WO2012026602A1 - 無線基地局及び通信制御方法 - Google Patents

無線基地局及び通信制御方法 Download PDF

Info

Publication number
WO2012026602A1
WO2012026602A1 PCT/JP2011/069356 JP2011069356W WO2012026602A1 WO 2012026602 A1 WO2012026602 A1 WO 2012026602A1 JP 2011069356 W JP2011069356 W JP 2011069356W WO 2012026602 A1 WO2012026602 A1 WO 2012026602A1
Authority
WO
WIPO (PCT)
Prior art keywords
radio
serving
frequency band
radio terminal
base station
Prior art date
Application number
PCT/JP2011/069356
Other languages
English (en)
French (fr)
Inventor
義三 佐藤
政明 中田
信昭 ▲高▼松
雅浩 八木
博己 藤田
Original Assignee
京セラ株式会社
Priority date (The priority date is an assumption and is not a legal conclusion. Google has not performed a legal analysis and makes no representation as to the accuracy of the date listed.)
Filing date
Publication date
Application filed by 京セラ株式会社 filed Critical 京セラ株式会社
Priority to JP2012530748A priority Critical patent/JP5654602B2/ja
Priority to US13/819,658 priority patent/US9203481B2/en
Publication of WO2012026602A1 publication Critical patent/WO2012026602A1/ja

Links

Images

Classifications

    • HELECTRICITY
    • H04ELECTRIC COMMUNICATION TECHNIQUE
    • H04BTRANSMISSION
    • H04B7/00Radio transmission systems, i.e. using radiation field
    • H04B7/02Diversity systems; Multi-antenna system, i.e. transmission or reception using multiple antennas
    • H04B7/04Diversity systems; Multi-antenna system, i.e. transmission or reception using multiple antennas using two or more spaced independent antennas
    • HELECTRICITY
    • H04ELECTRIC COMMUNICATION TECHNIQUE
    • H04BTRANSMISSION
    • H04B7/00Radio transmission systems, i.e. using radiation field
    • H04B7/02Diversity systems; Multi-antenna system, i.e. transmission or reception using multiple antennas
    • H04B7/04Diversity systems; Multi-antenna system, i.e. transmission or reception using multiple antennas using two or more spaced independent antennas
    • H04B7/06Diversity systems; Multi-antenna system, i.e. transmission or reception using multiple antennas using two or more spaced independent antennas at the transmitting station
    • H04B7/0613Diversity systems; Multi-antenna system, i.e. transmission or reception using multiple antennas using two or more spaced independent antennas at the transmitting station using simultaneous transmission
    • H04B7/0615Diversity systems; Multi-antenna system, i.e. transmission or reception using multiple antennas using two or more spaced independent antennas at the transmitting station using simultaneous transmission of weighted versions of same signal
    • HELECTRICITY
    • H04ELECTRIC COMMUNICATION TECHNIQUE
    • H04LTRANSMISSION OF DIGITAL INFORMATION, e.g. TELEGRAPHIC COMMUNICATION
    • H04L5/00Arrangements affording multiple use of the transmission path
    • H04L5/003Arrangements for allocating sub-channels of the transmission path
    • H04L5/0048Allocation of pilot signals, i.e. of signals known to the receiver
    • HELECTRICITY
    • H04ELECTRIC COMMUNICATION TECHNIQUE
    • H04WWIRELESS COMMUNICATION NETWORKS
    • H04W16/00Network planning, e.g. coverage or traffic planning tools; Network deployment, e.g. resource partitioning or cells structures
    • H04W16/24Cell structures
    • H04W16/28Cell structures using beam steering

