WO2012026797A1 - Indicador visual de flujo de nieblas de bajo caudal y baja presión - Google Patents

Indicador visual de flujo de nieblas de bajo caudal y baja presión Download PDF

Info

Publication number
WO2012026797A1
WO2012026797A1 PCT/MX2010/000081 MX2010000081W WO2012026797A1 WO 2012026797 A1 WO2012026797 A1 WO 2012026797A1 MX 2010000081 W MX2010000081 W MX 2010000081W WO 2012026797 A1 WO2012026797 A1 WO 2012026797A1
Authority
WO
WIPO (PCT)
Prior art keywords
flow
clauses
further characterized
instrument according
rotor
Prior art date
Application number
PCT/MX2010/000081
Other languages
English (en)
French (fr)
Inventor
Germán Florencio GONZÁLEZ BERNAL
Carlos Jorge GONZÁLEZ BERNAL
Original Assignee
Gonzalez Bernal German Florencio
Gonzalez Bernal Carlos Jorge
Priority date (The priority date is an assumption and is not a legal conclusion. Google has not performed a legal analysis and makes no representation as to the accuracy of the date listed.)
Filing date
Publication date
Application filed by Gonzalez Bernal German Florencio, Gonzalez Bernal Carlos Jorge filed Critical Gonzalez Bernal German Florencio
Priority to BR112012026858A priority Critical patent/BR112012026858A2/pt
Priority to PCT/MX2010/000081 priority patent/WO2012026797A1/es
Publication of WO2012026797A1 publication Critical patent/WO2012026797A1/es

Links

Classifications

    • GPHYSICS
    • G01MEASURING; TESTING
    • G01PMEASURING LINEAR OR ANGULAR SPEED, ACCELERATION, DECELERATION, OR SHOCK; INDICATING PRESENCE, ABSENCE, OR DIRECTION, OF MOVEMENT
    • G01P13/00Indicating or recording presence, absence, or direction, of movement
    • G01P13/0006Indicating or recording presence, absence, or direction, of movement of fluids or of granulous or powder-like substances
    • G01P13/004Indicating or recording presence, absence, or direction, of movement of fluids or of granulous or powder-like substances by using the rotation of vanes
    • GPHYSICS
    • G01MEASURING; TESTING
    • G01FMEASURING VOLUME, VOLUME FLOW, MASS FLOW OR LIQUID LEVEL; METERING BY VOLUME
    • G01F1/00Measuring the volume flow or mass flow of fluid or fluent solid material wherein the fluid passes through a meter in a continuous flow
    • G01F1/05Measuring the volume flow or mass flow of fluid or fluent solid material wherein the fluid passes through a meter in a continuous flow by using mechanical effects
    • G01F1/06Measuring the volume flow or mass flow of fluid or fluent solid material wherein the fluid passes through a meter in a continuous flow by using mechanical effects using rotating vanes with tangential admission

