WO2012028014A1 - 无源光网络中的上行带宽分配方法及无源光网络系统 - Google Patents

无源光网络中的上行带宽分配方法及无源光网络系统 Download PDF

Info

Publication number
WO2012028014A1
WO2012028014A1 PCT/CN2011/076045 CN2011076045W WO2012028014A1 WO 2012028014 A1 WO2012028014 A1 WO 2012028014A1 CN 2011076045 W CN2011076045 W CN 2011076045W WO 2012028014 A1 WO2012028014 A1 WO 2012028014A1
Authority
WO
WIPO (PCT)
Prior art keywords
onu
uplink
olt
uplink rate
start time
Prior art date
Application number
PCT/CN2011/076045
Other languages
English (en)
French (fr)
Inventor
张伟良
耿丹
Original Assignee
刘建
Priority date (The priority date is an assumption and is not a legal conclusion. Google has not performed a legal analysis and makes no representation as to the accuracy of the date listed.)
Filing date
Publication date
Application filed by 刘建 filed Critical 刘建
Publication of WO2012028014A1 publication Critical patent/WO2012028014A1/zh

Links

Classifications

    • HELECTRICITY
    • H04ELECTRIC COMMUNICATION TECHNIQUE
    • H04QSELECTING
    • H04Q11/00Selecting arrangements for multiplex systems
    • H04Q11/0001Selecting arrangements for multiplex systems using optical switching
    • H04Q11/0062Network aspects
    • H04Q11/0067Provisions for optical access or distribution networks, e.g. Gigabit Ethernet Passive Optical Network (GE-PON), ATM-based Passive Optical Network (A-PON), PON-Ring
    • HELECTRICITY
    • H04ELECTRIC COMMUNICATION TECHNIQUE
    • H04LTRANSMISSION OF DIGITAL INFORMATION, e.g. TELEGRAPHIC COMMUNICATION
    • H04L47/00Traffic control in data switching networks
    • H04L47/70Admission control; Resource allocation
    • HELECTRICITY
    • H04ELECTRIC COMMUNICATION TECHNIQUE
    • H04QSELECTING
    • H04Q11/00Selecting arrangements for multiplex systems
    • H04Q11/0001Selecting arrangements for multiplex systems using optical switching
    • H04Q11/0062Network aspects
    • H04Q2011/0064Arbitration, scheduling or medium access control aspects

