WO2012026097A1 - Solid-state imaging device and imaging system - Google Patents

Solid-state imaging device and imaging system Download PDF

Info

Publication number
WO2012026097A1
WO2012026097A1 PCT/JP2011/004624 JP2011004624W WO2012026097A1 WO 2012026097 A1 WO2012026097 A1 WO 2012026097A1 JP 2011004624 W JP2011004624 W JP 2011004624W WO 2012026097 A1 WO2012026097 A1 WO 2012026097A1
Authority
WO
WIPO (PCT)
Prior art keywords
pixel
signal level
reset signal
column
pixels
Prior art date
Application number
PCT/JP2011/004624
Other languages
French (fr)
Japanese (ja)
Inventor
研一 下邨
Original Assignee
パナソニック株式会社
Priority date (The priority date is an assumption and is not a legal conclusion. Google has not performed a legal analysis and makes no representation as to the accuracy of the date listed.)
Filing date
Publication date
Application filed by パナソニック株式会社 filed Critical パナソニック株式会社
Publication of WO2012026097A1 publication Critical patent/WO2012026097A1/en

Links

Images

Classifications

    • HELECTRICITY
    • H04ELECTRIC COMMUNICATION TECHNIQUE
    • H04NPICTORIAL COMMUNICATION, e.g. TELEVISION
    • H04N25/00Circuitry of solid-state image sensors [SSIS]; Control thereof
    • H04N25/60Noise processing, e.g. detecting, correcting, reducing or removing noise
    • H04N25/616Noise processing, e.g. detecting, correcting, reducing or removing noise involving a correlated sampling function, e.g. correlated double sampling [CDS] or triple sampling
    • HELECTRICITY
    • H04ELECTRIC COMMUNICATION TECHNIQUE
    • H04NPICTORIAL COMMUNICATION, e.g. TELEVISION
    • H04N25/00Circuitry of solid-state image sensors [SSIS]; Control thereof
    • H04N25/70SSIS architectures; Circuits associated therewith
    • H04N25/71Charge-coupled device [CCD] sensors; Charge-transfer registers specially adapted for CCD sensors
    • H04N25/75Circuitry for providing, modifying or processing image signals from the pixel array

