WO2012029167A1 - 分離板型遠心分離機及びその運転方法 - Google Patents

分離板型遠心分離機及びその運転方法 Download PDF

Info

Publication number
WO2012029167A1
WO2012029167A1 PCT/JP2010/065105 JP2010065105W WO2012029167A1 WO 2012029167 A1 WO2012029167 A1 WO 2012029167A1 JP 2010065105 W JP2010065105 W JP 2010065105W WO 2012029167 A1 WO2012029167 A1 WO 2012029167A1
Authority
WO
WIPO (PCT)
Prior art keywords
separation
liquid
pressure sensor
valve
separation chamber
Prior art date
Application number
PCT/JP2010/065105
Other languages
English (en)
French (fr)
Inventor
保寿 田中
載 煥 呉
Original Assignee
三菱化工機株式会社
株式会社三工社
Priority date (The priority date is an assumption and is not a legal conclusion. Google has not performed a legal analysis and makes no representation as to the accuracy of the date listed.)
Filing date
Publication date
Application filed by 三菱化工機株式会社, 株式会社三工社 filed Critical 三菱化工機株式会社
Priority to PCT/JP2010/065105 priority Critical patent/WO2012029167A1/ja
Priority to KR1020137007258A priority patent/KR101312345B1/ko
Priority to JP2012531635A priority patent/JP5386641B2/ja
Publication of WO2012029167A1 publication Critical patent/WO2012029167A1/ja

Links

Images

Classifications

    • BPERFORMING OPERATIONS; TRANSPORTING
    • B04CENTRIFUGAL APPARATUS OR MACHINES FOR CARRYING-OUT PHYSICAL OR CHEMICAL PROCESSES
    • B04BCENTRIFUGES
    • B04B1/00Centrifuges with rotary bowls provided with solid jackets for separating predominantly liquid mixtures with or without solid particles
    • B04B1/04Centrifuges with rotary bowls provided with solid jackets for separating predominantly liquid mixtures with or without solid particles with inserted separating walls
    • B04B1/08Centrifuges with rotary bowls provided with solid jackets for separating predominantly liquid mixtures with or without solid particles with inserted separating walls of conical shape
    • BPERFORMING OPERATIONS; TRANSPORTING
    • B04CENTRIFUGAL APPARATUS OR MACHINES FOR CARRYING-OUT PHYSICAL OR CHEMICAL PROCESSES
    • B04BCENTRIFUGES
    • B04B1/00Centrifuges with rotary bowls provided with solid jackets for separating predominantly liquid mixtures with or without solid particles
    • B04B1/10Centrifuges with rotary bowls provided with solid jackets for separating predominantly liquid mixtures with or without solid particles with discharging outlets in the plane of the maximum diameter of the bowl
    • B04B1/14Centrifuges with rotary bowls provided with solid jackets for separating predominantly liquid mixtures with or without solid particles with discharging outlets in the plane of the maximum diameter of the bowl with periodical discharge
    • BPERFORMING OPERATIONS; TRANSPORTING
    • B04CENTRIFUGAL APPARATUS OR MACHINES FOR CARRYING-OUT PHYSICAL OR CHEMICAL PROCESSES
    • B04BCENTRIFUGES
    • B04B11/00Feeding, charging, or discharging bowls
    • B04B11/04Periodical feeding or discharging; Control arrangements therefor