Definitions

  • the present invention relates to an adaptive array radio base station that applies antenna weights to a plurality of antennas, and a communication control method in the radio base station.
  • Radio resources are allocated (for example, see Non-Patent Document 1).
  • frequency division duplex (FDD) and time division duplex (TDD) are used for radio communication between the radio base station eNB and the radio terminal UE. ) Is adopted.
  • each adjacent radio base station eNB uses the same frequency band for radio communication with subordinate radio terminals UE. For this reason, when the first radio base station eNB calculates antenna weights for downlink resource blocks to be allocated to subordinate radio terminals UE in order to suppress interference, the radio terminals UE subordinate to the second radio base station eNB Null steering, which is a method of directing null toward the direction of, is being studied. When the first radio base station eNB performs null steering, an effect of suppressing interference in radio communication between the second radio base station eNB and the subordinate radio terminal UE is obtained.
  • TDD-LTE LTE
  • the first radio base station eNB receives a sounding reference signal (SRS) that is an uplink radio signal transmitted by the radio terminal UE under the control of the second radio base station eNB, the arrival direction of the SRS Is recognized as the direction of the radio terminal UE under the control of the second radio base station eNB. Further, the first radio base station eNB calculates an antenna weight so that a null is directed toward the radio terminal UE under the control of the second radio base station eNB.
  • SRS sounding reference signal
  • the first radio base station eNB When a plurality of radio terminals UE under the control of the second radio base station eNB simultaneously transmit SRSs in the same frequency band, the first radio base station eNB has a plurality of subordinates under the second radio base station eNB. SRSs coming in different directions from each of the radio terminals UE will be received simultaneously. For this reason, the first radio base station eNB cannot determine the direction in which the null is directed, and appropriate null steering becomes difficult.
  • a first feature of the present invention is an adaptive array radio base station (radio base station eNB1-1) that applies antenna weights to a plurality of antennas (antenna 108A, antenna 108B, antenna 108C, and antenna 108D). Controls a reference signal transmission frequency band that can be used for transmission by a serving radio terminal (serving radio terminal UE2-1, serving radio terminal UE2-2) of a reference signal (SRS) referred to in the calculation of the antenna weight.
  • serving radio terminal UE2-1, serving radio terminal UE2-2 serving radio terminal UE2-1, serving radio terminal UE2-2
  • SRS reference signal
  • a transmission unit (control unit 102, wireless communication unit 106, modulation / demodulation unit 107, antenna 108A, antenna 108B, antenna 108C, antenna 108D) for transmitting reference signal transmission frequency band control information to the serving wireless terminal, Part of the plurality of serving wireless terminals.
  • the Bing radio terminal transmits a reference signal in the first reference signal transmission frequency band at a predetermined timing
  • the Bing radio terminal transmits the reference signal in the first reference signal transmission frequency band at the predetermined timing to the other serving radio terminals.
  • the gist is to transmit transmission stop request information (SRS transmission stop request information) indicating a request to stop transmission of a reference signal.
  • SRS transmission stop request information transmission stop request information
  • Such a radio base station when one serving radio terminal transmits a reference signal in the first reference signal transmission frequency band at a predetermined timing, serves a serving radio terminal other than the one serving radio terminal. Thus, the transmission of the reference signal in the first reference signal transmission frequency band at a predetermined timing is requested to be stopped. Therefore, a plurality of serving wireless terminals are prevented from transmitting reference signals in the same frequency band at the same time. For this reason, when calculating the antenna weight for the downlink radio resource used by another radio base station for the radio communication with the serving radio terminal subordinate to the other radio base station, the direction in which the null is directed is determined. Appropriate null steering.
  • the transmitting unit transmits the transmission to a serving radio terminal other than the one serving radio terminal having the highest radio resource allocation priority among the plurality of serving radio terminals.
  • the gist is to send stop request information.
  • the gist of the third feature of the present invention is that the transmitting unit transmits the transmission stop request information to a serving radio terminal that does not require radio resource allocation among the plurality of serving radio terminals. To do. *
  • a fourth feature of the present invention is a communication control method in an adaptive array radio base station in which antenna weights are applied to a plurality of antennas, wherein a reference signal referred to in the calculation of the antenna weights is transmitted by a serving radio terminal.
  • Transmitting a reference signal transmission frequency band control information for controlling a reference signal transmission frequency band that can be used for the serving wireless terminal wherein the transmitting step includes: When the serving radio terminal transmits a reference signal in the first reference signal transmission frequency band at a predetermined timing, the serving radio terminal transmits the reference signal in the first reference signal transmission frequency band at the predetermined timing to the other serving radio terminals.
  • the gist is to transmit transmission stop request information indicating a request to stop transmission of a reference signal.
  • FIG. 1 is an overall schematic configuration diagram of a radio communication system according to an embodiment of the present invention.
  • FIG. 2 is a diagram showing a format of a resource block according to the embodiment of the present invention.
  • FIG. 3 is a diagram illustrating a frame format according to the embodiment of the present invention.
  • FIG. 4 is a diagram illustrating a configuration of frequency bands of radio resources that can be used in radio communication between a radio base station and a radio terminal according to an embodiment of the present invention.
  • FIG. 5 is a configuration diagram of a radio base station according to the embodiment of the present invention.
  • FIG. 6 is a diagram illustrating an example of correspondence between SRS frequency bands and assigned downlink RBs according to the embodiment of the present invention.
  • FIG. 7 is a flowchart showing an operation of the radio base station according to the embodiment of the present invention.
  • FIG. 1 is an overall schematic configuration diagram of a radio communication system 10 according to an embodiment of the present invention.
  • the radio communication system 10 shown in FIG. 1 is a TDD-LTE radio communication system.
  • the radio communication system 10 includes an adjacent radio base station eNB1-1 and radio base station eNB1-2, a radio terminal UE2-1, a radio terminal UE2-2, a radio terminal UE2-3, and a radio terminal UE2-4.
  • the radio base station eNB1-1 and the radio base station eNB1-2 constitute an E-UTRAN (Evolved-UMTS Terrestrial Radio Access Network).
  • the radio terminal UE2-1 and the radio terminal UE2-2 exist in the cell 3-1 that is a communicable area provided by the radio base station eNB1-1.
  • the radio terminals UE2-3 and UE2-4 exist in a cell 3-2 that is a communicable area provided by the radio base station eNB1-2.
  • the radio terminal UE2-1 and the radio terminal UE2-2 are resource block allocation targets by the radio base station eNB1-1.
  • the radio terminals UE2-3 and UE2-4 are resource block allocation targets by the radio base stations eNB1-2.
  • the radio terminals UE2-1 and UE2-2 are serving radio terminals, and the radio terminals UE2-3 and UE2-4 are non-serving radio terminals. It is.
  • the radio terminals UE2-3 and UE2-4 are serving radio terminals, and the radio terminals UE2-1 and UE2-2 are non-serving radio terminals. is there.
  • Time division duplex is adopted for radio communication between the radio base station eNB1-1 and the radio terminals UE2-1 and UE2-2, and OFDMA (Orthogonal Frequency Division Multiplexing Access for downlink radio communication).
  • SC-FDMA Single-Carrier-Frequency-Division-Multiple-Access
  • SC-FDMA is adopted for uplink wireless communication.
  • time division duplex is adopted for radio communication between the radio base stations eNB1-2 and radio terminals UE2-3 and UE2-4, and OFDMA and uplink are used for downlink radio communication.
  • SC-FDMA is adopted for wireless communication.
  • downlink refers to a direction from the radio base station eNB1-1 toward the radio terminal UE2-1 and the radio terminal UE2-2, and from the radio base station eNB1-2 to the radio terminal UE2-3 and the radio terminal UE2-4.
  • Uplink means a direction from the radio terminal UE2-1 and the radio terminal UE2-2 to the radio base station eNB1-1 and a direction from the radio terminal UE2-3 and the radio terminal UE2-4 to the radio base station eNB1-2. means.
  • the radio base station eNB1-1 allocates resource blocks (RB: Resource Block) as radio resources to the radio terminals UE2-1 and UE2-2 in the cell 3-1.
  • the radio base station eNB1-2 allocates resource blocks to the radio terminals UE2-3 and UE2-4 in the cell 3-2.
  • the resource block includes a downlink resource block (downlink RB) used for downlink radio communication and an uplink resource block (uplink RB) used for uplink radio communication.
  • the plurality of downlink resource blocks are arranged in the frequency direction and the time direction.
  • the plurality of uplink resource blocks are arranged in the frequency direction and the time direction.
  • FIG. 2 is a diagram showing the format of the resource block.
  • the resource block is configured in one subframe having a time length of 1 [ms] in the time direction.
  • the subframe includes time zones S1 to S14. Of these time zones S1 to S14, time zones S1 to S7 constitute the first half time slot (time slot 1), and time zones S8 to S14 consist of the second half time slot (time slot 2). ).
  • Time slot 1 and time slot 2 correspond to resource blocks.
