 10, for example. In the front and rear roll stiffness distribution map m1, the horizontal axis indicates the tire temperature of the tire 4, and the vertical axis indicates the front wheel roll stiffness distribution. The front and rear roll stiffness distribution map m1 describes the relationship between the tire temperature of the tire 4 at each vehicle speed (in other words, cornering power according to the tire temperature) and the front wheel roll stiffness distribution. The front / rear roll stiffness distribution map m1 indicates that the relationship between the tire temperature and the front wheel roll stiffness distribution is related to the temperature dependency of the tire characteristics and the vibration of the front / rear roll stiffness distribution and the front / rear roll damping distribution of the vehicle 2 according to the vehicle speed. It is set in advance based on the influence and stored in the storage unit of the ECU 9. In the front and rear roll stiffness distribution map m1, the front wheel roll stiffness distribution decreases as the tire temperature increases, in other words, decreases as the cornering power decreases, and decreases as the vehicle speed increases. In other words, in this case, the rear wheel roll stiffness distribution increases as the tire temperature increases, in other words, increases as the cornering power decreases, and increases as the vehicle speed increases. The ECU 9 obtains the front wheel roll stiffness distribution and the rear wheel roll stiffness distribution from the temperature of the tire 4 detected by the temperature sensor 7 and the vehicle speed of the vehicle 2 detected by the vehicle speed sensor 8 based on the front and rear roll stiffness distribution map m1. And ECU9 controls the active stabilizer 10 based on the calculated | required front-wheel roll rigidity distribution and the rear-wheel roll rigidity distribution, and adjusts the front-and-rear roll rigidity distribution of the vehicle 2, for example.
 なお、本実施形態では、ECU9は、図10に例示する前後ロール剛性配分マップm1を用いて前輪ロール剛性配分、後輪ロール剛性配分を求めたが、本実施形態はこれに限定されない。ECU9は、例えば、図10に例示する前後ロール剛性配分マップm1に相当する数式に基づいて前輪ロール剛性配分、後輪ロール剛性配分を求めてもよい。以下で説明する前後ロール減衰配分マップについても同様である。 In the present embodiment, the ECU 9 calculates the front wheel roll stiffness distribution and the rear wheel roll stiffness distribution using the front and rear roll stiffness distribution map m1 illustrated in FIG. 10, but the present embodiment is not limited to this. For example, the ECU 9 may obtain the front wheel roll stiffness distribution and the rear wheel roll stiffness distribution based on a mathematical expression corresponding to the front and rear roll stiffness distribution map m1 illustrated in FIG. The same applies to the front and rear roll attenuation distribution map described below.
