WO2016163147A1 - Substrate holding method, substrate holding device, processing method and processing device - Google Patents

Substrate holding method, substrate holding device, processing method and processing device Download PDF

Info

Publication number
WO2016163147A1
WO2016163147A1 PCT/JP2016/053953 JP2016053953W WO2016163147A1 WO 2016163147 A1 WO2016163147 A1 WO 2016163147A1 JP 2016053953 W JP2016053953 W JP 2016053953W WO 2016163147 A1 WO2016163147 A1 WO 2016163147A1
Authority
WO
WIPO (PCT)
Prior art keywords
substrate
suction
peripheral
regions
substrate holding
Prior art date
Application number
PCT/JP2016/053953
Other languages
French (fr)
Japanese (ja)
Inventor
帯金 正
秀和 柴田
Original Assignee
東京エレクトロン株式会社
Priority date (The priority date is an assumption and is not a legal conclusion. Google has not performed a legal analysis and makes no representation as to the accuracy of the date listed.)
Filing date
Publication date
Priority claimed from JP2015229657A external-priority patent/JP6568781B2/en
Application filed by 東京エレクトロン株式会社 filed Critical 東京エレクトロン株式会社
Priority to KR1020177031887A priority Critical patent/KR102044085B1/en
Priority to CN201680019629.8A priority patent/CN107431039B/en
Priority to EP16776316.8A priority patent/EP3282475B1/en
Publication of WO2016163147A1 publication Critical patent/WO2016163147A1/en

Links

Images

Classifications

    • HELECTRICITY
    • H01ELECTRIC ELEMENTS
    • H01LSEMICONDUCTOR DEVICES NOT COVERED BY CLASS H10
    • H01L21/00Processes or apparatus adapted for the manufacture or treatment of semiconductor or solid state devices or of parts thereof
    • H01L21/67Apparatus specially adapted for handling semiconductor or electric solid state devices during manufacture or treatment thereof; Apparatus specially adapted for handling wafers during manufacture or treatment of semiconductor or electric solid state devices or components ; Apparatus not specifically provided for elsewhere
    • H01L21/683Apparatus specially adapted for handling semiconductor or electric solid state devices during manufacture or treatment thereof; Apparatus specially adapted for handling wafers during manufacture or treatment of semiconductor or electric solid state devices or components ; Apparatus not specifically provided for elsewhere for supporting or gripping

Definitions

  • the present invention relates to a substrate holding method for holding a substrate when performing processing such as inspection of a device formed on a substrate such as a semiconductor wafer, a substrate holding apparatus used in the method, a processing method, and a processing apparatus. .
  • a probe test for evaluating the electrical characteristics of the semiconductor device is performed.
  • Probe inspection is performed by bringing a probe needle into contact with an electrode of a semiconductor device formed on a semiconductor substrate, inputting an electric signal for each semiconductor device, and observing the electric signal output thereto. Characteristic evaluation is performed.
  • a probe apparatus used for probe inspection holds a substrate to be inspected on which a semiconductor device to be inspected is formed, and is formed on a stage (mounting table) that can be rotated in a horizontal direction, a vertical direction, and a substrate to be inspected.
  • An alignment device for accurately bringing a probe needle into contact with an electrode of a semiconductor device is provided. In order to improve the reliability of the probe inspection, it is important to securely hold the substrate to be inspected on the stage so as not to be displaced.
  • a vacuum chuck As a technique for holding a substrate in the field of semiconductor processes, a vacuum chuck is known in which the space between the back surface of the substrate and the stage is fixed under reduced pressure.
  • Patent Document 1 in order to hold a warped substrate horizontally, suction pressure is separately applied to the central region and the outer peripheral region of the holding portion formed by the porous body. It has been proposed to be able to adjust.
  • Patent Document 2 discloses a substrate having warpage by blowing gas from above a substrate holding device having a vacuum suction hole. It has also been proposed to ensure that it can be adsorbed.
  • the present invention provides a substrate holding method and a substrate holding apparatus capable of reliably sucking and holding a substrate that easily generates a large warp.
  • the substrate holding method of the present invention is a method in which a substrate is held by suction on a stage.
  • the stage has a substrate holding surface that sucks and holds the lower surface of the substrate, and the substrate holding surface is divided into a plurality of regions capable of partially sucking the substrate. ing.
  • the substrate holding method of the present invention in at least one of the plurality of regions, after a portion of the substrate is adsorbed, the substrate is separated into a region adjacent to the region where the portion of the substrate is adsorbed. By sequentially repeating the adsorption of the portions, the entire substrate is adsorbed and held on the stage.
  • the suction portion of the substrate is pressed against the substrate holding surface by the pressing means.
  • the substrate holding method of the present invention may be a gas injection device in which the pressing means blows gas toward the upper surface of the adsorption site.
  • the gas may be a heated gas, and the temperature of the heated gas may be maintained within a range of ⁇ 10 ° C. of the temperature of the stage.
  • the substrate holding method of the present invention may be a pressing device in which the pressing means has a pressing member that abuts against the upper surface of the suction portion and presses against the substrate holding surface.
  • the substrate may be circular, and the substrate holding surface may be circular.
  • the plurality of regions include a central region corresponding to a central portion of the substrate, A plurality of peripheral regions corresponding to the peripheral portion and surrounding the central region may be included.
  • the substrate holding method of the present invention comprises: Adsorbing the central portion of the substrate to the central region; Next, a step of adsorbing a part of the peripheral edge of the substrate to one of the peripheral regions, Next, adsorbing another part of the peripheral edge of the substrate to one or two peripheral areas adjacent to the peripheral area where a part of the peripheral edge of the substrate is adsorbed; Next, a step of adsorbing another portion of the substrate to a peripheral region adjacent to a peripheral region where another portion of the peripheral portion of the substrate is adsorbed may be sequentially performed.
  • the substrate may be circular, and the substrate holding surface may be circular.
  • the plurality of regions include a central region corresponding to a central portion of the substrate, A plurality of peripheral regions corresponding to the peripheral portion and surrounding the central region may be included.
  • the substrate holding method of the present invention comprises: Adsorbing the central portion of the substrate to the central region; Next, a step of partially adsorbing the peripheral portion of the substrate to each of the two peripheral regions, Next, a step of adsorbing another portion of the peripheral portion of the substrate to each of a plurality of peripheral regions adjacent to the peripheral region where the peripheral portion of the substrate is partially adsorbed, Next, the step of adsorbing another portion of the substrate to a plurality of peripheral regions adjacent to the plurality of peripheral regions adsorbing another portion of the peripheral portion of the substrate may be sequentially performed.
  • the plurality of peripheral regions may include two or more peripheral regions having different areas, You may make it adsorb
  • the substrate holding method of the present invention detects the ingress state of outside air in a state where the substrate is adsorbed for the plurality of regions collectively or individually or for each combination including two or more regions. Leak detection may be performed.
  • the processing method of the present invention is a method of performing a predetermined process on a substrate, and includes a step of attracting and holding the substrate on the stage by any of the above-described substrate holding methods.
  • the processing method of the present invention may be a device inspection method for inspecting electrical characteristics of a plurality of devices formed on a substrate.
  • the substrate holding apparatus includes a stage that sucks and holds a substrate, and a pressing unit that presses a part of the substrate against the substrate holding surface.
  • the stage has a substrate holding surface that sucks and holds the lower surface of the substrate, and the substrate holding surface is divided into a plurality of regions capable of partially sucking the substrate. ing.
  • the pressing means presses an adsorption site that is a part of the substrate corresponding to the plurality of regions of the stage.
  • the substrate holding device of the present invention may be a gas injection device in which the pressing means blows gas toward the upper surface of the adsorption site.
  • the gas injection device includes a nozzle that blows the gas, corresponding to the plurality of regions of the stage, entirely or individually or for each combination including two or more regions. Also good.
  • the gas may be a heated gas, and may be held within a range of ⁇ 10 ° C. of the temperature of the stage.
  • the substrate holding device may be a pressing device in which the pressing means includes a pressing member that contacts the upper surface of the suction portion and presses against the substrate holding surface.
  • the portion of the pressing member that contacts the substrate may be formed of ceramics, synthetic resin, or rubber.
  • the substrate holding apparatus further detects leaking of the plurality of regions by detecting the ingress state of the outside air in a state where the substrate is adsorbed as a whole or individually or for each combination. May have a part.
  • the substrate is circular, and the substrate holding surface is circular.
  • the plurality of regions may include a central region corresponding to a central portion of the substrate, and a plurality of peripheral regions corresponding to a peripheral portion of the substrate and surrounding the central region,
  • the plurality of peripheral regions may include two or more peripheral regions having different areas.
  • the central region may have a plurality of regions divided in the radial direction of the substrate holding surface, and the peripheral region is divided in the radial direction of the substrate holding surface. It may have a plurality of regions.
  • the processing apparatus of the present invention is an apparatus that performs a predetermined process on a substrate, and includes any one of the above substrate holding apparatuses.
  • the processing apparatus of the present invention may be a probe apparatus that inspects the electrical characteristics of a plurality of devices formed on a substrate.
  • FIG. 4 is a longitudinal sectional view of an essential part taken along line IV-IV in FIG. 3. It is an enlarged view of the A section enclosed with the broken line in FIG.
  • It is explanatory drawing which shows the connection state of the several suction area
  • FIG. 24 is an explanatory diagram of a substrate holding procedure following FIG. 23.
  • FIG. 25 is an explanatory diagram of a substrate holding procedure following FIG. 24.
  • FIG. 26 is an explanatory diagram of a substrate holding procedure following FIG. 25.
  • FIG. 27 is an explanatory diagram of a substrate holding procedure following FIG. 26.
  • FIG. 29 is an explanatory diagram of a substrate holding procedure following FIG. 28.
  • FIG. 30 is an explanatory diagram of a substrate holding procedure following FIG. 29.
  • FIG. 31 is an explanatory diagram of a substrate holding procedure following FIG. 30.
  • FIG. 32 is an explanatory diagram of a substrate holding procedure following FIG. 31.
  • FIG. 33 is an explanatory diagram of a substrate holding procedure following FIG. 32.