  • the resource block has a frequency width of 180 [kHz] in the frequency direction.
  • the resource block includes 12 subcarriers F1 to F12 having a frequency width of 15 [kHz].
  • FIG. 3 is a diagram showing a frame format.
  • the frame shown in FIG. 3 is composed of 10 subframes.
  • the frame includes 10 subframes: a subframe of a downlink resource block, a subframe of both a downlink resource block and an uplink resource block (special subframe: SSF), a subframe of an uplink resource block, and a subframe of an uplink resource block , Downlink resource block subframe, downlink resource block subframe, special subframe, uplink resource block subframe, uplink resource block subframe, downlink resource block subframe.
  • the first half time slot is used for downlink radio communication with the guard time in between, and the second half time slot is used for uplink radio communication.
  • all frequency bands of radio resources that can be used in radio communication between the radio base station eNB and the radio terminal UE in other words, frequency bands that can be allocated to the serving radio terminal UE (allocation) (Frequency band) has a band corresponding to the number of resource blocks.
  • FIG. 4 is a diagram illustrating a configuration of all frequency bands of radio resources that can be used in radio communication between the radio base station eNB and the radio terminal UE. As shown in FIG. 4, all frequency bands of radio resources that can be used in radio communication between the radio base station eNB and the radio terminal UE have a band corresponding to 96 resource blocks. Further, the entire frequency band is divided into frequency bands 1 to 4 having a band corresponding to 24 resource blocks.
  • the downlink resource block is transmitted in the time direction by a control information channel (PDCCH: Physical-Downlink-Control-CHannel) for downlink control information transmission and a shared data channel (PDSCH: Physical-Downlink-Shared-CHannel) for downlink user data transmission. Composed.
  • a control information channel (PDCCH: Physical-Downlink-Control-CHannel) for downlink control information transmission
  • PDSCH Physical-Downlink-Shared-CHannel
  • the uplink resource block is configured with a control information channel (PUCCH: Physical-Uplink-Control-CHannel) for uplink control information transmission at both ends of all frequency bands that can be used for uplink radio communication.
  • a shared data channel (PUSCH: Physical-Uplink-Shared-CHannel) for user data transmission is configured.
  • FIG. 5 is a configuration diagram of the radio base station eNB1-1.
  • the radio base stations eNB1-2 have the same configuration.
  • the radio base station eNB1-1 is an adaptive array radio base station that applies antenna weights to a plurality of antennas, and includes a control unit 102, a storage unit 103, an I / F unit 104, radio communication Unit 106, modulation / demodulation unit 107, antenna 108A, antenna 108B, antenna 108C, and antenna 108D.
  • the control unit 102 is configured by a CPU, for example, and controls various functions provided in the radio base station eNB1-1.
  • the control unit 102 includes a sounding reference signal (SRS) transmission frequency band setting unit 112, a resource block (RB) allocation unit 114, and an antenna weight calculation unit 116.
  • the storage unit 103 is configured by a memory, for example, and stores various information used for control and the like in the radio base station eNB1-1.
  • the I / F unit 104 can communicate with other radio base stations eNB via the X2 interface.
  • the I / F unit 104 can communicate with an EPC (Evolved Packet Core) (not shown), specifically, an MME (Mobility Management Entity) / S-GW (Serving Gateway) via the S1 interface.
  • EPC Evolved Packet Core
  • MME Mobility Management Entity
  • S-GW Serving Gateway
  • the radio communication unit 106 receives uplink radio signals transmitted from the radio terminals UE2-1 and UE2-2, which are serving radio terminals UE, via the antennas 108A to 108D. Further, the radio communication unit 106 converts (down-converts) the received uplink radio signal into a baseband signal and outputs the baseband signal to the modulation / demodulation unit 107.
  • the modulation / demodulation unit 107 demodulates and decodes the input baseband signal. Thereby, data included in the uplink radio signal transmitted by the serving radio terminal UE2-1 and the serving radio terminal UE2-2 is obtained. Data is output to the control unit 102.
  • the modulation / demodulation unit 107 encodes and modulates data from the control unit 102 to obtain a baseband signal.
  • the radio communication unit 106 converts (up-converts) the baseband signal into a downlink radio signal. Further, the modulation / demodulation unit 107 transmits a downlink radio signal via the antennas 108A to 108D.
  • the SRS transmission frequency band setting unit 112 in the control unit 102 performs the serving radio terminal UE2-1 and the serving radio terminal UE2 for each of the serving radio terminal UE2-1 and the serving radio terminal UE2-2 at a timing of a predetermined special subframe.
  • -2 sets a frequency band (SRS transmission frequency band) used when transmitting a sounding reference signal (SRS).
  • SRS is a signal to be referred to when calculating the antenna weight in the radio base station eNB1-1, and is an uplink radio signal in the radio frequency band.
  • the SRS transmission frequency band setting unit 112 sets a parameter corresponding to the bandwidth of the set SRS transmission frequency band in the SoundingRS-UL-Config that is an information element of the RRC Connection Reconfiguration message. In addition, the SRS transmission frequency band setting unit 112 sets information on the center frequency of the set SRS transmission frequency band in the RRC Connection Reconfiguration message.
  • the SRS transmission frequency band setting unit 112 sets the parameters and information on the center frequency of the SRS transmission frequency band (hereinafter collectively referred to as “SRS transmission frequency band information” as appropriate), and the serving radio terminal UE2- 1 and the serving radio terminal UE2-2, the RRC Connection Reconfiguration message is output to the modulation / demodulation unit 107 at the timing of the subframe 311 of the downlink resource block shown in FIG.
  • the modulation / demodulation unit 107 encodes and modulates the RRC Connection Reconfiguration message to obtain a baseband signal.
  • the radio communication unit 106 converts the baseband signal into a downlink radio signal and transmits the downlink radio signal to the serving radio terminal UE2-1 and the serving radio terminal UE2-2 via the antennas 108A to 108D.
  • the radio base station eNB1-1 transmits a downlink radio signal corresponding to the RRC Connection Reconfiguration message in which the SRS transmission frequency band information is set, the serving radio terminal UE2-1 and the serving radio terminal UE2-2 are notified of the downlink radio signal. Receive.
  • the serving radio terminal UE2-1 and the serving radio terminal UE2-2 Recognizes the bandwidth of the SRS transmission frequency band. Also, the serving radio terminal UE2-1 and the serving radio terminal UE2-2 recognize the center frequency of the SRS transmission frequency band based on the information on the center frequency of the SRS transmission frequency band set in the RRC Connection Reconfiguration message.
  • the serving radio terminal UE2-1 and the serving radio terminal UE2-2 use the recognized SRS transmission frequency band at the timing of the special subframe in the frame after the frame at the time of receiving the RRC Connection Reconfiguration message. Send.
  • the radio communication unit 106 in the radio base station eNB1-1 receives the SRS transmitted from the serving radio terminal UE2-1 and the serving radio terminal UE2-2 via the antenna 108A to the antenna 108D.
  • the radio communication unit 106 receives the SRS from the serving radio terminal UE2-1 and the SRS from the serving radio terminal UE2-2 at the same special subframe timing.
  • the wireless communication unit 106 converts the received SRS into a baseband signal and outputs it to the modulation / demodulation unit 107.
  • the wireless communication unit 106 outputs the received SRS frequency band information to the control unit 102.
  • the modulation / demodulation unit 107 demodulates and decodes the input baseband signal. As a result, data included in the SRS transmitted by the serving radio terminal UE2-1 and the serving radio terminal UE2-2 is obtained. Data is output to the control unit 102.
  • the SRS transmission frequency band setting unit 112 receives the SRS frequency band from the serving radio terminal UE2-1 and the SRS frequency band from the serving radio terminal UE2-2 received at the same special subframe timing. It is determined whether or not there is.
  • the SRS transmission frequency band setting unit 112 sets the SRS transmission frequency band for the serving radio terminal UE2-1 and the serving radio terminal UE2-2. Therefore, the SRS transmission frequency band setting unit 112 transmits SRSs of different frequency bands to the serving radio terminal UE2-1 and the serving radio terminal UE2-2 at the same special subframe timing. It is possible to set the transmission frequency band. However, there is a possibility that the serving radio terminal UE2-1 and the serving radio terminal UE2-2 transmit SRS of the same frequency at the same special subframe timing. In such a case, the SRS transmission frequency band setting unit 112 receives the SRS frequency band from the serving radio terminal UE2-1 and the SRS frequency from the serving radio terminal UE2-2 received at the same special subframe timing. It is determined that the band is the same.
  • the SRS transmission frequency band setting unit 112 only has to receive the timings of the same special subframe only when receiving the SRS from the radio terminals UE2-3 and the radio terminals UE2-4 subordinate to the radio base station eNB1-2. It may be determined whether the SRS frequency band received from the serving radio terminal UE2-1 and the SRS frequency band received from the serving radio terminal UE2-2 are the same.
  • the SRS transmission frequency band setting unit 112 is a serving radio terminal having a lower priority (hereinafter referred to as “PF priority”) of downlink resource block allocation by the serving radio terminal UE2-1 and serving radio terminal UE2-2 according to the PF (Propotional Fair) scheme.
  • PF priority a serving radio terminal having a lower priority
  • Transmission that is information requesting the UE or one of the serving radio terminals UE determined not to allocate a downlink resource block based on the PF priority to stop SRS transmission at the timing of the special subframe Generate stop request information.