Definitions

  • the present invention relates to a flow presence indicating device. More particularly, the present invention relates to an indicator device for the presence of vapor or mist flows. Specifically, the present invention relates to a visual fog flow indicator that is capable of indicating the presence of a fog flow consisting of tiny particles or drops of oils, solvents or other materials, including water, suspended in within a stream of air or other gases at temperatures below 40 ° C, pressures less than 1 pound per manometric square inch (PSIG), and flow rates less than O. 1 standard cubic foot per minute (SCFM).
  • PSIG pound per manometric square inch
  • SCFM standard cubic foot per minute
  • the object of the present invention is to provide a device that visually indicates the presence of flow in a line that conveys a cold fog even if it has conditions of pressures less than a pound per manometric square inch (PSIG), and flows below 0.1 standard cubic foot per minute (SCFM).
  • PSIG pound per manometric square inch
  • SCFM standard cubic foot per minute
  • flow measuring devices as well as flow indicating devices is well known in the prior art. Most flow measurement devices measure average speed or some related quantity such as pressure, pressure drop, differential pressure, drag force among others.
  • the use of the rotameter stands out for being a simple, reliable device with a low pressure drop that provides a direct reading of the flow rate for a wide range of liquids and gases.
  • the flowmeter of the rotameter type is normally formed as a truncated conical tube usually transparent, whose major base is at the top, and which is placed only vertically so that the fluid flows upwardly and, from this shape, the speed and pressure of said flow push and move vertically a float that can be shaped like a finned cylinder, and even as a sphere or ball of graduated weight and dimensions. The final position due to the flow of this float will allow to know the flow that the fluid carries thanks to a visible graduation on the surface of the conical tube.
  • visual flow indicators there is a large number and variation of designs present in the state of the art for a long time. These devices do not provide any quantitative information of the flow in the pipe, but simply a visual indication of the existence or non-existence of said flow. As with rotameters, there is an extensive description of the different designs of visual flow indicators, and the most relevant designs for the present invention are indicated below.
  • US Patent 1,385,717 to Sams describes a flow indicator designed to indicate the existence of flow in a pipe that carries lubricating liquids, which uses a cylindrical body in which an axis shaped as a very low friction bolt holds and allows a free rotation of a Rotary motor shaped indicator.
  • This engine is composed of a plurality of blades made of thin metal sheet and are curved in its cross section.
  • the cylindrical body has an opening that is closed with a transparent peephole secured inside.
  • Each flat blade has an indicator disc attached or fixed at its end and on the side of the blade closest to the sight glass.
  • the axis of rotation is aligned with the center of the pipe and the curve of the blades is always concave towards the flow, so regardless of the direction of the flow, the rotary motor will turn clockwise.
  • US Patent 3,185,128 to Lyloore et al. Describes a flow indicator similar to that proposed by Sams, with the difference that the rotor is formed by rigid and straight vanes, without indicator discs.
  • the axis of rotation of the rotary indicator is aligned with the flow, and has a flow diverter at the inlet to ensure that the fluid impacts the rotor blades in the best way.
  • a second modality proposed by Moore is shaped as a tilting tongue that is supported by the same central axis and that instead of rotating when impacted by the flow, it will simply acquire an angular position relative to the flow axis, which will be given by the conditions of flow and pressure.
  • vanes are not light enough because it is based on a commercial tube or hose, and Tarbox does not give enough information to guarantee that this flow indicator works when handling a fluid with a flow rate less than 0.1 SCFM and at a pressure less than 1 PSIG.
  • the fog flow indicator is a visual indication instrument that allows the operator to witness the flow of a mist formed by tiny drops of oils, solvents or other materials including water, suspended within a air flow or other gases at temperatures within the range of -5 ° C to 40 ° C, pressures less than 1 pound per gauge square inch (PSIG) and flow rates less than 0.1 standard cubic feet per minute (SCFM).
  • PSIG pound per gauge square inch
  • SCFM standard cubic feet per minute
  • the visual fog flow indicator is shaped like a trapezoidal body in which a rotor is formed consisting of a set of blades similar to a spoon, or with concavities at its ends. This rotor is held and rotated on a shaft shaped like a bolt that allows it to rotate freely with very low pressure.
  • the body has an inlet and an outlet nozzle which can be internally threaded to allow easy installation of the visual fog flow indicator in the fluid line, and also has a cover that allows access to the interior for maintenance or rotor cleaning.
  • the axis of rotation on which the rotor rotates freely is mounted on two supports, one of which forms an integral part of the construction of the body, and the other forms an integral part of the construction of the cover.
  • the design of these supports allows the rotor to be centered in the cavity without the need for the use of washers.
  • the cover When designed to handle mists at pressures below 1 PSIG, the cover does not need to be fixed in place by screws, but is fixed to the body by a pair of side flanges and a third upper flange that add to the tight fit obtained by the dimensions with which both the body and the lid have been manufactured. ' " ⁇ ⁇ ' " . '' 7
  • the body can be made partially or entirely of transparent material such as glass, in order to allow full visibility of the rotor, however, it can also be made of opaque materials.
  • the cover will be made of transparent material and the body can have a transparent sight glass on its other side so that the combination of transparent sight glass and cover allows perfect visibility of the rotor.
  • the rotor Even if one of the characteristics of the fogs is to be translucent, the rotor must have the highest possible visibility, for which it will seek to manufacture it in a material whose color contrasts significantly against the color of the body or the color of the fog that you want to observe . If the material selected for its construction was not; of the appropriate color, said material can receive a layer of paint or any other color treatment, which must be compatible with the material that composes the fog that circulates through the visual fog flow indicator. Laboratory tests suggest that to improve the visibility of the rotor even in low-light environments, the rotor may be manufactured in some fluorescent material.
  • the contact between the rotor and the shaft is automatically lubricated.
  • the axis of rotation can be made of a material that has a very low coefficient of friction, such as graphite.
  • the selection of the materials for the construction of the different parts of the visual fog flow indicator must be careful to be compatible with the material of which the fog is composed, in order to guarantee durability and functionality of the device, but it will be understood that this selection of materials is not limiting or restrictive of the inventiveness of the present invention.
  • Rotation of the rotor is generated by the impact of the moving fluid on the concave end of the blades, so the number of blades should be calculated and adjusted according to the dimensions of the body to ensure that there is always a blade in contact with the flow . So the identification of the existence of flow is done simply by observing the rotation of the rotor. An operator or user may also know in order of magnitude if the flow is adequate or not by knowing the normal rotation speed of the rotor for the system being observed.
  • the axis of rotation of the rotor is offset from the center of the fluid flow line, so that this flow line faces only the concavities of the blade ends that make up the rotor. In this way, the rest of the rotor does not show resistance to flow, so that the pressure drop of the visual fog flow indicator is much lower than the commercial devices existing in the state of the art.
  • the position of the fog flow indicator is of paramount importance, and preferably it should be horizontal with the axis of rotation of the rotor located above the flow line, that is, that the trapezoidal projection of the body is above the flow line, but the device can be rotated until it reaches a maximum of 90 ° in which the axis of rotation of the rotor is at one side of the flow line, but never below.
  • the visual fog flow indicator may include accessories such as shut-off valves or instrumentation to determine the flow rate by measuring, by any appropriate means, the angular velocity of the rotor.
