WO2023210535A1 - Control device for vehicle - Google Patents

Control device for vehicle Download PDF

Info

Publication number
WO2023210535A1
WO2023210535A1 PCT/JP2023/015965 JP2023015965W WO2023210535A1 WO 2023210535 A1 WO2023210535 A1 WO 2023210535A1 JP 2023015965 W JP2023015965 W JP 2023015965W WO 2023210535 A1 WO2023210535 A1 WO 2023210535A1
Authority
WO
WIPO (PCT)
Prior art keywords
vehicle
load
wheel
control device
estimated
Prior art date
Application number
PCT/JP2023/015965
Other languages
French (fr)
Japanese (ja)
Inventor
寛生 阿部
亮 蜂須賀
俊輔 松尾
Original Assignee
三菱自動車工業株式会社
Priority date (The priority date is an assumption and is not a legal conclusion. Google has not performed a legal analysis and makes no representation as to the accuracy of the date listed.)
Filing date
Publication date
Application filed by 三菱自動車工業株式会社 filed Critical 三菱自動車工業株式会社
Publication of WO2023210535A1 publication Critical patent/WO2023210535A1/en

Links

Images

Classifications

    • BPERFORMING OPERATIONS; TRANSPORTING
    • B60VEHICLES IN GENERAL
    • B60WCONJOINT CONTROL OF VEHICLE SUB-UNITS OF DIFFERENT TYPE OR DIFFERENT FUNCTION; CONTROL SYSTEMS SPECIALLY ADAPTED FOR HYBRID VEHICLES; ROAD VEHICLE DRIVE CONTROL SYSTEMS FOR PURPOSES NOT RELATED TO THE CONTROL OF A PARTICULAR SUB-UNIT
    • B60W30/00Purposes of road vehicle drive control systems not related to the control of a particular sub-unit, e.g. of systems using conjoint control of vehicle sub-units, or advanced driver assistance systems for ensuring comfort, stability and safety or drive control systems for propelling or retarding the vehicle
    • B60W30/02Control of vehicle driving stability
    • BPERFORMING OPERATIONS; TRANSPORTING
    • B60VEHICLES IN GENERAL
    • B60WCONJOINT CONTROL OF VEHICLE SUB-UNITS OF DIFFERENT TYPE OR DIFFERENT FUNCTION; CONTROL SYSTEMS SPECIALLY ADAPTED FOR HYBRID VEHICLES; ROAD VEHICLE DRIVE CONTROL SYSTEMS FOR PURPOSES NOT RELATED TO THE CONTROL OF A PARTICULAR SUB-UNIT
    • B60W40/00Estimation or calculation of non-directly measurable driving parameters for road vehicle drive control systems not related to the control of a particular sub unit, e.g. by using mathematical models
    • B60W40/10Estimation or calculation of non-directly measurable driving parameters for road vehicle drive control systems not related to the control of a particular sub unit, e.g. by using mathematical models related to vehicle motion
    • B60W40/112Roll movement

