WO2012027974A1 - 单投影宽屏投影装置及方法 - Google Patents

单投影宽屏投影装置及方法 Download PDF

Info

Publication number
WO2012027974A1
WO2012027974A1 PCT/CN2011/070423 CN2011070423W WO2012027974A1 WO 2012027974 A1 WO2012027974 A1 WO 2012027974A1 CN 2011070423 W CN2011070423 W CN 2011070423W WO 2012027974 A1 WO2012027974 A1 WO 2012027974A1
Authority
WO
WIPO (PCT)
Prior art keywords
optical
image
projection
mirror
small image
Prior art date
Application number
PCT/CN2011/070423
Other languages
English (en)
French (fr)
Inventor
陈启雄
少顺达
张嵘
Original Assignee
福建网讯科技有限公司
Priority date (The priority date is an assumption and is not a legal conclusion. Google has not performed a legal analysis and makes no representation as to the accuracy of the date listed.)
Filing date
Publication date
Priority claimed from CN2010102680586A external-priority patent/CN101943847A/zh
Priority claimed from CN 201010268767 external-priority patent/CN101943848A/zh
Priority claimed from CN 201010269164 external-priority patent/CN101943849A/zh
Application filed by 福建网讯科技有限公司 filed Critical 福建网讯科技有限公司
Priority to US13/255,790 priority Critical patent/US20130147865A1/en
Publication of WO2012027974A1 publication Critical patent/WO2012027974A1/zh

Links

Classifications

    • GPHYSICS
    • G03PHOTOGRAPHY; CINEMATOGRAPHY; ANALOGOUS TECHNIQUES USING WAVES OTHER THAN OPTICAL WAVES; ELECTROGRAPHY; HOLOGRAPHY
    • G03BAPPARATUS OR ARRANGEMENTS FOR TAKING PHOTOGRAPHS OR FOR PROJECTING OR VIEWING THEM; APPARATUS OR ARRANGEMENTS EMPLOYING ANALOGOUS TECHNIQUES USING WAVES OTHER THAN OPTICAL WAVES; ACCESSORIES THEREFOR
    • G03B21/00Projectors or projection-type viewers; Accessories therefor
    • G03B21/14Details
    • G03B21/28Reflectors in projection beam
    • GPHYSICS
    • G09EDUCATION; CRYPTOGRAPHY; DISPLAY; ADVERTISING; SEALS
    • G09GARRANGEMENTS OR CIRCUITS FOR CONTROL OF INDICATING DEVICES USING STATIC MEANS TO PRESENT VARIABLE INFORMATION
    • G09G5/00Control arrangements or circuits for visual indicators common to cathode-ray tube indicators and other visual indicators
    • G09G5/10Intensity circuits
    • GPHYSICS
    • G03PHOTOGRAPHY; CINEMATOGRAPHY; ANALOGOUS TECHNIQUES USING WAVES OTHER THAN OPTICAL WAVES; ELECTROGRAPHY; HOLOGRAPHY
    • G03BAPPARATUS OR ARRANGEMENTS FOR TAKING PHOTOGRAPHS OR FOR PROJECTING OR VIEWING THEM; APPARATUS OR ARRANGEMENTS EMPLOYING ANALOGOUS TECHNIQUES USING WAVES OTHER THAN OPTICAL WAVES; ACCESSORIES THEREFOR
    • G03B37/00Panoramic or wide-screen photography; Photographing extended surfaces, e.g. for surveying; Photographing internal surfaces, e.g. of pipe
    • G03B37/04Panoramic or wide-screen photography; Photographing extended surfaces, e.g. for surveying; Photographing internal surfaces, e.g. of pipe with cameras or projectors providing touching or overlapping fields of view
    • GPHYSICS
    • G09EDUCATION; CRYPTOGRAPHY; DISPLAY; ADVERTISING; SEALS
    • G09GARRANGEMENTS OR CIRCUITS FOR CONTROL OF INDICATING DEVICES USING STATIC MEANS TO PRESENT VARIABLE INFORMATION
    • G09G3/00Control arrangements or circuits, of interest only in connection with visual indicators other than cathode-ray tubes
    • G09G3/001Control arrangements or circuits, of interest only in connection with visual indicators other than cathode-ray tubes using specific devices not provided for in groups G09G3/02 - G09G3/36, e.g. using an intermediate record carrier such as a film slide; Projection systems; Display of non-alphanumerical information, solely or in combination with alphanumerical information, e.g. digital display on projected diapositive as background
    • G09G3/002Control arrangements or circuits, of interest only in connection with visual indicators other than cathode-ray tubes using specific devices not provided for in groups G09G3/02 - G09G3/36, e.g. using an intermediate record carrier such as a film slide; Projection systems; Display of non-alphanumerical information, solely or in combination with alphanumerical information, e.g. digital display on projected diapositive as background to project the image of a two-dimensional display, such as an array of light emitting or modulating elements or a CRT
    • GPHYSICS
    • G09EDUCATION; CRYPTOGRAPHY; DISPLAY; ADVERTISING; SEALS
    • G09GARRANGEMENTS OR CIRCUITS FOR CONTROL OF INDICATING DEVICES USING STATIC MEANS TO PRESENT VARIABLE INFORMATION
    • G09G3/00Control arrangements or circuits, of interest only in connection with visual indicators other than cathode-ray tubes
    • G09G3/001Control arrangements or circuits, of interest only in connection with visual indicators other than cathode-ray tubes using specific devices not provided for in groups G09G3/02 - G09G3/36, e.g. using an intermediate record carrier such as a film slide; Projection systems; Display of non-alphanumerical information, solely or in combination with alphanumerical information, e.g. digital display on projected diapositive as background
    • G09G3/003Control arrangements or circuits, of interest only in connection with visual indicators other than cathode-ray tubes using specific devices not provided for in groups G09G3/02 - G09G3/36, e.g. using an intermediate record carrier such as a film slide; Projection systems; Display of non-alphanumerical information, solely or in combination with alphanumerical information, e.g. digital display on projected diapositive as background to produce spatial visual effects
    • HELECTRICITY
    • H04ELECTRIC COMMUNICATION TECHNIQUE
    • H04NPICTORIAL COMMUNICATION, e.g. TELEVISION
    • H04N9/00Details of colour television systems
    • H04N9/12Picture reproducers
    • H04N9/31Projection devices for colour picture display, e.g. using electronic spatial light modulators [ESLM]
    • H04N9/3102Projection devices for colour picture display, e.g. using electronic spatial light modulators [ESLM] using two-dimensional electronic spatial light modulators
    • H04N9/3111Projection devices for colour picture display, e.g. using electronic spatial light modulators [ESLM] using two-dimensional electronic spatial light modulators for displaying the colours sequentially, e.g. by using sequentially activated light sources
    • HELECTRICITY
    • H04ELECTRIC COMMUNICATION TECHNIQUE
    • H04NPICTORIAL COMMUNICATION, e.g. TELEVISION
    • H04N9/00Details of colour television systems
    • H04N9/12Picture reproducers
    • H04N9/31Projection devices for colour picture display, e.g. using electronic spatial light modulators [ESLM]
    • H04N9/3141Constructional details thereof
    • H04N9/3147Multi-projection systems
    • HELECTRICITY
    • H04ELECTRIC COMMUNICATION TECHNIQUE
    • H04NPICTORIAL COMMUNICATION, e.g. TELEVISION
    • H04N9/00Details of colour television systems
    • H04N9/12Picture reproducers
    • H04N9/31Projection devices for colour picture display, e.g. using electronic spatial light modulators [ESLM]
    • H04N9/3179Video signal processing therefor
    • H04N9/3185Geometric adjustment, e.g. keystone or convergence
    • HELECTRICITY
    • H04ELECTRIC COMMUNICATION TECHNIQUE
    • H04NPICTORIAL COMMUNICATION, e.g. TELEVISION
    • H04N9/00Details of colour television systems
    • H04N9/12Picture reproducers
    • H04N9/31Projection devices for colour picture display, e.g. using electronic spatial light modulators [ESLM]
    • H04N9/3179Video signal processing therefor
    • H04N9/3188Scale or resolution adjustment
    • GPHYSICS
    • G09EDUCATION; CRYPTOGRAPHY; DISPLAY; ADVERTISING; SEALS
    • G09GARRANGEMENTS OR CIRCUITS FOR CONTROL OF INDICATING DEVICES USING STATIC MEANS TO PRESENT VARIABLE INFORMATION
    • G09G2300/00Aspects of the constitution of display devices
    • G09G2300/02Composition of display devices
    • G09G2300/026Video wall, i.e. juxtaposition of a plurality of screens to create a display screen of bigger dimensions
    • GPHYSICS
    • G09EDUCATION; CRYPTOGRAPHY; DISPLAY; ADVERTISING; SEALS
    • G09GARRANGEMENTS OR CIRCUITS FOR CONTROL OF INDICATING DEVICES USING STATIC MEANS TO PRESENT VARIABLE INFORMATION
    • G09G2320/00Control of display operating conditions
    • G09G2320/06Adjustment of display parameters
    • G09G2320/0693Calibration of display systems
    • GPHYSICS
    • G09EDUCATION; CRYPTOGRAPHY; DISPLAY; ADVERTISING; SEALS
    • G09GARRANGEMENTS OR CIRCUITS FOR CONTROL OF INDICATING DEVICES USING STATIC MEANS TO PRESENT VARIABLE INFORMATION
    • G09G2340/00Aspects of display data processing
    • G09G2340/04Changes in size, position or resolution of an image
    • G09G2340/0464Positioning
    • GPHYSICS
    • G09EDUCATION; CRYPTOGRAPHY; DISPLAY; ADVERTISING; SEALS
    • G09GARRANGEMENTS OR CIRCUITS FOR CONTROL OF INDICATING DEVICES USING STATIC MEANS TO PRESENT VARIABLE INFORMATION
    • G09G2340/00Aspects of display data processing
    • G09G2340/14Solving problems related to the presentation of information to be displayed