Definitions

  • the present invention relates to a solid-state imaging device and an imaging system.
  • MOS sensors Metal Oxide Semiconductor type image sensors
  • CCDs Charge Coupled Devices
  • the MOS sensor can be manufactured using a general-purpose semiconductor process. Therefore, one feature of the MOS sensor is that it has a usability that allows a timing control circuit and an analog or digital signal processing circuit to be mounted (that is, mixed) on the same semiconductor chip.
  • both CDS (Correlated Double Sampling) processing and A / D (Analog / Digital) conversion which are indispensable after signal output from a pixel, take advantage of the mixed loading that is the feature of both, Technological development is being carried out so that it can be performed on the same chip as the MOS sensor.
  • the CDS processing means reading out a pixel signal level and a reset signal level from the same pixel, and subtracting the reset signal level from the pixel signal level, thereby removing a true pixel signal level that excludes an offset of a readout voltage that differs for each pixel. It is processing for taking out.
  • Patent Document 1 a column ADC circuit technique in which CDS processing conventionally performed in the analog domain is performed in accordance with A / D conversion is disclosed (for example, Patent Document 1 and Patent Document 2). .
  • Patent Document 1 a column ADC circuit disclosed in Patent Document 1 will be described.
  • FIG. 12 is a diagram illustrating a configuration of a solid-state imaging device including a column A / D conversion circuit disclosed in Patent Document 1.
  • FIG. 12 is a diagram illustrating a configuration of a solid-state imaging device including a column A / D conversion circuit disclosed in Patent Document 1.
  • the solid-state imaging device 920 includes a row scanning unit 914, a plurality of pixels 930 including a light receiving element that outputs a signal corresponding to the amount of incident light, a column scanning unit 946, an up counter 950, and a column A / D conversion circuit 940. And a DAC (Digital Analog Converter) circuit 960.
  • the column A / D conversion circuit 940 includes a comparison circuit 942 and an up / down counter 944.
  • the column A / D conversion circuit 940 operates by a method called lamp type A / D conversion. Specifically, a reference potential (VREF) called a monotonically increasing or monotonically decreasing ramp wave generated from the DAC circuit 960 is compared with a signal potential 915 read from the pixel 930 by a comparison circuit 942 provided in each column. To do. Then, the up-down counter 944 of each column measures the time from the reference potential sweep start timing to the pixel signal potential and reference potential matching timing. The column A / D conversion circuit 940 particularly switches from the operation of A / D converting the “reset signal level” read from the pixel 930 to the operation of A / D converting the pixel signal potential of the “pixel signal level”. At this time, it is characterized in that subtraction can be realized simultaneously with A / D conversion by changing the counting direction while holding the counter value indicating the pixel signal potential at the reset signal level.
  • VREF reference potential
  • the pixel signal potential of “reset signal level” and the pixel signal potential of “pixel signal level” are read from each pixel 930, and the “reset signal level” is calculated from the pixel signal potential of “pixel signal level”.
  • the process of subtracting the pixel signal potential of “true” to extract the pixel signal potential of “true pixel signal level” is called correlated double sampling (CDS).
  • CDS correlated double sampling
  • a method of digitally performing this processing (CDS) is called digital CDS more limitedly.
  • digital CDS digital CDS more limitedly.
  • the subtraction by the counter described above is one method for realizing this digital CDS.
  • FIG. 13 is a timing diagram for explaining an A / D conversion operation using a conventional solid-state imaging device.
  • FIG. 13 shows operation waveforms of the column A / D conversion circuit 940.
  • the upper vertical axis indicates the A / D conversion signal output (digital value), and the lower vertical axis indicates the A / D conversion input potential (analog).
  • the horizontal axis shows time in both the upper and lower stages.
  • the counter bit width used in each column that is, in each column A / D conversion circuit 940 is fixed.
  • the column A / D conversion circuit 940 (up / down counter 944) can represent 1024 values.
  • the counter value in this range is changed from the negative minimum value for down counting corresponding to the reset signal level range to the positive maximum value for up counting. Will cover.
  • the default value of the up / down counter 944 is set to zero, and the down count is set to 128 corresponding to the variation in the reset signal level. Then, as shown in FIG. 13, since the minus side minimum value is ⁇ 128, the plus side maximum is +895, and the plus side maximum, that is, the digital value used in the A / D conversion output is reduced compared to 1024. Become. This is not a problem that occurs only in the column A / D conversion circuit 940 including the up / down counter 944, but is a problem of range reduction common to the digital CDS (first D range reduction problem).
  • the column A / D conversion circuit 940 that is, the column A / D conversion circuit 940 including the up / down counter 944 for each column performs digital CDS.
  • up-counting is performed in order to A / D convert the pixel signal level
  • FIG. 13 when the column A / D conversion circuit 940 performs up-counting for A / D conversion of the pixel signal level, the timing at which the counter value changes between CV_Rmax and CV_Rmin. It can be seen that variations occur in the columns (for each column A / D conversion circuit 940).
  • the reset signal level is the lowest (CV_Rmin) in the predetermined pixel 930.
  • the up count number of the up / down counter 944 needs to be set to 895 in order to stop the maximum value in the up count at the above-described +895.
  • the case where the reset signal level is the highest (CV_Rmax) in another pixel 930 is considered.
  • the “true pixel signal level” varies from 767 to 895 corresponding to the variation in the reset signal level. .
  • the pixel 930 at a location that should be saturated in the image has a high reset signal level.
  • the value of the pixel signal level at which the pixel is saturated is insufficient, resulting in coloration and deterioration of image quality. For this reason, it is necessary to perform saturation level slicing on the value after A / D conversion (all pixel signals having values of 767 to 895 are set to 767).
  • the range corresponding to the variation of the saturation level is also 1/8. Since this (range corresponding to the variation in saturation level) needs to be cut, the effective D range that can actually be used is cut to 3/4.
  • this A / D conversion of the reset signal level is one factor that increases the A / D conversion period, and hinders the speeding up of the A / D conversion. Therefore, this is an obstacle to increasing the frame rate of the solid-state imaging device 920.
  • the conversion in addition to the period for converting the same effective D range as in the case where the up / down counter 944 is not provided, the conversion is twice as long as the period for down-counting. Since a period is required, there is another problem that the A / D conversion period becomes longer.
  • the present invention has been made in view of the above circumstances, and provides a high-speed solid-state imaging device and imaging system having high pixel signal level bit accuracy and high speed without changing the hardware configuration of the column A / D conversion circuit.
  • the purpose is to provide.
  • a solid-state imaging device is a solid-state imaging device including a plurality of pixels arranged in a matrix, and corresponds to each column or each column of the plurality of pixels. And an up / down counter that counts in the up-count direction and the down-count direction, and the analog signal output from the corresponding pixel is A / D converted into a digital signal by causing the up / down counter to count.
  • An A / D conversion unit a distribution information acquisition unit that acquires distribution information indicating a distribution of pixel reset signal levels of a plurality of pixels A / D converted by the column A / D conversion unit, and the distribution information acquisition unit Based on the acquired distribution information, a pixel reset signal level and a predetermined counter bit width of the up / down counter are set. And a control unit for changing the respective count range assigned to count fine pixel signal level.
  • the distribution of the reset signal level is determined during operation, and the A / D conversion range assigned to the reset signal level and the pixel signal level can be optimized.
  • a high-speed solid-state imaging device with high pixel signal level bit accuracy can be realized without changing the hardware configuration of the column A / D conversion circuit.
  • the solid-state imaging device changes the count direction of the up / down counter for each pixel in each row, thereby giving the difference value between the pixel signal level and the pixel reset signal level to the column A / D converter.
  • the distribution information acquisition unit includes pixel reset signal levels of the plurality of pixels and partial pixels of the plurality of pixels that are A / D converted by the column A / D conversion unit based on the count range.
  • first distribution information indicating a distribution of pixel reset signal levels of a plurality of pixels A / D converted by the column A / D converter is acquired, and the count range
  • the reference pixel A / D-converted by the column A / D converter by further acquiring the reset signal level of only the reference pixel A / D-converted by the column A / D converter based on 2nd distribution information indicating only the reset signal level distribution is acquired, and the control unit changes the count range from the first distribution information and the second distribution information, and the solid-state imaging Location, based on the changed count range by the control unit, and a pixel reset signal level and the pixel signal level of a plurality of pixels in the column A / D converter may be converted A / D.
  • the distribution information acquisition unit includes a maximum value and a minimum value of reset signal levels of the plurality of pixels that have been A / D converted by the column A / D conversion unit, and an A / D conversion unit that performs A / D conversion.
  • the plurality of pixels subjected to A / D conversion by the column A / D conversion unit by obtaining a maximum value and a minimum value of a reset signal level of a reference pixel that is a part of the plurality of pixels subjected to D conversion
  • the distribution information indicating the distribution of the pixel reset signal level may be acquired.
  • the distribution information acquisition unit includes an average value and standard deviation of reset signal levels of the plurality of pixels that have been A / D converted by the column A / D conversion unit, and an A / D conversion unit that performs A / D conversion.
  • the plurality of pixels subjected to A / D conversion by the column A / D conversion unit by obtaining an average value and a standard deviation of a reset signal level of a reference pixel which is a partial pixel of the plurality of D-converted pixels
  • the distribution information indicating the distribution of the pixel reset signal level may be acquired.
  • the present invention may be realized not only as an apparatus but also as a system or an integrated circuit including processing means included in such an apparatus.
  • FIG. 1 is a block diagram illustrating a configuration of the solid-state imaging device according to the first embodiment.
  • FIG. 2 is a flowchart for explaining the optimization operation of the A / D conversion range of the solid-state imaging device according to the first embodiment.
  • FIG. 3 is a timing diagram for explaining the A / D conversion operation in the all-pixel reset signal level distribution acquisition mode of the present invention.
  • FIG. 4 is a graph showing a reset signal level distribution calculation model in the first embodiment.
  • FIG. 5 is a diagram for explaining a change in code assignment before and after adjustment of the A / D conversion range.
  • FIG. 6 is a diagram illustrating a state of a normal read operation including a reset signal level distribution acquisition operation.
  • FIG. 7 is a diagram for explaining the effect of A / D conversion range optimization.
  • FIG. 8 is a diagram for explaining the effect of A / D conversion range optimization.
  • FIG. 9 is a flowchart for explaining an optimization operation of the A / D conversion range of the solid-state imaging device according to the modification of the first embodiment.
  • FIG. 10 is a graph showing a reset signal level distribution calculation model in a modification of the first embodiment.
  • FIG. 11 is a block diagram showing the configuration of the camera system according to Embodiment 2 of the present invention.
  • FIG. 12 is a block diagram illustrating a configuration of a conventional solid-state imaging device.
  • FIG. 13 is a timing diagram for explaining an A / D conversion operation using a conventional solid-state imaging device.
  • FIG. 1 is a block diagram showing an imaging system according to the first embodiment.
  • the imaging system shown in FIG. 1 includes an optical system 200 and a solid-state imaging device 100.
  • the optical system 200 collects light from a subject to be imaged and forms an image on the imaging region of the solid-state imaging device 100, and is positioned on the optical path between the lens 201 and the solid-state imaging device 100.
  • the shutter 202 is a mechanical shutter that controls the amount of light guided onto the imaging region.
  • a solid-state imaging device 100 shown in FIG. 1 is a solid-state imaging device including a plurality of pixels arranged in a matrix, for example, a MOS sensor.
  • the solid-state imaging device 100 includes a pixel array 102, a column A / D conversion circuit 106, a ramp generation circuit 108, an output buffer 109, a digital preprocessing circuit 113, a clock generation circuit 114, a mode terminal 115, A control unit 116, a reset signal level distribution acquisition circuit 119, a timing generation circuit 120, and an output signal bus 126 are provided. Further, the solid-state imaging device 100 controls output of digital signals converted and held by a row scanning unit (not shown) for selecting one or more rows of pixels to be read and a column A / D conversion circuit 106. Column scanning means (not shown).
  • the pixel array 102 is a pixel array in which pixels (also referred to as sensitive elements) 101 including photoelectric conversion elements that photoelectrically convert incident visible light into a charge amount corresponding to the amount of light are arranged in a matrix (matrix shape). Also called a sensitive element array).
  • a readout signal line 103 for transmitting a signal output from the corresponding pixel 101 is formed for each column of the plurality of pixels 101.
  • the pixel 101 includes at least a photosensitive element such as a photodiode or a photogate, and a device structure for reading a signal generated by photoelectric conversion or a structure that enables an initialization operation is provided as necessary.
  • Unit element In general, a device having an array structure is generally provided with a dummy pattern particularly at an end thereof in order to ensure stability in a semiconductor process formation process.
  • This pixel array 102 is no exception.
  • only a pixel having a function of actually reading is referred to as a pixel 101.
  • the pixel 101 is separated into the following two types from the viewpoint of light sensitive characteristics. One is a normal pixel with normal photosensitivity characteristics, and the other is a pixel signal level that determines the black level of the image because the photosensitivity area of the pixel is shielded by a metal wiring layer, etc. This is a shading pixel capable of
  • a reference pixel region 112 is provided in a part of the pixel region of the pixel array 102.
  • an effective pixel area for acquiring a signal that directly constitutes an image and a black level signal for determining the black level of the image are acquired in an area excluding the reference pixel area 112. It is assumed that a so-called OB pixel region composed of light-shielding pixels is provided.
  • the reference pixel area 112 is used for reading out a reset signal level to a reset signal level distribution acquisition circuit 119 described later.
  • the pixel 101 included in the reference pixel region 112 may have the same element structure as the above-described normal pixel or may be a light-shielded pixel.
  • the reference pixel region 112 is configured by a row unit, that is, one row or a plurality of rows of pixels for the convenience of simultaneously reading out pixels for one row and performing processing in parallel as a reading method of the solid-state imaging device 100. Has been.
  • the ramp generation circuit 108 includes a binary counter 104 and a DAC circuit 105 which is a D / A conversion circuit, and supplies a reference signal 122 called a ramp wave to the column A / D conversion circuit 106.
  • the ramp generation circuit 108 by setting an initial value and an end value of the binary counter 104, a potential range of the reference signal 122 can be designated.
  • the binary counter 104 serving as the ramp generation circuit 108 supplies a binary value to the DAC circuit 105 in synchronization with the clock signal (ramp generation circuit clock signal 121b) input by the timing generation circuit 120.
  • the DAC circuit 105 generates an analog ramp voltage of a ramp wave (reference signal 122), specifically, a triangular wave, according to the input (supplied) binary value.
  • the analog ramp voltage (reference signal 122) is input to the comparator 107 of the column A / D conversion circuit 106 as a reference potential.
  • the column A / D conversion circuit 106 is provided for each column or for each of the plurality of pixels 101, and includes a comparator 107 and a UD counter 117.
  • the column A / D conversion circuit 106 receives a signal output from the corresponding pixel 101 via the readout signal line 103, and converts the input signal from the corresponding pixel into a digital signal.
  • the analog ramp voltage (reference signal 122) generated by the DAC circuit 105 is input to one input terminal, and read from the pixel 101 via the read signal line 103 to the other input terminal.
  • the pixel signal is input.
  • the comparator 107 inputs the output to the UD counter 117. Note that the read signal line 103 and the comparator 107 are connected to stabilize the potential (read potential) of the pixel signal read from the pixel 101 or to amplify the pixel signal read from the pixel 101.
  • a sample hold circuit or an amplifier circuit may be provided between them.
  • the UD counter 117 is connected to the output terminal of the comparator 107 and the signal line 123. By counting in the up direction or the down direction, the input potentials input to the two input terminals of the comparator 107 match. Measure the time to complete.
  • the column A / D conversion circuit 106 acquires a digital signal corresponding to the input signal.
  • the output signal bus 126 is for transmitting a digital signal output from the column A / D conversion circuit 106.
  • the clock generation circuit 114 generates a clock signal used in the solid-state imaging device 100.
  • this clock signal generated by the clock generation circuit 114 becomes a reference signal in the solid-state imaging device 100.
  • the digital pre-processing circuit 113 has an input connected to the output signal bus 126, and for example, pixel defect correction or digital processing is performed on the data (digital signal) A / D converted by the column A / D conversion circuit 106. Perform processing such as signal amplification.
  • the digital preprocessing circuit 113 outputs the processed data (output data) to the output buffer 109.
  • the output buffer 109 is connected to the output of the digital preprocessing circuit 113, receives the output data (output signal) of the digital preprocessing circuit 113, and outputs it to the outside of the solid-state imaging device 100.
  • the output buffer 109 may be a buffer configured by arranging the output data from the digital preprocessing circuit 113 by the bit width. Further, the output buffer 109 may be a buffer that converts output data from the digital preprocessing circuit 113 into bit serial data and outputs the data at high speed with a small amplitude differential output such as LVDS (Low voltage differential signaling). .
  • the reset signal level distribution acquisition circuit 119 is a characteristic part of the present invention. In this embodiment, a case where the reset signal level distribution acquisition circuit 119 is connected to the output signal bus 126 will be described.
  • the reset signal level distribution acquisition circuit 119 acquires reset signal level distribution information indicating the distribution of reset signal levels of the plurality of pixels 101 that have been A / D converted by the column A / D conversion circuit 106. Specifically, the reset signal level distribution acquisition circuit 119 sets the maximum reset signal level for all the pixels that are all the pixels 101 in the pixel area of the pixel array 102 and the reference pixels that are the pixels 101 in the reference pixel area 112.
  • Comparators for example, MIN computing unit 195, MAX that compare values held in registers (for example, all pixel MIN register 191 to reference pixel MAX register 194) that hold values and minimum values with input reset signal levels A computing unit 196).
  • the reset signal level distribution acquisition circuit 119 can monitor the maximum value and the minimum value of the pixel signal potential value (reset signal level) of the reset signal as an index of the reset signal level distribution.
  • the reset signal level distribution acquisition circuit 119 may be connected not to the output signal bus 126 but to the output side of the digital preprocessing circuit, depending on the processing contents of the digital preprocessing circuit 113.
  • the mode terminal 115 is a terminal outside the chip constituting the solid-state imaging device 100, for example. Then, the operation mode of the solid-state imaging device 100 is set by applying a predetermined potential to the mode terminal 115. Note that the mode terminal 115 is not necessarily a terminal outside the chip.
  • the solid-state imaging device 100 is an SOC (System-on-a-Chip) type device including an image signal processing processor including an imaging element such as the pixel 101 and its control function
  • the mode terminal 115 is connected to the image signal processing This means an in-chip connection terminal for the processor and the image sensor.
  • the control unit 116 Based on the reset signal level distribution information acquired by the reset signal level distribution acquisition circuit 119, the control unit 116 is assigned to count the reset signal level and the pixel signal level within a predetermined counter bit width of the UD counter 117. Each A / D conversion range (count range) is changed.
  • the control unit 116 controls the operation of the entire solid-state imaging device 100. Specifically, the control unit 116 writes a setting via a serial I / F circuit (not shown) in an electronic circuit such as an I2C (Inter-Integrated Circuit) setting for applying a potential to the mode terminal 115 of the solid-state imaging device 100.
  • the operation mode of the solid-state imaging device 100 is performed according to the register setting to be performed.
  • control unit 116 manages the cooperative operation of each circuit in each operation mode, the transition of the operation state of each circuit, and the like. For example, the control unit 116 controls the row scanning unit and the column scanning unit in accordance with the image acquisition mode. Also, the control unit 116 initializes the UD counter 117 (counter reset) of the column A / D conversion circuit 106, for example, by giving a counter reset signal to the UD counter 117. The UD switching signal is supplied to the UD counter 117, thereby controlling the switching of the count direction of the UD counter 117 of the column A / D conversion circuit 106.
  • control unit 116 initializes the ramp generation circuit 108, performs range switching control of the ramp generation circuit 108 by giving a reference potential range switching control signal, or performs A / D of the timing generation circuit 120.
  • the mask timing control of the clock signal corresponding to the conversion range is performed.
  • the timing generation circuit 120 generates various timing signals to control the timing of each circuit constituting the solid-state imaging device 100.
  • the timing generation circuit 120 generates a clock signal 121 as a timing signal to be supplied to the ramp generation circuit 108 and the UD counter 117 based on the reference clock signal generated by the clock generation circuit 114.
  • the timing generation circuit 120 generates the clock signal 121 based on the reference clock signal by, for example, gating the reference clock signal, and sends it to the ramp generation circuit 108 for the ramp generation circuit.
  • the clock signal 121b is supplied to the UD counter 117 as the UD counter clock signal 121a.
  • the UD counter clock signal 121a and the ramp generation circuit clock signal 121b are described as common signals, but the present invention is not limited thereto.
  • the wiring for transmitting the UD counter clock signal 121a and the ramp generation circuit clock signal 121b may be integrated and mounted in a common circuit, or may be separately mounted.
  • the solid-state imaging device 100 is configured.
  • FIG. 2 is a flowchart for explaining the optimization operation of the A / D conversion range of the solid-state imaging device 100 according to the first embodiment.
  • each control step will be described with reference to FIG. In the following description, for convenience of explanation, it is assumed that the initial operation frame is 0, and the subsequent frames are assigned serial numbers 1, 2,...
  • the solid-state imaging device 100 is set to the A / D conversion range optimization mode. Then, the flow shown in FIG. 2 is “activated”.
  • the setting of the operation mode including the A / D conversion range optimization mode is not limited to the mode terminal 115. As described above, it may be performed by register setting for writing via a serial input I / F circuit such as I2C.
  • the operation mode of the solid-state imaging device 100 is set to “all pixel reset signal level distribution acquisition mode” (step S01).
  • the A / D conversion range which is a range of digital values used by the column A / D conversion circuit 106 for A / D conversion output, is set to a default value. This is because the A / D conversion range in the initial state of the solid-state imaging device 100 should be sufficiently wide immediately after activation.
  • the voltage step per gradation is 1 mV
  • the analog input voltage range is 1.024 V
  • the corresponding output bit range is 1024 gradations (10 bits).
  • the analog input voltage range with respect to the reset signal level is assigned to 128 mV
  • the output bit range is assigned to 128 gradations (7 bits), but the number of gradations may be secured wider as necessary.
  • the solid-state imaging device 100 reads out only the reset signal level. Therefore, the solid-state imaging device 100 is changed from the control for performing normal image reading as follows. That is, in this all-pixel reset signal level distribution acquisition mode, the reset signal level is read not only from the reference pixel region 112 but also from all rows of the pixel array 102 including the OB pixel region and the effective pixel region. However, readout of the pixel signal level is unnecessary and is not performed. That is, in this all-pixel reset signal level distribution acquisition mode, it is not necessary to control the exposure start and the exposure period of the pixel 101.
  • the source follower Reset control on the gate potential side (floating diffusion: FD) of the transistor may be performed, and readout control from the photodiode (PD) to the FD becomes unnecessary. Note that the sequential vertical scanning of all the rows is the same as the normal readout control.
  • the minimum value RMIN (0) and the maximum value RMAX (0) of the reset signal level of the pixel 101 in the reference pixel region 112, the minimum value PMIN (0) of the reset signal level of all the pixels 101 in the pixel array 102, and The maximum value PMAX (0) is acquired (step S02).
  • the solid-state imaging device 100 reads the reset signal level of the pixel 101 to one terminal of the comparator 107 of the column A / D conversion circuit 106 via the readout signal line 103, and after the level is stabilized, the comparator An analog ramp voltage (reference signal 122), which is a ramp wave input to the other terminal 107, is swept.
  • the analog ramp voltage is generated by a triangular wave potential.
  • the UD counter 117 measures the time until the input potentials input to the two terminals of the comparator 107 (the potential of the reset signal and the reference signal 122) match. In this way, the column A / D conversion circuit 106 acquires a digital value corresponding to the reset signal level of the pixel 101.
  • the method of A / D converting the signal read from the pixel 101 by the column A / D conversion circuit 106 is the above-described lamp type A / D conversion.
  • step S02 the column A / D conversion circuit 106 may read the reset signal level of the pixel 101 output from the comparator 107 as it is, so that the UD counter 117 switches the count direction (U / D). Drive in one direction only up or down. Therefore, in the following, in order to simplify the description, the UD counter 117 will be described as performing counting in the up direction starting from zero.
  • FIG. 3 is a timing diagram for explaining the A / D conversion operation in the all-pixel reset signal level distribution acquisition mode of the present invention.
  • FIG. 3A shows timing waveforms of the read signal line potential and the reference potential in a normal image acquisition mode to which the present invention is not applied for reference.
  • the vertical axis of the upper stage indicates the read signal line potential, that is, the A / D conversion signal input potential (analog)
  • the vertical axis of the lower stage indicates the A / D conversion reference input potential (analog).
  • the horizontal axis shows time in both the upper and lower stages.
  • the period required for the A / D conversion operation of the pixels 101 for one row specifically, the digital by the UD counter 117 is displayed.
  • a horizontal scanning period including a reset level comparison period tr and a signal level comparison period ts necessary for CDS is shown. Then, the image for one frame is output by repeating this one horizontal scanning period for the number of rows of the pixels 101 to be subjected to normal image reading.
  • the upper part of FIG. in the upper part of FIG.
  • the reset signal level acquisition operation for acquiring the reset signal component of the target pixel 101 (for example, the pixel 101 in the Nth row) in the reset level comparison period tr of one horizontal scanning period
  • a pixel signal level acquisition operation for acquiring the pixel signal component of the target pixel 101 in the signal level comparison period ts of one horizontal scanning period is shown.
  • FIG. 3 (b) shows a timing waveform for reading only the reset signal level in the present embodiment. Note that the vertical and horizontal axes in the upper and lower stages are the same as those in FIG.
  • the timing waveform for reading only the reset signal level can be obtained by masking the pixel signal level acquisition operation in the timing waveform of FIG.
  • the timing for reading only the reset signal level is obtained by this method, except for the signal waveform mask related to the pixel signal level acquisition operation, the timing completely matches the readout timing of the normal image acquisition mode.
  • the time such as the period and one vertical scanning period (one frame) does not change. Therefore, it is easy and preferable to switch control by this method.
  • FIG. 3C shows another example of timing waveforms for reading only the reset signal level in the present embodiment.
  • FIG. 3C shows a timing waveform in the case where the time that was originally the pixel signal level acquisition timing is used for reading the reset signal level. 3C masks the pixel signal level acquisition operation in the timing waveform of FIG. 3A, and then performs the reset signal level acquisition operation (cycle) during the vacant pixel signal level acquisition operation. ) Is added.
  • the reset signal acquisition operation can be performed because the comparison period is shorter than the pixel signal acquisition operation.
  • two reset signal level acquisition operations (cycles) can be added in one horizontal scanning period compared to the case shown in FIG. Can be read. That is, in the case shown in FIG. 3C, the reset signal level distribution for one frame can be acquired in one-third time. Alternatively, using the same time of one frame as in FIG. 3B, the reset signal level variation can be acquired three times as the data amount.
  • the frequency of this reading is increased, it is necessary to increase the frequency at the time of output from the column A / D conversion circuit 106 to the next stage circuit via the output signal bus 126.
  • bit width of the reset signal level is 7 bits as described above. Therefore, it is possible to stop the higher-order bus, mask the higher-order bit transfer operation, and the like, and it is possible to suppress the power consumption from the normal operation.
  • the reset signal level output from the pixel 101 is A / D converted by the column A / D conversion circuit 106 of each column and input to the reset signal level distribution acquisition circuit.
  • step S01 when the all-pixel reset signal level distribution acquisition mode is started, the reset signal level distribution information in the reset signal level distribution acquisition circuit 119 is initialized. That is, all the pixel MAX registers 192 and the reference pixel MAX registers 194 in the reset signal level distribution acquisition circuit 119 are both set to the minimum value (in this case, zero), and all the pixel MIN registers 191 and the reference pixel MIN registers 193 Are set to the maximum value (127 in this case).
  • the row scanning means such as a vertical scanning circuit performs control to select one or more rows of the pixels 101 of the pixel array 102 to be read. That is, the readout control of the row scanning means such as the vertical scanning circuit is sequentially performed from the top to the bottom row in the pixel array 102 shown in FIG. Therefore, the first reading of one frame is performed from the reference pixel region 112. Then, the read pixel signals (here, reset signals) of the pixels 101 are sequentially input to the reset signal level distribution acquisition circuit 119 via the column A / D conversion circuit 106 one pixel at a time.
  • the signal (reset signal) input to the reset signal level distribution acquisition circuit 119 is compared with the value held in the all-pixel MAX register 192 by the MAX calculator 196 (MAX calculation is performed), and the result is the all-pixel MAX. It is written to the register 192.
  • the signal (reset signal) input to the reset signal level distribution acquisition circuit 119 is compared with the value held in the all-pixel MIN register 191 by the MIN calculator 195 (MIN calculation is performed), and the result is It is written in the all pixel MIN register 191.
  • a reference pixel MAX is output by a MAX calculator 196 to a signal (reset signal) input from the pixel 101 in the reference pixel area 112 to the reset signal level distribution acquisition circuit 119 via the column A / D conversion circuit 106.
  • a MAX operation with the value held in the register 194 is performed, and the result is written in the reference pixel MAX register 194.
  • the value held in the reference pixel MIN register 193 and the MIN calculation are performed by the MIN calculator 195, and the result is written in the reference pixel MIN register 193.
  • the maximum value of the reset signal level of the pixel 101 in the reference pixel area 112 in the initial state acquired in step S02 is RMAX (0)
  • the minimum value is RMIN (0)
  • the maximum value of the reset signal level in all the pixels 101 is The following description will be made assuming that PMAX (0) and the minimum value are PMIN (0).
  • the reset signal level distribution acquisition circuit 119 acquires the MAX value and the MIN value of all the pixel regions, and the MAX value and the MIN value of the pixel 101 in the reference pixel region 112.
  • the MAX value of the reference pixel is stored in the reference pixel MAX register 194 and the reference pixel MIN register 193 at the end of reading the reference pixel.
  • the MIN value can be acquired.
  • the calculation with the reference pixel MAX register 194 and the reference pixel MIN register 193 is not performed ( Only the operation with all pixel MAX registers 192 and all pixel MIN registers 191 is continued. In this manner, the MAX value and the MIN value of all pixel regions can be acquired when reading of all pixels for one frame is completed.
  • the reference pixel register when the reset signal level of the reference pixel is output (when the reference pixel is output), the reference pixel register (reference pixel MAX register 194 and reference pixel MIN register 193) and all pixel registers (in one pixel cycle)
  • the method of performing comparison with the register values of both the all-pixel MAX register 192 and all-pixel MIN register 191) in a time division manner has been described, the present invention is not limited to this.
  • two comparators may be provided in parallel and operated in parallel. Another method is to output reference pixels. Only comparison with the reference pixel registers (reference pixel MAX register 194 and reference pixel MIN register 193) may be performed.
  • an all-pixel reset distribution model formula is set based on the initial state data indicating the all-pixel reset level distribution acquired in step S02 (step S03).
  • step S02 initial state data indicating the reset signal level distribution of all the pixels in one frame is acquired as the MAX value / MIN value, and the initial state indicating the reset signal level distribution of the reference pixel. Are acquired as MAX value / MIN value.
  • step S02 with respect to the initial state data acquired in step S02, for example, as shown in FIG. Approximate the relationship.
  • FIG. 4 is a graph showing a reset signal level distribution calculation model in the first embodiment.
  • the operation mode of the solid-state imaging device 100 is set to “reference pixel reset signal level distribution acquisition mode” (step S04).
  • the A / D range is set to a default value as in step S01.
  • step S04 the operation of acquiring the reference pixel reset signal level distribution is performed in the same manner as described in step S02.
  • the row scanning means such as the vertical scanning circuit, the column A / D conversion circuit 106, and the reset signal level distribution acquisition circuit.
  • the operations of the row scanning means such as the vertical scanning circuit and the column A / D conversion circuit 106 are the same as those described in step S02 except that only the reference pixel region 112 is accessed. Is omitted.
  • the operation of the reset signal level distribution acquisition circuit 119 is almost the same as that described in step S02, but will be briefly described below.
  • step S04 when the reference pixel reset signal level distribution acquisition mode is started, the reference pixel MAX register 194 in the reset signal level distribution acquisition circuit 119 is set to the minimum value (in this case, zero), and the reference pixel MIN register 193 is set to the maximum value. (In this case, 127) is set.
  • step 04 unlike in step 02, the initialization of all pixel MAX register 192 and all pixel MIN register 191 is not performed.
  • the row scanning unit such as a vertical scanning circuit performs control to select one or more rows of the pixels 101 of the pixel array 102 to be read.
  • the readout control of the row scanning means such as the vertical scanning circuit is sequentially performed from the top to the bottom row in the pixel array 102 shown in FIG. Therefore, the first reading of one frame is performed from the reference pixel region 112.
  • the read pixel signals (here, reset signals) of the pixels 101 are sequentially input to the reset signal level distribution acquisition circuit 119 via the column A / D conversion circuit 106 one pixel at a time.
  • the signal (reset signal) input to the reset signal level distribution acquisition circuit 119 is subjected to a MAX operation with the value held in the reference pixel MAX register 194 by the MAX calculator 196, and the result is the reference pixel MAX register. 194 is written.
  • the MIN calculator 195 performs a MIN calculation with the value held in the reference pixel MIN register 193 and writes the result in the reference pixel MIN register 193.
  • the reset signal level distribution acquisition circuit 119 acquires the MAX value and the MIN value of the pixel 101 in the reference pixel region 112.
  • the reference pixel MAX register 194 and the reference pixel MIN register 193 store the pixel 101 in the reference pixel region 112, that is, the reference, at the end of reading the reference pixel.
  • the MAX value and MIN value of the pixel can be acquired.
  • the reference pixel reset signal level distribution could be acquired as the MAX value / MIN value.
  • the maximum value of the reference pixel acquired here is RMAX (1), and the minimum value is RMIN (1).
  • the maximum value and the minimum value of all the pixels are calculated using the data indicating the reference pixel reset level distribution acquired in step S04 and the all pixel reset signal level distribution model formula (step S05).
  • the maximum values RMAX (1) and RMIN (1) of the reference pixels acquired in step S04 are input to X in (expression 1), which is the all-pixel reset signal level distribution model expression derived in step S03. (Formula 2) and (Formula 3) are obtained. Then, the maximum value PMAX (1) and the minimum value PMIN (1) of all the pixels are calculated by these (Expression 2) and (Expression 3).
  • PMAX (1) (PMAX (0) ⁇ PMIN (0)) / (RMAX (0) ⁇ RMIN (0)) ⁇ (RMAX (1) ⁇ RMIN (0)) + PMIN (0) (Equation 2 )
  • PMIN (1) (PMAX (0) ⁇ PMIN (0)) / (RMAX (0) ⁇ RMIN (0)) ⁇ (RMIN (1) ⁇ RMIN (0)) + PMIN (0) (Equation 3 )
  • the operation mode of the solid-state imaging device 100 is set to “A / D conversion range switching step”, and the A / D conversion range of the reset signal level is optimized (step S06). Specifically, an upper limit value and a lower limit value of the A / D conversion range of the reset signal level are set.
  • the analog voltage range on the input side of A / D conversion corresponds to the range setting of the DAC circuit 105 that generates the reference potential.
  • the above (Expression 2) and (Expression 3) are not necessarily used as the upper limit value of the A / D conversion range. It cannot be set to the lower limit. Therefore, for example, when the DAC circuit 105 has a restriction that switching can be performed only in steps of 16 steps, the reset signal level range (also referred to as reference pixel potential) of the DAC circuit 105 is expressed by the following (Expression 4) and (Expression 5). Set. That is, the upper limit value of the reset signal level range of the DAC circuit 105 is set by (Expression 4), and the lower limit value is set by (Expression 4).
  • MMAX (i) [(PMAX (i) ⁇ 16) +1] ⁇ 16 (Expression 4)
  • MMIN (i) [(PMIN (i) ⁇ 16)] ⁇ 16 (Expression 5)
  • [] is a Gaussian symbol, which is a function that returns the largest integer that does not exceed the number in parentheses.
  • step S06 the reset signal level A / D conversion range is optimized by setting the upper and lower limits of the reset signal level A / D conversion range.
  • step S07 the A / D conversion range of the pixel signal level is optimized (step S07). Specifically, in the A / D conversion range of the pixel signal level, the gradation on the minus range side reduced in step S06 is assigned to the plus range side. This is because the conversion range reduction of the reset signal level performed in step S06 means that the minus range of the digital value of the UD counter 117 can be reduced, so that the plus range can be increased by the amount of reduction of the minus range. is there. Hereinafter, this will be described with reference to FIG.
  • FIG. 5 is a diagram for explaining a change in code assignment before and after adjustment of the A / D conversion range.
  • all codes of 10-bit binary representation 0000000000000 to 1111111111 are written doubly on the plus side and the minus side.
  • the invalid portion is indicated by hatching.
  • FIG. 5 (a) shows the assignment of the sign of the count value at the time of default setting (when the negative range is up to 128).
  • FIG. 5B shows the code assignment of the count value after optimization in step S07 in which the minus range is up to 48.
  • the reduced gradations on the minus range side can be assigned to the plus range side.
  • the sign determination for determining whether the assigned gradation is in the minus range or the plus range is performed by the digital pre-processing circuit 113 in the subsequent stage, so the circuit of the column A / D conversion circuit 106 and the ramp generation circuit There is no need to change the configuration or control.
  • the digital pre-processing circuit 113 in the subsequent stage sets the most significant bit of the 10-bit count value of the UD counter 117 to b9 and the least significant bit to b0 at the time of default setting (the minus range is up to 128).
  • the post-stage digital preprocessing circuit 113 includes the code determination logic and the mechanism described above, but is not limited thereto.
  • the digital circuit including the code determination logic and the mechanism may be included in the logic circuit in the solid-state imaging device 100, or the image signal processor side that receives the output of the solid-state imaging device 100 and performs image signal processing It is good also as a structure contained in.
  • the solid-state imaging device 100 includes the code determination logic and the mechanism.
  • step S07 the A / D conversion range of the pixel signal level is optimized.
  • the solid-state imaging device 100 starts a normal reading operation for all pixels except the reference pixel (step S08).
  • the normal reading operation is started for all the pixels except the reference pixel.
  • the “normal readout operation” means a readout operation of the pixel signals constituting the image data acquired by the normal imaging operation.
  • the solid-state imaging device 100 performs the normal reading operation for all the pixels except the reference pixel after optimizing the A / D conversion range.
  • the reset signal level distribution acquisition circuit 119 is based on the A / D conversion range (count range) and the reset signal levels of the plurality of pixels 101 A / D converted by the column A / D conversion circuit 106 and the plurality of reset signal levels.
  • a first reset indicating a distribution of reset signal levels of a plurality of pixels A / D converted by the column A / D conversion circuit 106 by acquiring a reset signal level of a reference pixel that is a partial pixel of the pixel 101 Get signal level distribution information.
  • the reset signal level distribution acquisition circuit 119 further acquires the reset signal level of only the reference pixels A / D converted by the column A / D conversion circuit 106 based on the A / D conversion range (count range).
  • the second reset signal level distribution information indicating the distribution of the reset signal level of only the reference pixels A / D converted by the column A / D conversion circuit 106 is acquired.
  • the control unit 116 changes the A / D conversion range (count range) from the first reset signal level distribution information and the second reset signal level distribution information.
  • the solid-state imaging device 100 includes a plurality of pixels 101 in the column A / D conversion circuit 106 based on the changed A / D conversion range (count range), that is, based on the optimized A / D conversion range. A normal readout operation for A / D conversion between the reset signal level and the pixel signal level is performed.
  • FIG. 2 the reading operation when optimizing the A / D conversion range is performed by incrementing the frame index i and repeating the operations from step S04 to step S08 for the subsequent frames.
  • FIG. 6 is a diagram illustrating a state of a normal read operation including a reset signal level distribution acquisition operation. Thereby, it is possible to follow changes in the optimum range due to changes in temperature and voltage.
  • the A / D conversion range is optimized when the imaging mode is changed, such as when the moving image acquisition mode is changed to the still image acquisition mode or the angle of view is changed even in the same moving image mode. It is desirable to operate from the beginning (step S01), that is, from the all-pixel reset signal level distribution acquisition mode.
  • the exposure time is not relevant.
  • exposure control is control performed to obtain appropriate exposure for various illuminance conditions of the subject.
  • This exposure control includes a method of increasing / decreasing the exposure time to increase / decrease the pixel signal itself, and a method of changing the amplification degree of the subsequent circuit, and is usually realized by combining these two methods.
  • An example of the amplifying means for changing the amplification degree of the circuit in the subsequent stage is a case where the solid-state device 100 includes a column amplifier, and in another example, the solid-state imaging device 100 includes the column A / This is a case where the D conversion circuit 106 is provided. When the solid-state imaging device 100 includes the column A / D conversion circuit 106, the amplification degree can be changed by changing the slope of the lamp reference potential.
  • the gain of the amplifier circuit in the previous stage of the column A / D conversion circuit 106 including the slope of the lamp reference potential directly amplifies the variation in the reset signal level. Therefore, it is desirable to match the gain in step S02 with the gain in step S04.
  • the upper limit value and the lower limit value may be increased by 16 LSBs, respectively.
  • (Expression 4) and (Expression 5) used when optimizing the A / D conversion range of the reset signal level in step S06 may be changed to (Expression 8) and (Expression 9) shown below.
  • MMAX (i) [(PMAX (i) ⁇ 16) +2] ⁇ 16 (Equation 8)
  • MMIN (i) [(PMIN (i) ⁇ 16) ⁇ 1] ⁇ 16 (Equation 9)
  • FIGS. 7 and 8 are diagrams for explaining the effect of A / D conversion range optimization.
  • FIG. 7A shows a timing diagram when the A / D conversion range optimization is not performed.
  • FIGS. 7B, 8C, and 8D are examples of timing diagrams after A / D conversion range optimization.
  • the horizontal axis is time in the upper and lower graphs, whereas the vertical axis in the upper graph. Indicates the count value of the UD counter 117, and the vertical axis of the lower graph indicates the analog potential of the lamp reference potential.
  • the waveform when the optimization is not performed is indicated by a dotted line for reference.
  • FIG. 7B shows a timing diagram when the A / D conversion range of the reset signal level is 16 mV to 64 mV and the maximum value of the corresponding column count is 48 in steps S01 to S06 in FIG. ing.
  • the A / D conversion range of the reset signal level can be reduced from the default 128 gradations to 48 gradations by steps S01 to S06.
  • the “second D range reduction” can be suppressed, and the effective output D range (Reff in the figure) can be expanded from 767 gradations to 847 gradations.
  • the A / D conversion period which is an obstacle to increasing the frame rate, can be realized. This is because the reset signal comparison range ts is shortened by reducing the reset signal level range Rres, and the A / D conversion of the pixel signal level can be performed ahead of schedule.
  • the effective output D range can be expanded by optimizing the reset signal level in steps S01 to S06, the bit accuracy of the pixel signal level can be increased.
  • the A / D conversion period can be shortened, and there is an effect that it can be driven at a higher speed.
  • FIG. 8C shows a timing diagram when the pixel signal level A / D conversion range is expanded by changing the digital value code assignment in step S07.
  • step S07 by changing the code assignment corresponding to the reset signal level conversion range reduction, the “first D range reduction” and the “second D range reduction” are performed. And the effective output D range can be expanded from 767 gradations to 927 gradations.
  • the time (signal level comparison period ts) for performing the A / D conversion of the pixel signal level becomes longer, so the A / D conversion range of the reset signal level Almost offsets the reduction in time. Therefore, even if pixel signal level conversion start is advanced, the entire A / D conversion period does not change before and after range optimization.
  • the effective output D range can be further expanded, so that the bit accuracy of the pixel signal level can be further increased.
  • FIG. 8D the above steps S01 to S06 are performed, but when the range optimization of the pixel signal level in step S07 is performed, the effective output D range is not expanded from the default, but the default
  • a timing diagram is shown when the pixel signal level range is changed so as to be rather reduced.
  • the length of the signal level comparison period ts is obtained by optimizing the A / D conversion range in which priority is given to speeding up the A / D conversion of the reset signal level and the pixel signal level. This is shorter than the case of FIG. That is, there is an effect of further shortening the A / D conversion period. In this way, it can be seen that the pixel signal level conversion period can also be shortened by the same period as the reset signal level conversion period, which is effective in increasing the frame rate.
  • the distribution of the reset signal level is determined during operation, and the A / D conversion range assigned to the reset signal level and the pixel signal level can be optimized.
  • the solid-state imaging device 100 having high pixel signal level bit speed and high speed can be realized without changing the hardware configuration.
  • the solid-state imaging device 100 changes the count direction of the UD counter 117 for each pixel 101 in each row, so that the column A / D conversion circuit 106 receives the difference value between the pixel signal level and the reset signal level as A / It has a pixel signal output mode in which it is output after being D-converted (that is, digital CDS).
  • the solid-state imaging device 100 has a pixel reset output mode in which only the pixel reset signal level is A / D converted by the column A / D conversion unit and output for each pixel in each row.
  • FIG. 9 is a flowchart for explaining the operation of optimizing the A / D conversion range of the solid-state imaging device 100 according to this modification. Elements similar to those in FIG. 2 are denoted by the same reference numerals, and detailed description thereof is omitted.
  • Step S01 is the same as the flow of FIG.
  • initial state data RAVG (0) and RSTD (0), and PAVG (0) and PSTD (0) indicating the reset level distribution of the reference pixels and all the pixels are acquired (step S12).
  • an all-pixel reset distribution model formula is set based on the initial state data acquired in step S12 (step S13).
  • FIG. 10 is a graph showing a reset signal level distribution calculation model in this modification.
  • RAVG (0) is an average value of the initial state of the pixel 101 in the reference pixel region 112
  • RSTD (0) is a standard deviation of the initial state of the pixel 101 in the reference pixel region 112.
  • PAVG (0) is an average value of the initial state of all the pixels in the pixel array 102
  • PSTD (0) is a standard deviation of the initial state of all the pixels in the pixel array 102.
  • the operation mode of the solid-state imaging device 100 is set to “reference pixel reset signal level distribution acquisition mode” (step S14).
  • the A / D range is set to a default value as in step S01.
  • the reset signal level distribution acquisition circuit 119 acquires the average value RAVG (i) and standard deviation RSTD (i) of the pixels 101 in the reference pixel region 112.
  • step S15 the average and standard deviation of all pixels are calculated using the data indicating the reference pixel reset level distribution acquired in step S14 and the all pixel reset signal level distribution model formula (step S15).
  • the average RAVG (1) and standard deviation RSTD (1) of the reference pixels acquired in step S14 are input to X in (Equation 10), which is the all-pixel reset signal level distribution model expression derived in step S13. By doing this, the following (formula 11) and (formula 12) are obtained. Then, the average PAVG (i) and the standard deviation PSTD (i) of all the pixels are calculated from these (Equation 11) and (Equation 12).
  • PAVG (i) (PSTD (0) / (RSTD (0)) ⁇ (RAVG (i) ⁇ RAVG (0)) + PAVG (0) (Equation 11)
  • PSTD (i) (PSTD (0) / (RSTD (0)) ⁇ RSTD (i) (Equation 12)
  • the solid-state imaging device 100 performs the reset level distribution acquisition step.
  • the maximum value and the minimum value of the distribution of the reset signal level are required to determine the A / D conversion range.
  • the average value ⁇ 3 ⁇ may be used, and calculation may be performed using the following (Expression 13) and (Expression 14). From this calculation, PMAX (1) and PMIN (1) can be calculated.
  • FIG. 11 is a block diagram showing the configuration of the camera system according to Embodiment 2 of the present invention. Elements similar to those in FIG. 1 are denoted by the same reference numerals, and detailed description thereof is omitted.
  • the camera system shown in FIG. 11 includes an optical system 200, a camera signal processing LSI 300, and a solid-state imaging device 400.
  • the difference from the first embodiment is that the reset signal level distribution is acquired by the camera signal processing LSI 300 outside the solid-state imaging device 400, and the reset signal range is set by register writing.
  • the solid-state imaging device 400 does not include the reset signal level distribution acquisition circuit 119, and the camera signal processing LSI 300 includes the reset signal level distribution acquisition circuit 119. I have.
  • the camera signal processing LSI 300 includes an image signal processing unit 301, a reset signal level distribution acquisition circuit, and a solid-state imaging device control unit 303.
  • the image signal processing unit 301 performs image signal processing for a camera such as color interpolation and gamma correction as a circuit block that reads a digital image signal from the solid-state imaging device 400.
  • the reset signal level distribution acquisition circuit 119 is for acquiring the reset signal level distribution as described in the first embodiment.
  • the solid-state imaging device control unit 303 analyzes the image information obtained by the image signal processing unit 301 and performs automatic exposure control for adjusting the exposure time and gain of the solid-state imaging device 400, and imaging input via a user interface. Parameters related to the mode change are written to the register of the solid-state imaging device 400 via an I / F such as a 3-wire serial or I2C. At this time, the solid-state imaging device control unit 303 also writes an index (for example, maximum value or minimum value) related to the distribution of the reset signal level acquired by the reset signal level distribution acquisition circuit 119.
  • an index for example, maximum value or minimum value
  • the camera system according to the second embodiment is configured. Note that the A / D conversion range optimization operation is the same as that of the first embodiment, and thus the description thereof is omitted.
  • all the pixels are read only once when the all-pixel reset signal level is acquired.
  • the accuracy of the reset signal level initial value may be increased by reading a plurality of frames instead of one frame. . Thereby, the accuracy of the calculation model can be further increased.
  • the solid-state imaging device and imaging system of the present invention includes a column amplifier
  • the readout circuit system of the column circuit determines the signal offset level by the auto-zero operation instead of the pixel, all rows of the pixel are read.
  • the number of samples of the reset signal level distribution can be increased and the statistical accuracy can be improved.
  • it is not necessary to read out the pixel signal level in the drive for acquiring the reset signal level distribution it is not necessary to ensure the exposure time that is normally required. Will contribute.
  • the reset level output determined by the auto-zero operation of the column amplifier does not depend on the pixel signal level. Even if the amplification factor of the column amplifier is changed, the output of the reset signal level is only the zero point of the output, so that the variation is not affected and the distribution of the reset signal level does not spread. That is, there is no need to change the reset signal level range.
  • the reset signal level range is changed by changing the slope of the lamp reference potential to change the amplification degree in the column A / D conversion circuit 106. Also need to be changed. This is because, for example, if the slope is halved and the amplification degree is doubled, the voltage distribution itself of the reset variation does not change, but the distribution range of the converted digital value is doubled.
  • the reference pixel used for acquiring the reset signal level distribution may be a pixel located in the peripheral portion of the normal readout pixel, and the readout of the normal pixel and the readout of the reference pixel must be continuous in readout of one frame. No, you may mix.
  • the ramp generation circuit 108 includes a binary counter 104 and a D / A conversion circuit (DAC circuit 105) is shown, but the binary counter 104 is not necessarily provided, and the ramp signal is synchronized with the clock. It is not always necessary to control.
  • a triangular wave potential may be generated by supplying electric charges to the fixed capacitor with a constant current.
  • the UD counter 117 of the column A / D conversion circuit 106 and the output signal bus 126 are described as being directly connected, but the present invention is not limited to this. Since a configuration including a column digital memory between the UD counter 117 and the output signal bus 126 is normal, it does not matter. This is because the effectiveness of the present invention is not impaired by the presence or absence.
  • the reference pixel area 112 exists only in the upper part of the entire pixel area (pixel array 102) has been described, but the reference pixel area 112 may be arranged in both the upper part and the lower part.
  • the reference pixel area 112 may be arranged in both the upper part and the lower part.
  • the configuration in which the MAX operation circuit and the MIN operation circuit are commonly used for all the pixels and the reference pixels has been shown.
  • the area of the logic circuit that can be configured with fine elements slightly increases, when the distribution of all the pixels and the reference pixel is acquired simultaneously, the operation frequency of the circuit can be halved.
  • the present invention can be used for a solid-state imaging device and an imaging system having a column A / D conversion circuit that receives output signals from photoelectric conversion elements arranged in a matrix.
  • a digital still camera, a mobile phone with a camera, and a surveillance camera It can be used for an image pickup apparatus and an image pickup system for detecting various physical quantity distributions such as light and radiation, which are used for a camera built in a notebook computer, a camera unit connected to an information processing device, and the like.
  • the present invention can also be used for a solid-state imaging device for detecting an amount of an object such as electromagnetic waves including visible light and X-rays, or particle radiation such as alpha rays and beta rays.