Definitions

  • the present case relates to a control device that estimates the vertical load on at least one of the front wheels and rear wheels of a vehicle.
  • Patent Document 1 discloses various devices that calculate and output state quantities related to vehicle states from detection results by various sensors. This device calculates the ground contact load variation, which is the variation in the ground contact load (vertical load) of the wheels, and uses this ground contact load variation as an input value for feedback control to account for load fluctuations caused by road surface displacement (disturbance). It is now possible to make estimates. Note that Patent Document 1 discloses a technique for controlling suspension damping force and steering torque using this estimation result.
  • the ground contact load fluctuation is calculated with reference to the wheel angular velocity, the estimated value of the sprung longitudinal speed, the estimated value of the pitch rate, and the estimated value of the yaw rate.
  • the technique disclosed in Patent Document 1 attempts to realize advanced vehicle body attitude control including roll, pitch, and bounce, and accordingly, there are many state quantities to be estimated, making calculations complicated. For this reason, for vehicles that do not require such sophisticated body posture control, it would be possible to estimate the ground load using a simpler method and using general-purpose detection means that are standard equipment on the vehicle. It can be used for various vehicle motion control.
  • the present invention was devised in view of such problems, and the object is to provide a vehicle control device that estimates the vertical load on at least one of the front wheels and the rear wheels using a simple method using a general-purpose detection means. is one of the objectives.
  • other purposes of the present invention are not limited to this purpose, but also to achieve functions and effects that are derived from each configuration shown in the detailed description of the invention and that cannot be obtained by conventional techniques. be.
  • the disclosed vehicle control device can be realized as the embodiments or application examples disclosed below, and solves at least part of the above problems.
  • the disclosed vehicle control device is applied to the vehicle provided with yaw rate detection means for detecting the yaw rate of the vehicle and lateral acceleration detection means for detecting the lateral acceleration of the vehicle.
  • the control device includes a roll angle acquisition unit that acquires a roll angle of the vehicle, and a roll angle acquisition unit that acquires a roll angle of the vehicle, and a roll angle acquisition unit that acquires a roll angle of the vehicle, and a roll angle acquisition unit that acquires a roll angle of the vehicle.
  • a load movement amount estimating unit that estimates at least one of the amount of load movement between the left and right wheels of the rear wheel; and a vertical load estimator that estimates each vertical load of at least one wheel.
  • each vertical load (ground load) of at least one of the front wheels and the rear wheels can be estimated by a simple method using a general-purpose detection means.
  • FIG. 1 is a diagram illustrating the configuration of a vehicle to which a control device according to an embodiment is applied.
  • 2 is a diagram showing a load movement estimation model used in the control device of FIG. 1.
  • FIG. 2 is a diagram showing a load movement estimation model used in the control device of FIG. 1.
  • FIG. 2 is a diagram showing a load movement estimation model used in the control device of FIG. 1.
  • FIG. 2 is an example of a flowchart executed by the control device of FIG. 1.
  • a vehicle control device as an embodiment will be described with reference to the drawings.
  • the embodiments shown below are merely illustrative, and there is no intention to exclude the application of various modifications and techniques not specified in the embodiments below.
  • the configuration of each embodiment can be modified and implemented in various ways without departing from the spirit thereof. Moreover, they can be selected or combined as necessary.
  • the forward direction of the vehicle is defined as the front (front of the vehicle), and left and right are defined with the front as a reference.
  • the control device 10 of this embodiment is applied to the vehicle 1 illustrated in FIG. 1, and estimates the vertical load (also called ground load or wheel load) of at least one of the front wheels 2F and rear wheels 2R of the vehicle 1. have a function.
  • the control device 10 is a device implemented as one of the electronic control units (ECUs) mounted on the vehicle 1.
  • the control device 10 is equipped with a processor (microprocessor) such as a CPU (Central Processing Unit) or an MPU (Micro Processing Unit), a ROM (Read Only Memory), a RAM (Random Access Memory), a nonvolatile memory, and the like.
  • a processor is an arithmetic processing device that includes a control unit (control circuit), an arithmetic unit (arithmetic circuit), a cache memory (register group), etc. Further, ROM, RAM, and nonvolatile memory are memory devices in which programs and data being worked on are stored. The contents of the estimation executed by the control device 10 are recorded and stored in memory as firmware or an application program, and when the program is executed, the contents of the program are developed in the memory space and executed by the processor.
  • the type of vehicle 1 is not particularly limited, and it can be applied to an engine vehicle, an electric vehicle (EV), an electric vehicle (HEV), a plug-in hybrid electric vehicle (PHEV), or a fuel cell vehicle (FCV).
  • the vehicle 1 is equipped with an actuator related to the operation of the vehicle 1 and a notification device that makes an announcement to the driver by voice or display.
  • the actuator includes, for example, a drive source such as an engine or an electric motor, a brake device that brakes each wheel 2 independently, a power steering device, each turning amount of the front wheels 2F and the rear wheels 2R (front wheel steering angle, rear wheel steering angle, etc.).
  • Active suspensions include AFS (Active Front Steering) and ARS (Active Rear Steering), which can actively control the angles.
  • the actuator is a device that converts energy into mechanical displacement or stress, and is individually controlled by an on-vehicle control device (not shown).
  • An individual on-vehicle control device may be provided for each actuator, or a common on-vehicle control device may control different actuators.
  • the on-vehicle control device that controls the notification device may be provided separately from the on-vehicle control device that controls the actuator.
  • the estimation results estimated by the control device 10 are sent to each vehicle-mounted control device, and are used to control actuators and notification devices.
  • the control device 10 may also have a function of controlling the actuator and the notification device. That is, the control device 10 may be configured to have both an estimation function and a control function.
  • the vehicle 1 is provided with a sensor for acquiring various information about the vehicle 1.
  • a yaw rate sensor 21, a lateral acceleration sensor 22, and a longitudinal acceleration sensor 23 are provided, and each of the sensors 21 to 23 is connected to the control device 10.
  • the yaw rate sensor 21 (yaw rate detection means) is a sensor that detects the rotational angular velocity around a vertical axis passing through the center of gravity G of the vehicle 1 as a yaw rate r.
  • the positive direction of the yaw rate r is counterclockwise around the center of gravity G when the vehicle 1 is viewed from above.
  • the lateral acceleration sensor 22 (lateral acceleration detection means) and the longitudinal acceleration sensor 23 (longitudinal acceleration detection means) are sensors that respectively detect lateral acceleration A y and longitudinal acceleration A x at the center of gravity G of the vehicle 1.
  • the positive direction of the lateral acceleration A y is to the left from the center of gravity G
  • the positive direction of the longitudinal acceleration A x is toward the front from the center of gravity G.
  • Information detected by each sensor 21 to 23 is sent to the control device 10.
  • the vehicle 1 is provided with general-purpose sensors such as a vehicle speed sensor that detects vehicle speed, a wheel speed sensor that detects wheel speed, and a steering angle sensor that detects steering angle. You can leave it there.
  • the means for detecting the yaw rate r, the means for detecting the lateral acceleration Ay , and the means for detecting the longitudinal acceleration Ax are not limited to the yaw rate sensor 21, the lateral acceleration sensor 22, and the longitudinal acceleration sensor 23.
  • the lateral acceleration A y can be estimated based on the steering angle and vehicle speed, or by correcting the estimated value or the value detected by the lateral acceleration sensor 22 based on another sensor value . It may be detected (obtained).
  • the yaw rate r and the longitudinal acceleration A x may be detected (obtained) by correcting the values detected by the yaw rate sensor 21 and the longitudinal acceleration sensor 23 based on other sensor values.
  • the estimation section and the correction section (functional elements of the control device) can serve as each detection means.
  • the control device 10 of the present embodiment uses information detected by various sensors 21 to 23 to control at least the vertical loads Z 1 and Z 2 of the front wheels 2F of the vehicle 1 and the vertical loads Z 3 and Z 4 of the rear wheels 2R. It has the function of estimating one side. The control device 10 also has the function of estimating the estimated vertical load of the lateral forces Y 1 to Y 4 of the wheels 2.
  • the control device 10 can also have the function of estimating the lateral forces Y 3 and Y 4 of the rear wheels 2R.
  • a case is illustrated in which vertical loads Z 1 to Z 4 of all four wheels are estimated, and lateral forces Y 1 to Y 4 of all four wheels are also estimated.
  • the subscript numbers 1 to 4 are in the order of left front wheel 2FL, right front wheel 2FR, left rear wheel 2RL, and right rear wheel 2RR. Attach.
  • the control device 10 includes a roll angle acquisition section 11, a load movement amount estimation section 12, and a vertical load estimation section 13 as functional elements for estimating the vertical loads Z 1 to Z 4 . Furthermore, the control device 10 of the present embodiment further includes a lateral force estimation unit 14 as a functional element for estimating the lateral forces Y 1 to Y 4 using the estimated vertical loads Z 1 to Z 4 . These elements are shown by classifying the functions of the control device 10 for convenience. Each of these elements can be written as an independent program, and can also be written as a composite program that combines a plurality of elements. A program corresponding to each element is stored in the memory or storage device of the control device 10 and executed by the processor.
  • the roll angle acquisition unit 11 acquires the roll angle ⁇ of the vehicle 1.
  • the method for obtaining the roll angle ⁇ is not particularly limited, and similarly to the sensors 21 to 23 described above, a sensor capable of detecting the roll angle ⁇ may be provided and a sensor value or a correction value of the sensor value may be obtained as the roll angle ⁇ .
  • the value (roll angle ⁇ ) may be obtained by estimating the roll angle ⁇ based on the sensor value and vehicle specifications.
  • an example of the latter method that is, a method of estimating and acquiring the roll angle ⁇ , will be described.
  • the roll angle acquisition unit 11 obtains a vehicle roll damping coefficient which is the sum of the lateral acceleration A y detected by the lateral acceleration sensor 22, a front wheel roll damping coefficient c f for the front wheels 2F, and a rear wheel roll damping coefficient cr for the rear wheels 2R.
  • the vehicle roll damping coefficient c is a proportionality constant (damping coefficient in the roll direction) of a component proportional to the roll angular velocity of the moment that acts as a resistance to roll motion.
  • FIG. 2 the vehicle roll damping coefficient c is a proportionality constant (damping coefficient in the roll direction) of a component proportional to the roll angular velocity of the moment that acts as a resistance to roll motion.
  • Figures 2 to 4 are models of the vehicle 1 as a pendulum (load transfer model); Figure 2 is a model viewed from the rear of the vehicle; Figure 3 is a model cut along the center line of the front axle; Figure 4 shows a model cut along the center line of the rear axle.
  • the roll angle acquisition unit 11 of this embodiment uses the model shown in FIG. 2 to estimate (calculate) the roll angle ⁇ using the following equation 1.
  • Equation 1 m is the vehicle mass, h is the roll radius, I x is the roll moment of inertia, k is the vehicle roll stiffness, and g is the gravitational acceleration, all of which are fixed values.
  • the roll damping coefficients c f and cr of the front and rear wheels are, for example, mapped in advance as constants for the roll angular velocity, and are obtained by applying the roll angular velocity to the map. Further, the roll angular velocity may be obtained, for example, by differentiating the estimated roll angle ⁇ , or may be a sensor value.
  • the vehicle roll stiffness k is the sum of the front wheel roll stiffness k f for the front wheels 2F and the rear wheel roll stiffness k r for the rear wheels 2R. Note that the roll rigidities k f and k r of the front and rear wheels are fixed values, and s is a Laplace operator.
  • the load transfer amount estimating unit 12 calculates the load transfer amount ⁇ W y_f between the left and right wheels of the front wheel 2F (hereinafter referred to as the front wheel side load transfer amount ⁇ W y_f ) and the load transfer amount ⁇ W y_r (hereinafter referred to as “front wheel side load transfer amount ⁇ W y_f”) between the left and right wheels of the rear wheel 2R.
  • the rear wheel side load movement amount ⁇ W y_r is estimated.
  • the front wheel side load movement amount ⁇ W y_f is estimated based on the roll angle ⁇ acquired by the roll angle acquisition unit 11, the lateral force Y f of the front wheel 2F, the front wheel roll damping coefficient c f , and the front wheel roll rigidity k f be done.
  • the rear wheel side load movement amount ⁇ W y_r is calculated by the roll angle ⁇ acquired by the roll angle acquisition unit 11, the lateral force Y r of the rear wheel 2R, the rear wheel roll damping coefficient cr , and the rear wheel roll rigidity. It is estimated based on k r .
  • the load movement amount estimation unit 12 of this embodiment estimates both the front wheel side load movement amount ⁇ W y_f and the rear wheel side load movement amount ⁇ W y_r , but the control device 10 estimates the vertical load Z 3 of the rear wheel 2R, When having the function of estimating Z 4 (without having the function of estimating the vertical loads Z 1 and Z 2 of the front wheels 2F), the load movement amount estimation unit 12 estimates only the rear wheel side load movement amount ⁇ W y_r . do it. In other words, the load movement amount estimating section 12 only needs to estimate at least one of the front wheel side load movement amount ⁇ W y_f and the rear wheel side load movement amount ⁇ W y_r .
  • the load movement amount estimating unit 12 of this embodiment uses the model shown in FIG. 3 to estimate the front wheel side load movement amount ⁇ W y_f from the following equation 2, which is a balance equation of the moment acting around the roll center of the front wheel 2F. .
  • Equation 2 is solved for the front wheel side load movement amount ⁇ W y_f
  • the front wheel side load movement amount ⁇ W y_f is estimated (calculated) using Laplace-transformed Equation 3.
  • T f is the front tread
  • h f is the roll center height (height from the ground to the roll center) of the front wheel 2F, both of which are fixed values.
  • Z 1_0 and Z 2_0 in Equation 2 are vertical loads on the left and right front wheels 2FL and 2FR when the vehicle is stopped. These values Z 1_0 and Z 2_0 may be, for example, predetermined fixed values, or may be estimated values estimated from suspension stroke sensor values. Note that these values Z 1_0 and Z 2_0 do not necessarily have to be equal to each other.
  • the load movement amount estimating unit 12 uses the model of FIG. 4 to estimate the rear wheel side load movement amount ⁇ W y_r from the following equation 4, which is a balance equation of the moment acting around the roll center of the rear wheel 2R. .
  • Equation 4 is solved for the rear wheel side load movement amount ⁇ W y_r
  • Laplace-transformed Equation 5 is used to estimate (calculate) the rear wheel side load movement amount ⁇ W y_r .
  • T r is the rear tread
  • h r is the roll center height of the rear wheel 2R, both of which are fixed values.
  • Z 3_0 and Z 4_0 in Equation 4 are vertical loads on the left and right rear wheels 2RL and 2RR when the vehicle is stopped, and are the same as on the front wheels.
  • the load movement amount estimating unit 12 of this embodiment estimates the lateral forces Y f and Y r of the front and rear wheels 2F and 2R. Specifically, based on the yaw rate r detected by the yaw rate sensor 21 and the lateral acceleration A y detected by the lateral acceleration sensor 22, the lateral forces Y f and Y r of the front and rear wheels 2F and 2R are estimated. Then, when estimating the load movement amounts ⁇ W y_f and ⁇ W y_r described above, the estimated lateral forces Y f and Y r are used.
  • the load movement estimation unit 12 of this embodiment calculates each lateral force Y f , Y r of the front and rear wheels 2F, 2R using Equations 7 and 8 obtained by solving Equation 6 below for the lateral forces Y f and Y r . Estimate each. Note that this estimation is performed in the same calculation cycle as the estimation of the load movement amounts ⁇ W y_f and ⁇ W y_r described above.
  • L f is the distance in the longitudinal direction between the front axle and the center of gravity G
  • L r is the distance in the longitudinal direction between the rear axle and the center of gravity G
  • L is the wheel base (distance between the front and rear axles).
  • M ADD is a yaw moment due to a difference in braking/driving force, and in this embodiment, is a control request value calculated by a control device other than the control device 10.
  • the method for estimating the lateral forces Y f and Y r is not limited to this. For example, they may be estimated using a calculation cycle different from that for estimating the load movement amounts ⁇ W y_f and ⁇ W y_r , or instead of the yaw moment M ADD . Or in addition, other parameters may be considered.
  • the load movement amount estimating unit 12 of this embodiment calculates the load movement amount ⁇ W x (hereinafter referred to as the longitudinal load movement amount) of the longitudinal axis based on the longitudinal acceleration A x detected by the longitudinal acceleration sensor 23 using the following equation ⁇ W x ) is estimated.
  • the longitudinal load movement amount ⁇ W x is used in estimating the vertical loads Z 1 to Z 4 described below. Note that h cg in Equation 9 is the height of the center of gravity.
  • the vertical load estimation unit 13 estimates the vertical loads Z 1 to Z 4 of each wheel 2 based on the front wheel side load movement amount ⁇ W y_f and the rear wheel side load movement amount ⁇ W y_r estimated by the load movement amount estimation unit 12. It is something to do. Specifically, the vertical loads Z 1 to Z 4 of each wheel 2 are estimated by adding or subtracting the amount of load movement caused by the running state to the vertical loads Z 1_0 to Z 4_0 of each wheel 2 when the vehicle is stopped . do. The vertical load estimating unit 13 of this embodiment also uses the longitudinal load movement amount ⁇ W x estimated by the load movement amount estimating unit 12 to estimate each vertical load Z 1 to Z 4 according to equations 10 to 13 below. (calculate.
  • the vertical load estimation unit 13 of this embodiment estimates the vertical loads Z 1 to Z 4 of each wheel 2, but the control device 10 has a function of estimating the vertical loads Z 3 and Z 4 of the rear wheels 2R, for example.
  • the vertical load estimation unit 13 need only estimate the vertical loads Z 3 and Z 4 on the rear wheels 2R.
  • the vertical load estimating unit 13 selects at least one of the wheels 2 (front wheel 2F and rear wheel 2R) for which the load movement amount is estimated based on the estimated load movement amount (at least one of ⁇ W y_f and ⁇ W y_r ).
  • any method that estimates the vertical load on the other hand may be used.
  • the lateral force estimating unit 14 calculates each wheel based on the four vertical loads Z 1 to Z 4 estimated by the vertical load estimating unit 13, the lateral force Y f of the front wheel 2F, and the lateral force Y r of the rear wheel 2R. This is to estimate the lateral forces Y 1 to Y 4 of 2.
  • the lateral force estimating section 14 estimates the lateral forces Y 1 to Y 4 of each wheel 2. This estimation result is used when estimating . Specifically, each lateral force Y 1 to Y 4 is estimated (calculated) using equations 14 to 17 below.
  • the lateral force estimation unit 14 of this embodiment estimates the lateral forces Y 1 to Y 4 of each wheel 2, but the control device 10 has a function of estimating the vertical loads Z 3 and Z 4 of the rear wheels 2R, for example.
  • the lateral force estimating unit 14 can estimate the lateral forces Y 3 and Y 4 of the rear wheels 2R.
  • the lateral force estimating unit 14 calculates the vertical load of at least one wheel 2 (at least one of the front wheel 2F and the rear wheel 2R) estimated by the vertical load estimating unit 13, and the lateral force (lateral force) of at least one wheel 2.
  • Each lateral force of at least one wheel 2 is estimated based on Y f , Y r ).
  • this control device 10 executes processing up to estimating the vertical loads Z 1 to Z 4 and lateral forces Y 1 to Y 4 described above, but the values estimated here are used for various vehicle motion controls. Available. For example, by using it when estimating (calculating) the driving force and braking force of each wheel 2, it can be used to control an actuator (drive source or brake device). It can also be used to control other actuators (AFS, ARS, active suspension) and notification devices. These controls may be performed by the control device 10, or may be performed by a control device different from the control device 10.
  • FIG. 5 shows an example of a flowchart executed in the control device 10 described above. This flowchart is executed, for example, at a predetermined calculation cycle when the main power source of the vehicle 1 is on or while the vehicle 1 is running.
  • step S1 information on various sensors 21 to 23 is acquired.
  • step S2 the roll angle ⁇ is acquired (eg, estimated) by the roll angle acquisition unit 11.
  • step S3 to S6 are performed by the load movement amount estimating section 12.
  • step S3 each lateral force Y f , Y r of the front and rear wheels 2F, 2R is estimated, then in step S4 the front wheel side load movement amount ⁇ W y_f is estimated, and in step S5 the rear wheel side load movement amount ⁇ W y_r is estimated, and in step S6, the longitudinal load movement amount ⁇ W x is estimated. Then, in step S7, the vertical load estimation section 13 estimates four vertical loads Z 1 to Z 4 , and in step S8, the lateral force estimation section 14 estimates four lateral forces Y 1 to Y 4 . Return the flowchart.
  • the vertical load on at least one of the wheels 2 of the front wheels 2F and the rear wheels 2R is detected using general-purpose detection means that are standard equipment on the vehicle 1, such as the yaw rate sensor 21 and the lateral acceleration sensor 22.
  • Z 1 to Z 4 can be estimated.
  • Z 4 can be estimated, the control configuration can be simplified, contributing to cost reduction and improved versatility.
  • the vertical loads Z 3 and Z 4 of the rear wheel 2R and the amount of rear wheel side load movement ⁇ W y_r are determined. If possible, the controllability of the vehicle 1 can be improved.
  • the load movement amount ⁇ W y_f , ⁇ W y_r of the front and rear wheels 2F, 2R is determined based on the detected value of the yaw rate r and the lateral acceleration A y of each lateral force Y f of the front and rear wheels 2F, 2R. , Y r .
  • the longitudinal load movement amount ⁇ W x is estimated based on the longitudinal acceleration A x detected by the longitudinal acceleration sensor 23, which is the longitudinal acceleration detection means, and this longitudinal load movement amount ⁇ W x is used. Since the vertical load is estimated by
  • each lateral force Y 1 -Y 4 of the wheel 2 is also estimated based on the estimated vertical loads Z 1 -Z 4 .
  • spin behavior suppression control which is one type of vehicle motion control, it becomes possible to appropriately set the braking/driving force of each wheel 2, and it is possible to effectively suppress tire skidding.
  • Equations 1, 3, 5, 7 to 16 used for estimation by the control device 10 above are examples, and are not limited to the above equations.
  • the vertical load estimation unit 13 described above uses the longitudinal load movement amount ⁇ W x estimated by the load movement estimation unit 12 when estimating the vertical loads Z 1 to Z 4 .
  • the amount may be omitted or a preset (estimated) value may be used.
  • the configuration of the vehicle 1 to which the control device 10 is applied is also one example, and is not limited to the above-mentioned configuration.
  • the ASC may be activated according to information estimated by the control device 10 described above.
  • the type of actuator that is controlled using the estimation result of the control device 10 mounted on the vehicle 1 is not particularly limited.