  • FIG. 1 is a perspective view showing an external configuration of the probe apparatus 100 according to the first embodiment of the present invention.
  • FIG. 2 is a perspective view showing an outline of the internal structure of the probe apparatus 100 of FIG.
  • the probe apparatus 100 has electrical characteristics of a device (not shown) such as a semiconductor device formed on a substrate W (hereinafter simply referred to as “wafer”) W such as a semiconductor wafer or a resin substrate. The inspection is performed.
  • the probe apparatus 100 includes a main body 1, a loader unit 3 disposed adjacent to the main body 1, and a test head 5 disposed so as to cover the main body 1.
  • the probe apparatus 100 also includes a stage 7 on which the wafer W is placed, and a control unit 50 that controls the operation of each component of the probe apparatus 100.
  • the main body 1 is a hollow casing and accommodates the stage 7.
  • An opening 1 b is formed in the ceiling 1 a of the main body 1.
  • the opening 1b is located above the wafer W placed on the stage 7, and a substantially disk holding a disk-shaped probe card (not shown) having a large number of probe needles in the opening 1b.
  • Shaped probe card holder (not shown) engages. With this probe card holder, the probe card is arranged to face the wafer W placed on the stage 7.
  • the loader unit 3 takes out the wafer W accommodated in a FOUP (not shown) as a transfer container and transfers it to the stage 7 of the main body 1.
  • the loader unit 3 receives the wafer W from which the electrical characteristics of the device have been inspected from the stage 7 and accommodates it in the hoop.
  • the test head 5 has a rectangular parallelepiped shape and is configured to be rotatable upward by a hinge mechanism 11 provided in the main body 1.
  • the test head 5 is electrically connected to the probe card via a contact ring (not shown) with the main body 1 covered from above.
  • the test head 5 stores an electrical signal indicating the electrical characteristics of the device transmitted from the probe card as measurement data, and has a function of determining the presence or absence of an electrical defect of the device based on the measurement data. .
  • the stage 7 is arranged on the base 20, and moves along the X direction moving unit 21 that moves along the X direction shown in the drawing and the Y direction shown in the drawing. It has a Y-direction moving unit 23 and a Z-direction moving unit 25 that moves along the Z direction shown in the figure.
  • the stage 7 has a vacuum chuck mechanism 60 that holds the wafer W by suction.
  • the upper surface of the stage 7 is a holding surface 7 a that sucks and holds the wafer W by the vacuum chuck mechanism 60.
  • the detailed configuration of the vacuum chuck mechanism 60 will be described later.
  • the stage 7 is provided with a heater (not shown) so that the temperature of the holding surface 7a can be adjusted within a range of 25 ° C. to 200 ° C., for example.
  • the X-direction moving unit 21 moves the stage 7 in the X direction with high accuracy by the rotation of the ball screw 21a along the guide rail 27 arranged in the X direction.
  • the ball screw 21a is rotated by a motor (not shown). Further, the amount of movement of the stage 7 can be detected by an encoder (not shown) combined with the motor.
  • the Y-direction moving unit 23 moves the stage 7 in the Y direction with high accuracy by the rotation of the ball screw 23a along the guide rail 29 arranged in the Y direction.
  • the ball screw 23a is rotated by a motor 23b. Further, the amount of movement of the stage 7 can be detected by the encoder 23c combined with the motor 23b.
  • the X direction moving unit 21 and the Y direction moving unit 23 move the stage 7 in the X direction and the Y direction orthogonal to each other along the horizontal plane.
  • the Z-direction moving unit 25 has a motor and an encoder (not shown), and moves the stage 7 up and down along the Z direction and can detect the amount of movement.
  • the Z-direction moving unit 25 moves the stage 7 toward the probe card so that the electrode on the device on the wafer W and the probe needle come into contact with each other.
  • the stage 7 is disposed on the Z-direction moving unit 25 by a motor (not shown) so as to be rotatable in the ⁇ direction shown in the drawing.
  • a lower imaging unit 35 is disposed inside the main body 1.
  • the lower imaging unit 35 images the probe needle formed on the probe card.
  • the lower imaging unit 35 is fixed to the stage 7 and moves in the X direction, the Y direction, and the Z direction together with the stage 7.
  • An alignment unit 41 is disposed above the stage 7 in the main body 1.
  • the alignment unit 41 is configured to be movable in the Y direction in FIG. 2 by a drive unit (not shown).
  • the alignment unit 41 has a lower surface along a horizontal plane facing the stage 7 and the lower imaging unit 35.
  • the alignment unit 41 is provided with an upper imaging unit 43.
  • the upper imaging unit 43 images the device electrodes formed on the wafer W placed on the stage 7.
  • the alignment unit 41 is provided with a gas injection device 45 that injects gas toward the upper surface of the wafer W placed on the stage 7.
  • the gas injection device 45 injects a gas such as dry air onto the upper surface of the wafer W.
  • the gas injection device 45 is an adsorption assisting unit that facilitates adsorption when the wafer W is adsorbed and held on the stage 7 by the vacuum chuck mechanism 60. Then, the stage 7 having the vacuum chuck mechanism 60 and the gas injection device 45 cooperate to hold the wafer W on the holding surface 7a as a substrate holding device in the present invention.
  • the detailed configuration of the gas injection device 45 will be described later.
  • FIG. 3 is a plan view of the holding surface 7 a that is the upper surface of the stage 7.
  • 4 is a cross-sectional view of the upper portion of the stage 7 as viewed in the direction of arrows IV-IV in FIG.
  • FIG. 5 is an enlarged view of a portion A surrounded by a broken line in FIG.
  • the vacuum chuck mechanism 60 includes a suction groove 7 b provided on the holding surface 7 a of the stage 7, an intake passage 63 connected to the suction groove 7 b, and a vacuum pump 70 connected to the other end side of the intake passage 63. Yes.
  • the holding surface 7a of the stage 7 is provided with a fine suction groove 7b for adsorbing the wafer W.
  • the suction groove 7 b is represented by a line, but as shown in an enlarged view in FIG. 5, the suction groove 7 b is a recess formed in the holding surface 7 a of the stage 7.
  • the suction groove 7b is connected to the vacuum pump 70 via the intake passage 63, and is sealed by the wafer W while the wafer W is held on the holding surface 7a, and the inside of the groove is maintained at a reduced pressure.
  • the suction groove 7 b is divided into a plurality of suction regions 61.
  • the suction groove 7b is divided into nine suction regions 61A, 61B, 61C, 61D, 61E, 61F, 61G, 61H, and 61I that can be independently maintained at a reduced pressure.
  • the suction region 61I is a central region, and is provided in the central portion of the holding surface 7a that is circular in plan view.
  • the suction areas 61A, 61B, 61C, 61D, 61E, 61F, 61G, and 61H are peripheral areas, and are provided around the suction area 61I on the holding surface 7a that is circular in plan view.
  • the suction region 61I sucks the central portion of the circular wafer W.
  • the suction regions 61A, 61B, 61C, 61D, 61E, 61F, 61G, and 61H adsorb the peripheral portion of the circular wafer W.
  • the suction groove 7b is formed in a predetermined pattern. Inside each suction area 61A to 61I, the suction groove 7b communicates. On the other hand, the suction groove 7b is in a non-communication state between different suction regions.
  • FIG. 6 shows a connection state between the suction areas 61A to 61I and the vacuum pump 70 in the vacuum chuck mechanism 60.
  • the suction grooves 7b of the suction regions 61A to 61I are connected to the vacuum pump 70 via pipes 63A to 63I that form part of the intake passage 63, respectively.
  • Switching valves 65A to 65I are provided in the middle of the pipes 63A to 63I. The switching valves 65A to 65I switch between a state where the suction regions 61A to 61I can be sucked by the vacuum pump 70 and a state where the suction regions 61A to 61I are opened to the outside air 71 via the exhaust pipes 67A to 67I.
  • the wafer W can be partially sucked independently in each of the suction regions 61A to 61I.
  • the suction area 61 ⁇ / b> A and the suction area 61 ⁇ / b> B can take a suction state and a non-suction state on the wafer W, respectively.
  • the suction and holding of the entire wafer surface can be ensured even for a wafer W having a strong warp. Can be done.
  • a vacuum gauge 73 is provided in the intake passage 63. By measuring the pressure in the intake passage 63 with the vacuum gauge 73, it is possible to detect whether or not a leak into which outside air enters is generated in any of the suction regions 61A to 61I. Note that the vacuum gauge 73 may be provided individually for each of the suction areas 61A to 61I, or may be provided for each of a plurality of combinations.
  • the holding surface 7a is divided into nine suction areas 61A to 61I, but the number of suction areas is not limited to nine.
  • the holding surface 7a may be divided into a plurality of fan-shaped suction regions 61 arranged in the circumferential direction without being divided into the central portion and the peripheral portion of the holding surface 7a.
  • the suction region 61 is preferably divided into a central portion and a peripheral portion of the holding surface 7a.
  • the peripheral portion is preferably at least 4 or more, more preferably 4 to 12, more preferably 4 to 8. It is preferable to divide into the suction area 61.
  • the suction areas 61A to 61I can be divided into a plurality of groups.
  • the suction areas 61A and 61B are grouped as one group, the suction areas 61C and 61D as one group, the suction areas 61E and 61F as one group, and the suction areas 61G and 61H as one group. You may comprise so that switching to a non-attraction
  • FIG. 7 is an explanatory diagram showing the positional relationship between the gas injection device 45 and the wafer W held on the stage 7.
  • the gas injection device 45 includes a plurality of nozzles 81 (for example, three) that partially inject gas toward the upper surface of the wafer W, a nozzle plate 83 that supports each nozzle 81, and each nozzle.
  • a pipe 85 connected to 81 for supplying gas to the nozzle 81 and a gas source 87 connected to the other end of the pipe 85 are provided.
  • a mass flow controller (MFC) 89 and a switching valve 91 for flow rate control are provided in the middle of the pipe 85.
  • MFC mass flow controller
  • Each nozzle 81 is connected to a gas source 87 via branch pipes 85A to 85C in which a pipe 85 is branched.
  • the branch pipes 85A to 85C are provided with opening / closing valves 93A to 93C, respectively.
  • the temperature of the heated gas is approximately the same as the temperature of the holding surface 7 a of the stage 7.