Definitions

  • the present invention relates to the field of projection, and in particular to a single projection widescreen projection apparatus and method. Background art
  • the first type of widescreen projection technology is generally composed of a plurality of projection units, each of which includes an illumination optical system, an image display panel, and a projection optical system, and the images projected by each projection unit are spliced, each There is a clear seam between the screens. Although the current technology has made the seams smaller, it still has a certain effect on the overall picture after stitching.
  • the second type of widescreen projection technology single projection widescreen, although there is no seam with multi-projection projection, but its image display is limited to 4: 3 or 16:9 or 16:10 aspect ratio, the image display ratio is small Can not meet the modern people's demand for large screen and wide field of vision.
  • the technical problem to be solved by the present invention is to provide a single projection widescreen projection apparatus and method which can realize projection of a large screen and a wide field of view in a true sense.
  • a technical solution adopted by the present invention is: Providing a single projection widescreen projection apparatus, comprising an image processing system and sequentially arranged in a light passing direction
  • An optical non-imaging system providing a light source, an optical imaging system, an optical path switching system, a projection lens that magnifies an image and projected onto the screen
  • the image processing system is respectively connected to the optical imaging system and the optical path switching system, and is responsible for
  • the image is divided into N frames of small images and transmitted to the optical imaging system, where N is a natural number greater than 1, and a corner signal corresponding to the small image of each frame is output to the optical path switching system
  • the optical imaging system is configured to receive N frames of small images.
  • the optical path switching system includes a mirror, the mirror is mounted with a rotating electrical machine, and the corner signal is By controlling the rotating motor to drive the mirror to rotate, a small image of each frame is projected onto the screen.
  • the optical non-imaging system includes a light source, a shaper, and a collimator that are sequentially disposed.
  • the optical imaging system comprises a polarizer, a prism, an image display device and an analyzer which are sequentially disposed in the light passing direction.
  • a collimation system is further disposed between the optical imaging system and the optical path switching system, and the collimation system is composed of at least one collimating lens.
  • the image processing system further comprises: a conversion IC, which is responsible for converting image signals of different interfaces into RGB pixel digital signals, synchronization signals and control signals; a control IC responsible for converting RGB pixel numbers output by the conversion IC
  • the signal is divided into N frames of small images, N is a natural number greater than 1, and a small image of each frame is scanned, and then sent to the image display device of the optical imaging system, and the corresponding corner signal is output while scanning.
  • the corner signal corresponding to the small image of each frame further includes: a corner signal of the small image of the first frame drives the mirror to rotate by controlling the rotating motor, so that the angle between the mirror and the optical axis satisfies the angle of the small image projection of the first frame.
  • the corner signal of the second image of the small image is controlled by the rotating motor to drive the mirror to rotate, so that the positive angle of the front side of the mirror and the optical axis satisfy the angle of projection of the small image of the second frame, and so on, so that each frame is small The image is projected onto the screen.
  • the control IC implements scanning of small images of each frame by controlling RGB, HS, VS, DE, and DCLK.
  • a single projection widescreen projection apparatus comprising an image processing system and an optical non-imaging system providing a light source sequentially disposed in a light passing direction, an optical Imaging system, an optical path switching system, a projection lens that magnifies the image and projects it onto the screen;
  • the image processing system is coupled to the optical imaging system and the optical path switching system, respectively, and is responsible for dividing the image into N frames of small images for transmission to the optical imaging system, where N is a natural number greater than one.
  • the optical imaging system is configured to receive N-frame small image and optical non-imaging system light, and modulate light of the optical non-imaging system After that, an N-frame small image is displayed;
  • the optical path switching system includes an N-mirror, and N or N-1 optical switches, and each of the optical switches is respectively connected to a mirror, and the optical switch is used to receive the image processing system.
  • the optical switch signal controls the corresponding working state of the mirror that is set at an angle with the optical axis.
  • the optical non-imaging system comprises a light source, a shaper and a collimator which are sequentially arranged.
  • the optical imaging system comprises a polarizer, a prism, an image display device and an analyzer which are sequentially disposed in the light passing direction.
  • a collimation system is further disposed between the optical imaging system and the optical path switching system, and the collimation system is composed of at least one collimating lens.
  • the image processing system further comprises: a conversion IC, which is responsible for converting image signals of different interfaces into RGB pixel digital signals, synchronization signals and control signals; a control IC responsible for converting RGB pixel numbers output by the conversion IC
  • the signal is divided into N frames of small images, N is a natural number greater than 1, and a small image of each frame is scanned, and then sent to the image display device of the optical imaging system, and the corresponding optical switch signal is output while scanning.
  • the optical switch signal controls an optical switch of the N-channel;
  • the optical switch signal corresponding to the small image of the first frame causes the first mirror to be in an active state, that is, in a small image projection On the optical path;
  • the optical switch signal corresponding to the small image of the second frame closes the first mirror, that is, deviates from the optical path projected by the small image, so that the second mirror is in an active state, that is, on the optical path of the small image projection, and so on.
  • the m-1 mirror in front of it is closed, the mth mirror is in operation, m is a natural number less than or equal to N, and the mth mirror will This small image is completely reflected.
  • the optical switch signal controls an optical switch of the N-1 way;
  • the optical switch signal corresponding to the small image of the first frame causes the first mirror to be in a working state, that is, The light path projected by the small image;
  • the optical switch signal corresponding to the small image of the second frame is closed first a mirror, that is, an optical path that is deviated from a small image, so that the second mirror is in an active state, that is, on a light path projected by a small image, and so on; an optical switch signal corresponding to the small image of the mth frame, which is in front of The m -l mirror is closed, the mth mirror is in operation, m is a natural number less than or equal to N, the mth mirror completely reflects the small image; the Nth mirror remains in operation, That is, on the light path of a small image projection.
  • the control IC implements scanning of small images of each frame by controlling RGB, HS, VS, DE, and DCLK.
  • the number of mirrors of the optical path switching system is greater than or equal to the number of small images after segmentation.
  • the optical switch is a mechanical optical switch that relies on the movement of the optical element to change the optical path, or a non-mechanical optical switch that changes the refractive index of the waveguide by an electro-optic effect or a magneto-optic effect or a thermo-optic effect or a thermo-optic effect to change the optical path.
  • Another technical solution adopted by the present invention is to provide a single projection widescreen projection method, which is characterized in that it comprises the following steps:
  • the converted RGB pixel digital signal is divided into N frames of small images, and N is a natural number greater than 1.
  • the scanned N frames small images are respectively transmitted to the image display device;
  • the optical path is controlled by the corresponding control signal in step 003, and respectively projected onto the corresponding position of the screen.
  • the scanning of the small image in the step 003 is specifically to scan the small image of each frame by controlling the RGB, HS, VS, DE, DCLK of each small image.
  • the optical path switching in the step 006 is performed by the control signal by controlling a working state of a mirror that has been set at an angle with the optical axis, the set of mirrors including the same number as the small image.
  • the control signal is an optical switch signal, and the optical switch signal corresponding to the small image of the first frame causes the first mirror to be in an active state, that is, on the optical path of the small image projection; the optical switch signal corresponding to the small image of the second frame Closing the first mirror, that is, the light path deviated from the small image projection, the second mirror is in the working state, that is, on the light path of the small image projection; and so on, the optical switch signal corresponding to the small image of the mth frame will
  • the front m-1 mirror is closed, the mth mirror is in operation, m is a natural number less than or equal to N, and the mth mirror completely reflects the small image.
  • the Nth mirror is always in an active state, that is, it is always on the optical path of the small image projection, and does not receive the optical switch signal.
  • the optical path switching in the step 006 is performed by controlling the angle of the control signal to rotate by the mirror.
  • the control signal is a rotation signal, and the rotation signal corresponding to each small image corresponds to controlling the rotation of the mirror.
  • Angle the positive angle between the front side of the light microscope and the optical axis is the set angle.
  • the pre-processing of the step 005 further includes: shaping, collimating, and polarizing the light to obtain the polarized light, and then irradiating the image display device.
  • the small image of the step 006 is further processed, and the small image of each frame is subjected to the detection and the collimation.
  • the invention has the following advantages:
  • the wide-screen projector different from the prior art has the defects of high cost, large volume, and inconvenience to carry around, and the invention has the following advantages:
  • the present invention uses a single projection technique to achieve widescreen projection by dividing an image into small images of N frames and then transmitting them to an image display device, and combining the optical switch signals to control the mirrors in the optical path switching, and the screen display ratio exceeds
  • the existing level realizing the projection of large screen and wide field of view in the true sense, solves the shortcomings of the existing widescreen projection technology, such as small image display ratio and poor visual effect;
  • the invention greatly reduces the product cost, reduces the product volume, realizes the wide screen projection of the micro projector, and solves the problems of high cost and large volume of the wide screen projector, which is not conducive to the wide application and application of the wide screen projector;
  • the control IC used in the present invention uses a set of RGB signal transmission modules, which can realize wide-screen projection with a set of signals, and the entire control IC circuit design is simple, and the control IC has a wide selection range, and the existing control IC includes multiple groups.
  • FIG. 1 is a schematic structural view of a first embodiment of a single projection widescreen projection apparatus of the present invention
  • FIG. 2 is a schematic diagram of a corner signal of the embodiment of FIG.
  • FIG. 3 is a schematic structural view of a second embodiment of a single projection widescreen projection apparatus according to the present invention
  • FIG. 4 is a schematic diagram of an optical switch signal of the embodiment of FIG.
  • FIG. 5 is a schematic structural view of a third embodiment of a single projection widescreen projection apparatus according to the present invention
  • FIG. 6 is a schematic diagram of a single projection widescreen projection method of the present invention
  • FIG. 7 is a schematic view showing an optical path switching structure of a first embodiment of a single projection widescreen projection method according to the present invention.
  • FIG. 8 is a schematic view showing an optical path switching structure of a second embodiment of the single projection widescreen projection method of the present invention.
  • FIG. 9 is a schematic view of an image splitting method according to an embodiment of the single projection widescreen projection method of the present invention.
  • Figure 10 is a schematic diagram of the image of Figure 9 after being divided into three small images
  • Figure 11 is a schematic view of the small image of Figure 10 after being projected onto the screen. detailed description
  • the first embodiment of the single projection widescreen projection apparatus of the present invention comprises: an image processing system A1; and an optical non-imaging system A2, an optical imaging system A3, which provides a light source sequentially disposed in the light passing direction, An optical path switching system A5, a projection lens A6 that magnifies the image and projects onto the screen; a collimation system A4 is further disposed between the optical imaging system A3 and the optical path switching system A5.