  • the visual indicator of flow of mists may be installed on the lines of connection to the equipment to be lubricated, in front of the distributor or manifold of the mist lubrication system.
  • Figure 1 shows a front view of the visual fog flow indicator in which the rotor is seen in its position within the body.
  • Figure 2 shows an isometric view of the explosion of the visual fog flow indicator assembly in which all the parts that compose it are appreciated.
  • Figure 3A shows a front view of the body of the visual fog flow indicator.
  • Figure 3B shows a side view of the body of the visual fog flow indicator.
  • Figure 4A shows a front view of the rotor.
  • Figure 4B shows a front view of one of the blades that make up the rotor, which shows the rotor core and the assembly with the axis of rotation.
  • Figure 4C shows a side view of one of the blades that make up the rotor.
  • Figure 5A shows a front view of the cover of the visual fog flow indicator.
  • Figure 5B shows a top view of the cover of the visual fog flow indicator.
  • Figure 50 shows a side view of the cover of the visual fog flow indicator.
  • the preferred embodiment of the present invention consists of a visual fog flow indicator that has been designated the number (100), formed by a trapezoidal body (101) that can be manufactured in a material transparent, translucent or opaque, which has an inlet nozzle (102) and an outlet nozzle
  • the body (101) has a projection
  • the body (104) with two cavities: a lid cavity (105) and a circular cavity (106) in which a rotor (201) is housed.
  • the body (101) has an axle support (107) in which a hole (108) has been made in which it is inserted the axis of rotation (401).
  • the body has an inlet bore (114) and an outlet bore (115) through which the fluid to be inspected enters and exits.
  • the visual fog flow indicator (100) has a space for the passage of condensates (113) that will allow any condensate formed upstream in the conduction line to pass without disturbing or slowing the rotation of the rotor (201) , what should be understood is of the utmost importance in order to effectively indicate the flow of a mist composed of tiny drops of oils, solvents or other materials including water, suspended within a stream of air or other gases at lower pressures at 1 PSIG, more particularly less than 20 inches of water column, and flows below 0.1 SCFM, and which has a high tendency to form condensates in the conduction line.
  • the body has both an inlet transition (111) and an outlet transition (112) that widen the diameter of the inner cavity from the diameter of the inlet holes (114) and output (115), as can be seen in Figures 3A and 3B.
  • the rotor (201) preferably manufactured in a material whose color contrasts with the color or transparency of the fog that is to be inspected, and even in a fluorescent material, is shaped as a core (202) which has a plurality of blades (203) which have concavities (204) at the ends of each of the rays (206).
  • the rotor (201) is mounted, by means of the shaft bore (204), on a rotation axis (401) that can be manufactured in very low friction materials in order to allow the rotor (201) rotate freely even when the pressure and flow conditions of the flow to be inspected are very restricted and even less than 0.1 SCFM and 1 PSIG.
  • the visual fog flow indicator (100) has an inspection cover (301) preferably made of transparent material, described in Figure 5A, consisting of a cover body (302) that has two lateral flanges (305) ) and a lower clamping flange (306) that is best seen in Figure 5C.
  • the cover has a rotor support (303) in the center of which a hole (304) has been made in which one of the ends of the axis of rotation (401).
  • the visual fog flow indicator (100) object of the present invention, is made up of few parts, assembled in a unique way that will be described below, which provide a visual flow indicator that has many advantages over Flow indicators existing in the state of the art.
  • the selection of the materials for the construction of the different parts of the visual fog flow indicator (100) must be careful to be compatible with the material from which the fog is composed in order to guarantee the durability and functionality of the device , but it will be understood that this selection of materials is not limiting or restrictive of the inventiveness of the present invention.
  • the rotation axis (401) is inserted into the shaft bore (204) of the rotor (201), once inserted, the rotor assembly (201) with rotation axis (401) is placed on the inspection cover (301 ), by inserting the rotation axis (401) into the shaft bore (304), and making sure that the blade cavities (205) are properly positioned so that, once mounted on the body (101) of the visual indicator of Mist flow (100), point towards the inlet hole (114) and in this way, the rotor (201) rotates clockwise when there is the presence of flow in the line.
  • the assembly is placed on the cover cavity (105), the axis of rotation (401) is aligned with the shaft bore (108) and pressed with force the cover (301) until it reaches the bottom of the cover cavity (105) and the rotor is inside the circular cavity (106), and that both the lateral fastening tabs (305) and the lower flange (306) have entered the corresponding slots (109) and (110).
  • the axis of rotation (401) is held, at one end, in the support (303) located in the body (302) of the inspection cover (301), and at the other end, in the support (107 ) located at the bottom of the circular cavity (106) of the body (101) of the visual fog flow indicator (100).
  • the cover (301) with the rotor (302) will remain in place thanks to the clamping tabs (305) and (306), as well as the friction between parts generated thanks to the tight fit between the body (101) and the lid (301), which is achieved by the dimensions and tolerances with which both parts have been manufactured.
  • the entire set of parts that make up the visual fog flow indicator (100) is assembled, it is mounted on the flow line thanks to the inlet (102) and outlet (103) nozzles that can be adapted (not shown) to allow easy mounting of the visual fog flow indicator (100) on the flow line.
  • These adaptations can be formed, for example, as a threading in the internal part of the nozzles (102) and (103), or the installation of some quick connect mechanism.
  • the body (101) is rotated until the projection (104) is above the flow line to ensure that the condensates generated upstream in the line can freely pass through the space for the passage of the condensates (113), and the rotor (201) rotate freely despite the existence of said condensates.
  • the position mentioned in the previous paragraph can be modified to operate in a position in which The flow line is completely vertical.
  • Said trapezoidal shape allows any condensate formed inside the cavity (104) to drain in the direction of flow. This is why it should be noted that at any angle other than 0 or 90 °, the projection (104) of the trapezoidal body (101) must go above the flow line.
  • the axis of rotation (401) is offset from the flow line long enough for the fluid to only impact the cavities (205) of the blade (s) that are in the flow line, It is not necessary to divert the flow through any device or barrier to rotate the rotor (201), so the pressure drop of the visual fog flow indicator (100) will be minimal, a feature that is of utmost importance due to the conditions pressure and mist flow described above.
  • fog flow indicator (100) can be assembled by poorly qualified personnel and still continue to provide a visual flow indicator that does not have the problems of the existing indicators in the prior art, described above. .
  • the operation of the visual fog flow indicator (100) is otherwise simple. Once mounted on the flow line in the correct position, the flow impacts the cavities (205) of the blades (203) that are in the flow line, which rotates the entire rotor (201) in the direction of the hands of the clock.
  • An operator can identify the presence of flow only by observing if the rotor (201) is static or rotating, and an experienced operator can identify in order ⁇ ⁇ . ' . . . ' ⁇ ' ⁇ . 16
  • the materials of the body (101) or of the cover (301) can be opaque, whereby a transparent sight glass (not shown) can be added in order to maximize the visibility of the rotor rotation ( 201).
  • a transparent sight glass not shown
  • This selection of materials will depend largely on the material that composes the fog and its impregnating or corrosive nature.
  • the visual fog flow indicator (100) may carry a gasket (not shown) between the body (101) and the cover (301), in order to further promote the seal between the parts, particularly in the case in which the fog is composed of some material of very low viscosity or high toxicity.
  • the body (101) is manufactured in some material in which the machining was difficult, such as glass, and it is preferred to manufacture the shaft support (107) as a separate piece and in a material other than the body, with better properties of resistance to abrasion and wear, as well as greater rigidity, such as metals, ceramics or polymers, and then adheres by some appropriate means to the body (101), as can be appreciate in figure 2 in which the separate rotor support (500) is appreciated.