  • the temperature of the heated gas is preferably set within a range of ⁇ 10 ° C., more preferably within a range of ⁇ 5 ° C. with respect to the temperature of the holding surface 7 a of the stage 7.
  • the temperature of the heated gas is preferably in the range of 110 ° C to 130 ° C, and more preferably in the range of 115 ° C to 125 ° C.
  • the temperature of the heated gas is preferably in the range of 140 ° C. to 160 ° C., more preferably in the range of 145 ° C. to 155 ° C. preferable.
  • the wafer W can be heated from the upper surface side.
  • the temperature difference between the lower surface and the upper surface of the wafer W placed on the holding surface 7a of the stage 7 can be minimized, the occurrence of warpage during heating of the wafer W can be suppressed.
  • the wafer W has a structure in which different resins are laminated, warpage is likely to occur due to a difference in coefficient of thermal expansion depending on the material. Therefore, using heated gas is effective in suppressing warpage.
  • the wafer W can be heated from the upper surface side by the heating gas, when a thermoplastic resin is used as the material of the wafer W, the flexibility is increased and the adsorption to the holding surface 7a of the stage 7 is easy. become.
  • the nozzle plate 83 is supported by the alignment unit 41, the three nozzles 81 are movable in the Y direction in FIG.
  • the stage 7 is movable in the XYZ directions in FIG. 1 by an X direction moving unit 21, a Y direction moving unit 23, and a Z direction moving unit 25. Therefore, gas can be independently injected from each nozzle 81 toward the target portion of the wafer W held on the stage 7.
  • the gas can be injected at different timings toward the nine suction regions 61A to 61I divided on the holding surface 7a of the stage 7. For example, in FIG.
  • the number of nozzles 81 is not limited to three, and may be one or two, for example, four or more, and nine nozzles 81 may be provided individually corresponding to each of the suction regions 61A to 61I.
  • FIG. 8 shows a configuration example when the nozzle plate 83 is supported by an independent support portion.
  • the gas injection device 45A includes a plurality of nozzles 81 (for example, three) that partially inject gas toward the upper surface of the wafer W, a nozzle plate 83 that supports the nozzles 81, and nozzles that are connected to the nozzles 81.
  • a pipe 85 that supplies gas to 81, a gas source 87 connected to the other end of the pipe 85, a nozzle arm 95 that supports the nozzle plate 83, and a support column 97 that supports the nozzle arm 95 are provided.
  • the nozzle arm 95 is configured to be able to expand, contract, swivel, and move up and down in the XYZ directions by a drive unit (not shown). By moving the nozzle arm 95 directly above the wafer W held on the holding surface 7 a of the stage 7, gas can be injected to a predetermined part of the wafer W.
  • the control unit 50 controls the operation of each component of the probe device 100.
  • the control unit 50 is typically a computer.
  • FIG. 9 shows an example of the hardware configuration of the control unit 50.
  • the control unit 50 includes a main control unit 201, an input device 202 such as a keyboard and a mouse, an output device 203 such as a printer, a display device 204, a storage device 205, an external interface 206, and a bus that connects these components to each other. 207.
  • the main control unit 201 includes a CPU (central processing unit) 211, a RAM (random access memory) 212, and a ROM (read only memory) 213.
  • the storage device 205 may be of any form as long as it can store information.
  • the storage device 205 is a hard disk device or an optical disk device.
  • the storage device 205 records information on a computer-readable recording medium 215 and reads information from the recording medium 215.
  • the recording medium 215 may be in any form as long as it can store information, and is, for example, a hard disk, an optical disk, or a flash memory.
  • the recording medium 215 may be a recording medium that records a recipe for the probe method performed in the probe apparatus 100 of the present embodiment.
  • the control unit 50 controls the probe apparatus 100 according to the present embodiment so that a plurality of wafers W can be inspected with respect to devices formed on the wafers W.
  • the control unit 50 includes each component (for example, a driving device such as a motor 23b, a position detection device such as an encoder 23c, a lower imaging unit 35, an upper imaging unit 43, and a gas injection device 45). , Vacuum chuck mechanism 60 and the like). These are realized by the CPU 211 executing software (program) stored in the ROM 213 or the storage device 205 using the RAM 212 as a work area.
  • the stage 7 is moved in the horizontal direction (X direction, Y direction, ⁇ direction) and the vertical direction (Z direction), whereby the probe card and the wafer W held on the stage 7 are The relative position of the device is adjusted, and the electrode of the device and the probe needle are brought into contact with each other.
  • the test head 5 passes an inspection current to the device via each probe needle of the probe card.
  • the probe card transmits an electrical signal indicating the electrical characteristics of the device to the test head 5.
  • the test head 5 stores the transmitted electrical signal as measurement data, and determines the presence or absence of an electrical defect in the device to be inspected.
  • the part adsorbed to 61E is the part P E
  • the part adsorbed to the suction area 61F is the part P F
  • the part adsorbed to the suction area 61G is the part P G
  • the part adsorbed to the suction area 61H is the part P H
  • FIG. 11 is a flowchart for explaining an example of the procedure of the wafer W holding method according to the embodiment of the present invention. This procedure includes steps S1 to S10. First, as a preparation stage, the wafer W is placed on the holding surface 7a of the stage 7 by a transfer device (not shown).
  • adsorbing portion P I is a central portion of the wafer W to the suction region 61I.
  • the suction groove 7b in the suction region 61I is set to a negative pressure, but the suction grooves 7b in the suction regions 61A to 61H are left in the atmosphere open state.
  • Site P I is a central portion of the wafer W, while being assisted by the gas pressure ejected from above, since the back surface side becomes a negative pressure, is adsorbed under the suction region 61I.
  • Step S2 adsorbing portion P A of the peripheral portion adjacent to the site P I of the wafer W to the suction region 61A of the stage 7.
  • the suction grooves 7b in the suction regions 61B to 61H are left in the atmosphere open state.
  • the suction groove 7b in the suction region 61I is maintained at a negative pressure as in step S1.
  • Site P A of the peripheral portion of the wafer W while being assisted by the gas pressure ejected from above, since the back surface side becomes a negative pressure, is adsorbed under the suction region 61A.
  • Step S3 adsorbing sites P B of the peripheral portion adjacent to the site P A of the wafer W to the suction region 61B of the stage 7.
  • a specific procedure is a step except that the nozzle 81 is moved to a position just above the portion P B of the wafer W to inject gas, and the switching valve 65B is switched to set the suction groove 7b in the suction region 61B to a negative pressure. It is the same as S2.
  • Steps S4 to S9 the peripheral portion of the stage 7 adjacent to the portion of the wafer W sucked in the previous step is sequentially arranged in the order of the suction regions 61C, 61D, 61E, 61F, 61G, 61H. Adsorb to the suction area.
  • a specific procedure is to move the nozzle 81 to any one of the target portions P C to P H of the wafer W, sequentially inject gas to each portion, and select any of the switching valves 65C to 65H.
  • steps S2 and S3 except that the suction grooves 7b in the suction regions 61C to 61H are sequentially changed to a negative pressure by sequentially switching between them.
  • Step S10 Through the above steps S1 to S9, the wafer W can be sucked and held by the entire holding surface 7a of the stage 7 in a normal state. However, when the warp of the wafer W is large, the outside air may enter the suction groove 7b in any of the suction regions 61A to 61I, causing a leak, and the holding may be incomplete. Therefore, in this procedure, a leak check is performed in step S10. Specifically, the pressure in the intake passage 63 is measured by the vacuum gauge 73.
  • step S10 the process returns to step S1 again as shown by the broken line in FIG. 11, and the processes from steps S1 to S9 are performed.
  • the leak check of all the suction areas 61A to 61I is performed at once.
  • the leak check of the suction areas 61A to 61I is performed. Can also be performed individually.
  • a leak check can be performed for each of the above steps S1 to S9.
  • the suction areas 61A to 61I may be divided into a plurality of groups, and a leak check may be performed for each group.
  • the suction process may be performed only on the region or group in which the leak is detected in the suction regions 61A to 61I. Note that the leak check in step S10 is optional and may be omitted.
  • the operation of partially attracting the wafer W to the subdivided suction regions 61A to 61I is repeated, whereby the wafer is applied to the holding surface 7a of the stage 7.
  • the entire W can be easily adsorbed and held.
  • the peripheral portion adjacent to the attracted portion is sequentially adsorbed to the suction regions 61A to 61H using the gas pressure. Also, it can be reliably held by suction on the holding surface 7a. Therefore, the probe apparatus 100 can perform highly reliable device inspection.
  • FIG. 12 is a flowchart for explaining another example of the procedure of the wafer W holding method according to the embodiment of the present invention.
  • This procedure includes the processing of step S11 to step S17.
  • the wafer W is placed on the holding surface 7a of the stage 7 by a transfer device (not shown).
  • Step S11 In step S11, adsorbing portion P I is a central portion of the wafer W to the suction region 61I. Step S11 can be performed similarly to step S1 of the first procedure.
  • Step S12 adsorbing portion P A of the peripheral portion adjacent to the site P I of the wafer W to the suction region 61A of the stage 7.
  • the suction groove 7b in the suction region 61A to a negative pressure.
  • the suction grooves 7b in the suction regions 61B to 61H are left in the atmosphere open state.
  • the suction groove 7b in the suction region 61I is maintained at a negative pressure as in step S11.
  • Site P A of the peripheral portion of the wafer W while being assisted by the gas pressure ejected from above, since the back surface side becomes a negative pressure, is adsorbed under the suction region 61A.
  • Step S13 Next, in step S13, it is adsorbed on each of two sites P B and site P H of the peripheral portion adjacent to the site P A of the wafer W to the suction region 61B and the suction region 61H of the stage 7. Specifically procedure, two nozzles 81 is moved to just above the site P B and site P H of the wafer W, as well as injecting the gas at the same time to each of the sites, the suction region 61B by switching the switching valve 65B and the switching valve 65H The process is the same as step S12 except that the suction grooves 7b in the inner and suction areas 61H are simultaneously brought to negative pressure.