Definitions

  • the present invention relates to a separation plate type centrifugal separator and an operation method thereof, and more specifically, a separation plate type centrifugal separation capable of efficiently separating a heavy liquid and a light liquid having a specific gravity close to each other and obtaining a light liquid having a high purity.
  • the present invention relates to a machine and its operating method.
  • Separation plate centrifuges for example, centrifuge a liquid to be treated in which suspended substances and water are mixed in oil such as lubricating oil and fuel oil, and separate sludge and water having a high specific gravity as a heavy liquid to reduce the specific gravity. It is used to clean oil (light liquid) and is generally used for cleaning lubricating oil and fuel oil for ships.
  • the separator plate type centrifugal separator is, for example, in a state where a rotating drum having an upper end opened, a rotating body lid fitted into the upper end opening of the rotating drum to form a rotating body, and inserted into the rotating drum.
  • a main valve that moves up and down to open and close a discharge port formed on the side of the rotating body, and is laminated in a separation chamber formed between the main valve and the rotating body lid with a predetermined interval vertically.
  • the separation liquid is centrifuged into a light liquid and a heavy liquid by the separation plate, and the light liquid and the heavy liquid separated in the separation chamber are respectively separated. Discharge individually.
  • the clarifier operation refers to an operation method in which a liquid to be treated is centrifuged into two liquid phases of a light liquid (heavy oil) and a heavy liquid containing sludge using a separation plate type centrifuge.
  • the moisture constant in the clean oil is generally detected using a moisture detector, and the change in the dielectric constant is detected.
  • the main valve is opened to discharge the separated water, preventing water from entering the clean oil.
  • the moisture detector is generally expensive, and bubbles may be generated in the rotating body, or sludge or the like may adhere to the moisture detector, which may reduce the reliability of the moisture detector.
  • the separation plate type centrifuge includes a cup-shaped rotating drum 2 that rotates at high speed by a driving mechanism (not shown) around a stock solution supply pipe 1 in the vertical direction, and an upper end of the rotating drum 2.
  • the rotating body lid 4 fitted into the opening by the fastening ring 3 and slid up and down on the lower side of the rotating body lid 4 is separated from and attached to the packing 4A at the lower end of the rotating body lid 4 and discharged.
  • a main valve 6 that opens and closes the outlet 5, a separation chamber 7 formed by the main valve 6 and the rotating body lid 4, and a frustoconical shape in which a plurality of sheets are stacked in the separation chamber 7 at predetermined intervals in the vertical direction
  • a separator plate 8 is provided, and a clarifier operation is performed under the control of the controller 30 to remove a liquid to be treated (for example, having a water content of less than 1%) introduced from the stock solution supply pipe 1 into the separation chamber 7.
  • 8 light liquids with specific gravity close to each other (for example, cleaning oil having a specific gravity exceeding 0.991) L and heavy liquids (example Centrifuge the battlefield separated water) H.
  • the discharge ports 5 are formed at equal intervals in the circumferential direction of the rotary drum 2.
  • a guide cylinder 9 having an enlarged diameter portion opened in a funnel shape is disposed, and the liquid to be treated from the stock solution supply pipe 1 is separated via the guide cylinder 9.
  • Guide into chamber 7. A flat cylindrical body having a central opening is disposed as a first chamber 10 on the upper end surface of the rotating body lid 4, and the cleaning oil L centrifuged in the separation chamber 7 is indicated by an arrow in FIG. 6. Then, it moves inward in the radial direction according to the separation plate 8, overflows from the separation chamber 7, and accumulates in the first chamber 10.
  • a second chamber 11 sharing the axis is disposed on the upper end surface of the rotating body lid 4 on the outer periphery of the first chamber 10.
  • a partition plate 12 is disposed along the inner peripheral surface from the vicinity of the lower end of the rotating body lid 4 to the upper end, and a predetermined gap is formed between the partition plate 12 and the rotating body cover 4. Yes.
  • a plurality of communication holes 13 communicating with the second chamber 11 are formed in the upper end surface of the rotating body lid 4 at equal intervals in the circumferential direction on the upper end surface of the rotating body cover 4.
  • the cleaning oil L guided with the gap as a flow path is guided into the second chamber 11 from the communication hole 13. That is, since the water content of the liquid to be treated is less than 1%, the clean oil L is removed from the separation chamber 7 between the rotating body lid 4 and the partition plate 12 until the separation water H is accumulated in the separation chamber 7 to some extent. And the gap is used as a flow path.
  • a stationary first centripetal pump 14 faces the first chamber 10, and the light liquid L accumulated in the first chamber 10 is discharged by the first centripetal pump 14, and a light liquid discharge pipe 15 is discharged.
  • the second chamber 11 faces a stationary second centripetal pump 16, and the cleaning oil L accumulated in the second chamber 11 is discharged by the second centripetal pump 16.
  • the free surface of the clean oil L in the separation chamber 7 is defined by the weir 7A when overflowing from the separation chamber 7 to the first chamber 10, and the interface between the clean oil L and the separated water H is the liquid of the second centripetal pump 16. It is defined by the introduction position (outer diameter position).
  • the outer diameter position of the second centripetal pump 16 is set outside the free surface of the clean oil L in the separation chamber 7, and the clean oil L in the second chamber 11 is press-fitted into the second centripetal pump 16.
  • the second centripetal pump 16 is connected to the stock solution supply pipe 1 through a connection pipe 17, and the cleaning oil L is returned to the stock solution supply pipe 1 through the second centripetal pump 16 and the connection pipe 17.
  • the inner surface of the lower portion 18 of the rotary drum 2 is formed in accordance with the shape of the main valve 6.
  • a gap 19 is formed between the main valve 6 and the lower portion 18 of the rotary drum 2, and valve-operating water is introduced into the gap 19 via a pipe 20 to place the main valve 6 at the lower end of the rotating body lid 4. Press to close the outlet 5.
  • a sub-valve 21 that slides in the radial direction is disposed in the lower portion 18 of the rotary drum 2, and the sub-valve 21 is slid inward in the radial direction by valve opening operation water introduced from the pipe 22.
  • a pressure sensor 24 is attached to the connecting pipe 17, and the pressure sensor 24 is connected to the controller 30.
  • the pressure of the clean oil L flowing through the connecting pipe 17 is detected by the pressure sensor 24, and this detected value is output to the controller 30.
  • the controller 30 controls the control valves 20A and 22A respectively attached to the valve-closing working water pipe 20 and the valve-opening working water pipe 22 based on the detection value of the pressure sensor 24, and the above-described operation is performed via each working water.
  • the main valve 6 is opened and closed as follows.
  • a pressure gauge 24A for displaying the detection value of the pressure sensor 24 is attached to the connecting pipe 17, and the hydraulic pressure of the clean oil L can be known through the pressure gauge 24A.
  • a pressure adjusting valve 25 is attached to the connecting pipe 17, and the pressure of the cleaning oil L flowing through the connecting pipe 17 can be appropriately adjusted via the pressure adjusting valve 25.
  • the pressure in the connecting pipe 17 is set to 0.2 MPa, for example, by the pressure adjusting valve 25. This pressure is set higher than the pressure of the liquid to be treated introduced into the stock solution supply pipe 1.
  • the separation process of the liquid to be processed proceeds, and the separation water H is accumulated in the separation chamber 7.
  • the separation water H fills the gap between the rotating body lid 4 and the partition plate 12 and seals this gap, The liquid flow disappears, and the value detected by the pressure sensor 24 becomes zero.
  • the controller 30 opens and closes the main valve 6 via the control valves 20A and 22A and discharges the separated water H to the outside.
  • the control valve 22A is closed via the controller 30 and the supply of the valve opening operation water is stopped.
  • the control valve 20A is opened by the command from the controller 30 and the main valve 6 is closed. Thereafter, the centrifugal separation operation and the discharge of the separated water H are repeated.
  • the main valve 6 is not opened and closed, and highly purified cleaning oil can be obtained very efficiently.
  • the present invention has been made in order to solve the above problems, and even a liquid to be treated such as residual fuel oil having a high water content can be continuously operated for a long time. It is an object of the present invention to provide a separation plate type centrifuge capable of remarkably increasing the amount of processing and its operation method.
  • the separation plate type centrifugal separator according to claim 1 of the present invention includes a rotating drum having an upper end opened, a rotating member lid fitted into the upper end opening of the rotating drum to form a rotating member, and the rotating member cover A partition plate disposed through a gap, a main valve that moves up and down in a state of being inserted into the rotating drum, and opens and closes a discharge port formed in a side portion of the rotating body, and the main valve A plurality of separation plates stacked at predetermined intervals in a vertical direction in a separation chamber formed between a valve and the partition plate, and the separation plate supplies the liquid to be treated supplied from the raw solution supply pipe into the separation chamber.
  • a process of centrifuging light liquid and heavy liquid having a specific gravity close to each other, discharging the light liquid in the separation chamber to the outside through the first centripetal pump, and flowing through the gap between the rotating body lid and the partition plate A separator-type centrifuge for discharging liquid from a second centripetal pump, wherein the second centripetal pump A connecting pipe that communicates with the stock solution supply pipe, a pressure sensor that is provided in the connecting pipe and detects the pressure of the processing liquid in the connecting pipe, and the connecting pipe based on a first trigger value of the pressure sensor A first valve that closes, a discharge pipe that branches from the connecting pipe between the first valves, and a second valve that opens the discharge pipe based on a second trigger value of the pressure sensor, It is characterized by having.
  • the separation plate type centrifugal separator according to claim 2 of the present invention is the separation plate type centrifugal separator according to claim 1, wherein the adjustment plate for setting the separation interface between the heavy liquid and the light liquid in the separation chamber is the first plate. 2 is provided near the centripetal pump.
  • a method for operating a separation plate type centrifuge wherein a liquid to be treated is separated from a light liquid having a specific gravity close to each other using a plurality of separation plates in a separation chamber of the separation plate type centrifuge. Centrifugation into heavy liquid, the light liquid separated in the separation chamber is discharged to the outside through the first centripetal pump, and the heavy liquid separated in the separation chamber is intermittently passed through the second centripetal pump. And a first step of returning a part of the light liquid separated in the separation chamber to the separation chamber via the second centripetal pump.
  • a fourth aspect of the present invention there is provided an operation method of the separation plate type centrifugal separator according to the third aspect, wherein the fourth step and the fifth step are repeated. It is.
  • a liquid to be treated such as residual fuel oil having a high water content
  • the amount of liquid to be treated can be significantly increased.
  • FIG. 1 It is a mimetic diagram showing one embodiment of a separation plate type centrifuge of the present invention.
  • (A), (b) is process drawing which shows one Embodiment of the operating method of the separation plate type centrifuge shown in FIG. 1
  • (a) is a schematic diagram which shows the process condition of a separation plate type centrifuge.
  • (B) is a graph which shows the relationship between the hydraulic pressure in a communicating pipe in the state of (a), and processing time.
  • A), (b) is a process diagram following the process shown in FIG. 2
  • (a) is a schematic diagram showing the processing status of the separation plate centrifuge,
  • (b) is in the state of (a)
  • (A), (b) is a process diagram following the process shown in FIG. 3, (a) is a schematic diagram showing the processing status of the separation plate type centrifuge, (b) is in the state of (a) It is a graph which shows the relationship between the hydraulic pressure in a communicating pipe, and processing time. (A), (b) is a process diagram following the process shown in FIG. 4, (a) is a schematic diagram showing the processing status of the separation plate centrifuge, and (b) is a state in the state of (a). It is a graph which shows the relationship between the hydraulic pressure in a communicating pipe, and processing time. It is sectional drawing which shows an example of the conventional separator plate-type centrifuge.
  • FIGS. 1 to 5 show the separation plate type centrifuge of this embodiment.