  • the SRS transmission frequency band setting unit 112 sets transmission stop request information in the SoundingRS-UL-Config that is an information element of the RRC Connection Reconfiguration message.
  • the SRS transmission frequency band setting unit 112 outputs the RRC Connection Reconfiguration message in which the transmission stop request information is set to the modulation / demodulation unit 107 at the timing of the subframe 311 of the downlink resource block shown in FIG.
  • the modulation / demodulation unit 107 encodes and modulates the RRC Connection Reconfiguration message to obtain a baseband signal.
  • the radio communication unit 106 converts the baseband signal into a downlink radio signal, and transmits the downlink resource block based on the serving radio terminal UE having the lower PF priority or the PF priority via the antennas 108A to 108D. Downlink radio signals are transmitted to one serving radio terminal UE that is determined not to be allocated (hereinafter collectively referred to as “transmission stop target serving radio terminal UE”).
  • the transmission stop target serving radio terminal UE receives the downlink radio signal.
  • the serving radio terminal UE to which transmission is to be stopped stops transmission of SRS based on the transmission stop request information set in the RRC Connection Reconfiguration message.
  • UE2-2 is transmitting SRS of the same frequency band at the timing of one special subframe, only one of radio terminal UE2-1 and radio terminal UE2-2 continues to transmit SRS, The other will stop the transmission of SRS.
  • the processing related to the SRS transmission stop described above is performed, so that the radio base station eNB1-2 is under the control of the radio base station eNB1-2 and serves as a serving radio when the radio base station eNB1-2 is used as a reference.
  • the radio terminals UE2-3 and UE2-4 serving as terminals transmit SRSs in the same frequency band at the timing of one special subframe, the radio terminals UE2-3 and UE2-4 Only one will continue to transmit SRS and the other will stop transmitting SRS.
  • the RB allocation unit 114 allocates downlink resource blocks to the serving radio terminal UE2-1 and the serving radio terminal UE2-2. Specifically, the RB allocation unit 114 allocates, to the serving radio terminal UE2-1, the downlink resource block included in the SRS frequency band from the latest serving radio terminal UE2-1. Similarly, the RB assigning unit 114 assigns, to the serving radio terminal UE2-2, the downlink resource block included in the SRS frequency band from the serving radio terminal UE2-2 that has been received most recently.
  • the RB allocation unit 114 No downlink resource block is allocated to the serving radio terminal UE having a lower PF priority, or to one of the serving radio terminals UE that is determined not to be allocated based on the PF priority. .
  • the RB allocation unit 114 selects a special subframe next to the special subframe corresponding to the latest SRS reception timing. Further, the RB allocating unit 114 determines the time zone of the subframe immediately before the selected special subframe as the time zone of the downlink resource block to be allocated.
  • the RB allocation unit 114 generates a downlink RB allocation value that can uniquely identify the determined frequency band and time band of the downlink resource block.
  • the downlink RB allocation value is obtained by processing in the medium access control (MAC) layer.
  • the downlink RB allocation value includes a resource block number that is information for uniquely identifying the time band and the frequency band of the downlink resource block allocated to the serving radio terminal UE.
  • the RB allocation unit 114 transmits the downlink RB allocation value to the serving radio terminal UE via the modulation / demodulation unit 107, the radio communication unit 106, and the antennas 108A to 108D.
  • FIG. 6 is a diagram illustrating an example of correspondence between SRS frequency bands and allocated downlink resource blocks.
  • the RB allocation unit 114 receives the SRS of the frequency band 1 from each of the serving radio terminal UE2-1 and the serving radio terminal UE2-2 at the timing of the special subframe 301. Then, the RB allocating unit 114 assigns the downlink radio resource block included in the frequency band 1 to the serving radio terminal UE having the higher PF priority at the timing of the subframe 302 immediately before the next special subframe 303, or , Based on the PF priority, the downlink radio resource block is allocated to one serving radio terminal UE (here, serving radio terminal UE2-1) determined to be necessary.
  • the antenna weight calculation unit 116 After the downlink resource block is allocated by the RB allocation unit 114, the antenna weight calculation unit 116, for each of the antennas 108A to 108D, transmits an antenna weight (transmission weight) at the time of transmitting a downlink radio signal using the allocated downlink resource block. Is calculated.
  • the antenna weight calculation unit 116 assigns downlink resources allocated to one of the serving radio terminal UE2-1 and the serving radio terminal UE2-2 based on the downlink RB allocation value generated by the RB allocation unit 114. Specify the frequency band of the block.
  • the antenna weight calculation unit 116 receives the SRS from one of the most recently received serving radio terminal UE2-1 and serving radio terminal UE2-2, and the most recently received non-serving radio terminal UE2-3 and non-serving. Based on the SRS from one of the radio terminals UE2-4, the transmission weight for the frequency band of the downlink resource block allocated to one of the serving radio terminal UE2-1 and the serving radio terminal UE2-2 is calculated.
  • the antenna weight calculation unit 116 directs the desired wave direction of the beam to one of the serving radio terminal UE2-1 and the serving radio terminal UE2-2 that transmit the SRS, and the null direction of the beam transmits the SRS.
  • An antenna weight directed to one of the serving radio terminals UE2-3 and the non-serving radio terminals UE2-4 is calculated as a transmission weight.
  • control unit 102 uses the allocated downlink resource block to the serving radio terminal UE2-1 and the serving radio terminal UE2-2 via the modulation / demodulation unit 107, the radio communication unit 106, and the antennas 108A to 108D.
  • a downlink radio signal is transmitted.
  • the above-described processing related to transmission weight calculation is performed in the radio base stations eNB1-2.
  • FIG. 7 is a flowchart showing the operation of the radio base station eNB1-1.
  • step S101 the SRS transmission frequency band setting unit 112 in the radio base station eNB1-1 receives SRS from the serving radio terminal UE2-1 and the serving radio terminal UE2-2 at the timing of a predetermined special subframe.
  • step S102 the SRS transmission frequency band setting unit 112 determines whether or not the SRS frequency band from the serving radio terminal UE2-1 and the SRS frequency band from the serving radio terminal UE2-2 are the same. .
  • step S103 the SRS transmission frequency band setting unit 112 selects the serving radio terminal UE2 -1 and the serving radio terminal UE2-2, an RRC Connection Reconfiguration message in which the SRS transmission frequency band information is set is transmitted to the other of the serving radio terminal UE2-1 and the serving radio terminal UE2-2. Then, an RRC Connection Reconfiguration message in which the transmission stop request information is set is transmitted.
  • the radio base station eNB1-1 receives the frequency of the SRS from the serving radio terminal UE2-1 received at the same special subframe timing.
  • transmission stop request information is set for one of the serving radio terminal UE2-1 and the serving radio terminal UE2-2.
  • the serving radio terminal UE that has received the RRC Connection Reconfiguration message in which the transmission stop request information is set stops transmitting SRS according to the request.
  • the other radio base stations eNB1-2 correspond to downlink resource blocks used for radio communication between the serving radio terminals UE2-3 and the serving radio terminals UE2-4 under the other radio base stations eNB1-2.
  • the radio base station eNB1-1 is based on the serving radio terminal UE having the lower PF priority among the serving radio terminal UE2-1 and the serving radio terminal UE2-2, or the PF priority. Then, an RRC Connection Reconfiguration message in which transmission stop request information is set is transmitted to one serving radio terminal UE that is determined not to need to allocate a downlink resource block. Based on the PF priority, the serving radio terminal UE that should stop the transmission of SRS is set, so that in the subsequent downlink resource block allocation, the serving radio terminal UE having a high PF priority or the PF priority is set. On the other hand, a problem arises in that a downlink resource block is not allocated to one serving radio terminal UE that is determined to be allocated based on the SRS because the SRS is not transmitted from the serving radio terminal UE. Is prevented.
  • the SRS transmission frequency band setting unit 112 determines that a serving radio terminal other than the serving radio terminal UE having the highest PF priority or a downlink resource block needs to be allocated based on the PF priority.
  • a process of transmitting an RRC Connection Reconfiguration message in which transmission stop request information is set is performed to a serving radio terminal UE other than the serving radio terminal.
  • the timing of the special subframe is the SRS transmission timing in the serving radio terminal UE2-1.
  • the SRS transmission timing is not limited to this, and may be any timing agreed in advance between the radio base station eNB1-1 and the serving radio terminal UE2.
  • the radio base station eNB1-1 uses the reception weight as the transmission weight. However, the radio base station eNB1-1 may calculate the transmission weight regardless of the reception weight.
  • the TDD-LTE radio communication system has been described.
  • radio communication employing up / down asymmetric communication in which the frequency band of the uplink radio signal allocated to the radio terminal is different from the frequency band of the downlink radio signal is adopted.
  • the present invention can be similarly applied to any system.
  • the present invention includes various embodiments and the like not described herein. Therefore, the present invention is limited only by the invention specifying matters in the scope of claims reasonable from this disclosure.