Abstract

A control device (10) for a vehicle (1) having a yaw rate detection means (21) and a lateral acceleration detection means (22) is provided with a roll angle acquisition unit (11) that acquires a roll angle (θ) of the vehicle (1), a load shift amount estimation unit (12), and a vertical load estimation unit (13). The load shift amount estimation unit (12) estimates at least one of: a load shift amount (ΔWy_f) between left and right wheels of front wheels (2F) on the basis of the roll angle (θ), a lateral force (Yf) of the front wheels (2F), a front wheel roll damping coefficient (cf), and a front wheel roll stiffness (kf); and a load shift amount (ΔWy_r) of left and right wheels of rear wheels (2R) on the basis of the roll angle (θ), a lateral force (Yr) of the rear wheels (2R), a rear wheel roll damping coefficient (cr), and a rear wheel roll stiffness (kr). The vertical load estimation unit (13) estimates, on the basis of the estimated load shift amount (ΔWy_f, ΔWy_r), vertical loads (Z1 to Z4) of wheels 2 which are the front and/or rear wheels (2F, 2R) for which the load shift amount (ΔWy_f, ΔWy_r) has been estimated.

Description

車両の制御装置Vehicle control device
 本件は、車両の前輪及び後輪の少なくとも一方の垂直荷重を推定する制御装置に関する。 The present case relates to a control device that estimates the vertical load on at least one of the front wheels and rear wheels of a vehicle.
 車両には、走行状態や車載機器の状態等を検出する検出手段(例えばセンサ)が複数設けられており、検出値に基づいて様々な車両運動制御が実施されている。例えば特許文献1には、各種のセンサによる検出結果から、車両状態に関する状態量を演算して出力する各種装置が開示されている。この装置では、車輪の接地荷重(垂直荷重)の変動分である接地荷重変動を算出し、この接地荷重変動をフィードバック制御の入力値として用いることで路面変位(外乱)に起因した荷重変動を考慮した推定が可能となっている。なお、特許文献1には、この推定結果を使って、サスペンションの減衰力やステアリングのトルクを制御する技術が開示されている。 A vehicle is equipped with a plurality of detection means (for example, sensors) that detect the driving state, the state of on-vehicle equipment, etc., and various vehicle motion controls are implemented based on the detected values. For example, Patent Document 1 discloses various devices that calculate and output state quantities related to vehicle states from detection results by various sensors. This device calculates the ground contact load variation, which is the variation in the ground contact load (vertical load) of the wheels, and uses this ground contact load variation as an input value for feedback control to account for load fluctuations caused by road surface displacement (disturbance). It is now possible to make estimates. Note that Patent Document 1 discloses a technique for controlling suspension damping force and steering torque using this estimation result.
特開2019-089504号公報JP2019-089504A
 上記の特許文献1の技術では、車輪角速度,バネ上前後速度の推定値,ピッチレイトの推定値及びヨーレイトの推定値を参照して、接地荷重変動を計算している。このように、特許文献1の技術では、ロール,ピッチ,バウンスも含めた高度な車体姿勢制御を実現しようとしており、その分、推定する状態量が多く、演算が煩雑となっている。このため、ここまで高度な車体姿勢制御が要求されない車両においては、より簡素な手法で、また、車両に標準的に装備される汎用の検出手段を用いて接地荷重を推定できるようになれば、様々な車両運動制御に活用することができる。 In the technique of Patent Document 1 mentioned above, the ground contact load fluctuation is calculated with reference to the wheel angular velocity, the estimated value of the sprung longitudinal speed, the estimated value of the pitch rate, and the estimated value of the yaw rate. As described above, the technique disclosed in Patent Document 1 attempts to realize advanced vehicle body attitude control including roll, pitch, and bounce, and accordingly, there are many state quantities to be estimated, making calculations complicated. For this reason, for vehicles that do not require such sophisticated body posture control, it would be possible to estimate the ground load using a simpler method and using general-purpose detection means that are standard equipment on the vehicle. It can be used for various vehicle motion control.
 本件は、このような課題に鑑み案出されたもので、汎用の検出手段を用いた簡素な手法で、前輪及び後輪の少なくとも一方の垂直荷重を推定する、車両の制御装置を提供することを目的の一つとする。なお、この目的に限らず、後述する発明を実施するための形態に示す各構成により導かれる作用効果であって、従来の技術によっては得られない作用効果を奏することも本件の他の目的である。 The present invention was devised in view of such problems, and the object is to provide a vehicle control device that estimates the vertical load on at least one of the front wheels and the rear wheels using a simple method using a general-purpose detection means. is one of the objectives. In addition, other purposes of the present invention are not limited to this purpose, but also to achieve functions and effects that are derived from each configuration shown in the detailed description of the invention and that cannot be obtained by conventional techniques. be.
 開示の車両の制御装置は、以下に開示する態様又は適用例として実現でき、上記の課題の少なくとも一部を解決する。
 開示の車両の制御装置は、車両のヨーレイトを検出するヨーレイト検出手段と、前記車両の横加速度を検出する横加速度検出手段とが設けられた前記車両に適用される。前記制御装置は、前記車両のロール角を取得するロール角取得部と、取得された前記ロール角と前記前輪の横力と前記前輪に関する前輪ロール減衰係数と前記前輪に関する前輪ロール剛性とに基づいて前記前輪の左右輪間における荷重移動量、及び、取得された前記ロール角と前記後輪の横力と前記後輪に関する後輪ロール減衰係数と前記後輪に関する後輪ロール剛性とに基づいて前記後輪の左右輪間における荷重移動量の少なくとも一方を推定する荷重移動量推定部と、推定された前記荷重移動量に基づいて、前記荷重移動量が推定された前記前輪及び前記後輪の前記少なくとも一方の車輪の各垂直荷重を推定する垂直荷重推定部と、を備える。
The disclosed vehicle control device can be realized as the embodiments or application examples disclosed below, and solves at least part of the above problems.
The disclosed vehicle control device is applied to the vehicle provided with yaw rate detection means for detecting the yaw rate of the vehicle and lateral acceleration detection means for detecting the lateral acceleration of the vehicle. The control device includes a roll angle acquisition unit that acquires a roll angle of the vehicle, and a roll angle acquisition unit that acquires a roll angle of the vehicle, and a roll angle acquisition unit that acquires a roll angle of the vehicle, and a roll angle acquisition unit that acquires a roll angle of the vehicle. The load transfer amount between the left and right wheels of the front wheels, the acquired roll angle, the lateral force of the rear wheels, the rear wheel roll damping coefficient regarding the rear wheels, and the rear wheel roll rigidity regarding the rear wheels. a load movement amount estimating unit that estimates at least one of the amount of load movement between the left and right wheels of the rear wheel; and a vertical load estimator that estimates each vertical load of at least one wheel.
 開示の車両の制御装置によれば、汎用の検出手段を用いた簡素な手法で、前輪及び後輪の少なくとも一方の車輪の各垂直荷重(接地荷重)を推定することができる。 According to the disclosed vehicle control device, each vertical load (ground load) of at least one of the front wheels and the rear wheels can be estimated by a simple method using a general-purpose detection means.
実施形態に係る制御装置が適用された車両の構成を説明する図である。FIG. 1 is a diagram illustrating the configuration of a vehicle to which a control device according to an embodiment is applied. 図1の制御装置で用いる荷重移動推定モデルを示す図である。2 is a diagram showing a load movement estimation model used in the control device of FIG. 1. FIG. 図1の制御装置で用いる荷重移動推定モデルを示す図である。2 is a diagram showing a load movement estimation model used in the control device of FIG. 1. FIG. 図1の制御装置で用いる荷重移動推定モデルを示す図である。2 is a diagram showing a load movement estimation model used in the control device of FIG. 1. FIG. 図1の制御装置で実施されるフローチャート例である。2 is an example of a flowchart executed by the control device of FIG. 1. FIG.
 図面を参照して、実施形態としての車両の制御装置について説明する。以下に示す実施形態はあくまでも例示に過ぎず、以下の実施形態で明示しない種々の変形や技術の適用を排除する意図はない。各実施形態の構成は、それらの趣旨を逸脱しない範囲で種々変形して実施することができる。また、必要に応じて取捨選択することができ、あるいは適宜組み合わせることができる。以下の説明では、車両の前進方向を前方(車両前方)とし、前方を基準に左右を定める。 A vehicle control device as an embodiment will be described with reference to the drawings. The embodiments shown below are merely illustrative, and there is no intention to exclude the application of various modifications and techniques not specified in the embodiments below. The configuration of each embodiment can be modified and implemented in various ways without departing from the spirit thereof. Moreover, they can be selected or combined as necessary. In the following description, the forward direction of the vehicle is defined as the front (front of the vehicle), and left and right are defined with the front as a reference.
[1.装置構成]
 本実施形態の制御装置10は、図1に例示する車両1に適用され、少なくとも車両1の前輪2F及び後輪2Rの一方の車輪2の垂直荷重(接地荷重や輪荷重とも呼ばれる)を推定する機能を持つ。制御装置10は、車両1に搭載される電子制御装置(ECU,Electronic Control Unit)の一つで実現される装置である。制御装置10には、例えばCPU(Central Processing Unit),MPU(Micro Processing Unit)等のプロセッサ(マイクロプロセッサ)やROM(Read Only Memory),RAM(Random Access Memory),不揮発メモリ等が実装される。
[1. Device configuration]
The control device 10 of this embodiment is applied to the vehicle 1 illustrated in FIG. 1, and estimates the vertical load (also called ground load or wheel load) of at least one of the front wheels 2F and rear wheels 2R of the vehicle 1. have a function. The control device 10 is a device implemented as one of the electronic control units (ECUs) mounted on the vehicle 1. The control device 10 is equipped with a processor (microprocessor) such as a CPU (Central Processing Unit) or an MPU (Micro Processing Unit), a ROM (Read Only Memory), a RAM (Random Access Memory), a nonvolatile memory, and the like.
 プロセッサは、制御ユニット(制御回路)や演算ユニット(演算回路),キャッシュメモリ(レジスタ群)等を内蔵する演算処理装置である。また、ROM,RAM及び不揮発メモリは、プログラムや作業中のデータが格納されるメモリ装置である。制御装置10で実施される推定内容は、ファームウェアやアプリケーションプログラムとしてメモリに記録,保存されており、プログラムの実行時にはプログラムの内容がメモリ空間内に展開されて、プロセッサによって実行される。 A processor is an arithmetic processing device that includes a control unit (control circuit), an arithmetic unit (arithmetic circuit), a cache memory (register group), etc. Further, ROM, RAM, and nonvolatile memory are memory devices in which programs and data being worked on are stored. The contents of the estimation executed by the control device 10 are recorded and stored in memory as firmware or an application program, and when the program is executed, the contents of the program are developed in the memory space and executed by the processor.
 車両1の種類は特に限られず、エンジン車や電動車両(EV;Electric Vehicle,HEV;Hybrid Electric Vehicle,PHEV;Plug-in Hybrid Electric Vehicle)や燃料電池車両(FCV;Fuel Cell Vehicle)に適用可能である。車両1には、車両1の作動に関するアクチュエータや、ドライバに音声や表示でアナウンスする報知装置が搭載される。アクチュエータとしては、例えば、エンジンや電動モータ等の駆動源,各車輪2を独立して制動するブレーキ装置,パワーステアリング装置,前輪2F及び後輪2Rの各転舵量(前輪舵角,後輪舵角)をアクティブに制御可能なAFS(Active Front Steering)及びARS(Active Rear Steering),アクティブサスペンションが挙げられる。 The type of vehicle 1 is not particularly limited, and it can be applied to an engine vehicle, an electric vehicle (EV), an electric vehicle (HEV), a plug-in hybrid electric vehicle (PHEV), or a fuel cell vehicle (FCV). be. The vehicle 1 is equipped with an actuator related to the operation of the vehicle 1 and a notification device that makes an announcement to the driver by voice or display. The actuator includes, for example, a drive source such as an engine or an electric motor, a brake device that brakes each wheel 2 independently, a power steering device, each turning amount of the front wheels 2F and the rear wheels 2R (front wheel steering angle, rear wheel steering angle, etc.). Active suspensions include AFS (Active Front Steering) and ARS (Active Rear Steering), which can actively control the angles.