  • the basic structure of the separator is schematically shown, and the portion not shown is configured according to the separation plate type centrifugal separator described in Patent Document 1. Therefore, the basic structure of the separation plate type centrifuge of the present embodiment and the features of the present invention will be described below.
  • the separation plate type centrifugal separator 50 of the present embodiment includes a stock solution supply pipe 51 that supplies a liquid to be treated (for example, residual fuel oil having a water content of 1% or more), and an upper end that is open.
  • a liquid to be treated for example, residual fuel oil having a water content of 1% or more
  • a rotating body (not shown), a rotating body lid 52 that is fitted into the upper end opening of the rotating body to form a rotating body, and a partition plate 53 that is disposed with a gap with respect to the rotating body cover 52;
  • a main valve 54 that moves up and down while being inserted into the rotating drum and opens and closes a discharge port (not shown) formed on the side of the rotating drum, and is formed between the main valve 54 and the partition plate 53.
  • the guide tube 57 is moved from the stock solution supply pipe 51 by a clarifier operation.
  • the residual fuel oil introduced into the separation chamber 55 through the separation plate 56 Centrifugal separation is performed on light liquid (for example, cleaning oil having a specific gravity of 0.991 to 1.010) L and heavy liquid (for example, separated water) H, and the light liquid L in the separation chamber 55 is first centripetal pump 58.
  • the light liquid L or the heavy liquid H passing through the gap between the rotating body lid 52 and the partition plate 53 is guided from the second centripetal pump 59 to a communication pipe described later. .
  • the light liquid L indicates a thinly painted area
  • the heavy liquid H indicates a darkly painted area. This is the same in any of FIGS.
  • the heavy liquid H accumulates on the inner wall surface including the discharge port in the separation chamber 55 and the light liquid L forms an interface I with the heavy liquid H. Form and accumulate.
  • the interface I moves toward the center of the separation chamber 55 as the separation water H increases as the centrifugal separation proceeds in the separation chamber 55.
  • the light liquid L overflows from the inner peripheral end surface of the partition plate 53 toward the first centripetal pump 58 in the separation chamber 55.
  • the first centripetal pump 58 faces the first chamber 60 formed at the upper end of the partition plate 53 and discharges the light liquid L that overflows from the separation chamber 55 and accumulates in the first chamber 60.
  • the second centripetal pump 59 faces the second chamber 61 formed at the upper end of the rotating body lid 52, overflows from the gap between the rotating body lid 52 and the partition plate 53, and accumulates in the second chamber 61.
  • the liquid L or heavy liquid H is discharged. Until the interface I between the heavy liquid H and the light liquid L reaches the lower end of the partition plate 53, the light liquid L overflows to the second chamber 61 side.
  • the second chamber 61 overflows until the interface I reaches a predetermined position in the middle of the partition plate 53.
  • the heavy liquid H is intermittently discharged from the discharge pipe branched from the connecting pipe as described later, and the main valve 54 discharges the separated water H. Not involved in emissions.
  • a ring-shaped adjustment plate 62 is provided below the second centripetal pump 59 near the upper end of the inner peripheral surface of the rotating body lid 52, and the separation plate 55 and the second chamber are arranged by the adjustment plate 62. 61.
  • the inner peripheral surface of the adjusting plate 62 is located inside the outer diameter of the second centripetal pump 59.
  • the adjustment plate 62 appropriately adjusts the degree of protrusion of the inner peripheral end according to the specific gravity of the residual fuel oil, thereby separating the heavy liquid H and the light liquid L in the separation chamber 55 (the light liquid L to the heavy liquid L).
  • the boundary surface where H is not mixed can be set as appropriate.
  • the second centripetal pump 59 is connected to the stock solution supply pipe 51 via the connecting pipe 63, and the light liquid L supplied from the second centripetal pump 59 is returned to the stock solution supply pipe 51 via the connecting pipe 63.
  • the fuel oil is supplied to the separation chamber 55 together with the residual fuel oil.
  • the connecting pipe 63 is provided with a pressure sensor 64 and a pressure gauge 65.
  • the pressure sensor 64 monitors the liquid pressure of the light liquid L in the connecting pipe 63 and allows the pressure gauge 64 to visually check the hydraulic pressure.
  • the connection pipe 63 is provided with a first valve 66, and the first valve 66 closes the communication pipe 63 based on the first trigger value T 1 of the pressure sensor 64 and supplies the stock solution from the second centripetal pump 59.
  • the reflux of the light liquid L to the pipe 51 is prevented.
  • the first valve 66 is open at the start of centrifugation.
  • the communication pipe 63 is provided with an adjustment valve 67 positioned between the pressure sensor 64 and the first valve 66, and the residual fuel oil to which the hydraulic pressure in the communication pipe 63 is supplied from the stock solution supply pipe 51 by the adjustment valve 67. It is set to a value higher than the hydraulic pressure. Further, the communication pipe 63 branches between the pressure sensor 64 and the adjustment valve 67, and this branched portion is formed as a discharge pipe 68.
  • the discharge pipe 68 is provided with a second valve 69. Based on the second trigger value T2 of the pressure sensor 64, the second valve 69 opens the discharge pipe 68 and discharges the heavy liquid H in the communication pipe 63. I have to do it.
  • the pressure sensor 64 adjusts the fluid pressure in the communication pipe 63 when the interface I of the heavy liquid H in the separation chamber 55 exceeds the separation boundary surface and the liquid pressure of the heavy liquid H in the connection pipe 63 reaches a predetermined value.
  • the second trigger value T2 is detected and the second valve 69 is opened.
  • the hydraulic pressure indicated by the second trigger value T2 is set, for example, as a value larger than the hydraulic pressure indicated by the first trigger value T1.
  • a check valve 70 is provided on the downstream side of the first valve 66 so that residual fuel oil does not flow back into the connecting pipe 63 from the stock solution supply pipe 51.
  • the hydraulic pressure in the communication pipe 63 rapidly decreases, and the pressure sensor 64 detects the hydraulic pressure in the communication pipe 63 as the third trigger value T3, the third trigger The second valve 69 is closed based on the detected value T3.
  • the interface I of the separated water H reaches the lower end of the partition plate 53 at the moment when the second valve 69 is closed, and the state where the gap between the rotating body lid 52 and the partition plate 53 is sealed with the separated water H is maintained. is there.
  • the separation plate type centrifuge 50 of the present embodiment is based on the second and third trigger values T2 and T3 of the pressure sensor 64. Since the separated water H is discharged by opening and closing the valve 69 intermittently, the main valve 54 operates periodically only when solid content (sludge) is accumulated in the separation chamber 55 to a certain extent. Sludge is discharged from the outlet as indicated by the white arrow and closed after the sludge is discharged.
  • the residual fuel oil flows into the separation chamber 55 from the lower end opening of the guide cylinder 57.
  • the rotating body lid 52 and the main valve 54 are rotating at high speed, residual fuel oil is separated into heavy liquid (separated water including sludge) H and light liquid (clean oil) L in the separation chamber 55 by centrifugal force. Separated.
  • the residual fuel oil is continuously supplied and the clean oil L separated in the separation chamber 55 is gradually accumulated, and the free interface gradually moves inward in the radial direction along the separation plate 56. Overflowing into the first chamber 60 causes the cleaning oil L to accumulate in the first chamber 60.
  • the cleaning oil L is continuously discharged from the first chamber 60 to the outside through the first centripetal pump 58.
  • the second centripetal pump 59 is returned to the stock solution supply pipe 51 through the connecting pipe 63 while maintaining the hydraulic pressure set by the pressure (for example, 0.1 MPa), and joins the residual fuel oil together with the residual fuel oil.
  • the pressure sensor 64 detects the hydraulic pressure set by the adjustment valve 67 and maintains the hydraulic pressure as shown by the solid line in the graph of FIG.
  • the separation water H is gradually accumulated in the separation chamber 55 as shown in FIG.
  • the connecting pipe 63 through which the cleaning oil L flows is indicated by a thick line in FIG.
  • the interface I of the separated water H tends to proceed inward in the separation chamber 55.
  • the separated water H reaches the lower end of the partition plate 53 and seals the gap between the rotating body lid 52 and the partition plate 53 as shown in FIG. 3A in a relatively short time, the liquid flow in the gap temporarily
  • the flow of the cleaning oil L from the second centripetal pump 59 to the connecting pipe 63 is also stopped. Therefore, the hydraulic pressure of the cleaning oil L in the connecting pipe 63 rapidly decreases as indicated by the solid line in the graph of FIG. 3B, and the detection value of the pressure sensor 64 reaches the first trigger value T1 (0 MPa). .
  • the pressure sensor 64 detects the first trigger value T1
  • the detection signal is transmitted to the controller 100
  • the first valve 66 is closed via the controller 100, and the flow of the clean oil L to the stock solution supply pipe 51 is prevented.
  • the connecting pipe 63 is shown by a solid line in FIG. Even if the hydraulic pressure of the communication pipe 63 is lower than the hydraulic pressure of the residual fuel oil, the residual fuel oil does not flow back to the communication pipe 63 because the check pipe 70 is provided in the communication pipe 63.
  • the separation water H is gradually accumulated in the separation chamber 55 as shown in FIG. 4A, and the interface I of the separation water H is separated from the lower end of the partition plate 53. It moves toward the center of the chamber 55 and reaches the separation boundary surface shown in FIG.
  • the separation water H overflows the adjustment plate 62 in the second chamber 61 and is supplied to the connection pipe 63 through the second centripetal pump 59 at a predetermined pressure.
  • the first valve 66 is closed, so that the hydraulic pressure in the connecting pipe 63 is between the second centripetal pump 59 and the first valve 66 as shown by the solid line in the graph of FIG. Rise gradually.
  • the pressure sensor 64 detects the hydraulic pressure in the connection pipe 63 and can indirectly know the position of the interface I of the separated water H (the amount of accumulated separated water H) in the separation chamber 55 from the detected value.
  • the portion of the connecting pipe 63 where the hydraulic pressure of the separated water H has increased is indicated by a thick line.
  • the second trigger value T2 at which the detection value of the pressure sensor 64 is a peak is detected.
  • the detection signal is transmitted to the controller 100, the second valve 69 is opened via the controller 100, and the separated water H is discharged from the discharge pipe 68 at once.
  • the hydraulic pressure in the connecting pipe 63 rapidly decreases, and the detection value of the pressure sensor 64 decreases rapidly as indicated by the solid line in the graph of FIG. 5B, for example, substantially equal to the first trigger value T1.
  • the third trigger value T3 having the same value is detected.
  • the pressure sensor 64 detects the third trigger value T3
  • the detection signal is transmitted to the controller 100, the second valve 69 is closed via the controller 100, and the discharge of the separated water H from the discharge pipe 68 is stopped.
  • the interface I of the separated water H returns to the position of the interface I shown in FIG. 3 (a), and thereafter the residual fuel oil is centrifuged while repeating the operation from the state shown in FIG. 3 to the state shown in FIG. Can be stably continued for a long time.
  • sludge is gradually accumulated in the separation chamber 55, so that the sludge is discharged periodically.
  • the required time is measured. The time is set in the controller 100 in advance.
  • the controller 100 can operate the main valve 54 to discharge only the sludge from the discharge port of the separation chamber 55. After the sludge is discharged from the separation chamber 55 by the main valve 54, centrifugal separation of the residual fuel oil is started from the state shown in FIG.
  • the first and second trigger values T1 and T2 are monitored by the pressure sensor 64, whereby the first and second valves 66 and 69 are controlled to open and close. Since the connecting pipe 63 is closed by the valve 66 and the discharge pipe 68 is opened by the second valve 69 and the separated water H can be intermittently discharged from the discharge pipe 68, the separation plate can be operated without operating the main valve 54.
  • the mold centrifuge 50 can be continuously operated in a stable tongue state for a long time, and the separation processing ability of the residual fuel oil can be significantly increased.
  • the connection pipe 63 is closed by the first valve 66 until the discharge of the separated water H from the discharge pipe 68 is completed, the separated water H is not mixed into the residual fuel oil, and the separation is performed. Operation reliability can be increased.
  • the separation boundary surface can be set according to the specific gravity M of the residual fuel oil, and can be applied to the residual fuel oil having a wide specific gravity. it can.
  • this invention is not restrict
  • the case where residual fuel oil having a moisture content exceeding 1% is used as the liquid to be treated has been described.
  • the present invention can be applied to a liquid to be treated having a moisture content of 1% or less. it can.