Definitions

  • the present invention relates to the field of communications technologies, and in particular, to an uplink bandwidth allocation method and a passive optical network system in a passive optical network. Background technique
  • GPON Gigabit-Capable Passive Optical Network
  • PON Passive Optical Network
  • PON Passive Optical Network
  • the topology of the GPON system is shown in Figure 1.
  • the GPON consists of the Optical Line Terminal (OLT) on the central office, the Optical Network Unit (ONU) on the user side, and the optical distribution network.
  • Optical Distributio Network (referred to as ODN) is composed of a point-to-multipoint network structure.
  • the ODN consists of passive optical components such as single-mode fibers, optical splitters, and optical connectors, providing an optical transmission medium for the physical connection between the OLT and the ONU.
  • next-generation PON technology based on GPON technology is rapidly developing.
  • XG-PON technology is generally considered as the next-generation PON technology that may be used in the future.
  • the downlink rate of the XG-PON1 technology is 10 Gbit/s, and the uplink rate is 2.5 Gbit/s, which can meet the bandwidth demand of residential users.
  • the data transmission in the downlink direction (from OLT to ONU) of the XG-PON system is broadcast.
  • Each ONU receives all the frames, and then obtains its own frame according to the ONU-ID, GEM-Port ID, and Allocation-ID.
  • BWmap bandwidth mapping domain
  • the structure of BWmap is shown in Figure 2.
  • the BWmap domain consists of N allocation structures.
  • Each allocation structure consists of an Alloc-ID field (Allocation Identifier, bandwidth allocation identifier, generally a Transmission Container (T-CONT).
  • Flags field bandwidth allocation option, 2 bits, one bit is used to indicate whether the ONU sends an uplink dynamic bandwidth report (DBRu), The other bit is used to indicate whether the ONU sends the uplink physical layer operation, management and maintenance (PLOAMu) message, and the start time (Start Time, which represents the first transmission of the XG-PON transmission convergence burst (XGTC burst) sent by the ONU.
  • the byte is located in the 125us upstream frame, Grant Size, Forced Awakening Indication (FWI), Burst Overhead Parameter (Bprofile), and Mixed Error Correction (HEC).
  • the ONU When the ONU receives an Allocation structure, if the ONU determines that the Allocation structure is assigned to itself according to the Alloc-ID, the ONU performs a HEC check on the data in the received Allocation structure. If the verification result is correct, the ONU will be in the The data in the T-CONT whose bandwidth allocation identifier is Alloc-ID is transmitted at the start time of the Allocation structure. The length of the data sent is the length of the data that the ONU can send based on the content carried in the Grant size field.
  • the passive optical network system can only access an ONU with an uplink rate (such as 2.5 Gbit/s), but with the emergence of diverse demands, for example, commercial users need larger uplink bandwidth, For an uplink rate of 5 Gbit/s, a passive optical network system needs to be able to access two or more ONUs at the same time. In this case, how the OLT performs uplink bandwidth allocation and improves the uplink bandwidth utilization is a solution to be solved. The problem. Summary of the invention
  • the technical problem to be solved by the present invention is to provide an uplink bandwidth allocation method and a passive optical network system in a passive optical network to improve uplink bandwidth utilization.
  • the present invention provides an uplink bandwidth allocation method in a passive optical network, where the method includes:
  • the ONU sends the uplink rate or uplink rate related information to the OLT according to the request of the OLT or actively;
  • the OLT is configured according to the uplink rate corresponding to the uplink rate or uplink rate related information.
  • the ONU performs uplink bandwidth allocation.
  • the uplink rate related information is logical information, sequence number information, registration information or delimitation information that has a preset correspondence relationship with the uplink rate.
  • the manner in which the ONU sends uplink rate or uplink rate related information includes: using a newly created PLOAM message for transmitting an ONU uplink rate, using a specific domain of an existing PLOAM message, managing an interface message by using an ONU, or using an uplink frame. Indicates a specific bit of the field.
  • the existing PLOAM message refers to an ONU sequence number message or a registration message.
  • the parameters used by the OLT to allocate the uplink bandwidth to the ONUs of different uplink rates include a start time and a grant size, and the granularity of the parameters is the same.
  • the OLT sequentially allocates bandwidth for each ONU, including according to the start of the current ONU. Time, grant size, and upstream rate get the start time of the next ONU.
  • the parameters used by the OLT to allocate uplink bandwidth to ONUs of different uplink rates include a start time and a grant size; the start time of the ONUs of different uplink rates has the same granularity, and the granularity of the grant size is proportional to the uplink rate.
  • the OLT sequentially allocates bandwidth for each ONU, including obtaining the start time of the next ONU according to the start time, the grant size, and the basic uplink rate of the current ONU.
  • the parameter granularity is notified by the OLT to the ONU during registration activation, or is a default value preset by the system.
  • the present invention also provides a passive optical network system, where the passive optical network system includes:
  • An ONU configured to: send an uplink rate or uplink rate related information to the OLT according to a request of an optical line terminal (OLT);
  • OLT optical line terminal
  • the OLT which is connected to the ONUs of the same or different uplink rates, is configured to: allocate uplink bandwidth to the ONU according to the uplink rate corresponding to the uplink rate or uplink rate related information.
  • the uplink rate related information is logical information, sequence number information, registration information or delimitation information that has a preset correspondence relationship with the uplink rate.
  • the manner in which the ONU sends uplink rate or uplink rate related information includes: using a newly created PLOAM message for transmitting an ONU uplink rate, using a specific domain of an existing PLOAM message, managing an interface message by using an ONU, or using an uplink frame. Indicates a specific bit of the field.
  • the parameter used by the OLT to allocate an uplink bandwidth to an ONU of different uplink rates includes a start time and a grant size, and the granularity of the parameters is the same, and the OLT sequentially cycles into each The ONU allocates bandwidth, including the start time of the next ONU according to the start time, grant size, and uplink rate of the current ONU.
  • the parameters used by the OLT to allocate uplink bandwidth to ONUs of different uplink rates include a start time and a grant size; the start time of the ONUs of different uplink rates has the same granularity, and the granularity of the grant size is proportional to the uplink rate.
  • the OLT sequentially allocates bandwidth for each ONU, including obtaining the start time of the next ONU according to the start time, the grant size, and the basic uplink rate of the current ONU.
  • the parameter granularity is notified by the OLT to the ONU during registration activation, or is a default value preset by the system.
  • the present invention further provides an ONU, where the ONU is configured to: send an uplink rate or an uplink rate related information to the OLT according to the request of the OLT; and an uplink rate corresponding to the uplink rate or uplink rate related information by the OLT. Performing uplink bandwidth allocation for the ONU.
  • the manner in which the ONU sends uplink rate or uplink rate related information includes: using a newly created PLOAM message for transmitting an ONU uplink rate, using a specific domain of an existing PLOAM message, managing an interface message by using an ONU, or using an uplink frame. Indicates a specific bit of the field.
  • the present invention further provides an OLT, where the OLT is connected to the ONUs of the same or different uplink rates, and is configured to: perform uplink bandwidth allocation for the ONU according to an uplink rate corresponding to the uplink rate or uplink rate related information;
  • the uplink rate or uplink rate related information is sent by the ONU to the OLT according to the request of the OLT or actively.
  • the parameters used by the OLT to allocate the uplink bandwidth to the ONUs of different uplink rates include a start time and a grant size, and the granularity of the parameters is the same.
  • the OLT sequentially allocates bandwidth for each ONU, including according to the start of the current ONU. Time, grant size, and upstream rate get the start time of the next ONU.
  • the parameters used by the OLT to allocate uplink bandwidth to ONUs of different uplink rates include a start time and a grant size; the start time of the ONUs of different uplink rates has the same granularity, and the granularity of the grant size is proportional to the uplink rate.
  • the OLT sequentially allocates bandwidth for each ONU, including obtaining the next ONU according to the start time, the grant size, and the basic uplink rate of the current ONU. Starting time.
  • the parameter granularity is notified by the OLT to the ONU during registration activation, or is a default value preset by the system.
  • the ONU sends the uplink rate or uplink rate related information to the OLT according to the request of the OLT, and the OLT is based on the ONU.
  • the uplink rate corresponding to the uplink rate or uplink rate related information is the uplink bandwidth allocation of the ONU.
  • Figure 1 is a schematic diagram of the topology of a GPON system
  • FIG. 2 is a schematic structural diagram of a GPON downlink frame
  • FIG. 3 is a schematic diagram of an uplink bandwidth allocation method in a passive optical network of the present invention.
  • an OLT with a downlink rate of 10 Gbit/s is connected to an ONU with an uplink rate of 2.5 Gbit/s and 5 Gbit/s through different optical branches of the ODN
  • the ONUs of the two rates are time-multiplexed.
  • the OLT sends BWmap commands to each ONU to send uplink data in a specific uplink time slot.
  • the OLT photodetector root can detect the uplink optical signals sent by the two rate ONUs, and convert the detected optical signals into electrical signals, optical signals.
  • the OLT After being converted into an electrical signal, the OLT sends a signal with an uplink rate of 5 Gbit/s to a 5 Gbit/s circuit for processing according to the non-path processing.
  • the OLT has the capability of simultaneously connecting ONUs of different uplink rates.
  • the Start time in the BWmap indicates the position of the first byte of the XG-PON transmission convergence burst (XGTC burst) sent by the ONU in the uplink frame of 125 us.
  • Grant size indicates the length of the data sent by the ONU. For the same Grant size, the ONU of the 5Gbit/s uplink rate is sent. Sizex-j is one-half of the time.
  • the OLT needs to know the uplink rate of each ONU, and determine the ONU. After the uplink rate, the OLT can calculate the time for the ONU to complete the uplink data transmission in the uplink frame according to the Start time, the Grant size, and the uplink rate allocated to the ONU, so that the OLT can calculate the next ONU to start sending the uplink. The time of the data Starttime. Therefore, under the premise of improving the uplink transmission efficiency, when the OLT is connected to two or more ONUs of the uplink rate, the OLT needs to obtain the uplink rate of each ONU and allocate bandwidth for each ONU.
  • the main idea of the uplink bandwidth allocation method and the passive optical network system in the passive optical network of the present invention is that the ONU sends the uplink rate or uplink rate related information to the OLT according to the request of the OLT, and the OLT
  • the uplink rate corresponding to the uplink rate or uplink rate information reported by the ONU is the uplink bandwidth allocation of the ONU.
  • the uplink bandwidth allocation method in the passive optical network of the present invention includes:
  • Step 301 The ONU sends the uplink rate or uplink rate related information to the OLT according to the request of the OLT or actively;
  • the uplink rate related information is logical information, sequence number information, registration information, or delimitation information that has a preset correspondence relationship with the uplink rate.
  • Step 302 The OLT performs uplink bandwidth allocation for the ONU according to the uplink rate corresponding to the uplink rate or uplink rate related information.
  • the manner in which the ONU sends uplink rate or uplink rate related information includes: using a new PLOAM message for transmitting an ONU uplink rate, using a specific domain of an existing PLOAM message, using an OMCI message, or using a specific bit of an indication field of an uplink frame. Bit.
  • the existing PLOAM message may be an ONU sequence number message or a registration identification message. See the subsequent examples for details.
  • the parameters used by the OLT to allocate uplink bandwidth to ONUs of different uplink rates include start time and grant size, and the granularity of the parameters may be the same or different.
  • the OLT sequentially allocates bandwidth for each ONU, including The start time of the next ONU is obtained according to the start time, the grant size, and the uplink rate of the current ONU.
