WO2012026036A1 - Testing method for semiconductor wafer, semiconductor wafer transport device, and semiconductor wafer testing device - Google Patents

Testing method for semiconductor wafer, semiconductor wafer transport device, and semiconductor wafer testing device Download PDF

Info

Publication number
WO2012026036A1
WO2012026036A1 PCT/JP2010/064608 JP2010064608W WO2012026036A1 WO 2012026036 A1 WO2012026036 A1 WO 2012026036A1 JP 2010064608 W JP2010064608 W JP 2010064608W WO 2012026036 A1 WO2012026036 A1 WO 2012026036A1
Authority
WO
WIPO (PCT)
Prior art keywords
semiconductor wafer
probe card
testing
holding member
sealed space
Prior art date
Application number
PCT/JP2010/064608
Other languages
French (fr)
Japanese (ja)
Inventor
敏之 清川
Original Assignee
株式会社アドバンテスト
Priority date (The priority date is an assumption and is not a legal conclusion. Google has not performed a legal analysis and makes no representation as to the accuracy of the date listed.)
Filing date
Publication date
Application filed by 株式会社アドバンテスト filed Critical 株式会社アドバンテスト
Priority to JP2011525332A priority Critical patent/JP5368565B2/en
Priority to PCT/JP2010/064608 priority patent/WO2012026036A1/en
Priority to TW100121381A priority patent/TW201209429A/en
Publication of WO2012026036A1 publication Critical patent/WO2012026036A1/en

Links

Images

Classifications

    • GPHYSICS
    • G01MEASURING; TESTING
    • G01RMEASURING ELECTRIC VARIABLES; MEASURING MAGNETIC VARIABLES
    • G01R31/00Arrangements for testing electric properties; Arrangements for locating electric faults; Arrangements for electrical testing characterised by what is being tested not provided for elsewhere
    • G01R31/28Testing of electronic circuits, e.g. by signal tracer
    • G01R31/2851Testing of integrated circuits [IC]
    • G01R31/2886Features relating to contacting the IC under test, e.g. probe heads; chucks
    • G01R31/2887Features relating to contacting the IC under test, e.g. probe heads; chucks involving moving the probe head or the IC under test; docking stations
    • GPHYSICS
    • G01MEASURING; TESTING
    • G01RMEASURING ELECTRIC VARIABLES; MEASURING MAGNETIC VARIABLES
    • G01R31/00Arrangements for testing electric properties; Arrangements for locating electric faults; Arrangements for electrical testing characterised by what is being tested not provided for elsewhere
    • G01R31/28Testing of electronic circuits, e.g. by signal tracer
    • G01R31/282Testing of electronic circuits specially adapted for particular applications not provided for elsewhere
    • G01R31/2831Testing of materials or semi-finished products, e.g. semiconductor wafers or substrates