Landscapes

  • Engineering & Computer Science (AREA)
  • Computer Networks & Wireless Communication (AREA)
  • Signal Processing (AREA)
  • Mobile Radio Communication Systems (AREA)

Abstract

 無線基地局eNB1-1は、サービング無線端末UE2-1からのSRSの周波数帯と、サービング無線端末UE2-2からのSRSの周波数帯とが同一である場合、サービング無線端末UE2-1及びサービング無線端末UE2-2の一方に対して、送信停止要求情報が設定された、RRC Connection Reconfiguration メッセージを送信する。

Description

無線基地局及び通信制御方法
 本発明は、複数のアンテナにアンテナウェイトを適用するアダプティブアレイ方式の無線基地局、及び、当該無線基地局における通信制御方法に関する。
 3GPP(Third Generation Partnership Project)において、現在、規格策定中のLTE(Long Term Evolution)に対応する無線通信システムでは、無線基地局eNBと無線端末UEとの間の無線通信において、無線基地局eNBが無線リソースの割り当てを行っている(例えば、非特許文献1参照)。また、LTEに対応する無線通信システムでは、無線基地局eNBと無線端末UEとの間の無線通信に、周波数分割複信(FDD:Firequency Division Duplex)と、時分割複信(TDD:Time Division Duplex)との何れかが採用される。
 更に、TDDを採用するLTE(TDD-LTE)の無線通信システムでは、隣接する各無線基地局eNBは、配下の無線端末UEとの間の無線通信に同一の周波数帯を用いる。このため、干渉を抑制すべく、第1の無線基地局eNBが、配下の無線端末UEに割り当てる下りリソースブロックに対するアンテナウェイトを算出する際に、第2の無線基地局eNBの配下の無線端末UEの方向へヌルを向ける手法であるヌルステアリングが検討されている。第1の無線基地局eNBがヌルステアリングを行うことにより、第2の無線基地局eNBと配下の無線端末UEとの間の無線通信における干渉抑制の効果が得られる。 ヌルステアリングにおいて、第1の無線基地局eNBは、第2の無線基地局eNBの配下の無線端末UEが送信する上りの無線信号であるサウンディング参照信号(SRS)を受信すると、当該SRSの到来方向を、第2の無線基地局eNBの配下の無線端末UEの方向として認識する。更に、第1の無線基地局eNBは、第2の無線基地局eNBの配下の無線端末UEの方向へヌルを向けるようにアンテナウェイトを算出する。
 第2の無線基地局eNBの配下の複数の無線端末UEが同時に、同一の周波数帯のSRSを送信する場合、第1の無線基地局eNBは、第2の無線基地局eNBの配下の複数の無線端末UEのそれぞれから異なる方向で到来するSRSを同時に受信することになる。このため、第1の無線基地局eNBは、ヌルを向ける方向を定めることができず、適切なヌルステアリングが困難となる。
3GPP TS 36.211 V8.7.0 "Physical Channels and Moduration", MAY 2009
 本発明の第1の特徴は、複数のアンテナ(アンテナ108A、アンテナ108B、アンテナ108C、アンテナ108D)にアンテナウェイトを適用するアダプティブアレイ方式の無線基地局(無線基地局eNB1-1)であって、前記アンテナウェイトの算出で参照される参照信号(SRS)のサービング無線端末(サービング無線端末UE2-1、サービング無線端末UE2-2)による送信に用いられることが可能な参照信号送信周波数帯を制御する参照信号送信周波数帯制御情報を前記サービング無線端末に送信する送信部(制御部102、無線通信部106、変調・復調部107、アンテナ108A、アンテナ108B、アンテナ108C、アンテナ108D)を備え、前記送信部は、複数のサービング無線端末のうち、1のサービング無線端末が、所定のタイミングにおいて第1の参照信号送信周波数帯の参照信号を送信する場合に、他のサービング無線端末に対して、前記所定のタイミングにおいて前記第1の参照信号送信周波数帯の参照信号の送信停止の要求を示す送信停止要求情報(SRS送信停止要求情報)を送信することを要旨とする。
 このような無線基地局は、1のサービング無線端末が、所定のタイミングにおいて第1の参照信号送信周波数帯の参照信号を送信する場合には、当該1のサービング無線端末以外のサービング無線端末に対しては、所定のタイミングにおける第1の参照信号送信周波数帯の参照信号の送信停止を要求する。従って、複数のサービング無線端末が、同時に同一の周波数帯の参照信号を送信することが防止される。このため、他の無線基地局が、当該他の無線基地局の配下のサービング無線端末との間の無線通信に用いる下り無線リソースに対してアンテナウェイトを算出する際に、ヌルを向ける方向を定めて適切なヌルステアリングを行うことができる。
 本発明の第2の特徴は、前記送信部は、前記複数のサービング無線端末のうち、無線リソースの割り当ての優先度が最大である1のサービング無線端末以外のサービング無線端末に対して、前記送信停止要求情報を送信することを要旨とする。
 本発明の第3の特徴は、前記送信部は、前記複数のサービング無線端末のうち、無線リソースの割り当てが不要であるサービング無線端末に対して、前記送信停止要求情報を送信することを要旨とする。 
 本発明の第4の特徴は、複数のアンテナにアンテナウェイトを適用するアダプティブアレイ方式の無線基地局における通信制御方法であって、前記アンテナウェイトの算出で参照される参照信号のサービング無線端末による送信に用いられることが可能な参照信号送信周波数帯を制御する参照信号送信周波数帯制御情報を前記サービング無線端末に送信するステップを備え、前記送信するステップは、複数のサービング無線端末のうち、1のサービング無線端末が、所定のタイミングにおいて第1の参照信号送信周波数帯の参照信号を送信する場合に、他のサービング無線端末に対して、前記所定のタイミングにおいて前記第1の参照信号送信周波数帯の参照信号の送信停止の要求を示す送信停止要求情報を送信することを要旨とする。
図1は、本発明の実施形態に係る無線通信システムの全体概略構成図である。 図2は、本発明の実施形態に係る、リソースブロックのフォーマットを示す図である。 図3は、本発明の実施形態に係る、フレームのフォーマットを示す図である。 図4は、本発明の実施形態に係る、無線基地局と無線端末との間の無線通信において利用可能な無線リソースの周波数帯の構成を示す図である。 図5は、本発明の実施形態に係る、無線基地局の構成図である。 図6は、本発明の実施形態に係る、SRSの周波数帯と、割り当て下りRBとの対応の一例を示す図である。 図7は、本発明の実施形態に係る、無線基地局の動作を示すフローチャートである。
 次に、図面を参照して、本発明の実施形態を説明する。具体的には、(1)無線通信システムの構成、(2)無線基地局の構成、(3)無線基地局の動作、(4)作用・効果、(5)その他の実施形態について説明する。以下の実施形態における図面の記載において、同一又は類似の部分には同一又は類似の符号を付している。
 (1)無線通信システムの構成
 図1は、本発明の実施形態に係る無線通信システム10の全体概略構成図である。
 図1に示す無線通信システム10は、TDD-LTEの無線通信システムである。無線通信システム10は、隣接する無線基地局eNB1-1及び無線基地局eNB1-2と、無線端末UE2-1、無線端末UE2-2、無線端末UE2-3及び無線端末UE2-4とを含む。
 図1において、無線基地局eNB1-1及び無線基地局eNB1-2は、E-UTRAN(Evolved-UMTS Terrestrial Radio Access Network)を構成する。無線端末UE2-1及び無線端末UE2-2は、無線基地局eNB1-1が提供する通信可能エリアであるセル3-1に存在する。無線端末UE2-3及び無線端末UE2-4は、無線基地局eNB1-2が提供する通信可能エリアであるセル3-2に存在する。
 無線端末UE2-1及び無線端末UE2-2は、無線基地局eNB1-1によるリソースブロックの割り当て対象である。無線端末UE2-3及び無線端末UE2-4は、無線基地局eNB1-2によるリソースブロックの割り当て対象である。この場合、無線基地局eNB1-1を基準とすると、無線端末UE2-1及び無線端末UE2-2は、サービング無線端末であり、無線端末UE2-3及び無線端末UE2-4は、非サービング無線端末である。また、無線基地局eNB1-2を基準とすると、無線端末UE2-3及び無線端末UE2-4は、サービング無線端末であり、無線端末UE2-1及び無線端末UE2-2は、非サービング無線端末である。
 無線基地局eNB1-1と無線端末UE2-1及び無線端末UE2-2との間の無線通信には、時分割複信が採用されるとともに、下りの無線通信にはOFDMA(Orthogonal Frequency Division Multiplexing Access)、上りの無線通信にはSC-FDMA(Single Carrier Frequency Division Multiple Access)が採用される。同様に、無線基地局eNB1-2と無線端末UE2-3及び無線端末UE2-4との間の無線通信には、時分割複信が採用されるとともに、下りの無線通信にはOFDMA、上りの無線通信にはSC-FDMAが採用される。ここで、下りとは、無線基地局eNB1-1から無線端末UE2-1及び無線端末UE2-2へ向かう方向と、無線基地局eNB1-2から無線端末UE2-3及び無線端末UE2-4へ向かう方向とを意味する。上りとは、無線端末UE2-1及び無線端末UE2-2から無線基地局eNB1-1へ向かう方向と、無線端末UE2-3及び無線端末UE2-4から無線基地局eNB1-2へ向かう方向とを意味する。
 無線基地局eNB1-1は、セル3-1内の無線端末UE2-1及び無線端末UE2-2に対して、無線リソースとしてのリソースブロック(RB:Resource Block)を割り当てる。同様に、無線基地局eNB1-2は、セル3-2内の無線端末UE2-3及び無線端末UE2-4に対して、リソースブロックを割り当てる。
 リソースブロックは、下りの無線通信に用いられる下りリソースブロック(下りRB)と、上りの無線通信に用いられる上りリソースブロック(上りRB)とがある。複数の下りリソースブロックは、周波数方向及び時間方向に配列される。同様に、複数の上りリソースブロックは、周波数方向及び時間方向に配列される。
 図2は、リソースブロックのフォーマットを示す図である。リソースブロックは、時間方向では、1[ms]の時間長を有する1つのサブフレーム内に構成される。サブフレームは、時間帯S1乃至時間帯S14からなる。これら時間帯S1乃至時間帯S14のうち、時間帯S1乃至時間帯S7は、前半のタイムスロット(タイムスロット1)を構成し、時間帯S8乃至時間帯S14は、後半のタイムスロット(タイムスロット2)を構成する。そして、タイムスロット1とタイムスロット2が、リソースブロックに対応する。
 図2に示すように、リソースブロックは、周波数方向では、180[kHz]の周波数幅を有する。また、リソースブロックは、15[kHz]の周波数幅を有する12個のサブキャリアF1乃至F12からなる。