Abstract

One embodiment of this solid-state imaging device and imaging system comprises: a plurality of pixels arranged in a matrix; and UD counters (117) that are provided correspondingly to each column of the plurality of pixels or to each of a plurality of columns, and that count up and down. Said solid-state imaging device is provided with: a column A/D conversion circuit (106) that controls the counting by the UD counters (117), and converts analog signals from the corresponding pixels to digital signals; a reset signal level distribution acquisition circuit (119) that acquires distribution information representing the distribution of pixel reset signal levels for the plurality of pixels that have undergone A/D conversion by the column A/D conversion circuit (106); and a control unit (116)that alters various assigned count ranges in order to count the pixel reset levels and the pixel signal levels in counter bit widths that are predefined for the UD counters (117) on the basis of the acquired distribution information.

Description

固体撮像装置および撮像システムSolid-state imaging device and imaging system
 本発明は、固体撮像装置および撮像システムに関する。 The present invention relates to a solid-state imaging device and an imaging system.
 デジタルカメラやビデオカメラにおいて「眼」の役割を果たすキーデバイスとして、CCD(Charge Coupled Device)と並んでMOS(Metal Oxide Semiconductor)型イメージセンサ(以後、「MOSセンサ」と称する)の開発、使用が広まっている。MOSセンサは、特殊な半導体プロセスを使用して製造するCCDセンサとは異なり、汎用的な半導体プロセスを使用して製造することができる。そのため、MOSセンサは、タイミング制御回路やアナログやデジタルの信号処理回路を同一の半導体チップ上に搭載すること(つまり、混載)ができる使いやすさを備えることがひとつの特徴である。 Development and use of MOS (Metal Oxide Semiconductor) type image sensors (hereinafter referred to as “MOS sensors”) as well as CCDs (Charge Coupled Devices) as key devices that play the role of “eye” in digital cameras and video cameras. It is widespread. Unlike a CCD sensor manufactured using a special semiconductor process, the MOS sensor can be manufactured using a general-purpose semiconductor process. Therefore, one feature of the MOS sensor is that it has a usability that allows a timing control circuit and an analog or digital signal processing circuit to be mounted (that is, mixed) on the same semiconductor chip.
 近年、MOSセンサにおいて、画素からの信号出力後に必須となるCDS(Correlated Double Sampling:相関二重サンプリング)処理とA/D(Analog/Digital)変換とを、その特徴である混載を活かして、ともにMOSセンサと同一チップ上で行えるよう技術開発が行われている。ここで、CDS処理とは、同じ画素から画素信号レベルとリセット信号レベルとを読み出し、画素信号レベルからリセット信号レベルを減じることで、画素ごとに異なる読み出し電圧のオフセットを除いた真の画素信号レベルを取り出すための処理である。 In recent years, in a MOS sensor, both CDS (Correlated Double Sampling) processing and A / D (Analog / Digital) conversion, which are indispensable after signal output from a pixel, take advantage of the mixed loading that is the feature of both, Technological development is being carried out so that it can be performed on the same chip as the MOS sensor. Here, the CDS processing means reading out a pixel signal level and a reset signal level from the same pixel, and subtracting the reset signal level from the pixel signal level, thereby removing a true pixel signal level that excludes an offset of a readout voltage that differs for each pixel. It is processing for taking out.
 また、半導体プロセスの微細化はデジタル回路技術の進展に直接的に寄与することから、アナログ領域で行っていた処理をできるだけデジタル領域で行う技術トレンドも進んでいる。 In addition, since the miniaturization of semiconductor processes directly contributes to the advancement of digital circuit technology, there is also a technological trend of performing processing that was performed in the analog domain as much as possible in the digital domain.
 このような背景の中で、従来、アナログ領域で行われていたCDS処理を、A/D変換時に合わせて行う列ADC回路の技術が開示されている(例えば、特許文献1、特許文献2)。以下、例示として、特許文献1で開示されている列ADC回路について説明する。 In such a background, a column ADC circuit technique in which CDS processing conventionally performed in the analog domain is performed in accordance with A / D conversion is disclosed (for example, Patent Document 1 and Patent Document 2). . Hereinafter, as an example, a column ADC circuit disclosed in Patent Document 1 will be described.
 図12は、特許文献1で開示されている列A/D変換回路を内蔵する固体撮像装置の構成を示す図である。 FIG. 12 is a diagram illustrating a configuration of a solid-state imaging device including a column A / D conversion circuit disclosed in Patent Document 1. In FIG.
 この固体撮像装置920は、行走査手段914と、入射光量に応じた信号を出力する受光素子を含む複数の画素930と、列走査手段946と、アップカウンタ950と、列A/D変換回路940と、DAC(Digital Analog Converter)回路960とを備える。列A/D変換回路940は、比較回路942と、アップダウンカウンタ944とを備える。 The solid-state imaging device 920 includes a row scanning unit 914, a plurality of pixels 930 including a light receiving element that outputs a signal corresponding to the amount of incident light, a column scanning unit 946, an up counter 950, and a column A / D conversion circuit 940. And a DAC (Digital Analog Converter) circuit 960. The column A / D conversion circuit 940 includes a comparison circuit 942 and an up / down counter 944.
 列A/D変換回路940は、ランプ型A/D変換と呼ばれる方式で動作する。具体的には、DAC回路960から生成される単調増加または単調減少のランプ波と呼ぶ参照電位(VREF)と、画素930から読み出した信号電位915とを、各列に備えた比較回路942で比較する。そして、参照電位の掃引開始タイミングから画素信号電位と参照電位の一致タイミングまでの時間を各列のアップダウンカウンタ944で計測する。なお、この列A/D変換回路940は、特に、画素930から読み出した“リセット信号レベル”をA/D変換する動作から“画素信号レベル”の画素信号電位をA/D変換する動作に切り換える際に、リセット信号レベルの画素信号電位を示すカウンタの値を保持したまま、そのカウント方向を変更することで、A/D変換と同時に減算が実現できる点にその特徴がある。 The column A / D conversion circuit 940 operates by a method called lamp type A / D conversion. Specifically, a reference potential (VREF) called a monotonically increasing or monotonically decreasing ramp wave generated from the DAC circuit 960 is compared with a signal potential 915 read from the pixel 930 by a comparison circuit 942 provided in each column. To do. Then, the up-down counter 944 of each column measures the time from the reference potential sweep start timing to the pixel signal potential and reference potential matching timing. The column A / D conversion circuit 940 particularly switches from the operation of A / D converting the “reset signal level” read from the pixel 930 to the operation of A / D converting the pixel signal potential of the “pixel signal level”. At this time, it is characterized in that subtraction can be realized simultaneously with A / D conversion by changing the counting direction while holding the counter value indicating the pixel signal potential at the reset signal level.
 ここで、固体撮像装置920において、各画素930から“リセット信号レベル”の画素信号電位と“画素信号レベル” の画素信号電位を読み出して、“画素信号レベル”の画素信号電位から“リセット信号レベル” の画素信号電位を減算して“真の画素信号レベル” の画素信号電位を取り出す処理を相関二重サンプリング(CDS)と呼ぶ。この処理(CDS)をデジタルで行う方法を、さらに限定的にデジタルCDSと呼ぶ。上述のカウンタによる減算は、このデジタルCDSを実現する一手法である。 Here, in the solid-state imaging device 920, the pixel signal potential of “reset signal level” and the pixel signal potential of “pixel signal level” are read from each pixel 930, and the “reset signal level” is calculated from the pixel signal potential of “pixel signal level”. The process of subtracting the pixel signal potential of “true” to extract the pixel signal potential of “true pixel signal level” is called correlated double sampling (CDS). A method of digitally performing this processing (CDS) is called digital CDS more limitedly. The subtraction by the counter described above is one method for realizing this digital CDS.
米国特許第5877715号明細書US Pat. No. 5,877,715 特開2005-323331号公報JP 2005-323331 A
 しかしながら、上記従来の技術でデジタルCDSを実現する場合、以下に説明するいくつかの課題がある。 However, when digital CDS is realized by the above-described conventional technology, there are some problems described below.
 以下、そのことについて図13を用いて説明する。図13は、従来の固体撮像装置を用いたA/D変換動作を説明するためのタイミングダイヤグラムである。図13では、上記の列A/D変換回路940の動作波形を示している。上段の縦軸は、A/D変換信号出力(デジタル値)を示しており、下段の縦軸は、A/D変換入力電位(アナログ)を示している。横軸は、上下段ともに、時間を示している。 Hereinafter, this will be described with reference to FIG. FIG. 13 is a timing diagram for explaining an A / D conversion operation using a conventional solid-state imaging device. FIG. 13 shows operation waveforms of the column A / D conversion circuit 940. The upper vertical axis indicates the A / D conversion signal output (digital value), and the lower vertical axis indicates the A / D conversion input potential (analog). The horizontal axis shows time in both the upper and lower stages.
 ここで、各列すなわち、各列A/D変換回路940で用いられるカウンタビット幅は固定である。例えば、このカウンタビット幅を10ビットとすると、列A/D変換回路940(アップダウンカウンタ944)では1024通りの値が表現できる。そして、列A/D変換回路940(アップダウンカウンタ944)では、このレンジのカウンタ値で、リセット信号レベルレンジに相当するダウンカウント用のマイナスの最小値からアップカウント用のプラスの最大値までをカバーすることになる。 Here, the counter bit width used in each column, that is, in each column A / D conversion circuit 940 is fixed. For example, if the counter bit width is 10 bits, the column A / D conversion circuit 940 (up / down counter 944) can represent 1024 values. In the column A / D conversion circuit 940 (up / down counter 944), the counter value in this range is changed from the negative minimum value for down counting corresponding to the reset signal level range to the positive maximum value for up counting. Will cover.
 つまり、例えば、アップダウンカウンタ944のデフォルト値をゼロとし、リセット信号レベルのバラツキに対応してダウンカウントを128とする。すると、図13に示すように、マイナス側最小値は-128となるので、プラス側最大は+895となり、プラス側最大すなわちA/D変換出力で用いられるデジタル値は、1024に比べると減ることになる。これは、アップダウンカウンタ944を含む列A/D変換回路940のみで発生する課題ではなく、デジタルCDSに共通するレンジ縮小の課題(第1のDレンジ縮小の課題)である。 That is, for example, the default value of the up / down counter 944 is set to zero, and the down count is set to 128 corresponding to the variation in the reset signal level. Then, as shown in FIG. 13, since the minus side minimum value is −128, the plus side maximum is +895, and the plus side maximum, that is, the digital value used in the A / D conversion output is reduced compared to 1024. Become. This is not a problem that occurs only in the column A / D conversion circuit 940 including the up / down counter 944, but is a problem of range reduction common to the digital CDS (first D range reduction problem).
 また、この列A/D変換回路940すなわち列毎にアップダウンカウンタ944を備えた列A/D変換回路940は、デジタルCDSを行う。しかし、画素信号レベルをA/D変換するためアップカウントを行う時には、先行するリセット信号レベルをA/D変換した結果のバラツキの影響がある。具体的には、図13に示すように、列A/D変換回路940は、画素信号レベルをA/D変換するためアップカウントを行う時には、CV_RmaxからCV_Rminの間で、カウンタ値が変化するタイミングが列(列A/D変換回路940ごと)にバラつくことがわかる。これは、仮にすべての列(列A/D変換回路940)で、“真の画素信号レベル”が同じであっても、各列のアップダウンカウンタ944がその真の画素信号レベルの値にたどり着くタイミングはバラついてしまうことを意味する。 Also, the column A / D conversion circuit 940, that is, the column A / D conversion circuit 940 including the up / down counter 944 for each column performs digital CDS. However, when up-counting is performed in order to A / D convert the pixel signal level, there is an effect of variations in the result of A / D conversion of the preceding reset signal level. Specifically, as shown in FIG. 13, when the column A / D conversion circuit 940 performs up-counting for A / D conversion of the pixel signal level, the timing at which the counter value changes between CV_Rmax and CV_Rmin. It can be seen that variations occur in the columns (for each column A / D conversion circuit 940). This is because, even if all columns (column A / D conversion circuit 940) have the same “true pixel signal level”, the up / down counter 944 of each column reaches the value of the true pixel signal level. This means that the timing will vary.
 例えば、所定の画素930において、リセット信号レベルが一番低い場合(CV_Rmin)を考える。その場合、所定の画素930に対応する列A/D変換回路940では、アップカウントでの最大値を上述の+895に止めるため、アップダウンカウンタ944のアップカウント回数を895にする必要がある。一方、別の画素930において、リセット信号レベルが一番高い場合(CV_Rmax)を考える。その場合、別の画素930に対応する列A/D変換回路940では、その画素の画素信号レベルが飽和レベルに達していたとしても、すなわちランプ波と画素信号との比較で、最後まで一致検知タイミングが来ないとしても、アップカウント回数の最大は、895であるので、“真の画素信号レベル”の値は895-128=767となる。 For example, consider a case where the reset signal level is the lowest (CV_Rmin) in the predetermined pixel 930. In that case, in the column A / D conversion circuit 940 corresponding to the predetermined pixel 930, the up count number of the up / down counter 944 needs to be set to 895 in order to stop the maximum value in the up count at the above-described +895. On the other hand, the case where the reset signal level is the highest (CV_Rmax) in another pixel 930 is considered. In that case, in the column A / D conversion circuit 940 corresponding to another pixel 930, even if the pixel signal level of the pixel has reached the saturation level, that is, until the end is detected by comparing the ramp wave with the pixel signal. Even if the timing does not come, since the maximum number of upcounts is 895, the value of “true pixel signal level” is 895−128 = 767.
 したがって、画素信号レベルが飽和している場合、何も処理をしなければ、リセット信号レベルのバラツキに対応して、“真の画素信号レベル”は、767~895の値でバラつくことになる。 Therefore, when the pixel signal level is saturated, if no processing is performed, the “true pixel signal level” varies from 767 to 895 corresponding to the variation in the reset signal level. .
 そして、例えば、真っ白であるべき箇所など画像で本来飽和しているべき箇所の画素930では、リセット信号レベルが高いため、このバラツキに対して何も処理しなければ、アップカウント回数の最大値が画素の飽和する画素信号レベルの値に足りず、色付きとなって画質劣化に繋がってしまう。そのため、A/D変換後の値に対して飽和レベルのスライスを行う(767~895の値を持つ画素信号をすべて767にする)必要がある。 Then, for example, the pixel 930 at a location that should be saturated in the image, such as a location that should be completely white, has a high reset signal level. The value of the pixel signal level at which the pixel is saturated is insufficient, resulting in coloration and deterioration of image quality. For this reason, it is necessary to perform saturation level slicing on the value after A / D conversion (all pixel signals having values of 767 to 895 are set to 767).
 つまり、CDS動作を含むA/D変換の出力ビット幅全レンジに対して、リセット信号レベルのレンジを1/8確保すると、飽和レベルのバラツキに相当するレンジも1/8になる。そして、これ(飽和レベルのバラツキに相当するレンジ)を削る必要があるため、結局、実際に使用できる有効Dレンジは3/4にまで削られることになる。 That is, if the reset signal level range is secured to 1/8 of the entire output bit width range of A / D conversion including CDS operation, the range corresponding to the variation of the saturation level is also 1/8. Since this (range corresponding to the variation in saturation level) needs to be cut, the effective D range that can actually be used is cut to 3/4.
 以上を鑑みると、リセット信号レベルのレンジは狭いほうが優れていることは明らかである。しかしながら、実製品ではプロセス・電源電圧・温度(PVT)の変動により、リセット信号レベルのバラツキが必然的に大きくなってしまう。そして、そのバラツキがリセット信号レベルのA/D変換レンジを超えてしまうと、デジタルCDSが正しく動作せず、画像に縦筋が発生し大幅に画質を劣化することとなる。つまり、リセット信号レベルのA/D変換レンジ(リセットレベルRres)は、PVTを含めたバラツキより十分広く取る必要があるため、有効なDレンジ(有効出力レンジReff)が縮小してしまうという課題(第2のDレンジ縮小の課題)もある。なお、この課題は、デジタルCDSを列A/D変換回路のアップダウンカウンタにより実現する場合に特有の課題である。 In view of the above, it is clear that the narrower the range of the reset signal level, the better. However, in actual products, variations in the reset signal level inevitably increase due to variations in process, power supply voltage, and temperature (PVT). If the variation exceeds the A / D conversion range of the reset signal level, the digital CDS does not operate correctly, causing vertical stripes in the image and greatly degrading the image quality. In other words, since the A / D conversion range (reset level Rres) of the reset signal level needs to be sufficiently wider than the variation including the PVT, there is a problem that the effective D range (effective output range Reff) is reduced ( There is also a problem of the second D range reduction. This problem is specific to the case where the digital CDS is realized by the up / down counter of the column A / D conversion circuit.
 また、このリセット信号レベルのA/D変換は、A/D変換期間が長くなる一因であり、A/D変換の高速化を妨げる。そのため、固体撮像装置920のフレームレート高速化の障害になっている。特に、アップダウンカウンタ944を備えた列A/D変換回路940では、アップダウンカウンタ944を備えない場合と同じ有効Dレンジ分を変換する期間に加えて、ダウンカウントを行う期間の2倍の変換期間が必要になるため、さらにA/D変換期間が長くなってしまうという課題もある。 Also, this A / D conversion of the reset signal level is one factor that increases the A / D conversion period, and hinders the speeding up of the A / D conversion. Therefore, this is an obstacle to increasing the frame rate of the solid-state imaging device 920. In particular, in the column A / D conversion circuit 940 provided with the up / down counter 944, in addition to the period for converting the same effective D range as in the case where the up / down counter 944 is not provided, the conversion is twice as long as the period for down-counting. Since a period is required, there is another problem that the A / D conversion period becomes longer.
 本発明は、上述の事情を鑑みてなされたもので、列A/D変換回路のハードウェア構成を変えることなく、画素信号レベルのビット精度が高く、かつ、高速な固体撮像装置および撮像システムを提供することを目的とする。 The present invention has been made in view of the above circumstances, and provides a high-speed solid-state imaging device and imaging system having high pixel signal level bit accuracy and high speed without changing the hardware configuration of the column A / D conversion circuit. The purpose is to provide.
 上記課題を解決するために本発明の一形態における固体撮像装置は、行列状に配列された複数の画素を備える固体撮像装置であって、前記複数の画素の一列毎または複数列毎に対応して設けられ、アップカウント方向及びダウンカウント方向にカウントするアップダウンカウンタを有し、当該アップダウンカウンタにカウントさせることにより、対応する画素から出力されるアナログ信号をデジタル信号にA/D変換する列A/D変換部と、前記列A/D変換部によりA/D変換された複数の画素の画素リセット信号レベルの分布を示す分布情報を取得する分布情報取得部と、前記分布情報取得部により取得された前記分布情報に基づいて、前記アップダウンカウンタの予め定められたカウンタビット幅において画素リセット信号レベルおよび画素信号レベルをカウントするために割り当てられているそれぞれのカウント範囲を変更する制御部とを備える。 In order to solve the above problems, a solid-state imaging device according to an aspect of the present invention is a solid-state imaging device including a plurality of pixels arranged in a matrix, and corresponds to each column or each column of the plurality of pixels. And an up / down counter that counts in the up-count direction and the down-count direction, and the analog signal output from the corresponding pixel is A / D converted into a digital signal by causing the up / down counter to count. An A / D conversion unit, a distribution information acquisition unit that acquires distribution information indicating a distribution of pixel reset signal levels of a plurality of pixels A / D converted by the column A / D conversion unit, and the distribution information acquisition unit Based on the acquired distribution information, a pixel reset signal level and a predetermined counter bit width of the up / down counter are set. And a control unit for changing the respective count range assigned to count fine pixel signal level.
 この構成によれば、リセット信号レベルの分布を動作時に決定し、リセット信号レベル及び画素信号レベルに割り当てるA/D変換レンジを最適化することができる。それにより、列A/D変換回路のハードウェア構成を変えることなく、画素信号レベルのビット精度が高く、かつ、高速な固体撮像装置を実現することができる。 According to this configuration, the distribution of the reset signal level is determined during operation, and the A / D conversion range assigned to the reset signal level and the pixel signal level can be optimized. As a result, a high-speed solid-state imaging device with high pixel signal level bit accuracy can be realized without changing the hardware configuration of the column A / D conversion circuit.
 また、前記固体撮像装置は、各行の画素毎に、前記アップダウンカウンタのカウント方向を変更することにより、前記列A/D変換部に、画素信号レベルと画素リセット信号レベルとの差分値をA/D変換させて出力させる画素信号出力モードと、各行の画素毎に、画素リセット信号レベルのみを前記列A/D変換部にA/D変換させて出力させる画素リセット出力モードとを有しているとしてもよい。 Further, the solid-state imaging device changes the count direction of the up / down counter for each pixel in each row, thereby giving the difference value between the pixel signal level and the pixel reset signal level to the column A / D converter. A pixel signal output mode in which the output is performed by / D conversion, and a pixel reset output mode in which only the pixel reset signal level is A / D converted and output by the column A / D conversion unit for each pixel in each row. It may be.
 また、前記分布情報取得部は、前記カウント範囲に基づいて、前記列A/D変換部によりA/D変換された前記複数の画素の画素リセット信号レベルと前記複数の画素の一部画素である参照画素のリセット信号レベルとを取得することにより、前記列A/D変換部によりA/D変換された複数の画素の画素リセット信号レベルの分布を示す第1分布情報を取得し、前記カウント範囲に基づいて、前記列A/D変換部によりA/D変換された前記参照画素のみのリセット信号レベルをさらに取得することにより、前記列A/D変換部によりA/D変換された前記参照画素のみのリセット信号レベルの分布を示す第2分布情報を取得し、前記制御部は、前記第1分布情報と、前記第2分布情報とから、前記カウント範囲を変更し、前記固体撮像装置は、前記制御部により変更されたカウント範囲に基づいて、前記列A/D変換部に複数の画素の画素リセット信号レベルと画素信号レベルとをA/D変換させるとしてもよい。 The distribution information acquisition unit includes pixel reset signal levels of the plurality of pixels and partial pixels of the plurality of pixels that are A / D converted by the column A / D conversion unit based on the count range. By acquiring a reset signal level of a reference pixel, first distribution information indicating a distribution of pixel reset signal levels of a plurality of pixels A / D converted by the column A / D converter is acquired, and the count range The reference pixel A / D-converted by the column A / D converter by further acquiring the reset signal level of only the reference pixel A / D-converted by the column A / D converter based on 2nd distribution information indicating only the reset signal level distribution is acquired, and the control unit changes the count range from the first distribution information and the second distribution information, and the solid-state imaging Location, based on the changed count range by the control unit, and a pixel reset signal level and the pixel signal level of a plurality of pixels in the column A / D converter may be converted A / D.
 また、前記分布情報取得部は、前記列A/D変換部によりA/D変換された前記複数の画素のリセット信号レベルの最大値および最小値、並びに、前記列A/D変換部によりA/D変換された前記複数の画素の一部画素である参照画素のリセット信号レベルの最大値および最小値を取得することにより、前記列A/D変換部によりA/D変換された前記複数の画素の画素リセット信号レベルの分布を示す分布情報を取得するとしてもよい。 Further, the distribution information acquisition unit includes a maximum value and a minimum value of reset signal levels of the plurality of pixels that have been A / D converted by the column A / D conversion unit, and an A / D conversion unit that performs A / D conversion. The plurality of pixels subjected to A / D conversion by the column A / D conversion unit by obtaining a maximum value and a minimum value of a reset signal level of a reference pixel that is a part of the plurality of pixels subjected to D conversion The distribution information indicating the distribution of the pixel reset signal level may be acquired.
 また、前記分布情報取得部は、前記列A/D変換部によりA/D変換された前記複数の画素のリセット信号レベルの平均値および標準偏差、並びに、前記列A/D変換部によりA/D変換された前記複数の画素の一部画素である参照画素のリセット信号レベルの平均値および標準偏差を取得することにより、前記列A/D変換部によりA/D変換された前記複数の画素の画素リセット信号レベルの分布を示す分布情報を取得するとしてもよい。 In addition, the distribution information acquisition unit includes an average value and standard deviation of reset signal levels of the plurality of pixels that have been A / D converted by the column A / D conversion unit, and an A / D conversion unit that performs A / D conversion. The plurality of pixels subjected to A / D conversion by the column A / D conversion unit by obtaining an average value and a standard deviation of a reset signal level of a reference pixel which is a partial pixel of the plurality of D-converted pixels The distribution information indicating the distribution of the pixel reset signal level may be acquired.
 なお、本発明は、装置として実現するだけでなく、このような装置が備える処理手段を備えるシステムまたは集積回路として実現してもよい。 Note that the present invention may be realized not only as an apparatus but also as a system or an integrated circuit including processing means included in such an apparatus.
 本発明によれば、列A/D変換回路のハードウェア構成を変えることなく、画素信号レベルのビット精度が高く、かつ、高速な固体撮像装置を実現することができる。 According to the present invention, it is possible to realize a high-speed solid-state imaging device with high pixel signal level bit accuracy without changing the hardware configuration of the column A / D conversion circuit.
図1は、実施の形態1における固体撮像装置の構成を示すブロック図である。FIG. 1 is a block diagram illustrating a configuration of the solid-state imaging device according to the first embodiment. 図2は、実施の形態1における固体撮像装置のA/D変換レンジの最適化動作を説明するためのフローチャートである。FIG. 2 is a flowchart for explaining the optimization operation of the A / D conversion range of the solid-state imaging device according to the first embodiment. 図3は、本発明の全画素リセット信号レベル分布取得モードでのA/D変換動作を説明するためのタイミングダイヤグラムである。FIG. 3 is a timing diagram for explaining the A / D conversion operation in the all-pixel reset signal level distribution acquisition mode of the present invention. 図4は、実施の形態1におけるリセット信号レベル分布計算モデルを示すグラフである。FIG. 4 is a graph showing a reset signal level distribution calculation model in the first embodiment. 図5は、A/D変換レンジの調整前後における符号割付の変更を説明するための図である。FIG. 5 is a diagram for explaining a change in code assignment before and after adjustment of the A / D conversion range. 図6は、リセット信号レベル分布取得動作を含む通常読み出し動作の様子を示す図である。FIG. 6 is a diagram illustrating a state of a normal read operation including a reset signal level distribution acquisition operation. 図7は、A/D変換レンジ最適化の効果を説明するための図である。FIG. 7 is a diagram for explaining the effect of A / D conversion range optimization. 図8は、A/D変換レンジ最適化の効果を説明するための図である。FIG. 8 is a diagram for explaining the effect of A / D conversion range optimization. 図9は、実施の形態1の変形例における固体撮像装置のA/D変換レンジの最適化動作を説明するためのフローチャートである。FIG. 9 is a flowchart for explaining an optimization operation of the A / D conversion range of the solid-state imaging device according to the modification of the first embodiment. 図10は、実施の形態1の変形例におけるリセット信号レベル分布計算モデルを示すグラフである。FIG. 10 is a graph showing a reset signal level distribution calculation model in a modification of the first embodiment. 図11は、本発明の実施の形態2におけるカメラシステムの構成を示すブロック図である。FIG. 11 is a block diagram showing the configuration of the camera system according to Embodiment 2 of the present invention. 図12は、従来の固体撮像装置の構成を示すブロック図である。FIG. 12 is a block diagram illustrating a configuration of a conventional solid-state imaging device. 図13は、従来の固体撮像装置を用いたA/D変換動作を説明するためのタイミングダイヤグラムである。FIG. 13 is a timing diagram for explaining an A / D conversion operation using a conventional solid-state imaging device.
 以下では、図面を参照して本発明の各実施形態における固体撮像装置、及び撮像システムについて説明する。 Hereinafter, a solid-state imaging device and an imaging system in each embodiment of the present invention will be described with reference to the drawings.
 (実施の形態1)
 以下、実施の形態1の固体撮像装置の構成を説明する。
(Embodiment 1)
Hereinafter, the configuration of the solid-state imaging device according to the first embodiment will be described.
 図1は、実施の形態1に係る撮像システムを示すブロック図である。 FIG. 1 is a block diagram showing an imaging system according to the first embodiment.
 図1に示す撮像システムは、光学系200と固体撮像装置100とを備える。 The imaging system shown in FIG. 1 includes an optical system 200 and a solid-state imaging device 100.
 光学系200は、撮像対象である被写体からの光を集光して固体撮像装置100の撮像領域上に画像イメージを形成するレンズ201と、レンズ201および固体撮像装置100の間の光路上に位置し、撮像領域上に導かれる光量を制御するメカニカルシャッタであるシャッタ202とで構成されている。 The optical system 200 collects light from a subject to be imaged and forms an image on the imaging region of the solid-state imaging device 100, and is positioned on the optical path between the lens 201 and the solid-state imaging device 100. The shutter 202 is a mechanical shutter that controls the amount of light guided onto the imaging region.
 図1に示す固体撮像装置100は、行列状に配列された複数の画素を備える固体撮像装置であって、例えばMOSセンサである。この固体撮像装置100は、画素アレー102と、列A/D変換回路106と、ランプ発生回路108と、出力バッファ109と、デジタル前処理回路113と、クロック生成回路114と、モード端子115と、制御部116と、リセット信号レベル分布取得回路119と、タイミング生成回路120と、出力信号バス126とを備える。また、この固体撮像装置100は、読み出しを行う画素の1行または複数行を選択する行走査手段(図示せず)と、列A/D変換回路106で変換、保持されたデジタル信号の出力制御を行う列走査手段(図示せず)とを備える。 A solid-state imaging device 100 shown in FIG. 1 is a solid-state imaging device including a plurality of pixels arranged in a matrix, for example, a MOS sensor. The solid-state imaging device 100 includes a pixel array 102, a column A / D conversion circuit 106, a ramp generation circuit 108, an output buffer 109, a digital preprocessing circuit 113, a clock generation circuit 114, a mode terminal 115, A control unit 116, a reset signal level distribution acquisition circuit 119, a timing generation circuit 120, and an output signal bus 126 are provided. Further, the solid-state imaging device 100 controls output of digital signals converted and held by a row scanning unit (not shown) for selecting one or more rows of pixels to be read and a column A / D conversion circuit 106. Column scanning means (not shown).
 画素アレー102は、入射される可視光をその光量に応じた電荷量に光電変換する光電変換素子を含む画素(感応素子とも呼ぶ)101が行列状(マトリックス状)に配置されてなる画素アレー(感応素子アレーとも呼ぶ)である。また、画素アレー102には、複数の画素101の列ごとに、対応する画素101から出力される信号を伝達するための読み出し信号線103が形成されている。 The pixel array 102 is a pixel array in which pixels (also referred to as sensitive elements) 101 including photoelectric conversion elements that photoelectrically convert incident visible light into a charge amount corresponding to the amount of light are arranged in a matrix (matrix shape). Also called a sensitive element array). In the pixel array 102, a readout signal line 103 for transmitting a signal output from the corresponding pixel 101 is formed for each column of the plurality of pixels 101.
 ここで、画素101とは、少なくともフォトダイオードやフォトゲートなどの光感応素子を含み、光電変換により生じた信号を読み出すためのデバイス構造や、初期化動作を可能とする構造が必要に応じて設けられた単位素子である。一般的に、アレー構造を備えたデバイスでは、半導体プロセスの形成工程における安定性確保のため、特にその端部にダミーパターンを設けるのが一般的である。この画素アレー102についても例外ではない。ここでは、実際に読み出しを行う機能を備えたものに限って画素101と称する。なお、画素101は、光感応特性という観点では、以下の2種類に分離される。一方は、通常の光感応特性を備える通常画素であり、もう一方は、画素の光感応領域がメタル配線層などにより遮光されていて、画像の黒レベルを決めるための画素信号レベルを出力することができる遮光画素である。 Here, the pixel 101 includes at least a photosensitive element such as a photodiode or a photogate, and a device structure for reading a signal generated by photoelectric conversion or a structure that enables an initialization operation is provided as necessary. Unit element. In general, a device having an array structure is generally provided with a dummy pattern particularly at an end thereof in order to ensure stability in a semiconductor process formation process. This pixel array 102 is no exception. Here, only a pixel having a function of actually reading is referred to as a pixel 101. Note that the pixel 101 is separated into the following two types from the viewpoint of light sensitive characteristics. One is a normal pixel with normal photosensitivity characteristics, and the other is a pixel signal level that determines the black level of the image because the photosensitivity area of the pixel is shielded by a metal wiring layer, etc. This is a shading pixel capable of