Definitions

  • the present invention relates to a semiconductor wafer test method for testing an electronic device under test such as an integrated circuit element formed on a semiconductor wafer (hereinafter also referred to as DUT (Device (Under Test)) using a probe card, and
  • DUT Device (Under Test)
  • the present invention relates to a semiconductor wafer transfer apparatus and a semiconductor wafer test apparatus used for testing.
  • a probe card used for a DUT test in a wafer state for example, a cantilever type probe card having a probe needle and a vertical type probe card having a pogo pin are conventionally known (for example, see Patent Document 1). ).
  • the semiconductor wafer in order to ensure electrical contact between the contact of the probe card and the electrode of the semiconductor wafer, the semiconductor wafer is moved toward the probe card by a predetermined amount ( (For example, 100 ⁇ m) It is necessary to push up (overdrive).
  • a predetermined amount (For example, 100 ⁇ m) It is necessary to push up (overdrive).
  • a prober having a chuck for sucking and holding a semiconductor wafer and a Z stage for raising and lowering the chuck is used in a semiconductor wafer test using the probe card.
  • the problem to be solved by the present invention is to provide a semiconductor wafer test method, a semiconductor wafer transfer apparatus, and a semiconductor wafer test apparatus capable of reducing the cost.
  • a method for testing a semiconductor wafer according to the present invention is a method for testing a semiconductor wafer using a probe card, wherein a sealed space is formed between the holding member for holding the semiconductor wafer and the probe card.
  • a sealing step; a decompression step of decompressing the sealed space; and a moving step of moving the holding member by a predetermined amount toward the probe card in a state where the sealed space is decompressed (See claim 1).
  • the probe card may include a cantilever type probe card or a vertical type probe card (see claim 2).
  • the semiconductor wafer testing method includes a detection step of detecting electrical contact between the semiconductor wafer and the probe card, and the moving step is performed based on a detection result in the detection step. It may include moving a member toward the probe card (see claim 3).
  • the moving step may include advancing the holding member toward the probe card by moving means for moving the holding member (see claim 4).
  • the depressurization step is performed so that the adsorption force (F P ) generated along with the depressurization in the sealed space is equal to or less than a necessary pressing force (F N ) required for pressing the probe card ( F P ⁇ F N ), and may include reducing the pressure in the sealed space (see claim 5).
  • the moving step may include retreating the contact means that is in contact with the holding member (see claim 6).
  • the adsorption force (F P ) generated with the pressure reduction in the sealed space is larger than the necessary pressing force (F N ) required for pressing the probe card. (F P > F N ), which may include reducing the pressure in the sealed space (see claim 7).
  • a semiconductor wafer transfer device is a semiconductor wafer transfer device used for testing a semiconductor wafer using a probe card, the holding member holding the semiconductor wafer, the probe card, and the holding member A sealing means for forming a sealed space between them, a decompressing means for decompressing the sealed space, and a movement for moving the holding member relative to the probe card in a state where the sealed space is decompressed by the decompressing means. Means (refer to claim 8).
  • the probe card may include a cantilever type probe card or a vertical type probe card (see claim 9).
  • the holding member may have a mounting surface on which the semiconductor wafer is mounted, and the sealing means may include an annular seal member provided on the mounting surface (see claim 10). ).
  • a semiconductor wafer transfer apparatus is a semiconductor wafer transfer apparatus used for testing a semiconductor wafer using a probe card, the holding member holding the semiconductor wafer, the probe card, and the holding member.
  • a contact means including: a sealing means for forming a sealed space between; a pressure reducing means for reducing the pressure of the sealed space; a contact part that contacts the holding member; and a drive part that moves the contact part. (Refer to claim 11).
  • the probe card may include a cantilever type probe card or a vertical type probe card (see claim 12).
  • the holding member may have a mounting surface on which the semiconductor wafer is mounted
  • the sealing means may include an annular seal member provided on the mounting surface (see claim 13).
  • the driving unit may include a motor connected to a ball screw mechanism or a piezoelectric element (see claim 14).
  • the plurality of contact means may be arranged at substantially equal intervals along the circumferential direction so as to contact the outer peripheral portion of the holding member (see claim 15).
  • a semiconductor wafer test apparatus is a semiconductor wafer test apparatus for testing a semiconductor wafer using a probe card, the test apparatus main body to which the probe card is electrically connected, and the semiconductor wafer described above And a conveying device (see claim 16).
  • the semiconductor wafer and the probe card are brought into electrical contact under reduced pressure, it is not necessary to increase the rigidity of the holding member and the probe card for holding the semiconductor wafer, and the cost can be reduced.
  • the holding member is moved toward the probe card while maintaining the reduced pressure, it is possible to cope with a probe card of a type that requires stroke management.
  • FIG. 1 is a schematic side view showing an overall configuration of a semiconductor wafer test apparatus in a first embodiment of the present invention.
  • FIG. 2 is an enlarged cross-sectional view of a portion II in FIG.
  • FIG. 3 is a plan view showing the wafer prober in the first embodiment of the present invention.
  • 4 is a cross-sectional view taken along line IV-IV in FIG.
  • FIG. 5 is a flowchart showing a semiconductor wafer test method according to the first embodiment of the present invention.
  • FIG. 6 is an enlarged cross-sectional view showing step S12 of FIG.
  • FIG. 7 is an enlarged cross-sectional view showing step S14 of FIG.
  • FIG. 8 is a schematic side view showing the overall configuration of the semiconductor wafer testing apparatus in the second embodiment of the present invention.
  • FIG. 9 is a cross-sectional view showing a wafer tray in the second embodiment of the present invention.
  • FIG. 10 is a plan view showing a stage in the second embodiment of the present invention.
  • 11 is a cross-sectional view taken along line XI-XI in FIG.
  • FIG. 12 is a cross-sectional view showing the configuration of the mechanical stopper in the second embodiment of the present invention.
  • FIG. 13 is a bottom view showing the layout of the mechanical stopper in the second embodiment of the present invention.
  • FIG. 14 is a flowchart showing a semiconductor wafer test method according to the second embodiment of the present invention.
  • FIG. 15 is an enlarged sectional view showing steps S22 to S24 in FIG.
  • ⁇ First Embodiment> 1 and 2 are diagrams showing a semiconductor wafer test apparatus in the present embodiment.
  • the semiconductor wafer test apparatus 1 in this embodiment is an apparatus for testing the electrical characteristics of a DUT built in a semiconductor wafer 100. As shown in FIG. 1, a test head 10, an interface assembly 20, and a wafer And a prober 30.
  • the semiconductor probe 100 when testing the DUT, the semiconductor probe 100 is made to face the probe card 21 of the interface assembly 20 by the wafer prober 30, and in this state, the second vacuum pump 42 (see FIG. 3) The semiconductor wafer 100 is brought into contact with the probe card 21 by reducing the pressure in the space 37 (see FIGS. 6 and 7). Further, from this state, the wafer prober 30 pushes the semiconductor wafer 100 toward the probe card 21 by a predetermined amount. When the semiconductor wafer 100 and the probe card 21 are reliably brought into contact with each other by this pushing, a test signal is inputted / outputted from the test head 10 to the DUT of the semiconductor wafer 100 to execute a DUT test.
  • the stroke management required for the cantilever type or vertical type probe card is adopted while adopting the decompression method as a method for bringing the semiconductor wafer 100 and the interface assembly 20 into contact with each other. It also has the function.
  • the interface assembly 20 includes a probe card 21 that is in electrical contact with the semiconductor wafer 100, a performance board 24 connected to the test head 10, and the probe card 21 and the performance board 24. And an interposer 22 that performs pitch conversion of the transmission path.
  • the probe card 21 is a so-called cantilever type probe card having a card substrate 211 on which wiring or the like is formed and a large number of probe needles 212 mounted on the substrate 21.
  • the probe card 21 in the present embodiment is not particularly limited to the above as long as it is of a type that requires a predetermined amount of overdrive after contact with the semiconductor wafer 100.
  • a so-called vertical (vertical) type probe card having a card substrate and a large number of pogo pins standing on the card substrate may be used.
  • the interposer 22 that electrically connects the probe card 21 and the performance board 24 is composed of, for example, a pitch conversion substrate such as a silicon substrate, a ceramic substrate, or a glass substrate, anisotropic conductive rubber, or the like.
  • the narrow pitch on the side is converted into a relatively wide pitch on the performance board 24 side.
  • the interposer 22 is not particularly limited to the above as long as the transmission path pitch conversion is performed between the probe card 21 and the performance board 24.
  • the performance board 24 is electrically connected to the probe card 21 via the interposer 22, it is electrically connected to the pin electronics housed in the test head 10 via a connector, cable, or the like not shown.
  • the test head 10 is electrically connected to a tester (main frame) via a cable, for example.
  • the test head 10 and the tester in the present embodiment correspond to an example of a test apparatus main body in the present invention.
  • An annular seal member 23 is interposed between the upper surface of the probe card 21 and the lower surface of the performance board 24, and an internal space 25 is formed between the probe card 21 and the performance board 24.
  • the interposer 22 is accommodated in the internal space 25.
  • 3 and 4 are views showing a wafer prober in the present embodiment.
  • the wafer prober 30 includes a chuck 33 that holds the semiconductor wafer 100 by suction and a stage 60 that moves the chuck 33 relative to the interface assembly 20.
  • the wafer prober 30 in the present embodiment corresponds to an example of a semiconductor wafer transfer apparatus in the present invention.
  • the chuck 33 is a substantially disk-shaped member having a flat upper surface 331 on which the semiconductor wafer 100 is placed, and the upper surface 331 of the chuck 33 has a larger diameter than the semiconductor wafer 100. have.
  • the chuck 33 in the present embodiment corresponds to an example of the holding member in the present invention.
  • annular grooves 332 On the upper surface 331 of the chuck 33, three annular grooves 332 having a smaller diameter than the semiconductor wafer 100 are formed concentrically. These annular grooves 332 communicate with a suction passage 333 formed in the chuck 33.
  • the suction passage 333 is connected to the first vacuum pump 41 via the suction port 334.
  • the semiconductor wafer 100 is attracted and held by the chuck 33 due to the negative pressure generated in the annular groove 332.
  • the shape and number of the annular grooves 332 are not particularly limited.
  • a pressure reducing passage 335 is formed in the chuck 33.
  • the decompression passage 335 is opened by a suction hole 336 positioned further outside the outermost annular groove 332 on the upper surface 331.
  • the pressure reducing passage 335 is connected to the second vacuum pump 42 via a pressure reducing port 337.
  • the second vacuum pump 42 in the present embodiment corresponds to an example of a decompression unit in the present invention.
  • annular seal member 34 is provided in the vicinity of the outer peripheral portion of the upper surface 331 of the chuck 33.
  • the seal member 34 for example, a packing made of silicone rubber can be exemplified.
  • a sealed space 37 is formed between the upper surface 331 of the chuck 33 and the probe card 21 by the seal member 34.
  • the seal member 34 of this embodiment has a degree of freedom (flexibility) along the Z direction (FIG. 1) that can sufficiently allow the movement of the chuck 33 after the pressure reduction of the second pump 42. ing.
  • a cooling passage 338 is formed in the chuck 33, and a heater 35 and a temperature sensor 36 are embedded.
  • the cooling passage 338 is connected to the chiller 43 via a pair of cooling ports 339.
  • the chuck 33 described above is fixed to the tip of the stage 32.
  • the stage 32 is composed of a motor, a ball screw mechanism, and the like (not shown). As shown in FIG. 1, the stage 32 moves in a three-dimensional manner (XYZ direction) and rotates around the Z axis. It is possible to make it.
  • the stage 32 can move the semiconductor wafer 100 sucked and held by the chuck 33 to a position facing the interface assembly 20 and press it against the probe card 21.
  • the stage 32 in the present embodiment corresponds to an example of a moving unit in the present invention.
  • FIG. 5 is a flowchart showing a semiconductor wafer testing method in the present embodiment
  • FIGS. 6 and 7 are views showing steps S12 and S14 of FIG.
  • step S ⁇ b> 11 of FIG. 5 the stage 32 of the wafer prober 30 moves the chuck 33 holding the semiconductor wafer 100 to a position facing the probe card 21.
  • the stage 32 raises the chuck 33 until the seal member 34 of the chuck 33 comes into close contact with the card substrate 211 of the probe card 21.
  • the stage 32 stops.
  • step S12 of FIG. 5 as shown in FIG. 6, the second vacuum pump 42 is operated to depressurize the sealed space 37.
  • the suction force F P that occurs with the vacuum in the closed space 37 required pressing force required to press all the probes 212 having the probe card 21 F N (e.g.
  • the second vacuum so as to be substantially the same (F P ⁇ F N ) about 200 to 300 [kgf] (about 1.96 ⁇ 10 3 [N] to 2.94 ⁇ 10 3 [N]))
  • the pump 42 is controlled.
  • slightly weaker than the required pressing force F N is attraction force F P (F P ⁇ F N )
  • the test head 10 detects electrical contact between the electrode 110 of the semiconductor wafer 100 and the probe needle 212 of the probe card 21 (step S13). ).
  • step S14 in FIG. 5 using this detection as a trigger, as shown in FIG. 100 ⁇ m). Due to this rise, the probe needle 212 of the probe card 21 bites into the electrode 110 of the semiconductor wafer 100, so that the probe needle 212 and the electrode 110 are reliably in contact with each other.
  • step S15 of FIG. 5 the test head 10 inputs / outputs a test signal to / from the DUT of the semiconductor wafer 100 via the interface assembly 20, whereby the DUT test is executed.
  • a conventional pressing type wafer prober that simply presses a semiconductor wafer against the probe card from below, it is necessary to increase the rigidity of the chuck, stage, and probe card stiffener.
  • the semiconductor wafer 100 and the probe card 21 are brought into electrical contact with each other by decompression, so that the chuck 33, the stage 32, or the probe card 21 is compared with the chuck of a conventional pressing type prober.
  • the rigidity of the stiffener can be reduced, and the cost of the semiconductor wafer test apparatus 1 can be reduced.
  • the chuck 33 is raised by the stage 32 while maintaining the reduced pressure, so that it is possible to cope with a case where a probe card of a type that requires stroke management is used.
  • the probe needle 212 may be plastically deformed.
  • Second Embodiment 8 is a schematic side view showing the overall configuration of the semiconductor wafer testing apparatus in the present embodiment
  • FIG. 9 is a cross-sectional view showing a wafer tray in the present embodiment
  • FIGS. 10 and 11 are views showing a stage in the present embodiment
  • FIG. FIG. 13 is a sectional view showing the configuration of the mechanical stopper in the present embodiment
  • FIG. 13 is a bottom view showing the layout of the mechanical stopper in the present embodiment.
  • the semiconductor wafer test apparatus 1B in this embodiment includes a test head 10, an interface assembly 20, and a wafer prober 30B as shown in FIG. Since the configuration of the test head 10 and the interface assembly 20 is the same as that of the first embodiment, the same reference numerals are given and description thereof is omitted.
  • the wafer tray 50 is attached to the stage 60 instead of the chuck 33, and (2) a front end holding portion 61 that detachably holds the wafer tray 50 is provided on the stage 60. Furthermore, (3) it is different from the first embodiment in that it includes a mechanical stopper 70 that comes into contact with the wafer tray 50.
  • the wafer tray 50 in this embodiment has a configuration similar to that of the chuck 33 described in the first embodiment. As shown in FIG. 9, the wafer tray 50 has a substantially circular shape having a flat upper surface 501 on which the semiconductor wafer 100 is placed. It is a plate-like member, and the upper surface 501 of the wafer tray 50 has a larger diameter than the semiconductor wafer 100.
  • the wafer tray 50 in the present embodiment corresponds to an example of a holding member in the present invention.
  • annular grooves 502 On the upper surface 501 of the wafer tray 50, three annular grooves 502 having a smaller diameter than the semiconductor wafer 100 are formed concentrically. These annular grooves 502 communicate with a suction passage 503 formed in the wafer tray 50.
  • the adsorption passage 503 is connected to a first vacuum pump (not shown) via an adsorption port 504.
  • the semiconductor wafer 100 is attracted and held on the wafer tray 50 by the negative pressure generated in the annular groove 502.
  • the shape and number of the annular grooves 502 are not particularly limited.
  • a pressure reducing passage 505 is formed in the wafer tray 50.
  • the decompression passage 505 is opened by a suction hole 506 positioned further outside the outermost annular groove 502 on the upper surface 501.
  • the pressure reducing passage 505 is connected to a second vacuum pump (not shown) via a pressure reducing port 507.
  • the 2nd vacuum pump in this embodiment is equivalent to an example of the decompression means in the present invention.
  • annular seal member 51 is provided in the vicinity of the outer peripheral portion of the upper surface 501 of the wafer tray 50.
  • the seal member 51 for example, packing made of silicone rubber can be exemplified.
  • the sealing member 51 forms a sealed space 53 (see FIG. 15) between the upper surface 501 of the wafer tray 50 and the probe card 21.
  • the seal member 51 of the present embodiment has a degree of freedom (flexibility) along the Z direction (FIG. 8) enough to allow the movement of the wafer tray 50 after the pressure reduction of the second pump. Yes.
  • a cooling passage 508 is formed in the wafer tray 50 and a heater 52 and a temperature sensor (not shown) are embedded to adjust the temperature of the semiconductor wafer 100. Is possible.
  • the wafer tray 50 described above is detachably held by the stage 60 and can be moved.
  • a stage 60 is shared by a plurality of test heads and the semiconductor wafer 100 under test is held on the wafer tray 50, while the stage 60 performs other operations (other wafer trays 50). And the operation rate of the entire semiconductor wafer testing apparatus can be improved.
  • the stage 60 includes a motor and a ball screw mechanism that are not particularly shown, and as shown in FIG. 1, the wafer tray 50 is moved three-dimensionally (XYZ direction) and rotated about the Z axis. It is possible to make it.
  • the stage 60 in the present embodiment corresponds to an example of the moving device in the present invention.
  • the stage 60 in the present embodiment has a tip holding portion 61 that holds the wafer tray 50 in a detachable manner.
  • the tip holding portion 61 is formed of a disk-like member having a flat upper surface 611 on which the wafer tray 50 is placed.
  • the upper surface 611 has a size that is approximately the same as the wafer tray 50.
  • Three annular grooves 612 having a smaller diameter than the semiconductor wafer 100 are concentrically formed on the upper surface 611 of the tip holding portion 61. These annular grooves 612 communicate with a suction passage 613 formed in the tip holding portion 61.
  • the suction passage 613 is connected to the third vacuum pump 62 via the suction port 614.
  • the shape and number of the annular grooves 612 are not particularly limited. Further, guide pins may be provided upright on the upper surface 611 of the tip holding portion 61, and guide holes may be formed on the lower surface of the wafer tray 50, and the wafer tray 50 may be guided to the tip holding portion 61 by these guide pins and guide holes.
  • the mechanical stopper 70 includes a motor 71, a ball screw mechanism 72, and a contact member 73 as shown in FIG.
  • the mechanical stopper 70 in the present embodiment corresponds to an example of the contact means in the present invention.
  • the motor 71 is composed of, for example, a servo motor or a pulse motor, and the stroke can be numerically managed.
  • the ball screw mechanism 72 is connected to the drive shaft of the motor 71, and converts the rotational drive force generated by the motor 71 into a linear drive force along the Z direction.
  • the contact member 73 is attached to a ball screw mechanism, and can be moved in the Z-axis direction by the driving force of the motor 71 converted by the ball screw mechanism 72.
  • a piezoelectric element (piezo element) may be used instead of the motor 71 and the ball screw mechanism 72.
  • the mechanical stopper 70 is attached to the periphery of the opening 31 a into which the probe card 21 is inserted in the head plate 31 of the wafer prober 30. Normally, the motor 71 is stopped and the contact member 73 is attached to the wafer tray 50. It abuts on the outer periphery and functions as a stopper. Then, as will be described later, for example, with the electrical contact between the electrode 110 of the semiconductor wafer 100 and the probe needle 212 of the probe card 21 as a trigger, the motor 71 is driven to retract the contact member 73 by a predetermined amount (eg, about 100 ⁇ m) It is supposed to be.
  • a predetermined amount eg, about 100 ⁇ m
  • FIG. 13 is a view of the interface assembly 20 and the wafer prober 30 as viewed from below.
  • the direction of the main surface of the wafer tray 50 can also be controlled by the mechanical stoppers 70.
  • the number of mechanical stoppers 70 is not particularly limited as long as it is three or more, and the mechanical stoppers 70 are preferably arranged evenly, but are not particularly limited thereto.
  • the mechanical stopper 70 may be provided on the wafer tray 50, and the contact member 73 may be in contact with the head plate 31 of the wafer prober 30B.
  • FIG. 14 is a flowchart showing a method for testing a semiconductor wafer in the present embodiment
  • FIG. 15 is an enlarged sectional view showing steps S22 to S24 in FIG.
  • step S21 of FIG. 14 the stage 60 of the wafer prober 30B moves the wafer tray 50 holding the semiconductor wafer 100 to a position facing the probe card 21.
  • the stage 60 raises the wafer tray 50 until the seal member 51 of the wafer tray 50 comes into close contact with the card substrate 211 of the probe card 21.
  • the stage 60 stops.
  • step S22 of FIG. 14 as shown in FIG. 15, the second vacuum pump is operated to depressurize the sealed space 53.
  • the suction force F P that occurs with the vacuum in the closed space 53 the pressing force needed for all probes 212 having the probe card 21 F N (e.g. 200 ⁇ 300 [kgf ] (Approximately 1.96 ⁇ 10 3 [N] to 2.94 ⁇ 10 3 [N])), the second vacuum pump is controlled to be slightly stronger (F P > F N ).
  • the test head 10 detects electrical contact between the electrode 110 of the semiconductor wafer 100 and the probe needle 212 of the probe card 21 (step S23). ).
  • the stage 60 moves down from the wafer tray 50 in order to perform other operations (such as movement and alignment of other wafer trays 50).
  • step S24 of FIG. 14 using this detection as a trigger, as shown in FIG. 15, the motor 71 of the mechanical stopper 70 is driven to retract the contact member 73 by a predetermined amount (for example, 100 ⁇ m).
  • the suction force F P by decompression, because the stronger a little than the required pressing force F N of the probe needle 212 (F P> F N) , along with the retraction of the contact member 73
  • the wafer tray 50 further approaches the probe card 21.
  • the probe needle 212 of the probe card 21 bites into the electrode 110 of the semiconductor wafer 100, so that the probe needle 212 and the electrode 110 come into contact with each other.
  • step S25 of FIG. 14 the test head 10 inputs / outputs a test signal to / from the DUT of the semiconductor wafer 100 via the interface assembly 20, whereby the DUT test is executed.
  • the rigidity of the stiffener of the wafer tray 50, the stage 60, or the probe card 21 can be reduced, and the semiconductor The cost of the wafer test apparatus 1B can be reduced.
  • the contact member 73 of the mechanical stopper 70 is retracted while maintaining the reduced pressure, so that it is possible to cope with the case where a probe card of a type that requires stroke management is used.
  • the mechanical stopper 70 in this embodiment is also compatible with cantilever type and vertical type probe cards that require stroke management. It becomes possible to do.
  • the planar direction of the wafer tray 50 can be controlled.