 また、時間方向においては、複数のサブフレームによって1つのフレームが構成される。図3は、フレームのフォーマットを示す図である。図3に示すフレームは、10個のサブフレームによって構成される。フレームには、10個のサブフレームが、下りリソースブロックのサブフレーム、下りリソースブロック及び上りリソースブロック双方のサブフレーム(スペシャルサブフレーム:SSF)、上りリソースブロックのサブフレーム、上りリソースブロックのサブフレーム、下りリソースブロックのサブフレーム、下りリソースブロックのサブフレーム、スペシャルサブフレーム、上りリソースブロックのサブフレーム、上りリソースブロックのサブフレーム、下りリソースブロックのサブフレームの順で含まれている。なお、スペシャルサブフレームは、サブフレーム内において、ガードタイムを挟んで前半のタイムスロットが下りの無線通信に利用され、後半のタイムスロットが上りの無線通信に利用される。
 また、周波数方向においては、無線基地局eNBと無線端末UEとの間の無線通信において利用可能な無線リソースの全周波数帯、換言すれば、サービング無線端末UEに対して割り当て可能な周波数帯(割り当て周波数帯)は、複数のリソースブロックの個数分の帯域を有する。
 図4は、無線基地局eNBと無線端末UEとの間の無線通信において利用可能な無線リソースの全周波数帯の構成を示す図である。図4に示すように、無線基地局eNBと無線端末UEとの間の無線通信において利用可能な無線リソースの全周波数帯は、96個のリソースブロック分の帯域を有する。また、全周波数帯は、24個のリソースブロック分の帯域を有する周波数帯1乃至周波数帯4に分割されている。
 下りリソースブロックは、時間方向に、下りの制御情報伝送用の制御情報チャネル(PDCCH:Physical Downlink Control CHannel)と、下り方向のユーザデータ伝送用の共有データチャネル(PDSCH:Physical Downlink Shared CHannel)とにより構成される。
 一方、上りリソースブロックは、上りの無線通信に使用可能な全周波数帯の両端では、上りの制御情報伝送用の制御情報チャネル(PUCCH:Physical Uplink Control CHannel)が構成され、中央部では、上りのユーザデータ伝送用の共有データチャネル(PUSCH:Physical Uplink Shared CHannel)が構成される。
 (2)無線基地局の構成
 図5は、無線基地局eNB1-1の構成図である。なお、無線基地局eNB1-2も同様の構成である。図5に示すように、無線基地局eNB1-1は、複数のアンテナにアンテナウェイトを適用するアダプティブアレイ方式の無線基地局であり、制御部102、記憶部103、I/F部104、無線通信部106、変調・復調部107、アンテナ108A、アンテナ108B、アンテナ108C、アンテナ108Dを含む。
 制御部102は、例えばCPUによって構成され、無線基地局eNB1-1が具備する各種機能を制御する。制御部102は、サウンディング参照信号(SRS)送信周波数帯設定部112、リソースブロック(RB)割当部114及びアンテナウェイト算出部116を含む。記憶部103は、例えばメモリによって構成され、無線基地局eNB1-1における制御などに用いられる各種情報を記憶する。
 I/F部104は、X2インタフェースを介して、他の無線基地局eNBとの間で通信可能である。また、I/F部104は、S1インターフェースを介して、図示しないEPC(Evolved Packet Core)、具体的には、MME(Mobility Management Entity)/S-GW(Serving Gateway)と通信可能である。
 無線通信部106は、アンテナ108A乃至アンテナ108Dを介して、サービング無線端末UEである無線端末UE2-1及び無線端末UE2-2から送信される上り無線信号を受信する。更に、無線通信部106は、受信した上り無線信号をベースバンド信号に変換(ダウンコンバート)し、変調・復調部107へ出力する。
 変調・復調部107は、入力されたベースバンド信号の復調及び復号処理を行う。これにより、サービング無線端末UE2-1及びサービング無線端末UE2-2が送信した上り無線信号に含まれるデータが得られる。データは制御部102へ出力される。
 また、変調・復調部107は、制御部102からのデータの符号化及び変調を行い、ベースバンド信号を得る。無線通信部106は、ベースバンド信号を下り無線信号に変換(アップコンバート)する。更に、変調・復調部107は、アンテナ108A乃至アンテナ108Dを介して、下り無線信号を送信する。
 制御部102内のSRS送信周波数帯設定部112は、サービング無線端末UE2-1及びサービング無線端末UE2-2毎に、所定のスペシャルサブフレームのタイミングで当該サービング無線端末UE2-1及びサービング無線端末UE2-2がサウンディング参照信号(SRS)を送信する際に使用する周波数帯(SRS送信周波数帯)を設定する。ここで、SRSは、無線基地局eNB1-1におけるアンテナウェイトの算出で参照すべき信号であり、無線周波数帯の上り無線信号である。
 SRS送信周波数帯設定部112は、RRC Connection Reconfiguration メッセージの情報要素であるSoundingRS-UL-Configに、設定したSRS送信周波数帯の帯域幅に対応するパラメータを設定する。また、SRS送信周波数帯設定部112は、RRC Connection Reconfiguration メッセージに、設定したSRS送信周波数帯の中心周波数の情報を設定する。
 更に、SRS送信周波数帯設定部112は、パラメータ及びSRS送信周波数帯の中心周波数の情報(以下、これらをまとめて適宜「SRS送信周波数帯情報」と称する)が設定された、サービング無線端末UE2-1及びサービング無線端末UE2-2毎のRRC Connection Reconfiguration メッセージを、図3に示す下りリソースブロックのサブフレーム311のタイミングで変調・復調部107へ出力する。
 変調・復調部107は、RRC Connection Reconfiguration メッセージの符号化及び変調を行い、ベースバンド信号を得る。無線通信部106は、ベースバンド信号を下り無線信号に変換し、アンテナ108A乃至アンテナ108Dを介して、サービング無線端末UE2-1及びサービング無線端末UE2-2へ下り無線信号を送信する。
 無線基地局eNB1-1が、SRS送信周波数帯情報が設定されたRRC Connection Reconfiguration メッセージに対応する下り無線信号を送信すると、サービング無線端末UE2-1及びサービング無線端末UE2-2は、当該下り無線信号を受信する。
 更に、サービング無線端末UE2-1及びサービング無線端末UE2-2は、RRC Connection Reconfiguration メッセージに設定されているパラメータと、セル3-1に対応して静的に定められているパラメータとに基づいて、SRS送信周波数帯の帯域幅を認識する。また、サービング無線端末UE2-1及びサービング無線端末UE2-2は、RRC Connection Reconfiguration メッセージに設定されているSRS送信周波数帯の中心周波数の情報に基づいて、SRS送信周波数帯の中心周波数を認識する。
 更に、サービング無線端末UE2-1及びサービング無線端末UE2-2は、RRC Connection Reconfiguration メッセージの受信時のフレームの2つ後のフレームにおけるスペシャルサブフレームのタイミングで、認識したSRS送信周波数帯を用いてSRSを送信する。
 無線基地局eNB1-1内の無線通信部106は、アンテナ108A乃至アンテナ108Dを介して、サービング無線端末UE2-1及びサービング無線端末UE2-2から送信されるSRSを受信する。ここで、無線通信部106は、同一のスペシャルサブフレームのタイミングにおいて、サービング無線端末UE2-1からのSRSと、サービング無線端末UE2-2からのSRSとを受信する。更に、無線通信部106は、受信したSRSをベースバンド信号に変換し、変調・復調部107へ出力する。また、無線通信部106は、受信したSRSの周波数帯の情報を制御部102へ出力する。変調・復調部107は、入力されたベースバンド信号の復調及び復号処理を行う。これにより、サービング無線端末UE2-1及びサービング無線端末UE2-2が送信したSRSに含まれるデータが得られる。データは制御部102へ出力される。
 SRS送信周波数帯設定部112は、同一のスペシャルサブフレームのタイミングにおいて受信した、サービング無線端末UE2-1からのSRSの周波数帯と、サービング無線端末UE2-2からのSRSの周波数帯とが同一であるか否かを判定する。
 上述したように、SRS送信周波数帯設定部112は、サービング無線端末UE2-1とサービング無線端末UE2-2とに対して、SRSの送信周波数帯を設定する。従って、SRS送信周波数帯設定部112は、サービング無線端末UE2-1とサービング無線端末UE2-2とに対して、同一のスペシャルサブフレームのタイミングで異なる周波数帯のSRSを送信するように、SRSの送信周波数帯を設定することは可能である。しかし、サービング無線端末UE2-1及びサービング無線端末UE2-2が、同一のスペシャルサブフレームのタイミングで同一の周波数のSRSを送信する可能性がある。このような場合、SRS送信周波数帯設定部112は、同一のスペシャルサブフレームのタイミングにおいて受信した、サービング無線端末UE2-1からのSRSの周波数帯と、サービング無線端末UE2-2からのSRSの周波数帯とが同一であると判定する。
 なお、SRS送信周波数帯設定部112は、無線基地局eNB1-2の配下の無線端末UE2-3及び無線端末UE2-4からのSRSを受信している場合に限り、同一のスペシャルサブフレームのタイミングにおいて受信した、サービング無線端末UE2-1からのSRSの周波数帯と、サービング無線端末UE2-2からのSRSの周波数帯とが同一であるか否かの判定を行うようにしてもよい。
 同一のスペシャルサブフレームのタイミングにおいて受信した、サービング無線端末UE2-1からのSRSの周波数帯と、サービング無線端末UE2-2からのSRSの周波数帯とが同一である場合、SRS送信周波数帯設定部112は、サービング無線端末UE2-1及びサービング無線端末UE2-2のPF(Propotional Fair)方式による下りリソースブロックの割り当ての優先度(以下、「PF優先度」と称する)が低い方のサービング無線端末UE、あるいは、PF優先度に基づいて下りリソースブロックを割り当てる必要がないと判断される一方のサービング無線端末UEに対して、スペシャルサブフレームのタイミングでのSRSの送信停止を要求する情報である送信停止要求情報を生成する。
 更に、SRS送信周波数帯設定部112は、RRC Connection Reconfiguration メッセージの情報要素であるSoundingRS-UL-Configに、送信停止要求情報を設定する。
 更に、SRS送信周波数帯設定部112は、送信停止要求情報が設定されたRRC Connection Reconfiguration メッセージを、図3に示す下りリソースブロックのサブフレーム311のタイミングで変調・復調部107へ出力する。
 変調・復調部107は、RRC Connection Reconfiguration メッセージの符号化及び変調を行い、ベースバンド信号を得る。無線通信部106は、ベースバンド信号を下り無線信号に変換し、アンテナ108A乃至アンテナ108Dを介して、PF優先度が低い方のサービング無線端末UE、あるいは、PF優先度に基づいて下りリソースブロックを割り当てる必要がないと判断される一方のサービング無線端末UE(以下、これらをまとめて、適宜「送信停止対象サービング無線端末UE」と称する)に対して、下り無線信号を送信する。