 次に、図11のフローチャートを参照して車両制御システム1における前後ロール剛性配分制御の一例を説明する。なお、これらの制御ルーチンは、数msないし数十ms毎の制御周期で繰り返し実行される。まず、ECU9は、温度センサ7が検出したタイヤ4のタイヤ温度と車速センサ8が検出した車両2の車速とを取得する(ST1)。次に、ECU9は、ST1で取得したタイヤ4のタイヤ温度、車両2の車速に基づいて、図10の前後ロール剛性配分マップm1から前輪ロール剛性配分を求めて、前後ロール剛性配分を決定する(ST2)。次に、ECU9は、ST2で決定した前後ロール剛性配分に基づいてアクティブスタビライザ10を制御し車両2の前後ロール剛性配分を調節して(ST3)、現在の制御周期を終了し、次の制御周期に移行する。 Next, an example of front and rear roll stiffness distribution control in the vehicle control system 1 will be described with reference to the flowchart of FIG. Note that these control routines are repeatedly executed at a control cycle of several ms to several tens of ms. First, the ECU 9 acquires the tire temperature of the tire 4 detected by the temperature sensor 7 and the vehicle speed of the vehicle 2 detected by the vehicle speed sensor 8 (ST1). Next, the ECU 9 obtains the front wheel roll stiffness distribution from the front and rear roll stiffness distribution map m1 of FIG. 10 based on the tire temperature of the tire 4 and the vehicle speed of the vehicle 2 acquired in ST1, and determines the front and rear roll stiffness distribution ( ST2). Next, the ECU 9 controls the active stabilizer 10 based on the front / rear roll stiffness distribution determined in ST2 to adjust the front / rear roll stiffness distribution of the vehicle 2 (ST3), ends the current control cycle, and then proceeds to the next control cycle. Migrate to
 なお、図10の前後ロール剛性配分マップm1は、タイヤ4のタイヤ温度に応じたコーナリングパワーと前輪ロール剛性配分と関係を記述したものであってもよい。この場合、ECU9は、ST1にて、タイヤ4のタイヤ温度を取得した後、タイヤ温度に基づいて現在のコーナリングパワーを推定し、ST2にて、推定したコーナリングパワーと、車速とを用いて前後ロール剛性配分を決定すればよい。以下で説明する前後ロール減衰配分制御の場合も同様である。 The front and rear roll stiffness distribution map m1 in FIG. 10 may describe a relationship between cornering power and front wheel roll stiffness distribution according to the tire temperature of the tire 4. In this case, after acquiring the tire temperature of the tire 4 in ST1, the ECU 9 estimates the current cornering power based on the tire temperature, and in ST2, uses the estimated cornering power and the vehicle speed to roll back and forth. What is necessary is just to determine rigidity distribution. The same applies to the front and rear roll damping distribution control described below.
 また、ECU9は、アクチュエータ6である減衰力可変装置11を制御して車両2の前輪側のロール減衰力と後輪側のロール減衰力との配分比率を調節可能であり、温度センサ7が検出したタイヤ4の温度が相対的に高い場合、タイヤ4の温度が相対的に低い場合と比較して、車両2の前輪側のロール減衰力の配分を小さくし、後輪側のロール減衰力の配分を大きくする。また、ECU9は、車速センサ8が検出した車両2の車速が相対的に高い場合、車両2の車速が相対的に低い場合と比較して、車両2の前輪側のロール減衰力の配分を大きくし、後輪側のロール減衰力の配分を小さくする。 Further, the ECU 9 can control the damping force varying device 11 that is the actuator 6 to adjust the distribution ratio between the roll damping force on the front wheel side and the roll damping force on the rear wheel side of the vehicle 2, and is detected by the temperature sensor 7. When the temperature of the tire 4 is relatively high, the distribution of the roll damping force on the front wheel side of the vehicle 2 is reduced compared to the case where the temperature of the tire 4 is relatively low, and the roll damping force on the rear wheel side is reduced. Increase distribution. Further, the ECU 9 increases the distribution of the roll damping force on the front wheel side of the vehicle 2 when the vehicle speed of the vehicle 2 detected by the vehicle speed sensor 8 is relatively high compared to when the vehicle speed of the vehicle 2 is relatively low. And reducing the distribution of the roll damping force on the rear wheel side.