Landscapes

  • Centrifugal Separators (AREA)

Abstract

 水分含有率が高い残渣燃料油等の被処理液であっても長時間に渡って連続運転を行うことができ、被処理液の処理量を格段に増やすことができる分離板型遠心分離機を提供する。 本発明の分離板型遠心分離機は、第2の求心ポンプ59と原液供給管51が連通し清浄油を分離室55へ還流させる連結管63と、連結管63に設けられ、連結管63内の清浄油Lまたは分離水Hの圧力を検出する圧力センサ64と、圧力センサ64の第1のトリガー値に基づいて連結管63を閉じる第1のバルブ66と、第1のバルブ66の上流側で連結管66から分岐する排出管68と、分離水Hを排出するために圧力センサ64の第2のトリガー値に基づいて排出管68を開く第2のバルブ69と、を備えている。

Description

分離板型遠心分離機及びその運転方法
 本発明は、分離板型遠心分離機及びその運転方法に関し、更に詳しくは、互いに比重の近い重液と軽液を効率よく分離し、純度の高い軽液を得ることができる分離板型遠心分離機及びその運転方法に関する。
 分離板型遠心分離機は、例えば潤滑油や燃料油等の油に懸濁物質や水が混入した被処理液を遠心分離して比重の大きいスラッジや水を重液として分離して比重の小さい油(軽液)を清浄化するもので、一般に船舶等の潤滑油、燃料油を清浄化する場合に広く使用されている。この分離板型遠心分離機は、例えば、上端が開口した回転胴と、この回転胴の上端開口に嵌着されて回転体を形成する回転体蓋と、上記回転胴内に挿入された状態で上下に移動して上記回転体の側部に形成された排出口を開閉する主弁と、この主弁と上記回転体蓋の間に形成された分離室内に上下に所定間隔を空けて積層された複数の分離板とを備え、原液供給管から分離室内に供給された被処理液を分離板によって互いに軽液と重液に遠心分離し、分離室内で分離された軽液及び重液をそれぞれ個別に排出する。
 近年、燃料油が高密度化しており、比重が0.991~1.010(15/4℃)の高密度燃料油が普及している。比重の大きな燃料油を清浄化する場合、一般的には分離板型遠心分離機のクラリファイア運転により処理されている。クラリファイア運転とは分離板型遠心分離機を用いて被処理液を軽液(重油)とスラッジを含む重液の二つの液相に遠心分離する運転方法のことを云う。クラリファイア運転では、回転体内で分離した分離水を間欠的に外部へ排出するために、一般には水分検知器を用いて清浄油中の水分の誘電率を検出し、誘電率の変化に基づいて主弁を開いて分離水を排出し、清浄油中への水分の混入を防止している。しかしながら、水分検知器は、一般に高価であり、また、回転体内で気泡が発生し、あるいは水分検知器にスラッジなどが付着して水分検知器の信頼性が低下する虞がある。
 そこで、本出願人は、特許文献1において被処理液を効率よく分離することができる分離板型遠心分離機及びその運転方法を提案している。この分離板型遠心分離機について図6を参照しながら概説する。
 この分離板型遠心分離機は、図6に示すように、鉛直方向の原液供給管1を中心に駆動機構(図示せず)によって高速回転するカップ状の回転胴2と、回転胴2の上端開口に締結リング3によって嵌着されて截頭円錐状の回転体蓋4と、回転体蓋4の下側で上下に摺動し回転体蓋4の下端のパッキング4Aに対して離接して排出口5を開閉する主弁6と、主弁6と回転体蓋4とで形成された分離室7と、分離室7内に上下に所定間隔を空けて複数枚積層された截頭円錐状の分離板8とを備え、コントローラ30の制御下でクラリファイア運転が行われ、原液供給管1から分離室7内に導入された被処理液(例えば、水分含有率が1%未満)を分離板8によって互いに比重の近い軽液(例えば比重0.991を超える清浄化油)Lと重液(例えば分離水)Hに遠心分離する。尚、排出口5は回転胴2の周方向等間隔に形成されている。
 上記分離板8と原液供給管1の間にはロート状に開いた拡径部を有する案内筒9が配設され、この案内筒9を経由して原液供給管1からの被処理液を分離室7内へ導く。そして、回転体蓋4の上端面には中央開口を有する偏平な筒体が第1のチャンバー10として配設され、分離室7内で遠心分離された清浄油Lを図6に矢印で示すように分離板8に従って半径方向内方へ移動して行き、分離室7からオーバーフローさせて第1のチャンバー10内に溜める。また、第1のチャンバー10の外周には軸心を共有する第2のチャンバー11が回転体蓋4の上端面に配設されている。分離室7内には回転体蓋4の下端近傍から上端までその内周面に沿って仕切板12が配設され、この仕切板12と回転体蓋4間には所定の隙間が形成されている。また、回転体蓋4の上端面には第2のチャンバー11に連通する複数の連通孔13が回転体蓋4上端面に周方向等間隔に形成され、回転体蓋4と仕切板12間の隙間を流路として案内された清浄油Lが連通孔13から第2のチャンバー11内へ導かれるようになっている。つまり、被処理液の水分の含有量が1%未満であるため、分離室7内に分離水Hがある程度溜まるまでは清浄油Lが分離室7から回転体蓋4と仕切板12間の隙間に回り込み、隙間を流路とする。
 更に、第1のチャンバー10内には静止した第1の求心ポンプ14が臨み、第1の求心ポンプ14によって第1のチャンバー10内に蓄積された軽液Lを排出し、軽液排出管15を介して外部の軽液用の貯留タンク(図示せず)へ導く。また、第2のチャンバー11には静止した第2の求心ポンプ16が臨み、第2のチャンバー11内に溜まる清浄油Lを第2の求心ポンプ16によって排出する。分離室7内の清浄油Lの自由表面は分離室7から第1のチャンバー10へオーバーフローする時の堰7Aによって規定され、清浄油Lと分離水Hの界面は第2の求心ポンプ16の液導入位置(外径位置)によって規定される。第2の求心ポンプ16の外径位置は分離室7内の清浄油Lの自由表面より外側に設定され、第2のチャンバー11内の清浄油Lが第2の求心ポンプ16内に圧入する。第2の求心ポンプ16は連結管17を介して原液供給管1に連結され、第2の求心ポンプ16及び連結管17を介して清浄油Lを原液供給管1へ戻す。
 また、回転胴2の下部18の内面は主弁6の形状に即して形成されている。そして、主弁6と回転胴2の下部18の間には隙間19が形成され、この隙間19に配管20を介して閉弁作動水を導入して主弁6を回転体蓋4の下端に押し付けて排出口5を閉じる。また、回転胴2の下部18には半径方向で摺動する副弁21が配設され、この副弁21を配管22から導入する開弁作動水により半径方向内方へ摺動させて副弁21を開き、隙間19の閉弁作動水を排出して主弁6を開き、分離室7内の分離水Lを排出口5から排出する。分離水Lを排出した後、開弁作動水の供給を止め、供給ラインに溜まった水を水抜きノズル23から抜き出す。副弁21が閉じると、供給されている閉弁作動水により主弁6が閉じ、被処理液を処理する状態になる。
 また、上記連結管17には圧力センサ24が取り付けられ、この圧力センサ24はコントローラ30に接続されている。圧力センサ24によって連結管17内を流れる清浄油Lの圧力を検出し、この検出値をコントローラ30へ出力する。このコントローラ30は圧力センサ24の検出値に基づいて閉弁作動水の配管20及び開弁作動水の配管22にそれぞれ取り付けられた制御弁20A、22Aを制御し、それぞれの作動水を介して上述のように主弁6を開閉する。また、連結管17には圧力センサ24の検出値を表示する圧力計24Aが取り付けられ、圧力計24Aを介して清浄油Lの液圧を知ることができる。更に、連結管17には圧力調整弁25が取り付けられ、この圧力調整弁25を介して連結管17内を流れる清浄油Lの圧力を適宜調整できる。圧力調整弁25によって連結管17内の圧力が例えば0.2MPaに設定されている。この圧力は原液供給管1へ導入される被処理液の圧力よりも高く設定されている。
 そして、被処理液の分離処理が進み、分離室7内に分離水Hが蓄積され、分離水Hで回転体蓋4と仕切板12間の隙間を満たし、この隙間を封止すると、隙間における液流がなくなり、圧力センサ24による検出値がゼロになり、この検出信号に基づいてコントローラ30が制御弁20A、22Aを介して主弁6を開閉して分離水Hを外部へ排出する。分離水Hを排出するとコントローラ30を介して制御弁22Aが閉じて開弁作動水の供給を停止する。次いで、コントローラ30からの指令により制御弁20Aが開いて主弁6を閉じ、以降は遠心分離操作と分離水Hの排出とを繰り返す。水分含有率が1%以下の場合には主弁6の開閉も少なく非常に効率良く高純度の清浄化油を得ることができる。
特許第4397516号公報
 しかしながら、船舶あるいは発電プラントの中には水分含有率の高い残渣燃料油を清浄化してディーゼルエンジンの燃料油として使用することがある。このような残渣燃料油は、水分含有率が1%を超えるものがある。このように水分含有率の高い残渣燃料油を特許文献1の分離板型遠心分離機を用いて高純度の燃料油を得ようとすると、分離室7内では分離水Hが比較的短時間で仕切板12に達し、圧力センサ24を介して主弁6が短い時間間隔で開閉することになる。水分含有率が高くなるほど主弁6の開閉頻度が高くなり、それだけ分離操作の停止する回数が増え、残渣燃料油の処理量が低下することになる。