  • the image processing system A1 is respectively connected to the optical imaging system A3 and the optical path switching system A5.
  • the image processing system A1 specifically includes a conversion IC All, a control IC A12.
  • the conversion IC All converts the image signals of different interfaces into RGB pixels. Digital signal, synchronization signal and control signal.
  • the control IC A12 performs frame processing on the image data, and divides into small images of N frames, where N is a natural number and is greater than one.
  • by scanning RGB, HS, VS, DE, and DCLK scanning of each small image is performed.
  • the corner signal A13 corresponding to each small image is output to the optical path switching system.
  • the control IC A12 transmits the N-frame small image to the optical imaging system A3.
  • the optical non-imaging system A2 specifically includes: a light source A21, the light source A21 is a conventional light bulb or a led or laser, etc.; a shaper A22 and a collimator A23 respectively shape the light provided by the light source A21. And collimation.
  • the optical imaging system A3 is configured to receive N-frame small image and light of the optical non-imaging system A2, and specifically includes an image display device A31, and the image display device A31 is an LCOS (liquid crystal on silicon) board or a DLP ( Digital optical processing) board or LCD, etc.; a prism A32; - polarizer A33; - analyzer A34.
  • the light of the optical non-imaging system A2 enters the optical imaging system A3, it passes through the polarizer A33 in turn to obtain polarized light, and then is reflected by the prism A32 and reflected to the image display device A31, and the scanned N frame is small. After the image is transmitted to the image display device A31, it is output through the analyzer A34.
  • the collimation system A4 is composed of two collimating lenses such that the light entering by the optical imaging system A3 is parallel light, the energy is concentrated in a predetermined direction, and the light is transmitted to the optical path switching system A5.
  • the optical path switching system A5 includes a mirror A51 on which a rotating electrical machine A52 is mounted. As shown in FIG. 2, the optical path switching system further includes: the corner signal of the small image of the first frame is rotated by the rotating motor A52 to control the rotation of the mirror A51, and the angle between the light mirror and the optical axis satisfies the angle of the small image projection of the first frame.
  • the small image of the first frame is projected to the position of the screen A
  • the corner signal of the small image of the second frame is rotated by the rotating motor A52 to drive the mirror A51 to rotate, so that the front side of the mirror and the optical axis are in a positive angle to satisfy the second frame.
  • the angle at which the image is projected, the small image of the second frame is projected to the screen position, and so on, and the small image of each frame is projected onto the screen.
  • the projection lens A6 is responsible for magnifying the image and projecting it onto the screen.
  • the reflected image needs to be corrected by multiple lenses at the off-axis position, coma, astigmatism and distortion. Referring to FIG. 3 to FIG. 5, a second embodiment of the single projection widescreen projection apparatus of the present invention is described in detail.
  • the second embodiment of the single projection widescreen projection apparatus of the present invention includes: an image processing system B1 and an optical non-imaging system B2, an optical imaging system B3, and an optical path switching system, which are sequentially disposed in the light passing direction. B5.
  • a collimation system B4 is further disposed between the optical imaging system B3 and the optical path switching system B5.
  • the image processing system B1 is connected to the optical imaging system B3 and the optical path switching system B5, respectively.
  • the image processing system B1 specifically includes a conversion IC B11, a control IC B12.
  • the conversion IC B11 converts the image signals of the different interfaces into RGB pixel digital signals, synchronization signals, and control signals.
  • the control IC B12 performs frame processing on the image data, and divides into small images of N frames, where N is a natural number and is greater than one.
  • the optical switch signal B13 corresponding to each small image is output to the optical path switching system.
  • the control IC B12 transmits the N-frame small image to the optical imaging system B3.
  • the optical non-imaging system B2 specifically includes: a light source B21, the light source B21 is a conventional light bulb or a led or laser, etc.; a shaper B22 and a collimator B23 respectively shape the light provided by the light source B21. And collimation.
  • the optical imaging system B3 is configured to receive N-frame small image and optical non-imaging system B2, and specifically includes an image display device B31, and the image display device B31 is a DMD (Digital Micromirror Display) plate or LCOS. (liquid crystal on silicon) board or DLP (digital optical processing) board or LCD, etc.; a prism B32; - polarizer B33; - analyzer B34.
  • DMD Digital Micromirror Display
  • LCOS. liquid crystal on silicon
  • DLP digital optical processing
  • the collimation system B4 is composed of two collimating lenses, so that the light entering by the optical imaging system B3 is parallel light, and the energy is concentrated in a predetermined direction, and the light is transmitted to the optical path switching system B5.
  • the optical path switching system B5 includes a set of mirrors B51.
  • the number of mirrors B51 in this embodiment is the same as the number of small images, N is a natural number and is greater than one.
  • An optical switch B52 is mounted on the mirror B51, and the optical switch B52 is a mechanical optical switch that changes the optical path by moving the optical element, or changes the waveguide by electro-optic effect or magneto-optical effect or acousto-optic effect or thermo-optic effect.
  • a non-mechanical optical switch whose refractive index changes the optical path.
  • the Nth mirror is always in operation, that is, it is always on the optical path of the small image projection, and the optical switch is not connected.
  • the optical switch signal B13 controls the operating state of the mirror B51 by controlling the operating state of the optical switch B52. Referring to FIG. 4, assuming that the optical switch signal is 1, the optical switch causes the mirror to be on the optical path of the small image projection, the optical switch signal is 0, and the optical switch mirror is offset from the optical path projected by the small image.
  • the optical switch signal 11 ⁇ 1 of the first frame causes the first mirror to be in an active state, that is, on the optical path of the small image projection, and the light is projected by the first mirror to reach the defect on the screen;
  • the optical switch signal ⁇ turns off the mirror of the first piece, so that the mirror of the second piece is in operation, even if the first mirror is deflected from the optical path projected by the small image, so that the second mirror is in a small image projection On the light path, the light is projected through the second mirror and reaches the point on the screen; and so on, the optical switch signal of the mth (lm nl) slice causes the mirror of the front m-1 to be closed, the mth mirror In the working state, that is, the mirror of the front m-1 piece deviates from the optical path projected by the small image, the m-th mirror is on the optical path of the small image projection, m is a natural number, and the m-th mirror completely reflects the small image The subsequent mirror no longer affects the projection of the
  • the projection lens B6 is responsible for magnifying the image and projecting it onto the screen.
  • the mirror that is not at the center of the optical axis requires multiple lenses to correct, coma, astigmatism and distortion.
  • FIG. 5 is a schematic structural view of a third embodiment of a single projection widescreen projection apparatus according to the present invention.
  • the difference from the second embodiment of FIG. 3 is that: in the optical path switching system B5, each of the mirrors B51 is equipped with an optical switch B52, and the optical switch signal B13 corresponding to each small image controls the N path. The working state of the light switch. By setting the angle of each of the mirrors B51 and the optical axis, N small images are sequentially projected to corresponding positions on the screen.
  • the single projection widescreen projection method of the present invention will be described in detail.
  • the image signal enters from the physical interface and then converts it, converting the image signals of different interfaces into 24-bit RGB pixel digital signals, synchronization signals and control signals.
  • the digital image is then segmented into small images of N frames, N being a natural number greater than 1, and by controlling RGB, HS (row sync signal), VS (field sync signal), DE (data enable signal), DCLK (data clock frequency)
  • a scanning of a small image for each frame is realized, and a control signal is output while scanning the small image, and the control signal controls the state of the optical path switching.
  • Light is supplied from a light source that is shaped, collimated, polarized after being polarized, and illuminated onto the image display panel.
  • the scanned small image is transmitted to the image display panel, and after the small image is subjected to the detection and collimation, the optical path switching state controlled according to the control signal is sequentially irradiated to the corresponding position of the screen.
  • the optical path switching state controlled according to the control signal is sequentially irradiated to the corresponding position of the screen.
  • the optical path switching includes a set of mirrors, and one optical switch 2 is mounted on each of the mirrors.
  • the optical switch 2 is a mechanical optical switch that relies on the movement of the optical element to change the optical path, or a non-mechanical optical switch that changes the refractive index of the waveguide by an electro-optic effect or a magneto-optical effect or a thermo-optic effect or a thermo-optic effect to change the optical path.
  • the number of the mirrors 1 is greater than or equal to the number of small images, and the control signal is an optical switch signal, and the operating state of the mirror 1 is controlled by controlling the operating state of the optical switch 2.
  • the optical switch signal of the first frame causes the first mirror to be in an active state, that is, on the optical path of the small image projection; the second frame optical switch signal closes the mirror of the first sheet, so that the mirror of the second sheet is in operation , that is, the first mirror deviates from the optical path projected by the small image, and the second mirror is on the optical path of the small image projection; and so on, the optical switch signal of the mth slice causes the mirror of the front m-1 to be closed, mth
  • the mirror is in an active state, that is, the front m-1 mirror deviates from the optical path projected by the small image, the mth mirror is on the optical path of the small image projection, m is a natural number less than or equal to N, and the mth sheet is reflective
  • the mirror behind the mirror does not affect the projection of the small image, which is completely projected onto the screen by the mth mirror.
  • the default Nth mirror is always working. By setting the angle of each mirror to the optical axis, N small images are sequentially projected to corresponding positions on the screen.
  • the optical path switching includes the installation of the first mirror 1.1.
  • An optical switch 2.1, a second mirror 1.2 is mounted with an optical switch 2.2, and a third mirror 1.3 is mounted with an optical switch 2.3.
  • the second reflecting mirror sheet is 1.2 K 2
  • the optical path switching includes a mirror 3, and the mirror 3 is mounted with a rotating electrical machine 4.
  • the control signal is a rotation angle signal, and the rotation angle signal controls the rotation of the mirror 3 by controlling the rotation of the rotary electric machine 4.
  • the corner signal controls the rotating motor 4 to rotate the mirror 3 to a corresponding angle, so that the small image of the first frame is projected to the corresponding position of the screen, and the small image of the second frame is transmitted.
  • the corner signal again controls the rotating motor 4 to drive the mirror 3 to rotate to a corresponding angle, so that the small image of the second frame is projected to the corresponding position of the screen, and so on, by controlling the rotating motor 4 to drive the mirror 3 to rotate, each frame of Small image, the mirror 3 has a corresponding angle with the optical axis, and the small image of each frame is sequentially projected to the corresponding screen.
  • the optical path switching is formed by a mirror which is mounted with a rotating electrical machine.
  • 3 2 is the angle between the mirror and the optical axis, corresponding to the first frame small image, the second frame small image, and the third frame small image, respectively.
  • Step 1 Split the digital signal of one image into three small images, as shown in Fig. 10.
  • Step 2 Control the rotating motor to drive the mirror to rotate by the corner signal, control the angle of the mirror to the optical axis to be 3l , and realize the scanning of the image A content in FIG. 10 by controlling RGB, HS, VS, DE, DCLK, and the scanning is completed. Go to the image display panel and project the angle of the mirror and the optical axis onto the screen, as shown in Figure 1 at position 1.
  • Step 3 Control the rotating motor to drive the mirror to rotate by the corner signal, control the angle between the mirror and the optical axis, and control the scanning of the image B content in FIG. 10 by controlling RGB, HS, VS, DE, and DCLK.
  • the image B in 10 is projected to the position 2 in Fig. 11, and the image transmission optical path is the same as step 2.
  • Step 4 Control the rotating motor to drive the mirror to rotate by the corner signal, control the angle between the mirror and the optical axis, and control the content of the image C in FIG. 10 by controlling RGB, HS, VS, DE, and DCLK. After the scanning is completed, The image C in Fig. 10 is projected to the position of 3 in Fig. 11, and the image transmission optical path is the same as step 2.