 アクチュエータは、エネルギーを機械的な変位や応力に変換する役割を果たす装置であり、図示しない車載制御装置により個別制御される。アクチュエータごとに個別の車載制御装置が設けられてもよいし、異なるアクチュエータを共通の車載制御装置が制御してもよい。また、報知装置を制御する車載制御装置がアクチュエータを制御する車載制御装置と別に設けられていてもよい。本実施形態では、制御装置10で推定された推定結果が各車載制御装置に送出され、アクチュエータや報知装置の制御に用いられる。なお、制御装置10に、アクチュエータ及び報知装置を制御する機能が兼ね備えられていてもよい。すなわち、制御装置10が推定機能と制御機能とを併せ持つように構成されていてもよい。 The actuator is a device that converts energy into mechanical displacement or stress, and is individually controlled by an on-vehicle control device (not shown). An individual on-vehicle control device may be provided for each actuator, or a common on-vehicle control device may control different actuators. Furthermore, the on-vehicle control device that controls the notification device may be provided separately from the on-vehicle control device that controls the actuator. In this embodiment, the estimation results estimated by the control device 10 are sent to each vehicle-mounted control device, and are used to control actuators and notification devices. Note that the control device 10 may also have a function of controlling the actuator and the notification device. That is, the control device 10 may be configured to have both an estimation function and a control function.
 車両1には、車両1の各種情報を取得するためのセンサが設けられる。図1に示す例では、ヨーレイトセンサ21と、横加速度センサ22と、前後加速度センサ23とが設けられ、各センサ21~23が制御装置10に接続されている。ヨーレイトセンサ21(ヨーレイト検出手段)は、車両1の重心Gを通る鉛直軸回りの回転角速度をヨーレイトrとして検出するセンサである。本実施形態では、図1中に太矢印で示すように、ヨーレイトrは、車両1を上からみたときに重心Gの反時計回りが正の方向とされる。 The vehicle 1 is provided with a sensor for acquiring various information about the vehicle 1. In the example shown in FIG. 1, a yaw rate sensor 21, a lateral acceleration sensor 22, and a longitudinal acceleration sensor 23 are provided, and each of the sensors 21 to 23 is connected to the control device 10. The yaw rate sensor 21 (yaw rate detection means) is a sensor that detects the rotational angular velocity around a vertical axis passing through the center of gravity G of the vehicle 1 as a yaw rate r. In this embodiment, as shown by the thick arrow in FIG. 1, the positive direction of the yaw rate r is counterclockwise around the center of gravity G when the vehicle 1 is viewed from above.
 横加速度センサ22(横加速度検出手段)及び前後加速度センサ23(前後加速度検出手段)は、車両1の重心Gにおける、横加速度Ay及び前後加速度Axをそれぞれ検出するセンサである。本実施形態では、図1中に太矢印で示すように、横加速度Ayは、重心Gから左向きが正の方向とされ、前後加速度Axは、重心Gから前方に向かう方向が正の方向とされる。各センサ21~23で検出された情報は、制御装置10に送出される。なお、これらのセンサ21~23の他、車両1には、例えば、車体速を検出する車速センサ,車輪速を検出する車輪速センサ,操舵角を検出する操舵角センサといった汎用のセンサが設けられていてもよい。 The lateral acceleration sensor 22 (lateral acceleration detection means) and the longitudinal acceleration sensor 23 (longitudinal acceleration detection means) are sensors that respectively detect lateral acceleration A y and longitudinal acceleration A x at the center of gravity G of the vehicle 1. In this embodiment, as shown by thick arrows in FIG. 1, the positive direction of the lateral acceleration A y is to the left from the center of gravity G, and the positive direction of the longitudinal acceleration A x is toward the front from the center of gravity G. It is said that Information detected by each sensor 21 to 23 is sent to the control device 10. In addition to these sensors 21 to 23, the vehicle 1 is provided with general-purpose sensors such as a vehicle speed sensor that detects vehicle speed, a wheel speed sensor that detects wheel speed, and a steering angle sensor that detects steering angle. You can leave it there.
 ヨーレイトrを検出する手段,横加速度Ayを検出する手段,前後加速度Axを検出する手段は、ヨーレイトセンサ21,横加速度センサ22,前後加速度センサ23に限られない。例えば、舵角や車体速に基づいて横加速度Ayを推定したり、当該推定した値や横加速度センサ22で検出した値を別のセンサ値に基づき補正したりすることで横加速度Ayを検出(取得)してもよい。同様に、ヨーレイトセンサ21で検出した値,前後加速度センサ23で検出した値を、別のセンサ値に基づき補正することでヨーレイトr,前後加速度Axを検出(取得)してもよい。このような場合には、推定部や補正部(制御装置の機能要素)が各検出手段となりうる。 The means for detecting the yaw rate r, the means for detecting the lateral acceleration Ay , and the means for detecting the longitudinal acceleration Ax are not limited to the yaw rate sensor 21, the lateral acceleration sensor 22, and the longitudinal acceleration sensor 23. For example, the lateral acceleration A y can be estimated based on the steering angle and vehicle speed, or by correcting the estimated value or the value detected by the lateral acceleration sensor 22 based on another sensor value . It may be detected (obtained). Similarly, the yaw rate r and the longitudinal acceleration A x may be detected (obtained) by correcting the values detected by the yaw rate sensor 21 and the longitudinal acceleration sensor 23 based on other sensor values. In such a case, the estimation section and the correction section (functional elements of the control device) can serve as each detection means.
[2.制御構成]
 本実施形態の制御装置10は、各種センサ21~23で検出された情報を用いて、車両1の前輪2Fの垂直荷重Z1,Z2及び後輪2Rの垂直荷重Z3,Z4の少なくとも一方を推定する機能を持つ。また、制御装置10は、推定した垂直荷重の車輪2の横力Y1~Y4を推定する機能も併せ持つ。
[2. Control configuration]
The control device 10 of the present embodiment uses information detected by various sensors 21 to 23 to control at least the vertical loads Z 1 and Z 2 of the front wheels 2F of the vehicle 1 and the vertical loads Z 3 and Z 4 of the rear wheels 2R. It has the function of estimating one side. The control device 10 also has the function of estimating the estimated vertical load of the lateral forces Y 1 to Y 4 of the wheels 2.
 例えば、制御装置10は、後輪2Rの垂直荷重Z3,Z4だけを推定する機能を持つ場合には、後輪2Rの横力Y3,Y4を推定する機能を併せ持つことができる。本実施形態では、四輪すべての垂直荷重Z1~Z4を推定する場合を例示するとともに、四輪すべての横力Y1~Y4をも推定する。ここで、垂直荷重Z1~Z4及び横力Y1~Y4を示す符号では、左前輪2FL,右前輪2FR,左後輪2RL,右後輪2RRの順に、下付きの数字1~4を付す。 For example, if the control device 10 has the function of estimating only the vertical loads Z 3 and Z 4 of the rear wheels 2R, it can also have the function of estimating the lateral forces Y 3 and Y 4 of the rear wheels 2R. In this embodiment, a case is illustrated in which vertical loads Z 1 to Z 4 of all four wheels are estimated, and lateral forces Y 1 to Y 4 of all four wheels are also estimated. Here, in the codes indicating the vertical loads Z 1 to Z 4 and the lateral forces Y 1 to Y 4 , the subscript numbers 1 to 4 are in the order of left front wheel 2FL, right front wheel 2FR, left rear wheel 2RL, and right rear wheel 2RR. Attach.
 制御装置10は、垂直荷重Z1~Z4を推定するための機能要素として、ロール角取得部11,荷重移動量推定部12及び垂直荷重推定部13を備える。また、本実施形態の制御装置10は、推定した垂直荷重Z1~Z4を用いて横力Y1~Y4を推定するための機能要素として、横力推定部14をさらに備える。これらの要素は、制御装置10の機能を便宜的に分類して示したものである。これらの要素は、独立したプログラムとして各々を記述することができるとともに、複数の要素を合体させた複合プログラムとして記述することもできる。各要素に相当するプログラムは、制御装置10のメモリや記憶装置に記憶され、プロセッサで実行される。 The control device 10 includes a roll angle acquisition section 11, a load movement amount estimation section 12, and a vertical load estimation section 13 as functional elements for estimating the vertical loads Z 1 to Z 4 . Furthermore, the control device 10 of the present embodiment further includes a lateral force estimation unit 14 as a functional element for estimating the lateral forces Y 1 to Y 4 using the estimated vertical loads Z 1 to Z 4 . These elements are shown by classifying the functions of the control device 10 for convenience. Each of these elements can be written as an independent program, and can also be written as a composite program that combines a plurality of elements. A program corresponding to each element is stored in the memory or storage device of the control device 10 and executed by the processor.
 ロール角取得部11は、車両1のロール角θを取得するものである。ロール角θの取得手法は特に限られず、上記のセンサ21~23と同様、ロール角θを検出可能なセンサを設け、センサ値やセンサ値の補正値をロール角θとして取得してもよい。あるいは、センサ値と車両諸元とに基づいてロール角θを推定することでその値(ロール角θ)を取得してもよい。ここでは、後者の手法、すなわち、ロール角θを推定して取得する方法の一例を説明する。 The roll angle acquisition unit 11 acquires the roll angle θ of the vehicle 1. The method for obtaining the roll angle θ is not particularly limited, and similarly to the sensors 21 to 23 described above, a sensor capable of detecting the roll angle θ may be provided and a sensor value or a correction value of the sensor value may be obtained as the roll angle θ. Alternatively, the value (roll angle θ) may be obtained by estimating the roll angle θ based on the sensor value and vehicle specifications. Here, an example of the latter method, that is, a method of estimating and acquiring the roll angle θ, will be described.
 ロール角取得部11は、横加速度センサ22により検出された横加速度Ayと、前輪2Fに関する前輪ロール減衰係数cf及び後輪2Rに関する後輪ロール減衰係数crの和である車両ロール減衰係数c(=cf+cr)とに基づいて、車両1のロール角θを推定する。車両ロール減衰係数cとは、図2に示すように、ロール運動の抵抗となるモーメントのうち、ロール角速度に比例する成分の比例定数(ロール方向の減衰係数)である。前輪ロール減衰係数cfは、図3に示すように、上記のロール方向の減衰係数のうち前軸で受け持つ分であり、後輪ロール減衰係数crは、図4に示すように、上記のロール方向の減衰係数のうち後軸で受け持つ分である。なお、図2~図4は車両1を振り子に見立ててモデル化したもの(荷重移動モデル)であり、図2は車両背面から見たモデル、図3は前軸の中心線で切断したモデル、図4は後軸の中心線で切断したモデルである。 The roll angle acquisition unit 11 obtains a vehicle roll damping coefficient which is the sum of the lateral acceleration A y detected by the lateral acceleration sensor 22, a front wheel roll damping coefficient c f for the front wheels 2F, and a rear wheel roll damping coefficient cr for the rear wheels 2R. c (=c f +c r ), the roll angle θ of the vehicle 1 is estimated. As shown in FIG. 2, the vehicle roll damping coefficient c is a proportionality constant (damping coefficient in the roll direction) of a component proportional to the roll angular velocity of the moment that acts as a resistance to roll motion. As shown in FIG. 3, the front wheel roll damping coefficient c f is the portion of the damping coefficient in the roll direction that is handled by the front axle, and the rear wheel roll damping coefficient c r is the portion of the above damping coefficient in the roll direction, as shown in FIG. 4. This is the portion of the damping coefficient in the roll direction that is handled by the rear shaft. Note that Figures 2 to 4 are models of the vehicle 1 as a pendulum (load transfer model); Figure 2 is a model viewed from the rear of the vehicle; Figure 3 is a model cut along the center line of the front axle; Figure 4 shows a model cut along the center line of the rear axle.
 本実施形態のロール角取得部11は、図2のモデルを使用し、下記の式1によりロール角θを推定(算出)する。式1中のmは車両質量,hはロール半径,Ixはロール慣性モーメント,kは車両ロール剛性,gは重力加速度であり、いずれも固定値である。なお、前後輪のロール減衰係数cf,crは、例えば、ロール角速度に対する定数として予めマップ化されており、ロール角速度をマップに適用することで取得される。また、ロール角速度は、例えば推定したロール角θを微分することで求めてもよいし、センサ値でもよい。車両ロール剛性kは、前輪2Fに関する前輪ロール剛性kf及び後輪2Rに関する後輪ロール剛性krの和である。なお、前後輪のロール剛性kf,krは固定値であり、sはラプラス演算子である。 The roll angle acquisition unit 11 of this embodiment uses the model shown in FIG. 2 to estimate (calculate) the roll angle θ using the following equation 1. In Equation 1, m is the vehicle mass, h is the roll radius, I x is the roll moment of inertia, k is the vehicle roll stiffness, and g is the gravitational acceleration, all of which are fixed values. Note that the roll damping coefficients c f and cr of the front and rear wheels are, for example, mapped in advance as constants for the roll angular velocity, and are obtained by applying the roll angular velocity to the map. Further, the roll angular velocity may be obtained, for example, by differentiating the estimated roll angle θ, or may be a sensor value. The vehicle roll stiffness k is the sum of the front wheel roll stiffness k f for the front wheels 2F and the rear wheel roll stiffness k r for the rear wheels 2R. Note that the roll rigidities k f and k r of the front and rear wheels are fixed values, and s is a Laplace operator.
Figure JPOXMLDOC01-appb-M000001
Figure JPOXMLDOC01-appb-M000001