  • the same situation includes displaying the same and implicitly the same.
  • the implementation of different parameter granularities is as follows: the start time of the ONUs of different uplink rates is the same, the granularity of the grant size is proportional to the uplink rate, and the start time of the ONU of the basic uplink rate is the same as or different from the granularity of the grant size.
  • the OLT allocates bandwidth for each ONU in turn, and obtains the start time of the next ONU according to the start time, the grant size, and the basic uplink rate of the current ONU.
  • an ONU with access to 2.5 Gbit/s, 5 Gbit/s, and 10 Gbit/s is used. If the 5 Gbit/s ONU is the basic uplink rate, the start time and the grant size are both 4, and 2.5 Gbit/s.
  • the grant size of the ONU is 2, and the size of the grant size of the ONU of 10 Gbit/s is 8.
  • the granularity of the grant size in the allocation structure of the uplink bandwidth allocated by the OLT to the lowest-rate ONU is constant C
  • the granularity of the grant size in the allocation structure in which the OLT allocates the uplink bandwidth to the ONU whose rate is n times the lowest rate is constant n XC ;
  • the lowest-rate ONU After receiving the allocation structure allocated by the OLT, the lowest-rate ONU determines the position of the uplink bandwidth allocated by the OLT in the uplink frame according to the start time, grant size, and granularity C in the allocation structure, and the rate is the lowest rate n times. After receiving the allocation structure allocated by the OLT to itself, the ONU determines the location of the uplink bandwidth allocated by the OLT in the uplink frame according to the start time, the grant size, and the granularity nx C in the allocation structure.
  • the ONU and OLT have the same start time granularity and the same grant size granularity.
  • the parameter granularity may be notified by the OLT to the ONU during registration activation, or may be a default value preset by the system.
  • the uplink bandwidth allocation involved in the present invention is only applicable to the bandwidth allocation of uplink data related to the uplink rate of the current ONU.
  • the ONUs of the uplink rate are connected to the ONUs of the uplink rate of 2.5 Gbit/s and the ONUs of the uplink rate of 5 Gbit/s.
  • the default OLT is set to 2.5 Gbit/s.
  • the ONU1 allocates the upstream bandwidth allocation structure, and the value of the Start time and the Grant Size has a granularity of 4, and allocates the uplink bandwidth to the ONU2 with an uplink rate of 5 Gbit/s.
  • the value of the Start time value in the allocation structure has a granularity of 4
  • the value of the Grant Size has a granularity of 8.
  • the reason why the granularity of the value of the Grant Size of the ONU2 is set to 8 is that the uplink rate of the ONU1 is used as the uplink rate, and the rate multiple relationship between the ONU2 and the ONU1 is reflected in the granularity of the Grant Size, that is, the granularity of the Grant Size. It is proportional to the corresponding upstream rate.
  • Step 401 The OLT allocates a shared bandwidth for sending a sequence number message to the ONU of the serial number state in the unregistered active state (the ONU has multiple states, and the serial number state is one of the states), and the shared bandwidth corresponds to the allocation.
  • the value of the Start time of the structure is x, and the value of Grant size is y; the sequence number message bandwidth allocated here is the common upstream bandwidth allocated to the two rate ONUs, that is, the ONUs of the two rates can be utilized for registration.
  • the bandwidth sends uplink data. This bandwidth is allocated according to the demand of the low-rate ONU, so that the high-rate ONU parsing is equivalent to obtaining more bandwidth than actually needed. Because the system has defined the granularity of Grantsize by default at the ONU, the Grantsize of ONU1 and ONU2 is different.
  • Step 402 After receiving the bandwidth for sending the serial number information, the ONU in the serial number state obtains the bandwidth of sending the serial number information according to the values of the Start time and the Grant size and the default Start time and Grant size of the system.
  • the ONU1 with an uplink rate of 2.5 Gbit/s obtains the bandwidth of the transmission sequence number information according to the granularity 4 of the Start time and the Grant size, and the ONU2 with the uplink rate of 5 Gbit/s obtains the transmission sequence according to the granularity 4 and 8 of the Start time and the Grant size.
  • the bandwidth of the number information the ONU sends its own sequence number message to the OLT according to the bandwidth of the parsed transmission sequence number information, and the ONU writes its own uplink rate on the padding field of the sequence number information (Padding) to the OLT;
  • Step 403 After receiving the sequence number message sent by the ONU in step 402, the OLT obtains the sequence number information and the uplink rate information of the ONU, and the OLT allocates the uplink bandwidth to the ONU according to the uplink rate information, and allocates an ONU for the ONU. If the number of bytes of the uplink data is z, if the uplink rate of the ONU is 2.5 Gbit/s, the value of the Grant size in the allocation structure allocated for the ONU is z/4, if the uplink rate of the ONU is 5 Gbit.
  • the value of the Grant size in the allocation structure allocated for the ONU is z/8
  • the value of the Start time in the allocation structure of the uplink bandwidth allocated by the OLT for the two types of ONUs is 2.5 Gbit according to the uplink rate.
  • the value of the granularity 4 of the ONU of the /s is allocated, and the start time ranges from 0 to 9719; That is, the OLT obtains the start time of the next ONU according to the start time, the grant size, and the basic uplink rate of the current ONU.
  • Step 404 After receiving the allocation structure sent by the OLT in step 403, the ONU1 with the uplink rate of 2.5 Gbit/s analyzes the Start time and Grant size values in the allocation structure allocated by the OLT according to the granularity 4 to obtain its own uplink bandwidth. After receiving the allocation structure sent by the OLT in step 3, the ONU2 with the uplink rate of 5 Gbit/s obtains the Start time value according to the granularity 4, and obtains the Grant size value according to the granularity 8 to obtain its own uplink bandwidth. The position in the upstream frame.
  • the uplink rate of the ONU is obtained by the OLT in the following manner: Step 501: The OLT allocates an uplink bandwidth for sending a registration message to the ONU in the ranging state in the unregistered active state;
  • Step 502 After the ONU in the ranging state receives the bandwidth for sending the registration message, the ONU sends a registration message to the OLT in the bandwidth.
  • Step 503 After receiving the registration message sent by the ONU in step 502, the OLT obtains the uplink rate of the ONU according to the correspondence between the registration identifier of the ONU and the uplink rate of the ONU.
  • Step 601 The OLT allocates an uplink bandwidth for sending the uplink rate message to the ONU.
  • the uplink rate message is composed of five parts, namely an ONU identifier (ONU ID), a message identifier (sender ID), a sequence number (SeqNo), data including uplink rate related information (Data), and message integrity. Check (MIC), ONU at The uplink rate of the ONU is written in the Data.
  • Step 603 After receiving the uplink rate message sent by the ONU in step 602, the OLT obtains the uplink rate of the ONU.
  • the fourth embodiment differs from the first embodiment in that, in the system default setting, when the bit 1 bit of the indication field of the uplink burst is 0, the uplink rate of the corresponding ONU is 2.5 Gbit/s, and when the bit 1 bit is 1, the corresponding The uplink rate of the ONU is 5 Gbit/s, and the OLT obtains the uplink rate of the ONU by the following method: Step 701: The OLT allocates an uplink bandwidth for sending the uplink burst to the ONU.
  • Step 702 After receiving the bandwidth for sending the uplink burst, the ONU sends an uplink burst including the IND domain to the OLT in the bandwidth.
  • the ONU2 with the uplink rate of 5 Gbit/s receives the bandwidth for transmitting the uplink burst, and writes 1 to the bit 1 bit of the indication field (IND) of the uplink burst sent to the OLT, and the uplink rate is 2.5 Gbit/ After receiving the above-mentioned bandwidth for transmitting the uplink burst, the ONU1 of s writes 0 to the bit1 bit of the indication field (IND) of the uplink burst transmitted to the OLT.
  • Step 703 After receiving the uplink burst sent by the ONU in step 702, the OLT obtains the uplink rate of the ONU according to the value of bit1 of the IND domain.
  • Step 801 The OLT allocates an uplink bandwidth for sending an uplink burst to the ONU.
  • Step 802 After receiving the foregoing bandwidth for sending an uplink burst, the ONU sends an uplink burst including a delimiter to the OLT in the bandwidth.
  • the ONU2 with the uplink rate of 5 Gbit/s After receiving the above-mentioned bandwidth for transmitting the uplink burst, the ONU2 with the uplink rate of 5 Gbit/s assembles the uplink burst with the delimiter of the uplink rate of 5 Gbit/s, and the ONU1 with the uplink rate of 2.5 Gbit/s receives the uplink burst. After the above-mentioned bandwidth for transmitting the uplink burst, the uplink burst is assembled with a delimiter of the 2.5 Gbit/s uplink rate.
  • Step 803 After receiving the uplink burst sent by the ONU in step 802, the OLT obtains the uplink rate of the ONU according to the value of the delimiter.
  • the granularity value used in the above embodiment is a system default value, which can be changed or used.
  • the OLT notifies the ONU of the granularity value of the ONU in the registration activation process of the ONU.
  • the ONU sends only its own serial number information to the OLT, and the OLT receives the information in step 403.
  • the uplink rate of the ONU is obtained according to the correspondence between the serial number of the ONU and the uplink rate of the ONU.
  • the messages for sending the sequence number information, the registration information, and the uplink rate information in the first embodiment and the second embodiment are all PLOAM (Physical Layer Operations, Administration and Maintenance) messages.
  • PLOAM Physical Layer Operations, Administration and Maintenance
  • the ONU can also pass the message.
  • OMCI ONU Management and Control Interface
  • the start time granularity and the grant size granularity are different.
  • the same granularity may be used.
  • the default granularity is a constant, such as 1, and correspondingly, in the first embodiment, when assigning to an ONU.
  • the value of the Grant size in the allocation structure allocated for the ONU is z
  • the value of the Start time in the allocation structure of the upstream bandwidth allocated by the OLT for the next ONU is determined as follows: The start time of the next ONU is obtained according to the start time, the grant size, and the uplink rate of the current ONU.
  • the OLT accesses two different rates of ONUs.
  • three or more types of ONUs can also be accessed, and the processing manners are basically the same. Understandably, for systems with ONUs accessing different rates, even the ONUs currently connected to the system are At the same rate, the ONU still needs to send its upstream rate to the OLT.
  • the present invention also provides a passive optical network system, where the passive optical network system includes:
  • the ONU is configured to send, according to a request of an optical line terminal (OLT), an uplink rate or an uplink rate related information to the OLT;
  • OLT optical line terminal
  • the OLT is connected to the ONUs of the same or different uplink rates, and is configured to perform uplink bandwidth allocation for the ONU according to the uplink rate corresponding to the uplink rate or uplink rate related information.
  • the uplink rate related information is logical information, sequence number information, registration information, or delimitation information that has a preset correspondence relationship with the uplink rate.
  • the manner in which the ONU sends uplink rate or uplink rate related information includes: using a newly created PLOAM message for transmitting an ONU uplink rate, using a specific domain of an existing PLOAM message, using an ONU to manage a control interface message, or using an uplink frame. Indicates a specific bit of the field.
  • the parameters used by the OLT to allocate the uplink bandwidth to the ONUs of different uplink rates include the start time and the grant size, and the granularity of the parameters is the same.
  • the OLT sequentially allocates bandwidth for each ONU, including according to the start of the current ONU.
  • the time, the grant size, and its upstream rate get the start time of the next ONU.
  • the parameters used by the OLT to allocate uplink bandwidth to ONUs of different uplink rates include a start time and a grant size; the start time of the ONUs of different uplink rates has the same granularity, and the granularity of the grant size is proportional to the uplink rate.
  • the start time of the ONU of the basic uplink rate is the same as or different from the granularity of the grant size.
  • the OLT sequentially allocates bandwidth for each ONU, including obtaining the start time of the next ONU according to the start time, the grant size, and the basic uplink rate of the current ONU.
  • the parameter granularity is notified by the OLT to the ONU during the registration activation process, or is a default value preset by the system.
  • the OLT can obtain the uplink rate of each ONU, and perform uplink bandwidth allocation according to the uplink rate of the ONU, thereby effectively utilizing the time slots of the uplink bandwidth and improving the uplink transmission efficiency.