Landscapes

  • Engineering & Computer Science (AREA)
  • Physics & Mathematics (AREA)
  • General Physics & Mathematics (AREA)
  • Multimedia (AREA)
  • Signal Processing (AREA)
  • Computer Hardware Design (AREA)
  • Theoretical Computer Science (AREA)
  • Geometry (AREA)
  • Transforming Electric Information Into Light Information (AREA)

Description

单投影宽屏投影装置及方法 技术械
本发明涉及投影领域, 尤其涉及一种单投影宽屏投影装置及方法。 背景技术 说
近年来, 各领域各行业都非常重视信息化建设, 对信息的可视化需 求也急剧扩大, 对大型化、 高清晰化、 高分辨率的无缝融合拼接显示系 统的需求与日倶增。
现有宽屏投影技术有两种, 一种采用多书投宽屏投影, 一种是单投宽 屏投影。
第一种宽屏投影技术一一多投宽屏投影一般由多个投影单元构成, 每个投影单元都包含照明光学系统、 图像显示板和投射光学系统, 每个 投影单元投射出的图像拼接后, 各屏幕之间有明显的接缝情况, 尽管目 前技术已经使接缝做得比较小, 但仍对拼接后的整体画面效果有一定影 响。
第二种宽屏投影技术一一单投影宽屏虽然没有多投宽屏投影具有 的接缝情况, 但是其图像显示拘泥于 4: 3或 16: 9或 16: 10的屏幕纵 横比, 图像显示比例较小, 不能满足现代人对大屏幕、 宽视野的需求。
并且, 上述两种类型的宽屏投影机都存在造价高, 体积大, 不便于 随身携带等不足之处。 发明内容
本发明主要解决的技术问题是提供一种单投影宽屏投影装置及方 法, 它能够实现真正意义上的大屏幕、 宽视野的投影。
为解决上述技术问题, 本发明采用的一个技术方案是: 提供一种单 投影宽屏投影装置, 包括一图像处理系统以及在通光方向上依次设置的 一提供光源的光学非成像系统、 一光学成像系统、 一光路切换系统、 一 将图像放大后投射到屏幕上的投影透镜;所述图像处理系统分别与光学 成像系统和光路切换系统连接,负责把图像分割成 N帧小图像传给光学 成像系统, N为大于 1的自然数, 同时输出对应所述每一帧小图像的转 角信号给光路切换系统;所述光学成像系统用于接收 N帧小图像和光学 非成像系统的光线,并将光学非成像系统的光线进行调制后,显示 N帧 小图像; 所述光路切换系统, 包括一片反光镜, 所述反光镜安装一旋转 电机, 所述转角信号通过控制旋转电机带动反光镜转动, 把每一帧的小 图像投射到屏幕上。
其中, 所述光学非成像系统包括依次设置的光源、 整形器, 准直器。 其中, 所述光学成像系统包括在通光方向上依次设置的起偏器, 棱 镜、 图像显示器件以及检偏器。
其中, 所述光学成像系统与光路切换系统之间还设有一准直系统, 所述准直系统由至少一个准直透镜组成。
其中, 所述图像处理系统进一步包括依次连接的: 一转换 IC, 负责 将不同接口的图像信号转换为 RGB像素数字信号、 同步信号及控制信 号; 一控制 IC, 负责把转换 IC输出的 RGB像素数字信号分割成 N帧 小图像, N为一个大于 1的自然数, 并对每一帧的小图像扫描, 然后输 送到所述光学成像系统的图像显示器件, 扫描的同时, 输出对应的转角 信号。
其中, 所述每一帧小图像对应的转角信号进一步包括: 第一帧小图 像的转角信号通过控制旋转电机带动反光镜转动, 使反光镜与光轴夹角 满足第一帧小图像投射的角度, 第二帧小图像的转角信号再通过控制旋 转电机带动反光镜转动, 使反光镜的正面与光轴正向夹角满足第二帧小 图像投射的角度, 依次类推, 把每一帧的小图像投射到屏幕。
其中, 所述的控制 IC通过控制 RGB、 HS、 VS、 DE、 DCLK实现 对每一帧小图像的扫描。
为解决上述技术问题, 本发明采用的又一个技术方案是: 提供一种 单投影宽屏投影装置, 包括一图像处理系统以及在通光方向上依次设置 的一提供光源的光学非成像系统、 一光学成像系统、 一光路切换系统、 一将图像放大后投射到屏幕上的投影透镜;所述图像处理系统分别与光 学成像系统和光路切换系统连接,负责把图像分割成 N帧小图像传给光 学成像系统, N为大于 1的自然数, 同时输出对应所述每一帧小图像的 光开关信号给光路切换系统;所述光学成像系统用于接收 N帧小图像和 光学非成像系统的光线, 并将光学非成像系统的光线进行调制后, 显示 N帧小图像; 所述光路切换系统包括 N片反光镜, 以及 N或 N-1个光 开关, 任一光开关分别连接一反光镜, 所述光开关用于接收所述图像处 理系统的光开关信号以控制对应的设定好与光轴夹角的反光镜的工作 状态。
其中,所述光学非成像系统包括依次设置的光源、整形器,准直器。 其中, 所述光学成像系统包括在通光方向上依次设置的起偏器, 棱 镜、 图像显示器件以及检偏器。
其中, 所述光学成像系统与光路切换系统之间还设有一准直系统, 所述准直系统由至少一个准直透镜组成。
其中, 所述图像处理系统进一步包括依次连接的: 一转换 IC, 负责 将不同接口的图像信号转换为 RGB像素数字信号、 同步信号及控制信 号; 一控制 IC, 负责把转换 IC输出的 RGB像素数字信号分割成 N帧 小图像, N为一个大于 1的自然数, 并对每一帧的小图像扫描, 然后输 送到所述光学成像系统的图像显示器件, 扫描的同时, 输出对应的光开 关信号。
其中, 当所述光开关为 N路时, 所述光开关信号控制 N路的光开 关; 对应第一帧小图像的光开关信号使第一片反光镜处于工作状态, 即 处于小图像投射的光路上;对应第二帧小图像的光开关信号关闭第一片 反光镜, 即偏离小图像投射的光路, 使第二片反光镜处于工作状态, 即 处于小图像投射的光路上, 以此类推; 对应第 m 帧小图像的光开关信 号, 将其前面的 m-1 片反光镜关闭, 第 m片反光镜处于工作状态, m 为一个小于等于 N的自然数,所述第 m片反光镜将该小图像完全反射。
其中, 当所述光开关为 N-1路时, 所述光开关信号控制 N-1路的光 开关; 对应第一帧小图像的光开关信号使第一片反光镜处于工作状态, 即处于小图像投射的光路上;对应第二帧小图像的光开关信号关闭第一 片反光镜, 即偏离小图像投射的光路, 使第二片反光镜处于工作状态, 即处于小图像投射的光路上, 以此类推; 对应第 m帧小图像的光开关 信号, 将其前面的 m-l片反光镜关闭, 第 m片反光镜处于工作状态, m 为一个小于等于 N的自然数,所述第 m片反光镜将该小图像完全反射; 第 N片反光镜保持处于工作状态, 即处于小图像投射的光路上。
其中, 所述的控制 IC通过控制 RGB、 HS、 VS、 DE、 DCLK实现 对每一帧小图像的扫描。
其中,所述光路切换系统的反光镜数量大于等于分割后的小图像的 数量。
其中, 所述光开关为依靠光学元件移动来改变光路的机械式光开 关,或依靠电光效应或磁光效应或声光效应或热光效应改变波导折射率 来改变光路的非机械式光开关。
为解决上述技术问题, 本发明采用的还一个技术方案是: 提供一种 单投影宽屏投影方法, 其特征在于, 包括如下步骤:
001、将不同接口的图像信号转换为 RGB像素数字信号、 同步信号 及控制信号;
002、将转换后的 RGB像素数字信号分割成 N帧小图像, N为一个 大于 1的自然数;
003、 将分割后的每一帧小图像进行扫描, 扫描的同时输出一对应 该帧小图像的控制信号用以控制光路切换;
004、 将扫描后的 N帧小图像分别传输到图像显示器件;
005、 由一光源提供光线, 所述光线经过预处理后照射到图像显示 器件;
006、 每一帧小图像经过处理后, 由步骤 003 中相应控制信号控制 光路切换, 分别投射到屏幕的相应位置上。
其中,所述步骤 003中对小图像的扫描具体是通过控制每一帧小图 像的 RGB、 HS、 VS、 DE、 DCLK实现对每一帧小图像的扫描。