 荷重移動量推定部12は、前輪2Fの左右輪間における荷重移動量ΔWy_f(以下、前輪側荷重移動量ΔWy_fという)と、後輪2Rの左右輪間における荷重移動量ΔWy_r(以下、後輪側荷重移動量ΔWy_rという)とをそれぞれ推定するものである。前輪側荷重移動量ΔWy_fは、ロール角取得部11で取得されたロール角θと、前輪2Fの横力Yfと、前輪ロール減衰係数cfと、前輪ロール剛性kfとに基づいて推定される。同様に、後輪側荷重移動量ΔWy_rは、ロール角取得部11で取得されたロール角θと、後輪2Rの横力Yrと、後輪ロール減衰係数crと、後輪ロール剛性krとに基づいて推定される。 The load transfer amount estimating unit 12 calculates the load transfer amount ΔW y_f between the left and right wheels of the front wheel 2F (hereinafter referred to as the front wheel side load transfer amount ΔW y_f ) and the load transfer amount ΔW y_r (hereinafter referred to as “front wheel side load transfer amount ΔW y_f”) between the left and right wheels of the rear wheel 2R. The rear wheel side load movement amount ΔW y_r ) is estimated. The front wheel side load movement amount ΔW y_f is estimated based on the roll angle θ acquired by the roll angle acquisition unit 11, the lateral force Y f of the front wheel 2F, the front wheel roll damping coefficient c f , and the front wheel roll rigidity k f be done. Similarly, the rear wheel side load movement amount ΔW y_r is calculated by the roll angle θ acquired by the roll angle acquisition unit 11, the lateral force Y r of the rear wheel 2R, the rear wheel roll damping coefficient cr , and the rear wheel roll rigidity. It is estimated based on k r .
 なお、前輪2Fの横力Yfは、左前輪2FLの横力Y1と右前輪2FRの横力Y2との和(Yf=Y1+Y2)であり、後輪2Rの横力Yrは、左後輪2RLの横力Y3と右後輪2RRの横力Y4との和(Yr=Y3+Y4)である。前後輪2F,2Rの各横力Yf,Yrは、後述するように、荷重移動量推定部12で推定された値を用いることが好ましい。 Note that the lateral force Y f of the front wheel 2F is the sum of the lateral force Y 1 of the left front wheel 2FL and the lateral force Y 2 of the right front wheel 2FR (Y f =Y 1 +Y 2 ), and the lateral force Y of the rear wheel 2R is r is the sum of the lateral force Y 3 of the left rear wheel 2RL and the lateral force Y 4 of the right rear wheel 2RR (Y r =Y 3 +Y 4 ). As will be described later, it is preferable to use values estimated by the load movement amount estimating section 12 for the lateral forces Y f and Y r of the front and rear wheels 2F and 2R.
 本実施形態の荷重移動量推定部12は、前輪側荷重移動量ΔWy_f及び後輪側荷重移動量ΔWy_rの両方を推定するが、制御装置10が、例えば後輪2Rの垂直荷重Z3,Z4を推定する機能を持つ(前輪2Fの垂直荷重Z1,Z2を推定する機能を持たない)場合には、荷重移動量推定部12は、後輪側荷重移動量ΔWy_rのみを推定すればよい。つまり、荷重移動量推定部12は、前輪側荷重移動量ΔWy_f及び後輪側荷重移動量ΔWy_rの少なくとも一方を推定するものであればよい。 The load movement amount estimation unit 12 of this embodiment estimates both the front wheel side load movement amount ΔW y_f and the rear wheel side load movement amount ΔW y_r , but the control device 10 estimates the vertical load Z 3 of the rear wheel 2R, When having the function of estimating Z 4 (without having the function of estimating the vertical loads Z 1 and Z 2 of the front wheels 2F), the load movement amount estimation unit 12 estimates only the rear wheel side load movement amount ΔW y_r . do it. In other words, the load movement amount estimating section 12 only needs to estimate at least one of the front wheel side load movement amount ΔW y_f and the rear wheel side load movement amount ΔW y_r .
 本実施形態の荷重移動量推定部12は、図3のモデルを使用し、前輪2Fのロールセンターまわりに働くモーメントの釣り合い式である下記の式2から、前輪側荷重移動量ΔWy_fを推定する。具体的には、式2を前輪側荷重移動量ΔWy_fについて解き、ラプラス変換した式3を用いて、前輪側荷重移動量ΔWy_fを推定(算出)する。式2,3中のTfはフロントトレッド,hfは前輪2Fのロールセンター高さ(地面からロールセンターまでの高さ)であり、いずれも固定値である。また、式2中のZ1_0及びZ2_0は車両停止状態での左右前輪2FL,2FRの垂直荷重である。これらの値Z1_0,Z2_0は、例えば、予め定めた固定値でもよいし、サスペンションのストロークセンサ値などから推定した推定値であってもよい。なお、これらの値Z1_0,Z2_0は必ずしも互いに等しくなくてよい。 The load movement amount estimating unit 12 of this embodiment uses the model shown in FIG. 3 to estimate the front wheel side load movement amount ΔW y_f from the following equation 2, which is a balance equation of the moment acting around the roll center of the front wheel 2F. . Specifically, Equation 2 is solved for the front wheel side load movement amount ΔW y_f , and the front wheel side load movement amount ΔW y_f is estimated (calculated) using Laplace-transformed Equation 3. In Equations 2 and 3, T f is the front tread, and h f is the roll center height (height from the ground to the roll center) of the front wheel 2F, both of which are fixed values. Furthermore, Z 1_0 and Z 2_0 in Equation 2 are vertical loads on the left and right front wheels 2FL and 2FR when the vehicle is stopped. These values Z 1_0 and Z 2_0 may be, for example, predetermined fixed values, or may be estimated values estimated from suspension stroke sensor values. Note that these values Z 1_0 and Z 2_0 do not necessarily have to be equal to each other.
Figure JPOXMLDOC01-appb-M000002
Figure JPOXMLDOC01-appb-M000002
 後輪2Rについても同様である。すなわち、荷重移動量推定部12は、図4のモデルを使用し、後輪2Rのロールセンターまわりに働くモーメントの釣り合い式である下記の式4から、後輪側荷重移動量ΔWy_rを推定する。具体的には、式4を後輪側荷重移動量ΔWy_rについて解き、ラプラス変換した式5を用いて、後輪側荷重移動量ΔWy_rを推定(算出)する。式4,5中のTrはリアトレッド,hrは後輪2Rのロールセンター高さであり、いずれも固定値である。また、式4中のZ3_0及びZ4_0は、車両停止状態での左右後輪2RL,2RRの垂直荷重であり、前輪側と同様である。 The same applies to the rear wheel 2R. That is, the load movement amount estimating unit 12 uses the model of FIG. 4 to estimate the rear wheel side load movement amount ΔW y_r from the following equation 4, which is a balance equation of the moment acting around the roll center of the rear wheel 2R. . Specifically, Equation 4 is solved for the rear wheel side load movement amount ΔW y_r , and Laplace-transformed Equation 5 is used to estimate (calculate) the rear wheel side load movement amount ΔW y_r . In equations 4 and 5, T r is the rear tread, and h r is the roll center height of the rear wheel 2R, both of which are fixed values. Furthermore, Z 3_0 and Z 4_0 in Equation 4 are vertical loads on the left and right rear wheels 2RL and 2RR when the vehicle is stopped, and are the same as on the front wheels.
Figure JPOXMLDOC01-appb-M000003
Figure JPOXMLDOC01-appb-M000003
 本実施形態の荷重移動量推定部12は、上記の通り、前後輪2F,2Rの各横力Yf,Yrを推定する。具体的には、ヨーレイトセンサ21で検出されたヨーレイトrと横加速度センサ22で検出された横加速度Ayとに基づいて、前後輪2F,2Rの各横力Yf,Yrを推定する。そして、上記の荷重移動量ΔWy_f,ΔWy_rの推定に際し、推定した各横力Yf,Yrを使用する。 As described above, the load movement amount estimating unit 12 of this embodiment estimates the lateral forces Y f and Y r of the front and rear wheels 2F and 2R. Specifically, based on the yaw rate r detected by the yaw rate sensor 21 and the lateral acceleration A y detected by the lateral acceleration sensor 22, the lateral forces Y f and Y r of the front and rear wheels 2F and 2R are estimated. Then, when estimating the load movement amounts ΔW y_f and ΔW y_r described above, the estimated lateral forces Y f and Y r are used.
 本実施形態の荷重移動量推定部12は、下記の式6を横力Yf,Yrについて解いた式7,8を用いて、前後輪2F,2Rの各横力Yf,Yrをそれぞれ推定する。なお、当該推定は、上記の荷重移動量ΔWy_f,ΔWy_rの推定と同じ演算周期で行う。 The load movement estimation unit 12 of this embodiment calculates each lateral force Y f , Y r of the front and rear wheels 2F, 2R using Equations 7 and 8 obtained by solving Equation 6 below for the lateral forces Y f and Y r . Estimate each. Note that this estimation is performed in the same calculation cycle as the estimation of the load movement amounts ΔW y_f and ΔW y_r described above.
Figure JPOXMLDOC01-appb-M000004
Figure JPOXMLDOC01-appb-M000004
 式6~8中のLfは前車軸と重心Gとの前後方向の距離,Lは後車軸と重心Gとの前後方向の距離,Lはホイールベース(前後車軸の距離)であり、いずれも固定値である。また、MADDは制駆動力差によるヨーモーメントであり、本実施形態では、制御装置10とは別の制御装置にて演算される制御要求値である。ただし、横力Yf,Yrの推定方法はこれに限られず、例えば、荷重移動量ΔWy_f,ΔWy_rの推定とは異なる演算周期で推定してもよいし、ヨーモーメントMADDに代えて又は加えて、別のパラメータを考慮してもよい。 In formulas 6 to 8, L f is the distance in the longitudinal direction between the front axle and the center of gravity G, L r is the distance in the longitudinal direction between the rear axle and the center of gravity G, and L is the wheel base (distance between the front and rear axles). is also a fixed value. Further, M ADD is a yaw moment due to a difference in braking/driving force, and in this embodiment, is a control request value calculated by a control device other than the control device 10. However, the method for estimating the lateral forces Y f and Y r is not limited to this. For example, they may be estimated using a calculation cycle different from that for estimating the load movement amounts ΔW y_f and ΔW y_r , or instead of the yaw moment M ADD . Or in addition, other parameters may be considered.
 また、本実施形態の荷重移動量推定部12は、前後加速度センサ23で検出された前後加速度Axに基づいて、下記の式9により前後軸の荷重移動量ΔWx(以下、前後荷重移動量ΔWxという)を推定する。前後荷重移動量ΔWxは、次に説明する垂直荷重Z1~Z4の推定において用いられる。なお、式9中のhcgは重心高さである。 In addition, the load movement amount estimating unit 12 of this embodiment calculates the load movement amount ΔW x (hereinafter referred to as the longitudinal load movement amount) of the longitudinal axis based on the longitudinal acceleration A x detected by the longitudinal acceleration sensor 23 using the following equation ΔW x ) is estimated. The longitudinal load movement amount ΔW x is used in estimating the vertical loads Z 1 to Z 4 described below. Note that h cg in Equation 9 is the height of the center of gravity.
Figure JPOXMLDOC01-appb-M000005
Figure JPOXMLDOC01-appb-M000005
 垂直荷重推定部13は、荷重移動量推定部12で推定された前輪側荷重移動量ΔWy_f及び後輪側荷重移動量ΔWy_rに基づいて、各車輪2の垂直荷重Z1~Z4を推定するものである。具体的には、車両停止状態での各車輪2の垂直荷重Z1_0~Z4_0に、走行状態に起因した荷重移動量分を加減算することで各車輪2の垂直荷重Z1~Z4を推定する。本実施形態の垂直荷重推定部13は、荷重移動量推定部12で推定された前後荷重移動量ΔWxも使用して、下記の式10~13により、各垂直荷重Z1~Z4を推定(算出)する。 The vertical load estimation unit 13 estimates the vertical loads Z 1 to Z 4 of each wheel 2 based on the front wheel side load movement amount ΔW y_f and the rear wheel side load movement amount ΔW y_r estimated by the load movement amount estimation unit 12. It is something to do. Specifically, the vertical loads Z 1 to Z 4 of each wheel 2 are estimated by adding or subtracting the amount of load movement caused by the running state to the vertical loads Z 1_0 to Z 4_0 of each wheel 2 when the vehicle is stopped . do. The vertical load estimating unit 13 of this embodiment also uses the longitudinal load movement amount ΔW x estimated by the load movement amount estimating unit 12 to estimate each vertical load Z 1 to Z 4 according to equations 10 to 13 below. (calculate.
Figure JPOXMLDOC01-appb-M000006
Figure JPOXMLDOC01-appb-M000006
 本実施形態の垂直荷重推定部13は、各車輪2の垂直荷重Z1~Z4を推定するが、制御装置10が、例えば後輪2Rの垂直荷重Z3,Z4を推定する機能を持つ(前輪2Fの垂直荷重Z1,Z2を推定する機能を持たない)場合には、垂直荷重推定部13は、当然、後輪2Rの垂直荷重Z3,Z4のみを推定すればよい。つまり、垂直荷重推定部13は、推定された荷重移動量(ΔWy_f及びΔWy_rの少なくとも一方)に基づいて、荷重移動量が推定された少なくとも一方の車輪2(前輪2F及び後輪2Rの少なくとも一方)の垂直荷重を推定するものであればよい。 The vertical load estimation unit 13 of this embodiment estimates the vertical loads Z 1 to Z 4 of each wheel 2, but the control device 10 has a function of estimating the vertical loads Z 3 and Z 4 of the rear wheels 2R, for example. In the case (not having the function of estimating the vertical loads Z 1 and Z 2 on the front wheels 2F), the vertical load estimation unit 13 need only estimate the vertical loads Z 3 and Z 4 on the rear wheels 2R. In other words, the vertical load estimating unit 13 selects at least one of the wheels 2 (front wheel 2F and rear wheel 2R) for which the load movement amount is estimated based on the estimated load movement amount (at least one of ΔW y_f and ΔW y_r ). On the other hand, any method that estimates the vertical load on the other hand may be used.
 横力推定部14は、垂直荷重推定部13で推定された四つの垂直荷重Z1~Z4と、前輪2Fの横力Yfと後輪2Rの横力Yrとに基づいて、各車輪2の横力Y1~Y4を推定するものである。本実施形態では、前後輪2F,2Rの各横力Yf,Yrが荷重移動量推定部12において推定されるため、横力推定部14は、各車輪2の横力Y1~Y4の推定に際し、この推定結果を用いる。具体的には、下記の式14~17により、各横力Y1~Y4を推定(算出)する。 The lateral force estimating unit 14 calculates each wheel based on the four vertical loads Z 1 to Z 4 estimated by the vertical load estimating unit 13, the lateral force Y f of the front wheel 2F, and the lateral force Y r of the rear wheel 2R. This is to estimate the lateral forces Y 1 to Y 4 of 2. In this embodiment, since the lateral forces Y f and Y r of the front and rear wheels 2F and 2R are estimated in the load movement amount estimating section 12, the lateral force estimating section 14 estimates the lateral forces Y 1 to Y 4 of each wheel 2. This estimation result is used when estimating . Specifically, each lateral force Y 1 to Y 4 is estimated (calculated) using equations 14 to 17 below.