Landscapes

  • Engineering & Computer Science (AREA)
  • Computer Hardware Design (AREA)
  • Microelectronics & Electronic Packaging (AREA)
  • General Engineering & Computer Science (AREA)
  • Physics & Mathematics (AREA)
  • General Physics & Mathematics (AREA)
  • Testing Or Measuring Of Semiconductors Or The Like (AREA)
  • Tests Of Electronic Circuits (AREA)

Abstract

A method for testing a semiconductor wafer (100) using a probe card (21) comprises a step (S11) for forming a sealed space (37) between a chuck (33) and the probe card (21), a step (S12) for reducing the pressure in the sealed space (37), and a step (S14) for moving the chuck (33) a prescribed amount toward the probe card (21) in a state of reduced pressure in the sealed space (37).

Description

半導体ウェハの試験方法、半導体ウェハ搬送装置、及び半導体ウェハ試験装置Semiconductor wafer test method, semiconductor wafer transfer device, and semiconductor wafer test device
 本発明は、半導体ウェハに形成された集積回路素子等の被試験電子部品(以下、DUT(Device Under Test)とも称する。)を、プローブカードを用いて試験する半導体ウェハの試験方法、並びに、その試験に用いられる半導体ウェハ搬送装置及び半導体ウェハ試験装置に関する。 The present invention relates to a semiconductor wafer test method for testing an electronic device under test such as an integrated circuit element formed on a semiconductor wafer (hereinafter also referred to as DUT (Device (Under Test)) using a probe card, and The present invention relates to a semiconductor wafer transfer apparatus and a semiconductor wafer test apparatus used for testing.
 ウェハ状態でのDUTのテストに用いられるプローブカードとして、例えば、プローブ針を有するカンチレバー型プローブカードや、ポゴピンを有するバーチカル(垂直)型プローブカードが従来から知られている(例えば、特許文献1参照)。 As a probe card used for a DUT test in a wafer state, for example, a cantilever type probe card having a probe needle and a vertical type probe card having a pogo pin are conventionally known (for example, see Patent Document 1). ).
 こうしたプローブカードでは、プローブカードの接触子と半導体ウェハの電極との電気的な接触を確実なものとするため、接触子と電極とが接触してから半導体ウェハをプローブカードに向かって所定量(例えば100μm)押し上げる(オーバドライブさせる)必要がある。 In such a probe card, in order to ensure electrical contact between the contact of the probe card and the electrode of the semiconductor wafer, the semiconductor wafer is moved toward the probe card by a predetermined amount ( (For example, 100 μm) It is necessary to push up (overdrive).
 このようなストローク管理を行うために、上記のプローブカードを用いた半導体ウェハの試験では、半導体ウェハを吸着保持するチャックと、当該チャックを昇降させるZステージと、を有するプローバが用いられている。 In order to perform such stroke management, a prober having a chuck for sucking and holding a semiconductor wafer and a Z stage for raising and lowering the chuck is used in a semiconductor wafer test using the probe card.
国際公開第2006/064546号International Publication No. 2006/064546
 上記の構造では、チャックを介して半導体ウェハをプローブカードに押し付けるため、当該チャックやプローブカードの剛性を高めておく必要があり、高コスト化を招来するという問題がある。半導体ウェハに形成された全てのDUTにプローブカードを同時に接触させる一括コンタクト方式を採用する場合には、この問題は特に顕著である。 In the above structure, since the semiconductor wafer is pressed against the probe card via the chuck, it is necessary to increase the rigidity of the chuck or the probe card, resulting in an increase in cost. This problem is particularly noticeable when the collective contact method in which the probe card is simultaneously brought into contact with all the DUTs formed on the semiconductor wafer.
 本発明が解決しようとする課題は、低コスト化を図ることが可能な半導体ウェハの試験方法、半導体ウェハ搬送装置、及び半導体ウェハ試験装置を提供することである。 The problem to be solved by the present invention is to provide a semiconductor wafer test method, a semiconductor wafer transfer apparatus, and a semiconductor wafer test apparatus capable of reducing the cost.
 (1)本発明に係る半導体ウェハの試験方法は、プローブカードを用いて半導体ウェハを試験する方法であって、前記半導体ウェハを保持する保持部材と前記プローブカードとの間に密閉空間を形成する密閉工程と、前記密閉空間を減圧する減圧工程と、前記密閉空間を減圧した状態で、前記保持部材を前記プローブカードに向かって所定量移動させる移動工程と、を備えたことを特徴とする(請求項1参照)。 (1) A method for testing a semiconductor wafer according to the present invention is a method for testing a semiconductor wafer using a probe card, wherein a sealed space is formed between the holding member for holding the semiconductor wafer and the probe card. A sealing step; a decompression step of decompressing the sealed space; and a moving step of moving the holding member by a predetermined amount toward the probe card in a state where the sealed space is decompressed ( (See claim 1).
 上記発明において、前記プローブカードは、カンチレバー型プローブカード又はバーチカル型プローブカードを含んでもよい(請求項2参照)。 In the above invention, the probe card may include a cantilever type probe card or a vertical type probe card (see claim 2).
 上記発明において、前記半導体ウェハの試験方法は、前記半導体ウェハと前記プローブカードとの電気的接触を検出する検出工程を備え、前記移動工程は、前記検出工程での検出結果に基づいて、前記保持部材を前記プローブカードに向かって移動させることを含んでもよい(請求項3参照)。 In the above invention, the semiconductor wafer testing method includes a detection step of detecting electrical contact between the semiconductor wafer and the probe card, and the moving step is performed based on a detection result in the detection step. It may include moving a member toward the probe card (see claim 3).
 上記発明において、前記移動工程は、前記保持部材を移動させる移動手段によって、前記保持部材を前記プローブカードに向かって前進させることを含んでもよい(請求項4参照)。 In the above invention, the moving step may include advancing the holding member toward the probe card by moving means for moving the holding member (see claim 4).
 上記発明において、前記減圧工程は、前記密閉空間内の減圧に伴って生じる吸着力(F)が、前記プローブカードの押圧に必要とされる必要押圧力(F)以下となるように(F≦F)、前記密閉空間内を減圧することを含んでもよい(請求項5参照)。 In the above invention, the depressurization step is performed so that the adsorption force (F P ) generated along with the depressurization in the sealed space is equal to or less than a necessary pressing force (F N ) required for pressing the probe card ( F P ≦ F N ), and may include reducing the pressure in the sealed space (see claim 5).
 上記発明において、前記移動工程は、前記保持部材に当接している当接手段を後退させることを含んでもよい(請求項6参照)。 In the above invention, the moving step may include retreating the contact means that is in contact with the holding member (see claim 6).
 上記発明において、前記減圧工程は、前記密閉空間内の減圧に伴って生じる吸着力(F)が、前記プローブカードの押圧に必要とされる必要押圧力(F)よりも大きくなるように(F>F)、前記密閉空間内を減圧することを含んでもよい(請求項7参照)。 In the above invention, in the pressure reducing step, the adsorption force (F P ) generated with the pressure reduction in the sealed space is larger than the necessary pressing force (F N ) required for pressing the probe card. (F P > F N ), which may include reducing the pressure in the sealed space (see claim 7).
 (2)本発明に係る半導体ウェハ搬送装置は、プローブカードを用いた半導体ウェハの試験に用いられる半導体ウェハ搬送装置であって、前記半導体ウェハを保持する保持部材と、前記プローブカードと前記保持部材との間に密閉空間を形成する密閉手段と、前記密閉空間を減圧する減圧手段と、前記減圧手段によって前記密閉空間を減圧した状態で、前記保持部材を前記プローブカードに対して相対移動させる移動手段と、を備えたことを特徴とする(請求項8参照)。 (2) A semiconductor wafer transfer device according to the present invention is a semiconductor wafer transfer device used for testing a semiconductor wafer using a probe card, the holding member holding the semiconductor wafer, the probe card, and the holding member A sealing means for forming a sealed space between them, a decompressing means for decompressing the sealed space, and a movement for moving the holding member relative to the probe card in a state where the sealed space is decompressed by the decompressing means. Means (refer to claim 8).
 上記発明において、前記プローブカードは、カンチレバー型プローブカード又はバーチカル型プローブカードを含んでもよい(請求項9参照)。 In the above invention, the probe card may include a cantilever type probe card or a vertical type probe card (see claim 9).
 上記発明において、前記保持部材は、前記半導体ウェハが載置される載置面を有し、前記密閉手段は、前記載置面に設けられた環状のシール部材を含んでもよい(請求項10参照)。 In the above invention, the holding member may have a mounting surface on which the semiconductor wafer is mounted, and the sealing means may include an annular seal member provided on the mounting surface (see claim 10). ).
 (3)本発明に係る半導体ウェハ搬送装置は、プローブカードを用いた半導体ウェハの試験に用いられる半導体ウェハ搬送装置であって、前記半導体ウェハを保持する保持部材と、前記プローブカードと前記保持部材との間に密閉空間を形成する密閉手段と、前記密閉空間を減圧する減圧手段と、前記保持部材に当接する当接部と、前記当接部を移動させる駆動部と、を有する当接手段と、を備えたことを特徴とする(請求項11参照)。 (3) A semiconductor wafer transfer apparatus according to the present invention is a semiconductor wafer transfer apparatus used for testing a semiconductor wafer using a probe card, the holding member holding the semiconductor wafer, the probe card, and the holding member. A contact means including: a sealing means for forming a sealed space between; a pressure reducing means for reducing the pressure of the sealed space; a contact part that contacts the holding member; and a drive part that moves the contact part. (Refer to claim 11).
 上記発明において、前記プローブカードは、カンチレバー型プローブカード又はバーチカル型プローブカードを含んでもよい(請求項12参照)。 In the above invention, the probe card may include a cantilever type probe card or a vertical type probe card (see claim 12).
 上記発明において、前記保持部材は、前記半導体ウェハが載置される載置面を有し、前記密閉手段は、前記載置面に設けられた環状のシール部材を含んでもよい(請求項13参照)。 In the above invention, the holding member may have a mounting surface on which the semiconductor wafer is mounted, and the sealing means may include an annular seal member provided on the mounting surface (see claim 13). ).
 上記発明において、前記駆動部は、ボールねじ機構が連結されたモータ、又は、圧電素子を含んでもよい(請求項14参照)。 In the above invention, the driving unit may include a motor connected to a ball screw mechanism or a piezoelectric element (see claim 14).
 上記発明において、複数の前記当接手段が、前記保持部材の外周部に当接するように周方向に沿って実質的に等間隔に配置されてもよい(請求項15参照)。 In the above invention, the plurality of contact means may be arranged at substantially equal intervals along the circumferential direction so as to contact the outer peripheral portion of the holding member (see claim 15).
 (4)本発明に係る半導体ウェハ試験装置は、プローブカードを用いて半導体ウェハを試験する半導体ウェハ試験装置であって、前記プローブカードが電気的に接続される試験装置本体と、上記の半導体ウェハ搬送装置と、を備えたことを特徴とする(請求項16参照)。 (4) A semiconductor wafer test apparatus according to the present invention is a semiconductor wafer test apparatus for testing a semiconductor wafer using a probe card, the test apparatus main body to which the probe card is electrically connected, and the semiconductor wafer described above And a conveying device (see claim 16).
 本発明では、減圧によって半導体ウェハとプローブカードとを電気的に接触させるので、半導体ウェハを保持する保持部材やプローブカードの剛性を高める必要がなく、低コスト化を図ることができる。 In the present invention, since the semiconductor wafer and the probe card are brought into electrical contact under reduced pressure, it is not necessary to increase the rigidity of the holding member and the probe card for holding the semiconductor wafer, and the cost can be reduced.
 また、本発明では、減圧を維持した状態で保持部材をプローブカードに向かって移動させるので、ストローク管理を必要とするタイプのプローブカードにも対応することができる。 In the present invention, since the holding member is moved toward the probe card while maintaining the reduced pressure, it is possible to cope with a probe card of a type that requires stroke management.
図1は、本発明の第1実施形態における半導体ウェハ試験装置の全体構成を示す概略側面図である。FIG. 1 is a schematic side view showing an overall configuration of a semiconductor wafer test apparatus in a first embodiment of the present invention. 図2は、図1のII部の拡大断面図である。FIG. 2 is an enlarged cross-sectional view of a portion II in FIG. 図3は、本発明の第1実施形態におけるウェハプローバを示す平面図である。FIG. 3 is a plan view showing the wafer prober in the first embodiment of the present invention. 図4は、図3のIV-IV線に沿った断面図である。4 is a cross-sectional view taken along line IV-IV in FIG. 図5は、本発明の第1実施形態における半導体ウェハの試験方法を示すフローチャートである。FIG. 5 is a flowchart showing a semiconductor wafer test method according to the first embodiment of the present invention. 図6は、図5のステップS12を示す拡大断面図である。FIG. 6 is an enlarged cross-sectional view showing step S12 of FIG. 図7は、図5のステップS14を示す拡大断面図である。FIG. 7 is an enlarged cross-sectional view showing step S14 of FIG. 図8は、本発明の第2実施形態における半導体ウェハ試験装置の全体構成を示す概略側面図である。FIG. 8 is a schematic side view showing the overall configuration of the semiconductor wafer testing apparatus in the second embodiment of the present invention. 図9は、本発明の第2実施形態におけるウェハトレイを示す断面図である。FIG. 9 is a cross-sectional view showing a wafer tray in the second embodiment of the present invention. 図10は、本発明の第2実施形態におけるステージを示す平面図である。FIG. 10 is a plan view showing a stage in the second embodiment of the present invention. 図11は、図10のXI-XI線に沿った断面図である。11 is a cross-sectional view taken along line XI-XI in FIG. 図12は、本発明の第2実施形態におけるメカニカルストッパの構成を示す断面図である。FIG. 12 is a cross-sectional view showing the configuration of the mechanical stopper in the second embodiment of the present invention. 図13は、本発明の第2実施形態におけるメカニカルストッパのレイアウトを示す底面図である。FIG. 13 is a bottom view showing the layout of the mechanical stopper in the second embodiment of the present invention. 図14は、本発明の第2実施形態における半導体ウェハの試験方法を示すフローチャートである。FIG. 14 is a flowchart showing a semiconductor wafer test method according to the second embodiment of the present invention. 図15は、図14のステップS22~S24を示す拡大断面図である。FIG. 15 is an enlarged sectional view showing steps S22 to S24 in FIG.