 また、画素アレー102の画素領域の一部には、図1に示すように、参照画素領域112が設けられている。また、画素アレー102の画素領域には、参照画素領域112を除いた領域に、画像を直接的に構成する信号を取得する有効画素領域と、画像の黒レベルを決めるための黒レベル信号を取得する遮光画素から構成されるいわゆるOB画素領域とが設けられているとする。 Further, as shown in FIG. 1, a reference pixel region 112 is provided in a part of the pixel region of the pixel array 102. In the pixel area of the pixel array 102, an effective pixel area for acquiring a signal that directly constitutes an image and a black level signal for determining the black level of the image are acquired in an area excluding the reference pixel area 112. It is assumed that a so-called OB pixel region composed of light-shielding pixels is provided.
 参照画素領域112は、後述するリセット信号レベル分布取得回路119へリセット信号レベルを読み出すために用いられる。ここで、参照画素領域112に含まれる画素101は、上述の通常画素とまったく同じ素子構造でも良いし、遮光画素であっても良い。なお、参照画素領域112は、固体撮像装置100の読出し方式として、一行分の画素を同時に読み出し、並列に処理を行う都合から、参照画素領域は行単位、すなわち1行または複数行の画素で構成されている。 The reference pixel area 112 is used for reading out a reset signal level to a reset signal level distribution acquisition circuit 119 described later. Here, the pixel 101 included in the reference pixel region 112 may have the same element structure as the above-described normal pixel or may be a light-shielded pixel. Note that the reference pixel region 112 is configured by a row unit, that is, one row or a plurality of rows of pixels for the convenience of simultaneously reading out pixels for one row and performing processing in parallel as a reading method of the solid-state imaging device 100. Has been.
 ランプ発生回路108は、2進カウンタ104とD/A変換回路であるDAC回路105とから構成され、列A/D変換回路106にランプ波と呼ぶ参照信号122を供給する。 The ramp generation circuit 108 includes a binary counter 104 and a DAC circuit 105 which is a D / A conversion circuit, and supplies a reference signal 122 called a ramp wave to the column A / D conversion circuit 106.
 ランプ発生回路108では、2進カウンタ104の初期値と終了値とを設定することで、参照信号122の電位のレンジ(範囲)を指定することができる。なお、ランプ発生回路108として2進カウンタ104は、タイミング生成回路120により入力されたクロック信号(ランプ発生回路用クロック信号121b)に同期してバイナリ値をDAC回路105に供給する。 In the ramp generation circuit 108, by setting an initial value and an end value of the binary counter 104, a potential range of the reference signal 122 can be designated. The binary counter 104 serving as the ramp generation circuit 108 supplies a binary value to the DAC circuit 105 in synchronization with the clock signal (ramp generation circuit clock signal 121b) input by the timing generation circuit 120.
 DAC回路105は、入力(供給)されたバイナリ値に従って、ランプ波(参照信号122)具体的には三角波のアナログランプ電圧を生成する。このアナログランプ電圧(参照信号122)は参照電位として、列A/D変換回路106の比較器107に入力される。 The DAC circuit 105 generates an analog ramp voltage of a ramp wave (reference signal 122), specifically, a triangular wave, according to the input (supplied) binary value. The analog ramp voltage (reference signal 122) is input to the comparator 107 of the column A / D conversion circuit 106 as a reference potential.
 列A/D変換回路106は、複数の画素101のうちの1列ごとまたは複数列ごとに設けられ、比較器107と、UDカウンタ117とを有している。列A/D変換回路106は、対応する画素101から出力される信号が読み出し信号線103を介して入力され、入力された対応する画素からの信号をデジタル信号に変換する。 The column A / D conversion circuit 106 is provided for each column or for each of the plurality of pixels 101, and includes a comparator 107 and a UD counter 117. The column A / D conversion circuit 106 receives a signal output from the corresponding pixel 101 via the readout signal line 103, and converts the input signal from the corresponding pixel into a digital signal.
 比較器107は、一方の入力端子に、DAC回路105により生成されたアナログランプ電圧(参照信号122)が入力され、もう一方の入力端子に、画素101から読み出し信号線103を介して読み出された画素信号が入力される。比較器107は、その出力をUDカウンタ117に入力する。なお、画素101から読み出された画素信号の電位(読み出し電位)の安定化のため、または、画素101からの読み出された画素信号の増幅のため、読み出し信号線103と比較器107との間に、それぞれサンプルホールド回路を設けたり、アンプ回路を設けたりしてもよい。 In the comparator 107, the analog ramp voltage (reference signal 122) generated by the DAC circuit 105 is input to one input terminal, and read from the pixel 101 via the read signal line 103 to the other input terminal. The pixel signal is input. The comparator 107 inputs the output to the UD counter 117. Note that the read signal line 103 and the comparator 107 are connected to stabilize the potential (read potential) of the pixel signal read from the pixel 101 or to amplify the pixel signal read from the pixel 101. A sample hold circuit or an amplifier circuit may be provided between them.
 UDカウンタ117は、比較器107の出力端子と信号線123とにより接続されており、アップ方向にまたはダウン方向にカウントすることにより、比較器107の2つの入力端子に入力される入力電位が一致するまでの時間を計測する。 The UD counter 117 is connected to the output terminal of the comparator 107 and the signal line 123. By counting in the up direction or the down direction, the input potentials input to the two input terminals of the comparator 107 match. Measure the time to complete.
 このようにして、列A/D変換回路106は、入力された信号に相当するデジタル信号を取得する。 In this way, the column A / D conversion circuit 106 acquires a digital signal corresponding to the input signal.
 出力信号バス126は、列A/D変換回路106から出力されるデジタル信号を伝送するためのものである。 The output signal bus 126 is for transmitting a digital signal output from the column A / D conversion circuit 106.
 クロック生成回路114は、固体撮像装置100内で使用するクロック信号を生成する。ここで、クロック生成回路114で生成されたこのクロック信号は、固体撮像装置100内において基準の信号となる。 The clock generation circuit 114 generates a clock signal used in the solid-state imaging device 100. Here, this clock signal generated by the clock generation circuit 114 becomes a reference signal in the solid-state imaging device 100.
 デジタル前処理回路113は、その入力部が出力信号バス126と接続され、列A/D変換回路106でA/D変換されたデータ(デジタル信号)に対して、例えば画素欠陥補正やデジタルでの信号増幅などの処理を行う。デジタル前処理回路113は、処理したデータ(出力データ)を出力バッファ109に出力する。 The digital pre-processing circuit 113 has an input connected to the output signal bus 126, and for example, pixel defect correction or digital processing is performed on the data (digital signal) A / D converted by the column A / D conversion circuit 106. Perform processing such as signal amplification. The digital preprocessing circuit 113 outputs the processed data (output data) to the output buffer 109.
 出力バッファ109は、デジタル前処理回路113の出力と接続されており、デジタル前処理回路113の出力データ(出力信号)を受けて、固体撮像装置100の外部に出力する。なお、出力バッファ109は、デジタル前処理回路113からの出力データのビット幅分並べて構成されるバッファでもよい。また、出力バッファ109は、デジタル前処理回路113からの出力データをビットシリアルデータに変換して、LVDS(Low voltage differential signaling)などの小振幅差動出力で高速に出力するバッファであってもよい。 The output buffer 109 is connected to the output of the digital preprocessing circuit 113, receives the output data (output signal) of the digital preprocessing circuit 113, and outputs it to the outside of the solid-state imaging device 100. The output buffer 109 may be a buffer configured by arranging the output data from the digital preprocessing circuit 113 by the bit width. Further, the output buffer 109 may be a buffer that converts output data from the digital preprocessing circuit 113 into bit serial data and outputs the data at high speed with a small amplitude differential output such as LVDS (Low voltage differential signaling). .
 リセット信号レベル分布取得回路119は、本発明の特徴部分であり、本実施の形態では、出力信号バス126に接続されている場合を説明する。リセット信号レベル分布取得回路119は、列A/D変換回路106によりA/D変換された複数の画素101のリセット信号レベルの分布を示すリセット信号レベル分布情報を取得する。具体的には、リセット信号レベル分布取得回路119は、画素アレー102の画素領域の全部の画素101である全画素と、参照画素領域112における画素101である参照画素とそれぞれについてリセット信号レベルの最大値および最小値を保持するレジスタ(例えば、全画素MINレジスタ191~参照画素MAXレジスタ194)に保持されている値と入力されるリセット信号レベルとを比較する比較器(例えばMIN演算器195、MAX演算器196)を備える。この構成により、リセット信号レベル分布取得回路119は、リセット信号レベル分布の指標として、リセット信号の画素信号電位の値(リセット信号レベル)の最大値と最小値とをモニターできるようになっている。 The reset signal level distribution acquisition circuit 119 is a characteristic part of the present invention. In this embodiment, a case where the reset signal level distribution acquisition circuit 119 is connected to the output signal bus 126 will be described. The reset signal level distribution acquisition circuit 119 acquires reset signal level distribution information indicating the distribution of reset signal levels of the plurality of pixels 101 that have been A / D converted by the column A / D conversion circuit 106. Specifically, the reset signal level distribution acquisition circuit 119 sets the maximum reset signal level for all the pixels that are all the pixels 101 in the pixel area of the pixel array 102 and the reference pixels that are the pixels 101 in the reference pixel area 112. Comparators (for example, MIN computing unit 195, MAX) that compare values held in registers (for example, all pixel MIN register 191 to reference pixel MAX register 194) that hold values and minimum values with input reset signal levels A computing unit 196). With this configuration, the reset signal level distribution acquisition circuit 119 can monitor the maximum value and the minimum value of the pixel signal potential value (reset signal level) of the reset signal as an index of the reset signal level distribution.
 なお、リセット信号レベル分布取得回路119は、デジタル前処理回路113の処理内容にもよるが、出力信号バス126ではなく、デジタル前処理回路の出力側に接続されているとしても構わない。 The reset signal level distribution acquisition circuit 119 may be connected not to the output signal bus 126 but to the output side of the digital preprocessing circuit, depending on the processing contents of the digital preprocessing circuit 113.
 モード端子115は、例えば、固体撮像装置100を構成するチップ外部の端子である。そして、モード端子115に、所定の電位が与えられることにより、固体撮像装置100の動作モードが設定される。なお、モード端子115は、必ずしもチップ外部の端子でなくてもよい。例えば、固体撮像装置100が画素101等の撮像素子とその制御機能を含む画像信号処理プロセッサを備えたSOC(System-on-a-Chip)タイプのデバイスの場合、モード端子115は、画像信号処理プロセッサと撮像素子のチップ内接続端子を意味することになる。 The mode terminal 115 is a terminal outside the chip constituting the solid-state imaging device 100, for example. Then, the operation mode of the solid-state imaging device 100 is set by applying a predetermined potential to the mode terminal 115. Note that the mode terminal 115 is not necessarily a terminal outside the chip. For example, when the solid-state imaging device 100 is an SOC (System-on-a-Chip) type device including an image signal processing processor including an imaging element such as the pixel 101 and its control function, the mode terminal 115 is connected to the image signal processing This means an in-chip connection terminal for the processor and the image sensor.
 制御部116は、リセット信号レベル分布取得回路119により取得されたリセット信号レベル分布情報に基づいて、UDカウンタ117の予め定められたカウンタビット幅においてリセット信号レベルおよび画素信号レベルをカウントするために割り当てられているそれぞれのA/D変換レンジ(カウント範囲)を変更する。また、制御部116は、固体撮像装置100全体の動作を制御する。具体的には、制御部116は、固体撮像装置100が備えるモード端子115に電位を与える設定や、I2C(Inter-Integrated Circuit)など電子回路におけるシリアルI/F回路(図示せず)経由で書き込まれるレジスタ設定などに従って、固体撮像装置100の動作モードを行う。また、制御部116は、各動作モードにおける各回路の協調動作、各回路の動作状態の遷移などの管理を行う。制御部116は、例えば、画像取得モードに合わせた行走査手段および列走査手段の制御を行う。また、制御部116は、例えば、カウンタリセット信号を、UDカウンタ117に与えることにより、列A/D変換回路106のUDカウンタ117の初期化(カウンタリセット)を行ったり、制御部116は、例えば、UD切換信号を、UDカウンタ117に与えることにより、列A/D変換回路106のUDカウンタ117のカウント方向の切換え制御を行ったりする。また、制御部116は、ランプ発生回路108の初期化を行ったり、参照電位レンジ切換制御信号を与えることでランプ発生回路108のレンジ切換制御を行ったり、または、タイミング生成回路120のA/D変換レンジに対応したクロック信号のマスクタイミング制御などを行ったりする。 Based on the reset signal level distribution information acquired by the reset signal level distribution acquisition circuit 119, the control unit 116 is assigned to count the reset signal level and the pixel signal level within a predetermined counter bit width of the UD counter 117. Each A / D conversion range (count range) is changed. The control unit 116 controls the operation of the entire solid-state imaging device 100. Specifically, the control unit 116 writes a setting via a serial I / F circuit (not shown) in an electronic circuit such as an I2C (Inter-Integrated Circuit) setting for applying a potential to the mode terminal 115 of the solid-state imaging device 100. The operation mode of the solid-state imaging device 100 is performed according to the register setting to be performed. In addition, the control unit 116 manages the cooperative operation of each circuit in each operation mode, the transition of the operation state of each circuit, and the like. For example, the control unit 116 controls the row scanning unit and the column scanning unit in accordance with the image acquisition mode. Also, the control unit 116 initializes the UD counter 117 (counter reset) of the column A / D conversion circuit 106, for example, by giving a counter reset signal to the UD counter 117. The UD switching signal is supplied to the UD counter 117, thereby controlling the switching of the count direction of the UD counter 117 of the column A / D conversion circuit 106. In addition, the control unit 116 initializes the ramp generation circuit 108, performs range switching control of the ramp generation circuit 108 by giving a reference potential range switching control signal, or performs A / D of the timing generation circuit 120. The mask timing control of the clock signal corresponding to the conversion range is performed.
 タイミング生成回路120は、固体撮像装置100を構成する各回路のタイミングを制御するため各種のタイミング信号を生成する。特に、タイミング生成回路120は、クロック生成回路114で生成された基準となるクロック信号を基に、ランプ発生回路108やUDカウンタ117に供給するタイミング信号としてのクロック信号121を生成する。具体的には、タイミング生成回路120は、例えば基準となるクロック信号をゲーティングするなどして基準となるクロック信号を基に、クロック信号121を生成し、ランプ発生回路108に、ランプ発生回路用クロック信号121bとして供給し、UDカウンタ117にUDカウンタ用クロック信号121aとして供給する。なお、ここでは、UDカウンタ用クロック信号121aとランプ発生回路用クロック信号121bとを共通の信号として説明するが、それに限らない。また、UDカウンタ用クロック信号121aとランプ発生回路用クロック信号121bを伝達する配線は、共通する回路に集積されて実装されていても良いし、分離実装されていても良い。 The timing generation circuit 120 generates various timing signals to control the timing of each circuit constituting the solid-state imaging device 100. In particular, the timing generation circuit 120 generates a clock signal 121 as a timing signal to be supplied to the ramp generation circuit 108 and the UD counter 117 based on the reference clock signal generated by the clock generation circuit 114. Specifically, the timing generation circuit 120 generates the clock signal 121 based on the reference clock signal by, for example, gating the reference clock signal, and sends it to the ramp generation circuit 108 for the ramp generation circuit. The clock signal 121b is supplied to the UD counter 117 as the UD counter clock signal 121a. Here, the UD counter clock signal 121a and the ramp generation circuit clock signal 121b are described as common signals, but the present invention is not limited thereto. The wiring for transmitting the UD counter clock signal 121a and the ramp generation circuit clock signal 121b may be integrated and mounted in a common circuit, or may be separately mounted.
 以上のように、固体撮像装置100は構成されている。 As described above, the solid-state imaging device 100 is configured.
 次に、上記のように構成された固体撮像装置100の動作の特徴的な動作を説明する。 Next, a characteristic operation of the solid-state imaging device 100 configured as described above will be described.
 図2は、実施の形態1における固体撮像装置100のA/D変換レンジの最適化動作を説明するためのフローチャートである。以下、図2を用いて、制御ステップごとに説明する。なお、以下では、説明の便宜上、初期動作のフレームを0、以後のフレームに1、2、…と通番を付与することとする(なお、通番をiとして記載)。 FIG. 2 is a flowchart for explaining the optimization operation of the A / D conversion range of the solid-state imaging device 100 according to the first embodiment. Hereinafter, each control step will be described with reference to FIG. In the following description, for convenience of explanation, it is assumed that the initial operation frame is 0, and the subsequent frames are assigned serial numbers 1, 2,...
 まず、例えばモード端子115を用いて、固体撮像装置100をA/D変換レンジ最適化モードに設定する。すると、図2に示すフローが「起動」される。なお、このA/D変換レンジ最適化モードを含む動作モードの設定は、モード端子115でされるのに限らない。上述したように、I2Cなどのシリアル入力I/F回路を経由で書き込むレジスタ設定により行ってもよい。 First, for example, using the mode terminal 115, the solid-state imaging device 100 is set to the A / D conversion range optimization mode. Then, the flow shown in FIG. 2 is “activated”. The setting of the operation mode including the A / D conversion range optimization mode is not limited to the mode terminal 115. As described above, it may be performed by register setting for writing via a serial input I / F circuit such as I2C.
 次に、起動直後、固体撮像装置100の動作モードを「全画素リセット信号レベル分布取得モード」に設定する(ステップS01)。そして、列A/D変換回路106がA/D変換出力で用いるデジタル値の範囲であるA/D変換レンジをデフォルト値に設定する。なぜなら、起動直後は、固体撮像装置100の初期状態におけるA/D変換レンジは、十分に広く確保すべきであるからである。ここでは、説明の簡素化のため、1階調当たりの電圧刻みを1mVとして、アナログ入力電圧レンジを1.024Vとし、対応する出力ビットレンジを1024階調(10bit)とする。そして、リセット信号レベルに対するアナログ入力電圧レンジを128mV、出力ビットレンジを128階調(7bit)に割り当てるものとするが、必要に応じて階調数はより広く確保すればよい。 Next, immediately after activation, the operation mode of the solid-state imaging device 100 is set to “all pixel reset signal level distribution acquisition mode” (step S01). Then, the A / D conversion range, which is a range of digital values used by the column A / D conversion circuit 106 for A / D conversion output, is set to a default value. This is because the A / D conversion range in the initial state of the solid-state imaging device 100 should be sufficiently wide immediately after activation. Here, for simplification of description, it is assumed that the voltage step per gradation is 1 mV, the analog input voltage range is 1.024 V, and the corresponding output bit range is 1024 gradations (10 bits). The analog input voltage range with respect to the reset signal level is assigned to 128 mV, and the output bit range is assigned to 128 gradations (7 bits), but the number of gradations may be secured wider as necessary.
 なお、この全画素リセット信号レベル分布取得モードでは、固体撮像装置100は、リセット信号レベルのみの読み出しを行う。そのため、固体撮像装置100は、通常の画像読み出しを行う制御から以下のように変更されている。すなわち、この全画素リセット信号レベル分布取得モードでは、参照画素領域112だけでなく、OB画素領域や有効画素領域などを含む画素アレー102の全行からリセット信号レベルの読み出しを行う。しかし、画素信号レベルの読み出しは不要であるため、行わない。つまり、この全画素リセット信号レベル分布取得モードでは、画素101の露光開始の制御および露光期間の制御は不要であるので、例えば、画素101が通常の選択トランジスタを含む画素構成である場合、ソースフォロワトランジスタのゲート電位側(フローティングディフュージョン:FD)のリセット制御を行えばよく、フォトダイオード(PD)からFDへの読み出し制御は不要となる。なお、順次全行を垂直走査すること自体は、通常の読み出し制御と同じである。 In this all-pixel reset signal level distribution acquisition mode, the solid-state imaging device 100 reads out only the reset signal level. Therefore, the solid-state imaging device 100 is changed from the control for performing normal image reading as follows. That is, in this all-pixel reset signal level distribution acquisition mode, the reset signal level is read not only from the reference pixel region 112 but also from all rows of the pixel array 102 including the OB pixel region and the effective pixel region. However, readout of the pixel signal level is unnecessary and is not performed. That is, in this all-pixel reset signal level distribution acquisition mode, it is not necessary to control the exposure start and the exposure period of the pixel 101. For example, when the pixel 101 has a pixel configuration including a normal selection transistor, the source follower Reset control on the gate potential side (floating diffusion: FD) of the transistor may be performed, and readout control from the photodiode (PD) to the FD becomes unnecessary. Note that the sequential vertical scanning of all the rows is the same as the normal readout control.
 次に、参照画素領域112の画素101のリセット信号レベルの最小値RMIN(0)および最大値RMAX(0)、並びに、画素アレー102における全画素101のリセット信号レベルの最小値PMIN(0)および最大値PMAX(0)を取得する(ステップS02)。 Next, the minimum value RMIN (0) and the maximum value RMAX (0) of the reset signal level of the pixel 101 in the reference pixel region 112, the minimum value PMIN (0) of the reset signal level of all the pixels 101 in the pixel array 102, and The maximum value PMAX (0) is acquired (step S02).
 以下、具体的に説明する。 The details will be described below.
 最初に、リセット信号レベルが読み出され、各列の列A/D変換回路106でA/D変換されて、リセット信号レベル分布取得回路119に入力される動作について説明する。 First, the operation in which the reset signal level is read, A / D converted by the column A / D conversion circuit 106 of each column, and input to the reset signal level distribution acquisition circuit 119 will be described.
 まず、固体撮像装置100は、読み出し信号線103を介して画素101のリセット信号レベルを列A/D変換回路106の比較器107の一方の端子に読み出し、そのレベルが安定してから、比較器107の他方の端子に入力するランプ波であるアナログランプ電圧(参照信号122)の掃引を行う。ここで、アナログランプ電圧は、三角波状の電位により生成される。 First, the solid-state imaging device 100 reads the reset signal level of the pixel 101 to one terminal of the comparator 107 of the column A / D conversion circuit 106 via the readout signal line 103, and after the level is stabilized, the comparator An analog ramp voltage (reference signal 122), which is a ramp wave input to the other terminal 107, is swept. Here, the analog ramp voltage is generated by a triangular wave potential.
 続いて、列A/D変換回路106では、比較器107の2つの端子に入力される入力電位(リセット信号と参照信号122の電位)が一致するまでの時間をUDカウンタ117により計測する。このようにして、列A/D変換回路106では、画素101のリセット信号レベルに相当するデジタル値を取得する。ここで、列A/D変換回路106が画素101から読み出した信号をA/D変換する方式は、上述のランプ型A/D変換である。 Subsequently, in the column A / D conversion circuit 106, the UD counter 117 measures the time until the input potentials input to the two terminals of the comparator 107 (the potential of the reset signal and the reference signal 122) match. In this way, the column A / D conversion circuit 106 acquires a digital value corresponding to the reset signal level of the pixel 101. Here, the method of A / D converting the signal read from the pixel 101 by the column A / D conversion circuit 106 is the above-described lamp type A / D conversion.
 なお、ステップS02では、列A/D変換回路106は、比較器107より出力された画素101のリセット信号レベルをそのまま読み出せばよいので、UDカウンタ117は、カウント方向(U/D)の切り替えをせず、アップまたはダウンのみの単方向で駆動する。そのため、以下では、話を簡単にするため、UDカウンタ117は、ゼロを起点にアップ方向のカウントを行うものとして説明する。 In step S02, the column A / D conversion circuit 106 may read the reset signal level of the pixel 101 output from the comparator 107 as it is, so that the UD counter 117 switches the count direction (U / D). Drive in one direction only up or down. Therefore, in the following, in order to simplify the description, the UD counter 117 will be described as performing counting in the up direction starting from zero.
 ここで、列A/D変換回路106の比較器107へ入力される入力電位のタイミング波形について、図3を用いて説明する。 Here, the timing waveform of the input potential input to the comparator 107 of the column A / D conversion circuit 106 will be described with reference to FIG.
 図3は、本発明の全画素リセット信号レベル分布取得モードでのA/D変換動作を説明するためのタイミングダイヤグラムである。 FIG. 3 is a timing diagram for explaining the A / D conversion operation in the all-pixel reset signal level distribution acquisition mode of the present invention.
 図3(a)には、参考のため、本発明を適用しない通常の画像取得モードにおける読み出し信号線電位と参照電位のタイミング波形を示している。ここで、上段の縦軸は、読み出し信号線電位すなわちA/D変換信号入力電位(アナログ)を示しており、下段の縦軸は、A/D変換参照入力電位(アナログ)を示している。横軸は、上下段ともに、時間を示している。 FIG. 3A shows timing waveforms of the read signal line potential and the reference potential in a normal image acquisition mode to which the present invention is not applied for reference. Here, the vertical axis of the upper stage indicates the read signal line potential, that is, the A / D conversion signal input potential (analog), and the vertical axis of the lower stage indicates the A / D conversion reference input potential (analog). The horizontal axis shows time in both the upper and lower stages.
 また、図3(a)の下段には、図12の下段に示す図と同様に、1行分の画素101のA/D変換動作に必要な期間、具体的には、UDカウンタ117によるデジタルCDSに必要なリセットレベル比較期間trと信号レベル比較期間tsとを含む水平走査期間が示されている。そして、この1水平走査期間を、通常の画像読み出しの対象となる画素101の行数分、繰り返すことにより、1フレーム分の画像を出力する。一方、図3(a)の上段には、1水平走査期間のリセットレベル比較期間trで、対象の画素101(例えばN行目の画素101)のリセット信号成分を取得するリセット信号レベル取得動作と、1水平走査期間の信号レベル比較期間tsで、対象の画素101の画素信号成分を取得する画素信号レベル取得動作とが示されている。 Further, in the lower part of FIG. 3A, as in the figure shown in the lower part of FIG. 12, the period required for the A / D conversion operation of the pixels 101 for one row, specifically, the digital by the UD counter 117 is displayed. A horizontal scanning period including a reset level comparison period tr and a signal level comparison period ts necessary for CDS is shown. Then, the image for one frame is output by repeating this one horizontal scanning period for the number of rows of the pixels 101 to be subjected to normal image reading. On the other hand, in the upper part of FIG. 3A, the reset signal level acquisition operation for acquiring the reset signal component of the target pixel 101 (for example, the pixel 101 in the Nth row) in the reset level comparison period tr of one horizontal scanning period, A pixel signal level acquisition operation for acquiring the pixel signal component of the target pixel 101 in the signal level comparison period ts of one horizontal scanning period is shown.
 図3(b)には、本実施の形態におけるリセット信号レベルのみの読み出しを行うタイミング波形が示されている。なお、上下段の縦軸および横軸は図3(a)と同様のため説明を省略する。 FIG. 3 (b) shows a timing waveform for reading only the reset signal level in the present embodiment. Note that the vertical and horizontal axes in the upper and lower stages are the same as those in FIG.
 図3(b)に示すように、リセット信号レベルのみの読み出しを行うタイミング波形は、図3(a)のタイミング波形における画素信号レベル取得動作をマスクすることで得ることができる。なお、この方法でリセット信号レベルのみの読み出しを行うタイミングを得る場合、画素信号レベル取得動作に関わる信号波形のマスク以外、通常の画像取得モードの読み出しタイミングと完全に一致しており、1水平走査期間や1垂直走査期間(1フレーム)などの時間も変わらない。そのため、この方法で制御の切り替えすることは容易であり好ましい。 As shown in FIG. 3B, the timing waveform for reading only the reset signal level can be obtained by masking the pixel signal level acquisition operation in the timing waveform of FIG. When the timing for reading only the reset signal level is obtained by this method, except for the signal waveform mask related to the pixel signal level acquisition operation, the timing completely matches the readout timing of the normal image acquisition mode. The time such as the period and one vertical scanning period (one frame) does not change. Therefore, it is easy and preferable to switch control by this method.
 また、図3(c)には、本実施の形態におけるリセット信号レベルのみの読み出しを行うタイミング波形の別の例が示されている。この図3(c)では、元々、画素信号レベル取得タイミングであった時間を、リセット信号レベルの読み出しに活用する場合のタイミング波形を示している。つまり、図3(c)は、図3(a)のタイミング波形における画素信号レベル取得動作をマスクした上で、その空いた画素信号レベル取得動作であった期間に、リセット信号レベル取得動作(サイクル)を加えた場合を示している。 FIG. 3C shows another example of timing waveforms for reading only the reset signal level in the present embodiment. FIG. 3C shows a timing waveform in the case where the time that was originally the pixel signal level acquisition timing is used for reading the reset signal level. 3C masks the pixel signal level acquisition operation in the timing waveform of FIG. 3A, and then performs the reset signal level acquisition operation (cycle) during the vacant pixel signal level acquisition operation. ) Is added.
 これは、リセット信号取得動作は、画素信号取得動作に比べて、比較期間が短いためにできることである。そして、図3(c)に示す場合は、図3(b)に示す場合に比べて1水平走査期間に2つのリセット信号レベル取得動作(サイクル)を加えることができるので、3倍のレートで読み出すことができる。つまり、図3(c)に示す場合、3分の1の時間で1フレーム分のリセット信号レベル分布を取得できる。または、図3(b)と同じ1フレームの時間を使って、リセット信号レベルのバラツキをデータ量として3倍取得できる。ただし、この読み出しの頻度を上げると、列A/D変換回路106から出力信号バス126を経て次段の回路に出力する際の周波数を上げる必要が生じる点に注意が必要である。特に、通常読み出し動作において、画素101からの読み出し動作やA/D変換動作でなく、出力信号バス126のバンド幅が律速している場合には、図3(b)で示す読み出しタイミングを用いる方がよい。 This is because the reset signal acquisition operation can be performed because the comparison period is shorter than the pixel signal acquisition operation. In the case shown in FIG. 3C, two reset signal level acquisition operations (cycles) can be added in one horizontal scanning period compared to the case shown in FIG. Can be read. That is, in the case shown in FIG. 3C, the reset signal level distribution for one frame can be acquired in one-third time. Alternatively, using the same time of one frame as in FIG. 3B, the reset signal level variation can be acquired three times as the data amount. However, it should be noted that if the frequency of this reading is increased, it is necessary to increase the frequency at the time of output from the column A / D conversion circuit 106 to the next stage circuit via the output signal bus 126. In particular, in the normal read operation, when the bandwidth of the output signal bus 126 is rate-controlled rather than the read operation from the pixel 101 or the A / D conversion operation, the read timing shown in FIG. Is good.
 なお、ここでは、リセット信号レベルのビット幅は、上述したように7ビットとしている。そのため、これより上位のバスを止めたり、上位ビット転送動作をマスクしたりするなどが可能であり、消費電力を通常動作より抑えることが可能である。 Note that, here, the bit width of the reset signal level is 7 bits as described above. Therefore, it is possible to stop the higher-order bus, mask the higher-order bit transfer operation, and the like, and it is possible to suppress the power consumption from the normal operation.
 このようにして、画素101から出力されたリセット信号レベルは、各列の列A/D変換回路106でA/D変換されて、リセット信号レベル分布取得回路に入力する。 Thus, the reset signal level output from the pixel 101 is A / D converted by the column A / D conversion circuit 106 of each column and input to the reset signal level distribution acquisition circuit.
 次に、リセット信号レベル分布取得回路119の動作を具体的に説明する。 Next, the operation of the reset signal level distribution acquisition circuit 119 will be specifically described.
 まず、ステップS01において、全画素リセット信号レベル分布取得モード開始時には、リセット信号レベル分布取得回路119内のリセット信号レベル分布情報は初期化される。すなわち、リセット信号レベル分布取得回路119内の全画素MAXレジスタ192と参照画素MAXレジスタ194とはいずれも最小値(この場合、ゼロ)に設定され、全画素MINレジスタ191と参照画素MINレジスタ193とはいずれも最大値(この場合、127)に設定される。 First, in step S01, when the all-pixel reset signal level distribution acquisition mode is started, the reset signal level distribution information in the reset signal level distribution acquisition circuit 119 is initialized. That is, all the pixel MAX registers 192 and the reference pixel MAX registers 194 in the reset signal level distribution acquisition circuit 119 are both set to the minimum value (in this case, zero), and all the pixel MIN registers 191 and the reference pixel MIN registers 193 Are set to the maximum value (127 in this case).
 ここで、上述したように、垂直走査回路等の行走査手段は、読み出しを行う画素アレー102の画素101の1行または複数行を選択する制御を行う。すなわち、垂直走査回路等の行走査手段の読み出し制御は、図1に示す画素アレー102において、上から下の行に順次処理が行われる。そのため、1フレームの最初の読み出しは、参照画素領域112から行われる。そして、読み出された画素101の画素信号(ここでは、リセット信号)は、順次1画素ずつ、列A/D変換回路106を介して、リセット信号レベル分布取得回路119に入力される。 Here, as described above, the row scanning means such as a vertical scanning circuit performs control to select one or more rows of the pixels 101 of the pixel array 102 to be read. That is, the readout control of the row scanning means such as the vertical scanning circuit is sequentially performed from the top to the bottom row in the pixel array 102 shown in FIG. Therefore, the first reading of one frame is performed from the reference pixel region 112. Then, the read pixel signals (here, reset signals) of the pixels 101 are sequentially input to the reset signal level distribution acquisition circuit 119 via the column A / D conversion circuit 106 one pixel at a time.