 ECU9は、例えば、図12に例示する前後ロール減衰配分マップm2に基づいて、前輪ロール減衰配分、後輪ロール減衰配分を求める。前後ロール減衰配分マップm2は、横軸がタイヤ4のタイヤ温度、縦軸が前輪ロール減衰配分を示す。前後ロール減衰配分マップm2は、各車速におけるタイヤ4のタイヤ温度(言い換えればタイヤ温度に応じたコーナリングパワー)と、前輪ロール減衰配分との関係を記述したものである。前後ロール減衰配分マップm2は、タイヤ温度と前輪ロール減衰配分との関係が、前後ロール剛性配分マップm1と同様に予め設定された上で、ECU9の記憶部に格納されている。この前後ロール減衰配分マップm2では、前輪ロール減衰配分は、タイヤ温度の増加に伴って、言い換えれば、コーナリングパワーの減少に伴って減少し、車速の増加に伴って増加する。つまりこの場合、後輪ロール減衰配分は、タイヤ温度の増加に伴って、言い換えれば、コーナリングパワーの減少に伴って増加し、車速の増加に伴って減少する。ECU9は、前後ロール減衰配分マップm2に基づいて、温度センサ7が検出したタイヤ4の温度と車速センサ8が検出した車両2の車速とから前輪ロール減衰配分、後輪ロール減衰配分を求める。そして、ECU9は、例えば、求めた前輪ロール減衰配分、後輪ロール減衰配分に基づいて減衰力可変装置11を制御し車両2の前後ロール減衰配分を調節する。 ECU9 calculates | requires front-wheel roll attenuation distribution and rear-wheel roll attenuation distribution based on the front-and-rear roll attenuation distribution map m2 illustrated in FIG. 12, for example. In the front and rear roll attenuation distribution map m2, the horizontal axis indicates the tire temperature of the tire 4, and the vertical axis indicates the front wheel roll attenuation distribution. The front and rear roll damping distribution map m2 describes the relationship between the tire temperature of the tire 4 at each vehicle speed (in other words, cornering power according to the tire temperature) and the front wheel roll damping distribution. The front and rear roll damping distribution map m2 is stored in the storage unit of the ECU 9 after the relationship between the tire temperature and the front wheel roll damping distribution is set in advance in the same manner as the front and rear roll stiffness distribution map m1. In the front / rear roll attenuation distribution map m2, the front wheel roll attenuation distribution decreases as the tire temperature increases, in other words, decreases as the cornering power decreases, and increases as the vehicle speed increases. That is, in this case, the rear wheel roll damping distribution increases as the tire temperature increases, in other words, increases as the cornering power decreases, and decreases as the vehicle speed increases. The ECU 9 obtains the front wheel roll attenuation distribution and the rear wheel roll attenuation distribution from the temperature of the tire 4 detected by the temperature sensor 7 and the vehicle speed of the vehicle 2 detected by the vehicle speed sensor 8 based on the front and rear roll attenuation distribution map m2. Then, the ECU 9 controls the damping force variable device 11 based on, for example, the obtained front wheel roll damping distribution and rear wheel roll damping distribution to adjust the front and rear roll damping distribution of the vehicle 2.
 次に、図13のフローチャートを参照して車両制御システム1における前後ロール減衰配分制御の一例を説明する。まず、ECU9は、温度センサ7が検出したタイヤ4のタイヤ温度と車速センサ8が検出した車両2の車速とを取得する(ST21)。次に、ECU9は、ST21で取得したタイヤ4のタイヤ温度、車両2の車速に基づいて、図12の前後ロール減衰配分マップm2から前輪ロール減衰配分を求めて、前後ロール減衰配分を決定する(ST22)。次に、ECU9は、ST22で決定した前後ロール減衰配分に基づいて減衰力可変装置11を制御(AVS制御)し車両2の前後ロール減衰配分を調節して(ST23)、現在の制御周期を終了し、次の制御周期に移行する。 Next, an example of front and rear roll damping distribution control in the vehicle control system 1 will be described with reference to the flowchart of FIG. First, the ECU 9 acquires the tire temperature of the tire 4 detected by the temperature sensor 7 and the vehicle speed of the vehicle 2 detected by the vehicle speed sensor 8 (ST21). Next, the ECU 9 obtains the front wheel roll attenuation distribution from the front and rear roll attenuation distribution map m2 of FIG. 12 based on the tire temperature of the tire 4 and the vehicle speed of the vehicle 2 acquired in ST21, and determines the front and rear roll attenuation distribution ( ST22). Next, the ECU 9 controls the damping force variable device 11 based on the front / rear roll attenuation distribution determined in ST22 (AVS control), adjusts the front / rear roll attenuation distribution of the vehicle 2 (ST23), and ends the current control cycle. Then, the next control cycle is started.