 以下、本発明の実施形態を図面に基づいて説明する。 Hereinafter, embodiments of the present invention will be described with reference to the drawings.
 <第1実施形態>
 図1及び図2は本実施形態における半導体ウェハ試験装置を示す図である。
<First Embodiment>
1 and 2 are diagrams showing a semiconductor wafer test apparatus in the present embodiment.
 本実施形態における半導体ウェハ試験装置1は、半導体ウェハ100に造り込まれたDUTの電気的特性を試験する装置であり、図1に示すように、テストヘッド10と、インタフェース組立体20と、ウェハプローバ30と、を備えている。 The semiconductor wafer test apparatus 1 in this embodiment is an apparatus for testing the electrical characteristics of a DUT built in a semiconductor wafer 100. As shown in FIG. 1, a test head 10, an interface assembly 20, and a wafer And a prober 30.
 この半導体ウェハ試験装置1では、DUTの試験に際して、ウェハプローバ30によって半導体ウェハ100をインタフェース組立体20のプローブカード21に対向させ、この状態で、第2の真空ポンプ42(図3参照)によって密閉空間37(図6及び図7参照)内を減圧することで、半導体ウェハ100をプローブカード21に接触させる。さらに、この状態からウェハプローバ30によって半導体ウェハ100をプローブカード21に向かって所定量押し込む。この押込みによって半導体ウェハ100とプローブカード21とが確実に接触したら、テストヘッド10から半導体ウェハ100のDUTに対して試験信号を入出力することで、DUTのテストを実行する。 In this semiconductor wafer test apparatus 1, when testing the DUT, the semiconductor probe 100 is made to face the probe card 21 of the interface assembly 20 by the wafer prober 30, and in this state, the second vacuum pump 42 (see FIG. 3) The semiconductor wafer 100 is brought into contact with the probe card 21 by reducing the pressure in the space 37 (see FIGS. 6 and 7). Further, from this state, the wafer prober 30 pushes the semiconductor wafer 100 toward the probe card 21 by a predetermined amount. When the semiconductor wafer 100 and the probe card 21 are reliably brought into contact with each other by this pushing, a test signal is inputted / outputted from the test head 10 to the DUT of the semiconductor wafer 100 to execute a DUT test.
 すなわち、本実施形態の半導体ウェハ試験装置1では、半導体ウェハ100とインタフェース組立体20とを接触させる方式として減圧方式を採用しつつも、カンチレバー型やバーチカル型のプローブカードに必要とされるストローク管理の機能も備えている。 That is, in the semiconductor wafer test apparatus 1 of the present embodiment, the stroke management required for the cantilever type or vertical type probe card is adopted while adopting the decompression method as a method for bringing the semiconductor wafer 100 and the interface assembly 20 into contact with each other. It also has the function.
 インタフェース組立体20は、図2に示すように、半導体ウェハ100に電気的に接触するプローブカード21と、テストヘッド10に接続されるパフォーマンスボード24と、プローブカード21とパフォーマンスボード24との間で伝送路のピッチ変換を行うインタポーザ22と、を備えている。 As shown in FIG. 2, the interface assembly 20 includes a probe card 21 that is in electrical contact with the semiconductor wafer 100, a performance board 24 connected to the test head 10, and the probe card 21 and the performance board 24. And an interposer 22 that performs pitch conversion of the transmission path.
 プローブカード21は、配線等が形成されたカード基板211と、当該基板21に実装された多数のプローブ針212を有する、いわゆるカンチレバー型のプローブカードである。 The probe card 21 is a so-called cantilever type probe card having a card substrate 211 on which wiring or the like is formed and a large number of probe needles 212 mounted on the substrate 21.
 なお、本実施形態におけるプローブカード21は、半導体ウェハ100との接触後に所定量のオーバドライブを必要とするタイプのものであれば、上記のものに特に限定されない。例えば、プローブカード21として、カード基板と、当該カード基板に立設された多数のポゴピンと、を有する、いわゆるバーチカル(垂直)型のプローブカードを用いてもよい。 Note that the probe card 21 in the present embodiment is not particularly limited to the above as long as it is of a type that requires a predetermined amount of overdrive after contact with the semiconductor wafer 100. For example, as the probe card 21, a so-called vertical (vertical) type probe card having a card substrate and a large number of pogo pins standing on the card substrate may be used.
 このプローブカード21とパフォーマンスボード24とを電気的に接続するインタポーザ22は、例えば、シリコン基板、セラミック基板、ガラス基板等のピッチ変換基板や異方導電性ゴム等から構成されており、プローブカード21側の狭いピッチを、パフォーマンスボード24側の比較的広いピッチに変換する。なお、このインタポーザ22は、プローブカード21とパフォーマンスボード24との間で伝送路のピッチ変換を行うものであれば、上記のものに特に限定されない。 The interposer 22 that electrically connects the probe card 21 and the performance board 24 is composed of, for example, a pitch conversion substrate such as a silicon substrate, a ceramic substrate, or a glass substrate, anisotropic conductive rubber, or the like. The narrow pitch on the side is converted into a relatively wide pitch on the performance board 24 side. The interposer 22 is not particularly limited to the above as long as the transmission path pitch conversion is performed between the probe card 21 and the performance board 24.
 パフォーマンスボード24は、インタポーザ22を介してプローブカード21と電気的に接続されている一方で、特に図示しないコネクタやケーブル等を介して、テストヘッド10内に収容されたピンエレクトロニクスに電気的に接続されている。さらに、テストヘッド10は、例えば、ケーブルを介してテスタ(メインフレーム)に電気的に接続されている。本実施形態におけるテストヘッド10やテスタが、本発明における試験装置本体の一例に相当する。 While the performance board 24 is electrically connected to the probe card 21 via the interposer 22, it is electrically connected to the pin electronics housed in the test head 10 via a connector, cable, or the like not shown. Has been. Furthermore, the test head 10 is electrically connected to a tester (main frame) via a cable, for example. The test head 10 and the tester in the present embodiment correspond to an example of a test apparatus main body in the present invention.
 プローブカード21の上面とパフォーマンスボード24の下面との間には、環状のシール部材23が介装されており、プローブカード21とパフォーマンスボード24との間に内部空間25が形成されている。インタポーザ22は、この内部空間25の中に収容されている。 An annular seal member 23 is interposed between the upper surface of the probe card 21 and the lower surface of the performance board 24, and an internal space 25 is formed between the probe card 21 and the performance board 24. The interposer 22 is accommodated in the internal space 25.
 図3及び図4は本実施形態におけるウェハプローバを示す図である。 3 and 4 are views showing a wafer prober in the present embodiment.
 ウェハプローバ30は、図1に示すように、半導体ウェハ100を吸着保持するチャック33と、当該チャック33をインタフェース組立体20に対して相対移動させるステージ60と、を備えている。本実施形態におけるウェハプローバ30が、本発明における半導体ウェハ搬送装置の一例に相当する。 As shown in FIG. 1, the wafer prober 30 includes a chuck 33 that holds the semiconductor wafer 100 by suction and a stage 60 that moves the chuck 33 relative to the interface assembly 20. The wafer prober 30 in the present embodiment corresponds to an example of a semiconductor wafer transfer apparatus in the present invention.
 チャック33は、図3及び図4に示すように、半導体ウェハ100が載置される平坦な上面331を持つ略円板状の部材であり、チャック33の上面331は半導体ウェハ100よりも大きな直径を有している。なお、本実施形態におけるチャック33が、本発明における保持部材の一例に相当する。 As shown in FIGS. 3 and 4, the chuck 33 is a substantially disk-shaped member having a flat upper surface 331 on which the semiconductor wafer 100 is placed, and the upper surface 331 of the chuck 33 has a larger diameter than the semiconductor wafer 100. have. The chuck 33 in the present embodiment corresponds to an example of the holding member in the present invention.
 このチャック33の上面331には、半導体ウェハ100よりも小径の3つの環状溝332が同心円状に形成されている。これらの環状溝332は、チャック33内に形成された吸着用通路333に連通している。この吸着用通路333は、吸着ポート334を介して第1の真空ポンプ41に接続されている。 On the upper surface 331 of the chuck 33, three annular grooves 332 having a smaller diameter than the semiconductor wafer 100 are formed concentrically. These annular grooves 332 communicate with a suction passage 333 formed in the chuck 33. The suction passage 333 is connected to the first vacuum pump 41 via the suction port 334.
 従って、チャック33の上面331に半導体ウェハ100を載置した状態で第1の真空ポンプ41によって吸引を行うと、環状溝332内に発生した負圧によって半導体ウェハ100がチャック33に吸着保持される。なお、環状溝332の形状や数は特に限定されない。 Accordingly, when suction is performed by the first vacuum pump 41 with the semiconductor wafer 100 placed on the upper surface 331 of the chuck 33, the semiconductor wafer 100 is attracted and held by the chuck 33 due to the negative pressure generated in the annular groove 332. . The shape and number of the annular grooves 332 are not particularly limited.
 さらに、本実施形態では、チャック33内に減圧用通路335が形成されている。この減圧用通路335は、上面331において最外側の環状溝332のさらに外側に位置する吸引孔336で開口している。この減圧用通路335は、減圧ポート337を介して、第2の真空ポンプ42に接続されている。本実施形態における第2の真空ポンプ42が、本発明における減圧手段の一例に相当する。 Furthermore, in this embodiment, a pressure reducing passage 335 is formed in the chuck 33. The decompression passage 335 is opened by a suction hole 336 positioned further outside the outermost annular groove 332 on the upper surface 331. The pressure reducing passage 335 is connected to the second vacuum pump 42 via a pressure reducing port 337. The second vacuum pump 42 in the present embodiment corresponds to an example of a decompression unit in the present invention.
 また、チャック33の上面331の外周部近傍には、環状のシール部材34が設けられている。このシール部材34の具体例としては、例えばシリコーンゴムからなるパッキン等を例示することができる。チャック33がプローブカード21に押し付けられると、このシール部材34によって、チャック33の上面331とプローブカード21との間に密閉空間37(図6及び図7参照)が形成されるようになっている。特に、本実施形態のシール部材34は、第2のポンプ42の減圧後のチャック33の移動を十分に許容し得る程度のZ方向(図1)に沿った自由度(柔軟性)を有している。 Further, an annular seal member 34 is provided in the vicinity of the outer peripheral portion of the upper surface 331 of the chuck 33. As a specific example of the seal member 34, for example, a packing made of silicone rubber can be exemplified. When the chuck 33 is pressed against the probe card 21, a sealed space 37 (see FIGS. 6 and 7) is formed between the upper surface 331 of the chuck 33 and the probe card 21 by the seal member 34. . In particular, the seal member 34 of this embodiment has a degree of freedom (flexibility) along the Z direction (FIG. 1) that can sufficiently allow the movement of the chuck 33 after the pressure reduction of the second pump 42. ing.
 さらに、チャック33内には、半導体ウェハ100の温度調節を行うために、冷却用通路338が形成されていると共にヒータ35と温度センサ36が埋設されている。冷却用通路338は、一対の冷却ポート339を介してチラー43に接続されている。温度センサ356の検出結果に基づいて、ヒータ35やチラー43を制御することで、半導体ウェハ100の温度が目標温度に維持されるようになっている。 Furthermore, in order to adjust the temperature of the semiconductor wafer 100, a cooling passage 338 is formed in the chuck 33, and a heater 35 and a temperature sensor 36 are embedded. The cooling passage 338 is connected to the chiller 43 via a pair of cooling ports 339. By controlling the heater 35 and the chiller 43 based on the detection result of the temperature sensor 356, the temperature of the semiconductor wafer 100 is maintained at the target temperature.
 以上に説明したチャック33は、ステージ32の先端に固定されている。ステージ32は、特に図示しないモータやボールねじ機構等から構成されており、図1に示すように、チャック33を三次元的(X-Y-Z方向)に移動させると共にZ軸を中心として回転させることが可能となっている。 The chuck 33 described above is fixed to the tip of the stage 32. The stage 32 is composed of a motor, a ball screw mechanism, and the like (not shown). As shown in FIG. 1, the stage 32 moves in a three-dimensional manner (XYZ direction) and rotates around the Z axis. It is possible to make it.
 このステージ32は、チャック33に吸着保持された半導体ウェハ100を、インタフェース組立体20に対向する位置に移動させてプローブカード21に押し付けることが可能となっている。なお、本実施形態におけるステージ32が、本発明における移動手段の一例に相当する。 The stage 32 can move the semiconductor wafer 100 sucked and held by the chuck 33 to a position facing the interface assembly 20 and press it against the probe card 21. The stage 32 in the present embodiment corresponds to an example of a moving unit in the present invention.
 次に、以上に説明した半導体ウェハ試験装置1による半導体ウェハ100の試験方法について、図5~図7を参照しながら説明する。図5は本実施形態における半導体ウェハの試験方法を示すフローチャート、図6及び図7は図5のステップS12及びS14を示す図である。 Next, a method for testing the semiconductor wafer 100 using the semiconductor wafer test apparatus 1 described above will be described with reference to FIGS. FIG. 5 is a flowchart showing a semiconductor wafer testing method in the present embodiment, and FIGS. 6 and 7 are views showing steps S12 and S14 of FIG.