 本発明は、上記課題を解決するためになされたもので、水分含有率が高い残渣燃料油等の被処理液であっても長時間に渡って連続運転を行うことができ、被処理液の処理量を格段に増やすことができる分離板型遠心分離機及びその運転方法を提供することを目的としている。
 本発明の請求項1に記載の分離板型遠心分離機は、上端が開口した回転胴と、上記回転胴の上端開口に嵌着されて回転体を形成する回転体蓋と、上記回転体蓋に対して隙間を介して配置された仕切板と、上記回転胴内に挿入された状態で上下に移動して上記回転体の側部に形成された排出口を開閉する主弁と、上記主弁と上記仕切板間に形成された分離室内に上下に所定間隔を空けて積層された複数の分離板と、を備え、原液供給管から上記分離室内に供給された被処理液を上記分離板によって比重の近い軽液と重液に遠心分離し、上記分離室内の軽液を第1の求心ポンプを介して外部へ排出し、また、上記回転体蓋と上記仕切板間の隙間を流れる処理液を第2の求心ポンプから排出する分離板型遠心分離機であって、上記第2の求心ポンプと上記原液供給管が連通する連結管と、上記連結管に設けられ且つ上記連結管内の上記処理液の圧力を検出する圧力センサと、上記圧力センサの第1のトリガー値に基づいて上記連結管を閉じる第1のバルブと、上記第1のバルブの間で上記連結管から分岐する排出管と、上記圧力センサの第2のトリガー値に基づいて上記排出管を開く第2のバルブと、を備えていることを特徴とするものである。
 また、本発明の請求項2に記載の分離板型遠心分離機は、請求項1に記載の発明において、上記分離室内の上記重液と上記軽液の分離界面を設定する調整板を上記第2の求心ポンプの近傍に設けたことを特徴とするものである。
 また、本発明の請求項3に記載の分離板型遠心分離機の運転方法は、被処理液を分離板型遠心分離機の分離室内の複数の分離板を用いて互いに比重の近い軽液と重液に遠心分離し、上記分離室内で分離した軽液を第1の求心ポンプを介して外部へ排出し、また、上記分離室内で分離した重液を第2の求心ポンプを介して間欠的に外部へ排出する分離板型遠心分離機の運転方法であって、上記分離室内で分離した上記軽液の一部を上記第2の求心ポンプを介して上記分離室へ戻す第1の工程と、上記分離室へ戻す上記軽液の液圧を圧力センサにより検出する第2の工程と、上記圧力センサの検出値が第1のトリガー値に達した時に上記軽液の戻りを阻止する第3の工程と、上記第2の求心ポンプを介して外部へ排出する前の重液の液圧を上記圧力センサによって検出する第4の工程と、上記圧力センサの検出値が第2のトリガー値に達した時に上記重液を排出する第5の工程と、を備えていることを特徴とするものである。
 また、本発明の請求項4に記載の分離板型遠心分離機の運転方法は、請求項3に記載の発明において、上記第4の工程と上記第5の工程を繰り返すことを特徴とするものである。
 また、本発明の請求項5に記載の分離板型遠心分離機の運転方法は、請求項3または請求項4に記載の発明において、上記第2のトリガー値が上記第1のトリガー値より高いことを特徴とするものである。
 本発明によれば、水分含有率が高い残渣燃料油等の被処理液であっても長時間に渡って連続運転を行うことができると共に被処理液の処理量を格段に増やすことができ、しかも被処理液に分離水が混入する虞がなくなる分離板型遠心分離機及びその運転方法を提供することができる。
本発明の分離板型遠心分離機の一実施形態を示す模式図である。 (a)、(b)はいずれも図1に示す分離板型遠心分離機の運転方法の一実施形態を示す工程図で、(a)は分離板型遠心分離機の処理状況を示す模式図、(b)は(a)の状態での連通管内の液圧と処理時間との関係を示すグラフである。 (a)、(b)はいずれも図2に示す工程に続く工程図で、(a)は分離板型遠心分離機の処理状況を示す模式図、(b)は(a)の状態での連通管内の液圧と処理時間との関係を示すグラフである。 (a)、(b)はいずれも図3に示す工程に続く工程図で、(a)は分離板型遠心分離機の処理状況を示す模式図、(b)は(a)の状態での連通管内の液圧と処理時間との関係を示すグラフである。 (a)、(b)はいずれも図4に示す工程に続く工程図で、(a)は分離板型遠心分離機の処理状況を示す模式図、(b)は(a)の状態での連通管内の液圧と処理時間との関係を示すグラフである。 従来の分離板型遠心分離機の一例を示す断面図である。
 50  分離板型遠心分離機
 51  原液供給管
 52  回転体蓋
 54  主弁
 55  分離室
 56  分離板
 58  第1の求心ポンプ
 59  第2の求心ポンプ
 63  連結管
 64  圧力センサ
 66  第1のバルブ
 69  第2のバルブ
 68  排出管
 以下、図1~図5に示す実施形態に基づいて本発明を説明する。尚、本実施形態の分離板型遠心分離機の基本構造は、特許文献1に記載されたもの実質的に同一構造を備えているため、図1~図5では本実施形態の分離板型遠心分離機の基本構造が模式的に示されており、図示されていない部分は特許文献1に記載された分離板型遠心分離機に準じて構成されている。そこで、以下では本実施形態の分離板型遠心分離機の基本構造と本発明の特徴部分について説明する。
 本実施形態の分離板型遠心分離機50は、図1に示すように、被処理液(例えば、水分含有率が1%以上の残渣燃料油)を供給する原液供給管51と、上端が開口した回転胴(図示せず)と、回転胴の上端開口に嵌着されて回転体を形成する回転体蓋52と、回転体蓋52に対して隙間を介して配置された仕切板53と、回転胴内に挿入された状態で上下に移動して回転胴の側部に形成された排出口(図示せず)を開閉する主弁54と、主弁54と仕切板53間に形成された分離室55と、分離室55内に上下に所定間隔を空けて積層された複数の分離板56と、を備え、コントローラ100の制御下で、クラリファイア運転により原液供給管51から案内筒57を介して分離室55内に導入された残渣燃料油を分離板56によって互いに比重の近い軽液(例えば比重0.991~1.010の清浄化油)Lと重液(例えば分離水)Hに遠心分離し、分離室55内の軽液Lを第1の求心ポンプ58を介して外部へ排出し、また、回転体蓋52と仕切板53間の隙間を通る軽液Lまたは重液Hを第2の求心ポンプ59から後述の連通管へ導くように構成されている。
 尚、図1において、軽液Lは薄く塗りつぶされた領域を示し、重液Hは濃く塗りつぶされた領域を示す。このことは、図2~図5のいずれの図においても同様である。
 而して、分離室55において残渣燃料油を遠心分離すると、重液Hが分離室55内の排出口を含む内壁面に蓄積されると共に軽液Lが重液Hとの間に界面Iを形成して蓄積される。界面Iは分離室55内で遠心分離が進むに連れて分離水Hが増えて分離室55の中心に向かって移動する。一方、軽液Lは分離室55内において仕切板53の内周端面から第1の求心ポンプ58側へオーバーフローする。
 第1の求心ポンプ58は、仕切板53の上端に形成された第1のチャンバー60内に臨み、分離室55からオーバーフローして第1のチャンバー60内に溜まる軽液Lを排出する。第2の求心ポンプ59は、回転体蓋52の上端に形成された第2のチャンバー61内に臨み、回転体蓋52と仕切板53の隙間からオーバーフローして第2のチャンバー61内に溜まる軽液Lまたは重液Hを排出する。重液Hと軽液Lの界面Iが仕切板53の下端に達するまでは軽液Lが第2のチャンバー61側へオーバーフローし、界面Iが仕切板53を越えると重液Hが回転体蓋52と仕切板53の隙間を流れ始め、界面Iが仕切板53の中ほどの所定位置に達するまでの間、第2のチャンバー61へオーバーフローすることになる。ところが、図6に示す分離板型遠心分離機の場合には、重液Hが仕切板12の下端に達すると回転体蓋4と仕切板12の隙間で軽液Lの流れが止まり、主弁6が作動して重液Hを排出しているが、本実施形態では、重液Hは後述のように連結管から分岐する排出管から間欠的に排出され、主弁54は分離水Hを排出に関与しない。
 また、回転体蓋52の内周面の上端近傍にはリング状の調整板62が第2の求心ポンプ59の下側に配置して設けられ、調整板62によって分離室55と第2のチャンバー61とを区画している。この調整板62の内周面は第2の求心ポンプ59の外径よりも内側に位置している。調整板62は、残渣燃料油の比重に合わせて内周端の張り出し具合を適宜調整することにより、分離室55内での重液Hと軽液Lの分離境界面(軽液Lに重液Hが混入しない境界面)を適宜設定することができる。分離室55内で重液Hの界面Iが分離境界面を越えると、回転体蓋52と仕切板53の隙間を通る重液Hが調節板62を第2のチャンバー61へオーバーブローし始める。