Figure JPOXMLDOC01-appb-M000007
Figure JPOXMLDOC01-appb-M000007
 本実施形態の横力推定部14は、各車輪2の横力Y1~Y4を推定するが、制御装置10が、例えば後輪2Rの垂直荷重Z3,Z4を推定する機能を持つ(前輪2Fの垂直荷重Z1,Z2を推定する機能を持たない)場合には、横力推定部14は、後輪2Rの横力Y3,Y4を推定することが可能である。つまり、横力推定部14は、垂直荷重推定部13で推定された少なくとも一方の車輪2(前輪2F及び後輪2Rの少なくとも一方)の垂直荷重と、少なくとも一方の車輪2の横力(横力Yf,Yr)とに基づいて、少なくとも一方の車輪2の各横力を推定する。 The lateral force estimation unit 14 of this embodiment estimates the lateral forces Y 1 to Y 4 of each wheel 2, but the control device 10 has a function of estimating the vertical loads Z 3 and Z 4 of the rear wheels 2R, for example. In the case (without the function of estimating the vertical loads Z 1 and Z 2 of the front wheels 2F), the lateral force estimating unit 14 can estimate the lateral forces Y 3 and Y 4 of the rear wheels 2R. In other words, the lateral force estimating unit 14 calculates the vertical load of at least one wheel 2 (at least one of the front wheel 2F and the rear wheel 2R) estimated by the vertical load estimating unit 13, and the lateral force (lateral force) of at least one wheel 2. Each lateral force of at least one wheel 2 is estimated based on Y f , Y r ).
 なお、本制御装置10では、上記の垂直荷重Z1~Z4及び横力Y1~Y4を推定するまでの処理を実行するが、ここで推定された値は、様々な車両運動制御に利用可能である。例えば、各車輪2の駆動力及び制動力の推定(算出)の際に使用することで、アクチュエータ(駆動源やブレーキ装置)の制御に用いることが可能である。また、その他のアクチュエータ(AFS,ARS,アクティブサスペンション)や報知装置の制御に用いることも可能である。これらの制御は、制御装置10によって実施されてもよいし、制御装置10とは別の制御装置によって実施されてもよい。 Note that this control device 10 executes processing up to estimating the vertical loads Z 1 to Z 4 and lateral forces Y 1 to Y 4 described above, but the values estimated here are used for various vehicle motion controls. Available. For example, by using it when estimating (calculating) the driving force and braking force of each wheel 2, it can be used to control an actuator (drive source or brake device). It can also be used to control other actuators (AFS, ARS, active suspension) and notification devices. These controls may be performed by the control device 10, or may be performed by a control device different from the control device 10.
[3.フローチャート]
 図5に、上述した制御装置10において実施されるフローチャート例を示す。このフローチャートは、例えば、車両1の主電源がオンの場合や走行中に所定の演算周期で実施される。まず、ステップS1において、各種センサ21~23の情報が取得される。ステップS2では、ロール角取得部11によりロール角θが取得(例えば推定)される。続くステップS3~S6は、荷重移動量推定部12により実施される。
[3. flowchart]
FIG. 5 shows an example of a flowchart executed in the control device 10 described above. This flowchart is executed, for example, at a predetermined calculation cycle when the main power source of the vehicle 1 is on or while the vehicle 1 is running. First, in step S1, information on various sensors 21 to 23 is acquired. In step S2, the roll angle θ is acquired (eg, estimated) by the roll angle acquisition unit 11. Subsequent steps S3 to S6 are performed by the load movement amount estimating section 12.
 まず、ステップS3において、前後輪2F,2Rの各横力Yf,Yrが推定され、次いで、ステップS4において前輪側荷重移動量ΔWy_fに推定され、ステップS5において後輪側荷重移動量ΔWy_rが推定され、ステップS6において前後荷重移動量ΔWxが推定される。そして、ステップS7では、垂直荷重推定部13により四つの垂直荷重Z1~Z4が推定され、ステップS8では、横力推定部14により四つの横力Y1~Y4が推定されて、このフローチャートをリターンする。 First, in step S3, each lateral force Y f , Y r of the front and rear wheels 2F, 2R is estimated, then in step S4 the front wheel side load movement amount ΔW y_f is estimated, and in step S5 the rear wheel side load movement amount ΔW y_r is estimated, and in step S6, the longitudinal load movement amount ΔW x is estimated. Then, in step S7, the vertical load estimation section 13 estimates four vertical loads Z 1 to Z 4 , and in step S8, the lateral force estimation section 14 estimates four lateral forces Y 1 to Y 4 . Return the flowchart.
[4.効果]
 上述した制御装置10によれば、ヨーレイトセンサ21及び横加速度センサ22といった、車両1に標準装備される汎用の検出手段を使用して、前輪2F及び後輪2Rの少なくとも一方の車輪2の垂直荷重Z1~Z4を推定することができる。このように、ロール,ピッチ,バウンスも含めたような、高度な車体姿勢制御が要求されない車両において、比較的簡素な手法で前輪2F及び後輪2Rの少なくとも一方の車輪2の垂直荷重Z1~Z4を推定できるため、制御構成を簡素化でき、コスト抑制や汎用性向上に寄与できる。例えば、前後輪2F,2Rのうち、後輪2Rだけ左右の駆動力を独立に制御できる車両1の場合、後輪2Rの垂直荷重Z3,Z4や後輪側荷重移動量ΔWy_rを把握できれば、車両1の制御性を向上させることができる。
[4. effect]
According to the control device 10 described above, the vertical load on at least one of the wheels 2 of the front wheels 2F and the rear wheels 2R is detected using general-purpose detection means that are standard equipment on the vehicle 1, such as the yaw rate sensor 21 and the lateral acceleration sensor 22. Z 1 to Z 4 can be estimated. In this way, in a vehicle that does not require advanced vehicle body posture control including roll, pitch, and bounce, it is possible to reduce the vertical load Z 1 to at least one of the front wheels 2F and rear wheels 2R using a relatively simple method. Since Z 4 can be estimated, the control configuration can be simplified, contributing to cost reduction and improved versatility. For example, in the case of a vehicle 1 in which the left and right driving force of only the rear wheel 2R can be independently controlled among the front and rear wheels 2F and 2R, the vertical loads Z 3 and Z 4 of the rear wheel 2R and the amount of rear wheel side load movement ΔW y_r are determined. If possible, the controllability of the vehicle 1 can be improved.
 上記の制御装置10では、前後輪2F,2Rの荷重移動量ΔWy_f,ΔWy_rが、検出値であるヨーレイトr及び横加速度Ayに基づき推定された前後輪2F,2Rの各横力Yf,Yrを使って推定される。これにより、垂直荷重Z1~Z4の推定精度を向上させることができる。
 また、上記の制御装置10では、前後加速度検出手段である前後加速度センサ23で検出された前後加速度Axに基づき、前後荷重移動量ΔWxが推定され、この前後荷重移動量ΔWxを使用して垂直荷重が推定されることから、推定精度をより高めることができる。
In the above control device 10, the load movement amount ΔW y_f , ΔW y_r of the front and rear wheels 2F, 2R is determined based on the detected value of the yaw rate r and the lateral acceleration A y of each lateral force Y f of the front and rear wheels 2F, 2R. , Y r . Thereby, the accuracy of estimating the vertical loads Z 1 to Z 4 can be improved.
Further, in the above control device 10, the longitudinal load movement amount ΔW x is estimated based on the longitudinal acceleration A x detected by the longitudinal acceleration sensor 23, which is the longitudinal acceleration detection means, and this longitudinal load movement amount ΔW x is used. Since the vertical load is estimated by
 上述した制御装置10によれば、推定した垂直荷重Z1~Z4に加え、推定された垂直荷重Z1~Z4に基づき車輪2の各横力Y1~Y4も推定される。このように、各車輪2の左右方向及び上下方向の力を推定することで、様々な車両運動制御に活用しやすくなる。
 例えば、車両運動制御の一つであるスピン挙動の抑制制御に活用すれば、各車輪2の制駆動力を適切に設定可能となり、タイヤの横滑りを効果的に抑制しうる。
According to the control device 10 described above, in addition to the estimated vertical loads Z 1 -Z 4 , each lateral force Y 1 -Y 4 of the wheel 2 is also estimated based on the estimated vertical loads Z 1 -Z 4 . In this way, by estimating the force in the left-right direction and the vertical direction of each wheel 2, it becomes easier to utilize it for various vehicle motion controls.
For example, if it is utilized for spin behavior suppression control, which is one type of vehicle motion control, it becomes possible to appropriately set the braking/driving force of each wheel 2, and it is possible to effectively suppress tire skidding.
[5.その他]
 上述した制御装置10の構成は一例であって、上述したものに限られない。上記の制御装置10が推定で使用する式1,3,5,7~16は一例であり、上記の式に限られない。例えば、上記の垂直荷重推定部13では、垂直荷重Z1~Z4の推定に際し、荷重移動量推定部12で推定された前後荷重移動量ΔWxを使用しているが、前後方向の荷重移動量は省略したり、予め設定(予想)された値を採用したりしてもよい。
[5. others]
The configuration of the control device 10 described above is an example, and is not limited to the configuration described above. Equations 1, 3, 5, 7 to 16 used for estimation by the control device 10 above are examples, and are not limited to the above equations. For example, the vertical load estimation unit 13 described above uses the longitudinal load movement amount ΔW x estimated by the load movement estimation unit 12 when estimating the vertical loads Z 1 to Z 4 . The amount may be omitted or a preset (estimated) value may be used.
 また、制御装置10が適用される車両1の構成も一例であって、上述したものに限られない。例えば、車両1に横滑り防止装置(ASC;Active Stability Control)が備えられている場合、上記の制御装置10で推定された情報に応じて、ASCを作動させてもよい。また、上記の車両1に搭載された制御装置10の推定結果を用いて制御されるアクチュエータの種類は特に限られない。 Furthermore, the configuration of the vehicle 1 to which the control device 10 is applied is also one example, and is not limited to the above-mentioned configuration. For example, if the vehicle 1 is equipped with an active stability control (ASC), the ASC may be activated according to information estimated by the control device 10 described above. Further, the type of actuator that is controlled using the estimation result of the control device 10 mounted on the vehicle 1 is not particularly limited.
 1 車両
 2 車輪
 2F 前輪
 2FL 左前輪(前輪,車輪)
 2FR 右前輪(前輪,車輪)
 2R 後輪
 2RL 左後輪(後輪,車輪)
 2RR 右後輪(後輪,車輪)
 10 制御装置
 11 ロール角取得部
 12 荷重移動量推定部
 13 垂直荷重推定部
 14 横力推定部
 21 ヨーレイトセンサ
 22 横加速度センサ
 23 前後加速度センサ
 Ax 前後加速度
 Ay 横加速度
 c 車両ロール減衰係数
 cf 前輪ロール減衰係数
 cr 後輪ロール減衰係数
 G 重心
 g 重力加速度
 h ロール半径
 hf 前輪のロールセンター高さ
 hr 後輪のロールセンター高さ
 Ix ロール慣性モーメント
 k 車両ロール剛性
 kf 前輪ロール剛性
 kr 後輪ロール剛性
 L ホイールベース(前後車軸の距離)
 Lf 前車軸と重心との前後方向の距離
 L 後車軸と重心との前後方向の距離
 m 車両質量
 MADD 制駆動力差によるヨーモーメント
 r ヨーレイト
 Tf フロントトレッド
 Tr リアトレッド
 ΔWx 前後荷重移動量(前後軸の荷重移動量)
 ΔWy_f 前輪側荷重移動量(前輪の左右輪間における荷重移動量)
 ΔWy_r 後輪側荷重移動量(後輪の左右輪間における荷重移動量)
 Y1 左前輪の横力
 Y2 右前輪の横力
 Y3 左後輪の横力
 Y4 右後輪の横力
 Yf 前輪の横力
 Yr 後輪の横力
 Z1 左前輪の垂直荷重
 Z2 右前輪の垂直荷重
 Z3 左後輪の垂直荷重
 Z4 右後輪の垂直荷重
 θ ロール角
1 Vehicle 2 Wheel 2F Front wheel 2FL Left front wheel (front wheel, wheel)
2FR right front wheel (front wheel, wheel)
2R Rear wheel 2RL Left rear wheel (rear wheel, wheel)
2RR Right rear wheel (rear wheel, wheel)
10 Control device 11 Roll angle acquisition unit 12 Load movement amount estimation unit 13 Vertical load estimation unit 14 Lateral force estimation unit 21 Yaw rate sensor 22 Lateral acceleration sensor 23 Longitudinal acceleration sensor A x longitudinal acceleration A y lateral acceleration c Vehicle roll damping coefficient c f Front wheel roll damping coefficient c r Rear wheel roll damping coefficient G Center of gravity g Gravity acceleration h Roll radius h f Front wheel roll center height h r Rear wheel roll center height I x Roll moment of inertia k Vehicle roll stiffness k f Front wheel roll stiffness k r Rear wheel roll stiffness L Wheelbase (distance between front and rear axles)
L f Longitudinal distance between the front axle and the center of gravity L r Longitudinal distance between the rear axle and the center of gravity m Vehicle mass M Yaw moment due to ADD braking/driving force difference r Yaw rate T f Front tread T r Rear tread ΔW x Longitudinal load Amount of movement (amount of load movement on the front and rear axes)
ΔW y_f Front wheel side load transfer amount (load transfer amount between the left and right front wheels)
ΔW y_r Rear wheel side load transfer amount (load transfer amount between left and right rear wheels)
Y 1 Lateral force on the left front wheel Y 2 Lateral force on the right front wheel Y 3 Lateral force on the left rear wheel Y 4 Lateral force on the right rear wheel Y f Lateral force on the front wheel Y r Lateral force on the rear wheel Z 1 Vertical load on the left front wheel Z 2 Vertical load on the right front wheel Z 3 Vertical load on the left rear wheel Z 4 Vertical load on the right rear wheel θ Roll angle