 先ず、図5のステップS11において、ウェハプローバ30のステージ32が、半導体ウェハ100を吸着保持しているチャック33を、プローブカード21に対向する位置に移動させる。次いで、チャック33のシール部材34がプローブカード21のカード基板211に密着するまで、ステージ32がチャック33を上昇させる。シール部材34がプローブカード21に密着してプローブカード21とチャック33との間に密閉空間37が形成されるまでチャック33を上昇させたら、ステージ32は停止する。 First, in step S <b> 11 of FIG. 5, the stage 32 of the wafer prober 30 moves the chuck 33 holding the semiconductor wafer 100 to a position facing the probe card 21. Next, the stage 32 raises the chuck 33 until the seal member 34 of the chuck 33 comes into close contact with the card substrate 211 of the probe card 21. When the chuck 33 is raised until the sealing member 34 comes into close contact with the probe card 21 and a sealed space 37 is formed between the probe card 21 and the chuck 33, the stage 32 stops.
 次いで、図5のステップS12において、図6に示すように、第2の真空ポンプ42を作動させて密閉空間37内を減圧する。 Next, in step S12 of FIG. 5, as shown in FIG. 6, the second vacuum pump 42 is operated to depressurize the sealed space 37.
 この際、同図に示すように、密閉空間37内の減圧に伴って生じる吸着力Fが、プローブカード21が有する全てのプローブ針212を押圧するのに必要な必要押圧力F(例えば200~300[kgf](1.96×10[N]~2.94×10[N])程度)と実質的に同一(F≒F)となるように、第2の真空ポンプ42を制御する。なお、吸着力Fが必要押圧力Fよりも若干弱く(F<F)なるように、第2の真空ポンプ42を制御してもよい。 At this time, as shown in the figure, the suction force F P that occurs with the vacuum in the closed space 37, required pressing force required to press all the probes 212 having the probe card 21 F N (e.g. The second vacuum so as to be substantially the same (F P ≈F N ) about 200 to 300 [kgf] (about 1.96 × 10 3 [N] to 2.94 × 10 3 [N])) The pump 42 is controlled. Incidentally, such that slightly weaker than the required pressing force F N is attraction force F P (F P <F N ), it may control the second vacuum pump 42.
 ここで、上記の必要押圧力Fは、プローブ針212一本当たりに必要とされる押圧力(単位:[kgf/pin])に対して、プローブカード21が有するプローブ針212の総数を乗じることで算出される。 Here, it required pressing force F N described above, the pressing force required per one probe 212 (unit: [kgf / pin]) with respect to, multiplied by the total number of probe needles 212 with probe card 21 is It is calculated by.
 この減圧に伴って、半導体ウェハ100とプローブカード21とが接触すると、例えば、テストヘッド10が半導体ウェハ100の電極110とプローブカード21のプローブ針212との電気的な接触を検出する(ステップS13)。 When the semiconductor wafer 100 and the probe card 21 come into contact with the pressure reduction, for example, the test head 10 detects electrical contact between the electrode 110 of the semiconductor wafer 100 and the probe needle 212 of the probe card 21 (step S13). ).
 次いで、図5のステップS14において、この検出をトリガとして、図7に示すように、例えばステージ32のモータに取り付けられたエンコーダからの出力に基づいて、ステージ32がチャック33をさらに所定量(例えば100μm)上昇させる。この上昇によって、プローブカード21のプローブ針212が半導体ウェハ100の電極110に喰い込むので、プローブ針212と電極110とが確実に接触する。 Next, in step S14 in FIG. 5, using this detection as a trigger, as shown in FIG. 100 μm). Due to this rise, the probe needle 212 of the probe card 21 bites into the electrode 110 of the semiconductor wafer 100, so that the probe needle 212 and the electrode 110 are reliably in contact with each other.
 次いで、図5のステップS15において、テストヘッド10がインタフェース組立体20を介して半導体ウェハ100のDUTに対して試験信号を入出力することで、DUTの試験が実行される。 Next, in step S15 of FIG. 5, the test head 10 inputs / outputs a test signal to / from the DUT of the semiconductor wafer 100 via the interface assembly 20, whereby the DUT test is executed.
 半導体ウェハをプローブカードに下方から単に押し付ける従来の押圧方式のウェハプローバでは、チャックやステージ、プローブカードのスティフナの剛性を高めておく必要がある。これに対し、本実施形態では、減圧によって半導体ウェハ100とプローブカード21とを電気的に接触させるので、従来の押圧式のプローバのチャックと比較して、チャック33、ステージ32、或いはプローブカード21のスティフナの剛性を低くすることができ、半導体ウェハ試験装置1の低コスト化を図ることができる。 In a conventional pressing type wafer prober that simply presses a semiconductor wafer against the probe card from below, it is necessary to increase the rigidity of the chuck, stage, and probe card stiffener. On the other hand, in the present embodiment, the semiconductor wafer 100 and the probe card 21 are brought into electrical contact with each other by decompression, so that the chuck 33, the stage 32, or the probe card 21 is compared with the chuck of a conventional pressing type prober. The rigidity of the stiffener can be reduced, and the cost of the semiconductor wafer test apparatus 1 can be reduced.
 また、本実施形態では、減圧を維持した状態でステージ32によってチャック33を上昇させるので、ストローク管理を必要とするタイプのプローブカードを使用する場合にも対応することができる。 Further, in this embodiment, the chuck 33 is raised by the stage 32 while maintaining the reduced pressure, so that it is possible to cope with a case where a probe card of a type that requires stroke management is used.
 因みに、ストローク管理を必要とするタイプのプローブカードを用いた試験において、単に減圧によってプローブカードと半導体ウェハとを接触させると、ストロークを厳密に管理することが難しく、十分なオーバドライブを確保し得なかったり、プローブ針212を塑性変形させてしまうおそれがある。 Incidentally, in a test using a probe card of a type that requires stroke management, if the probe card and the semiconductor wafer are simply brought into contact with each other by decompression, it is difficult to strictly manage the stroke, and sufficient overdrive can be secured. Or the probe needle 212 may be plastically deformed.
 <第2実施形態>
 図8は本実施形態における半導体ウェハ試験装置の全体構成を示す概略側面図、図9は本実施形態におけるウェハトレイを示す断面図、図10及び図11は本実施形態におけるステージを示す図、図12は本実施形態におけるメカニカルストッパの構成を示す断面図、図13は本実施形態におけるメカニカルストッパのレイアウトを示す底面図である。
Second Embodiment
8 is a schematic side view showing the overall configuration of the semiconductor wafer testing apparatus in the present embodiment, FIG. 9 is a cross-sectional view showing a wafer tray in the present embodiment, FIGS. 10 and 11 are views showing a stage in the present embodiment, and FIG. FIG. 13 is a sectional view showing the configuration of the mechanical stopper in the present embodiment, and FIG. 13 is a bottom view showing the layout of the mechanical stopper in the present embodiment.
 本実施形態における半導体ウェハ試験装置1Bは、図8に示すように、テストヘッド10と、インタフェース組立体20と、ウェハプローバ30Bと、を備えている。テストヘッド10及びインタフェース組立体20の構成は、第1実施形態と同様であるので、同一の符号を付して説明を省略する。 The semiconductor wafer test apparatus 1B in this embodiment includes a test head 10, an interface assembly 20, and a wafer prober 30B as shown in FIG. Since the configuration of the test head 10 and the interface assembly 20 is the same as that of the first embodiment, the same reference numerals are given and description thereof is omitted.
 本実施形態におけるウェハプローバ30Bは、(1)チャック33に代えてウェハトレイ50がステージ60に取り付けられており、(2)ウェハトレイ50を着脱可能に保持する先端保持部61がステージ60に設けられており、さらに(3)ウェハトレイ50と当接するメカニカルストッパ70を備えている点で、第1実施形態と相違する。 In the wafer prober 30B according to the present embodiment, (1) the wafer tray 50 is attached to the stage 60 instead of the chuck 33, and (2) a front end holding portion 61 that detachably holds the wafer tray 50 is provided on the stage 60. Furthermore, (3) it is different from the first embodiment in that it includes a mechanical stopper 70 that comes into contact with the wafer tray 50.
 本実施形態におけるウェハトレイ50は、第1実施形態で説明したチャック33と類似の構成を有しており、図9に示すように、半導体ウェハ100が載置される平坦な上面501を持つ略円板状の部材であり、ウェハトレイ50の上面501は半導体ウェハ100よりも大きな直径を有している。なお、本実施形態におけるウェハトレイ50が、本発明における保持部材の一例に相当する。 The wafer tray 50 in this embodiment has a configuration similar to that of the chuck 33 described in the first embodiment. As shown in FIG. 9, the wafer tray 50 has a substantially circular shape having a flat upper surface 501 on which the semiconductor wafer 100 is placed. It is a plate-like member, and the upper surface 501 of the wafer tray 50 has a larger diameter than the semiconductor wafer 100. The wafer tray 50 in the present embodiment corresponds to an example of a holding member in the present invention.
 このウェハトレイ50の上面501には、半導体ウェハ100よりも小径の3つの環状溝502が同心円状に形成されている。これらの環状溝502は、ウェハトレイ50内に形成された吸着用通路503に連通している。この吸着用通路503は、吸着ポート504を介して第1の真空ポンプ(不図示)に接続されている。 On the upper surface 501 of the wafer tray 50, three annular grooves 502 having a smaller diameter than the semiconductor wafer 100 are formed concentrically. These annular grooves 502 communicate with a suction passage 503 formed in the wafer tray 50. The adsorption passage 503 is connected to a first vacuum pump (not shown) via an adsorption port 504.
 従って、ウェハトレイ50の上面501に半導体ウェハ100を載置した状態で第1の真空ポンプによって吸引を行うと、環状溝502内に発生した負圧によって半導体ウェハ100がウェハトレイ50に吸着保持される。なお、環状溝502の形状や数は特に限定されない。 Therefore, when suction is performed by the first vacuum pump while the semiconductor wafer 100 is placed on the upper surface 501 of the wafer tray 50, the semiconductor wafer 100 is attracted and held on the wafer tray 50 by the negative pressure generated in the annular groove 502. The shape and number of the annular grooves 502 are not particularly limited.
 さらに、本実施形態では、ウェハトレイ50内に減圧用通路505が形成されている。この減圧用通路505は、上面501において最外側の環状溝502のさらに外側に位置する吸引孔506で開口している。この減圧用通路505は、減圧ポート507を介して、第2の真空ポンプ(不図示)に接続されている。本実施形態における第2の真空ポンプが、本発明における減圧手段の一例に相当する。 Furthermore, in this embodiment, a pressure reducing passage 505 is formed in the wafer tray 50. The decompression passage 505 is opened by a suction hole 506 positioned further outside the outermost annular groove 502 on the upper surface 501. The pressure reducing passage 505 is connected to a second vacuum pump (not shown) via a pressure reducing port 507. The 2nd vacuum pump in this embodiment is equivalent to an example of the decompression means in the present invention.
 また、ウェハトレイ50の上面501の外周部近傍には、環状のシール部材51が設けられている。このシール部材51の具体例としては、例えばシリコーンゴムからなるパッキン等を例示することができる。ウェハトレイ50がプローブカード21に押し付けられると、このシール部材51によって、ウェハトレイ50の上面501とプローブカード21との間に密閉空間53(図15参照)が形成されるようになっている。特に、本実施形態のシール部材51は、第2のポンプの減圧後のウェハトレイ50の移動を十分に許容し得る程度のZ方向(図8)に沿った自由度(柔軟性)を有している。 Further, an annular seal member 51 is provided in the vicinity of the outer peripheral portion of the upper surface 501 of the wafer tray 50. As a specific example of the seal member 51, for example, packing made of silicone rubber can be exemplified. When the wafer tray 50 is pressed against the probe card 21, the sealing member 51 forms a sealed space 53 (see FIG. 15) between the upper surface 501 of the wafer tray 50 and the probe card 21. In particular, the seal member 51 of the present embodiment has a degree of freedom (flexibility) along the Z direction (FIG. 8) enough to allow the movement of the wafer tray 50 after the pressure reduction of the second pump. Yes.
 さらに、ウェハトレイ50内には、上述のチャック33と同様に、冷却用通路508が形成されていると共にヒータ52及び温度センサ(不図示)が埋設されており、半導体ウェハ100の温度調節を行うことが可能となっている。 Further, similarly to the chuck 33 described above, a cooling passage 508 is formed in the wafer tray 50 and a heater 52 and a temperature sensor (not shown) are embedded to adjust the temperature of the semiconductor wafer 100. Is possible.
 以上に説明したウェハトレイ50は、ステージ60によって着脱可能に保持されて移動することが可能となっている。こうしたウェハトレイ50を採用することで、例えば、複数のテストヘッドで一つのステージ60を共用して、テスト中の半導体ウェハ100をウェハトレイ50に保持させつつ、ステージ60は他の作業(他のウェハトレイ50の移動やアライメント等)を行うことができ、半導体ウェハ試験装置全体の稼働率向上を図ることができる。 The wafer tray 50 described above is detachably held by the stage 60 and can be moved. By adopting such a wafer tray 50, for example, a stage 60 is shared by a plurality of test heads and the semiconductor wafer 100 under test is held on the wafer tray 50, while the stage 60 performs other operations (other wafer trays 50). And the operation rate of the entire semiconductor wafer testing apparatus can be improved.
 ステージ60は、特に図示しないモータやボールねじ機構等から構成されており、図1に示すように、ウェハトレイ50を三次元的(X-Y-Z方向)に移動させると共にZ軸を中心として回転させることが可能となっている。なお、本実施形態におけるステージ60が、本発明における移動装置の一例に相当する。 The stage 60 includes a motor and a ball screw mechanism that are not particularly shown, and as shown in FIG. 1, the wafer tray 50 is moved three-dimensionally (XYZ direction) and rotated about the Z axis. It is possible to make it. The stage 60 in the present embodiment corresponds to an example of the moving device in the present invention.