 リセット信号レベル分布取得回路119に入力された信号(リセット信号)は、MAX演算器196により、全画素MAXレジスタ192が保持する値と比較され(MAX演算が行われ)、その結果が全画素MAXレジスタ192に書き込まれる。それとともに、リセット信号レベル分布取得回路119に入力された信号(リセット信号)は、MIN演算器195により、全画素MINレジスタ191が保持する値と比較され(MIN演算が行われ)、その結果が全画素MINレジスタ191に書き込まれる。 The signal (reset signal) input to the reset signal level distribution acquisition circuit 119 is compared with the value held in the all-pixel MAX register 192 by the MAX calculator 196 (MAX calculation is performed), and the result is the all-pixel MAX. It is written to the register 192. At the same time, the signal (reset signal) input to the reset signal level distribution acquisition circuit 119 is compared with the value held in the all-pixel MIN register 191 by the MIN calculator 195 (MIN calculation is performed), and the result is It is written in the all pixel MIN register 191.
 また、参照画素領域112の画素101から列A/D変換回路106を介して、リセット信号レベル分布取得回路119に入力された信号(リセット信号)に対して、MAX演算器196により、参照画素MAXレジスタ194が保持する値とのMAX演算が行われ、その結果が参照画素MAXレジスタ194に書き込まれる。それととともに、MIN演算器195により、参照画素MINレジスタ193が保持する値とMIN演算が行われ、その結果が参照画素MINレジスタ193に書き込まれる。 Further, a reference pixel MAX is output by a MAX calculator 196 to a signal (reset signal) input from the pixel 101 in the reference pixel area 112 to the reset signal level distribution acquisition circuit 119 via the column A / D conversion circuit 106. A MAX operation with the value held in the register 194 is performed, and the result is written in the reference pixel MAX register 194. At the same time, the value held in the reference pixel MIN register 193 and the MIN calculation are performed by the MIN calculator 195, and the result is written in the reference pixel MIN register 193.
 なお、ステップS02において取得した初期状態における参照画素領域112の画素101のリセット信号レベルの最大値をRMAX(0)、最小値をRMIN(0)とし、全画素101におけるリセット信号レベルの最大値をPMAX(0)、最小値をPMIN(0)として、以下説明する。カッコ内の0は、このフレームのi=0に対応する。 Note that the maximum value of the reset signal level of the pixel 101 in the reference pixel area 112 in the initial state acquired in step S02 is RMAX (0), the minimum value is RMIN (0), and the maximum value of the reset signal level in all the pixels 101 is The following description will be made assuming that PMAX (0) and the minimum value are PMIN (0). The 0 in parenthesis corresponds to i = 0 in this frame.
 以上のようにして、リセット信号レベル分布取得回路119は、全画素領域のMAX値およびMIN値、並びに参照画素領域112における画素101のMAX値およびMIN値を取得する。 As described above, the reset signal level distribution acquisition circuit 119 acquires the MAX value and the MIN value of all the pixel regions, and the MAX value and the MIN value of the pixel 101 in the reference pixel region 112.
 言い換えると、参照画素領域112の各画素101(以下、参照画素と記載)を順次処理することで、参照画素の読み出し終了時に、参照画素MAXレジスタ194と参照画素MINレジスタ193に参照画素のMAX値とMIN値とが取得できる。そして、参照画素領域112を除く、画素アレー102の全画素領域のすべての画素101(以下、全画素と記載)については、参照画素MAXレジスタ194および参照画素MINレジスタ193との演算は行わず(マスクして)、全画素MAXレジスタ192および全画素MINレジスタ191との演算をのみを継続して行っている。このようにして、1フレーム分の全画素の読み出し終了時に、全画素領域のMAX値とMIN値とが取得できる。 In other words, by sequentially processing each pixel 101 (hereinafter referred to as a reference pixel) in the reference pixel area 112, the MAX value of the reference pixel is stored in the reference pixel MAX register 194 and the reference pixel MIN register 193 at the end of reading the reference pixel. And the MIN value can be acquired. For all the pixels 101 (hereinafter referred to as all pixels) in the entire pixel area of the pixel array 102 excluding the reference pixel area 112, the calculation with the reference pixel MAX register 194 and the reference pixel MIN register 193 is not performed ( Only the operation with all pixel MAX registers 192 and all pixel MIN registers 191 is continued. In this manner, the MAX value and the MIN value of all pixel regions can be acquired when reading of all pixels for one frame is completed.
 なお、上記では、参照画素のリセット信号レベルが出力される時(参照画素出力時)に、1画素サイクル内における参照画素レジスタ(参照画素MAXレジスタ194および参照画素MINレジスタ193)と全画素レジスタ(全画素MAXレジスタ192および全画素MINレジスタ191)の両方のレジスタ値との比較を時分割で実施する方法を説明したが、それに限らない。例えば1つの方法としては、比較器を2つ並列に備えて、並列動作させるとしてもよい。また、別の方法としては、参照画素出力時に。参照画素レジスタ(参照画素MAXレジスタ194および参照画素MINレジスタ193)との比較のみを実施するとしてもよい。例えば、参照画素以外の画素101のリセット信号レベルが出力される時には、全画素レジスタ(全画素MAXレジスタ192および全画素MINレジスタ191)との比較のみを実施する。そして、全画素の読み出し終了直後に、参照画素MAXレジスタ194と全画素MAXレジスタ192の値のMAX演算を行い、その結果を全画素101のMAX値の最終結果としてもよい。MIN側についても同様である。 In the above description, when the reset signal level of the reference pixel is output (when the reference pixel is output), the reference pixel register (reference pixel MAX register 194 and reference pixel MIN register 193) and all pixel registers (in one pixel cycle) Although the method of performing comparison with the register values of both the all-pixel MAX register 192 and all-pixel MIN register 191) in a time division manner has been described, the present invention is not limited to this. For example, as one method, two comparators may be provided in parallel and operated in parallel. Another method is to output reference pixels. Only comparison with the reference pixel registers (reference pixel MAX register 194 and reference pixel MIN register 193) may be performed. For example, when the reset signal level of the pixel 101 other than the reference pixel is output, only comparison with all pixel registers (all pixel MAX register 192 and all pixel MIN register 191) is performed. Then, immediately after the reading of all the pixels is completed, the MAX calculation of the values of the reference pixel MAX register 194 and the all pixel MAX register 192 may be performed, and the result may be the final result of the MAX value of all the pixels 101. The same applies to the MIN side.
 次に、ステップS02において取得した全画素リセットレベル分布を示す初期状態のデータに基づいて、全画素リセット分布モデル式を設定する(ステップS03)。 Next, an all-pixel reset distribution model formula is set based on the initial state data indicating the all-pixel reset level distribution acquired in step S02 (step S03).
 具体的には、まず、ステップS02において、1フレーム中の全画素のリセット信号レベル分布を示す初期状態のデータをMAX値・MIN値として取得するとともに、参照画素のリセット信号レベル分布を示す初期状態のデータをMAX値・MIN値として取得する。次いで、ステップS02で取得した初期状態のデータに対して、例えば、図4に示すように参照画素のリセット信号レベルと全画素のリセット信号レベルの間に、最大値と最小値とを用いて線形関係を近似する。それにより、参照画素のリセット信号レベルの分布から全画素のリセット信号レベルの分布を計算する以下の全画素リセット分布モデル式を示す(式1)を導出できる。なお、図4は、実施の形態1におけるリセット信号レベル分布計算モデルを示すグラフである。 Specifically, first, in step S02, initial state data indicating the reset signal level distribution of all the pixels in one frame is acquired as the MAX value / MIN value, and the initial state indicating the reset signal level distribution of the reference pixel. Are acquired as MAX value / MIN value. Next, with respect to the initial state data acquired in step S02, for example, as shown in FIG. Approximate the relationship. As a result, the following all-pixel reset distribution model expression for calculating the reset signal level distribution of all the pixels from the distribution of the reset signal level of the reference pixel can be derived (Expression 1). FIG. 4 is a graph showing a reset signal level distribution calculation model in the first embodiment.
 Y=(PMAX(0)-PMIN(0))/(RMAX(0)-RMIN(0))×(X-RMIN(0))+PMIN(0)・・・(式1) Y = (PMAX (0) −PMIN (0)) / (RMAX (0) −RMIN (0)) × (X−RMIN (0)) + PMIN (0) (Formula 1)
 次に、固体撮像装置100の動作モードを「参照画素リセット信号レベル分布取得モード」に設定する(ステップS04)。ここで、フレームは1となる(i=1)。そして、この動作モードすなわち参照画素リセット信号レベル分布取得モードでは、ステップS01と同様に、A/Dレンジをデフォルト値に設定する。 Next, the operation mode of the solid-state imaging device 100 is set to “reference pixel reset signal level distribution acquisition mode” (step S04). Here, the frame is 1 (i = 1). In this operation mode, that is, the reference pixel reset signal level distribution acquisition mode, the A / D range is set to a default value as in step S01.
 このステップS04において、参照画素リセット信号レベル分布を取得する動作は、ステップS02で説明したのと同様に、垂直走査回路等の行走査手段と列A/D変換回路106とリセット信号レベル分布取得回路119との動作がある。しかし、垂直走査回路等の行走査手段と列A/D変換回路106との動作については、参照画素領域112のみをアクセスする点を除いて、ステップS02で説明したのと同じであるため、説明を省略する。リセット信号レベル分布取得回路119の動作についても、ステップS02で説明したのと大部分同じであるが、以下で簡単に説明する。 In step S04, the operation of acquiring the reference pixel reset signal level distribution is performed in the same manner as described in step S02. The row scanning means such as the vertical scanning circuit, the column A / D conversion circuit 106, and the reset signal level distribution acquisition circuit. There is an operation with 119. However, the operations of the row scanning means such as the vertical scanning circuit and the column A / D conversion circuit 106 are the same as those described in step S02 except that only the reference pixel region 112 is accessed. Is omitted. The operation of the reset signal level distribution acquisition circuit 119 is almost the same as that described in step S02, but will be briefly described below.
 まず、ステップS04において、参照画素リセット信号レベル分布取得モード開始時には、リセット信号レベル分布取得回路119内の参照画素MAXレジスタ194は最小値(この場合、ゼロ)に、参照画素MINレジスタ193は最大値(この場合、127)に設定される。なお、ステップ04では、ステップ02の場合とは異なり、全画素MAXレジスタ192と全画素MINレジスタ191との初期化は行われない。垂直走査回路等の行走査手段は、上述したように、読み出しを行う画素アレー102の画素101の1行または複数行を選択する制御を行う。すなわち、垂直走査回路等の行走査手段の読み出し制御は、図1に示す画素アレー102において、上から下の行に順次処理が行われる。そのため、1フレームの最初の読み出しは、参照画素領域112から行われる。読み出された画素101の画素信号(ここでは、リセット信号)は、順次1画素ずつ、列A/D変換回路106を介して、リセット信号レベル分布取得回路119に入力される。 First, in step S04, when the reference pixel reset signal level distribution acquisition mode is started, the reference pixel MAX register 194 in the reset signal level distribution acquisition circuit 119 is set to the minimum value (in this case, zero), and the reference pixel MIN register 193 is set to the maximum value. (In this case, 127) is set. In step 04, unlike in step 02, the initialization of all pixel MAX register 192 and all pixel MIN register 191 is not performed. As described above, the row scanning unit such as a vertical scanning circuit performs control to select one or more rows of the pixels 101 of the pixel array 102 to be read. That is, the readout control of the row scanning means such as the vertical scanning circuit is sequentially performed from the top to the bottom row in the pixel array 102 shown in FIG. Therefore, the first reading of one frame is performed from the reference pixel region 112. The read pixel signals (here, reset signals) of the pixels 101 are sequentially input to the reset signal level distribution acquisition circuit 119 via the column A / D conversion circuit 106 one pixel at a time.
 次いで、リセット信号レベル分布取得回路119に入力された信号(リセット信号)は、MAX演算器196により、参照画素MAXレジスタ194が保持する値とのMAX演算が行われ、その結果が参照画素MAXレジスタ194に書き込まれる。それとともに、MIN演算器195により、参照画素MINレジスタ193が保持する値とのMIN演算が行われ、その結果が参照画素MINレジスタ193に書き込まれる。 Next, the signal (reset signal) input to the reset signal level distribution acquisition circuit 119 is subjected to a MAX operation with the value held in the reference pixel MAX register 194 by the MAX calculator 196, and the result is the reference pixel MAX register. 194 is written. At the same time, the MIN calculator 195 performs a MIN calculation with the value held in the reference pixel MIN register 193 and writes the result in the reference pixel MIN register 193.
 以上のようにして、リセット信号レベル分布取得回路119は、参照画素領域112における画素101のMAX値およびMIN値を取得する。 As described above, the reset signal level distribution acquisition circuit 119 acquires the MAX value and the MIN value of the pixel 101 in the reference pixel region 112.
 言い換えると、ステップS04において、参照画素領域112の各画素101を順次処理することで、参照画素の読み出し終了時に、参照画素MAXレジスタ194と参照画素MINレジスタ193に参照画素領域112の画素101すなわち参照画素のMAX値とMIN値とが取得できる。このようにして、参照画素リセット信号レベル分布をMAX値・MIN値として取得することができた。なお、ここで取得した参照画素の最大値をRMAX(1)、最小値をRMIN(1)とする。 In other words, by sequentially processing each pixel 101 in the reference pixel region 112 in step S04, the reference pixel MAX register 194 and the reference pixel MIN register 193 store the pixel 101 in the reference pixel region 112, that is, the reference, at the end of reading the reference pixel. The MAX value and MIN value of the pixel can be acquired. In this way, the reference pixel reset signal level distribution could be acquired as the MAX value / MIN value. The maximum value of the reference pixel acquired here is RMAX (1), and the minimum value is RMIN (1).
 次に、ステップS04において取得した参照画素リセットレベル分布を示すデータと、全画素リセット信号レベル分布モデル式とを用いて、全画素の最大値と最小値を計算する(ステップS05)。 Next, the maximum value and the minimum value of all the pixels are calculated using the data indicating the reference pixel reset level distribution acquired in step S04 and the all pixel reset signal level distribution model formula (step S05).
 具体的には、ステップS03において導出した全画素リセット信号レベル分布モデル式である(式1)のXに、ステップS04において取得した参照画素の最大値RMAX(1)とRMIN(1)を入力することにより(式2)、(式3)を得る。そして、これら(式2)および(式3)により、全画素の最大値PMAX(1)と最小値PMIN(1)を計算する。 Specifically, the maximum values RMAX (1) and RMIN (1) of the reference pixels acquired in step S04 are input to X in (expression 1), which is the all-pixel reset signal level distribution model expression derived in step S03. (Formula 2) and (Formula 3) are obtained. Then, the maximum value PMAX (1) and the minimum value PMIN (1) of all the pixels are calculated by these (Expression 2) and (Expression 3).
 PMAX(1)=(PMAX(0)-PMIN(0))/(RMAX(0)-RMIN(0))×(RMAX(1)-RMIN(0))+PMIN(0)・・・(式2)
 PMIN(1)=(PMAX(0)-PMIN(0))/(RMAX(0)-RMIN(0))×(RMIN(1)-RMIN(0))+PMIN(0)・・・(式3)
PMAX (1) = (PMAX (0) −PMIN (0)) / (RMAX (0) −RMIN (0)) × (RMAX (1) −RMIN (0)) + PMIN (0) (Equation 2 )
PMIN (1) = (PMAX (0) −PMIN (0)) / (RMAX (0) −RMIN (0)) × (RMIN (1) −RMIN (0)) + PMIN (0) (Equation 3 )
 次に、固体撮像装置100の動作モードを、「A/D変換レンジ切替ステップ」に設定し、リセット信号レベルのA/D変換レンジを最適化する(ステップS06)。具体的には、リセット信号レベルのA/D変換のレンジの上限値と下限値とを設定する。 Next, the operation mode of the solid-state imaging device 100 is set to “A / D conversion range switching step”, and the A / D conversion range of the reset signal level is optimized (step S06). Specifically, an upper limit value and a lower limit value of the A / D conversion range of the reset signal level are set.
 なぜなら、A/D変換の入力側アナログ電圧レンジは、参照電位を発生するDAC回路105のレンジ設定に対応する。しかし、レンジを設定する回路構成上の制約や、リセット信号レベル比較動作に関わるタイミングからの制約があるため、必ずしも上記(式2)および(式3)そのままをA/D変換レンジの上限値と下限値に設定することはできない。そこで、例えばDAC回路105には16ステップずつの切り替えしかできないという制約がある場合、DAC回路105のリセット信号レベルのレンジ(参照画素電位ともいう)を以下の(式4)および(式5)で設定する。つまり、DAC回路105のリセット信号レベルのレンジの上限値を(式4)で設定し、その下限値を(式4)で設定する。 This is because the analog voltage range on the input side of A / D conversion corresponds to the range setting of the DAC circuit 105 that generates the reference potential. However, since there are restrictions on the circuit configuration for setting the range and restrictions from the timing related to the reset signal level comparison operation, the above (Expression 2) and (Expression 3) are not necessarily used as the upper limit value of the A / D conversion range. It cannot be set to the lower limit. Therefore, for example, when the DAC circuit 105 has a restriction that switching can be performed only in steps of 16 steps, the reset signal level range (also referred to as reference pixel potential) of the DAC circuit 105 is expressed by the following (Expression 4) and (Expression 5). Set. That is, the upper limit value of the reset signal level range of the DAC circuit 105 is set by (Expression 4), and the lower limit value is set by (Expression 4).
 MMAX(i)=[(PMAX(i)÷16)+1]×16・・・(式4)
 MMIN(i)=[(PMIN(i)÷16)]×16・・・(式5)
MMAX (i) = [(PMAX (i) ÷ 16) +1] × 16 (Expression 4)
MMIN (i) = [(PMIN (i) ÷ 16)] × 16 (Expression 5)
 ここで、[ ]はガウス記号であり、カッコ内の数字を超えない最大の整数を結果として返す関数のことである。 Here, [] is a Gaussian symbol, which is a function that returns the largest integer that does not exceed the number in parentheses.
 例えば、PMAX(i)=54、PMIN(i)=19であるとすると、(式4)および(式5)を用いて演算することにより、MMAX=64、MMIN=16が得られる。そして、この場合、2進カウンタ104のカウントの初期値をMMIN=16とし、MMAX=64までリセット信号レベルをカウントするよう設定する。 For example, assuming that PMAX (i) = 54 and PMIN (i) = 19, MMAX = 64 and MMIN = 16 are obtained by calculating using (Expression 4) and (Expression 5). In this case, the initial value of the binary counter 104 is set to MMIN = 16, and the reset signal level is set to be counted until MMAX = 64.
 それにより、ランプ発生回路108は、リセット信号レベルの電圧掃引を16mVから64mVまで行うことになる。すると、この動作と対応するUDカウンタ117は、リセット信号レベルのカウントを通常の画素信号のA/D変換時にゼロから開始するとして、その最大値は64-16=48になる。つまり、リセット信号レベルのA/D変換レンジは、128から48に縮小するので、そのA/D変換期間も縮小する。 Thereby, the ramp generation circuit 108 performs voltage sweep of the reset signal level from 16 mV to 64 mV. Then, the UD counter 117 corresponding to this operation starts counting from zero at the time of A / D conversion of the normal pixel signal, and the maximum value is 64-16 = 48. That is, since the A / D conversion range of the reset signal level is reduced from 128 to 48, the A / D conversion period is also reduced.
 以上のように、ステップS06では、リセット信号レベルのA/D変換のレンジの上限値と下限値とを設定することにより、リセット信号レベルのA/D変換レンジを最適化する。 As described above, in step S06, the reset signal level A / D conversion range is optimized by setting the upper and lower limits of the reset signal level A / D conversion range.
 次に、画素信号レベルのA/D変換レンジを最適化する(ステップS07)。具体的には、画素信号レベルのA/D変換レンジにおいて、ステップS06で削減したマイナスレンジ側の階調分をプラスレンジ側に割付ける。これは、ステップS06において行ったリセット信号レベルの変換レンジ縮小は、UDカウンタ117のデジタル値のマイナスレンジが削減できることを意味するので、マイナスレンジを削減した分だけプラスレンジを増やすことができるからである。以下、これについて、図5を用いて説明する。 Next, the A / D conversion range of the pixel signal level is optimized (step S07). Specifically, in the A / D conversion range of the pixel signal level, the gradation on the minus range side reduced in step S06 is assigned to the plus range side. This is because the conversion range reduction of the reset signal level performed in step S06 means that the minus range of the digital value of the UD counter 117 can be reduced, so that the plus range can be increased by the amount of reduction of the minus range. is there. Hereinafter, this will be described with reference to FIG.
 図5は、A/D変換レンジの調整前後における符号割付の変更を説明するための図である。ここで、図5では、10ビットの2進数表現0000000000~1111111111の全コードが、プラス側とマイナス側に二重に表記されている。実際の符号付2進数としての解釈は、どちらかの表現のみを有効とする必要がある。そのため、図5では無効部分をハッチングで示している。 FIG. 5 is a diagram for explaining a change in code assignment before and after adjustment of the A / D conversion range. Here, in FIG. 5, all codes of 10-bit binary representation 0000000000000 to 1111111111 are written doubly on the plus side and the minus side. In actual interpretation as a signed binary number, only one of the expressions needs to be valid. Therefore, in FIG. 5, the invalid portion is indicated by hatching.
 図5(a)は、デフォルト設定時(マイナスレンジが128までの場合)のカウント値の符号の割付けを示している。図5(b)は、マイナスレンジを48までとするステップS07での最適化後のカウント値の符号の割付けを示している。 Fig. 5 (a) shows the assignment of the sign of the count value at the time of default setting (when the negative range is up to 128). FIG. 5B shows the code assignment of the count value after optimization in step S07 in which the minus range is up to 48.
 このように、UDカウンタ117において、削減を行ったマイナスレンジ側での階調分をプラスレンジ側に割付けることができる。 In this way, in the UD counter 117, the reduced gradations on the minus range side can be assigned to the plus range side.
 なお、割り付けられた階調がマイナスレンジであるかプラスレンジであるかを判定する、符号判定は、後段のデジタル前処理回路113で行うので、列A/D変換回路106およびランプ発生回路の回路構成や制御について変更は不要である。例えば、図5に示す場合では、後段のデジタル前処理回路113は、UDカウンタ117の10ビットカウント値の最上位ビットをb9、最下位ビットをb0として、デフォルト設定時(マイナスレンジが128までの場合)に、b9=b8=b7=1のとき、マイナス値と判定する符号判定論理を備えていればよい。さらに、後段のデジタル前処理回路113は、レンジ最適化設定時(マイナスレンジが48までの場合)に、b9=b8=b7=b6=1 AND (b5=1 OR b4=1)のとき、マイナス値と判定する符号判定論理に切り換える機構を備えればよい。 The sign determination for determining whether the assigned gradation is in the minus range or the plus range is performed by the digital pre-processing circuit 113 in the subsequent stage, so the circuit of the column A / D conversion circuit 106 and the ramp generation circuit There is no need to change the configuration or control. For example, in the case shown in FIG. 5, the digital pre-processing circuit 113 in the subsequent stage sets the most significant bit of the 10-bit count value of the UD counter 117 to b9 and the least significant bit to b0 at the time of default setting (the minus range is up to 128). In the case of b) = b8 = b7 = 1, it is only necessary to have a sign determination logic for determining a negative value. Further, the digital pre-processing circuit 113 in the subsequent stage is negative when b9 = b8 = b7 = b6 = 1 AND (b5 = 1 OR b4 = 1) when the range optimization is set (when the negative range is up to 48). What is necessary is just to provide the mechanism switched to the code | symbol determination logic determined to be a value.
 なお、後段のデジタル前処理回路113は、上記符号判定論理や上記機構を備えるとしたが、それに限らない。上記符号判定論理や上記機構を備えるデジタル回路は、固体撮像装置100内のロジック回路内に含まれる構成としてもよいし、固体撮像装置100の出力を受けて、画像信号処理を行う画像信号プロセッサ側に含まれる構成としてもよい。ただし、固体撮像装置100内で最低限のデジタル信号処理を行うためには、その最低限のデジタル信号処理前に符号判定を行う方がよい。つまり、固体撮像装置100内に上記符号判定論理や上記機構を備える方が好ましい。 The post-stage digital preprocessing circuit 113 includes the code determination logic and the mechanism described above, but is not limited thereto. The digital circuit including the code determination logic and the mechanism may be included in the logic circuit in the solid-state imaging device 100, or the image signal processor side that receives the output of the solid-state imaging device 100 and performs image signal processing It is good also as a structure contained in. However, in order to perform the minimum digital signal processing in the solid-state imaging device 100, it is better to perform the code determination before the minimum digital signal processing. That is, it is preferable that the solid-state imaging device 100 includes the code determination logic and the mechanism.
 以上のようにして、ステップS07では、画素信号レベルのA/D変換レンジを最適化する。 As described above, in step S07, the A / D conversion range of the pixel signal level is optimized.
 なお、ステップS07における画素信号レベルのA/D変換時の参照信号生成において、画素信号レベルのA/D変換レンジの下限値がゼロでない場合、ステップS06において、リセット信号レベルのA/D変換レンジの下限値がゼロでない(MMIN=16)場合で説明したように処理するのが好ましい。 In the reference signal generation at the time of A / D conversion of the pixel signal level in step S07, if the lower limit value of the A / D conversion range of the pixel signal level is not zero, the A / D conversion range of the reset signal level is determined in step S06. It is preferable to perform the processing as described in the case where the lower limit value is not zero (MMIN = 16).
 次に、固体撮像装置100は、参照画素を除く全画素について、通常の読み出し動作を開始する(ステップS08)。 Next, the solid-state imaging device 100 starts a normal reading operation for all pixels except the reference pixel (step S08).
 具体的には、ステップS01~ステップS07により、リセット信号レベル及び画素信号レベルのA/D変換レンジの最適化処理を実行した後、参照画素を除く全画素について、通常の読み出し動作を開始する。ここで、「通常の読み出し動作」とは、通常の撮像動作により取得した画像データを構成する画素信号の読み出し動作を意味する。 Specifically, after the optimization process of the A / D conversion range of the reset signal level and the pixel signal level is executed in steps S01 to S07, the normal reading operation is started for all the pixels except the reference pixel. Here, the “normal readout operation” means a readout operation of the pixel signals constituting the image data acquired by the normal imaging operation.
 以上のようにして、固体撮像装置100は、A/D変換レンジの最適化を行った後に、参照画素を除く全画素について、通常の読み出し動作を行う。 As described above, the solid-state imaging device 100 performs the normal reading operation for all the pixels except the reference pixel after optimizing the A / D conversion range.
 言い換えると、リセット信号レベル分布取得回路119は、A/D変換レンジ(カウント範囲)に基づいて、列A/D変換回路106によりA/D変換された複数の画素101のリセット信号レベルと複数の画素101の一部画素である参照画素のリセット信号レベルとを取得することにより、列A/D変換回路106によりA/D変換された複数の画素のリセット信号レベルの分布を示す第1のリセット信号レベル分布情報を取得する。そして、リセット信号レベル分布取得回路119は、A/D変換レンジ(カウント範囲)に基づいて、列A/D変換回路106によりA/D変換された参照画素のみのリセット信号レベルをさらに取得することにより、列A/D変換回路106によりA/D変換された参照画素のみのリセット信号レベルの分布を示す第2のリセット信号レベル分布情報を取得する。制御部116は、第1のリセット信号レベル分布情報と第2のリセット信号レベル分布情報とから、A/D変換レンジ(カウント範囲)を変更する。固体撮像装置100は、変更されたA/D変換レンジ(カウント範囲)に基づいて、すなわち、最適化されたA/D変換レンジに基づいて、列A/D変換回路106に複数の画素101のリセット信号レベルと画素信号レベルとをA/D変換させる通常の読み出し動作を行う。 In other words, the reset signal level distribution acquisition circuit 119 is based on the A / D conversion range (count range) and the reset signal levels of the plurality of pixels 101 A / D converted by the column A / D conversion circuit 106 and the plurality of reset signal levels. A first reset indicating a distribution of reset signal levels of a plurality of pixels A / D converted by the column A / D conversion circuit 106 by acquiring a reset signal level of a reference pixel that is a partial pixel of the pixel 101 Get signal level distribution information. The reset signal level distribution acquisition circuit 119 further acquires the reset signal level of only the reference pixels A / D converted by the column A / D conversion circuit 106 based on the A / D conversion range (count range). Thus, the second reset signal level distribution information indicating the distribution of the reset signal level of only the reference pixels A / D converted by the column A / D conversion circuit 106 is acquired. The control unit 116 changes the A / D conversion range (count range) from the first reset signal level distribution information and the second reset signal level distribution information. The solid-state imaging device 100 includes a plurality of pixels 101 in the column A / D conversion circuit 106 based on the changed A / D conversion range (count range), that is, based on the optimized A / D conversion range. A normal readout operation for A / D conversion between the reset signal level and the pixel signal level is performed.
 なお、A/D変換レンジの最適化を行う際の読み出し動作は、図2に示すように、フレームインデクスiをインクリメントして、次フレーム以降についても、ステップS04~ステップS08の動作を繰り返し行う。その様子を示したのが図6である。図6は、リセット信号レベル分布取得動作を含む通常読み出し動作の様子を示す図である。それにより、温度や電圧の変化による最適レンジの変化にも追従することができる。 As shown in FIG. 2, the reading operation when optimizing the A / D conversion range is performed by incrementing the frame index i and repeating the operations from step S04 to step S08 for the subsequent frames. This is shown in FIG. FIG. 6 is a diagram illustrating a state of a normal read operation including a reset signal level distribution acquisition operation. Thereby, it is possible to follow changes in the optimum range due to changes in temperature and voltage.
 ただし、固体撮像装置100において、動画取得モードから静止画取得モードに遷移したり、同じ動画モードでも画角を変更したりするなど、撮像モードを変更する時には、A/D変換レンジの最適化を最初(ステップS01)から、すなわち全画素リセット信号レベル分布取得モードから動作をするのが望ましい。 However, in the solid-state imaging device 100, the A / D conversion range is optimized when the imaging mode is changed, such as when the moving image acquisition mode is changed to the still image acquisition mode or the angle of view is changed even in the same moving image mode. It is desirable to operate from the beginning (step S01), that is, from the all-pixel reset signal level distribution acquisition mode.
 また、リセット信号レベル取得時に露光制御は行わないので露光時間は関係しない。しかし、1秒程度以上の露光時間を伴うような低照度撮影モードでは、ゲインも大きく設定するのが通常であり、フレームレートの制約もない。このことから、A/D変換レンジの最適化を最初(ステップS01)から動作をするのが望ましい。 Also, since exposure control is not performed when the reset signal level is acquired, the exposure time is not relevant. However, in a low-illuminance shooting mode with an exposure time of about 1 second or more, it is normal to set a large gain and there is no restriction on the frame rate. For this reason, it is desirable to operate the A / D conversion range from the beginning (step S01).
 ここで、露光制御とは、被写体のさまざまな照度条件に対して適切な露出を得るために行う制御である。この露光制御は、露光時間を増減して画素信号そのものを増減する方法と、後段の回路の増幅度を変える方法があり、通常この2つの方法を組み合わせることで実現している。なお、後段の回路の増幅度を変える増幅手段の一例は、固体装置100が列アンプを備える場合であり、もう一つの例は、本実施の形態のように、固体撮像装置100が列A/D変換回路106を備える場合である。固体撮像装置100が列A/D変換回路106を備える場合には、ランプ参照電位の傾きを変えることで増幅度を変えることができる。 Here, exposure control is control performed to obtain appropriate exposure for various illuminance conditions of the subject. This exposure control includes a method of increasing / decreasing the exposure time to increase / decrease the pixel signal itself, and a method of changing the amplification degree of the subsequent circuit, and is usually realized by combining these two methods. An example of the amplifying means for changing the amplification degree of the circuit in the subsequent stage is a case where the solid-state device 100 includes a column amplifier, and in another example, the solid-state imaging device 100 includes the column A / This is a case where the D conversion circuit 106 is provided. When the solid-state imaging device 100 includes the column A / D conversion circuit 106, the amplification degree can be changed by changing the slope of the lamp reference potential.
 また、ランプ参照電位の傾きを含めて、列A/D変換回路106の前段にある増幅回路のゲインは、そのままリセット信号レベルのバラツキを増幅するものである。そのため、ステップS02におけるゲインとステップS04におけるゲインを合わせる方が望ましい。 In addition, the gain of the amplifier circuit in the previous stage of the column A / D conversion circuit 106 including the slope of the lamp reference potential directly amplifies the variation in the reset signal level. Therefore, it is desirable to match the gain in step S02 with the gain in step S04.
 また、上記線形近似によるレンジ設定の誤差に対するマージンとして、例えば上限値と下限値をそれぞれ16LSBだけ広げるとしてもよい。その場合、ステップS06においてリセット信号レベルのA/D変換レンジを最適化する際に用いる(式4)および(式5)を、以下に示す(式8)および(式9)にすればよい。 Further, as a margin for the range setting error by the above linear approximation, for example, the upper limit value and the lower limit value may be increased by 16 LSBs, respectively. In that case, (Expression 4) and (Expression 5) used when optimizing the A / D conversion range of the reset signal level in step S06 may be changed to (Expression 8) and (Expression 9) shown below.