其中,所述步骤 006中的光路切换是由所述控制信号通过控制一组 已设定好与光轴夹角的反光镜的工作状态来进行,该组反光镜包括与所 述小图像相等数量的反光镜。 其中, 所述控制信号为光开关信号, 对应第一帧小图像的光开关信 号使第一片反光镜处于工作状态, 即处于小图像投射的光路上; 对应第 二帧小图像的光开关信号关闭第一个反光镜, 即偏离小图像投射的光 路, 第二片的反光镜处于工作状态, 即处于小图像投射的光路上; 以此 类推, 对应第 m帧小图像的光开关信号, 将其前面的 m-1片反光镜关 闭, 第 m片反光镜处于工作状态, m为一小于等于 N的自然数, 所述 第 m片反光镜将该小图像完全反射。
其中,所述的第 N片反光镜一直处于工作状态, 即一直处于小图像 投射的光路上, 不接收光开关信号。
其中,所述步骤 006中的光路切换是由所述控制信号通过控制一反 光镜旋转的角度来进行, 所述控制信号为转动信号, 对应每一帧小图像 的转动信号对应控制反光镜的转动角度, 光镜的正面与光轴正向夹 角为设定的角度。
其中, 所述步骤 005的预处理进一步包括, 光线经过整形、 准直, 并起偏获得偏振光后再照射到图像显示器件。
其中, 所述步骤 006的小图像经过处理进一步包括, 每一帧的小图 像经过检偏出射, 并进行准直。
本发明的有益效果是: 区别于现有技术的宽屏投影机都存在造价 高, 体积大, 不便于随身携带的缺陷, 本发明具有如下优点:
1.本发明使用单投投影技术, 通过把图像分割为 N帧的小图像, 然 后传送到一个图像显示器件,结合光开关信号对光路切换中反光镜进行 控制来实现宽屏投影, 画面显示比例超过现有水平, 实现真正意义上的 大屏幕、 宽视野的投影, 解决了现有宽屏投影技术存在图像显示比例较 小且视觉效果差等不足;
2.本发明大大降低产品成本, 缩小产品体积, 实现微型投影机的宽 屏投影, 解决了宽屏投影机成本高、 体积大, 不利于宽屏投影机的广泛 推广和应用等问题;
3.本发明使用的控制 IC使用一组 RGB信号传输模块, 配合一组信 号既可以实现宽屏投影, 整个控制 IC电路设计筒单, 控制 IC选型范围 广, 解决了现有控制 IC包含多组 RGB信号传输模块, 控制 IC电路设 计复杂, 选型局限高性能高集成度的控制 IC, 不利于产品成本的降低, 及产品的推广等问题。 附图说明
图 1是本发明单投影宽屏投影装置第一实施例的结构示意图; 图 2是图 1实施例的转角信号示意图;
图 3是本发明单投影宽屏投影装置第二实施例的结构示意图; 图 4是图 3实施例的光开关信号示意图;
图 5是本发明单投影宽屏投影装置第三实施例的结构示意图; 图 6是本发明单投影宽屏投影方法示意图;
图 7是本发明单投影宽屏投影方法第一实施例的光路切换结构示意 图;
图 8是本发明单投影宽屏投影方法第二实施例的光路切换结构示意 图;
图 9是本发明单投影宽屏投影方法一实施例的图像分割之前的示意 图;
图 10是图 9中图像分割为三帧小图像之后的示意图;
图 11是图 10中小图像投射到屏幕上后的示意图。 具体实施方式
为详细说明本发明的技术内容、 构造特征、 所实现目的及效果, 以 下结合实施方式并配合附图详予说明。
请参阅图 1以及图 2, 本发明单投影宽屏投影装置实施例一包括: 一图像处理系统 A1以及在通光方向上依次设置的一提供光源的光学非 成像系统 A2、 一光学成像系统 A3、 一光路切换系统 A5、 一将图像放 大后投射到屏幕上的投影透镜 A6;所述光学成像系统 A3与光路切换系 统 A5之间还设有一准直系统 A4。
所述图像处理系统 A1分别与光学成像系统 A3和光路切换系统 A5 连接,所述图像处理系统 A1具体包括,一转换 IC All ,—控制 IC A12。 图像信号进入后,转换 IC All把不同接口的图像信号转换为 RGB像素 数字信号、 同步信号及控制信号。 然后根据用户控制输入, 控制 IC A12 对图像数据进行分帧处理,分割成 N帧的小图像, N为自然数而且大于 1。 然后通过控制 RGB、 HS、 VS、 DE、 DCLK实现对每一帧小图像的 扫描,扫描的同时,输出分别对应每一帧小图像的转角信号 A13给光路 切换系统。 扫描完成后, 所述控制 IC A12把 N帧小图像传给光学成像 系统 A3。
所述光学非成像系统 A2, 具体包括: 一光源 A21 , 所述光源 A21 为传统灯泡或 led或激光等; 一整形器 A22和一准直器 A23, 分别对所 述光源 A21提供的光线进行整形和准直。
所述光学成像系统 A3 ,用于接收 N帧小图像和光学非成像系统 A2 的光线, 它具体包括, 一图像显示器件 A31 , 所述图像显示器件 A31 为 LCOS (硅上液晶)板或 DLP (数字光学处理)板或 LCD等; 一棱 镜 A32; —起偏器 A33; —检偏器 A34。 所述光学非成像系统 A2的光 线进入光学成像系统 A3的时候, 依次经过起偏器 A33, 获得偏振光, 然后经过棱镜 A32的反射,反射到图像显示器件 A31 , 所述扫描后的 N 帧小图像传输到图像显示器件 A31后, 经过检偏器 A34输出。
所述准直系统 A4, 由两个准直透镜组成, 使由光学成像系统 A3 进入的光线出射的时候为平行光, 能量在预定方向上集中, 所述光线传 输到光路切换系统 A5。
所述光路切换系统 A5 , 包括一片反光镜 A51 , 所述反光镜 A51上 安装一个旋转电机 A52。结合图 2所示,所述光路切换系统进一步包括, 第一帧小图像的转角信号 通过控制旋转电机 A52带动反光镜 A51转 动, 光镜与光轴夹角满足第一帧小图像投射的角度, 将第一帧的小 图像投影到屏幕 A位置, 第二帧小图像的转角信号 再通过控制旋转电 机 A52带动反光镜 A51转动, 使反光镜的正面与光轴正向夹角满足第 二帧小图像投射的角度, 将第二帧的小图像投影到屏幕 位置, 依次类 推, 把每一帧的小图像投射到屏幕上。
所述投影透镜 A6, 负责将图像放大后投射到屏幕上, 反射图像在 离轴位置需要使用多片透镜来校正, 慧差、 像散和畸变。 请参阅图 3 至图 5,对本发明单投影宽屏投影装置实施例二进行详 细描述。
如图 3, 本发明单投影宽屏投影装置实施例二包括: 一图像处理系 统 B1以及在通光方向上依次设置的一提供光源的光学非成像系统 B2、 一光学成像系统 B3、 一光路切换系统 B5、 一将图像放大后投射到屏幕 上的投影透镜 B6; 所述光学成像系统 B3与光路切换系统 B5之间还设 有一准直系统 B4。
所述图像处理系统 B1分别与光学成像系统 B3和光路切换系统 B5 连接,所述图像处理系统 B1具体包括,一转换 IC B11 ,—控制 IC B12。 图像信号进入后,转换 IC B11把不同接口的图像信号转换为 RGB像素 数字信号、 同步信号及控制信号。 然后根据用户控制输入, 控制 IC B12 对图像数据进行分帧处理,分割成 N帧的小图像, N为自然数而且大于 1。 然后通过控制 RGB、 HS、 VS、 DE、 DCLK实现对每一帧小图像的 扫描,扫描的同时,输出分别对应每一帧小图像的光开关信号 B13给光 路切换系统。 扫描完成后, 所述控制 IC B12把 N帧小图像传给光学成 像系统 B3。
所述光学非成像系统 B2, 具体包括: 一光源 B21 , 所述光源 B21 为传统灯泡或 led或激光等; 一整形器 B22和一准直器 B23, 分别对所 述光源 B21提供的光线进行整形和准直。
所述光学成像系统 B3 ,用于接收 N帧小图像和光学非成像系统 B2 的光线, 它具体包括, 一图像显示器件 B31 , 所述图像显示器件 B31为 DMD (数字微镜显示)板或 LCOS (硅上液晶)板或 DLP (数字光学处理) 板或 LCD等; 一棱镜 B32; —起偏器 B33; —检偏器 B34。 所述光学非 成像系统 B2的光线进入光学成像系统 B3的时候,依次经过起偏器 B33 , 获得偏振光, 然后经过棱镜 B32的反射, 反射到图像显示器件 B31 , 所 述扫描后的 N帧小图像传输到图像显示器件 B31后, 经过检偏器 B34 输出。