  • Step S14 Next, in step S14, it is adsorbed respectively two sites P C and site P G of the peripheral portion adjacent to the site P B and site P H of the wafer W to the suction region 61C and the suction region 61G of the stage 7. Specifically procedure two nozzles 81 is moved to just above the site P C and site P G of the wafer W, as well as injecting the gas at the same time to each of the sites, by switching the switching valve 65C and the switching valve 65G, suction region The same as step S12 except that the suction grooves 7b in the 61C and the suction region 61G are simultaneously set to a negative pressure.
  • Step S15 Next, in step S15, it is adsorbed respectively two sites P D and site P F of the peripheral portion adjacent to the site P C and site P G of the wafer W to the suction region 61D and the suction region 61F of the stage 7. Specifically procedure two nozzles 81 is moved to just above the site P D and site P F of the wafer W, as well as injecting the gas at the same time to each of the sites, by switching the switching valve 65D and the switching valves 65F, suction region Similar to step S12, except that the suction grooves 7b in 61D and the suction region 61F are simultaneously made negative in pressure.
  • Step S16 Next, in step S16, adsorbing portion P E of the peripheral portion adjacent to the site P D and site P F of the wafer W to the suction region 61E of the stage 7. Specifically procedure nozzle 81 is moved to just above the site P E of the wafer W while ejecting the gas, by switching the switching valve 65E, except that the suction grooves 7b in the suction region 61E to negative pressure, This is the same as step S12.
  • Step S17 By the above steps S11 to S16, the wafer W can be sucked and held by the entire holding surface 7a of the stage 7 in a normal state. However, when the warp of the wafer W is large, the outside air may enter the suction groove 7b in any of the suction regions 61A to 61I, causing a leak, and the holding may be incomplete. Therefore, in this procedure, a leak check is performed in step S17.
  • the leak check method is the same as step S10 in the first procedure. If it is determined in step S17 that a leak has occurred, the process returns to step S11 again as shown by the broken line in FIG. 12, and the processes from steps S11 to S16 are performed.
  • the leak check of all the suction areas 61A to 61I is performed at once.
  • the leak check of the suction areas 61A to 61I is performed. Can also be performed individually.
  • a leak check can be performed for each of the above steps S11 to S16.
  • the suction areas 61A to 61I may be divided into a plurality of groups, and a leak check may be performed for each group.
  • the suction process may be performed only on the region or group in which the leak is detected in the suction regions 61A to 61I. Note that the leak check in step S17 is optional and may be omitted.
  • FIG. 13 is a flowchart for explaining still another example of the procedure of the wafer W holding method according to the embodiment of the present invention.
  • This procedure includes the processing of step S21 to step S25.
  • the wafer W is placed on the holding surface 7a of the stage 7 by a transfer device (not shown).
  • Step S21 In step S21, adsorbing portion P I is a central portion of the wafer W to the suction region 61I. This step S21 can be performed similarly to step S1 of the first procedure.
  • Step S22 Next, in step S22, the suction region 61A and the suction region of the stage 7 the site P E in the region P A of the peripheral portion, radially symmetrical positions with respect to the site P A adjacent to the site P I of the wafer W Adsorb to 61E.
  • the grooves 7b are simultaneously brought to negative pressure.
  • the suction grooves 7b in the suction regions 61B to 61D and 61F to 61H are left in the atmosphere open state.
  • the suction groove 7b in the suction region 61I is maintained at a negative pressure as in step S21.
  • Step S23 Next, in step S23, the two sites P B and site P H of the peripheral portion adjacent to the site P A of the wafer W, respectively, together with the adsorbed to the suction region 61B and the suction region 61H of the stage 7, the wafer W two sites P D and site P F of the peripheral portion adjacent to the site P E, respectively, adsorbed to the suction region 61D and the suction region 61F.
  • the switching valve 65B, 65H , 65D, and 65F are the same as step S22 except that the suction grooves 7b in the suction region 61B, 61H, 61D, and 61F are simultaneously made negative pressure.
  • Step S24 Next, in step S24, it is adsorbed respectively two adjacent portions P C and site P G remaining on the rim portion of the wafer W to the suction region 61C and the suction region 61G of the stage 7. Specifically procedure two nozzles 81 is moved to just above the site P C and site P G of the wafer W, as well as injecting the gas at the same time to each of the sites, by switching the switching valve 65C and the switching valve 65G, suction region The same as step S22 except that the suction grooves 7b in 61C and the suction region 61G are simultaneously made negative in pressure.
  • Step S25 Through the above steps S21 to S24, the wafer W can be sucked and held by the entire holding surface 7a of the stage 7 in a normal state. However, when the warp of the wafer W is large, the outside air may enter the suction groove 7b in any of the suction regions 61A to 61I, causing a leak, and the holding may be incomplete. Therefore, in this procedure, a leak check is performed in step S25.
  • the leak check method is the same as step S10 in the first procedure. If it is determined in step S25 that a leak has occurred, the process returns to step S21 again as shown by the broken line in FIG. 13, and the processes from steps S21 to S24 are performed.
  • the leak check of all the suction areas 61A to 61I is performed in a lump.
  • the leak check of the suction areas 61A to 61I is performed by arranging the vacuum gauge 73 individually in the pipes 63A to 63I. Can also be performed individually. In this case, a leak check can be performed for each of steps S21 to S24.
  • the suction areas 61A to 61I may be divided into a plurality of groups, and a leak check may be performed for each group. Further, after the leak check, the suction process may be performed only on the region or group in which the leak is detected in the suction regions 61A to 61I. Note that the leak check in step S25 is optional and may be omitted.
  • the holding surface 7a of the stage 7 is divided into seven suction regions 61A, 61B, 61C, 61D, 61E, 61F, and 61G by suction grooves 7b that can be independently held under reduced pressure. It is divided.
  • the suction region 61G is a central region provided in the central portion of the holding surface 7a that is circular in plan view.
  • the suction areas 61A, 61B, 61C, 61D, 61E, and 61F are peripheral areas provided around the suction area 61G on the holding surface 7a having a circular shape in plan view.
  • the suction regions 61A to 61F include those having different areas.
  • the suction areas 61A and 61B have the same area.
  • the suction areas 61C and 61D have the same area, but have a larger area than the suction areas 61A and 61B.
  • the suction area 61E has a larger area than the suction areas 61C and 61D.
  • the suction region 61F has a larger area than the suction region 61E.
  • the central portion of the wafer W is attracted to the suction area 61G, and then the wafer W is sequentially formed from the area where the suction areas 61A to 61F are small to the area where the area is large.
  • the peripheral part of is partially adsorbed. Specifically, the peripheral portion of the wafer W is attracted to the suction region 61A. Next, the peripheral part of the wafer W adjacent to the part adsorbed to the suction area 61A is adsorbed to the suction area 61B. Next, the peripheral part of the wafer W adjacent to the part adsorbed to the suction area 61B is adsorbed to the suction area 61C.
  • the peripheral part of the wafer W adjacent to the part adsorbed to the suction area 61C is adsorbed to the suction area 61D.
  • the peripheral part of the wafer W adjacent to the part adsorbed to the suction area 61D is adsorbed to the suction area 61E.
  • the peripheral part of the wafer W adjacent to the part adsorbed to the suction area 61E is adsorbed to the suction area 61F. In this manner, the wafer W can be sucked and held by the entire holding surface 7a of the stage 7 by sucking the wafer W from the small area of the suction areas 61A to 61F to the large area.
  • the holding surface 7a of the stage 7 is divided into six suction regions 61A, 61B, 61C, 61D, 61E, and 61F by suction grooves 7b that can be independently held under reduced pressure.
  • the suction region 61F is a central region provided in the central portion of the holding surface 7a that is circular in plan view.
  • the suction areas 61A, 61B, 61C, 61D, and 61E are peripheral areas provided around the suction area 61F on the holding surface 7a that is circular in plan view.
  • the suction regions 61A to 61E include those having different areas.
  • the suction region 61A is a region having the smallest area.
  • the suction areas 61B and 61E have the same area, but have a larger area than the suction area 61A.
  • the central portion of the wafer W is attracted to the suction area 61F, and then the wafer W is sequentially formed from the area where the suction areas 61A to 61E are small to the area where the area is large.
  • the peripheral part of is partially adsorbed. Specifically, the peripheral portion of the wafer W is attracted to the suction region 61A. Next, the peripheral part of the wafer W adjacent to the part adsorbed to the suction area 61A is adsorbed to the suction areas 61B and 61E, respectively. Next, the peripheral part of the wafer W adjacent to the part attracted to the suction regions 61B and 61E is attracted to the suction areas 61C and 61D, respectively. In this way, the wafer W can be sucked and held by the entire holding surface 7a of the stage 7 by sucking the wafer W from the small area of the suction areas 61A to 61E to the large area.
  • the holding surface 7a of the stage 7 is divided into nine suction regions 61A, 61B, 61C, 61D, 61E, 61F, 61G by suction grooves 7b that can be independently held under reduced pressure.
  • 61H, 61I The suction region 61I is a central region provided in the central portion of the holding surface 7a that is circular in plan view.
  • the suction regions 61A, 61B, 61C, 61D, 61E, 61F, 61G, and 61H are peripheral regions provided around the suction region 61I on the holding surface 7a that is circular in plan view.
  • the suction regions 61A to 61H include those having different areas.
  • the suction regions 61A and 61B have the same area, and are the regions with the smallest area partitioned inside in the radial direction in the peripheral region of the holding surface 7a of the stage 7.
  • the suction areas 61C and 61D have the same area, but have a larger area than the suction areas 61A and 61B.
  • the suction areas 61C and 61D are areas that are partitioned in the peripheral area of the holding surface 7a of the stage 7 on the outer side in the radial direction from the suction areas 61A and 61B.
  • suction areas 61E and 61H have the same area, but have a larger area than the suction areas 61C and 61D.
  • the central portion of the wafer W is attracted to the suction area 61I, and then the wafer W is sequentially formed from the area where the suction areas 61A to 61H are small to the area where the area is large.
  • the peripheral part of is partially adsorbed. Specifically, the peripheral portion of the wafer W is attracted to the suction regions 61A and 61B. Next, the peripheral part of the wafer W adjacent to the part adsorbed to the suction regions 61A and 61B is adsorbed to the suction areas 61C and 61D, respectively.