 MMAX(i)=[(PMAX(i)÷16)+2]×16・・・(式8)
 MMIN(i)=[(PMIN(i)÷16)-1]×16・・・(式9)
MMAX (i) = [(PMAX (i) ÷ 16) +2] × 16 (Equation 8)
MMIN (i) = [(PMIN (i) ÷ 16) −1] × 16 (Equation 9)
 次に、A/D変換レンジ最適化の効果について、図7を用いて以下説明する。 Next, the effect of A / D conversion range optimization will be described below with reference to FIG.
 図7及び図8は、A/D変換レンジ最適化の効果を説明するための図である。図7(a)は、A/D変換レンジ最適化を行っていない場合のタイミングダイヤグラムを示している。図7(b)、図8(c)、図8(d)は、A/D変換レンジ最適化後のタイミングダイヤグラムの例である。なお、図7(a)、図7(b)、図8(c)および図8(d)では、それぞれ上下段のグラフとも横軸が時間であるのに対して、上段のグラフの縦軸はUDカウンタ117のカウント値を示しており、下段のグラフの縦軸はランプ参照電位のアナログ電位を示している。また、図7(b)、図8(c)および図8(d)において、最適化を行っていない場合の波形(図7(a)の波形)を、参考のため点線で示している。 7 and 8 are diagrams for explaining the effect of A / D conversion range optimization. FIG. 7A shows a timing diagram when the A / D conversion range optimization is not performed. FIGS. 7B, 8C, and 8D are examples of timing diagrams after A / D conversion range optimization. In FIGS. 7A, 7B, 8C, and 8D, the horizontal axis is time in the upper and lower graphs, whereas the vertical axis in the upper graph. Indicates the count value of the UD counter 117, and the vertical axis of the lower graph indicates the analog potential of the lamp reference potential. Further, in FIGS. 7B, 8C, and 8D, the waveform when the optimization is not performed (the waveform in FIG. 7A) is indicated by a dotted line for reference.
 図7(b)には、図2のステップS01~ステップS06においてリセット信号レベルのA/D変換レンジを16mV~64mVとし、対応する列カウント数の最大値を48とした場合のタイミングダイヤグラムを示している。図7(b)に示すように、ステップS01~ステップS06により、リセット信号レベルのA/D変換レンジをデフォルトの128階調から48階調に減らすことができるのがわかる。それにより、「第2のDレンジ縮小」を抑制することができ、さらに、有効出力Dレンジ(図中、Reff)を767階調から847階調まで拡大できる。また、リセット信号レベルのA/D変換レンジ縮小に伴い、フレームレート高速化の障害であるA/D変換期間の短縮も実現できる。これは、リセット信号レベルのレンジRresが小さくなることにより、リセットレベル比較期間tsが短くなり、画素信号レベルのA/D変換を前倒しで行えるからである。 FIG. 7B shows a timing diagram when the A / D conversion range of the reset signal level is 16 mV to 64 mV and the maximum value of the corresponding column count is 48 in steps S01 to S06 in FIG. ing. As shown in FIG. 7B, it can be seen that the A / D conversion range of the reset signal level can be reduced from the default 128 gradations to 48 gradations by steps S01 to S06. Thereby, the “second D range reduction” can be suppressed, and the effective output D range (Reff in the figure) can be expanded from 767 gradations to 847 gradations. Further, along with the reduction of the A / D conversion range of the reset signal level, the A / D conversion period, which is an obstacle to increasing the frame rate, can be realized. This is because the reset signal comparison range ts is shortened by reducing the reset signal level range Rres, and the A / D conversion of the pixel signal level can be performed ahead of schedule.
 このように、ステップS01~ステップS06により、リセット信号レベルを最適化することにより、有効出力Dレンジを拡大することができるので、画素信号レベルのビット精度を高くすることができる。また、A/D変換期間の短縮もでき、より高速に駆動することができるという効果を奏する。 As described above, since the effective output D range can be expanded by optimizing the reset signal level in steps S01 to S06, the bit accuracy of the pixel signal level can be increased. In addition, the A / D conversion period can be shortened, and there is an effect that it can be driven at a higher speed.
 図8(c)には、ステップS07におけるデジタル値の符号割付け変更を行うことで画素信号レベルA/D変換レンジの拡大を行った場合のタイミングダイヤグラムを示している。図8(c)に示すように、ステップS07において、リセット信号レベル変換レンジ縮小に対応して符号割付けの変更まで行ったことにより、「第1のDレンジ縮小」と「第2のDレンジ縮小」とを抑制することができ、有効出力Dレンジを767階調から927階調まで拡大できる。ただし、画素信号レベルのA/D変換レンジが拡大した分、画素信号レベルのA/D変換を行う時間(信号レベル比較期間ts)が長くなってしまうので、リセット信号レベルのA/D変換レンジ縮小と時間的にほぼ相殺する。そのため、画素信号レベル変換開始を前倒ししても、レンジ最適化前後で全体のA/D変換期間は変わらない。 FIG. 8C shows a timing diagram when the pixel signal level A / D conversion range is expanded by changing the digital value code assignment in step S07. As shown in FIG. 8 (c), in step S07, by changing the code assignment corresponding to the reset signal level conversion range reduction, the “first D range reduction” and the “second D range reduction” are performed. And the effective output D range can be expanded from 767 gradations to 927 gradations. However, since the A / D conversion range of the pixel signal level is expanded, the time (signal level comparison period ts) for performing the A / D conversion of the pixel signal level becomes longer, so the A / D conversion range of the reset signal level Almost offsets the reduction in time. Therefore, even if pixel signal level conversion start is advanced, the entire A / D conversion period does not change before and after range optimization.
 このように、ステップS01~ステップS07により、リセット信号レベルを最適化することにより、有効出力Dレンジをより拡大することができるので、画素信号レベルのビット精度をより高くすることができる。 Thus, by optimizing the reset signal level in steps S01 to S07, the effective output D range can be further expanded, so that the bit accuracy of the pixel signal level can be further increased.
 なお、図8(d)は、上記のステップS01~ステップS06を行うが、ステップS07における画素信号レベルのレンジ最適化を行う際に、有効出力Dレンジをデフォルトより拡大するのではなく、デフォルトと同じに保つように、画素信号レベルのレンジをむしろ縮小するように変更を加えた場合のタイミングダイヤグラムを示している。図8(d)に示すように、リセット信号レベルおよび画素信号レベルのA/D変換の高速化を優先したA/D変換レンジの最適化を行うことにより、信号レベル比較期間tsの長さは、図7(b)の場合に比べて短くなっている。つまり、A/D変換期間のさらなる短縮効果を奏する。このようにして、画素信号レベル変換期間についても、リセット信号レベル変換の期間短縮と同じ期間短縮が可能であり、フレームレート高速化に有効であることがわかる。 In FIG. 8D, the above steps S01 to S06 are performed, but when the range optimization of the pixel signal level in step S07 is performed, the effective output D range is not expanded from the default, but the default In order to keep the same, a timing diagram is shown when the pixel signal level range is changed so as to be rather reduced. As shown in FIG. 8D, the length of the signal level comparison period ts is obtained by optimizing the A / D conversion range in which priority is given to speeding up the A / D conversion of the reset signal level and the pixel signal level. This is shorter than the case of FIG. That is, there is an effect of further shortening the A / D conversion period. In this way, it can be seen that the pixel signal level conversion period can also be shortened by the same period as the reset signal level conversion period, which is effective in increasing the frame rate.
 以上、実施の形態1によれば、リセット信号レベルの分布を動作時に決定し、リセット信号レベル及び画素信号レベルに割り当てるA/D変換レンジを最適化できるので、列A/D変換回路106のハードウェア構成を変えることなく、画素信号レベルのビット精度が高く、かつ、高速な固体撮像装置100を実現することができる。 As described above, according to the first embodiment, the distribution of the reset signal level is determined during operation, and the A / D conversion range assigned to the reset signal level and the pixel signal level can be optimized. The solid-state imaging device 100 having high pixel signal level bit speed and high speed can be realized without changing the hardware configuration.
 また、固体撮像装置100は、各行の画素101毎に、UDカウンタ117のカウント方向を変更することにより、列A/D変換回路106に、画素信号レベルとリセット信号レベルとの差分値をA/D変換させて(つまり、デジタルCDSさせて)出力させる画素信号出力モードを有している。また、固体撮像装置100は、各行の画素毎に、画素リセット信号レベルのみを前記列A/D変換部にA/D変換させて出力させる画素リセット出力モードを有している。 In addition, the solid-state imaging device 100 changes the count direction of the UD counter 117 for each pixel 101 in each row, so that the column A / D conversion circuit 106 receives the difference value between the pixel signal level and the reset signal level as A / It has a pixel signal output mode in which it is output after being D-converted (that is, digital CDS). In addition, the solid-state imaging device 100 has a pixel reset output mode in which only the pixel reset signal level is A / D converted by the column A / D conversion unit and output for each pixel in each row.
 (変形例1)
 次に、実施の形態1の固体撮像装置の変形例として、参照画素のリセット信号レベル分布取得を行う際に、平均値と標準偏差とを用いる場合について説明する。
(Modification 1)
Next, as a modification of the solid-state imaging device according to the first embodiment, a case where an average value and a standard deviation are used when acquiring a reset signal level distribution of a reference pixel will be described.
 図9は、本変形例における固体撮像装置100のA/D変換レンジの最適化動作を説明するためのフローチャートである。なお、図2と同様の要素には同一の符号を付しており、詳細な説明は省略する。 FIG. 9 is a flowchart for explaining the operation of optimizing the A / D conversion range of the solid-state imaging device 100 according to this modification. Elements similar to those in FIG. 2 are denoted by the same reference numerals, and detailed description thereof is omitted.
 まず、ステップS01は、図2のフローと同様である。 First, Step S01 is the same as the flow of FIG.
 次に、参照画素と全画素のリセットレベル分布を示す初期状態のデータRAVG(0)とRSTD(0)、およびPAVG(0)とPSTD(0)を取得する(ステップS12)。 Next, initial state data RAVG (0) and RSTD (0), and PAVG (0) and PSTD (0) indicating the reset level distribution of the reference pixels and all the pixels are acquired (step S12).
 次に、ステップS12で取得した初期状態のデータに基づいて、全画素リセット分布モデル式を設定する(ステップS13)。 Next, an all-pixel reset distribution model formula is set based on the initial state data acquired in step S12 (step S13).
 具体的には、ステップS01とステップS12において取得した初期状態のデータに基づいて、例えば、図10に示すように参照画素のリセット信号レベルと全画素のリセット信号レベルの間に線形関係を近似する。それにより、参照画素のリセット信号レベルの分布から全画素のリセット信号レベルの分布を計算する以下の(式10)を導出できる。なお、図10は、本変形例におけるリセット信号レベル分布計算モデルを示すグラフである。 Specifically, based on the initial state data acquired in step S01 and step S12, for example, as shown in FIG. 10, a linear relationship is approximated between the reset signal level of the reference pixel and the reset signal level of all pixels. . Accordingly, the following (Equation 10) for calculating the reset signal level distribution of all the pixels can be derived from the reset signal level distribution of the reference pixels. FIG. 10 is a graph showing a reset signal level distribution calculation model in this modification.
 Y=(PSTD(0))/(RSTD(0))×(X-RAVG(0))+PAVG(0)・・・(式10) Y = (PSTD (0)) / (RSTD (0)) × (X-RAVG (0)) + PAVG (0) (Equation 10)
 ここで、RAVG(0)は、参照画素領域112の画素101の初期状態の平均値であり、RSTD(0)は、参照画素領域112の画素101の初期状態の標準偏差である。同様に、PAVG(0)は、画素アレー102における全画素の初期状態の平均値であり、PSTD(0)は、画素アレー102における全画素の初期状態の標準偏差である。 Here, RAVG (0) is an average value of the initial state of the pixel 101 in the reference pixel region 112, and RSTD (0) is a standard deviation of the initial state of the pixel 101 in the reference pixel region 112. Similarly, PAVG (0) is an average value of the initial state of all the pixels in the pixel array 102, and PSTD (0) is a standard deviation of the initial state of all the pixels in the pixel array 102.
 次に、固体撮像装置100の動作モードを「参照画素リセット信号レベル分布取得モード」に設定する(ステップS14)。そして、この動作モードすなわち参照画素リセット信号レベル分布取得モードでは、ステップS01と同様に、A/Dレンジをデフォルト値に設定する。また、リセット信号レベル分布取得回路119は、参照画素領域112における画素101の平均値RAVG(i)および標準偏差RSTD(i)を取得する。 Next, the operation mode of the solid-state imaging device 100 is set to “reference pixel reset signal level distribution acquisition mode” (step S14). In this operation mode, that is, the reference pixel reset signal level distribution acquisition mode, the A / D range is set to a default value as in step S01. Further, the reset signal level distribution acquisition circuit 119 acquires the average value RAVG (i) and standard deviation RSTD (i) of the pixels 101 in the reference pixel region 112.
 次に、ステップS14において取得した参照画素リセットレベル分布を示すデータと、全画素リセット信号レベル分布モデル式とを用いて、全画素の平均と標準偏差を計算する(ステップS15)。 Next, the average and standard deviation of all pixels are calculated using the data indicating the reference pixel reset level distribution acquired in step S14 and the all pixel reset signal level distribution model formula (step S15).
 具体的には、ステップS13で導出した全画素リセット信号レベル分布モデル式である(式10)のXに、ステップS14で取得した参照画素の平均RAVG(1)と標準偏差RSTD(1)を入力することで、以下の(式11)、(式12)を得る。そして、これら(式11)および(式12)により、全画素の平均PAVG(i)と標準偏差PSTD(i)を計算する。 Specifically, the average RAVG (1) and standard deviation RSTD (1) of the reference pixels acquired in step S14 are input to X in (Equation 10), which is the all-pixel reset signal level distribution model expression derived in step S13. By doing this, the following (formula 11) and (formula 12) are obtained. Then, the average PAVG (i) and the standard deviation PSTD (i) of all the pixels are calculated from these (Equation 11) and (Equation 12).
 PAVG(i)=(PSTD(0)/(RSTD(0))×(RAVG(i)-RAVG(0))+PAVG(0)・・・(式11)
 PSTD(i)=(PSTD(0)/(RSTD(0))× RSTD(i)・・・(式12)
PAVG (i) = (PSTD (0) / (RSTD (0)) × (RAVG (i) −RAVG (0)) + PAVG (0) (Equation 11)
PSTD (i) = (PSTD (0) / (RSTD (0)) × RSTD (i) (Equation 12)
 以上のようにして、本変形例における固体撮像装置100は、リセットレベル分布取得ステップを行う。 As described above, the solid-state imaging device 100 according to the present modification performs the reset level distribution acquisition step.
 なお、A/D変換レンジ切替ステップにおいて、A/D変換レンジを決定するには、リセット信号レベルの分布の最大値と最小値とが必要となる。その場合には、例えば平均値±3σとすることで、以下の(式13)および(式14)を用いて計算を行えばよい。この計算より、PMAX(1)、PMIN(1)が計算できる。 In the A / D conversion range switching step, the maximum value and the minimum value of the distribution of the reset signal level are required to determine the A / D conversion range. In that case, for example, the average value ± 3σ may be used, and calculation may be performed using the following (Expression 13) and (Expression 14). From this calculation, PMAX (1) and PMIN (1) can be calculated.
 PMAX(i)= PAVG(i)+3×PSTD(i)・・・(式13)
 PMIN(i)= PAVG(i)-3×PSTD(i)・・・(式14)
PMAX (i) = PAVG (i) + 3 × PSTD (i) (Equation 13)
PMIN (i) = PAVG (i) -3 × PSTD (i) (Equation 14)
 (実施の形態2)
 実施の形態2では、固体撮像装置を含む撮像システムの一例としてカメラシステムについて説明する。
(Embodiment 2)
In the second embodiment, a camera system will be described as an example of an imaging system including a solid-state imaging device.
 図11は、本発明の実施の形態2に係るカメラシステムの構成を示すブロック図である。なお、図1と同様の要素には同一の符号を付しており、詳細な説明は省略する。 FIG. 11 is a block diagram showing the configuration of the camera system according to Embodiment 2 of the present invention. Elements similar to those in FIG. 1 are denoted by the same reference numerals, and detailed description thereof is omitted.
 図11に示すカメラシステムは、光学系200と、カメラ信号処理LSI300と固体撮像装置400とを備える。 The camera system shown in FIG. 11 includes an optical system 200, a camera signal processing LSI 300, and a solid-state imaging device 400.
 実施の形態1との違いは、リセット信号レベル分布の取得を、固体撮像装置400の外部にあるカメラ信号処理LSI300で行い、リセット信号のレンジ設定をレジスタ書込みで行う点である。具体的には、固体撮像装置400は、実施の形態1に係る固体撮像装置100と異なり、リセット信号レベル分布取得回路119を備えておらず、カメラ信号処理LSI300がリセット信号レベル分布取得回路119を備えている。 The difference from the first embodiment is that the reset signal level distribution is acquired by the camera signal processing LSI 300 outside the solid-state imaging device 400, and the reset signal range is set by register writing. Specifically, unlike the solid-state imaging device 100 according to the first embodiment, the solid-state imaging device 400 does not include the reset signal level distribution acquisition circuit 119, and the camera signal processing LSI 300 includes the reset signal level distribution acquisition circuit 119. I have.
 カメラ信号処理LSI300は、画像信号処理部301とリセット信号レベル分布取得回路と、固体撮像装置制御部303とを備える。 The camera signal processing LSI 300 includes an image signal processing unit 301, a reset signal level distribution acquisition circuit, and a solid-state imaging device control unit 303.
 画像信号処理部301は、固体撮像装置400からのデジタル画像信号を読み込む回路ブロックとして、色補間やガンマ補正などカメラ用の画像信号処理を行う。 The image signal processing unit 301 performs image signal processing for a camera such as color interpolation and gamma correction as a circuit block that reads a digital image signal from the solid-state imaging device 400.
 リセット信号レベル分布取得回路119は、実施の形態1で説明したように、リセット信号レベル分布を取得するためものである。 The reset signal level distribution acquisition circuit 119 is for acquiring the reset signal level distribution as described in the first embodiment.
 固体撮像装置制御部303は、画像信号処理部301で得られた画像情報を分析して、固体撮像装置400の露光時間やゲインを調整する自動露光制御や、ユーザーインタフェースを介して入力される撮像モードの変更に関わるパラメータを、3線シリアルやI2CなどのI/Fを介して固体撮像装置400のレジスタに書き込む。このとき、固体撮像装置制御部303は、合わせて、リセット信号レベル分布取得回路119で取得したリセット信号レベルの分布に関わる指標(例えば最大値や最小値など)も、書き込む。 The solid-state imaging device control unit 303 analyzes the image information obtained by the image signal processing unit 301 and performs automatic exposure control for adjusting the exposure time and gain of the solid-state imaging device 400, and imaging input via a user interface. Parameters related to the mode change are written to the register of the solid-state imaging device 400 via an I / F such as a 3-wire serial or I2C. At this time, the solid-state imaging device control unit 303 also writes an index (for example, maximum value or minimum value) related to the distribution of the reset signal level acquired by the reset signal level distribution acquisition circuit 119.
 以上のように実施の形態2におけるカメラシステムは構成されている。なお、A/D変換レンジの最適化動作については、実施の形態1と同様のため、説明を省略する。 As described above, the camera system according to the second embodiment is configured. Note that the A / D conversion range optimization operation is the same as that of the first embodiment, and thus the description thereof is omitted.
 以上、本発明によれば、列A/D変換回路のハードウェア構成を変えることなく、画素信号レベルのビット精度が高く、かつ、高速な固体撮像装置および撮像システムを実現することができる。 As described above, according to the present invention, it is possible to realize a high-speed solid-state imaging device and imaging system with high pixel signal level bit accuracy without changing the hardware configuration of the column A / D conversion circuit.
 以上、本発明の固体撮像装置および撮像システムについて、実施の形態に基づいて説明したが、本発明は、この実施の形態に限定されるものではない。本発明の趣旨を逸脱しない限り、当業者が思いつく各種変形を本実施の形態に施したものや、異なる実施の形態における構成要素を組み合わせて構築される形態も、本発明の範囲内に含まれる。 As mentioned above, although the solid-state imaging device and imaging system of this invention were demonstrated based on embodiment, this invention is not limited to this embodiment. Unless it deviates from the meaning of this invention, the form which carried out the various deformation | transformation which those skilled in the art can think to this embodiment, and the structure constructed | assembled combining the component in different embodiment is also contained in the scope of the present invention. .
 なお、例えば、以下のような場合も本発明の範囲内に含まれる。 For example, the following cases are also included in the scope of the present invention.
 例えば、参照画素のリセット信号レベル分布を取得した同一フレームにおける通常画素読み出しのA/D変換レンジを変更しようとする際に、通常の3線シリアルや、I2Cなどのレジスタ書込み手段では間に合わない場合がある。その場合には、次フレームに反映するように構成すればよい。 For example, when trying to change the A / D conversion range for normal pixel readout in the same frame where the reset signal level distribution of the reference pixel is acquired, there is a case where it is not in time for a normal 3-line serial or register writing means such as I2C. is there. In that case, what is necessary is just to comprise so that it may reflect in the following flame | frame.
 また、参照画素の分布情報の取得も、その分布情報に基づくランプ発生回路108のレンジ変更も、必ずしも毎フレーム行う必要はない。 Also, it is not always necessary to acquire the distribution information of the reference pixels and change the range of the ramp generation circuit 108 based on the distribution information every frame.
 また、特に頻度を上げてレンジ変更を行う場合に、現在のパラメータと計算で得られたパラメータの差を100%として、1回の設定で100%のパラメータ変更を行うと、画像の明暗点滅などの不具合に繋がる可能性があるので、1回の設定では30%の変更に留めるなど、フィードバック制御特有のシーケンス上の工夫が望ましい。 In particular, when changing the range at a high frequency, if the difference between the current parameter and the parameter obtained by the calculation is 100% and the parameter is changed by 100% in one setting, the image blinks brightly or darkly. Therefore, it is desirable to devise a sequence specific to the feedback control, such as a change of 30% in one setting.
 また、ここでは、全画素リセット信号レベルの取得時に全画素を1度だけ読み出すとしたが、1フレームではなく、複数フレーム分読み出すこととして、リセット信号レベル初期値の精度を上げてやってもよい。これによって、計算モデルの精度をさらに上げることができる。 In addition, here, all the pixels are read only once when the all-pixel reset signal level is acquired. However, the accuracy of the reset signal level initial value may be increased by reading a plurality of frames instead of one frame. . Thereby, the accuracy of the calculation model can be further increased.
 また、例えば、以下のようなFD画素混合や垂直線画素混合への対応を施してもよい。 Further, for example, the following FD pixel mixing and vertical line pixel mixing may be applied.
 すなわち、本発明の固体撮像装置および撮像システムが列アンプを備える場合など、画素ではなく、列回路の読出し回路系がオートゼロ動作により信号のオフセットレベルを決める場合には、画素の全行を読むことでリセット信号レベル分布を取得する必要は必ずしもない。同一行の画素を繰り返し読み出すことでリセット信号レベル分布のサンプル数を増やし、統計精度を上げることができる。このとき、リセット信号レベル分布取得のための駆動では画素信号レベルの読み出しを行う必要がないので、通常は必要となる露光時間の確保が不要であることも、この方法で統計精度を上げることに寄与することになる。 In other words, when the solid-state imaging device and imaging system of the present invention includes a column amplifier, when the readout circuit system of the column circuit determines the signal offset level by the auto-zero operation instead of the pixel, all rows of the pixel are read. Thus, it is not always necessary to acquire the reset signal level distribution. By repeatedly reading out pixels in the same row, the number of samples of the reset signal level distribution can be increased and the statistical accuracy can be improved. At this time, since it is not necessary to read out the pixel signal level in the drive for acquiring the reset signal level distribution, it is not necessary to ensure the exposure time that is normally required. Will contribute.
 なお、本発明の固体撮像装置および撮像システムが列アンプを備える場合、列アンプのオートゼロ動作で決まるリセットレベルの出力は画素信号レベルに依存しない。また、列アンプの増幅度を変えても、リセット信号レベルの出力はあくまで出力のゼロ点なので、そのバラツキに影響せず、リセット信号レベル分布は広がらない。すなわち、リセット信号レベルレンジを変える必要はない。 When the solid-state imaging device and the imaging system of the present invention include a column amplifier, the reset level output determined by the auto-zero operation of the column amplifier does not depend on the pixel signal level. Even if the amplification factor of the column amplifier is changed, the output of the reset signal level is only the zero point of the output, so that the variation is not affected and the distribution of the reset signal level does not spread. That is, there is no need to change the reset signal level range.
 一方、本発明の固体撮像装置および撮像システムが列A/D変換回路106を備える場合、ランプ参照電位の傾きを変えて列A/D変換回路106での増幅度を変えると、リセット信号レベルレンジも変える必要がある。これは、例えば傾きを1/2にして増幅度を2倍にすると、リセットバラツキの電圧分布そのものは変わらないが、変換されるデジタル値の分布範囲は2倍になるからである。 On the other hand, when the solid-state imaging device and the imaging system of the present invention include the column A / D conversion circuit 106, the reset signal level range is changed by changing the slope of the lamp reference potential to change the amplification degree in the column A / D conversion circuit 106. Also need to be changed. This is because, for example, if the slope is halved and the amplification degree is doubled, the voltage distribution itself of the reset variation does not change, but the distribution range of the converted digital value is doubled.
 したがって、本発明の固体撮像装置および撮像システムでは、列アンプを備えるか否かによらず、ランプ参照電位の傾きで増幅度を変える場合はリセット信号レベルレンジも変える必要がある。 Therefore, in the solid-state imaging device and imaging system of the present invention, it is necessary to change the reset signal level range when the amplification degree is changed by the gradient of the lamp reference potential regardless of whether or not the column amplifier is provided.
 また、リセット信号レベル分布取得に用いる参照画素としては、通常読み出し画素の周辺部に位置する画素であれば良く、1フレームの読出しにおいて、通常画素の読出しと参照画素の読出しがそれぞれ連続である必要はなく、混在しても良い。 Further, the reference pixel used for acquiring the reset signal level distribution may be a pixel located in the peripheral portion of the normal readout pixel, and the readout of the normal pixel and the readout of the reference pixel must be continuous in readout of one frame. No, you may mix.
 また、ランプ発生回路108として、2進カウンタ104とD/A変換回路(DAC回路105)から構成された事例を示したが、2進カウンタ104は必ずしも備える必要はなく、ランプ信号をクロック同期で制御する必要も必ずしもない。例えば、固定容量に定電流で電荷を供給することで、三角波状の電位を生成するようにしてもよい。この場合、直接電位を生成するノードに直列に容量を挿入し、ランプ供給先回路との間をDC的に切り離すことで、従来と同様の初期電位設定手法を使うことも可能である。 In addition, an example in which the ramp generation circuit 108 includes a binary counter 104 and a D / A conversion circuit (DAC circuit 105) is shown, but the binary counter 104 is not necessarily provided, and the ramp signal is synchronized with the clock. It is not always necessary to control. For example, a triangular wave potential may be generated by supplying electric charges to the fixed capacitor with a constant current. In this case, it is also possible to use an initial potential setting method similar to the conventional one by inserting a capacitor in series with a node that directly generates a potential and disconnecting the lamp supply destination circuit in a DC manner.
 なお、簡単化のため、列A/D変換回路106のUDカウンタ117と出力信号バス126とが直結しているように説明したが、それに限らない。UDカウンタ117と出力信号バス126との間に、列デジタルメモリを備える構成は普通であるため、構わない。なぜならその有無によって本発明の有効性が損なわれることはないからである。 For simplicity, the UD counter 117 of the column A / D conversion circuit 106 and the output signal bus 126 are described as being directly connected, but the present invention is not limited to this. Since a configuration including a column digital memory between the UD counter 117 and the output signal bus 126 is normal, it does not matter. This is because the effectiveness of the present invention is not impaired by the presence or absence.
 また、上記説明では、最大値と最小値とをのみを分布の指標とする事例を示したが、さらに平均値や標準偏差をモニターするようにして、分布の参考指標とすることで、正規分布に大きな変動がないことのモニターをおこなってもよい。 In the above description, an example has been shown in which only the maximum value and the minimum value are used as distribution indexes. However, the normal distribution can be obtained by monitoring the average value and standard deviation and using the distribution as a reference index. It may be monitored that there is no significant fluctuation.
 また、参照画素領域112が全画素領域(画素アレー102)の上部のみに存在する事例にて説明を行ったが、上部と下部の両方に配置するように構成してもよい。これにより、画像の読み出し方向(垂直走査方向)を逆順に切り換えて走査する場合で、特に走査回路をシフトレジスタで構成する場合にも、上部の代わりに下部の参照画素領域を使用することで、本実施例で説明した発明の効果を得ることができる。ただし、垂直走査方向を逆順で使用する場合でも、デコーダタイプの走査回路を使用する場合、必ずしも上部と下部の両方に参照画素領域を配置する必要はない。 Further, the case where the reference pixel area 112 exists only in the upper part of the entire pixel area (pixel array 102) has been described, but the reference pixel area 112 may be arranged in both the upper part and the lower part. Thereby, in the case of scanning by switching the image reading direction (vertical scanning direction) in the reverse order, especially when the scanning circuit is configured by a shift register, by using the lower reference pixel area instead of the upper part, The effects of the invention described in this embodiment can be obtained. However, even when the vertical scanning direction is used in the reverse order, when using a decoder type scanning circuit, it is not always necessary to arrange the reference pixel regions on both the upper and lower sides.
 また、リセット信号レベル分布取得回路119において、全画素と参照画素に対して、MAX演算回路とMIN演算回路を共通に使用する構成を示したが、それぞれ専用の回路を準備するように構成しても、微細素子で構成できるロジック回路の面積がわずかに増加するが、全画素と参照画素の分布を同時に取得する場合、回路の動作周波数を半減できる効果がある。 Further, in the reset signal level distribution acquisition circuit 119, the configuration in which the MAX operation circuit and the MIN operation circuit are commonly used for all the pixels and the reference pixels has been shown. However, although the area of the logic circuit that can be configured with fine elements slightly increases, when the distribution of all the pixels and the reference pixel is acquired simultaneously, the operation frequency of the circuit can be halved.
 本発明は、行列状に配列された光電変換素子からの出力信号を受ける列A/D変換回路を有する固体撮像装置および撮像システムに利用でき、例えば、デジタルスチルカメラ、カメラ付き携帯電話機、監視カメラ、ノートパソコンに内蔵のカメラ、情報処理機器に接続されるカメラユニット等に用いられ光や放射線など種々の物理量分布を検知するための撮像装置および撮像システムに利用できる。さらに本発明は、可視光やX線などを含む電磁波、あるいはアルファ線やベータ線などの粒子放射線などの、物量を検知するための固体撮像装置にも利用できる。 INDUSTRIAL APPLICABILITY The present invention can be used for a solid-state imaging device and an imaging system having a column A / D conversion circuit that receives output signals from photoelectric conversion elements arranged in a matrix. For example, a digital still camera, a mobile phone with a camera, and a surveillance camera It can be used for an image pickup apparatus and an image pickup system for detecting various physical quantity distributions such as light and radiation, which are used for a camera built in a notebook computer, a camera unit connected to an information processing device, and the like. Furthermore, the present invention can also be used for a solid-state imaging device for detecting an amount of an object such as electromagnetic waves including visible light and X-rays, or particle radiation such as alpha rays and beta rays.
 100、400、920  固体撮像装置
 101、930  画素
 102  画素アレー
 103  読み出し信号線
 104  2進カウンタ
 105、960  DAC回路
 106、940  列A/D変換回路
 107  比較器
 108  ランプ発生回路
 109  出力バッファ
 112  参照画素領域
 113  デジタル前処理回路
 114  クロック生成回路
 115  モード端子
 116  制御部
 117  UDカウンタ
 119  リセット信号レベル分布取得回路
 120  タイミング生成回路
 126  出力信号バス
 191  全画素MINレジスタ
 192  全画素MAXレジスタ
 193  参照画素MINレジスタ
 194  参照画素MAXレジスタ
 195  MIN演算器
 196  MAX演算器
 200  光学系
 201  レンズ
 202  シャッタ
 300  カメラ信号処理LSI
 301  画像信号処理部
 303  固体撮像装置制御部
 914  行走査手段
 942  比較回路
 944  アップダウンカウンタ
 946  列走査手段
 950  アップカウンタ
100, 400, 920 Solid- state imaging device 101, 930 Pixel 102 Pixel array 103 Read signal line 104 Binary counter 105, 960 DAC circuit 106, 940 Column A / D conversion circuit 107 Comparator 108 Lamp generation circuit 109 Output buffer 112 Reference pixel Area 113 Digital preprocessing circuit 114 Clock generation circuit 115 Mode terminal 116 Control unit 117 UD counter 119 Reset signal level distribution acquisition circuit 120 Timing generation circuit 126 Output signal bus 191 All pixel MIN register 192 All pixel MAX register 193 Reference pixel MIN register 194 Reference pixel MAX register 195 MIN calculator 196 MAX calculator 200 Optical system 201 Lens 202 Shutter 300 Camera signal processing LSI
301 Image Signal Processing Unit 303 Solid-State Imaging Device Control Unit 914 Row Scanning Means 942 Comparison Circuit 944 Up / Down Counter 946 Column Scanning Means 950 Up Counter