所述准直系统 B4, 由两个准直透镜组成, 使由光学成像系统 B3进 入的光线出射的时候为平行光, 能量在预定方向上集中, 所述光线传输 到光路切换系统 B5。 所述光路切换系统 B5 , 包括一组反光镜 B51 ,本实施例反光镜 B51 的数量与小图像的数量一样都是 N, N为一个自然数而且大于 1。 所述 的反光镜 B51上安装一个光开关 B52,所述光开关 B52为依靠光学元件 移动来改变光路的机械式光开关,或依靠电光效应或磁光效应或声光效 应或热光效应改变波导折射率来改变光路的非机械式光开关。第 N片反 光镜一直处于工作状态, 即一直处于小图像投射的光路上, 不连接光开 关。 所述的光开关信号 B13通过控制光开关 B52的工作状态来控制反 光镜 B51的工作状态。 结合图 4, 假定光开关信号为 1 , 光开关使反光 镜处于小图像投射的光路上, 光开关信号为 0, 光开关 光镜偏离小 图像投射的光路。第一帧的光开关信号 11···1使第一片反光镜处于工作状 态, 即处于小图像投射的光路上, 光线通过第一片反光镜投射后到达屏 幕上的 Α点; 第二帧光开关信号 θΐι···ι关闭第一片的反光镜, 使第二片 的反光镜处于工作状态, 即使第一片反光镜偏离小图像投射的光路, 使 第二片反光镜处于小图像投射的光路上,光线通过第二片反光镜投射后 到达屏幕上的 点; 以此类推, 第 m ( l m n-l ) 片的光开关信号使 得前面 m-1片的反光镜关闭,第 m片反光镜处于工作状态, 即前面 m-1 片的反光镜偏离小图像投射的光路, 第 m 片反光镜处于小图像投射的 光路上, m为自然数, 所述第 m片反光镜将该小图像完全反射, 其后 的反光镜不再影响该小图像的投射。当光线到达反光镜 N后就投射到屏 幕上的 A点。 通过设定每一片反光镜 B51与光轴的角度, 依次将 N帧 小图像投影到屏幕上的对应位置。
所述投影透镜 B6, 负责将图像放大后投射到屏幕上, 不在光轴中 心的反光镜需要多片透镜来校正, 慧差、 像散和畸变。
如图 5所示,为本发明单投影宽屏投影装置第三实施例的结构示意 图。 它与上述图 3的第二实施例的区别在于: 所述的光路切换系统 B5 中,每一片反光镜 B51都安装一个光开关 B52, 对应每一帧小图像的光 开关信号 B13控制了 N路的光开关的工作状态。 通过设定每一片反光 镜 B51与光轴的角度, 依次将 N帧小图像投影到屏幕上的对应位置。 请参阅图 6至图 11 , 对本发明的单投影宽屏投影方法进行详细说 明。
如图 6, 图像信号从物理接口进入, 然后将其进行转换, 即将不同 接口的图像信号转换为 24位的 RGB像素数字信号、同步信号及控制信 号。 然后将数字图像分割成 N帧的小图像, N为大于 1的自然数, 并通 过控制 RGB、 HS (行同步信号)、 VS (场同步信号)、 DE (数据允许信 号)、 DCLK (数据时钟频率)实现对每一帧小图像的扫描, 在对小图像 进行扫描的同时输出控制信号, 控制信号控制光路切换的状态。 由一光 源提供光线, 所述光线经过整形, 准直, 经过起偏获得偏振光后, 照射 到图像显示板上。 所述扫描后的小图像传输到图像显示板上, 小图像经 过检偏、 准直后, 根据所述控制信号控制的光路切换状态依次照射到屏 幕的对应位置上。 下面举几个实施例进行说明:
单投影宽屏投影方法的实施例 1:
结合图 6、 图 7、 图 9、 图 10、 图 10, 本实施例 1中, 所述的光路 切换包括一组反光镜, 每一片反光镜上 1安装一个光开关 2。 所述光开 关 2为依靠光学元件移动来改变光路的机械式光开关,或依靠电光效应 或磁光效应或声光效应或热光效应改变波导折射率来改变光路的非机 械式光开关。 所述反光镜 1的数量大于等于小图像的数量, 所述的控制 信号为光开关信号,通过控制光开关 2的工作状态来控制反光镜 1的工 作状态。 第一帧的光开关信号使第一片反光镜处于工作状态, 即处于小 图像投射的光路上; 第二帧光开关信号关闭第一片的反光镜, 使第二片 的反光镜处于工作状态, 即第一片反光镜偏离小图像投射的光路, 第二 片反光镜处于小图像投射的光路上; 依次类推, 第 m 片的光开关信号 使得前面 m-1片的反光镜关闭,第 m片反光镜处于工作状态, 即前 m-1 片反光镜偏离小图像投射的光路, 第 m 片反光镜处于小图像投射的光 路上, m为一小于等于 N的自然数, 所述第 m片反光镜其后的反光镜 不影响该小图像的投射, 所述小图像经过所述第 m 片反光镜完全投射 到屏幕上。默认第 N片反光镜一直处于工作状态。通过设定每一片反光 镜与光轴的角度,依次将 N帧小图像投影到屏幕上的对应位置。现在以 将图像分割为 3帧的小图像为例, 光路切换包括第一片反光镜 1.1安装 一个光开关 2.1 , 第二片反光镜 1.2安装一个光开关 2.2, 第三片反光镜 1.3安装一个光开关 2.3。
假设, 光开关 K=l , 光开关使反光镜处于小图像投射的光路上, 光 开关 κ=ο , 光开关使反光镜偏离小图像投射的光路。
设定第一片反光镜 1.1为 κι , 第二片反光镜 1.2为 K2 , 第三片反光 镜 1.3为 κ3。
步骤 1 , 将一幅图像的数字信号分割成 3帧小图像, 如图 10, 步骤 2, 通过光开关信号控制光开关 2 的工作状态, 使得 κι =1 , κ2=1 , κ3=1 , 并且通过控制 RGB、 HS、 VS、 DE、 DCLK实现图 10中 图像 A内容的扫描, 扫描完成后, 图 10的图像 A传输到图像显示板, 并对应反光镜的工作状态, 通过第一片反光镜 1.1投射到屏幕上, 位置 如图 11中 1的位置。
步骤 3 ,通过光开关信号控制光开关的工作状态,使得 , =0 , =1 , κ3=1 , 并且通过控制 RGB、 HS、 VS、 DE、 DCLK实现图 10中图像 B 内容的扫描, 扫描完成后, 图 10中的图像 B通过第二片反光镜 1.2投 射到图 11中 2的位置, 图像传输光路同步骤 2。
步骤 4,通过光开关信号控制光开关的工作状态,使得 κι =0, κ2=0, Κ3=1 , 并且通过控制 RGB、 HS、 VS、 DE、 DCLK实现图 10中图像 C 内容的扫描, 扫描完成后, 图 10中的图像 C通过第三片反光镜 1.3投 射到图 11中 3的位置, 图像传输光路同步骤 2。
单投影宽屏投影方法的实施例 2
结合图 6、 图 8、 图 9、 图 10、 图 11 , 本实施例 2中, 所述光路切 换包括一反光镜 3, 所述反光镜 3安装一旋转电机 4。 所述控制信号为 转角信号,转角信号通过控制旋转电机 4的转动来控制反光镜 3的转动。 当第一帧的小图像传输过来时, 转角信号控制旋转电机 4带动反光镜 3 旋转到相应的角度, 使第一帧的小图像投影到屏幕的相应位置, 第二帧 的小图像传输过来时,转角信号再次控制旋转电机 4带动反光镜 3旋转 到相应的角度, 使第二帧的小图像投影到屏幕的相应位置, 依次类推, 通过控制旋转电机 4带动反光镜 3转动, 每一帧的小图像, 反光镜 3与 光轴有一个相应的角度,将每一帧的小图像依次投射到屏幕的相对应的 位置上。 现在以将图像分割为 3帧的小图像为例, 光路切换由一个反光 镜形成, 所述反光镜安装一个旋转电机。
假设 , 32 , 为反光镜和光轴之间的角度, 分别与第一帧小图像, 第二帧小图像, 第三帧小图像相对应。
步骤 1 , 将一幅图像的数字信号分割成 3帧小图像, 如图 10。
步骤 2, 通过转角信号控制旋转电机带动反光镜转动, 控制反光镜 与光轴的角度为 3l , 并且通过控制 RGB、 HS、 VS、 DE、 DCLK实现图 10中图像 A内容的扫描, 扫描完成传输到图像显示板, 并对应反光镜 与光轴的角度投射到屏幕上, 位置如图 11中 1的位置。
步骤 3, 通过转角信号控制旋转电机带动反光镜转动, 控制反光镜 与光轴的角度为 并且通过控制 RGB、 HS、 VS、 DE、 DCLK实现图 10中图像 B内容的扫描, 扫描完成后, 图 10中的图像 B投射到图 11 中 2的位置, 图像传输光路同步骤 2。
步骤 4, 通过转角信号控制旋转电机带动反光镜转动, 控制反光镜 与光轴的角度为 , 并且通过控制 RGB、 HS、 VS、 DE、 DCLK实现图 10中图像 C内容的扫描, 扫描完成后, 图 10中的图像 C投射到图 11 中 3的位置, 图像传输光路同步骤 2。
通过步骤 1至步骤 4, 使用单个图像显示器件, 实现了 3屏拼接。 以上所述仅为本发明的实施例, 并非因此限制本发明的专利范围, 凡是利用本发明说明书及附图内容所作的等效结构或等效流程变换, 或 直接或间接运用在其他相关的技术领域, 均同理包括在本发明的专利保 护范围内。