 上記のように構成される車両制御システム1は、タイヤ4の内部温度を検知し、タイヤ温度、言い換えれば、タイヤ温度に応じたコーナリングパワーと、車速とに基づいて、前後ロール剛性配分や前後ロール減衰配分等のロール特性を制御することで、車両2のロール方向、ヨー方向、左右方向の低周波領域の振動、いわゆるクラクラ振動を効果的に抑制することができる。この結果、車両制御システム1は、低周波領域の路面入力に対する振動を効果的に抑制するこができ、タイヤ温度の変化による乗り心地の悪化を抑制することができる。 The vehicle control system 1 configured as described above detects the internal temperature of the tire 4, and based on the tire temperature, in other words, the cornering power corresponding to the tire temperature and the vehicle speed, the front / rear roll rigidity distribution and the front / rear roll By controlling roll characteristics such as attenuation distribution, vibrations in the low frequency region in the roll direction, yaw direction, and left-right direction of the vehicle 2, so-called clutter vibration can be effectively suppressed. As a result, the vehicle control system 1 can effectively suppress the vibration with respect to the road surface input in the low frequency region, and can suppress the deterioration of the riding comfort due to the change in the tire temperature.
 また、車両制御システム1は、温度センサ7がタイヤ4のコーナリングパワーを含むタイヤ特性に影響を与え易いトレッド内部の温度、典型的には、トレッドゴム内部の温度を検出し、これをロール特性の調節制御に用いることで、制御の精度をより向上することができ、低周波領域の路面入力に対する振動をより効果的に抑制するこができる。 In addition, the vehicle control system 1 detects the temperature inside the tread where the temperature sensor 7 easily affects the tire characteristics including the cornering power of the tire 4, typically the temperature inside the tread rubber, and detects the temperature of the roll characteristics. By using it for the adjustment control, the accuracy of the control can be further improved, and the vibration with respect to the road surface input in the low frequency region can be more effectively suppressed.
 以上で説明した実施形態に係る車両制御システム1によれば、車両2のロール特性を変更可能なアクチュエータ6と、車両2の車輪3のタイヤ4の温度を検出する温度センサ7と、温度センサ7が検出したタイヤ4の温度に基づいて、アクチュエータ6を制御し、ロール特性を変更するECU9とを備える。以上で説明した実施形態に係るECU9によれば、車両2の車輪3のタイヤ4の温度を検出する温度センサ7が検出したタイヤ4の温度に基づいて、車両2のロール特性を変更可能なアクチュエータ6を制御し、ロール特性を変更する。したがって、車両制御システム1、ECU9は、車両2に生じる振動を抑制することができる。 According to the vehicle control system 1 according to the embodiment described above, the actuator 6 that can change the roll characteristics of the vehicle 2, the temperature sensor 7 that detects the temperature of the tire 4 of the wheel 3 of the vehicle 2, and the temperature sensor 7. And an ECU 9 that controls the actuator 6 based on the temperature of the tire 4 detected by the engine and changes the roll characteristics. According to ECU9 which concerns on embodiment described above, based on the temperature of the tire 4 which the temperature sensor 7 which detects the temperature of the tire 4 of the wheel 3 of the vehicle 2 detected, the actuator which can change the roll characteristic of the vehicle 2 6 to change the roll characteristics. Therefore, the vehicle control system 1 and the ECU 9 can suppress vibration generated in the vehicle 2.
 なお、上述した本発明の実施形態に係る車両制御システム及び制御装置は、上述した実施形態に限定されず、請求の範囲に記載された範囲で種々の変更が可能である。 In addition, the vehicle control system and the control device according to the above-described embodiment of the present invention are not limited to the above-described embodiment, and various modifications can be made within the scope described in the claims.