  • the peripheral portions of the wafer W adjacent to the portions adsorbed to the suction regions 61C and 61D are adsorbed to the suction regions 61E and 61H, respectively.
  • the peripheral portions of the wafer W adjacent to the portions adsorbed to the suction regions 61E and 61H are adsorbed to the suction regions 61G and 61F, respectively. In this manner, the wafer W can be sucked and held by the entire holding surface 7a of the stage 7 by sucking the wafer W from the small area of the suction areas 61A to 61H to the large area.
  • the plurality of suction regions 61 for sucking the peripheral edge portion of the wafer W have two or more suction regions 61 having different areas. Then, the peripheral portion of the wafer W can be partially adsorbed sequentially from the suction area 61 having a small area to the suction area 61 having a large area. As a result, even when the warpage of the wafer W is large and only a small portion can be adsorbed at first, the adsorbing area can be increased by sequentially adsorbing adjacent portions, and the warpage of the wafer W can be gradually eased. As a result, the entire surface of the wafer W can be sucked and held by the entire holding surface 7a of the stage 7 in a short time.
  • the number of suction regions 61 (that is, the number of divisions of the holding surface 7a of the stage 7) can be reduced, so that the apparatus configuration can be simplified. is there.
  • FIG. 17 is a perspective view showing an outline of the internal structure of the probe apparatus 100A according to the second embodiment of the present invention.
  • the probe device 100 ⁇ / b> A includes a pressing device 101 that presses against the holding surface 7 a of the stage 7 as a pressing unit in contact with the upper surface of the adsorption portion of the wafer W.
  • the same components as those of the probe device 100 of the first embodiment are denoted by the same reference numerals, and description thereof is omitted.
  • a plurality of pressing devices 101 are provided on the side portion of the alignment unit 41.
  • 18 and 19 are explanatory views of one pressing device.
  • the pressing device 101 includes a pressing pin 103 as a pressing member and a drive unit 105 that displaces the pressing pin 103 up and down.
  • the tip of the pressing pin 103 is preferably formed of a material having a lower thermal conductivity than metal, such as ceramics, synthetic resin, or rubber, and more preferably a material having both heat resistance and elasticity such as fluororubber.
  • the drive unit 105 includes an actuator such as an air cylinder and a biasing member such as a spring.
  • the tip end of the pressing pin 103 is normally held at the retracted position above the lower end of the alignment unit 41 by the urging force of the urging member.
  • the actuator is actuated, the pressing pin 103 advances downward from the lower end of the alignment unit 41 with a predetermined stroke against the urging force of the urging member, as shown in FIG.
  • the wafer W is partially pressed by contacting the upper surface of the suction site.
  • the pressing pin 103 acts in the same manner as the gas injected from the gas injection device 45 in the first embodiment. That is, the pressing pin 103 partially presses the upper surface of the wafer W against the holding surface 7 a of the lower stage 7. As a result, in the probe apparatus 100A of the second embodiment, the wafer W can be sucked and held in the same procedure as that of the probe apparatus 100 of the first embodiment.
  • the number of pressing devices 101 is not limited to two, but may be one or three or more, but a plurality is preferable.
  • two pressing devices 101 are arranged on the side portion of the alignment unit 41 so that the suction portion of the wafer W can be pressed.
  • the moving distance of the stage 7 in the X and Y directions when holding the wafer W by suction is shortened, and the footprint of the entire apparatus can be suppressed.
  • the pressing device 101 may be supported by an independent support member instead of being attached to the alignment unit 41.
  • the holding surface 7a of the stage 7 is divided into twelve suction regions 61 by suction grooves 7b that can be independently held under reduced pressure.
  • twelve suction regions 61 provided separately on the holding surface 7a of the stage 7 are indicated by numbers 1 to 12 in the order in which the wafers W are attracted.
  • the suction area 61 indicated by No. 1 and No. 2 is a central area, and is provided at the central portion of the holding surface 7a having a circular shape in plan view. Further, the suction areas 61 indicated by Nos. 1 and 2 are formed with different areas from the center side of the holding surface 7 a of the stage 7 in the radially outward direction. Thus, the central area may have a plurality of areas divided in the radial direction of the holding surface 7a.
  • the suction area 61 indicated by Nos. 3 to 12 is a peripheral area, and is provided around the central area indicated by Nos. 1 and 2 in the holding surface 7a having a circular shape in plan view.
  • the suction regions 61 indicated by Nos. 3, 4, and 5 are formed with different areas from the center side of the holding surface 7a of the stage 7 in the radially outward direction.
  • the peripheral region may have a plurality of regions divided in the radial direction of the holding surface 7a.
  • the central portion of the wafer W is sequentially attracted to the first region, which is the central region of the holding surface 7a of the stage 7, and the second region slightly outside thereof.
  • the peripheral edge of the wafer W is sequentially attracted to the third region, the fourth region, and the fifth region, which are peripheral regions of the holding surface 7a of the stage 7, toward the radially outward direction from the center side.
  • the peripheral portion of the wafer W is sucked in the circumferential direction in the order of No. 6 region, No. 7 region, No. 8 region, No. 9 region, No. 10 region, No. 11 region and No. 12 region. I will let you.
  • the entire wafer W can be easily adsorbed and held on the holding surface 7a of the stage 7. Therefore, even the warped wafer W can be reliably attracted to the holding surface 7a of the stage 7 as a whole.
  • FIGS. 21 to 33 show the positional relationship between the pressing pins 103 of the pressing device 101 provided at two positions on the side of the alignment unit 41 and the holding surface 7 a of the stage 7.
  • the two pressing devices 101 are shown as being distinguished by reference numerals 101A and 101B.
  • the numbers 1 to 12 on the holding surface 7a of the stage 7 have the same meaning as in FIG.
  • the wafer W itself is not shown.
  • the alignment unit 41 can reciprocate in the Y direction in the figure, and the stage 7 can move in the XY direction in the figure.
  • the stage 7 is moved to the wafer W delivery position. Then, the loader unit 3 transports the wafer W (not shown) to the holding surface 7a of the stage 7.
  • the alignment unit 41 is moved in the Y direction until the pressing pin 103 of the pressing device 101A is positioned immediately above the first region. Then, the suction of the first area is turned ON, the pressing pin 103 of the pressing device 101A on one side is advanced, the central portion of the wafer W is pressed, and the first area is attracted.
  • the pressing position by the pressing pin 103 is indicated by a black dot (the same applies to FIGS. 23 to 33). Then, after confirming the suction by a leak check, the pressing pin 103 is retracted.
  • the stage 7 is moved until the pressing pin 103 of the pressing device 101A is positioned immediately above the second region. Then, the suction of the second area is turned ON, the pressing pin 103 of the pressing device 101A is advanced, and the radial direction of the central part of the wafer W is pressed slightly toward the outer side to be attracted to the second area. After confirming the suction by the leak check, the pressing pin 103 is retracted.
  • the first area and the No. 2 area are maintained while maintaining a state where one central portion of the wafer W is pressed by the pressing pin 103 of the pressing device 101A. You may make it adsorb
  • the stage 7 is moved until the pressing pin 103 of the pressing device 101A is located immediately above the third region. Then, the suction of the third area is turned on, the pressing pin 103 is advanced, the wafer W is partially pressed, and is attracted to the third area. After confirming the suction by the leak check, the pressing pin 103 is retracted.
  • the stage 7 is moved until the pressing pin 103 of the pressing device 101A is positioned immediately above the fourth region. Then, the suction of the No. 4 area is turned ON, the pressing pin 103 is advanced, the wafer W is partially pressed, and is attracted to the No. 4 area. After confirming the suction by the leak check, the pressing pin 103 is retracted.
  • the stage 7 is moved until the pressing pin 103 of the pressing device 101A is located immediately above the fifth area. Then, the suction of the No. 5 area is turned ON, the pressing pin 103 is advanced, the wafer W is partially pressed, and is attracted to the No. 5 area. After confirming the suction by the leak check, the pressing pin 103 is retracted.
  • the No. 3 area In the suction from the No. 3 area to the No. 5 area, while maintaining the state where one place on the wafer W corresponding to any area is pressed by the pressing pin 103 of the pressing device 101A, the No. 3 area is maintained. You may make it adsorb
  • the stage 7 is moved until the pressing pin 103 of the pressing device 101A is located immediately above the sixth area. Then, the suction of the No. 6 area is turned ON, the pressing pin 103 is advanced, the wafer W is partially pressed, and is attracted to the No. 6 area. After confirming the suction by the leak check, the pressing pin 103 is retracted.
  • the wafer W is partially sucked in the order of the seventh area (see FIG. 28) and the eighth area (see FIG. 29) while repeatedly pressing and retracting with the pressing pins 103 of the pressing device 101A. I will let you.
  • the stage 7 is moved until the pressing pin 103 of the pressing device 101B is located immediately above the ninth area. Then, the suction of the No. 9 area is turned on, the pressing pin 103 is advanced, the wafer W is partially pressed, and is attracted to the No. 9 area. After confirming the suction by the leak check, the pressing pin 103 is retracted.
  • the wafer W suction processing can be performed without increasing the movable range of the stage 7. Therefore, the wafer W can be reliably sucked and held without increasing the footprint of the apparatus including the X-direction moving unit 21 and the Y-direction moving unit 23 that move the stage 7 in the XY direction.
  • pressing and retraction by the pressing pin 103 of the pressing device 101B are performed in the order of the 10th area (see FIG. 31), the 11th area (see FIG. 32), and the 12th area (see FIG. 33). While repeating, the wafer W is partially adsorbed.
  • the wafers W can be reliably adsorbed and held by the entire holding surface 7a of the stage 7.
  • nozzles 81 of the gas injection device 45 similar to those in the first embodiment are provided in two places, and pressing and retraction by the pressing pins 103 are performed. Instead of repeating, it can be similarly performed by repeating the injection and stop of gas.
  • the embodiments of the present invention have been described in detail for the purpose of illustration, but the present invention is not limited to the above-described embodiments, and various modifications are possible.
  • the probe apparatus that inspects the device formed on the wafer W has been described as an example.
  • the substrate holding method and the substrate holding apparatus of the present invention hold the substrate by vacuum suction.