Landscapes

  • Physics & Mathematics (AREA)
  • General Physics & Mathematics (AREA)
  • Fluid Mechanics (AREA)
  • Measuring Volume Flow (AREA)
  • Indicating Or Recording The Presence, Absence, Or Direction Of Movement (AREA)

Abstract

Dispositivo indicador visual de flujo de nieblas conformado por un cuerpo trapezoidal con una boquilla de entrada de flujo, otra de salida de flujo, una cavidad donde se aloja un rotor con el eje de giro desplazado respecto de la línea de flujo y una tapa. Así mismo el cuerpo cuenta con un barreno de entrada y otro de salida del fluido a inspeccionar con transiciones que ensanchan el diámetro de la cavidad interior del cuerpo. Además, el rotor cuenta con una pluralidad de aspas donde cada una de ellas tiene concavidades en los extremos de cada uno de los rayos, que quedan alineadas con la línea de flujo y dejan espacio para el paso de condensados.

Description

INDICADOR VISUAL DE FLUJO DE NIEBLAS DE BAJO CAUDAL Y BAJA PRESIÓN Campo de la Invención.
La presente invención se refiere a un dispositivo indicador de presencia de flujo. Más particularmente, la presente invención se refiere a un dispositivo indicador de presencia de flujos de vapores o nieblas. De forma específica, la presente invención se refiere a un indicador visual de flujo de nieblas que es capaz de indicar la presencia dé un flujo de una niebla conformada por diminutas partículas o gotas de aceites, solventes u otros materiales, incluida el agua, suspendidas en el seno de una corriente de aire u otros gases a temperaturas menores a 40°C, presiones menores a 1 libra por pulgada cuadrada manométrica (PSIG), y a caudales menores a Ó.l pie cúbico estándar por minuto (SCFM).
Objeto de la Invención.
El objeto de la presente invención es el de proveer un dispositivo que indique visualmente la presencia de flujo en una línea que transporta una niebla fría aún cuando ésta tenga condiciones de presiones menores a l libra por pulgada cuadrada manométrica (PSIG), y a caudales menores a 0.1 pie cúbico estándar por minuto (SCFM).
Es otro objeto proveer un dispositivo que indique visualmente la presencia de flujo aún cuando el fluido que se está observando tenga una alta tendencia a formar condensados. Es otro objeto proveer un dispositivo que permita conocer la presencia de flujo a pesar de estar ubicado en zonas de muy baja luminosidad.
Es otro objeto proveer un dispositivo que indique visualmente la presencia de flujo que presente la mínima caída de presión posible. Es otro objeto proveer un dispositivo indicador visual de flujo de nieblas que soporte condiciones agresivas en cuanto a corrosión y temperatura que pueda presentar el ambiente donde será instalado.
Otros objetos, usos y ventajas de la presente invención serán aparentes para un experto en la materia al leer la descripción que procede y con referencia a las figuras anexas.
Antecedentes.
En el estado de la técnica es muy conocido el uso de dispositivos medidores de flujo así como de dispositivos indicadores de flujo. La mayoría de los dispositivos de medición de flujo miden la velocidad promedio o alguna cantidad relacionada tales como presión, caída de presión, presión diferencial, fuerza de arrastre entre otros. Se destaca el uso del rotámetro por ser un dispositivo simple, confiable y con baja caída de presión que proporciona una lectura directa de la razón de flujo para un amplio rango de líquidos y gases.
Los medidores de flujo del tipo rotámetro, normalmente se conforman como un tubo cónico truncado usualmente transparente, cuya base mayor se encuentra en la parte superior, y que se coloca únicamente de formá vertical para que el fluido fluya de forma vertical ascendente y, de esta forma, la velocidad y presión de dicho flujo empujen y muevan verticalmente un flotador que puede ser conformado como un cilindro aletado, e jncluso como una esfera o pelota de peso y dimensiones graduadas. La posición final debido al flujo de este flotador permitirá conocer el caudal que lleva el fluido gracias a una graduación visible en la superficie del tubo cónico.
Estos rotámetros son descritos extensivamente en el estado de la técnica, y se cita como ejemplo la patente estadounidense 2,130,981 a Fischer en la que se describe un rotámetro de tubos intercambiables, así como la patente estadounidense 4,523,480 a Inoue en la que se describe un rotámetro instrumentado que permite conocer cuantitativamente el flujo mediante un arreglo de bobinas eléctricas que detectan la posición del flotador y envían una señal a un sistema de monitoreo y control que la interpreta.
Referente a los indicadores visuales de flujo, existe una gran cantidad y variación de diseños presentes en el estado de la técnica desde hace mucho tiempo. Estos dispositivos no proporcionan ninguna información cuantitativa del flujo en la tubería, sino simplemente una indicación visual de la existencia o no existencia de dicho flujo. Al igual que para los rotámetros, existe una extensa descripción de los diferentes diseños de indicadores visuales de flujo, y se indican a continuación los diseños que más relevancia tienen para la presente invención.
La patente norteamericana 1,385,717 a Sams describe un indicador de flujo diseñado para indicar la existencia de flujo en una tubería que transporte líquidos lubricantes, que utiliza un cuerpo cilindrico en el que un eje conformado como perno de muy baja fricción sostiene y permite girar libremente a un indicador con forma de motor rotatorio. Este motor se compone por una pluralidad de álabes fabricados de lamina de metal delgada y son curveados en su sección transversal. El cuerpo cilindrico cuenta con una apertura que es cerrada con una mirilla transparente asegurada al interior. Cada álabe plano cuenta con un disco indicador adherido o fijado en su extremo y en el lado del álabe más próximo a la mirilla. El eje de giro se encuentra alineado con el centro de la tubería y la curva de los álabes siempre es cóncava hacia el flujo, por lo que sin importar el sentido del mismo, el motor rotatorio girará en el sentido de las manecillas del reloj.
La patente norteamericana 3,185,128 a lyloore y otros describe un indicador de flujo similar al propuesto por Sams, con la diferencia de que el rotor es conformado por paletas rígidas y rectas, sin discos indicadores. El eje de giro del indicador rotatorio está alineado con el flujo, y cuenta con un desviador de flujo a la entrada para garantizar que el fluido impacte en la mejor forma los álabes del rotor. Una segunda modalidad propuesta por Moore se conforma como una lengüeta basculante que se sostiene por el mismo eje central y que en lugar de rotar al ser impactada por el flujo, simplemente adquirirá una posición angular relativa al eje de flujo, que estará dada por las condiciones de caudal y presión.
Actualmente los indicadores de flujo más usados en la industria están basados en la patente de Moore y se conforman por gruesos cuerpos y pesados rotores que funcionan adecuadamente para líquidos o gases con altos caudales o presiones.
Otros diseños de indicadores de flujo conocidos se conforman como un elemento basculante o flexible que es empujado por el fluido y adquiere una posición angular relativa con respecto/ al eje del flujo. Estos diseños se describen en las patentes norteamericanas 3,745,967 a Smith y otros, la 2,735,300 a Dungan y otros y en la 2,580,928 a Kehm, en las cuales se describen aplicaciones para fluidos densos en fase líquida, y no tienen relevancia para la presente invención.
Estos indicadores de flujo actualmente existentes en el estado de la técnica, han sido principalmente diseñados para indicar el flujo de líquidos, así como para gases de alta presión o alto caudal, y ninguna de las anteriores patentes presenta una solución viable al manejo de fluidos de muy bajas presiones y caudales, así como tampoco presentan una solución viable al manejo de nieblas de aceites lubricantes, solventes u otras sustancias, incluida el agua, la cual se presenta en la presente invención. Los principales esfuerzos realizados hasta el momento, han sido los de proveer indicadores de flujo que funcionen y sean visibles a líquidos densos y obscuros, así como a fluidos corrosivos o a gases a alta presión. Aún cuando la patente norteamericana 3,015,300 a Tarbox describe un indicador de flujo que promete funcionar a bajo caudal conformado por un rotor con cuatro paletas construidas con tubo o manguera recortadas, cuenta con dos desviadores de flujo que rodean al rotor para garantizar que el fluido impacte las paletas en el ángulo adecuado. El manejar un fluido con alta tendencia a formar condensados, tal como una niebla de aceites, solventes u otros materiales incluida el agua, generará una inundación dentro de la cámara del rotor lo que eventualmente impedirá el giro del mismo. Así mismo, la construcción de las paletas no es lo suficientemente ligera al ser ésta a base de tubo o manguera comercial, y Tarbox no da información suficiente que permita garantizar que este indicador de flujo funcione al manejar un fluido con un caudal menor a 0.1 SCFM y a una presión menor a 1 PSIG.
Así mismo, otro de los principales problemas que presentan estas soluciones, que se resuelve con la presente invención y que será descrito, es el de no considerar fluidos con alta tendencia a generar condensados.
DESCRIPCIÓN DE LA INVENCIÓN.
El indicador de flujo de nieblas, objeto de la presente invención, es un instrumento dé indicación visual que permite al operador presenciar el flujo de una niebla conformada por diminutas gotas de aceites, solventes u otros materiales incluida el agua, suspendidas en el seno de una corriente de aire u otros gases a temperaturas dentro del rango de -5°C a 40°C, presiones menores a 1 libra por pulgada cuadrada manométrica (PSIG) y caudales menores a 0.1 pie estándar cúbico por minuto (SCFM).