Claims (7)

  1.  行列状に配列された複数の画素を備える固体撮像装置であって、
     前記複数の画素の一列毎または複数列毎に対応して設けられ、アップカウント方向及びダウンカウント方向にカウントするアップダウンカウンタを有し、当該アップダウンカウンタにカウントさせることにより、対応する画素から出力されるアナログ信号をデジタル信号にA/D変換する列A/D変換部と、
     前記列A/D変換部によりA/D変換された複数の画素の画素リセット信号レベルの分布を示す分布情報を取得する分布情報取得部と、
     前記分布情報取得部により取得された前記分布情報に基づいて、前記アップダウンカウンタの予め定められたカウンタビット幅において画素リセット信号レベルおよび画素信号レベルをカウントするために割り当てられているそれぞれのカウント範囲を変更する制御部とを備える
     固体撮像装置。
    A solid-state imaging device including a plurality of pixels arranged in a matrix,
    The plurality of pixels are provided corresponding to each column or every plurality of columns, and have an up / down counter for counting in the up-count direction and the down-count direction, and output from the corresponding pixel by causing the up / down counter to count. A column A / D converter for A / D converting an analog signal to be converted into a digital signal;
    A distribution information acquisition unit that acquires distribution information indicating a distribution of pixel reset signal levels of a plurality of pixels that have been A / D converted by the column A / D conversion unit;
    Based on the distribution information acquired by the distribution information acquisition unit, respective count ranges allocated to count the pixel reset signal level and the pixel signal level in a predetermined counter bit width of the up / down counter A solid-state imaging device.
  2.  前記固体撮像装置は、
     各行の画素毎に、前記アップダウンカウンタのカウント方向を変更することにより、前記列A/D変換部に、画素信号レベルと画素リセット信号レベルとの差分値をA/D変換させて出力させる画素信号出力モードと、
     各行の画素毎に、画素リセット信号レベルのみを前記列A/D変換部にA/D変換させて出力させる画素リセット出力モードとを有している
     請求項1に記載の固体撮像装置。
    The solid-state imaging device
    By changing the count direction of the up / down counter for each pixel in each row, the column A / D converter causes the difference value between the pixel signal level and the pixel reset signal level to be A / D converted and output. Signal output mode,
    The solid-state imaging device according to claim 1, further comprising: a pixel reset output mode in which only the pixel reset signal level is A / D converted by the column A / D conversion unit and output for each pixel in each row.
  3.  前記分布情報取得部は、
     前記カウント範囲に基づいて、前記列A/D変換部によりA/D変換された前記複数の画素の画素リセット信号レベルと前記複数の画素の一部画素である参照画素のリセット信号レベルとを取得することにより、前記列A/D変換部によりA/D変換された複数の画素の画素リセット信号レベルの分布を示す第1分布情報を取得し、
     前記カウント範囲に基づいて、前記列A/D変換部によりA/D変換された前記参照画素のみのリセット信号レベルをさらに取得することにより、前記列A/D変換部によりA/D変換された前記参照画素のみのリセット信号レベルの分布を示す第2分布情報を取得し、
     前記制御部は、前記第1分布情報と、前記第2分布情報とから、前記カウント範囲を変更し、
     前記固体撮像装置は、
     前記制御部により変更されたカウント範囲に基づいて、前記列A/D変換部に複数の画素の画素リセット信号レベルと画素信号レベルとをA/D変換させる
     請求項1または2に記載の固体撮像装置。
    The distribution information acquisition unit
    Based on the count range, a pixel reset signal level of the plurality of pixels A / D converted by the column A / D conversion unit and a reset signal level of a reference pixel that is a part of the plurality of pixels are obtained. To obtain first distribution information indicating a distribution of pixel reset signal levels of a plurality of pixels A / D converted by the column A / D converter,
    Based on the count range, by further acquiring a reset signal level of only the reference pixel that has been A / D converted by the column A / D converter, the column A / D converter has performed A / D conversion. Obtaining second distribution information indicating a distribution of a reset signal level of only the reference pixel;
    The control unit changes the count range from the first distribution information and the second distribution information,
    The solid-state imaging device
    3. The solid-state imaging according to claim 1, wherein the column A / D conversion unit performs A / D conversion of a pixel reset signal level and a pixel signal level of a plurality of pixels based on the count range changed by the control unit. apparatus.
  4.  前記分布情報取得部は、前記列A/D変換部によりA/D変換された前記複数の画素のリセット信号レベルの最大値および最小値、並びに、前記列A/D変換部によりA/D変換された前記複数の画素の一部画素である参照画素のリセット信号レベルの最大値および最小値を取得することにより、前記列A/D変換部によりA/D変換された前記複数の画素の画素リセット信号レベルの分布を示す分布情報を取得する
     請求項1~3のいずれか1項に記載の固体撮像装置。
    The distribution information acquisition unit includes a maximum value and a minimum value of reset signal levels of the plurality of pixels that have been A / D converted by the column A / D conversion unit, and an A / D conversion by the column A / D conversion unit. The pixels of the plurality of pixels that have been A / D converted by the column A / D conversion unit by acquiring the maximum value and the minimum value of the reset signal level of the reference pixel that is a partial pixel of the plurality of pixels The solid-state imaging device according to any one of claims 1 to 3, wherein distribution information indicating a distribution of a reset signal level is acquired.
  5.  前記分布情報取得部は、前記列A/D変換部によりA/D変換された前記複数の画素のリセット信号レベルの平均値および標準偏差、並びに、前記列A/D変換部によりA/D変換された前記複数の画素の一部画素である参照画素のリセット信号レベルの平均値および標準偏差を取得することにより、前記列A/D変換部によりA/D変換された前記複数の画素の画素リセット信号レベルの分布を示す分布情報を取得する
     請求項1~3のいずれか1項に記載の固体撮像装置。
    The distribution information acquisition unit includes an average value and a standard deviation of reset signal levels of the plurality of pixels A / D converted by the column A / D conversion unit, and an A / D conversion by the column A / D conversion unit. Pixels of the plurality of pixels that have been A / D converted by the column A / D conversion unit by obtaining an average value and a standard deviation of a reset signal level of a reference pixel that is a partial pixel of the plurality of pixels The solid-state imaging device according to any one of claims 1 to 3, wherein distribution information indicating a distribution of a reset signal level is acquired.
  6.  請求項1~5のいずれか1項に記載の固体撮像装置と、
     被写体から集光して前記固体撮像装置の撮像領域に画像を形成するとともに、光量を制御する光学系装置とを備える
     撮像システム。
    A solid-state imaging device according to any one of claims 1 to 5,
    An imaging system comprising: an optical system that condenses light from a subject to form an image in an imaging region of the solid-state imaging device and controls the amount of light.
  7.  被写体から集光して固体撮像装置の撮像領域に画像を形成するとともに、光量を制御する光学系装置と、
     行列状に配列された複数の画素と、前記複数の画素の一列毎または複数列毎に対応して設けられ、アップカウント方向及びダウンカウント方向にカウントするアップダウンカウンタを含み、当該アップダウンカウンタにカウントさせることにより、対応する画素から出力されるアナログ信号をデジタル信号に変換する列A/D変換部と、前記アップダウンカウンタの予め定められたカウンタビット幅において画素リセット信号レベルおよび画素信号レベルをカウントするために割り当てられているそれぞれのカウント範囲を変更する制御部とを有する固体撮像装置と、
     前記固体撮像装置から入力される信号に対してデジタル処理を行うとともに、前記固体撮像装置における前記列A/D変換部によりA/D変換された複数の画素の画素リセット信号レベルの分布を示す分布情報を取得する分布情報取得部とを有する信号処理装置とを備え、
     前記制御部は、前記分布情報取得部により取得された前記分布情報に基づいて、前記カウント範囲を切り換える
     撮像システム。
    An optical system that collects light from a subject to form an image in an imaging region of the solid-state imaging device and controls the amount of light;
    A plurality of pixels arranged in a matrix and an up / down counter that is provided corresponding to each column or each plurality of columns of the plurality of pixels and counts in the up-count direction and the down-count direction. By counting, a column A / D converter that converts an analog signal output from the corresponding pixel into a digital signal, and a pixel reset signal level and a pixel signal level in a predetermined counter bit width of the up / down counter A solid-state imaging device having a control unit for changing each count range allocated for counting;
    A distribution indicating the distribution of pixel reset signal levels of a plurality of pixels that are digitally processed for signals input from the solid-state imaging device and A / D converted by the column A / D conversion unit in the solid-state imaging device A signal processing device having a distribution information acquisition unit for acquiring information,
    The control unit switches the count range based on the distribution information acquired by the distribution information acquisition unit.
PCT/JP2011/004624 2010-08-24 2011-08-19 Solid-state imaging device and imaging system WO2012026097A1 (en)