 また、第2の求心ポンプ59は連結管63を介して原液供給管51に接続され、第2の求心ポンプ59から供給される軽液Lが連結管63を介して原液供給管51へ還流し、残渣燃料油と一緒に分離室55へ供給されるようになっている。連結管63には圧力センサ64及び圧力計65が設けられ、圧力センサ64によって連結管63内の軽液Lの液圧を監視すると共に圧力計64によって液圧を目視できるようになっている。また、連結管63には第1のバルブ66が設けられ、圧力センサ64の第1のトリガー値T1に基づいて第1のバルブ66が連通管63を閉じて第2の求心ポンプ59から原液供給管51への軽液Lの還流を阻止するようにしてある。第1のバルブ66は遠心分離の開始時には開いている。
 連通管63には調整バルブ67が圧力センサ64と第1のバルブ66の間に位置させて設けられ、調整バルブ67によって連通管63内の液圧が原液供給管51から供給される残渣燃料油の液圧よりも高い値に設定されている。また、連通管63は、圧力センサ64と調整バルブ67の間で分岐し、この分岐した部分が排出管68として形成されている。この排出管68には第2のバルブ69が設けられ、圧力センサ64の第2のトリガー値T2に基づいて第2のバルブ69が排出管68を開いて連通管63内の重液Hを排出するようにしてある。圧力センサ64は、分離室55内の重液Hの界面Iが分離境界面を越えて連結管63内の重液Hの液圧が所定値に達した時に、連通管63内の液圧を第2のトリガー値T2として検出し、第2のバルブ69を開くようにしてある。第2のトリガー値T2の示す液圧は、例えば第1のトリガー値T1の示す液圧よりも大きな値として設定されている。尚、第1のバルブ66の下流側には逆止弁70が設けられおり、原液供給管51から残渣燃料油が連結管63内へ逆流しないようしてある。排出管63から分離水Hを排出し、連通管63内の液圧が急激に低下し、圧力センサ64が連通管63内の液圧を第3のトリガー値T3として検出すると、第3のトリガー値T3の検出値に基づいて第2のバルブ69が閉じるようにしてある。第2のバルブ69が閉じた瞬間に分離水Hの界面Iが仕切板53の下端に達し、分離水Hで回転体蓋52と仕切板53の隙間を封止した状態を維持するようにしてある。
 このように本実施形態の分離板型遠心分離機50は、図6に示す分離板型遠心分離機とは異なり、圧力センサ64の第2、第3のトリガー値T2、T3に基づいて第2のバルブ69を間欠的に開閉して分離水Hを排出するようにしてあるため、主弁54は分離室55内に固形分(スラッジ)がある程度蓄積された時だけ定期的に動作して排出口から白抜き矢印で示すようにスラッジを排出し、スラッジ排出後に閉じるようなっている。
 次に、本実施形態の分離板型遠心分離機50の運転方法について図1~図5を参照しながら説明する。
 まず、原液供給管51から残渣燃料油を供給すると、残渣燃料油は案内筒57の下端開口から分離室55内へ流入する。この時、回転体蓋52及び主弁54が高速で回転しているため、遠心力で残渣燃料油は分離室55内で重液(スラッジを含む分離水)Hと軽液(清浄油)Lに分離される。残渣燃料油を連続的に供給して分離室55内で分離された清浄油Lが徐々に蓄積されて自由界面が分離板56に沿って半径方向内方へ徐々に移動し、分離室55から第1のチャンバー60へオーバーフローして第1のチャンバー60内に清浄油Lが溜まる。
 やがて、図2の(a)に示すように、清浄油Lは、第1のチャンバー60から第1の求心ポンプ58を介して外部へ連続的に排出される。この間に分離室55内では清浄油Lの一部が回転体蓋52と仕切板53の隙間を通って調整板62をオーバーフローして第2のチャンバー61に溜まり、所定の液圧(調整バルブ67によって設定された液圧、例えば0.1MPa)を維持しながら第2の求心ポンプ59から連結管63を経由して原液供給管51へ還流し、残渣燃料油に合流して残渣燃料油と一緒に遠心分離される。この際、圧力センサ64は調整バルブ67によって設定された液圧を検出し、その液圧を図2(b)のグラフに実線で示すように維持する。この間に分離室55では図2の(a)に示すように分離水Hが徐々に蓄積される。尚、清浄油Lが流れる連結管63を図2の(a)では太線で示してある。
 而して、残渣燃料油は水分含有率が1%を超えているため、分離室55内で分離水Hの界面Iが内方へ進行しやすい。分離水Hが比較的短時間で図3の(a)に示すように仕切板53の下端に達して回転体蓋52と仕切板53の隙間を封止すると、隙間での液流が一時的に止まり、第2の求心ポンプ59から連結管63への清浄油Lの流れも止まる。そのため連結管63内の清浄油Lの液圧が図3の(b)のグラフに実線で示すように急激に低下し、圧力センサ64の検出値が第1のトリガー値T1(0MPa)に達する。圧力センサ64が第1のトリガー値T1を検出すると、その検出信号をコントローラ100へ送信し、コントローラ100を介して第1のバルブ66を閉じ、原液供給管51への清浄油Lの流れを阻止する。この時、連結管63の液圧が0MPaであるため、図3の(a)では連結管63を太くない実線で示してある。尚、連通管63の液圧が残渣燃料油の液圧より低くなっても、連通管63には逆止弁70が設けてあるため、残渣燃料油が連通管63へ逆流することはない。
 なおも残渣燃料油の遠心分離を続行すると、図4の(a)に示すように分離室55内では分離水Hが徐々に蓄積され、分離水Hの界面Iが仕切板53の下端から分離室55の中心に向けて移動し、同図に示す分離境界面に達する。界面Iが分離境界面に達すると第2のチャンバー61内では分離水Hが調整板62をオーバーフローして第2の求心ポンプ59を介して連結管63内に所定の圧力で供給される。この間も第1のバルブ66が閉じているため、図4の(b)のグラフに実線で示すように連結管63内の液圧が第2の求心ポンプ59と第1のバルブ66の間で徐々に上昇する。圧力センサ64は連結管63内の液圧を検出し、この検出値から分離室55内で分離水Hの界面Iの位置(分離水Hの蓄積量)を間接的に知ることができる。尚、図4の(a)では分離水Hの液圧が上昇した連結管63の部分を太線で示してある。
 更に、分離室55内で分離水Hの界面Iが図5の(a)に示すように調節板62によって設定された分離境界面を越えて分離室55の中心に向けて進行すると、図4の(b)のグラフに実線で示すように圧力センサ64の検出値がピークである第2のトリガー値T2を検出する。圧力センサ64が第2のトリガー値T2を検出すると、その検出信号をコントローラ100へ送信し、コントローラ100を介して第2のバルブ69を開いて排出管68から分離水Hを一気に排出する。これにより連結管63内の液圧が急激に低下し、圧力センサ64の検出値が図5の(b)のグラフに実線で示すように急激に低下し、例えば第1のトリガー値T1と実質的に同一値の第3のトリガー値T3を検出する。圧力センサ64が第3のトリガー値T3を検出すると、その検出信号をコントローラ100へ送信し、コントローラ100を介して第2のバルブ69を閉じて排出管68からの分離水Hの排出を止める。この時点で分離水Hの界面Iは図3の(a)に示す界面Iの位置まで戻り、その後は図3に示す状態から図5に示す状態までの運転を繰り返しながら残渣燃料油の遠心分離を長時間に渡って安定的に継続することができる。
 連続運転を継続していると分離室55内にはスラッジが徐々に蓄積されため、スラッジを定期的に排出するようにしてある。それには、分離板型遠心分離機50を始動した時点からスラッジが所定量(例えば、1時間)蓄積されるまでの所要時間を予め計測しておき、その所要時間を主弁54の動作させるための時間としてコントローラ100に予め設定しておく。これにより、分離板型遠心分離機50を継続運転して所要時間を経過すると、コントローラ100が主弁54を作動させて分離室55の排出口からスラッジのみを排出することができる。主弁54によって分離室55からスラッジを排出した後、図2に示す状態から残渣燃料油の遠心分離を開始する。
 以上説明したように本実施形態によれば、圧力センサ64で第1、第2のトリガー値T1、T2を監視することにより、第1、第2のバルブ66、69を開閉制御し、第1のバルブ66によって連結管63を閉じると共に第2のバルブ69によって排出管68を開いて分離水Hを排出管68から間欠的に排出することができるため、主弁54を作動させることなく分離板型遠心分離機50を長時間に渡って安定的舌状態で連続運転することができ、残渣燃料油の分離処理能力を格段に高めることができる。また、この際、排出管68からの分離水Hの排出が完了するまで連結管63が第1のバルブ66によって閉じられているため、残渣燃料油に分離水Hが混入することがなく、分離操作の信頼性を高めることができる。
 また、第2のチャンバー61内に調整板62を設けたため、残渣燃料油の比重Mに即して分離境界面を設定することができ、幅広い比重の残渣燃料油に対しても適用することができる。
 尚、本発明は、上記実施形態に何ら制限されるものではない。例えば、上記実施形態では1%を超える水分含有率の残渣燃料油を被処理液として用いた場合について説明したが、本発明は1%以下の水分含有率の被処理液にも適用することができる。