El indicador visual de flujo de nieblas se conforma como un cuerpo trapezoidal en el que se aloja un rotor conformado por un conjunto de aspas similares a una cuchara, o con concavidades en sus extremos. Este rotor se sostiene y gira sobre un eje conformado como un perno que le permite girar libremente con muy baja presión. El cuerpo cuenta con una boquilla de entrada y una de salida las cuales pueden estar roscadas internamente para permitir instalar fácilmente el indicador visual de flujo de nieblas en la línea del fluido, y cuenta también con una tapa que permite el acceso al interior para el mantenimiento o limpieza del rotor.
El eje de giro sobre el cual gira libremente el rotor, está montado en dos soportes, uno de los cuales forma parte integral de la construcción del cuerpo, y el otro formando parte integral de la construcción de la tapa. El diseño de estos soportes permite centrar el rotor en la cavidad sin la necesidad del uso de arandelas.
Al ser diseñado para manejar nieblas a presiones menores a 1 PSIG, la tapa no requiere ser fijada en su lugar mediante tornillería, sino que se fija al cuerpo mediante un par de pestañas laterales y una tercera pestaña superior que se suman al ajuste apretado que se obtiene por las dimensiones con las que han sido fabricados tanto el cuerpo como la tapa. ' " ·■' " . ' ' 7
El cuerpo puede ser fabricado parcialmente o en su totalidad de material transparente como por ejemplo de vidrio, a fin de permitir la completa visibilidad del rotor, sin embargo, puede ser también fabricado en materiales opacos. En este caso la tapa será fabricada en material transparente y el cuerpo podrá contar en su otrá cara con una mirilla transparente a fin de que la combinación de mirilla y tapa transparentes permitan una perfecta visibilidad del rotor.
Aún cuando una de las características de las nieblas es ser translúcidas, el rotor debe tener la mayor visibilidad posible, para lo cual se buscará fabricarlo en un material cuyo color contraste significativamente contra el color del cuerpo o el color de la niebla que se desee observar. Si el material seleccionado para su construcción no fuera; del color apropiado, dicho material puede recibir una capa de pintura o cualquier otro tratamiento de color, el cual deberá ser compatible con el material que componga la niebla que circule por el indicador visual de flujo de nieblas. Las pruebas de laboratorio sugieren que para mejorar la visibilidad del rotor incluso en ambientes de baja luminosidad, el rotor podrá ser fabricado en algún material fluorescente.
Al ser uno de sus principales usos en líneas de tubería que transportan nieblas de lubricantes, el contacto entre el rotor y el eje se encuentra automáticamente lubricado. Sin embargo, el eje de giro puede ser fabricado en un material que tenga un muy bajo coeficiente de fricción, como por ejemplo el grafito.
Así mismo, la selección de los materiales para la construcción de las diferentes partes del indicador visual de flujo de nieblas deberá ser cuidadosa para ser compatible con el material del que se componga la niebla, a fin de garantizar la durabilidad y funcionalidad del dispositivo, pero se entenderá que esta selección de materiales no es limitativa ni restrictiva de la inventiva de la presente invención.
El giro del rotor es generado por el impacto del fluido en movimiento sobre el extremo cóncavo de las aspas, por lo que la cantidad de aspas deberá ser calculada y ajustada según las dimensiones del cuerpo para garantizar que siempre haya un aspa en contacto con el flujo. Por lo que la identificación de la existencia de flujo se realiza simplemente observando el giro del rotor. Un operario o usuario podrá también saber en orden de magnitud si el flujo es adecuado o no al conocer la velocidad normal de giro del rotor para el sistema que esté observando.
Cabe destacar que el eje de giro del rotor se encuentra desfasado del centro de la línea de flujo del fluido, de tal forma que ésta línea de flujo encuentra frente a sí sólo a las concavidades de los extremos de las aspas que conforman al rotor. De esta forma, el resto del rotor no présenta resistencia al flujo, por lo que la caída de presión del indicador visual de flujo de nieblas es muy inferior a los dispositivos comerciales existentes en el estado de la técnica.
Para evitar la acumulación de condensados, la posición del indicador de flujo de niebla es de suma importancia, y preferentemente deberá ser horizontal con el eje de giro del rotor ubicado por sobre la línea de flujo, es decir, que la saliente trapezoidal del cuerpo esté por arriba de la línea de flujo, pero pudiendo ser rotado el dispositivo hasta llegar a un máximo de 90° en el que el eje de giro del rotor se encuentra a un lado de la línea de flujo, pero nunca por debajo.
Dé igual forma, las puntas de las aspas del rotor mantienen una distancia adecuada con respecto a la pared del cuerpo de forma que cualquier condensado de niebla que venga por la línea pasará dé largo sin frenar o detener el giro del rotor. El indicador visual de flujos de nieblas podrá llevar accesorios tales como válvulas de cierre o instrumentación para determinar el caudal del flujo mediante la medición, por cualquier medio apropiado, de la velocidad angular del rotor.
Aunque las características de la presente invención son'aquí descritas e ilustradas como especialmente adaptables para formar un indicador visual de flujo de nieblas, es de entenderse que varias de las características de esta invención pueden ser usadas individualmente o en varias combinaciones para proveer otros dispositivos que sean deseados. De esta forma, esta invención no debe ser limitada sólo a las modalidades mostradas en las figuras, ya que las figuras a continuación descritas sólo muestran uno de la gran variedad de los usos posibles para esta invención.
A manera de ejemplo, en el caso particular de sistemas de lubricación por niebla, recomiendo (sin con esto limitar la amplitud de los deréchos promovidos con esta patente, refiriéndome al "concepto inventivo" contemplado en la legislación), el uso del indicador visual de flujo de nieblas para identificar de forma rápida, eficiente, segura y confiable problemas que se hayan llegado a presentar en este tipo de sistemas de lubricación como lo es la obstrucción y/o taponamiento én los reclasificadores debido principalmente a la formación de parafinas. Para tal efecto, el indicador visual de flujo de nieblas podrá instalarse en las líneas de conexión al equipo a lubricar, por delante del distribuidor o manifold del sistema de lubricación por niebla.
BREVE DESCRIPCIÓN DE LOS DIBUJOS
La Figura 1 muestra una vista frontal del indicador visual de flujo de nieblas en la que se aprecia el rotor en su posición dentro del cuerpo.
La Figura 2 muestra una vista isométrica de la explosión del ensamble del indicador visual de flujo de nieblas en la que se aprecian todas las partes que lo componen.
La Figura 3Á muestra una vista frontal del cuerpo del indicador visual del flujo de nieblas. La Figura 3B muestra una vista lateral del cuerpo del indicador visual del flujo de nieblas. La Figura 4A muestra una vista frontal del rotor.
La Figura 4B muestra una vista frontal de una de las aspas que conforman el rotor, en la que se aprecia el núcleo del rotor y el ensamble con el eje dé rotación.
La Figura 4C muestra una vista lateral de una de las aspas que conforman el rotor.
La Figura 5A muestra una vista frontal de la tapa del indicador visual de flujo de nieblas. La Figura 5B muestra una vista superior de la tapa del indicador visual de flujo de nieblas. La Figura 50 muestra una vista lateral de la tapa del indicador visual de flujo de nieblas. Las figuras muestran una modalidad preferente de la presente invención, la cual será descrita, pero deberá entenderse que varios cambios pueden -ser hechos a partir de la construcción mostrada, y que los dibujos y descripción no son restrictivos ni limitativos del alcance de la presente invención.
DESCRIPCIÓN DE LAS MODALIDADES PREFERENTES DE LA INVENCIÓN
La modalidad preferente de la presente invención, descrita en la figura 1, consiste en un indicador visual de flujo de nieblas al que se le ha designado el número (100), conformado por un cuerpo trapezoidal (101) que puede ser fabricado en un material transparente, translúcido u opaco, que cuenta con una boquilla de entrada (102) y una boquilla dé salida
(103) , ambas adaptables mediante roscado u otro tipo de conexión para ser fácilmente conectadas a la línea de fluido que se desea inspeccionar. El cuerpo (101) tiene una saliente
(104) con dos cavidades: una cavidad para tapa (105) y una cavidad circular (106) en la cual se aloja un rotor (201). Como se puede apreciar en la figura 3B, en el fondo de la cavidad circular (106), el cuerpo (101) cuenta con un soporte para eje (107) en el que se ha realizado un barreno (108) en el que se inserta el eje de rotación (401). De igual forma, como se puede apreciar en la figura 3A, el cuerpo cuenta con un barreno de entrada (114) y un barreno de salida (115) por los cuales entra y sale el fluido que se quiere inspeccionar. Así mismo, el indicador visual de flujo de nieblas (100) cuenta con un espacio para el paso de condehsados (113) que permitirá que cualquier condensado formado río arriba en la línea de conducción pase sin perturbar o frenar el giro del rotor (201), lo que debe entenderse es de suma importancia para poder indicar de forma efectiva el flujo de una niebla compuesta por diminutas gotas de aceites, solventes u otros materiales incluida el agua, suspendidas en el seno de una corriente de aire u otros gases a presiones inferiores a 1 PSIG, más particularmente inferiores a 20 pulgadas de columna de agua, y a caudales menores a 0.1 SCFM, y que tiene alta tendencia a formar condensádos en la línea de conducción. Para lograr este espacio para paso de condensados (113), el cuerpo cuenta tanto con una transición de entrada (111) como con una transición de salida (112) que ensanchan el diámetro de la cavidad interior a partir del diámetro de los barrenos de entrada (114) y de salida (115), tal como se puede apreciar en las figuras 3A y 3B.