Applications Claiming Priority (2)

Application Number Priority Date Filing Date Title
JP2010187686 2010-08-24
JP2010-187686 2010-08-24

Publications (1)

Publication Number Publication Date
WO2012026097A1 true WO2012026097A1 (en) 2012-03-01

Family

ID=45723119

Family Applications (1)

Application Number Title Priority Date Filing Date
PCT/JP2011/004624 WO2012026097A1 (en) 2010-08-24 2011-08-19 Solid-state imaging device and imaging system

Country Status (1)

Country Link
WO (1) WO2012026097A1 (en)

Citations (3)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
JP2008187420A (en) * 2007-01-30 2008-08-14 Sharp Corp A-d converter
JP2010056707A (en) * 2008-08-27 2010-03-11 Sony Corp Analog/digital converter, analog/digital conversion method, imaging device, and driving method thereof
JP2010153981A (en) * 2008-12-24 2010-07-08 Sony Corp Analog-digital converter and analog-digital conversion method, and image pickup device and method of driving the same, and camera

Patent Citations (3)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
JP2008187420A (en) * 2007-01-30 2008-08-14 Sharp Corp A-d converter
JP2010056707A (en) * 2008-08-27 2010-03-11 Sony Corp Analog/digital converter, analog/digital conversion method, imaging device, and driving method thereof
JP2010153981A (en) * 2008-12-24 2010-07-08 Sony Corp Analog-digital converter and analog-digital conversion method, and image pickup device and method of driving the same, and camera

Similar Documents

Publication Publication Date Title
US8031241B2 (en) Solid-state imaging device and imaging apparatus
US9374097B2 (en) Data processor, solid-state imaging device, imaging device, and electronic apparatus
TWI535291B (en) Signal processing device and signal processing method
US7321329B2 (en) Analog-to-digital converter and semiconductor device
JP4379504B2 (en) Solid-state imaging device and camera system
US8314868B2 (en) Solid state imaging device, imaging apparatus, electronic apparatus, AD converter, and AD conversion method
CN109040630B (en) Ramp signal generator of image sensor and image sensor including the same
JP4952301B2 (en) Imaging device and camera
US20110221931A1 (en) Temperature information output apparatus, imaging apparatus, method of outputting temperature information
KR102156463B1 (en) Signal processing device and method, imaging element, and imaging device
JP2009177797A (en) Solid-state imaging device and method of driving the same
US8803993B2 (en) Solid-state imaging device and camera system with a reset-level variation correction function
US10630912B2 (en) Image sensor, image capturing apparatus, and method for controlling image sensor
US20130193306A1 (en) Analog-digital converter, analog-digital conversion method, image pickup device, method of driving the same, and camera
KR20080095176A (en) Solid-state imaging device, signal processing method for the same, and imaging apparatus
JP2013051575A (en) Solid-state imaging device, imaging device, and imaging method
JP2016048813A (en) Solid-state imaging device, imaging method and electronic apparatus
US10277855B2 (en) Image sensing device and control method thereof with switchable analog-to-digital conversion modes based on the amount of dark current generated in pixels
CN114845074A (en) Analog-to-digital conversion circuit, image sensing device and operation method thereof
JP2012175690A (en) Solid state imaging device
US7242429B1 (en) Method for cancellation of the effect of charge feedthrough on CMOS pixel output
US11558575B2 (en) Analog-to-digital converter having reference signal, image sensor, and image capturing apparatus
WO2012026097A1 (en) Solid-state imaging device and imaging system
US20110007201A1 (en) Solid state imaging device suppressing blooming
JP2019033442A (en) Imaging element and method for controlling the same

Legal Events

Date Code Title Description
121 Ep: the epo has been informed by wipo that ep was designated in this application

Ref document number: 11819573

Country of ref document: EP

Kind code of ref document: A1

NENP Non-entry into the national phase

Ref country code: DE

122 Ep: pct application non-entry in european phase

Ref document number: 11819573

Country of ref document: EP

Kind code of ref document: A1

NENP Non-entry into the national phase

Ref country code: JP