 一方、送信停止対象サービング無線端末以外のサービング無線端末に対しては、SRS送信周波数帯情報が設定された、RRC Connection Reconfiguration メッセージに対応する下り無線信号の送信が継続される。
 無線基地局eNB1-1が、送信停止要求情報が設定されたRRC Connection Reconfiguration メッセージに対応する下り無線信号を送信すると、送信停止対象サービング無線端末UEは、当該下り無線信号を受信する。
 更に、送信停止対象サービング無線端末UEは、RRC Connection Reconfiguration メッセージに設定されている送信停止要求情報に基づいて、SRSの送信を停止する。
 上述したSRSの送信停止に関する処理が行われることにより、無線基地局eNB1-1の配下であり、無線基地局eNB1-1を基準とした場合にサービング無線端末となる無線端末UE2-1及び無線端末UE2-2が、1のスペシャルサブフレームのタイミングにおいて同一の周波数帯のSRSを送信している場合には、無線端末UE2-1及び無線端末UE2-2の一方のみがSRSの送信を継続し、他方はSRSの送信を停止することになる。
 また、無線基地局eNB1-2においても、上述したSRSの送信停止に関する処理が行われることにより、無線基地局eNB1-2の配下であり、無線基地局eNB1-2を基準とした場合にサービング無線端末となる無線端末UE2-3及び無線端末UE2-4が1のスペシャルサブフレームのタイミングにおいて同一の周波数帯のSRSを送信している場合には、無線端末UE2-3及び無線端末UE2-4の一方のみがSRSの送信を継続し、他方はSRSの送信を停止することになる。
 RB割当部114は、サービング無線端末UE2-1及びサービング無線端末UE2-2に対して、下りリソースブロックを割り当てる。具体的には、RB割当部114は、最新に受信したサービング無線端末UE2-1からのSRSの周波数帯に含まれる下りリソースブロックを、サービング無線端末UE2-1に割り当てる。同様に、RB割当部114は、最新に受信したサービング無線端末UE2-2からのSRSの周波数帯に含まれる下りリソースブロックを、サービング無線端末UE2-2に割り当てる。
 但し、最新に受信したサービング無線端末UE2-1からのSRSの周波数帯と、最新に受信したサービング無線端末UE2-2からのSRSの周波数帯とが同一である場合には、RB割当部114は、PF優先度が低い方のサービング無線端末UE、あるいは、PF優先度に基づいて下りリソースブロックを割り当てる必要がないと判断される一方のサービング無線端末UEに対しては、下りリソースブロックを割り当てない。次に、RB割当部114は、最新のSRSの受信タイミングに対応するスペシャルサブフレームの次のスペシャルサブフレームを選択する。更に、RB割当部114は、選択したスペシャルサブフレームの2つ前のサブフレームの時間帯を、割り当てる下りリソースブロックの時間帯として決定する。
 更に、RB割当部114は、決定した下りリソースブロックの周波数帯及び時間帯を一意に特定可能な下りRB割当値を生成する。下りRB割当値は、媒体アクセス制御(MAC)層の処理によって得られる。下りRB割当値には、サービング無線端末UEに対して割り当てられる下りリソースブロックの時間帯と周波数帯とを一意に識別する情報であるリソースブロック番号が含まれる。
 RB割当部114は、下りRB割当値を、変調・復調部107、無線通信部106及びアンテナ108A乃至アンテナ108Dを介して、サービング無線端末UEへ送信する。
 図6は、SRSの周波数帯と、割り当てられる下りリソースブロックとの対応の例を示す図である。
 RB割当部114は、スペシャルサブフレーム301のタイミングで、サービング無線端末UE2-1及びサービング無線端末UE2-2のそれぞれから周波数帯1のSRSを受信する。そして、RB割当部114は、次のスペシャルサブフレーム303の2つ前のサブフレーム302のタイミングで、周波数帯1に含まれる下りリソースブロックを、PF優先度が高い方のサービング無線端末UE、あるいは、PF優先度に基づいて下りリソースブロックを割り当てる必要があると判断される一方のサービング無線端末UE(ここでは、サービング無線端末UE2-1とする)に割り当てる。
 RB割当部114によって下りリソースブロックが割り当てられた後、アンテナウェイト算出部116は、各アンテナ108A乃至アンテナ108Dについて、割り当てた下りリソースブロックを用いた下り無線信号の送信時のアンテナウェイト(送信ウェイト)を算出する。
 具体的には、アンテナウェイト算出部116は、RB割当部114により生成された下りRB割当値に基づいて、サービング無線端末UE2-1及びサービング無線端末UE2-2の一方に対して割り当てた下りリソースブロックの周波数帯を特定する。
 次に、アンテナウェイト算出部116は、最新に受信されたサービング無線端末UE2-1及びサービング無線端末UE2-2の一方からのSRSと、最新に受信された非サービング無線端末UE2-3及び非サービング無線端末UE2-4の一方からのSRSとに基づいて、サービング無線端末UE2-1及びサービング無線端末UE2-2の一方に対して割り当てた下りリソースブロックの周波数帯に対する送信ウェイトを算出する。
 ここで、アンテナウェイト算出部116は、ビームの希望波方向が、SRSを送信するサービング無線端末UE2-1及びサービング無線端末UE2-2の一方に向き、ビームのヌル方向が、SRSを送信する非サービング無線端末UE2-3及び非サービング無線端末UE2-4の一方に向くアンテナウェイトを送信ウェイトとして算出する。
 その後、制御部102は、割り当てた下りリソースブロックを用いて、変調・復調部107、無線通信部106及びアンテナ108A乃至アンテナ108Dを介して、サービング無線端末UE2-1及びサービング無線端末UE2-2へ下り無線信号を送信する。
 また、無線基地局eNB1-2においても、上述した送信ウェイトの算出に関する処理が行われる。
 (3)無線基地局の動作
 図7は、無線基地局eNB1-1の動作を示すフローチャートである。
 ステップS101において、無線基地局eNB1-1内のSRS送信周波数帯設定部112は、所定のスペシャルサブフレームのタイミングで、サービング無線端末UE2-1及びサービング無線端末UE2-2からのSRSを受信する。
 ステップS102において、SRS送信周波数帯設定部112は、サービング無線端末UE2-1からのSRSの周波数帯と、サービング無線端末UE2-2からのSRSの周波数帯とが同一であるか否かを判定する。
 サービング無線端末UE2-1からのSRSの周波数帯と、サービング無線端末UE2-2からのSRSの周波数帯とが同一である場合、ステップS103において、SRS送信周波数帯設定部112は、サービング無線端末UE2-1及びサービング無線端末UE2-2の一方に対して、SRS送信周波数帯情報が設定された、RRC Connection Reconfiguration メッセージを送信し、サービング無線端末UE2-1及びサービング無線端末UE2-2の他方に対して、送信停止要求情報が設定された、RRC Connection Reconfiguration メッセージを送信する。
 (4)作用・効果
 以上説明したように、本実施形態によれば、無線基地局eNB1-1は、同一のスペシャルサブフレームのタイミングで受信される、サービング無線端末UE2-1からのSRSの周波数帯と、サービング無線端末UE2-2からのSRSの周波数帯とが同一である場合、サービング無線端末UE2-1及びサービング無線端末UE2-2の一方に対して、送信停止要求情報が設定された、RRC Connection Reconfiguration メッセージを送信する。
 送信停止要求情報が設定された、RRC Connection Reconfiguration メッセージを受信したサービング無線端末UEは、要求に従い、SRSの送信を停止する。
 従って、所定のタイミングで所定の周波数帯のSRSを送信するサービング無線端末UEは1つのみとなる。このため、サービング無線端末UE2-1及びサービング無線端末UE2-2の双方が、同時に同一の周波数帯のSRSを送信することが防止される。そして、他の無線基地局eNB1-2は、当該他の無線基地局eNB1-2の配下のサービング無線端末UE2-3及びサービング無線端末UE2-4との間の無線通信に用いる下りリソースブロックに対してアンテナウェイトを算出する際に、ヌルを向ける方向を定めて適切なヌルステアリングを行うことができる。
 また、本実施形態では、無線基地局eNB1-1は、サービング無線端末UE2-1及びサービング無線端末UE2-2のうち、PF優先度が低い方のサービング無線端末UE、あるいは、PF優先度に基づいて下りリソースブロックを割り当てる必要がないと判断される一方のサービング無線端末UEに対して、送信停止要求情報が設定された、RRC Connection Reconfiguration メッセージを送信する。PF優先度に基づいて、SRSの送信を停止すべきサービング無線端末UEが設定されることにより、その後の下りリソースブロックの割り当てにおいて、PF優先度の高いサービング無線端末UE、あるいは、PF優先度に基づいて下りリソースブロックを割り当てる必要があると判断される一方のサービング無線端末UEに対して、当該サービング無線端末UEからSRSが送信されないために、下りリソースブロックが割り当てられないといった問題が生じることが防止される。
 (5)その他の実施形態
 上記のように、本発明は実施形態によって記載したが、この開示の一部をなす論述及び図面はこの発明を限定するものであると理解すべきではない。この開示から当業者には様々な代替実施形態、実施例及び運用技術が明らかとなる。
 上述した実施形態では、無線基地局eNB1-1の配下には、2つの無線端末UE2-1及び無線端末UE2-2が存在する場合について説明したが、3つ以上の無線端末UEが存在する場合にも、同様に本発明を適用することができる。この場合、SRS送信周波数帯設定部112は、PF優先度が最大のサービング無線端末UE以外のサービング無線端末、あるいは、PF優先度に基づいて下りリソースブロックを割り当てる必要があると判断される1つのサービング無線端末以外のサービング無線端末UEに対して、送信停止要求情報が設定されたRRC Connection Reconfiguration メッセージを送信する処理を行う。
 上述した実施形態では、スペシャルサブフレームのタイミングをサービング無線端末UE2-1におけるSRSの送信タイミングとした。しかし、SRSの送信タイミングは、これに限定されず、予め無線基地局eNB1-1とサービング無線端末UE2との間で合意されているタイミングであればよい。但し、SRSの送信タイミングは、少なくとも1フレームの時間内に一度存在することが好ましい。
 また、上述した実施形態では、無線基地局eNB1-1は、受信ウェイトを送信ウェイトとして用いたが、受信ウェイトとは無関係に送信ウェイトを算出するようにしてもよい。
 上述した実施形態では、TDD-LTEの無線通信システムについて説明したが、無線端末に割り当てられる上り無線信号の周波数帯と、下り無線信号の周波数帯とが異なる、上下非対称通信が採用される無線通信システムであれば、同様に本発明を適用できる。 このように本発明は、ここでは記載していない様々な実施形態等を包含するということを理解すべきである。したがって、本発明はこの開示から妥当な請求の範囲の発明特定事項によってのみ限定されるものである。
 なお、日本国特許出願第2010-191354号(2010年8月27日出願)の全内容が、参照により、本願明細書に組み込まれている。
 本発明によれば、他の無線基地局におけるヌルステアリングを適切に行うことを可能とした無線基地局及び通信制御方法を提供できる。
 