Landscapes

  • Engineering & Computer Science (AREA)
  • Computer Networks & Wireless Communication (AREA)
  • Signal Processing (AREA)
  • Small-Scale Networks (AREA)

Abstract

本发明公开了一种无源光网络中的上行带宽分配方法,该方法包括:光网络单元ONU根据光线路终端OLT的请求或主动将上行速率或上行速率相关信息发送给所述OLT;所述OLT根据所述上行速率或上行速率相关信息对应的上行速率为所述ONU进行上行带宽分配。本发明还公开了相应的系统。本发明有效利用上行带宽的各个时隙,提高上行传输效率。

Description

无源光网络中的上行带宽分配方法及无源光网络系统
技术领域
本发明涉及通信技术领域, 尤其涉及一种无源光网络中的上行带宽分配 方法及无源光网络系统。 背景技术
吉比特无源光网络( Gigabit-Capable Passive Optical Network, 简称为 GPON )技术是无源光网络(PON )家族中一个重要的技术分支, 和其它 PON 技术类似, GPON也是一种釆用点到多点拓朴结构的无源光接入技术。
GPON系统的拓朴结构如图 1所示, GPON由局侧的光线路终端(Optical Line Terminal , 简称为 OLT ) 、 用户侧的光网络单元( Optical Network Unit , 简称为 ONU ) 以及光分配网络( Optical Distributio Network, 简称为 ODN ) 组成, 通常釆用点到多点的网络结构。 ODN由单模光纤、 分光器、 光连接器 等无源光器件组成, 为 OLT和 ONU之间的物理连接提供光传输媒质。
随着互联网技术的发展, 对大带宽的需求日益增加, 以 GPON技术为基 础的下一代 PON技术迅速发展, 其中 XG-PON技术普遍被认为是将来可能 釆用的下一代 PON技术。 XG-PON1技术的下行速率为 10Gbit/s,上行速率为 2.5Gbit/s,这可以满足居民用户对带宽的需求。 XG-PON系统下行方向(由 OLT 到 ONU)的数据传输釆用广播方式, 每个 ONU分别接收所有的帧, 再根据 ONU-ID, GEM-Port ID、 Allocation-ID来获取属于自己的帧。 对于上行方向 (从 ONU到 OLT ) 的数据传输, 由于各 ONU需要共享传输媒质, ONU釆 用时分复用的方式在 OLT的控制下发送上行数据,各个 ONU在 OLT通过带 宽映射域(BWmap )分配给自己的时隙内传输上行数据。 BWmap 的结构如 图 2所示, BWmap域由 N个分配结构 (Allocation Structure )组成, 每个分 配结构由 Alloc-ID域( Allocation Identifier, 带宽分配标识, 一般是传输容器 ( Transmission Container, T-CONT )标识) 、 Flags域(带宽分配的选项, 2 位比特, 一位比特用于指示是否 ONU是否发送上行动态带宽报告(DBRu ) , 另一位比特用于指示 0NU是否发送上行物理层操作、管理和维护( PLOAMu ) 消息) 、 开始时间 (Start Time, 表示 ONU发送的 XG-PON的传输汇聚突发 ( XGTC burst )的第一个字节在 125us的上行帧中的位置)、授予尺寸( Grant Size )、 强制苏醒指示(FWI )、 突发开销参数(Bprofile )和混合纠错(HEC ) 组成。
当 ONU接收到一个 Allocation structure时, 如果 ONU根据 Alloc-ID判 断此 Allocation structure是分配给自己的, 则 ONU对接收到的 Allocation structure中的数据进行 HEC校验, 如果校验结果正确, ONU将在 Allocation structure指示的 StartTime时刻开始发送带宽分配标识为 Alloc-ID的 T-CONT 中的数据, 发送的数据长度为 ONU根据 Grant size域携带的内容解析出的 ONU可以发送的数据长度。
现有技术中, 无源光网络系统仅能接入一种上行速率(如 2.5Gbit/s ) 的 ONU, 但随着多样化需求的出现, 如, 商业用户需要更大的上行带宽, 提出 了 5Gbit/s的上行速率的需求,无源光网络系统需要能同时接入两种或两种以 上速率的 ONU, 这种情况下, OLT如何进行上行带宽分配, 提高上行带宽利 用率是一个有待解决的问题。 发明内容
本发明要解决的技术问题是提供一种无源光网络中的上行带宽分配方法 及无源光网络系统, 以提高上行带宽利用率。
为解决以上技术问题, 本发明提供了一种无源光网络中的上行带宽分配 方法, 该方法包括:
ONU根据 OLT的请求或主动将上行速率或上行速率相关信息发送给所 述 OLT;
所述 OLT根据所述上行速率或上行速率相关信息对应的上行速率为所述
ONU进行上行带宽分配。
优选地, 所述上行速率相关信息是与所述上行速率存在预设对应关系的 逻辑信息、 序列号信息、 注册信息或定界信息。 优选地,所述 ONU发送上行速率或上行速率相关信息的方式包括: 利用 新建的用于传输 ONU上行速率的 PLOAM消息、利用现有 PLOAM消息的特 定域、 利用 ONU管理控制接口消息或利用上行帧的指示域的特定比特位。
优选地, 所述现有 PLOAM消息指 ONU序列号消息或注册消息。
优选地, 所述 OLT给不同上行速率的 ONU分配上行带宽时釆用的参数 包括开始时间和授予尺寸, 且参数的粒度相同, 所述 OLT依次循环为各个 ONU分配带宽, 包括根据当前 ONU的开始时间、 授予尺寸及上行速率获得 下一个 ONU的开始时间。
优选地, 所述 OLT给不同上行速率的 ONU分配上行带宽时釆用的参数 包括开始时间和授予尺寸; 不同上行速率的 ONU的开始时间的粒度相同,授 予尺寸的粒度与上行速率成正比, 所述 OLT依次为各个 ONU分配带宽, 包 括根据当前 ONU的开始时间、授予尺寸及基础上行速率获得下一个 ONU的 开始时间。
优选地, 所述参数粒度由所述 OLT在注册激活过程中通知给所述 ONU, 或为系统预设的默认值。
为解决以上技术问题, 本发明还提供了一种无源光网络系统, 所述无源 光网络系统包括:
ONU, 其设置为: 根据光线路终端 (OLT ) 的请求或主动将上行速率或 上行速率相关信息发送给所述 OLT;
OLT, 连接相同或不同上行速率的 ONU, 设置为: 根据所述上行速率或 上行速率相关信息对应的上行速率为所述 ONU进行上行带宽分配。
优选地, 所述上行速率相关信息是与所述上行速率存在预设对应关系的 逻辑信息、 序列号信息、 注册信息或定界信息。
优选地,所述 ONU发送上行速率或上行速率相关信息的方式包括: 利用 新建的用于传输 ONU上行速率的 PLOAM消息、利用现有 PLOAM消息的特 定域、 利用 ONU管理控制接口消息或利用上行帧的指示域的特定比特位。
优选地, 所述 OLT给不同上行速率的 ONU分配上行带宽时釆用的参数 包括开始时间和授予尺寸, 且参数的粒度相同, 所述 OLT依次循环为各个 ONU分配带宽, 包括根据当前 ONU的开始时间、 授予尺寸及上行速率获得 下一个 ONU的开始时间。
优选地, 所述 OLT给不同上行速率的 ONU分配上行带宽时釆用的参数 包括开始时间和授予尺寸; 不同上行速率的 ONU的开始时间的粒度相同,授 予尺寸的粒度与上行速率成正比, 所述 OLT依次为各个 ONU分配带宽, 包 括根据当前 ONU的开始时间、授予尺寸及基础上行速率获得下一个 ONU的 开始时间。
优选地, 所述参数粒度由所述 OLT在注册激活过程中通知给所述 ONU, 或为系统预设的默认值。
本发明还提供一种 ONU, ONU设置为: 根据 OLT的请求或主动将上行 速率或上行速率相关信息发送给所述 OLT;由所述 OLT根据所述上行速率或 上行速率相关信息对应的上行速率为所述 ONU进行上行带宽分配。
优选地,所述 ONU发送上行速率或上行速率相关信息的方式包括: 利用 新建的用于传输 ONU上行速率的 PLOAM消息、利用现有 PLOAM消息的特 定域、 利用 ONU管理控制接口消息或利用上行帧的指示域的特定比特位。
本发明还提供了一种 OLT,所述 OLT,连接相同或不同上行速率的 ONU, 设置为:根据上行速率或上行速率相关信息对应的上行速率为所述 ONU进行 上行带宽分配;