 また、本実施形態におけるステージ60は、図10及び図11に示すように、ウェハトレイ50を着脱可能に保持する先端保持部61を有している。この先端保持部61は、ウェハトレイ50が載置される平坦な上面611を持つ円板状の部材で構成されており、この上面611はウェハトレイ50と同程度の大きさを有している。 Further, as shown in FIGS. 10 and 11, the stage 60 in the present embodiment has a tip holding portion 61 that holds the wafer tray 50 in a detachable manner. The tip holding portion 61 is formed of a disk-like member having a flat upper surface 611 on which the wafer tray 50 is placed. The upper surface 611 has a size that is approximately the same as the wafer tray 50.
 この先端保持部61の上面611には、半導体ウェハ100よりも小径の3つの環状溝612が同心円状に形成されている。これらの環状溝612は、先端保持部61内に形成された吸着用通路613に連通している。この吸着用通路613は、吸着ポート614を介して第3の真空ポンプ62に接続されている。 Three annular grooves 612 having a smaller diameter than the semiconductor wafer 100 are concentrically formed on the upper surface 611 of the tip holding portion 61. These annular grooves 612 communicate with a suction passage 613 formed in the tip holding portion 61. The suction passage 613 is connected to the third vacuum pump 62 via the suction port 614.
 従って、この先端保持部61の上面611にウェハトレイ50を載置した状態で第3の真空ポンプ62によって吸引を行うと、環状溝612内に発生した負圧によってウェハトレイ50がステージ60の先端保持部61に吸着保持される。 Accordingly, when suction is performed by the third vacuum pump 62 in a state where the wafer tray 50 is placed on the upper surface 611 of the tip holding portion 61, the wafer tray 50 is moved to the tip holding portion of the stage 60 by the negative pressure generated in the annular groove 612. 61 is held by suction.
 なお、環状溝612の形状や数は特に限定されない。また、先端保持部61の上面611にガイドピンを立設すると共に、ウェハトレイ50の下面にガイド孔を形成し、これらガイドピンとガイド孔によってウェハトレイ50を先端保持部61に案内してもよい。 Note that the shape and number of the annular grooves 612 are not particularly limited. Further, guide pins may be provided upright on the upper surface 611 of the tip holding portion 61, and guide holes may be formed on the lower surface of the wafer tray 50, and the wafer tray 50 may be guided to the tip holding portion 61 by these guide pins and guide holes.
 メカニカルストッパ70は、図12に示すように、モータ71、ボールねじ機構72、及び当接部材73を備えている。なお、本実施形態におけるメカニカルストッパ70が、本発明における当接手段の一例に相当する。 The mechanical stopper 70 includes a motor 71, a ball screw mechanism 72, and a contact member 73 as shown in FIG. The mechanical stopper 70 in the present embodiment corresponds to an example of the contact means in the present invention.
 モータ71は、例えば、サーボモータ又はパルスモータから構成されており、ストロークを数値管理することが可能となっている。ボールねじ機構72は、モータ71の駆動軸に連結されており、モータ71が発生した回転駆動力をZ方向沿った直線駆動力に変換する。当接部材73は、ボールねじ機構に取り付けられており、ボールねじ機構72によって変換されたモータ71の駆動力によって、Z軸方向に移動することが可能となっている。 The motor 71 is composed of, for example, a servo motor or a pulse motor, and the stroke can be numerically managed. The ball screw mechanism 72 is connected to the drive shaft of the motor 71, and converts the rotational drive force generated by the motor 71 into a linear drive force along the Z direction. The contact member 73 is attached to a ball screw mechanism, and can be moved in the Z-axis direction by the driving force of the motor 71 converted by the ball screw mechanism 72.
 なお、モータ71及びボールねじ機構72に代えて、圧電素子(ピエゾ素子)を用いてもよい。 A piezoelectric element (piezo element) may be used instead of the motor 71 and the ball screw mechanism 72.
 このメカニカルストッパ70は、ウェハプローバ30のヘッドプレート31において、プローブカード21が挿入される開口31aに周囲に取り付けられており、通常はモータ71が停止しており、当接部材73がウェハトレイ50の外周部に当接してストッパとして機能する。そして、後述するように、例えば半導体ウェハ100の電極110とプローブカード21のプローブ針212との電気的接触をトリガとして、モータ71が駆動して当接部材73が所定量(例えば100μm程度)後退するようになっている。 The mechanical stopper 70 is attached to the periphery of the opening 31 a into which the probe card 21 is inserted in the head plate 31 of the wafer prober 30. Normally, the motor 71 is stopped and the contact member 73 is attached to the wafer tray 50. It abuts on the outer periphery and functions as a stopper. Then, as will be described later, for example, with the electrical contact between the electrode 110 of the semiconductor wafer 100 and the probe needle 212 of the probe card 21 as a trigger, the motor 71 is driven to retract the contact member 73 by a predetermined amount (eg, about 100 μm) It is supposed to be.
 本実施形態では、図13に示すように、複数(本例では3つ)のメカニカルストッパ70がヘッドプレート31の開口31aの周囲に、周方向に沿って実質的に等間隔(120°毎)に配置されている。なお、図13は、インタフェース組立体20及びウェハプローバ30を下方から見た図である。 In the present embodiment, as shown in FIG. 13, a plurality (three in this example) of mechanical stoppers 70 are substantially equidistant around the opening 31a of the head plate 31 along the circumferential direction (every 120 °). Are arranged. FIG. 13 is a view of the interface assembly 20 and the wafer prober 30 as viewed from below.
 複数のメカニカルストッパ70を配置することで、メカニカルストッパ70によってウェハトレイ50の主面の方向も制御することが可能となる。なお、メカニカルストッパ70の数は3つ以上であれば特に限定されず、また、メカニカルストッパ70の配置も均等配置が好ましいが、特にこれに限定されない。 By arranging a plurality of mechanical stoppers 70, the direction of the main surface of the wafer tray 50 can also be controlled by the mechanical stoppers 70. The number of mechanical stoppers 70 is not particularly limited as long as it is three or more, and the mechanical stoppers 70 are preferably arranged evenly, but are not particularly limited thereto.
 なお、このメカニカルストッパ70をウェハトレイ50に設けて、当接部材73をウェハプローバ30Bのヘッドプレート31に当接させてもよい。 The mechanical stopper 70 may be provided on the wafer tray 50, and the contact member 73 may be in contact with the head plate 31 of the wafer prober 30B.
 次に、以上に説明した半導体ウェハ試験装置1Bによる半導体ウェハ100の試験方法について、図14及び図15を参照しながら説明する。図14は本実施形態における半導体ウェハの試験方法を示すフローチャート、図15は図14のステップS22~S24を示す拡大断面図である。 Next, a method for testing the semiconductor wafer 100 using the semiconductor wafer test apparatus 1B described above will be described with reference to FIGS. FIG. 14 is a flowchart showing a method for testing a semiconductor wafer in the present embodiment, and FIG. 15 is an enlarged sectional view showing steps S22 to S24 in FIG.
 先ず、図14のステップS21において、ウェハプローバ30Bのステージ60が、半導体ウェハ100を保持しているウェハトレイ50を、プローブカード21に対向する位置に移動させる。次いで、ウェハトレイ50のシール部材51がプローブカード21のカード基板211に密着するまで、ステージ60がウェハトレイ50を上昇させる。シール部材51がプローブカード21に密着してプローブカード21とウェハトレイ50との間に密閉空間53が形成されるまでウェハトレイ50を上昇させたら、ステージ60は停止する。 First, in step S21 of FIG. 14, the stage 60 of the wafer prober 30B moves the wafer tray 50 holding the semiconductor wafer 100 to a position facing the probe card 21. Next, the stage 60 raises the wafer tray 50 until the seal member 51 of the wafer tray 50 comes into close contact with the card substrate 211 of the probe card 21. When the wafer tray 50 is raised until the sealing member 51 is in close contact with the probe card 21 and the sealed space 53 is formed between the probe card 21 and the wafer tray 50, the stage 60 stops.
 次いで、図14のステップS22において、図15に示すように、第2の真空ポンプを作動させて密閉空間53内を減圧する。 Next, in step S22 of FIG. 14, as shown in FIG. 15, the second vacuum pump is operated to depressurize the sealed space 53.
 この際、同図に示すように、密閉空間53内の減圧に伴って生じる吸着力Fが、プローブカード21が有する全てのプローブ針212に必要な押圧力F(例えば200~300[kgf](1.96×10[N]~2.94×10[N])程度)よりも若干強く(F>F)なるように、第2の真空ポンプを制御する。 At this time, as shown in the figure, the suction force F P that occurs with the vacuum in the closed space 53, the pressing force needed for all probes 212 having the probe card 21 F N (e.g. 200 ~ 300 [kgf ] (Approximately 1.96 × 10 3 [N] to 2.94 × 10 3 [N])), the second vacuum pump is controlled to be slightly stronger (F P > F N ).
 この減圧に伴って、半導体ウェハ100とプローブカード21とが接触すると、例えば、テストヘッド10が半導体ウェハ100の電極110とプローブカード21のプローブ針212との電気的な接触を検出する(ステップS23)。 When the semiconductor wafer 100 and the probe card 21 come into contact with the pressure reduction, for example, the test head 10 detects electrical contact between the electrode 110 of the semiconductor wafer 100 and the probe needle 212 of the probe card 21 (step S23). ).
 なお、本実施形態では、半導体ウェハ100とプローブカード21とが接触したら、ステージ60は、他の作業(他のウェハトレイ50の移動やアライメント等)を行うために、ウェハトレイ50から離れて下降する。 In this embodiment, when the semiconductor wafer 100 and the probe card 21 come into contact with each other, the stage 60 moves down from the wafer tray 50 in order to perform other operations (such as movement and alignment of other wafer trays 50).
 次いで、図14のステップS24において、この検出をトリガとして、図15に示すように、メカニカルストッパ70のモータ71を駆動させて、当接部材73を所定量(例えば100μm)後退させる。 Next, in step S24 of FIG. 14, using this detection as a trigger, as shown in FIG. 15, the motor 71 of the mechanical stopper 70 is driven to retract the contact member 73 by a predetermined amount (for example, 100 μm).
 この際、上述のように、減圧による吸着力Fが、プローブ針212の必要押圧力Fよりも若干強くなっているので(F>F)、当接部材73の後退に伴ってウェハトレイ50がプローブカード21にさらに接近する。この接近によって、プローブカード21のプローブ針212が半導体ウェハ100の電極110に食い込むので、プローブ針212と電極110とが確実に接触する。 At this time, as described above, the suction force F P by decompression, because the stronger a little than the required pressing force F N of the probe needle 212 (F P> F N) , along with the retraction of the contact member 73 The wafer tray 50 further approaches the probe card 21. By this approach, the probe needle 212 of the probe card 21 bites into the electrode 110 of the semiconductor wafer 100, so that the probe needle 212 and the electrode 110 come into contact with each other.
 次いで、図14のステップS25において、テストヘッド10がインタフェース組立体20を介して半導体ウェハ100のDUTに対して試験信号を入出力することで、DUTの試験が実行される。 Next, in step S25 of FIG. 14, the test head 10 inputs / outputs a test signal to / from the DUT of the semiconductor wafer 100 via the interface assembly 20, whereby the DUT test is executed.
 以上のように、本実施形態では、減圧によって半導体ウェハ100とプローブカード21とを電気的に接触させるので、ウェハトレイ50、ステージ60、或いはプローブカード21のスティフナの剛性を低くすることができ、半導体ウェハ試験装置1Bの低コスト化を図ることができる。 As described above, in this embodiment, since the semiconductor wafer 100 and the probe card 21 are electrically contacted by decompression, the rigidity of the stiffener of the wafer tray 50, the stage 60, or the probe card 21 can be reduced, and the semiconductor The cost of the wafer test apparatus 1B can be reduced.
 また、本実施形態では、減圧を維持した状態でメカニカルストッパ70の当接部材73を後退させるので、ストローク管理を必要とするタイプのプローブカードを使用する場合にも対応することができる。 Further, in this embodiment, the contact member 73 of the mechanical stopper 70 is retracted while maintaining the reduced pressure, so that it is possible to cope with the case where a probe card of a type that requires stroke management is used.
 また、ストローク管理の不要なメンブレン型のプローブカードを対象とした減圧方式のプローバに、本実施形態におけるメカニカルストッパ70を取り付けることで、ストローク管理の必要なカンチレバー型やバーチカル型のプローブカードにも対応することが可能となる。 In addition, by attaching the mechanical stopper 70 in this embodiment to a decompression type prober for membrane type probe cards that do not require stroke management, it is also compatible with cantilever type and vertical type probe cards that require stroke management. It becomes possible to do.
 また、こうしたメカニカルストッパ70を複数設けることで、ウェハトレイ50の平面方向の制御も可能となる。 Also, by providing a plurality of such mechanical stoppers 70, the planar direction of the wafer tray 50 can be controlled.
 なお、以上説明した実施形態は、本発明の理解を容易にするために記載されたものであって、本発明を限定するために記載されたものではない。したがって、上記の実施形態に開示された各要素は、本発明の技術的範囲に属する全ての設計変更や均等物をも含む趣旨である。 The embodiment described above is described for easy understanding of the present invention, and is not described for limiting the present invention. Therefore, each element disclosed in the above embodiment is intended to include all design changes and equivalents belonging to the technical scope of the present invention.
1,1B…半導体ウェハ試験装置
 10…テストヘッド
 20…インタフェース組立体
  21…プローブカード
   212…プローブ針
  22…インタポーザ
  24…パフォーマンスボード
 30,30B…ウェハプローバ
  31…ヘッドプレート
  32…ステージ
  33…チャック
   34…シール部材
   37…密閉空間
  42…第2の真空ポンプ
 50…ウェハトレイ
  51…シール部材
  53…密閉空間
 60…ステージ
 70…メカニカルストッパ
  71…モータ
  72…ボールねじ機構
  73…当接部材
100…半導体ウェハ
 110…電極
DESCRIPTION OF SYMBOLS 1,1B ... Semiconductor wafer test apparatus 10 ... Test head 20 ... Interface assembly 21 ... Probe card 212 ... Probe needle 22 ... Interposer 24 ... Performance board 30, 30B ... Wafer prober 31 ... Head plate 32 ... Stage 33 ... Chuck 34 ... Seal member 37 ... Sealed space 42 ... Second vacuum pump 50 ... Wafer tray 51 ... Seal member 53 ... Sealed space 60 ... Stage 70 ... Mechanical stopper 71 ... Motor 72 ... Ball screw mechanism 73 ... Contact member 100 ... Semiconductor wafer 110 ... electrode