Claims (5)

  1.  車両のヨーレイトを検出するヨーレイト検出手段と、前記車両の横加速度を検出する横加速度検出手段とが設けられた前記車両の制御装置において、
     前記車両のロール角を取得するロール角取得部と、
     取得された前記ロール角と前記前輪の横力と前記前輪に関する前輪ロール減衰係数と前記前輪に関する前輪ロール剛性とに基づいて前記前輪の左右輪間における荷重移動量、及び、取得された前記ロール角と前記後輪の横力と前記後輪に関する後輪ロール減衰係数と前記後輪に関する後輪ロール剛性とに基づいて前記後輪の左右輪間における荷重移動量の少なくとも一方を推定する荷重移動量推定部と、
     推定された前記荷重移動量に基づいて、前記荷重移動量が推定された前記前輪及び前記後輪の前記少なくとも一方の車輪の各垂直荷重を推定する垂直荷重推定部と、を備えた
    ことを特徴とする、車両の制御装置。
    The vehicle control device is provided with a yaw rate detection means for detecting a yaw rate of the vehicle, and a lateral acceleration detection means for detecting the lateral acceleration of the vehicle,
    a roll angle acquisition unit that acquires a roll angle of the vehicle;
    A load transfer amount between the left and right wheels of the front wheels based on the acquired roll angle, the lateral force of the front wheels, the front wheel roll damping coefficient regarding the front wheels, and the front wheel roll stiffness regarding the front wheels, and the acquired roll angle. and a load transfer amount for estimating at least one of the load transfer amount between the left and right wheels of the rear wheel based on the lateral force of the rear wheel, the rear wheel roll damping coefficient regarding the rear wheel, and the rear wheel roll stiffness regarding the rear wheel. Estimating section;
    A vertical load estimating unit that estimates each vertical load of at least one of the front wheels and the rear wheels for which the load movement amount has been estimated, based on the estimated load movement amount. A vehicle control device.
  2.  前記荷重移動量推定部は、前記荷重移動量の推定に際し、検出された前記ヨーレイトと検出された前記横加速度とに基づいて推定した前記少なくとも一方の車輪の横力を使用する
    ことを特徴とする、請求項1記載の車両の制御装置。
    The load movement amount estimation unit is characterized in that, when estimating the load movement amount, the lateral force of the at least one wheel is estimated based on the detected yaw rate and the detected lateral acceleration. The vehicle control device according to claim 1.
  3.  前記車両には、前記車両の前後加速度を検出する前後加速度検出手段が設けられ、
     前記荷重移動量推定部は、検出された前記前後加速度に基づいて、前後軸の荷重移動量を推定し、
     前記垂直荷重推定部は、前記垂直荷重の推定に際し、推定された前記前後軸の荷重移動量を使用する
    ことを特徴とする、請求項1又は2記載の車両の制御装置。
    The vehicle is provided with longitudinal acceleration detection means for detecting longitudinal acceleration of the vehicle,
    The load movement amount estimation unit estimates the load movement amount of the longitudinal axis based on the detected longitudinal acceleration,
    3. The vehicle control device according to claim 1, wherein the vertical load estimator uses the estimated load movement amount of the longitudinal axis when estimating the vertical load.
  4.  前記垂直荷重推定部において推定された前記少なくとも一方の車輪の前記垂直荷重と、前記少なくとも一方の車輪の横力とに基づいて、前記少なくとも一方の車輪の各々の横力を推定する横力推定部と、を備えた
    ことを特徴とする、請求項1又は2記載の車両の制御装置。
    a lateral force estimation unit that estimates a lateral force of each of the at least one wheel based on the vertical load of the at least one wheel estimated by the vertical load estimation unit and the lateral force of the at least one wheel; 3. The vehicle control device according to claim 1, further comprising:
  5.  前記垂直荷重推定部において推定された前記少なくとも一方の車輪の前記垂直荷重と、前記少なくとも一方の車輪の横力とに基づいて、前記少なくとも一方の車輪の各々の横力を推定する横力推定部と、を備えた
    ことを特徴とする、請求項3記載の車両の制御装置。
    a lateral force estimation unit that estimates a lateral force of each of the at least one wheel based on the vertical load of the at least one wheel estimated by the vertical load estimation unit and the lateral force of the at least one wheel; 4. The vehicle control device according to claim 3, further comprising:
PCT/JP2023/015965 2022-04-28 2023-04-21 Control device for vehicle WO2023210535A1 (en)