 以上の説明では、アクチュエータは、アクティブスタビライザ10と、減衰力可変装置11とを含んで構成されるものとして説明したが、いずれか一方であってもよく、すなわち、以上の説明では、車両制御システム、制御装置は、ロール特性として、ロール剛性とロール減衰力との両方を調節するものとして説明したが、これに限らず、いずれか一方のみを調節するものであってもよい。 In the above description, the actuator has been described as including the active stabilizer 10 and the damping force variable device 11, but may be either one, that is, in the above description, the vehicle control system. The control device has been described as adjusting both the roll rigidity and the roll damping force as the roll characteristics. However, the present invention is not limited to this, and only one of them may be adjusted.
 以上の説明では、制御装置は、温度検出装置が検出したタイヤの温度と車速検出装置が検出した車両の車速とに基づいて、アクチュエータを制御し、車両のロール特性を変更するものとして説明したが、これに限らず、車速検出装置が検出した車両の車速にかかわらず、温度検出装置が検出したタイヤの温度に基づいて、アクチュエータを制御し、車両のロール特性を変更するものであってもよい。 In the above description, the control device has been described as controlling the actuator based on the tire temperature detected by the temperature detection device and the vehicle speed detected by the vehicle speed detection device, and changing the roll characteristics of the vehicle. Not limited to this, regardless of the vehicle speed of the vehicle detected by the vehicle speed detection device, the actuator may be controlled based on the tire temperature detected by the temperature detection device to change the roll characteristics of the vehicle. .
 以上の説明では、アクチュエータは、車両のロール剛性を調節可能であるアクティブスタビライザを備えるものとして説明したが、これに限らず、アクティブスタビライザにかえて、車両のロール剛性を調節可能であるアクティブサスペンションを含んで構成されてもよい。 In the above description, the actuator has been described as including an active stabilizer that can adjust the roll stiffness of the vehicle. However, the actuator is not limited to this, and an active suspension that can adjust the roll stiffness of the vehicle is used instead of the active stabilizer. It may be configured to include.
 以上の説明では、車両制御システムの制御装置は、車両の各部を制御するECUであるものとして説明したが、これに限らず、例えば、ECUとは別個に構成され、このECUを介して相互に検出信号や駆動信号、制御指令等の情報の授受を行う構成であってもよい。 In the above description, the control device of the vehicle control system has been described as an ECU that controls each part of the vehicle. However, the present invention is not limited to this, and is configured separately from the ECU, for example. It may be configured to exchange information such as a detection signal, a drive signal, and a control command.
 以上のように本発明に係る車両制御システム及び制御装置は、種々の車両に搭載される車両制御システム及び制御装置に適用して好適である。 As described above, the vehicle control system and the control device according to the present invention are suitable for application to a vehicle control system and a control device mounted on various vehicles.
1  車両制御システム
2  車両
2A  車体
3  車輪
4  タイヤ
5  ステアリングホイール
6  アクチュエータ
7  温度センサ(温度検出装置)
8  車速センサ(車速検出装置)
9  ECU(制御装置)
10  アクティブスタビライザ
11  減衰力可変装置
m1  前後ロール剛性配分マップ
m2  前後ロール減衰配分マップ
DESCRIPTION OF SYMBOLS 1 Vehicle control system 2 Vehicle 2A Car body 3 Wheel 4 Tire 5 Steering wheel 6 Actuator 7 Temperature sensor (temperature detection device)
8 Vehicle speed sensor (vehicle speed detection device)
9 ECU (control device)
10 Active stabilizer 11 Damping force variable device m1 Front / rear roll rigidity distribution map m2 Front / rear roll attenuation distribution map