Claims (5)

  1.  上端が開口した回転胴と、上記回転胴の上端開口に嵌着されて回転体を形成する回転体蓋と、上記回転体蓋に対して隙間を介して配置された仕切板と、上記回転胴内に挿入された状態で上下に移動して上記回転体の側部に形成された排出口を開閉する主弁と、上記主弁と上記仕切板間に形成された分離室内に上下に所定間隔を空けて積層された複数の分離板と、を備え、原液供給管から上記分離室内に供給された被処理液を上記分離板によって比重の近い軽液と重液に遠心分離し、上記分離室内の軽液を第1の求心ポンプを介して外部へ排出し、また、上記回転体蓋と上記仕切板間の隙間を流れる処理液を第2の求心ポンプから排出する分離板型遠心分離機であって、上記第2の求心ポンプと上記原液供給管が連通する連結管と、上記連結管に設けられ且つ上記連結管内の上記処理液の圧力を検出する圧力センサと、上記圧力センサの第1のトリガー値に基づいて上記連結管を閉じる第1のバルブと、上記第1のバルブの上流側で上記連結管から分岐する排出管と、上記圧力センサの第2のトリガー値に基づいて上記排出管を開く第2のバルブと、を備えていることを特徴とする分離板型遠心分離機。
  2.  上記分離室内の上記重液と上記軽液の分離界面を設定する調整板を上記第2の求心ポンプの近傍に設けたことを特徴とする請求項1に記載の分離板型遠心分離機。
  3.  被処理液を分離板型遠心分離機の分離室内の複数の分離板を用いて互いに比重の近い軽液と重液に遠心分離し、上記分離室内で分離した軽液を第1の求心ポンプを介して外部へ排出し、また、上記分離室内で分離した重液を第2の求心ポンプを介して間欠的に外部へ排出する分離板型遠心分離機の運転方法であって、上記分離室内で分離した上記軽液の一部を上記第2の求心ポンプを介して上記分離室へ戻す第1の工程と、上記分離室へ戻す上記軽液の液圧を圧力センサにより検出する第2の工程と、上記圧力センサの検出値が第1のトリガー値に達した時に上記軽液の戻りを阻止する第3の工程と、上記第2の求心ポンプを介して外部へ排出する前の重液の液圧を上記圧力センサによって検出する第4の工程と、上記圧力センサの検出値が第2のトリガー値に達した時に上記重液を排出する第5の工程と、を備えていることを特徴とする分離板型遠心分離機の運転方法。
  4.  上記第4の工程と上記第5の工程を繰り返すことを特徴とする請求項3に記載の分離板型遠心分離機の運転方法。
  5.  上記第2のトリガー値が上記第1のトリガー値より高いことを特徴とする請求項3または請求項4に記載の分離板型遠心分離機の運転方法。
PCT/JP2010/065105 2010-09-03 2010-09-03 分離板型遠心分離機及びその運転方法 WO2012029167A1 (ja)