Como se aprecia en la figura 4, el rotor (201), fabricado preferentemente en un material cuyo color contraste con el color o transparencia de la niebla que se desee inspeccionar, e incluso en un material fluorescente, se conforma como un núcleo (202) que cuenta con una pluralidad de aspas (203) las cuales tienen concavidades (204) en los extremos de cada uno de los rayos (206). Como se puede apreciar en la figura 4B, El rotor (201) se monta, mediante el barreno para eje (204), sobre un eje de rotación (401) que puede ser fabricado en materiales de muy baja fricción a fin de permitir que el rotor (201) gire libremente aún cuando las condiciones de presión y caudal del flujo a inspeccionar sean muy restringidas e incluso menores a 0.1 SCFM y a 1 PSIG.
El indicador visual de flujo de nieblas (100) cuenta con una tapa de inspección (301) fabricada preferentemente en material transparente, descrita en la figura 5A, conformada por un cuerpo de tapa (302) que cuenta con dos pestañas laterales de sujeción (305) y una pestaña inferior de sujeción (306) que se aprecia de mejor forma en la figura 5C. Así mismo, tal como se aprecia en las figuras 5A, 5B y 5C, la tapa cuenta con un soporte para rotor (303) en el centro del cual se ha realizado un barreno (304) en el que se insertará uno de los extremos del eje de rotación (401).
Puede notarse que el indicador visual de flujo de nieblas (100), objeto de la presente invención, es conformado por pocas partes, ensambladas de una forma única que se describirá a continuación, que proveen un indicador visual de flujo que tiene muchas ventajas sobre los indicadores de flujo existentes en el estado del arte. Así mismo, la selección de los materiales para la construcción de las diferentes partes del indicador visual de flujo de nieblas (100) deberá ser cuidadosa para ser compatible con el material del que se componga la niebla a fin de garantizar la durabilidad y funcionalidad del dispositivo, pero se entenderá que esta selección de materiales no es limitativa ni restrictiva de la inventiva de la presente invención.
A continuación se describirá el método para ensamblar las diversas partes que componen al indicador visual de flujo de nieblas (100).
El eje de rotación (401) se inserta dentro del barreno para eje (204) del rotor (201), una vez insertado, el conjunto de rotor (201) con eje de rotación (401) se coloca sobre la tapa de inspección (301), insertando el eje de rotación (401) en el barreno para eje (304), y asegurándose que las cavidades de las aspas (205) tengan la posición adecuada para que, una vez montadas en el cuerpo (101) del indicador visual de flujo de nieblas (100), apunten hacia el barreno de entrada (114) y de esta forma, el rotor (201) gire en sentido de las manecillas del reloj cuando exista la presencia de flujo en la línea.
Una vez ensamblada la tapa (301) con el rotor (201), se coloca el conjunto sobre la cavidad para tapa (105), se alinea el eje de rotación (401) con el barreno para eje (108) y se presiona con fuerza la tapa (301) hasta que llegue al fondo de la cavidad para tapa (105) y el rotor se encuentre dentro de la cavidad circular (106), y que tanto las pestañas laterales de sujeción (305) como la pestaña inferior (306) hayan entrado en las ranuras correspondientes (109) y (110).
Cabe notar que el eje de rotación (401) se sujeta, por un extremo, en el soporte (303) ubicado en el cuerpo (302) de la tapa de inspección (301), y por el otro extremo, en el soporte (107) ubicado en el fondo de la cavidad circular (106) del cuerpo (101) del indicador visual de flujo de nieblas (100). La tapa (301) con el rotor (302) se mantendrá en su lugar gracias a las pestañas de sujeción (305) y (306), así como a la fricción entre piezas generada gracias al ajuste apretado entre el cuerpo (101) y la tapa (301), que se logra por las dimensiones y tolerancias con que han sido fabricadas ambas partes.
Una vez ensamblado todo el conjunto de partes que componen el indicador visual de flujo de nieblas (100), éste se monta en la línea de flujo gracias a las boquillas de entrada (102) y de salida (103) que pueden contar con adaptaciones (no mostradas) para permitir el fácil montaje del indicador visual de flujo de nieblas (100) sobre la línea de flujo. Estas adaptaciones pueden conformarse, por ejemplo, como un roscado en la parte interna de las boquillas (102) y (103), o la instalación de algún mecanismo de conexión rápida.
Una vez colocado en la línea, el cuerpo (101) se rota hasta que la saliente (104) quede por encima de la línea de flujo para garantizar que los condensados generados río arriba en la línea puedan pasar libremente por el espacio para el paso de los condensados (113), y el rotor (201) gire libremente a pesar de la existencia de dichos condensados.
La posición del cuerpo (101), en la cual la saliente (104) deberá ir siempre por arriba de la línea de flujo, combinada con el espacio para el paso de condensados (113), dan l indicador visual de flujo de nieblas la capacidad dé indicar de forma eficaz y eficiente la presencia o no de flujo de una niebla compuesta por diminutas gotas de aceites, solventes u otros materiales incluida el agua, suspendidas en el seno de una corriente de aire u otros gases, a presiones inferiores a 1 PSIG, más particularmente inferiores a 20 pulgadas de columna de agua, y a caudales menores a 0.1 SCFM, y que tiene alta tendencia a formar condensados en la línea de conducción.
Debido a la forma trapezoidal de la saliente (104) del cuerpo (101), la posición mencionada en el párrafo anterior puede ser modificada para llegar a operar en una posición en la que la línea de flujo es completamente vertical. Dicha forma trapezoidal permite que cualquier condensado formado dentro de la cavidad (104) escurra en el sentido del flujo. Es por esto que deberá notarse que en todo ángulo diferente de 0o o 90°, la saliente (104) del cuerpo trapezoidal (101) deberá ir por arriba de la línea de flujo.
Así mismo, gracias a que el eje de giro (401) se encuentra desfasado de la línea de flujo la distancia suficiente para que el fluido impacte únicamente en las cavidades (205) de la o las aspas que se encuentren en la línea de flujo, no es necesario desviar el flujo mediante ningún dispositivo o barrera para hacer rotar al rotor (201), por lo que la caída de presión del indicador visual de flujo de niebla (100) será mínima, característica que es de suma importancia debido a las condiciones de presión y caudal de la niebla descrita anteriormente.
Cabe mencionar que, aunque se describe un método de ensamble, deberá entenderse que esta secuencia puede variar y seguirá cayendo dentro del alcance de la presente invención. Así mismo, puede notarse que el indicador de flujo de nieblas (100) puede ser ensamblado por personal poco calificado y aún así seguir proveyendo un indicador visual de flujo que no tiene los problemas de los indicadores existentes en el estado de la técnica, descritos anteriormente.
A continuación se describirá la operación del indicador visual de flujo de nieblas (100). La operación del indicador visual de flujo de nieblas (100) es por demás sencilla. Una vez montado en la línea de flujo en la posición correcta, el flujo impacta en las cavidades (205) de las aspas (203) que se encuentren en la línea de flujo, lo que hace girar a todo el rotor (201) en sentido de las manecillas del reloj.
Un operario podrá identificar la presencia de flujo sólo con observar si el rotor (201) se encuentra estático o en rotación, y un operario experimentado podrá identificar en orden · . ' . . . ' ■■ '■ . 16
de magnitud si el flujo es el adecuado para la línea en la que está montada, comparando la velocidad de giro del rotor (201) con la velocidad de giro que normalmente observaría en dicha línea dé flujo.
En otra modalidad de la presente invención, los materiales del cuerpo (101) o de la tapa (301) pueden ser opacos, por lo que se puede agrega una mirilla transparente (no mostrada) a fin de maximizar la visibilidad del giro del rotor (201). Esta selección de materiales dependerá en gran medida del material que componga la niebla y su naturaleza impregnante o corrosiva.
En otra modalidad, él indicador visual de flujo de niebla (100) puede llevar un empaque (no mostrado) entre el cuerpo (101) y la tapa (301), a fin de promover más el sello entre las partes, particularmente en el caso en el que la niebla se componga por algún material de muy baja viscosidad o alta toxicidad.
Otra modalidad es en el caso en el que el cuerpo (101) sea fabricado en algún material en el que el maquinado se dificulté, como por ejemplo el vidrio, y que se prefiera fabricar el soporte para eje (107) como una pieza aparte y en un material diferente al cuerpo, con mejores propiedades de resistencia a la abrasión y al desgaste, así como mayor rigidez, tal como metales, cerámicos o polímeros, y después se adhiera mediante algún medio apropiado al cuerpo (101), tal como se puede apreciar en la figura 2 en la que se aprecia el soporte separado para rotor (500).