Claims (9)

  1.  車両のロール特性を変更可能なアクチュエータと、
     前記車両の車輪のタイヤの温度を検出する温度検出装置と、
     前記温度検出装置が検出した前記タイヤの温度に基づいて、前記アクチュエータを制御し、前記ロール特性を変更する制御装置とを備えることを特徴とする、
     車両制御システム。
    An actuator capable of changing the roll characteristics of the vehicle;
    A temperature detecting device for detecting a temperature of a tire of a wheel of the vehicle;
    A controller for controlling the actuator and changing the roll characteristics based on the temperature of the tire detected by the temperature detector;
    Vehicle control system.
  2.  前記温度検出装置は、前記タイヤのトレッド内部の温度を検出する、
     請求項1に記載の車両制御システム。
    The temperature detection device detects the temperature inside the tread of the tire;
    The vehicle control system according to claim 1.
  3.  前記制御装置は、前記温度検出装置が検出した前記タイヤの温度に応じた前記車輪のコーナリングパワーに基づいて、前記アクチュエータを制御し、前記ロール特性を変更する、
     請求項1又は請求項2に記載の車両制御システム。
    The control device controls the actuator based on the cornering power of the wheel according to the temperature of the tire detected by the temperature detection device, and changes the roll characteristics.
    The vehicle control system according to claim 1 or 2.
  4.  前記車両の車速を検出する車速検出装置を備え、
     前記制御装置は、前記温度検出装置が検出した前記タイヤの温度と前記車速検出装置が検出した前記車両の車速とに基づいて、前記アクチュエータを制御し、前記ロール特性を変更する、
     請求項1乃至請求項3のいずれか1項に記載の車両制御システム。
    A vehicle speed detection device for detecting the vehicle speed of the vehicle;
    The control device controls the actuator based on the temperature of the tire detected by the temperature detection device and the vehicle speed of the vehicle detected by the vehicle speed detection device, and changes the roll characteristics.
    The vehicle control system according to any one of claims 1 to 3.
  5.  前記アクチュエータは、前記車両のロール剛性を調節可能である、
     請求項1乃至請求項4のいずれか1項に記載の車両制御システム。
    The actuator is capable of adjusting the roll rigidity of the vehicle.
    The vehicle control system according to any one of claims 1 to 4.
  6.  前記アクチュエータは、前記車両のロール減衰力を調節可能である、
     請求項1乃至請求項5のいずれか1項に記載の車両制御システム。
    The actuator is capable of adjusting a roll damping force of the vehicle.
    The vehicle control system according to any one of claims 1 to 5.
  7.  前記制御装置は、前記アクチュエータを制御して前記車両の前輪側のロール剛性と後輪側のロール剛性との配分比率を調節可能であり、前記温度検出装置が検出した前記タイヤの温度が相対的に高い場合、前記タイヤの温度が相対的に低い場合と比較して、前記車両の前輪側のロール剛性の配分を小さくし、後輪側のロール剛性の配分を大きくする、
     請求項5に記載の車両制御システム。
    The control device can control the actuator to adjust a distribution ratio between roll rigidity on the front wheel side and roll rigidity on the rear wheel side of the vehicle, and the temperature of the tire detected by the temperature detection device is relatively If the tire temperature is relatively high, the distribution of the roll rigidity on the front wheel side of the vehicle is reduced and the distribution of the roll rigidity on the rear wheel side is increased compared to the case where the temperature of the tire is relatively low.
    The vehicle control system according to claim 5.
  8.  前記制御装置は、前記アクチュエータを制御して前記車両の前輪側のロール減衰力と後輪側のロール減衰力との配分比率を調節可能であり、前記温度検出装置が検出した前記タイヤの温度が相対的に高い場合、前記タイヤの温度が相対的に低い場合と比較して、前記車両の前輪側のロール減衰力の配分を小さくし、後輪側のロール減衰力の配分を大きくする、
     請求項6に記載の車両制御システム。
    The control device can control the actuator to adjust a distribution ratio between a roll damping force on the front wheel side and a roll damping force on the rear wheel side of the vehicle, and the temperature of the tire detected by the temperature detection device can be adjusted. When relatively high, compared with the case where the temperature of the tire is relatively low, the distribution of the roll damping force on the front wheel side of the vehicle is reduced, and the distribution of the roll damping force on the rear wheel side is increased.
    The vehicle control system according to claim 6.
  9.  車両の車輪のタイヤの温度を検出する温度検出装置が検出した当該タイヤの温度に基づいて、前記車両のロール特性を変更可能なアクチュエータを制御し、前記ロール特性を変更することを特徴とする、
     制御装置。
    Based on the temperature of the tire detected by the temperature detection device that detects the temperature of the tire of the wheel of the vehicle, the actuator that can change the roll characteristic of the vehicle is controlled, and the roll characteristic is changed,
    Control device.
PCT/JP2010/065181 2010-09-03 2010-09-03 Vehicle control system and controller WO2012029183A1 (en)