所述上行速率或上行速率相关信息由 ONU根据 OLT的请求或主动发送 给所述 OLT。
优选地, 所述 OLT给不同上行速率的 ONU分配上行带宽时釆用的参数 包括开始时间和授予尺寸, 且参数的粒度相同, 所述 OLT依次循环为各个 ONU分配带宽, 包括根据当前 ONU的开始时间、 授予尺寸及上行速率获得 下一个 ONU的开始时间。
优选地, 所述 OLT给不同上行速率的 ONU分配上行带宽时釆用的参数 包括开始时间和授予尺寸; 不同上行速率的 ONU的开始时间的粒度相同,授 予尺寸的粒度与上行速率成正比, 所述 OLT依次为各个 ONU分配带宽, 包 括根据当前 ONU的开始时间、授予尺寸及基础上行速率获得下一个 ONU的 开始时间。
优选地, 所述参数粒度由所述 OLT在注册激活过程中通知给所述 ONU, 或为系统预设的默认值。
本发明无源光网络中的上行带宽分配方法和无源光网络系统中, 由 ONU 根据所述 OLT 的请求或主动将其上行速率或上行速率相关信息发送给所述 OLT, OLT根据 ONU上^艮的上行速率或上行速率相关信息对应的上行速率 为该 ONU进行上行带宽分配。 附图概述
图 1 是 GPON系统的拓朴结构示意图;
图 2是 GPON下行帧的结构示意图;
图 3是本发明无源光网络中的上行带宽分配方法的示意图。 本发明的较佳实施方式 当一个下行速率为 10Gbit/s的 OLT通过 ODN的不同光纤支路分别连接上 行速率为 2.5Gbit/s和 5Gbit/s的 ONU时, 两种速率的 ONU釆用时分复用的方式 共享上行传输媒质。 OLT通过 BWmap命令每个 ONU在特定的上行时隙发送上 行数据, OLT的光探测器件根可以完成两种速率 ONU发送的上行光信号的探 测, 并将探测的光信号转换为电信号, 光信号转换为电信号后, OLT根据不 路处理, 将上行速率为 5Gbit/s的信号送到 5Gbit/s的电路处理。 通过上述方法, OLT具有同时连接不同上行速率的 ONU的能力。 当 OLT釆用上述 BWmap给各 个 ONU分配上行带宽时, BWmap中的 Start time表示 ONU发送的 XG-PON的传 输汇聚突发( XGTC burst )的第一个字节在 125us的上行帧中的位置, Grant size 表示 ONU发送的数据长度, 对于相同的 Grant size, 5Gbit/s上行速率的 ONU发 sizex-j 戮 时间的二分之一,因此 0LT为两种或者两种以上上行速率的 0NU 分配上行带宽时, 为了提高上行传输效率, OLT需要知道每个 ONU的上行速 率,在确定了 ONU的上行速率之后, OLT可以根据为该 ONU分配的 Start time、 Grant size和该 ONU的上行速率计算出在该上行帧内该 ONU完成上行数据发 送的时间,从而, OLT可以计算下一个 ONU开始发送上行数据的时间 Starttime。 因此, 在提高上行传输效率的前提下, OLT下连接两种及两种以上上行 速率的 ONU时, OLT需要获得每个 ONU的上行速率后为各个 ONU进行带 宽分配。
本发明无源光网络中的上行带宽分配方法和无源光网络系统的主要思想 是, 由 ONU根据所述 OLT的请求或主动将其上行速率或上行速率相关信息 发送给所述 OLT, OLT根据 ONU上报的上行速率或上行速率相关信息对应 的上行速率为该 ONU进行上行带宽分配。
当无源光网络的 OLT具有同时连接不同速率的 ONU的能力时, 其所连 接的 ONU的速率可能相同或不同,如图 3所示,本发明无源光网络中的上行 带宽分配方法包括:
步骤 301 : ONU根据所述 OLT的请求或主动将其上行速率或上行速率相 关信息发送给所述 OLT;
所述上行速率相关信息是与所述上行速率存在预设对应关系的逻辑信 息、 序列号信息、 注册信息或定界信息。
步骤 302: 所述 OLT根据所述上行速率或上行速率相关信息对应的上行 速率为所述 ONU进行上行带宽分配。
所述 ONU发送上行速率或上行速率相关信息的方式包括:利用新建的用 于传输 ONU上行速率的 PLOAM消息、利用现有 PLOAM消息的特定域、 利 用 OMCI消息或利用上行帧的指示域的特定比特位。 所述现有 PLOAM消息 可以是 ONU序列号消息或注册标识消息。 详见后续实施例。
所述 OLT给不同上行速率的 ONU分配上行带宽时釆用的参数包括开始 时间和授予尺寸, 参数的粒度可相同或不同。
参数的粒度均相同时, 所述 OLT依次循环为各个 ONU分配带宽, 包括 根据当前 ONU的开始时间、授予尺寸及其上行速率获得下一个 ONU的开始 时间。 相同的情况包括显示相同和隐式相同。
参数粒度不同的实现方式如:不同上行速率的 ONU的开始时间的粒度相 同,其授予尺寸的粒度与上行速率成正比,且基础上行速率的 ONU的开始时 间和授予尺寸的粒度相同或不同。 引入参数粒度后, OLT依次为各个 ONU 分配带宽,根据当前 ONU的开始时间、授予尺寸及基础上行速率获得下一个 ONU的开始时间。
如: 接入 2.5Gbit/s、 5Gbit/s、 10Gbit/s三种速率的 ONU, 如果 5Gbit/s的 ONU为基础上行速率, 其开始时间和授予尺寸的粒度都为 4, 则 2.5Gbit/s的 ONU的授予尺寸粒度为 2, 10Gbit/s的 ONU的授予尺寸的粒度为 8。
如: OLT给速率最低的 ONU分配上行带宽的分配结构中的授予尺寸的 粒度为常数 C, OLT给速率为最低速率 n倍的 ONU分配上行带宽的分配结构 中的授予尺寸的粒度为常数 n X C;
速率最低的 ONU收到 OLT分配给自己的分配结构后, 按照分配结构中 的开始时间、授予尺寸及粒度 C确定 OLT分配给自己的上行带宽在上行帧中 的位置, 速率为最低速率 n倍的 ONU收到 OLT分配给自己的分配结构后, 按照分配结构中的开始时间、 授予尺寸及粒度 n x C确定 OLT分配给自己的 上行带宽在上行帧中的位置。
可理解地, ONU和 OLT具有相同的开始时间粒度, 以及相同的授予尺 寸粒度。 所述参数粒度可以由所述 OLT在注册激活过程中通知给所述 ONU, 或为系统预设的默认值。
本发明所涉及的上行带宽分配仅适用于与当前 ONU 的上行速率相关的 上行数据的带宽分配。
实施例一
下行速率为 10Gbit/s的 OLT下连接两种上行速率的 ONU, 分别为上行 速率为 2.5Gbit/s的 ONU1和上行速率为 5Gbit/s的 ONU2,系统默认设置 OLT 给上行速率为 2.5Gbit/s 的 ONU1 分配上行带宽的分配结构中 Start time和 Grant Size的值的粒度为 4, 给上行速率为 5Gbit/s的 ONU2分配上行带宽的 分配结构中 Start time的值的粒度为 4, Grant Size的值的粒度为 8。 此处, 将 ONU2的 Grant Size的值的粒度设为 8的原因是, 以 ONU1的上行速率为基 础上行速率,将 ONU2与 ONU1的速率倍数关系体现在 Grant Size的粒度上, 即 Grant Size的粒度与对应的上行速率成正比。
OLT为两种速率的 ONU分别分配上行带宽的主要步骤如下:
步骤 401 : OLT为未注册激活状态中的序列号状态 (ONU有多种状态, 序列号状态为其中一种状态) 的 ONU分配用于发送序列号消息的共享带宽, 所述共享带宽对应的分配结构的 Start time的值的 x, Grant size的值为 y; 此处分配的序列号消息带宽是分配给两种速率 ONU的共同的上行带宽, 即两种速率的注册激活的 ONU都可以利用这个带宽发送上行数据。此带宽按 照低速率的 ONU的需求来分配, 这样高速率的 ONU解析的时候相当于获得 了超出实际需要的带宽。 因为前面已经描述了 ONU处系统默认了 Grantsize 的粒度值, 所以 ONU1和 ONU2的 Grantsize不同。
步骤 402: 处于序列号状态的 ONU收到上述用于发送序列号信息的带宽 后, 才艮据 Start time和 Grant size的值及系统默认的 Start time和 Grant size的 粒度得到发送序列号信息的带宽, 即上行速率为 2.5Gbit/s的 ONU1根据 Start time和 Grant size的粒度 4得到发送序列号信息的带宽, 上行速率为 5Gbit/s 的 ONU2根据 Start time和 Grant size的粒度 4和 8得到发送序列号信息的带 宽, ONU根据解析出的发送序列号信息的带宽发送自身的序列号消息给 OLT, 同时 ONU将自身的上行速率写在序列号信息的填充域(Padding )上 才艮给 OLT;