  • the present invention can be applied to all processing apparatuses having a stage to perform.
  • a configuration of adsorbing the site P I of the central portion of the wafer W for example, the case without the suction region 61I of the central portion of the holding surface 7a
  • this is not the case depending on how the suction region 61 is divided.
  • the adjoining two to four portions are adsorbed simultaneously.
  • one of the adjacent portions that is, two at the same time
  • the third procedure after the portion P I at the center of the wafer W is adsorbed, the two portions on the peripheral portion of the wafer W are adsorbed simultaneously. etc. If large, the next site P I, the sites of three or more of the periphery of the wafer W may be simultaneously adsorbed.
  • the substrate is not limited to a semiconductor wafer or a resin substrate, for example, a flat panel display substrate typified by a glass substrate used in a liquid crystal display device, a resin substrate on which a number of IC (semiconductor integrated circuit) chips are mounted, A substrate for mounting inspection such as a glass substrate may be used.
  • a flat panel display substrate typified by a glass substrate used in a liquid crystal display device
  • a resin substrate on which a number of IC (semiconductor integrated circuit) chips are mounted
  • a substrate for mounting inspection such as a glass substrate may be used.

Abstract

Fine suction grooves 7b for sucking a wafer W are provided in a holding surface 7a of a stage 7. The suction grooves 7b are divided into, for instance, nine suction regions 61A-61I. The suction region 61I sucks a center portion of the circular wafer W. The suction regions 61A, 61B, 61C, 61D, 61E, 61F, 61G and 61H suck a peripheral end portion of the circular wafer W. A gas is separately jetted to nine positions on the wafer W held by the stage 7, said nine positions corresponding to the suction regions 61A-61I.

Description

基板保持方法、基板保持装置、処理方法及び処理装置Substrate holding method, substrate holding apparatus, processing method and processing apparatus
 本発明は、例えば半導体ウエハなどの基板上に形成されたデバイスの検査などの処理を行う際に、基板を保持する基板保持方法、この方法に用いる基板保持装置、並びに、処理方法及び処理装置に関する。 The present invention relates to a substrate holding method for holding a substrate when performing processing such as inspection of a device formed on a substrate such as a semiconductor wafer, a substrate holding apparatus used in the method, a processing method, and a processing apparatus. .
 半導体デバイスの製造工程においては、半導体デバイスの電気的特性を評価するためのプローブ検査が行われる。プローブ検査は、半導体基板に形成されている半導体デバイスの電極にプローブ針を接触させ、個々の半導体デバイス毎に電気信号を入力し、これに対して出力される電気信号を観測することによって電気的特性評価を行うものである。 In the manufacturing process of a semiconductor device, a probe test for evaluating the electrical characteristics of the semiconductor device is performed. Probe inspection is performed by bringing a probe needle into contact with an electrode of a semiconductor device formed on a semiconductor substrate, inputting an electric signal for each semiconductor device, and observing the electric signal output thereto. Characteristic evaluation is performed.
 プローブ検査に用いるプローブ装置は、検査対象となる半導体デバイスが形成された被検査基板を保持するとともに、水平方向、垂直方向及び回転が可能なステージ(載置台)と、被検査基板に形成されている半導体デバイスの電極にプローブ針を正確に接触させるためのアライメント装置を備えている。プローブ検査の信頼性を高めるには、ステージ上の被検査基板が位置ずれを生じないように確実に保持することが重要である。 A probe apparatus used for probe inspection holds a substrate to be inspected on which a semiconductor device to be inspected is formed, and is formed on a stage (mounting table) that can be rotated in a horizontal direction, a vertical direction, and a substrate to be inspected. An alignment device for accurately bringing a probe needle into contact with an electrode of a semiconductor device is provided. In order to improve the reliability of the probe inspection, it is important to securely hold the substrate to be inspected on the stage so as not to be displaced.
 半導体プロセスの分野で基板を保持する技術として、基板の裏面とステージの間を減圧にして固定するバキュームチャックが知られている。 As a technique for holding a substrate in the field of semiconductor processes, a vacuum chuck is known in which the space between the back surface of the substrate and the stage is fixed under reduced pressure.
 例えば、日本国特開2013-214676号公報(特許文献1)では、反りを有する基板を水平に保持するため、多孔質体によって形成された保持部の中心領域と外周領域で吸引圧力を別々に調節できるようにすることが提案されている。 For example, in Japanese Patent Laid-Open No. 2013-214676 (Patent Document 1), in order to hold a warped substrate horizontally, suction pressure is separately applied to the central region and the outer peripheral region of the holding portion formed by the porous body. It has been proposed to be able to adjust.
 また、基板搬送装置に関する技術であるが、日本国特開2000-243814号公報(特許文献2)では、真空吸引孔を備えた基板保持装置の上方からガスを吹き付けることによって、反りを有する基板についても確実に吸着できるようにすることが提案されている。 In addition, as a technology related to a substrate transfer device, Japanese Patent Application Laid-Open No. 2000-243814 (Patent Document 2) discloses a substrate having warpage by blowing gas from above a substrate holding device having a vacuum suction hole. It has also been proposed to ensure that it can be adsorbed.
 円形の基板を吸着保持する場合、ステージの基板保持面に複数の溝を同心円状に設け、該溝内を減圧にすることで基板を吸引できる。しかし、複数の同心円状の溝内を減圧にする機構では、基板の反りによって、基板の周方向の1箇所についてリークが発生すると、十分な吸着力が得られなくなる、という問題があった。特に、近年では基板サイズが大型化する傾向があるとともに、基板自体も薄くなっており、反りが大きくなりやすい。さらに、樹脂基板、ガラス基板など、半導体ウエハに比べて反りが発生しやすい種類の基板への対応も必要になってきている。 When a circular substrate is sucked and held, a plurality of grooves are provided concentrically on the substrate holding surface of the stage, and the substrate can be sucked by reducing the pressure in the grooves. However, in the mechanism for reducing the pressure in a plurality of concentric grooves, there is a problem that a sufficient suction force cannot be obtained if a leak occurs at one location in the circumferential direction of the substrate due to warping of the substrate. In particular, in recent years, the size of the substrate tends to increase, and the substrate itself is also thin, so that the warpage tends to increase. Furthermore, it has become necessary to deal with types of substrates that are more likely to warp than semiconductor wafers, such as resin substrates and glass substrates.
 本発明は、大きな反りが発生しやすい基板についても、確実に吸着保持できる基板保持方法及び基板保持装置を提供する。 The present invention provides a substrate holding method and a substrate holding apparatus capable of reliably sucking and holding a substrate that easily generates a large warp.
 本発明の基板保持方法は、ステージに基板を吸着保持させる方法である。本発明の基板保持方法において、前記ステージは、前記基板の下面を吸着して保持する基板保持面を有し、前記基板保持面は、前記基板を部分的に吸引可能な複数の領域に区分されている。そして、本発明の基板保持方法は、前記複数の領域の少なくとも一つの領域において、前記基板の一部分を吸着させた後、前記基板の一部分を吸着させた領域に隣接する領域に、前記基板の別の部分を吸着させることを順次繰り返すことによって、前記基板の全体を前記ステージに吸着保持させる。また、本発明の基板保持方法は、前記基板を部分的に吸着させるときに、押圧手段によって前記基板の吸着部位を前記基板保持面へ押し付ける。 The substrate holding method of the present invention is a method in which a substrate is held by suction on a stage. In the substrate holding method of the present invention, the stage has a substrate holding surface that sucks and holds the lower surface of the substrate, and the substrate holding surface is divided into a plurality of regions capable of partially sucking the substrate. ing. In the substrate holding method of the present invention, in at least one of the plurality of regions, after a portion of the substrate is adsorbed, the substrate is separated into a region adjacent to the region where the portion of the substrate is adsorbed. By sequentially repeating the adsorption of the portions, the entire substrate is adsorbed and held on the stage. In the substrate holding method of the present invention, when the substrate is partially sucked, the suction portion of the substrate is pressed against the substrate holding surface by the pressing means.
 本発明の基板保持方法は、前記押圧手段が、前記吸着部位の上面に向けてガスを吹き付けるガス噴射装置であってもよい。この場合、前記ガスが加熱ガスであってもよく、該加熱ガスの温度が、前記ステージの温度の±10℃の範囲内に保持されていてもよい。 The substrate holding method of the present invention may be a gas injection device in which the pressing means blows gas toward the upper surface of the adsorption site. In this case, the gas may be a heated gas, and the temperature of the heated gas may be maintained within a range of ± 10 ° C. of the temperature of the stage.
 本発明の基板保持方法は、前記押圧手段が、前記吸着部位の上面に当接して前記基板保持面へ押し付ける押圧部材を有する押圧装置であってもよい。 The substrate holding method of the present invention may be a pressing device in which the pressing means has a pressing member that abuts against the upper surface of the suction portion and presses against the substrate holding surface.
 本発明の基板保持方法において、前記基板が円形をなすとともに、前記基板保持面が円形をなしていてもよく、前記複数の領域は、前記基板の中央部分に対応する中央領域と、前記基板の周縁部に対応し、前記中央領域を囲む複数の周辺領域と、を含んでいてもよい。そして、本発明の基板保持方法は、
 前記基板の中央部分を、前記中央領域に吸着させる工程、
 次に、前記周辺領域の一つに、前記基板の周縁部の一部分を吸着させる工程、
 次に、前記基板の周縁部の一部分を吸着させた前記周辺領域に隣接する、一つ又は二つの周辺領域に、前記基板の周縁部の別の部分を吸着させる工程、
 次に、前記基板の周縁部の別の部分を吸着させた周辺領域に隣接する周辺領域に、前記基板のさらに別の部分を吸着させる工程、を順次行ってもよい。
In the substrate holding method of the present invention, the substrate may be circular, and the substrate holding surface may be circular. The plurality of regions include a central region corresponding to a central portion of the substrate, A plurality of peripheral regions corresponding to the peripheral portion and surrounding the central region may be included. And the substrate holding method of the present invention comprises:
Adsorbing the central portion of the substrate to the central region;
Next, a step of adsorbing a part of the peripheral edge of the substrate to one of the peripheral regions,
Next, adsorbing another part of the peripheral edge of the substrate to one or two peripheral areas adjacent to the peripheral area where a part of the peripheral edge of the substrate is adsorbed;
Next, a step of adsorbing another portion of the substrate to a peripheral region adjacent to a peripheral region where another portion of the peripheral portion of the substrate is adsorbed may be sequentially performed.