Priority Applications (1)

Application Number Priority Date Filing Date Title
PCT/JP2010/065181 WO2012029183A1 (en) 2010-09-03 2010-09-03 Vehicle control system and controller

Applications Claiming Priority (1)

Application Number Priority Date Filing Date Title
PCT/JP2010/065181 WO2012029183A1 (en) 2010-09-03 2010-09-03 Vehicle control system and controller

Publications (1)

Publication Number Publication Date
WO2012029183A1 true WO2012029183A1 (en) 2012-03-08

Family

ID=45772314

Family Applications (1)

Application Number Title Priority Date Filing Date
PCT/JP2010/065181 WO2012029183A1 (en) 2010-09-03 2010-09-03 Vehicle control system and controller

Country Status (1)

Country Link
WO (1) WO2012029183A1 (en)

Cited By (2)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
US11383575B2 (en) * 2020-02-25 2022-07-12 GM Global Technology Operations LLC Variable tire lateral load transfer distribution
WO2023210535A1 (en) * 2022-04-28 2023-11-02 三菱自動車工業株式会社 Control device for vehicle

Citations (5)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
JPH08282236A (en) * 1995-04-12 1996-10-29 Oehlins Racing Ab Electronic control suspension device for car
JP2003011628A (en) * 2001-07-02 2003-01-15 Toyota Central Res & Dev Lab Inc Wheel speed signal generator, abnormal signal output method, and tire abnormality detector
JP2003154830A (en) * 2001-11-16 2003-05-27 Toyota Motor Corp Vehicular stabilizer device and lateral acceleration detector
WO2005118317A1 (en) * 2004-06-02 2005-12-15 Kabushiki Kaisha Bridgestone Method and device for estimating dynamic state quantity of tire, and tire with sensor
JP2007137165A (en) * 2005-11-16 2007-06-07 Toyota Motor Corp Traveling control device for vehicle

Patent Citations (5)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
JPH08282236A (en) * 1995-04-12 1996-10-29 Oehlins Racing Ab Electronic control suspension device for car
JP2003011628A (en) * 2001-07-02 2003-01-15 Toyota Central Res & Dev Lab Inc Wheel speed signal generator, abnormal signal output method, and tire abnormality detector
JP2003154830A (en) * 2001-11-16 2003-05-27 Toyota Motor Corp Vehicular stabilizer device and lateral acceleration detector
WO2005118317A1 (en) * 2004-06-02 2005-12-15 Kabushiki Kaisha Bridgestone Method and device for estimating dynamic state quantity of tire, and tire with sensor
JP2007137165A (en) * 2005-11-16 2007-06-07 Toyota Motor Corp Traveling control device for vehicle

Cited By (2)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
US11383575B2 (en) * 2020-02-25 2022-07-12 GM Global Technology Operations LLC Variable tire lateral load transfer distribution
WO2023210535A1 (en) * 2022-04-28 2023-11-02 三菱自動車工業株式会社 Control device for vehicle

Similar Documents

Publication Publication Date Title
US7949446B2 (en) Body-roll restraining system for vehicle
JP5621853B2 (en) Vehicle control device
US9375990B2 (en) Suspension control device
JP4604985B2 (en) Vehicle travel control device
JP2010208619A (en) Vehicle behavior control device
US20100102521A1 (en) Roll rigidity controlling apparatus
JP4696983B2 (en) Vehicle whose active stabilizer is controlled according to vehicle vibration
JP4557157B2 (en) Electric vehicle control system
JP2006256368A (en) Rolling controlling device of vehicle
CN111137096B (en) Control system for variable damping force damper
JP2012136111A (en) Vehicle control system and apparatus
JP4876924B2 (en) Roll control device for vehicle
WO2012029183A1 (en) Vehicle control system and controller
JP5162283B2 (en) Control device and control method for damping force variable damper
JP5144289B2 (en) Control device for damping force variable damper
JP4367641B2 (en) Electric vehicle control system
JP5090963B2 (en) Control device and control method for damping force variable damper
JP2006007803A (en) Rolling control device of vehicle
JP3945227B2 (en) Vehicle stabilizer device
JP4457842B2 (en) Roll motion control device for vehicle
JP2009137342A (en) Control device for attenuation force variable damper
US20230242097A1 (en) Controller, vehicle, and control method
KR100648811B1 (en) Control method for active geometry controlled suspension system
WO2005049344A1 (en) Suspension control device
JP2009179089A (en) Control device for damping-force variable damper

Legal Events

Date Code Title Description
121 Ep: the epo has been informed by wipo that ep was designated in this application

Ref document number: 10856732

Country of ref document: EP

Kind code of ref document: A1

NENP Non-entry into the national phase

Ref country code: DE

122 Ep: pct application non-entry in european phase

Ref document number: 10856732

Country of ref document: EP

Kind code of ref document: A1

NENP Non-entry into the national phase

Ref country code: JP