Claims

REIVINDICACIONES Habiendo descrito de manera suficiente y clara mi invención, la considero como una novedad y por lo tanto reclamo de mi exclusiva propiedad, lo contenido en las siguientes cláusulas:
1. Un indicador visual de flujo de nieblas conformado por un cuerpo trapezoidal que puede ser fabricado, en un material transparente, translúcido u opaco, que cuenta con una boquilla de entrada y una boquilla de salida, y que tiene una saliente con dos cavidades: una cavidad que aloja una tapa y una cavidad circular en la cual se aloja un rotor. En el fondo de la cavidad circular, el cuerpo cuenta con un soporte para eje en el centro del cual se ha realizado un barreno en el que se inserta uno de los extremos del eje de rotación. De igual forma/el cuerpo cuenta con un barreno de entrada y un barreno de salida por los cuales entra y sale el fluido que se quiere inspeccionar.
2. Un instrumento dé acuerdo a la cláusula 1, caracterizado además porque cuenta con una boquilla de entrada y una de salida, ambas adaptables para ser fácilmente conectadas a la línea de fluido que se desea inspeccionar, y que dichas adaptaciones pueden conformarse, por ejemplo, como un roscado en la parte interna de las boquillas, o como la instalación de algún mecanismo apropiado de conexión rápida.
3. Un instrumento de acuerdo a las cláusulas 1 y 2, caracterizado además porque cuenta tanto con una transición de entrada como con una transición de salida que ensanchan el diámetro de la cavidad interior a partir del diámetro de los barrenos de entrada y de salida.
4. Un instrumento de acuerdo a las cláusulas l a 3, caracterizado además porque cuenta con una tapa de inspección, fabricada preferentemente en material transparente, que se conforma por un cuerpo de tapa que cuenta con dos pestañas laterales de sujeción y una pestaña inferior de sujeción. Así mismo, la tapa cuenta con un soporte para rotor en el centro del cual se ha realizado un barreno en el que se insertará uno de los extremos del eje de rotación.
5. Un instrumento de acuerdo a las cláusulas 1 a 4, caracterizado además porque la tapa se mantendrá en su lugar gracias a las pestañas de sujeción, así como a la fricción entre piezas generada gracias al ajuste apretado entre el cuerpo y la tapa, que se logra por las dimensiones y tolerancias con que han sido fabricadas ambas partes.
6. Un instrumento de acuerdo a las cláusulas 1 a 5, caracterizado además porque cuenta con un rotor, fabricado preferentemente en un material cuyo color contraste con el color o transparencia de ja niebla que se desee inspeccionar, e incluso en un material fluorescente, que se conforma como un núcleo que cuenta con una pluralidad de aspas las cuales tienen concavidades en los extremos de cada uno de los rayos.
7. Un instrumento de acuerdo a las cláusulas 1 a 6, caracterizado además porque el rotor se monta sobre un eje de rotación conformado como un cilindro que puede ser fabricado en materiales de muy baja fricción como por ejemplo el grafito, con dimensiones y tolerancias que permiten girar libremente al rotor, y que se sujeta por un extremo en el soporte ubicado en el cuerpo de la tapa de inspección y por el otro extremo en el soporte ubicado en el fondo de la cavidad circular del cuerpo del indicador visual de flujo de nieblas.
8. Un instrumento de acuerdo a las cláusulas 1 a 7, caracterizado además porque cuenta con un espacio para el paso de condensados a fin de que dichos condensados pasen sin perturbar o frenar el giro del rotor.
9. Un instrumento de acuerdo a las cláusulas 1 á 8, caracterizado además porque en el caso en el que la línea de flujo tenga una orientación horizontal, con un ángulo de 0o, la saliente deberá ubicarse por encima de la línea de flujo.
10. Un instrumento de acuerdo a las cláusulas 1 a 9, caracterizado además porque en el caso en el que la línea de flujo tenga una orientación vertical, con un ángulo de 90°, la saliente del cuerpo deberá ubicarse a un lado de la línea de flujo.
11. Un instrumento de acuerdo a las cláusulas 1 a.10, caracterizado además porque en el caso en el que la línea de flujo tenga un ángulo diferente de 0° o 90°, la saliente del cuerpo trapezoidal deberá ubicarse por arriba dé la línea de flujo indistintamente.
12. Un instrumento de acuerdo a las cláusulas 1 a 11, caracterizado además porque el eje de giro del rotor se encuentra desfasado de la línea de flujo la distancia equivalente al radio de uno de sus rayos.
13. Un instrumento de acuerdo a las cláusulas 1 a 12, caracterizado además porque el giro del rotor se realiza cuando el fluido impacta directamente en las cavidades de las aspas que se encuentren en la línea de flujo.
14. Un instrumento de acuerdo a las cláusulas 1 a 13, caracterizado además porque el rotor gira en sentido de las manecillas del reloj.
15. Un instrumento de acuerdo a las cláusulas 1 a 14, caracterizado además porque no es necesario desviar el flujo mediante ningún dispositivo o barrera para hacer que el flujo impacte las cavidades de las aspas.
16. Un instrumento de acuerdo a las cláusulas 1 a 15, caracterizado además porque tiene una caída de presión mínima.
17. Un instrumento de acuerdo a las cláusulas 1 a 16, caracterizado además porque los materiales utilizados para la fabricación del cuerpo o de la tapa pueden ser opacos.
18. Un instrumento de acuerdo a las cláusulas 1 á 17, caracterizado además porque el cuerpo puede llevar una mirilla transparente a fin de maximizar la visibilidad del giro del rotor. ,
19: Un instrumento dé acuerdo a las cláusulas 1 a 18, caracterizado además porque puede llevar un empaque fabricado en materiales poliméricos o elastoméricos entre el cuerpo y la tapa. -
20. Un instrumento de acuerdo a las cláusulas 1 á 19, caracterizado además porque los soportes para eje pueden ser fabricados como piezas aparte y en un material diferente al cuerpo o a la tapa, tal que tengan mejores propiedades de resistencia a la abrasión y al desgaste, así como mayor rigidez, y después se adhieran mediante algún medio apropiado al cuerpo y a la tapa.
21. Un instrumento de acuerdo a ¡a cláusula 20, caracterizado además porque dichos materiales pueden ser íales como metales, cerámicos o polímeros.
22. Un instrumento de acuerdo a las cláusulas 1 a 21, caracterizado además porque los materiales utilizados para la fabricación de sus partes deberán ser compatibles con el material del que se componga el fluido que se desea inspeccionar.
23. Un instrumento de acuerdo a las cláusulas í a 22, caracterizado además porque se utiliza para conocer de forma efectiva la presencia del flujo de una niebla compuesta por diminutas gotas de aceites, solventes u otros materiales, incluida el agua, suspendidas en el seno de una corriente de aire u otros gases a presiones inferiores a 1 PSIG, más particularmente inferiores a 20 pulgadas de columna de agua, y a caudales menores a 0.1 SCFM, y que tiene alta tendencia a formar condensados en la línea de conducción.
24. Un instrumento de acuerdo a las cláusulas 1 a 23, caracterizado además porque se utiliza para conocer la presencia de flujo en una línea mediante la observación del giro del rotor.
25. Un instrumento de acuerdo a las cláusulas 1 a 24, caracterizado además porque se utiliza para identificar, en orden de magnitud, si el flujo es el adecuado para la línea en la que está montada comparando la velocidad de giro del rotor con la velocidad de giro que normalmente se observaría en dicha línea de flujo.
26. Un instrumento de acuerdo a las cláusulas 1 a 25, caracterizado además porque puede ser ensamblado por personal poco calificado y aún así seguir proveyendo un indicador visual de flujo que no tiene los problemas de los indicadores existentes en el estado de la técnica.
PCT/MX2010/000081 2010-08-25 2010-08-25 Indicador visual de flujo de nieblas de bajo caudal y baja presión WO2012026797A1 (es)