Claims (16)

  1.  プローブカードを用いて半導体ウェハを試験する方法であって、
     前記半導体ウェハを保持する保持部材と前記プローブカードとの間に密閉空間を形成する密閉工程と、
     前記密閉空間を減圧する減圧工程と、
     前記密閉空間を減圧した状態で、前記保持部材を前記プローブカードに向かって所定量移動させる移動工程と、を備えたことを特徴とする半導体ウェハの試験方法。
    A method of testing a semiconductor wafer using a probe card,
    A sealing step of forming a sealed space between the holding member that holds the semiconductor wafer and the probe card;
    A decompression step of decompressing the sealed space;
    And a moving step of moving the holding member by a predetermined amount toward the probe card in a state where the sealed space is decompressed.
  2.  請求項1に記載の半導体ウェハの試験方法であって、
     前記プローブカードは、カンチレバー型プローブカード又はバーチカル型プローブカードを含むことを特徴とする半導体ウェハの試験方法。
    A test method for a semiconductor wafer according to claim 1,
    The method for testing a semiconductor wafer, wherein the probe card includes a cantilever type probe card or a vertical type probe card.
  3.  請求項1又は2に記載の半導体ウェハの試験方法であって、
     前記半導体ウェハと前記プローブカードとの電気的接触を検出する検出工程を備え、
     前記移動工程は、前記検出工程での検出結果に基づいて、前記保持部材を前記プローブカードに向かって移動させることを含むことを特徴とする半導体ウェハの試験方法。
    A method for testing a semiconductor wafer according to claim 1 or 2,
    A detection step of detecting electrical contact between the semiconductor wafer and the probe card;
    The method for testing a semiconductor wafer, wherein the moving step includes moving the holding member toward the probe card based on a detection result in the detecting step.
  4.  請求項1~3の何れかに記載の半導体ウェハの試験方法であって、
     前記移動工程は、前記保持部材を移動させる移動手段によって、前記保持部材を前記プローブカードに向かって前進させることを含むことを特徴とする半導体ウェハの試験方法。
    A method for testing a semiconductor wafer according to any one of claims 1 to 3,
    The method for testing a semiconductor wafer, wherein the moving step includes advancing the holding member toward the probe card by moving means for moving the holding member.
  5.  請求項4に記載の半導体ウェハの試験方法であって、
     前記減圧工程は、前記密閉空間内の減圧に伴って生じる吸着力(F)が、前記プローブカードの押圧に必要とされる必要押圧力(F)以下となるように(F≦F)、前記密閉空間内を減圧することを含むことを特徴とする半導体ウェハの試験方法。
    A method for testing a semiconductor wafer according to claim 4,
    The depressurization step is performed so that the adsorption force (F P ) generated with the depressurization in the sealed space is equal to or less than the necessary pressing force (F N ) required for pressing the probe card (F P ≦ F N ), a method for testing a semiconductor wafer, comprising depressurizing the sealed space.
  6.  請求項1~3の何れかに記載の半導体ウェハの試験方法であって、
     前記移動工程は、前記保持部材に当接している当接手段を後退させることを含むことを特徴とする半導体ウェハの試験方法。
    A method for testing a semiconductor wafer according to any one of claims 1 to 3,
    The method for testing a semiconductor wafer, wherein the moving step includes retracting a contact means that is in contact with the holding member.
  7.  請求項6に記載の半導体ウェハの試験方法であって、
     前記減圧工程は、前記密閉空間内の減圧に伴って生じる吸着力(F)が、前記プローブカードの押圧に必要とされる必要押圧力(F)よりも大きくなるように(F>F)、前記密閉空間内を減圧することを含むことを特徴とする半導体ウェハの試験方法。
    A test method for a semiconductor wafer according to claim 6,
    The depressurization step is performed such that the adsorption force (F P ) generated with the depressurization in the sealed space is larger than the necessary pressing force (F N ) required for pressing the probe card (F P > F N ), depressurizing the inside of the sealed space, and a method for testing a semiconductor wafer.
  8.  プローブカードを用いた半導体ウェハの試験に用いられる半導体ウェハ搬送装置であって、
     前記半導体ウェハを保持する保持部材と、
     前記プローブカードと前記保持部材との間に密閉空間を形成する密閉手段と、
     前記密閉空間を減圧する減圧手段と、
     前記減圧手段によって前記密閉空間を減圧した状態で、前記保持部材を前記プローブカードに対して相対移動させる移動手段と、を備えたことを特徴とする半導体ウェハ搬送装置。
    A semiconductor wafer transfer device used for testing a semiconductor wafer using a probe card,
    A holding member for holding the semiconductor wafer;
    Sealing means for forming a sealed space between the probe card and the holding member;
    Decompression means for decompressing the sealed space;
    And a moving means for moving the holding member relative to the probe card in a state where the sealed space is decompressed by the decompressing means.
  9.  請求項8に記載の半導体ウェハ搬送装置であって、
     前記プローブカードは、カンチレバー型プローブカード又はバーチカル型プローブカードを含むことを特徴とする半導体ウェハ搬送装置。
    The semiconductor wafer transfer device according to claim 8,
    The semiconductor wafer transfer apparatus, wherein the probe card includes a cantilever type probe card or a vertical type probe card.
  10.  請求項8又は9に記載の半導体ウェハ搬送装置であって、
     前記保持部材は、前記半導体ウェハが載置される載置面を有し、
     前記密閉手段は、前記載置面に設けられた環状のシール部材を含むことを特徴とする半導体ウェハ搬送装置。
    A semiconductor wafer transfer device according to claim 8 or 9,
    The holding member has a mounting surface on which the semiconductor wafer is mounted;
    The semiconductor wafer transfer apparatus, wherein the sealing means includes an annular seal member provided on the mounting surface.
  11.  プローブカードを用いた半導体ウェハの試験に用いられる半導体ウェハ搬送装置であって、
     前記半導体ウェハを保持する保持部材と、
     前記プローブカードと前記保持部材との間に密閉空間を形成する密閉手段と、
     前記密閉空間を減圧する減圧手段と、
     前記保持部材に当接する当接部と、前記当接部を移動させる駆動部と、を有する当接手段と、を備えたことを特徴とする半導体ウェハ搬送装置。
    A semiconductor wafer transfer device used for testing a semiconductor wafer using a probe card,
    A holding member for holding the semiconductor wafer;
    Sealing means for forming a sealed space between the probe card and the holding member;
    Decompression means for decompressing the sealed space;
    A semiconductor wafer transfer apparatus comprising: an abutting unit having an abutting part that abuts on the holding member; and a driving unit that moves the abutting part.
  12.  請求項11に記載の半導体ウェハ搬送装置であって、
     前記プローブカードは、カンチレバー型プローブカード又はバーチカル型プローブカードを含むことを特徴とする半導体ウェハ搬送装置。
    The semiconductor wafer transfer device according to claim 11,
    The semiconductor wafer transfer apparatus, wherein the probe card includes a cantilever type probe card or a vertical type probe card.
  13.  請求項11又は12に記載の半導体ウェハ搬送装置であって、
     前記保持部材は、前記半導体ウェハが載置される載置面を有し、
     前記密閉手段は、前記載置面に設けられた環状のシール部材を含むことを特徴とする半導体ウェハ搬送装置。
    It is a semiconductor wafer conveyance device according to claim 11 or 12,
    The holding member has a mounting surface on which the semiconductor wafer is mounted;
    The semiconductor wafer transfer apparatus, wherein the sealing means includes an annular seal member provided on the mounting surface.
  14.  請求項11~13の何れかに記載の半導体ウェハ搬送装置であって、
     前記駆動部は、ボールねじ機構が連結されたモータ、又は、圧電素子を含むことを特徴とする半導体ウェハ搬送装置。
    A semiconductor wafer transfer device according to any one of claims 11 to 13,
    The semiconductor wafer transfer apparatus, wherein the driving unit includes a motor or a piezoelectric element connected to a ball screw mechanism.
  15.  請求項10~14の何れかに記載の半導体ウェハ搬送装置であって、
     複数の前記当接手段が、前記保持部材の外周部に当接するように周方向に沿って実質的に等間隔に配置されていることを特徴とする半導体ウェハ搬送装置。
    The semiconductor wafer transfer device according to any one of claims 10 to 14,
    The semiconductor wafer transfer apparatus, wherein the plurality of contact means are arranged at substantially equal intervals along the circumferential direction so as to contact the outer peripheral portion of the holding member.
  16.  プローブカードを用いて半導体ウェハを試験する半導体ウェハ試験装置であって、
     前記プローブカードが電気的に接続される試験装置本体と、
     請求項8~15の何れかに記載の半導体ウェハ搬送装置と、を備えたことを特徴とする半導体ウェハ試験装置。
    A semiconductor wafer testing apparatus for testing a semiconductor wafer using a probe card,
    A test apparatus body to which the probe card is electrically connected;
    A semiconductor wafer test apparatus comprising the semiconductor wafer transfer apparatus according to any one of claims 8 to 15.
PCT/JP2010/064608 2010-08-27 2010-08-27 Testing method for semiconductor wafer, semiconductor wafer transport device, and semiconductor wafer testing device WO2012026036A1 (en)