步骤 403: OLT接收到 ONU在步骤 402中发送的序列号消息后, 获得该 ONU的序列号信息和上行速率信息, OLT根据所述上行速率信息为该 ONU 分配上行带宽, 当为某个 ONU分配传输上行数据的字节数为 z时, 如果该 ONU的上行速率为 2.5Gbit/s, 则为该 ONU分配的分配结构中的 Grant size 的值为 z/4, 如果该 ONU的上行速率为 5Gbit/s, 则为该 ONU分配的分配结 构中的 Grant size的值为 z/8, OLT为两种速率的 ONU分配的上行带宽的分 配结构中的 Start time的值都是按照上行速率为 2.5Gbit/s的 ONU的粒度 4的 值进行分配的, Start time的取值范围为 0到 9719; 即, OLT根据当前 ONU的开始时间、 授予尺寸及基础上行速率获得下 一个 ONU的开始时间。
步骤 404:上行速率为 2.5Gbit/s的 ONU1收到 OLT在步骤 403中发送的 分配结构后, 按照粒度 4解析 OLT分配给自己的分配结构中的 Start time和 Grant size值, 获得自己的上行带宽在上行帧中的位置, 上行速率为 5Gbit/s 的 ONU2收到 OLT在步骤 3中发送的分配结构后,按照粒度 4获得 Start time 的值,按照粒度 8获得 Grant size值,获得自己的上行带宽在上行帧中的位置。
实施例二
实施例二与实施例一的不同之处在于, OLT存储 ONU 的注册标识与
ONU的上行速率的对应关系, OLT通过以下方式获得 ONU的上行速率: 步骤 501 : OLT为未注册激活状态中的测距状态的 ONU分配用于发送注 册消息的上行带宽;
步骤 502: 处于测距状态的 ONU收到上述用于发送注册消息的带宽后, ONU在所述带宽内发送注册消息给 OLT;
步骤 503: OLT接收到 ONU在步骤 502中发送的注册消息后,根据存储 的 ONU的注册标识与 ONU的上行速率的对应关系获得该 ONU的上行速率。
其他步骤与实例一相同, 此处不再赘述。
实施例三
实施例三与实施例一的不同之处在于, OLT通过以下方式获得 ONU的 上行速率:
步骤 601 : OLT为 ONU分配用于发送上行速率消息的上行带宽; 步骤 602: ONU收到上述用于发送上行速率消息的带宽后, ONU在所述 带宽内发送上行速率消息给 OLT, 如表 1所示, 所述上行速率消息由 5部分 组成,分别为 ONU标识( ONU ID )、消息标识( message ID )、顺序号( SeqNo )、 包含上行数率相关信息的数据(Data )和消息完整性检查(MIC ) , ONU在 所述 Data中写入了 ONU的上行速率。
ONU ID
Message ID ( 10000000 )
SeqNo
Data (上行速率相关信息 )
MIC
表 1
步骤 603: OLT接收到 ONU在步骤 602中发送的上行速率消息后, 获得 该 ONU的上行速率。
实施例四
实施例四与实施例一的不同之处在于, 系统默认设置, 上行突发的指示 域的 bitl位为 0时, 对应的 ONU的上行速率为 2.5Gbit/s, bitl位为 1时, 对 应的 ONU的上行速率为 5Gbit/s , OLT通过以下方式获得 ONU的上行速率: 步骤 701 : OLT为 ONU分配用于发送上行突发的上行带宽;
步骤 702: ONU收到上述用于发送上行突发的带宽后, 在所述带宽内发 送包含上述 IND域的上行突发给 OLT;
其中,上行速率为 5Gbit/s的 ONU2收到上述用于发送上行突发的带宽后 , 在发送给 OLT 的上行突发的指示域(IND ) 的 bitl 位写入 1 , 上行速率为 2.5Gbit/s的 ONU1收到上述用于发送上行突发的带宽后,在发送给 OLT的上 行突发的指示域(IND ) 的 bitl位写入 0。
步骤 703: OLT接收到 ONU在步骤 702中发送的上行突发后,根据所述 IND域的 bitl的值获得该 ONU的上行速率。
其他步骤与实例一相同, 此处不再赘述。
实施例五
实施例四与实施例一的不同之处在于, OLT釆用如下步骤获得 ONU的 上行速率:
步骤 801 : OLT为 ONU分配用于发送上行突发的上行带宽; 步骤 802: ONU收到上述用于发送上行突发的带宽后, 在所述带宽内发 送包含定界符的上行突发给 OLT;
其中,上行速率为 5Gbit/s的 ONU2收到上述用于发送上行突发的带宽后 , 釆用 5Gbit/s上行速率的定界符组装上行突发,上行速率为 2.5Gbit/s的 ONU1 收到上述用于发送上行突发的带宽后, 釆用 2.5Gbit/s上行速率的定界符组装 上行突发。
步骤 803: OLT接收到 ONU在步骤 802中发送的上行突发后,根据所述 定界符的值获得该 ONU的上行速率。
其他步骤与实例一相同, 此处不再赘述。
以上实施例有以下变换方式:
以上实施例中釆用的所述粒度值为系统默认值, 可变换地, 也可以釆用
OLT在 ONU处于注册激活过程将对应该 ONU的所述粒度值通知给该 ONU; 实施例一的基础上, 在步骤 402中, ONU只给 OLT发送自己的序列号信息, OLT在步骤 403中收到 ONU发送的序列号信息后,根据存储 ONU的序列号 与 ONU的上行速率的对应关系获得该 ONU的上行速率。
实施例一和实施例二中的用于发送序列号信息、 注册信息、 上行速率信 息的消息均为 PLOAM ( Physical Layer Operations , Administration and Maintenance,物理层操作管理维护)消息,当然,也可以 ONU通过 OMCI(ONU Management and Control Interface, ONU管理控制接口) 消息实现。
以上实施例中, 开始时间粒度及授予尺寸粒度有所不同, 当然也可以釆 用相同的粒度, 如默认粒度为为常数, 如 1 , 相应地, 在实施例一中, 当为 某个 ONU分配传输上行数据的字节数为 z时, 为该 ONU分配的分配结构中 的 Grant size的值为 z, OLT为下一个 ONU分配的上行带宽的分配结构中的 Start time的值是这样确定的: 根据当前 ONU的开始时间、 授予尺寸及其上 行速率获得下一个 ONU的开始时间。
以上实施例中, 已明确 OLT接入两种不同速率的 ONU, 当然, 随着不 同需求的出现,还可以接入三种或更多种速率的 ONU,其处理方式基本相同, 可理解地,对于具有接入不同速率的 ONU的系统而言, 即使当前系统接入的 ONU都是相同速率的, ONU仍然需要向 OLT发送其上行速率。
在不冲突的情况下,本申请中的实施例及实施例中的特征可以相互组合。
为实现以上方法及实施例, 本发明还提供了一种无源光网络系统, 所述 无源光网络系统包括:
所述 ONU, 用于根据光线路终端( OLT )的请求或主动将其上行速率或 上行速率相关信息发送给所述 OLT;
所述 OLT,连接相同或不同上行速率的 ONU, 用于根据所述上行速率或 上行速率相关信息对应的上行速率为所述 ONU进行上行带宽分配。
进一步地, 所述上行速率相关信息是与所述上行速率存在预设对应关系 的逻辑信息、 序列号信息、 注册信息或定界信息。
进一步地,所述 ONU发送上行速率或上行速率相关信息的方式包括: 利 用新建的用于传输 ONU上行速率的 PLOAM消息、利用现有 PLOAM消息的 特定域、 利用 ONU管理控制接口消息或利用上行帧的指示域的特定比特位。
进一步地, 所述 OLT给不同上行速率的 ONU分配上行带宽时釆用的参 数包括开始时间和授予尺寸, 且参数的粒度相同, 所述 OLT依次循环为各个 ONU分配带宽, 包括根据当前 ONU的开始时间、 授予尺寸及其上行速率获 得下一个 ONU的开始时间。
进一步地, 所述 OLT给不同上行速率的 ONU分配上行带宽时釆用的参 数包括开始时间和授予尺寸; 不同上行速率的 ONU的开始时间的粒度相同, 其授予尺寸的粒度与上行速率成正比,基础上行速率的 ONU的开始时间和授 予尺寸的粒度相同或不同, 所述 OLT依次为各个 ONU分配带宽, 包括根据 当前 ONU的开始时间、授予尺寸及基础上行速率获得下一个 ONU的开始时 间。
进一步地, 所述参数粒度由所述 OLT 在注册激活过程中通知给所述 ONU, 或为系统预设的默认值。 工业实用性
釆用本发明的方法和系统中, OLT可以获得各个 ONU的上行速率, 并 根据 ONU 的上行速率进行上行带宽分配, 从而有效利用上行带宽的各个时 隙, 提高上行传输效率。