Priority Applications (2)

Application Number Priority Date Filing Date Title
BR112012026858A BR112012026858A2 (pt) 2010-08-25 2010-08-25 indicador visual de fluxo de névoas formado por um corpo trapezoidal
PCT/MX2010/000081 WO2012026797A1 (es) 2010-08-25 2010-08-25 Indicador visual de flujo de nieblas de bajo caudal y baja presión

Applications Claiming Priority (1)

Application Number Priority Date Filing Date Title
PCT/MX2010/000081 WO2012026797A1 (es) 2010-08-25 2010-08-25 Indicador visual de flujo de nieblas de bajo caudal y baja presión

Publications (1)

Publication Number Publication Date
WO2012026797A1 true WO2012026797A1 (es) 2012-03-01

Family

ID=45723643

Family Applications (1)

Application Number Title Priority Date Filing Date
PCT/MX2010/000081 WO2012026797A1 (es) 2010-08-25 2010-08-25 Indicador visual de flujo de nieblas de bajo caudal y baja presión

Country Status (2)

Country Link
BR (1) BR112012026858A2 (es)
WO (1) WO2012026797A1 (es)

Cited By (3)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
CN106481333A (zh) * 2015-08-31 2017-03-08 中国石油化工股份有限公司 顶替界面的稳定性的评价装置及方法
CN106483325A (zh) * 2015-08-31 2017-03-08 中国石油化工股份有限公司 螺旋流场的特性评价装置及方法
CN106483324A (zh) * 2015-08-31 2017-03-08 中国石油化工股份有限公司 流速测量装置

Citations (8)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
US1385717A (en) * 1921-07-26 Assigrnob to allis-chatmebs mantj
US2882868A (en) * 1955-06-07 1959-04-21 Elmer D Smyser Fluid motor
US3020963A (en) * 1958-04-09 1962-02-13 Hakkarinen William Cup anemometer
US3185128A (en) * 1963-06-06 1965-05-25 Dover Corp Sight-glass indicator or the like
EP0118791A1 (en) * 1983-02-16 1984-09-19 Wilgood Corporation Liquid impedance flow detectors
US5099699A (en) * 1987-10-07 1992-03-31 Klaus Kobold Flow indicator or flowmeter
GB2310285A (en) * 1995-01-26 1997-08-20 Zexel Corp Flowmeter
WO1999015860A1 (fr) * 1997-09-25 1999-04-01 Zexel Corporation Debitmetre a turbine

Patent Citations (8)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
US1385717A (en) * 1921-07-26 Assigrnob to allis-chatmebs mantj
US2882868A (en) * 1955-06-07 1959-04-21 Elmer D Smyser Fluid motor
US3020963A (en) * 1958-04-09 1962-02-13 Hakkarinen William Cup anemometer
US3185128A (en) * 1963-06-06 1965-05-25 Dover Corp Sight-glass indicator or the like
EP0118791A1 (en) * 1983-02-16 1984-09-19 Wilgood Corporation Liquid impedance flow detectors
US5099699A (en) * 1987-10-07 1992-03-31 Klaus Kobold Flow indicator or flowmeter
GB2310285A (en) * 1995-01-26 1997-08-20 Zexel Corp Flowmeter
WO1999015860A1 (fr) * 1997-09-25 1999-04-01 Zexel Corporation Debitmetre a turbine

Cited By (3)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
CN106481333A (zh) * 2015-08-31 2017-03-08 中国石油化工股份有限公司 顶替界面的稳定性的评价装置及方法
CN106483325A (zh) * 2015-08-31 2017-03-08 中国石油化工股份有限公司 螺旋流场的特性评价装置及方法
CN106483324A (zh) * 2015-08-31 2017-03-08 中国石油化工股份有限公司 流速测量装置

Also Published As

Publication number Publication date
BR112012026858A2 (pt) 2018-06-05

Similar Documents

Publication Publication Date Title
ES2702525T3 (es) Contador de flujo
US20140345516A1 (en) Mass velocity sensor device and method for remote monitoring and visual verification of fluid velocity
WO2012026797A1 (es) Indicador visual de flujo de nieblas de bajo caudal y baja presión
EP2827108B1 (en) Insertable flow meter
WO2012003072A1 (en) Meter devices and methods
RU2003112241A (ru) Шаровой клапан с расходомером, установленным непосредственно в шаре
EP2694925A1 (en) Velocity type flow meter with electronic readout
KR100306214B1 (ko) 유량 측정장치
PT2087322E (pt) Contador volumétrico para fluidos em circulação, com acoplamento selectivo entre o dispositivo de contagem e a unidade aritmética
ES2399576T3 (es) Contador de chorro único con momento de accionamiento y sensibilidad mejorados
KR200450199Y1 (ko) 유량 체크 기능이 구비된 마개 구조
RU2337319C1 (ru) Тангенциальный турбинный расходомер
PT2720004E (pt) Medidor de fluxo de turbina de fluido com mancal de centragem
KR200173841Y1 (ko) 유량 측정장치
CN108426614A (zh) 一种可视空气流量指示器及其测量除臭风管风量的方法
US2676488A (en) Quantitative flow indicator
JP2004251793A (ja) 流量インジケータ
CN105136213A (zh) 一种基于流体推力的动量式流量计
CN208059947U (zh) 一种可视空气流量指示器
CN114485814B (zh) 一种高精度平衡槽道流量计
CN201748958U (zh) 具有防腐作用的钢带液位计
CN220670606U (zh) 一种可旋转的水表
CN201593996U (zh) 流量显示仪
JP6421370B2 (ja) 流量計及びポンプ装置
RU1797692C (ru) Магнитный счетчик воды и газа С.П.Филипчука

Legal Events

Date Code Title Description
121 Ep: the epo has been informed by wipo that ep was designated in this application

Ref document number: 10856480

Country of ref document: EP

Kind code of ref document: A1

REG Reference to national code

Ref country code: BR

Ref legal event code: B01A

Ref document number: 112012026858

Country of ref document: BR

NENP Non-entry into the national phase

Ref country code: DE

32PN Ep: public notification in the ep bulletin as address of the adressee cannot be established

Free format text: NOTING OF LOSS OF RIGHTS PURSUANT TO RULE 112(1) EPC (EPO FORM 1205 DATED 03.05.2013)

122 Ep: pct application non-entry in european phase

Ref document number: 10856480

Country of ref document: EP

Kind code of ref document: A1

ENP Entry into the national phase

Ref document number: 112012026858

Country of ref document: BR

Kind code of ref document: A2

Effective date: 20121019