 本発明の基板保持方法において、前記基板が円形をなすとともに、前記基板保持面が円形をなしていてもよく、前記複数の領域は、前記基板の中央部分に対応する中央領域と、前記基板の周縁部に対応し、前記中央領域を囲む複数の周辺領域と、を含んでいてもよい。そして、本発明の基板保持方法は、
 前記基板の中央部分を、前記中央領域に吸着させる工程、
 次に、前記周辺領域の二つに、それぞれ、前記基板の周縁部を部分的に吸着させる工程、
 次に、前記基板の周縁部を部分的に吸着させた前記周辺領域に隣接する複数の周辺領域に、それぞれ、前記基板の周縁部の別の部分を吸着させる工程、
 次に、前記基板の周縁部の別の部分を吸着させた複数の周辺領域に隣接する複数の周辺領域に、それぞれ、前記基板のさらに別の部分を吸着させる工程、を順次行ってもよい。
In the substrate holding method of the present invention, the substrate may be circular, and the substrate holding surface may be circular. The plurality of regions include a central region corresponding to a central portion of the substrate, A plurality of peripheral regions corresponding to the peripheral portion and surrounding the central region may be included. And the substrate holding method of the present invention comprises:
Adsorbing the central portion of the substrate to the central region;
Next, a step of partially adsorbing the peripheral portion of the substrate to each of the two peripheral regions,
Next, a step of adsorbing another portion of the peripheral portion of the substrate to each of a plurality of peripheral regions adjacent to the peripheral region where the peripheral portion of the substrate is partially adsorbed,
Next, the step of adsorbing another portion of the substrate to a plurality of peripheral regions adjacent to the plurality of peripheral regions adsorbing another portion of the peripheral portion of the substrate may be sequentially performed.
 本発明の基板保持方法において、前記複数の周辺領域は、異なる面積を有する2つ以上の周辺領域を含んでいてもよく、
 前記周辺領域の中の面積が小さい領域から面積が大きな領域へ、順次、前記基板の周縁部を部分的に吸着させていくようにしてもよい。
In the substrate holding method of the present invention, the plurality of peripheral regions may include two or more peripheral regions having different areas,
You may make it adsorb | suck the peripheral part of the said board | substrate one by one from the area | region with a small area in the said peripheral area to an area | region with a large area sequentially.
 本発明の基板保持方法は、前記複数の領域について、全体を一括して、又は、個別にもしくは2つ以上の領域を含む組み合わせ毎に、前記基板を吸着させた状態で外気の進入状態を検出するリーク検出を行ってもよい。 The substrate holding method of the present invention detects the ingress state of outside air in a state where the substrate is adsorbed for the plurality of regions collectively or individually or for each combination including two or more regions. Leak detection may be performed.
 本発明の処理方法は、基板に対して所定の処理を行う方法であって、上記いずれかの基板保持方法によって、ステージに基板を吸着保持させる工程を含む。 The processing method of the present invention is a method of performing a predetermined process on a substrate, and includes a step of attracting and holding the substrate on the stage by any of the above-described substrate holding methods.
 本発明の処理方法は、基板上に形成された複数のデバイスの電気的特性を検査するデバイスの検査方法であってもよい。 The processing method of the present invention may be a device inspection method for inspecting electrical characteristics of a plurality of devices formed on a substrate.
 本発明の基板保持装置は、基板を吸着して保持するステージと、前記基板の一部分を前記基板保持面へ押し付ける押圧手段と、を備えている。本発明の基板保持装置において、前記ステージは、前記基板の下面を吸着して保持する基板保持面を有するとともに、該基板保持面は、前記基板を部分的に吸引可能な複数の領域に区分されている。そして、本発明の基板保持装置において、前記押圧手段は、前記ステージの前記複数の領域に対応して、前記基板の一部分である吸着部位を押圧するものである。 The substrate holding apparatus according to the present invention includes a stage that sucks and holds a substrate, and a pressing unit that presses a part of the substrate against the substrate holding surface. In the substrate holding apparatus of the present invention, the stage has a substrate holding surface that sucks and holds the lower surface of the substrate, and the substrate holding surface is divided into a plurality of regions capable of partially sucking the substrate. ing. In the substrate holding apparatus of the present invention, the pressing means presses an adsorption site that is a part of the substrate corresponding to the plurality of regions of the stage.
 本発明の基板保持装置は、前記押圧手段が、前記吸着部位の上面に向けてガスを吹き付けるガス噴射装置であってもよい。この場合、前記ガス噴射装置は、前記ステージの前記複数の領域に対応して、全体に、又は、個別にもしくは2つ以上の領域を含む組み合わせ毎に、前記ガスを吹き付けるノズルを有していてもよい。この場合、前記ガスが加熱ガスであってもよく、前記ステージの温度の±10℃の範囲内に保持されていてもよい。 The substrate holding device of the present invention may be a gas injection device in which the pressing means blows gas toward the upper surface of the adsorption site. In this case, the gas injection device includes a nozzle that blows the gas, corresponding to the plurality of regions of the stage, entirely or individually or for each combination including two or more regions. Also good. In this case, the gas may be a heated gas, and may be held within a range of ± 10 ° C. of the temperature of the stage.
 本発明の基板保持装置は、前記押圧手段が、前記吸着部位の上面に当接して前記基板保持面へ押し付ける押圧部材を有する押圧装置であってもよい。この場合、前記押圧部材の前記基板に当接する部分が、セラミックス、合成樹脂又はゴムによって形成されていてもよい。 The substrate holding device according to the present invention may be a pressing device in which the pressing means includes a pressing member that contacts the upper surface of the suction portion and presses against the substrate holding surface. In this case, the portion of the pressing member that contacts the substrate may be formed of ceramics, synthetic resin, or rubber.
 本発明の基板保持装置は、さらに、前記複数の領域について、全体を一括して、又は、個別にもしくは複数の組み合わせ毎に、前記基板を吸着させた状態で外気の進入状態を検出するリーク検出部を有していてもよい。 The substrate holding apparatus according to the present invention further detects leaking of the plurality of regions by detecting the ingress state of the outside air in a state where the substrate is adsorbed as a whole or individually or for each combination. May have a part.
 本発明の基板保持装置は、前記基板が円形をなすとともに、前記基板保持面が円形をなし、
 前記複数の領域は、前記基板の中央部分に対応する中央領域と、前記基板の周縁部に対応し、前記中央領域を囲む複数の周辺領域と、を含んでいてもよく、
 前記複数の周辺領域は、異なる面積を有する2つ以上の周辺領域を含んでいてもよい。
In the substrate holding device of the present invention, the substrate is circular, and the substrate holding surface is circular.
The plurality of regions may include a central region corresponding to a central portion of the substrate, and a plurality of peripheral regions corresponding to a peripheral portion of the substrate and surrounding the central region,
The plurality of peripheral regions may include two or more peripheral regions having different areas.
 本発明の基板保持装置は、前記中央領域が、前記基板保持面の径方向に分割された複数の領域を有していてもよく、前記周辺領域が、前記基板保持面の径方向に分割された複数の領域を有していてもよい。 In the substrate holding apparatus of the present invention, the central region may have a plurality of regions divided in the radial direction of the substrate holding surface, and the peripheral region is divided in the radial direction of the substrate holding surface. It may have a plurality of regions.
 本発明の処理装置は、基板上に対して所定の処理を行う装置であって、上記いずれかの基板保持装置を備えている。 The processing apparatus of the present invention is an apparatus that performs a predetermined process on a substrate, and includes any one of the above substrate holding apparatuses.
 本発明の処理装置は、基板上に形成された複数のデバイスの電気的特性を検査するプローブ装置であってもよい。 The processing apparatus of the present invention may be a probe apparatus that inspects the electrical characteristics of a plurality of devices formed on a substrate.