Claims

权 利 要 求 书
1、 一种无源光网络中的上行带宽分配方法, 该方法包括:
光网络单元 ONU根据光线路终端 OLT的请求或主动将上行速率或上行 速率相关信息发送给所述 OLT;
所述 OLT根据所述上行速率或上行速率相关信息对应的上行速率为所述
ONU进行上行带宽分配。
2、 如权利要求 1所述的方法,其中, 所述上行速率相关信息是与所述上 行速率存在预设对应关系的逻辑信息、 序列号信息、 注册信息或定界信息。
3、 如权利要求 1所述的方法, 其中, 所述 ONU发送上行速率或上行速 率相关信息的方式包括:利用新建的用于传输 ONU上行速率的 PLOAM消息、 利用现有 PLOAM消息的特定域、利用 ONU管理控制接口消息或利用上行帧 的指示域的特定比特位。
4、 如权利要求 3所述的方法, 其中, 所述现有 PLOAM消息指 ONU序 列号消息或注册消息。
5、 如权利要求 1所述的方法, 其中, 所述 OLT给不同上行速率的 ONU 分配上行带宽时釆用的参数包括开始时间和授予尺寸, 且参数的粒度相同, 所述 OLT依次循环为各个 ONU分配带宽, 包括根据当前 ONU的开始时间、 授予尺寸及上行速率获得下一个 ONU的开始时间。
6、 如权利要求 1所述的方法, 其中, 所述 OLT给不同上行速率的 ONU 分配上行带宽时釆用的参数包括开始时间和授予尺寸; 不同上行速率的 ONU 的开始时间的粒度相同, 授予尺寸的粒度与上行速率成正比, 所述 OLT依次 为各个 ONU分配带宽, 包括根据当前 ONU的开始时间、 授予尺寸及基础上 行速率获得下一个 ONU的开始时间。
7、 如权利要求 1所述的方法, 其中, 所述参数粒度由所述 OLT在注册 激活过程中通知给所述 ONU, 或为系统预设的默认值。
8、 一种无源光网络系统, 所述无源光网络系统包括:
光网络单元 ONU, 其设置为: 根据光线路终端 OLT的请求或主动将上 行速率或上行速率相关信息发送给所述 OLT;
OLT, 连接相同或不同上行速率的 ONU, 设置为: 根据所述上行速率或 上行速率相关信息对应的上行速率为所述 ONU进行上行带宽分配。
9、 如权利要求 8所述的无源光网络系统,其中, 所述上行速率相关信息 是与所述上行速率存在预设对应关系的逻辑信息、 序列号信息、 注册信息或 定界信息。
10、 如权利要求 8所述的无源光网络系统, 其中, 所述 ONU发送上行 速率或上行速率相关信息的方式包括:利用新建的用于传输 ONU上行速率的
PLOAM消息、 利用现有 PLOAM消息的特定域、 利用 ONU管理控制接口消 息或利用上行帧的指示域的特定比特位。
11、 如权利要求 8所述的无源光网络系统, 其中, 所述 OLT给不同上行 速率的 ONU分配上行带宽时釆用的参数包括开始时间和授予尺寸,且参数的 粒度相同, 所述 OLT依次循环为各个 ONU分配带宽, 包括根据当前 ONU 的开始时间、 授予尺寸及上行速率获得下一个 ONU的开始时间。
12、 如权利要求 8所述的无源光网络系统, 其中, 所述 OLT给不同上行 速率的 ONU分配上行带宽时釆用的参数包括开始时间和授予尺寸;不同上行 速率的 ONU的开始时间的粒度相同,授予尺寸的粒度与上行速率成正比,所 述 OLT依次为各个 ONU分配带宽, 包括根据当前 ONU的开始时间、 授予 尺寸及基础上行速率获得下一个 ONU的开始时间。
13、 如权利要求 8所述的无源光网络系统, 其中, 所述参数粒度由所述 OLT在注册激活过程中通知给所述 ONU, 或为系统预设的默认值。
14、 一种光网络单元 ONU, 所述 ONU设置为: 根据光线路终端 OLT 的请求或主动将上行速率或上行速率相关信息发送给所述 OLT; 由所述 OLT 根据所述上行速率或上行速率相关信息对应的上行速率为所述 ONU进行上 行带宽分配。
15、 如权利要求 14所述的 ONU, 其中, 所述 ONU发送上行速率或上 行速率相关信息的方式包括: 利用新建的用于传输 ONU上行速率的 PLOAM 消息、利用现有 PLOAM消息的特定域、利用 ONU管理控制接口消息或利用 上行帧的指示域的特定比特位。
16、 一种光线路终端 OLT, 所述 OLT, 连接相同或不同上行速率的光 网络单元 ONU, 设置为: 根据上行速率或上行速率相关信息对应的上行速率 为所述 ONU进行上行带宽分配;
所述上行速率或上行速率相关信息由 ONU根据 OLT的请求或主动发送 给所述 OLT。
17、 如权利要求 16所述的 OLT, 其中, 所述 OLT给不同上行速率的
ONU分配上行带宽时釆用的参数包括开始时间和授予尺寸,且参数的粒度相 同, 所述 OLT依次循环为各个 ONU分配带宽, 包括根据当前 ONU的开始 时间、 授予尺寸及上行速率获得下一个 ONU的开始时间。
18、 如权利要求 16所述的 OLT, 其中, 所述 OLT给不同上行速率的 ONU分配上行带宽时釆用的参数包括开始时间和授予尺寸; 不同上行速率的
ONU的开始时间的粒度相同,授予尺寸的粒度与上行速率成正比, 所述 OLT 依次为各个 ONU分配带宽, 包括根据当前 ONU的开始时间、 授予尺寸及基 础上行速率获得下一个 ONU的开始时间。
19、 如权利要求 16所述的 OLT,其中,所述参数粒度由所述 OLT在注 册激活过程中通知给所述 ONU, 或为系统预设的默认值。
PCT/CN2011/076045 2010-09-01 2011-06-21 无源光网络中的上行带宽分配方法及无源光网络系统 WO2012028014A1 (zh)