Priority Applications (3)

Application Number Priority Date Filing Date Title
JP2011525332A JP5368565B2 (en) 2010-08-27 2010-08-27 Semiconductor wafer test method and semiconductor wafer test apparatus
PCT/JP2010/064608 WO2012026036A1 (en) 2010-08-27 2010-08-27 Testing method for semiconductor wafer, semiconductor wafer transport device, and semiconductor wafer testing device
TW100121381A TW201209429A (en) 2010-08-27 2011-06-20 Testing method for semiconductor wafer, semiconductor wafer transport device, and semiconductor wafer testing device

Applications Claiming Priority (1)

Application Number Priority Date Filing Date Title
PCT/JP2010/064608 WO2012026036A1 (en) 2010-08-27 2010-08-27 Testing method for semiconductor wafer, semiconductor wafer transport device, and semiconductor wafer testing device

Publications (1)

Publication Number Publication Date
WO2012026036A1 true WO2012026036A1 (en) 2012-03-01

Family

ID=45723063

Family Applications (1)

Application Number Title Priority Date Filing Date
PCT/JP2010/064608 WO2012026036A1 (en) 2010-08-27 2010-08-27 Testing method for semiconductor wafer, semiconductor wafer transport device, and semiconductor wafer testing device

Country Status (3)

Country Link
JP (1) JP5368565B2 (en)
TW (1) TW201209429A (en)
WO (1) WO2012026036A1 (en)

Cited By (10)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
JP2013219299A (en) * 2012-04-12 2013-10-24 Advantest Corp Semiconductor wafer testing method, semiconductor wafer test device, and wafer tray
WO2014021176A1 (en) * 2012-07-31 2014-02-06 東京エレクトロン株式会社 Method for bringing substrate into contact with probe card
WO2014021024A1 (en) * 2012-07-31 2014-02-06 東京エレクトロン株式会社 Device for causing substrate to contact probe card, and substrate inspection apparatus provided with same
JP5528617B1 (en) * 2013-11-29 2014-06-25 株式会社ウイング Probing unit, burn-in screening system using the probing unit, and burn-in screening method
JP2014143367A (en) * 2013-01-25 2014-08-07 Tokyo Electron Ltd Bonding device and bonding system
CN105182097A (en) * 2015-06-15 2015-12-23 黄染之 Electrical detection equipment used for detecting wafers
JP5858312B1 (en) * 2014-07-25 2016-02-10 株式会社東京精密 Probing apparatus and probe contact method
JP2017040561A (en) * 2015-08-20 2017-02-23 三菱電機株式会社 Semiconductor chip testing device and semiconductor chip testing method
KR20190039248A (en) 2016-09-21 2019-04-10 도쿄엘렉트론가부시키가이샤 Substrate Inspection Method and Substrate Inspection Device
JP2021005686A (en) * 2019-06-27 2021-01-14 東京エレクトロン株式会社 Preheat method of prober and probe card

Families Citing this family (2)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
WO2016200630A1 (en) * 2015-06-10 2016-12-15 Translarity, Inc. Lost motion gasket for semiconductor test, and associated systems and methods
TWI704354B (en) * 2019-03-21 2020-09-11 創意電子股份有限公司 Probe card, wafer inspection apparatus having the same, and chip probe test flow using the same

Citations (3)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
JPH11238770A (en) * 1998-02-23 1999-08-31 Matsushita Electric Ind Co Ltd Semiconductor integrated circuit inspecting device
JP2008224586A (en) * 2007-03-15 2008-09-25 Yokogawa Electric Corp Inspection device
JP2008294292A (en) * 2007-05-25 2008-12-04 Tokyo Seimitsu Co Ltd Prober, contacting method and program for prober

Family Cites Families (5)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
JPH11154694A (en) * 1997-11-21 1999-06-08 Matsushita Electric Ind Co Ltd Method of alignment for batch wafer measuring test and method for manufacturing probe card
JP4037726B2 (en) * 2002-10-02 2008-01-23 東京エレクトロン株式会社 Vacuum probe apparatus and vacuum probe method
JP2007294632A (en) * 2006-04-25 2007-11-08 Matsushita Electric Ind Co Ltd Inspection apparatus
KR101321467B1 (en) * 2009-02-12 2013-10-28 가부시키가이샤 아드반테스트 Semiconductor wafer testing apparatus
JP5436146B2 (en) * 2009-10-23 2014-03-05 パナソニック株式会社 Wafer inspection equipment

Patent Citations (3)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
JPH11238770A (en) * 1998-02-23 1999-08-31 Matsushita Electric Ind Co Ltd Semiconductor integrated circuit inspecting device
JP2008224586A (en) * 2007-03-15 2008-09-25 Yokogawa Electric Corp Inspection device
JP2008294292A (en) * 2007-05-25 2008-12-04 Tokyo Seimitsu Co Ltd Prober, contacting method and program for prober

Cited By (21)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
JP2013219299A (en) * 2012-04-12 2013-10-24 Advantest Corp Semiconductor wafer testing method, semiconductor wafer test device, and wafer tray
US9915698B2 (en) 2012-07-31 2018-03-13 Tokyo Electron Limited Device of contacting substrate with probe card and substrate inspection apparatus having same
WO2014021024A1 (en) * 2012-07-31 2014-02-06 東京エレクトロン株式会社 Device for causing substrate to contact probe card, and substrate inspection apparatus provided with same
JP2014029917A (en) * 2012-07-31 2014-02-13 Tokyo Electron Ltd Substrate contact method to probe card
JP2014029916A (en) * 2012-07-31 2014-02-13 Tokyo Electron Ltd Substrate contact device to probe card, and substrate inspection device provided with substrate contact device
WO2014021176A1 (en) * 2012-07-31 2014-02-06 東京エレクトロン株式会社 Method for bringing substrate into contact with probe card
CN104508812A (en) * 2012-07-31 2015-04-08 东京毅力科创株式会社 Method for bringing substrate into contact with probe card
KR20150040286A (en) * 2012-07-31 2015-04-14 도쿄엘렉트론가부시키가이샤 Method for bringing substrate into contact with probe card
KR101744055B1 (en) * 2012-07-31 2017-06-07 도쿄엘렉트론가부시키가이샤 Device for causing substrate to contact probe card, and substrate inspection apparatus provided with same
US9863977B2 (en) 2012-07-31 2018-01-09 Tokyo Electron Limited Method of contacting substrate with probe card
KR101678898B1 (en) * 2012-07-31 2016-11-23 도쿄엘렉트론가부시키가이샤 Method for bringing substrate into contact with probe card
TWI593976B (en) * 2012-07-31 2017-08-01 Tokyo Electron Ltd Substrate contact method for probe card
JP2014143367A (en) * 2013-01-25 2014-08-07 Tokyo Electron Ltd Bonding device and bonding system
JP5528617B1 (en) * 2013-11-29 2014-06-25 株式会社ウイング Probing unit, burn-in screening system using the probing unit, and burn-in screening method
JP5858312B1 (en) * 2014-07-25 2016-02-10 株式会社東京精密 Probing apparatus and probe contact method
CN105182097A (en) * 2015-06-15 2015-12-23 黄染之 Electrical detection equipment used for detecting wafers
JP2017040561A (en) * 2015-08-20 2017-02-23 三菱電機株式会社 Semiconductor chip testing device and semiconductor chip testing method
KR20190039248A (en) 2016-09-21 2019-04-10 도쿄엘렉트론가부시키가이샤 Substrate Inspection Method and Substrate Inspection Device
US10901028B2 (en) 2016-09-21 2021-01-26 Tokyo Electron Limited Substrate inspection method and substrate inspection device
JP2021005686A (en) * 2019-06-27 2021-01-14 東京エレクトロン株式会社 Preheat method of prober and probe card
JP7281981B2 (en) 2019-06-27 2023-05-26 東京エレクトロン株式会社 How to preheat the prober and probe card

Also Published As

Publication number Publication date
JP5368565B2 (en) 2013-12-18
TW201209429A (en) 2012-03-01
JPWO2012026036A1 (en) 2013-10-28

Similar Documents

Publication Publication Date Title
JP5368565B2 (en) Semiconductor wafer test method and semiconductor wafer test apparatus
JP5405575B2 (en) Semiconductor wafer test apparatus and semiconductor wafer test method
JP5629723B2 (en) Semiconductor wafer testing method
TWI410645B (en) Probe card assembly
JP4491513B1 (en) Semiconductor wafer testing equipment
KR20220059414A (en) Passive carrier-based device delivery for slot-based high-volume semiconductor test system
CN107431039B (en) Substrate holding method, substrate holding apparatus, processing method, and processing apparatus
TW200905202A (en) Probe card assembly with a mechanically decoupled wiring substrate
KR20080077172A (en) Electronic component test equipment and method for loading performance board on the electronic component test equipment
JP5904428B1 (en) Probing apparatus and probe contact method
JP2010186998A6 (en) Semiconductor wafer testing equipment
WO2012023180A1 (en) Connecting apparatus, semiconductor wafer testing apparatus provided with same, and connecting method
JP2011091222A (en) Device for inspecting wafer and method of inspecting semiconductor wafer employing the same
JP2017183423A (en) Prober and probe contact method
JP4037726B2 (en) Vacuum probe apparatus and vacuum probe method
JP4397960B2 (en) Semiconductor wafer test apparatus and probe card for semiconductor wafer
JP7267058B2 (en) inspection equipment
KR101838805B1 (en) Apparatus and method for testing semiconductor devices
CN114518518A (en) Needle measuring system
JP2012064973A (en) Probe card holding apparatus
KR101729850B1 (en) Apparatus for inspecting a compact electronic device
JP2005201659A (en) Probe card, probe apparatus, probe test method, and semiconductor device manufacturing method
WO2016163147A1 (en) Substrate holding method, substrate holding device, processing method and processing device

Legal Events

Date Code Title Description
WWE Wipo information: entry into national phase

Ref document number: 2011525332

Country of ref document: JP

121 Ep: the epo has been informed by wipo that ep was designated in this application

Ref document number: 10856439

Country of ref document: EP

Kind code of ref document: A1

NENP Non-entry into the national phase

Ref country code: DE

122 Ep: pct application non-entry in european phase

Ref document number: 10856439

Country of ref document: EP

Kind code of ref document: A1