Claims (4)

  1.  複数のアンテナにアンテナウェイトを適用するアダプティブアレイ方式の無線基地局であって、
     前記アンテナウェイトの算出で参照される参照信号のサービング無線端末による送信に用いられることが可能な参照信号送信周波数帯を制御する参照信号送信周波数帯制御情報を前記サービング無線端末に送信する送信部を備え、
     前記送信部は、複数のサービング無線端末のうち、1のサービング無線端末が、所定のタイミングにおいて第1の参照信号送信周波数帯の参照信号を送信する場合に、他のサービング無線端末に対して、前記所定のタイミングにおいて前記第1の参照信号送信周波数帯の参照信号の送信停止の要求を示す送信停止要求情報を送信する無線基地局。
  2.  前記送信部は、前記複数のサービング無線端末のうち、無線リソースの割り当ての優先度が最大である1のサービング無線端末以外のサービング無線端末に対して、前記送信停止要求情報を送信する請求項1に記載の無線基地局。
  3.  前記送信部は、前記複数のサービング無線端末のうち、無線リソースの割り当てが不要であるサービング無線端末に対して、前記送信停止要求情報を送信する請求項1に記載の無線基地局。
  4.  複数のアンテナにアンテナウェイトを適用するアダプティブアレイ方式の無線基地局における通信制御方法であって、
     前記アンテナウェイトの算出で参照される参照信号のサービング無線端末による送信に用いられることが可能な参照信号送信周波数帯を制御する参照信号送信周波数帯制御情報を前記サービング無線端末に送信するステップを備え、
     前記送信するステップは、複数のサービング無線端末のうち、1のサービング無線端末が、所定のタイミングにおいて第1の参照信号送信周波数帯の参照信号を送信する場合に、他のサービング無線端末に対して、前記所定のタイミングにおいて前記第1の参照信号送信周波数帯の参照信号の送信停止の要求を示す送信停止要求情報を送信する通信制御方法。 
PCT/JP2011/069356 2010-08-27 2011-08-26 無線基地局及び通信制御方法 WO2012026602A1 (ja)

Priority Applications (2)

Application Number Priority Date Filing Date Title
JP2012530748A JP5654602B2 (ja) 2010-08-27 2011-08-26 無線基地局及び通信制御方法
US13/819,658 US9203481B2 (en) 2010-08-27 2011-08-26 Radio base station and communication control method including a request to stop transmission of a reference signal at a predetermined timing

Applications Claiming Priority (2)

Application Number Priority Date Filing Date Title
JP2010191354 2010-08-27
JP2010-191354 2010-08-27

Publications (1)

Publication Number Publication Date
WO2012026602A1 true WO2012026602A1 (ja) 2012-03-01

Family

ID=45723591

Family Applications (1)

Application Number Title Priority Date Filing Date
PCT/JP2011/069356 WO2012026602A1 (ja) 2010-08-27 2011-08-26 無線基地局及び通信制御方法

Country Status (3)

Country Link
US (1) US9203481B2 (ja)
JP (1) JP5654602B2 (ja)
WO (1) WO2012026602A1 (ja)

Families Citing this family (1)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
JP5697483B2 (ja) * 2011-02-23 2015-04-08 京セラ株式会社 無線通信システム、無線基地局及び通信制御方法

Citations (2)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
JP2009060596A (ja) * 2007-08-06 2009-03-19 Mitsubishi Electric Research Laboratories Inc 無線ネットワークにおいてアンテナを選択する方法
WO2010061768A1 (ja) * 2008-11-26 2010-06-03 京セラ株式会社 基地局、基地局でのサブバースト領域の配置方法、通信対象端末決定方法及び下りバースト領域の割り当て方法

Family Cites Families (6)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
JP2008211686A (ja) 2007-02-27 2008-09-11 Kyocera Corp 無線通信システム、無線通信装置及び無線通信方法
US8086272B2 (en) 2007-08-06 2011-12-27 Mitsubishi Electric Research Laboratories, Inc. Wireless networks incorporating antenna selection based on received sounding reference signals
JP4615614B2 (ja) 2007-08-14 2011-01-19 パナソニック株式会社 無線通信装置及び無線通信方法
JP5411279B2 (ja) * 2008-10-01 2014-02-12 テレフオンアクチーボラゲット エル エム エリクソン(パブル) プリコーディングコードブックを生成するためのシステム及び方法
US8817719B2 (en) * 2010-02-22 2014-08-26 Telefonaktiebolaget L M Ericsson (Publ) Methods and arrangements for dynamically triggering the transmission of sounding reference signal in a telecommunication system
SG187672A1 (en) * 2010-08-13 2013-03-28 Research In Motion Ltd Method of resource allocation and signaling for aperiodic channel sounding

Patent Citations (2)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
JP2009060596A (ja) * 2007-08-06 2009-03-19 Mitsubishi Electric Research Laboratories Inc 無線ネットワークにおいてアンテナを選択する方法
WO2010061768A1 (ja) * 2008-11-26 2010-06-03 京セラ株式会社 基地局、基地局でのサブバースト領域の配置方法、通信対象端末決定方法及び下りバースト領域の割り当て方法

Also Published As

Publication number Publication date
US20130273973A1 (en) 2013-10-17
JP5654602B2 (ja) 2015-01-14
JPWO2012026602A1 (ja) 2013-10-28
US9203481B2 (en) 2015-12-01

Similar Documents

Publication Publication Date Title
JP5651180B2 (ja) 無線基地局及び通信制御方法
US9144073B2 (en) Radio base station and communication control method
JP2015139108A (ja) ユーザ端末、無線基地局および無線通信方法
JP5687326B2 (ja) 無線通信システム、移動局、基地局及び無線通信方法
JP5697483B2 (ja) 無線通信システム、無線基地局及び通信制御方法
US9198165B2 (en) Sounding reference signal to determine antenna weight and frequency bands
US9312931B2 (en) Radio base station, radio terminal, and communication control method
US9301194B2 (en) Radio base station, radio terminal, and communication control method for applying a reference signal parameter
WO2014181866A1 (ja) 移動通信システム
JP5555566B2 (ja) 無線基地局及び通信制御方法
JP5654602B2 (ja) 無線基地局及び通信制御方法
JP5504083B2 (ja) 無線基地局及び通信制御方法
WO2012115200A1 (ja) 無線基地局及び通信制御方法
JP5627899B2 (ja) 基地局及び基地局の通信方法
JP5508973B2 (ja) 無線基地局及び通信制御方法
JP5629607B2 (ja) 無線基地局及び通信制御方法
JP5775706B2 (ja) 無線基地局及び通信制御方法

Legal Events

Date Code Title Description
121 Ep: the epo has been informed by wipo that ep was designated in this application

Ref document number: 11820062

Country of ref document: EP

Kind code of ref document: A1

ENP Entry into the national phase

Ref document number: 2012530748

Country of ref document: JP

Kind code of ref document: A

NENP Non-entry into the national phase

Ref country code: DE

WWE Wipo information: entry into national phase

Ref document number: 13819658

Country of ref document: US

122 Ep: pct application non-entry in european phase

Ref document number: 11820062

Country of ref document: EP

Kind code of ref document: A1