Claims

权 利 要 求 书
1、 一种单投影宽屏投影装置, 其特征在于: 包括一图像处理系统 以及在通光方向上依次设置的一提供光源的光学非成像系统、一光学成 像系统、 一光路切换系统、 一将图像放大后投射到屏幕上的投影透镜; 所述图像处理系统分别与光学成像系统和光路切换系统连接, 负责 把图像分割成 N帧小图像传给光学成像系统, N为大于 1的自然数, 同 时输出对应所述每一帧小图像的转角信号给光路切换系统;
所述光学成像系统用于接收 N帧小图像和光学非成像系统的光线, 并将光学非成像系统的光线进行调制后, 显示 N帧小图像;
所述光路切换系统, 包括一片反光镜,所述反光镜安装一旋转电机, 所述转角信号通过控制旋转电机带动反光镜转动, 把每一帧的小图像投 射到屏幕上。
2、根据权利要求 1所述的单投影宽屏投影装置, 其特征在于: 所述 光学非成像系统包括依次设置的光源、 整形器, 准直器。
3、根据权利要求 1所述的单投影宽屏投影装置, 其特征在于: 所述 光学成像系统包括在通光方向上依次设置的起偏器, 棱镜、 图像显示器 件以及检偏器。
4、根据权利要求 1所述的单投影宽屏投影装置, 其特征在于: 所述 光学成像系统与光路切换系统之间还设有一准直系统, 所述准直系统由 至少一个准直透镜组成。
5、 根据权利要求 1所述的单投影宽屏投影装置, 其特征在于: 所 述图像处理系统进一步包括依次连接的:
一转换 IC,负责将不同接口的图像信号转换为 RGB像素数字信号、 同步信号及控制信号;
一控制 IC,负责把转换 IC输出的 RGB像素数字信号分割成 N帧小 图像, N为一个大于 1的自然数, 并对每一帧的小图像扫描, 然后输送 到所述光学成像系统的图像显示器件, 扫描的同时, 输出对应的转角信 号。 6、 根据权利要求 1或 5所述的单投影宽屏投影装置, 其特征在于: 所述每一帧小图像对应的转角信号进一步包括:
第一帧小图像的转角信号通过控制旋转电机带动反光镜转动, 光镜与光轴夹角满足第一帧小图像投射的角度, 第二帧小图像的转角信 号再通过控制旋转电机带动反光镜转动, 使反光镜的正面与光轴正向夹 角满足第二帧小图像投射的角度, 依次类推, 把每一帧的小图像投射到 屏幕。
7、根据权利要求 1所述的单投影宽屏投影装置, 其特征在于: 所述 的控制 IC通过控制 RGB、 HS、 VS、 DE、 DCLK实现对每一帧小图像 的扫描。
8、 一种单投影宽屏投影装置, 其特征在于: 它包括一图像处理系 统以及在通光方向上依次设置的一提供光源的光学非成像系统、一光学 成像系统、一光路切换系统、一将图像放大后投射到屏幕上的投影透镜; 所述图像处理系统分别与光学成像系统和光路切换系统连接, 负责 把图像分割成 N帧小图像传给光学成像系统, N为大于 1的自然数, 同 时输出对应所述每一帧小图像的光开关信号给光路切换系统;
所述光学成像系统用于接收 N帧小图像和光学非成像系统的光线, 并将光学非成像系统的光线进行调制后, 显示 N帧小图像;
所述光路切换系统包括 N片反光镜, 以及 N或 N-1个光开关,任一 光开关分别连接一反光镜, 所述光开关用于接收所述图像处理系统的光 开关信号以控制对应的设定好与光轴夹角的反光镜的工作状态。
9、 根据权利要求 8所述的一种单投影宽屏投影装置, 其特征在于: 所述光学非成像系统包括依次设置的光源、 整形器, 准直器。
10、根据权利要求 8所述的一种单投影宽屏投影装置,其特征在于: 所述光学成像系统包括在通光方向上依次设置的起偏器, 棱镜、 图像显 示器件以及检偏器。
11、根据权利要求 8所述的一种单投影宽屏投影装置,其特征在于: 所述光学成像系统与光路切换系统之间还设有一准直系统,所述准直系 统由至少一个准直透镜组成。
12、根据权利要求 8所述的一种单投影宽屏投影装置,其特征在于: 所述图像处理系统进一步包括依次连接的:
一转换 IC,负责将不同接口的图像信号转换为 RGB像素数字信号、 同步信号及控制信号;
一控制 IC, 负责把转换 IC输出的 RGB像素数字信号分割成 N帧 小图像, N为一个大于 1的自然数, 并对每一帧的小图像扫描, 然后输 送到所述光学成像系统的图像显示器件, 扫描的同时, 输出对应的光开 关信号。
13、 根据权利要求 8或 12所述的一种单投影宽屏投影装置, 其特 征在于: 当所述光开关为 N路时, 所述光开关信号控制 N路的光开关; 对应第一帧小图像的光开关信号使第一片反光镜处于工作状态, 即 处于小图像投射的光路上;
对应第二帧小图像的光开关信号关闭第一片反光镜, 即偏离小图像 投射的光路, 使第二片反光镜处于工作状态, 即处于小图像投射的光路 上, 以此类推;
对应第 m帧小图像的光开关信号, 将其前面的 m-1片反光镜关闭, 第 m片反光镜处于工作状态, m为一个小于等于 N的自然数, 所述第 m片反光镜将该小图像完全反射。
14、 根据权利要求 8或 12所述的一种单投影宽屏投影装置, 其特 征在于: 当所述光开关为 N-1路时, 所述光开关信号控制 N-1路的光开 关;
对应第一帧小图像的光开关信号使第一片反光镜处于工作状态, 即 处于小图像投射的光路上;
对应第二帧小图像的光开关信号关闭第一片反光镜, 即偏离小图像 投射的光路, 使第二片反光镜处于工作状态, 即处于小图像投射的光路 上, 以此类推;
对应第 m帧小图像的光开关信号, 将其前面的 m-1片反光镜关闭, 第 m片反光镜处于工作状态, m为一个小于等于 N的自然数, 所述第 m片反光镜将该小图像完全反射;
第 N片反光镜保持处于工作状态, 即处于小图像投射的光路上。
15、根据权利要求 8所述的一种单投影宽屏投影装置,其特征在于: 所述的控制 IC通过控制 RGB、 HS、 VS、 DE、 DCLK实现对每一帧小 图像的扫描。
16、根据权利要求 8所述的一种单投影宽屏投影装置,其特征在于: 所述光路切换系统的反光镜数量大于等于分割后的小图像的数量。
17、根据权利要求 8所述的一种单投影宽屏投影装置,其特征在于: 所述光开关为依靠光学元件移动来改变光路的机械式光开关,或依靠电 光效应或磁光效应或声光效应或热光效应改变波导折射率来改变光路 的非机械式光开关。
18、 一种单投影宽屏投影方法, 其特征在于, 包括如下步骤:
001、将不同接口的图像信号转换为 RGB像素数字信号、 同步信号 及控制信号;
002、将转换后的 RGB像素数字信号分割成 N帧小图像, N为一个 大于 1的自然数;
003、 将分割后的每一帧小图像进行扫描, 扫描的同时输出一对应 该帧小图像的控制信号用以控制光路切换;
004、 将扫描后的 N帧小图像分别传输到图像显示器件;
005、 由一光源提供光线, 所述光线经过预处理后照射到图像显示 器件;
006、 每一帧小图像经过处理后, 由步骤 003 中相应控制信号控制 光路切换, 分别投射到屏幕的相应位置上。
19、 根据权利要求 18所述的一种单投影宽屏投影方法, 其特征在 于: 所述步骤 003 中对小图像的扫描具体是通过控制每一帧小图像的 RGB, HS、 VS、 DE、 DCLK实现对每一帧小图像的扫描。
20、 根据权利要求 18所述的一种单投影宽屏投影方法, 其特征在 于: 所述步骤 006中的光路切换是由所述控制信号通过控制一组已设定 好与光轴夹角的反光镜的工作状态来进行,该组反光镜包括与所述小图 像相等数量的反光镜。
21、 根据权利要求 20所述的一种单投影宽屏投影方法, 其特征在 于: 所述控制信号为光开关信号, 对应第一帧小图像的光开关信号使第 一片反光镜处于工作状态, 即处于小图像投射的光路上; 对应第二帧小 图像的光开关信号关闭第一个反光镜, 即偏离小图像投射的光路, 第二 片的反光镜处于工作状态, 即处于小图像投射的光路上; 以此类推, 对 应第 m帧小图像的光开关信号, 将其前面的 m-1片反光镜关闭, 第 m 片反光镜处于工作状态, m为一小于等于 N的自然数, 所述第 m片反 光镜将该小图像完全反射。
22、 根据权利要求 21所述的一种单投影宽屏投影方法, 其特征在 于: 所述的第 N片反光镜一直处于工作状态, 即一直处于小图像投射的 光路上, 不接收光开关信号。
23、 根据权利要求 18所述的一种单投影宽屏投影方法, 其特征在 于: 所述步骤 006中的光路切换是由所述控制信号通过控制一反光镜旋 转的角度来进行, 所述控制信号为转动信号, 对应每一帧小图像的转动 信号对应控制反光镜的转动角度, 光镜的正面与光轴正向夹角为设 定的角度。
24、 根据权利要求 18所述的一种单投影宽屏投影方法, 其特征在 于: 所述步骤 005的预处理进一步包括, 光线经过整形、 准直, 并起偏 获得偏振光后再照射到图像显示器件。
25、 根据权利要求 18所述的一种单投影宽屏投影方法, 其特征在 于: 所述步骤 006的小图像经过处理进一步包括, 每一帧的小图像经过 检偏出射, 并进行准直。
PCT/CN2011/070423 2010-08-31 2011-01-20 单投影宽屏投影装置及方法 WO2012027974A1 (zh)