Priority Applications (3)

Application Number Priority Date Filing Date Title
PCT/JP2010/065105 WO2012029167A1 (ja) 2010-09-03 2010-09-03 分離板型遠心分離機及びその運転方法
KR1020137007258A KR101312345B1 (ko) 2010-09-03 2010-09-03 분리판형 원심분리기 및 그 운전방법
JP2012531635A JP5386641B2 (ja) 2010-09-03 2010-09-03 分離板型遠心分離機及びその運転方法

Applications Claiming Priority (1)

Application Number Priority Date Filing Date Title
PCT/JP2010/065105 WO2012029167A1 (ja) 2010-09-03 2010-09-03 分離板型遠心分離機及びその運転方法

Publications (1)

Publication Number Publication Date
WO2012029167A1 true WO2012029167A1 (ja) 2012-03-08

Family

ID=45772300

Family Applications (1)

Application Number Title Priority Date Filing Date
PCT/JP2010/065105 WO2012029167A1 (ja) 2010-09-03 2010-09-03 分離板型遠心分離機及びその運転方法

Country Status (3)

Country Link
JP (1) JP5386641B2 (ja)
KR (1) KR101312345B1 (ja)
WO (1) WO2012029167A1 (ja)

Cited By (5)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
JP2016509075A (ja) * 2012-12-10 2016-03-24 ジーイーエー メカニカル エクイップメント ゲーエムベーハー 重油燃料を処理するための方法
US9387491B2 (en) * 2013-03-06 2016-07-12 Alfa Laval Corporate Ab Centrifugal separator having a valve body provided in an outlet channel
CN108940614A (zh) * 2018-06-25 2018-12-07 江苏大洋环保工程有限公司 一种离心分离转鼓机
CN109277206A (zh) * 2018-11-12 2019-01-29 无锡中清数控科技有限公司 一种便携式三相沉降碟式离心机内部流道结构
US10201817B2 (en) * 2014-03-31 2019-02-12 Wartsila Finland Oy Method for controlling discharge timing of centrifugal separator and centrifugal separator based on pressure measurement

Citations (5)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
JPS61283364A (ja) * 1985-06-07 1986-12-13 アルフア−ラヴアル セパレ−シヨン ア−ベ− 遠心分離機
JPS63305953A (ja) * 1987-05-20 1988-12-13 ヴエストフアリア・ゼパラトール・アクチエンゲゼルシヤフト 自動排出式遠心ドラム
JPH07246349A (ja) * 1994-03-10 1995-09-26 Mitsubishi Kakoki Kaisha Ltd 分離板型遠心分離機
JP2000515415A (ja) * 1995-11-09 2000-11-21 アルファ ラヴァル アーベー 遠心分離ロータを内部的にクリーニングする方法と装置、及びこのような装置を備えた遠心分離器
JP2002537997A (ja) * 1999-03-08 2002-11-12 アルファ ラヴァル アクチボラゲット 遠心分離機の望ましくない動作状態を示す方法および装置

Patent Citations (5)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
JPS61283364A (ja) * 1985-06-07 1986-12-13 アルフア−ラヴアル セパレ−シヨン ア−ベ− 遠心分離機
JPS63305953A (ja) * 1987-05-20 1988-12-13 ヴエストフアリア・ゼパラトール・アクチエンゲゼルシヤフト 自動排出式遠心ドラム
JPH07246349A (ja) * 1994-03-10 1995-09-26 Mitsubishi Kakoki Kaisha Ltd 分離板型遠心分離機
JP2000515415A (ja) * 1995-11-09 2000-11-21 アルファ ラヴァル アーベー 遠心分離ロータを内部的にクリーニングする方法と装置、及びこのような装置を備えた遠心分離器
JP2002537997A (ja) * 1999-03-08 2002-11-12 アルファ ラヴァル アクチボラゲット 遠心分離機の望ましくない動作状態を示す方法および装置

Cited By (7)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
JP2016509075A (ja) * 2012-12-10 2016-03-24 ジーイーエー メカニカル エクイップメント ゲーエムベーハー 重油燃料を処理するための方法
US9387491B2 (en) * 2013-03-06 2016-07-12 Alfa Laval Corporate Ab Centrifugal separator having a valve body provided in an outlet channel
US10201817B2 (en) * 2014-03-31 2019-02-12 Wartsila Finland Oy Method for controlling discharge timing of centrifugal separator and centrifugal separator based on pressure measurement
CN108940614A (zh) * 2018-06-25 2018-12-07 江苏大洋环保工程有限公司 一种离心分离转鼓机
CN108940614B (zh) * 2018-06-25 2021-02-09 江苏大洋环保工程有限公司 一种离心分离转鼓机
CN109277206A (zh) * 2018-11-12 2019-01-29 无锡中清数控科技有限公司 一种便携式三相沉降碟式离心机内部流道结构
CN109277206B (zh) * 2018-11-12 2023-10-20 无锡水之积工业科技有限公司 一种便携式三相沉降碟式离心机内部流道结构

Also Published As

Publication number Publication date
JP5386641B2 (ja) 2014-01-15
JPWO2012029167A1 (ja) 2013-10-28
KR101312345B1 (ko) 2013-09-27
KR20130048785A (ko) 2013-05-10

Similar Documents

Publication Publication Date Title
JP5386641B2 (ja) 分離板型遠心分離機及びその運転方法
EP1984119B1 (en) Method for supervising a centrifugal separator
EP2868210B1 (en) Method for citrus fruit processing
SU1572402A3 (ru) Центробежный сепаратор
RU2573876C2 (ru) Способ разделения фаз продукта посредством центрифуги
CN106163667B (zh) 用于控制离心分离机的排出定时的方法及离心分离机
AU2011209989A1 (en) System comprising centrifugal separator and method for controlling such a system
JP4397516B2 (ja) 分離板型遠心分離機及びその運転方法
CN107617337A (zh) 一种错流过滤控制方法、错流过滤装置和错流过滤系统
US9463473B2 (en) Phase-separation method for a product, using a centrifuge
KR20060095740A (ko) 편심댐 조절장치가 부착된 3상 원심분리기
JP4592934B2 (ja) 分離板型遠心分離機及びその運転方法
US11420215B2 (en) Method for emptying solids from a centrifuge
JP4516175B2 (ja) 分離板型遠心分離機
CA2753349C (en) Centrifugal separator and method for separating
JPH07246349A (ja) 分離板型遠心分離機
CN108993785A (zh) 一种智能的离心分离机
US20130319952A1 (en) Deoiling hydrocyclone
JP2727411B2 (ja) 分離板型遠心分離機
JP4516174B2 (ja) 分離板型遠心分離機
JP7199902B2 (ja) 遠心分離装置
JP7199901B2 (ja) 遠心分離装置
RU2628778C1 (ru) Центрифуга для очистки технических жидкостей от механических примесей и воды
KR200429893Y1 (ko) 편심댐 조절장치가 부착된 3상 원심분리기
SU1597221A1 (ru) Барабан центробежного сепаратора

Legal Events

Date Code Title Description
121 Ep: the epo has been informed by wipo that ep was designated in this application

Ref document number: 10856717

Country of ref document: EP

Kind code of ref document: A1

ENP Entry into the national phase

Ref document number: 2012531635

Country of ref document: JP

Kind code of ref document: A

NENP Non-entry into the national phase

Ref country code: DE

ENP Entry into the national phase

Ref document number: 20137007258

Country of ref document: KR

Kind code of ref document: A

122 Ep: pct application non-entry in european phase

Ref document number: 10856717

Country of ref document: EP

Kind code of ref document: A1