Applications Claiming Priority (2)

Application Number Priority Date Filing Date Title
CN201010276070.1 2010-09-01
CN201010276070.1A CN102387426B (zh) 2010-09-01 2010-09-01 无源光网络中的上行带宽分配方法

Publications (1)

Publication Number Publication Date
WO2012028014A1 true WO2012028014A1 (zh) 2012-03-08

Family

ID=45772125

Family Applications (1)

Application Number Title Priority Date Filing Date
PCT/CN2011/076045 WO2012028014A1 (zh) 2010-09-01 2011-06-21 无源光网络中的上行带宽分配方法及无源光网络系统

Country Status (2)

Country Link
CN (1) CN102387426B (zh)
WO (1) WO2012028014A1 (zh)

Cited By (1)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
US11329720B2 (en) * 2018-09-25 2022-05-10 Xi'an Zhongxing New Software Co., Ltd. Ranging method for optical network, OLT, ONU, and optical network system

Families Citing this family (5)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
CN103634086B (zh) * 2012-08-28 2018-12-21 中兴通讯股份有限公司 调整上下行时间分配的方法、系统、局端设备及cpe
CN103840903A (zh) * 2012-11-23 2014-06-04 中兴通讯股份有限公司 工作波长的调谐方法及系统
CN105191340B (zh) * 2013-02-26 2019-05-24 中兴通讯股份有限公司 光网络单元激活的信道映射的方法、系统、单元和设备
CN113365163B (zh) 2016-12-30 2023-10-20 华为技术有限公司 带宽分配的方法、光线路终端、光网络单元及系统
CN112492411A (zh) * 2020-08-14 2021-03-12 中兴通讯股份有限公司 注册请求的响应方法及装置

Citations (4)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
CN1767693A (zh) * 2005-11-18 2006-05-03 润欣通信技术(上海)有限公司 以太网无源光网络多业务动态带宽请求的方法
CN101383767A (zh) * 2008-10-23 2009-03-11 中兴通讯股份有限公司 上行带宽分配方法和光线路终端
CN101552932A (zh) * 2008-04-01 2009-10-07 华为技术有限公司 光网络传输处理方法、装置和系统
CN101753431A (zh) * 2008-12-22 2010-06-23 中兴通讯股份有限公司 一种上行带宽估计方法及装置

Family Cites Families (3)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
US7362704B2 (en) * 2003-09-15 2008-04-22 Teknovus, Inc. Method and apparatus for dynamically allocating upstream bandwidth in passive optical networks
CN100394711C (zh) * 2003-10-17 2008-06-11 烽火通信科技股份有限公司 千兆以太网无源光网络上行流的分段积分式带宽分配方法
CN101668233B (zh) * 2008-09-01 2013-01-16 中兴通讯股份有限公司 一种协助处理动态带宽分配算法的硬件装置及方法

Patent Citations (4)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
CN1767693A (zh) * 2005-11-18 2006-05-03 润欣通信技术(上海)有限公司 以太网无源光网络多业务动态带宽请求的方法
CN101552932A (zh) * 2008-04-01 2009-10-07 华为技术有限公司 光网络传输处理方法、装置和系统
CN101383767A (zh) * 2008-10-23 2009-03-11 中兴通讯股份有限公司 上行带宽分配方法和光线路终端
CN101753431A (zh) * 2008-12-22 2010-06-23 中兴通讯股份有限公司 一种上行带宽估计方法及装置

Cited By (1)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
US11329720B2 (en) * 2018-09-25 2022-05-10 Xi'an Zhongxing New Software Co., Ltd. Ranging method for optical network, OLT, ONU, and optical network system

Also Published As

Publication number Publication date
CN102387426A (zh) 2012-03-21
CN102387426B (zh) 2015-08-12

Similar Documents

Publication Publication Date Title
JP3788785B2 (ja) ギガビットイーサネット(登録商標)受動光加入者網システムにおける動作具現方法
CN102082976B (zh) 一种无源光网络中数据发送的方法和系统
US8315520B2 (en) Method, system and apparatus for transmitting data
US10516923B2 (en) Dynamic bandwidth assignment method and apparatus, and passive optical network system
EP2837141B1 (en) Dynamic bandwidth assignment in hybrid access network with passive optical network and another medium
WO2013082936A1 (zh) 一种无源光网络系统中的上行带宽分配方法及系统
TWI725274B (zh) 資料通信系統、光線路終端及基帶單元
US8873565B2 (en) Method and apparatus of delivering upstream data in ethernet passive optical network over coaxial network
US7437076B2 (en) Data transmission method in gigabit ethernet passive optical network
WO2012028014A1 (zh) 无源光网络中的上行带宽分配方法及无源光网络系统
WO2015172279A1 (zh) 一种波长切换的方法、装置及系统
WO2009012728A1 (fr) Procédé, appareil et système permettant à une unité de réseau optique d'avoir accès au réseau
US20100183316A1 (en) Methods and Systems for Dynamic Equalization Delay Passive Optical Networks
WO2011012007A1 (zh) 光线路终端快速更新光网络单元测距结果的方法及系统
WO2009000194A1 (fr) Procédé d'attribution de bande passante, système et appareil dans un réseau optique
EP2723015A1 (en) Method and device for communicating granularity of parameters
WO2011094990A1 (zh) 通路切换方法、系统及下行数据发送方法
WO2011020376A1 (zh) 无源光网络中处理的方法及无源光网络系统和网元
CN101873516B (zh) 一种吉比特无源光网络系统的光网络单元注册激活方法
WO2012019458A1 (zh) 一种无源光网络中的测距方法及系统
Gravalos et al. A modified max-min fair dynamic bandwidth allocation algorithm for XG-PONs
WO2012071828A1 (zh) 一种全保护模式下无源光网络中的传输数据的方法及系统
WO2021082669A1 (zh) 一种基于无源光网络的通信方法、相关设备以及系统
WO2011095022A1 (zh) 一种对发光异常光网络单元正确定位的方法及系统
JP6134247B2 (ja) 光通信システム、信号送信制御方法及び局側光回線終端装置

Legal Events

Date Code Title Description
121 Ep: the epo has been informed by wipo that ep was designated in this application

Ref document number: 11821040

Country of ref document: EP

Kind code of ref document: A1

NENP Non-entry into the national phase

Ref country code: DE

122 Ep: pct application non-entry in european phase

Ref document number: 11821040

Country of ref document: EP

Kind code of ref document: A1