Priority Applications (1)

Application Number Priority Date Filing Date Title
US13/255,790 US20130147865A1 (en) 2010-08-31 2011-01-20 Single-projection widescreen projecting device and single-projection widescreen projecting method

Applications Claiming Priority (6)

Application Number Priority Date Filing Date Title
CN2010102680586A CN101943847A (zh) 2010-08-31 2010-08-31 一种单投影宽屏投影方法
CN201010268767.4 2010-08-31
CN201010268058.6 2010-08-31
CN201010269164.6 2010-08-31
CN 201010268767 CN101943848A (zh) 2010-08-31 2010-08-31 一种单投影宽屏投影装置
CN 201010269164 CN101943849A (zh) 2010-08-31 2010-08-31 单投影宽屏投影装置

Publications (1)

Publication Number Publication Date
WO2012027974A1 true WO2012027974A1 (zh) 2012-03-08

Family

ID=45772109

Family Applications (1)

Application Number Title Priority Date Filing Date
PCT/CN2011/070423 WO2012027974A1 (zh) 2010-08-31 2011-01-20 单投影宽屏投影装置及方法

Country Status (2)

Country Link
US (1) US20130147865A1 (zh)
WO (1) WO2012027974A1 (zh)

Families Citing this family (1)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
CN105589202A (zh) 2016-03-18 2016-05-18 京东方科技集团股份有限公司 一种显示装置、显示方法和显示系统

Citations (8)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
US3854802A (en) * 1972-08-02 1974-12-17 M Gazale Image recording and projection method and apparatus
JPH01200774A (ja) * 1988-02-05 1989-08-11 Canon Inc 透過原稿投影用スクリーン
CN1449505A (zh) * 2000-06-16 2003-10-15 夏普公司 投影型图象显示装置
JP2004279847A (ja) * 2003-03-17 2004-10-07 Ricoh Co Ltd プロジェクタ
CN101256281A (zh) * 2006-07-31 2008-09-03 视频有限公司 超薄显示系统
CN101943848A (zh) * 2010-08-31 2011-01-12 福建网讯科技有限公司 一种单投影宽屏投影装置
CN101943847A (zh) * 2010-08-31 2011-01-12 福建网讯科技有限公司 一种单投影宽屏投影方法
CN101943849A (zh) * 2010-08-31 2011-01-12 福建网讯科技有限公司 单投影宽屏投影装置

Patent Citations (8)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
US3854802A (en) * 1972-08-02 1974-12-17 M Gazale Image recording and projection method and apparatus
JPH01200774A (ja) * 1988-02-05 1989-08-11 Canon Inc 透過原稿投影用スクリーン
CN1449505A (zh) * 2000-06-16 2003-10-15 夏普公司 投影型图象显示装置
JP2004279847A (ja) * 2003-03-17 2004-10-07 Ricoh Co Ltd プロジェクタ
CN101256281A (zh) * 2006-07-31 2008-09-03 视频有限公司 超薄显示系统
CN101943848A (zh) * 2010-08-31 2011-01-12 福建网讯科技有限公司 一种单投影宽屏投影装置
CN101943847A (zh) * 2010-08-31 2011-01-12 福建网讯科技有限公司 一种单投影宽屏投影方法
CN101943849A (zh) * 2010-08-31 2011-01-12 福建网讯科技有限公司 单投影宽屏投影装置

Also Published As

Publication number Publication date
US20130147865A1 (en) 2013-06-13

Similar Documents

Publication Publication Date Title
JP5365155B2 (ja) 投射型画像表示装置および投射光学系
US8922722B2 (en) Projection apparatus for providing multiple viewing angle images
US20050237612A1 (en) Integrator, polarization conversion device, and display apparatus using the same
JP2002104024A (ja) 表示装置
JPH08278512A (ja) 液晶表示装置
JP2010237356A (ja) 投射型画像表示装置および投射光学系
CN209765249U (zh) 投影装置
CN101943848A (zh) 一种单投影宽屏投影装置
CN101943847A (zh) 一种单投影宽屏投影方法
KR20050069828A (ko) 고해상도 투사 장치
CN101943849A (zh) 单投影宽屏投影装置
US8567956B2 (en) Projector
WO2012027974A1 (zh) 单投影宽屏投影装置及方法
JP2011257645A (ja) プロジェクター
US8342689B2 (en) Split scrolling illumination for light modulator panels
CN201765426U (zh) 一种单投影宽屏投影装置
JP2012208216A (ja) 投射型表示装置
JPH11327048A (ja) 背面投写型表示装置
JPH11211979A (ja) 投写画像補正レンズ、投写レンズ装置および投写型表示装置
CN201812128U (zh) 单投影宽屏投影装置
KR20160041201A (ko) 모드 변환이 가능한 다 시각 hud 장치 및 방법
WO2023097767A1 (zh) 光学投影模组以及照明光机
JPH10115869A (ja) 液晶プロジェクタ
CN101329452B (zh) 能显示立体图像的光学引擎设备
CN102495521A (zh) 单镜头双液晶屏偏振光3d投影机

Legal Events

Date Code Title Description
WWE Wipo information: entry into national phase

Ref document number: 13255790

Country of ref document: US

121 Ep: the epo has been informed by wipo that ep was designated in this application

Ref document number: 11821004

Country of ref document: EP

Kind code of ref document: A1

NENP Non-entry into the national phase

Ref country code: DE

32PN Ep: public notification in the ep bulletin as address of the adressee cannot be established

Free format text: NOTING OF LOSS OF RIGHTS PURSUANT TO RULE 112(1) EPC (EPO FORM 1205A DATED 08.07.2013)

122 Ep: pct application non-entry in european phase

Ref document number: 11821004

Country of ref document: EP

Kind code of ref document: A1