Applications Claiming Priority (2)

Application Number Priority Date Filing Date Title
JP2022-074225 2022-04-28
JP2022074225 2022-04-28

Publications (1)

Publication Number Publication Date
WO2023210535A1 true WO2023210535A1 (en) 2023-11-02

Family

ID=88518882

Family Applications (1)

Application Number Title Priority Date Filing Date
PCT/JP2023/015965 WO2023210535A1 (en) 2022-04-28 2023-04-21 Control device for vehicle

Country Status (1)

Country Link
WO (1) WO2023210535A1 (en)

Citations (4)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
JPH1191538A (en) * 1997-09-24 1999-04-06 Toyota Motor Corp Estimation method for wheel friction circle radius
JP2008238935A (en) * 2007-03-27 2008-10-09 Mitsubishi Motors Corp Rear wheel steering device of vehicle
WO2012029183A1 (en) * 2010-09-03 2012-03-08 トヨタ自動車株式会社 Vehicle control system and controller
JP2013216278A (en) * 2012-04-11 2013-10-24 Mitsubishi Motors Corp Grounding load estimation device

Patent Citations (4)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
JPH1191538A (en) * 1997-09-24 1999-04-06 Toyota Motor Corp Estimation method for wheel friction circle radius
JP2008238935A (en) * 2007-03-27 2008-10-09 Mitsubishi Motors Corp Rear wheel steering device of vehicle
WO2012029183A1 (en) * 2010-09-03 2012-03-08 トヨタ自動車株式会社 Vehicle control system and controller
JP2013216278A (en) * 2012-04-11 2013-10-24 Mitsubishi Motors Corp Grounding load estimation device

Similar Documents

Publication Publication Date Title
US8783390B2 (en) Vehicle drive apparatus
CN104417564B (en) Vehicle behavior control device
WO2019138617A1 (en) Vehicle, vehicle motion status estimation device and vehicle motion status estimation method
US11912351B2 (en) Steering control device and steering device
CN110920605B (en) Vehicle control method and device
US8340881B2 (en) Method and system for assessing vehicle movement
WO2019097732A1 (en) Vehicle state inference device, control device, suspension control device, suspension device, steering control device, and steering device
JP2008265545A (en) Center of gravity position estimating device of vehicle and center of gravity position/yaw inertia moment estimating device
JP2008143259A (en) Driving/braking force control unit, automobile, and driving/braking force control method
JP5540641B2 (en) Tire condition estimation device
WO2022134929A1 (en) Method and apparatus for determining mass of vehicle, and device and medium
JP2000292316A (en) Estimation arithmetic device of center-of-gravity height of vehicle
KR20230013262A (en) Target trajectory suitability test method for vehicle trajectory control
JP6810779B1 (en) State quantity calculation device, control device and vehicle
JP2019155970A (en) Control device of vehicle and control method of vehicle
US20080167777A1 (en) Method for Controlling the Steering Orientation of a Vehicle
WO2023210535A1 (en) Control device for vehicle
CN113226881A (en) Vehicle motion state estimation device, vehicle motion state estimation method, and vehicle
US20210061041A1 (en) Steering control device and steering device
CN116323269A (en) Suspension control device, vehicle, and suspension control method
JP5692516B2 (en) Vehicle slip angle estimation device and vehicle attitude control device
WO2023210536A1 (en) Arithmetic device and vehicle control device
WO2023210534A1 (en) Control device for vehicle
WO2023210533A1 (en) Vehicle control device
JP6970043B2 (en) Vehicle stability control device

Legal Events

Date Code Title Description
121 Ep: the epo has been informed by wipo that ep was designated in this application

Ref document number: 23796277

Country of ref document: EP

Kind code of ref document: A1