本発明の第1の実施の形態に係るプローブ装置の外観構成を示す斜視図である。It is a perspective view which shows the external appearance structure of the probe apparatus which concerns on the 1st Embodiment of this invention. 図1のプローブ装置の内部構造の概略を示す斜視図である。It is a perspective view which shows the outline of the internal structure of the probe apparatus of FIG. ステージにおける保持面の平面図である。It is a top view of the holding surface in a stage. 図3のIV-IV線矢視における要部の縦断面図である。FIG. 4 is a longitudinal sectional view of an essential part taken along line IV-IV in FIG. 3. 図4中の破線で囲むA部の拡大図である。It is an enlarged view of the A section enclosed with the broken line in FIG. バキュームチャック機構における複数の吸引領域と、真空ポンプとの接続状態を示す説明図である。It is explanatory drawing which shows the connection state of the several suction area | region in a vacuum chuck mechanism, and a vacuum pump. ガス噴射装置とステージに保持された基板との位置関係を模式的に示す説明図である。It is explanatory drawing which shows typically the positional relationship of a gas injection apparatus and the board | substrate hold | maintained on the stage. ガス噴射装置の別の構成例を模式的に示す説明図である。It is explanatory drawing which shows another structural example of a gas injection apparatus typically. 制御部のハードウェア構成の一例を示す説明図である。It is explanatory drawing which shows an example of the hardware constitutions of a control part. ステージの保持面における吸引領域と基板の部位との関係を示す説明図である。It is explanatory drawing which shows the relationship between the suction area | region in the holding surface of a stage, and the site | part of a board | substrate. 本発明の一実施の形態に係る基板の保持方法の手順の例を説明するフロー図である。It is a flowchart explaining the example of the procedure of the holding | maintenance method of the board | substrate which concerns on one embodiment of this invention. 本発明の一実施の形態に係る基板の保持方法の手順の別の例を説明するフロー図である。It is a flowchart explaining another example of the procedure of the holding | maintenance method of the board | substrate which concerns on one embodiment of this invention. 本発明の一実施の形態に係る基板の保持方法の手順のさらに別の例を説明するフロー図である。It is a flowchart explaining another example of the procedure of the holding | maintenance method of the board | substrate which concerns on one embodiment of this invention. 第1変形例の説明に供するステージにおける保持面の平面図である。It is a top view of the holding surface in the stage with which it uses for description of a 1st modification. 第2変形例の説明に供するステージにおける保持面の平面図である。It is a top view of the holding surface in the stage with which it uses for description of a 2nd modification. 第3変形例の説明に供するステージにおける保持面の平面図である。It is a top view of the holding surface in the stage with which it uses for description of a 3rd modification. 本発明の第2の実施の形態に係るプローブ装置の内部構造の概略を示す斜視図である。It is a perspective view which shows the outline of the internal structure of the probe apparatus which concerns on the 2nd Embodiment of this invention. 押圧装置の説明図である。It is explanatory drawing of a press apparatus. 押圧装置の別の状態の説明図である。It is explanatory drawing of another state of a press apparatus. ステージの保持面に形成された複数の吸引領域の説明図である。It is explanatory drawing of the several suction area | region formed in the holding surface of a stage. 図17のプローブ装置における基板の保持手順の説明図である。It is explanatory drawing of the holding | maintenance procedure of the board | substrate in the probe apparatus of FIG. 図21に続く基板の保持手順の説明図である。It is explanatory drawing of the holding | maintenance procedure of the board | substrate following FIG. 図22に続く基板の保持手順の説明図である。It is explanatory drawing of the holding | maintenance procedure of the board | substrate following FIG. 図23に続く基板の保持手順の説明図である。FIG. 24 is an explanatory diagram of a substrate holding procedure following FIG. 23. 図24に続く基板の保持手順の説明図である。FIG. 25 is an explanatory diagram of a substrate holding procedure following FIG. 24. 図25に続く基板の保持手順の説明図である。FIG. 26 is an explanatory diagram of a substrate holding procedure following FIG. 25. 図26に続く基板の保持手順の説明図である。FIG. 27 is an explanatory diagram of a substrate holding procedure following FIG. 26. 図27に続く基板の保持手順の説明図である。It is explanatory drawing of the holding | maintenance procedure of the board | substrate following FIG. 図28に続く基板の保持手順の説明図である。FIG. 29 is an explanatory diagram of a substrate holding procedure following FIG. 28. 図29に続く基板の保持手順の説明図である。FIG. 30 is an explanatory diagram of a substrate holding procedure following FIG. 29. 図30に続く基板の保持手順の説明図である。FIG. 31 is an explanatory diagram of a substrate holding procedure following FIG. 30. 図31に続く基板の保持手順の説明図である。FIG. 32 is an explanatory diagram of a substrate holding procedure following FIG. 31. 図32に続く基板の保持手順の説明図である。FIG. 33 is an explanatory diagram of a substrate holding procedure following FIG. 32.
 以下、図面を参照しながら本発明の実施の形態について説明する。 Hereinafter, embodiments of the present invention will be described with reference to the drawings.
[第1の実施の形態]
 図1は、本発明の第1の実施の形態に係るプローブ装置100の外観構成を示す斜視図である。図2は、図1のプローブ装置100の内部構造の概略を示す斜視図である。
[First Embodiment]
FIG. 1 is a perspective view showing an external configuration of the probe apparatus 100 according to the first embodiment of the present invention. FIG. 2 is a perspective view showing an outline of the internal structure of the probe apparatus 100 of FIG.
 本実施の形態のプローブ装置100は、半導体ウエハ、樹脂基板などの基板(以下、単に「ウエハ」と記すことがある)Wに形成された半導体デバイス等のデバイス(図示せず)の電気的特性の検査を行うものである。プローブ装置100は、本体1と、この本体1に隣接して配置されるローダー部3と、本体1を覆うように配置されるテストヘッド5とを備えている。また、プローブ装置100は、ウエハWを載置するステージ7と、プローブ装置100の各構成部の動作を制御する制御部50を備えている。 The probe apparatus 100 according to the present embodiment has electrical characteristics of a device (not shown) such as a semiconductor device formed on a substrate W (hereinafter simply referred to as “wafer”) W such as a semiconductor wafer or a resin substrate. The inspection is performed. The probe apparatus 100 includes a main body 1, a loader unit 3 disposed adjacent to the main body 1, and a test head 5 disposed so as to cover the main body 1. The probe apparatus 100 also includes a stage 7 on which the wafer W is placed, and a control unit 50 that controls the operation of each component of the probe apparatus 100.
<本体>
 本体1は、内部が空洞の筐体であり、ステージ7を収容する。本体1の天井部1aには、開口部1bが形成されている。開口部1bは、ステージ7に載置されたウエハWの上方に位置しており、この開口部1bに、多数のプローブ針を有する円板状のプローブカード(図示省略)を保持する略円板状のプローブカードホルダ(図示省略)が係合する。このプローブカードホルダによって、プローブカードは、ステージ7に載置されたウエハWと対向して配置される。
<Main body>
The main body 1 is a hollow casing and accommodates the stage 7. An opening 1 b is formed in the ceiling 1 a of the main body 1. The opening 1b is located above the wafer W placed on the stage 7, and a substantially disk holding a disk-shaped probe card (not shown) having a large number of probe needles in the opening 1b. Shaped probe card holder (not shown) engages. With this probe card holder, the probe card is arranged to face the wafer W placed on the stage 7.
<ローダー部>
 ローダー部3は、搬送容器であるフープ(図示省略)に収容されているウエハWを取り出して本体1のステージ7へ搬送する。また、ローダー部3は、デバイスの電気的特性の検査が終了したウエハWをステージ7から受け取り、フープへ収容する。
<Loader section>
The loader unit 3 takes out the wafer W accommodated in a FOUP (not shown) as a transfer container and transfers it to the stage 7 of the main body 1. The loader unit 3 receives the wafer W from which the electrical characteristics of the device have been inspected from the stage 7 and accommodates it in the hoop.
<テストヘッド>
 テストヘッド5は、直方体形状をなし、本体1に設けられたヒンジ機構11によって上方向へ回動可能に構成されている。テストヘッド5は、上方から本体1を覆った状態で、図示しないコンタクトリングを介してプローブカードと電気的に接続される。テストヘッド5は、プローブカードから伝送されるデバイスの電気的特性を示す電気信号を測定データとして記憶するとともに、測定データに基づいてデバイスの電気的な欠陥の有無を判定する機能を有している。
<Test head>
The test head 5 has a rectangular parallelepiped shape and is configured to be rotatable upward by a hinge mechanism 11 provided in the main body 1. The test head 5 is electrically connected to the probe card via a contact ring (not shown) with the main body 1 covered from above. The test head 5 stores an electrical signal indicating the electrical characteristics of the device transmitted from the probe card as measurement data, and has a function of determining the presence or absence of an electrical defect of the device based on the measurement data. .
<ステージ>
 図2に示すように、ステージ7は、基台20上に配置されており、図中に示すX方向に沿って移動するX方向移動ユニット21と、図中に示すY方向に沿って移動するY方向移動ユニット23と、図中に示すZ方向に沿って移動するZ方向移動ユニット25とを有している。また、ステージ7は、ウエハWを吸着保持するバキュームチャック機構60を有している。ステージ7の上面は、バキュームチャック機構60によってウエハWを吸引して保持する保持面7aとなっている。バキュームチャック機構60の詳細な構成については後述する。また、ステージ7は、図示しないヒーターが設けられており、保持面7aの温度を例えば25℃~200℃の範囲内に調節できるように構成されている。
<Stage>
As shown in FIG. 2, the stage 7 is arranged on the base 20, and moves along the X direction moving unit 21 that moves along the X direction shown in the drawing and the Y direction shown in the drawing. It has a Y-direction moving unit 23 and a Z-direction moving unit 25 that moves along the Z direction shown in the figure. The stage 7 has a vacuum chuck mechanism 60 that holds the wafer W by suction. The upper surface of the stage 7 is a holding surface 7 a that sucks and holds the wafer W by the vacuum chuck mechanism 60. The detailed configuration of the vacuum chuck mechanism 60 will be described later. Further, the stage 7 is provided with a heater (not shown) so that the temperature of the holding surface 7a can be adjusted within a range of 25 ° C. to 200 ° C., for example.
 X方向移動ユニット21は、X方向に配置されたガイドレール27に沿って、ボールねじ21aの回動によってステージ7をX方向に高精度に移動させる。ボールねじ21aは、モータ(図示せず)によって回動される。また、このモータに組み合わされたエンコーダ(図示せず)によってステージ7の移動量の検出が可能となっている。 The X-direction moving unit 21 moves the stage 7 in the X direction with high accuracy by the rotation of the ball screw 21a along the guide rail 27 arranged in the X direction. The ball screw 21a is rotated by a motor (not shown). Further, the amount of movement of the stage 7 can be detected by an encoder (not shown) combined with the motor.
 Y方向移動ユニット23は、Y方向に配置されたガイドレール29に沿って、ボールねじ23aの回動によってステージ7をY方向に高精度に移動させる。ボールねじ23aは、モータ23bによって回動される。また、このモータ23bに組み合わされたエンコーダ23cによってステージ7の移動量の検出が可能となっている。 The Y-direction moving unit 23 moves the stage 7 in the Y direction with high accuracy by the rotation of the ball screw 23a along the guide rail 29 arranged in the Y direction. The ball screw 23a is rotated by a motor 23b. Further, the amount of movement of the stage 7 can be detected by the encoder 23c combined with the motor 23b.
 このように、X方向移動ユニット21とY方向移動ユニット23は、ステージ7を、水平面に沿い、互いに直交するX方向とY方向に移動させる。 Thus, the X direction moving unit 21 and the Y direction moving unit 23 move the stage 7 in the X direction and the Y direction orthogonal to each other along the horizontal plane.
 Z方向移動ユニット25は、図示しないモータ及びエンコーダを有し、ステージ7をZ方向に沿って上下に移動させるとともに、その移動量を検出できるようになっている。Z方向移動ユニット25は、ステージ7をプローブカードへ向けて移動させてウエハW上のデバイスにおける電極とプローブ針とを当接させる。また、ステージ7は、図示しないモータによって、Z方向移動ユニット25の上において、図中に示すθ方向に回転自在に配置されている。 The Z-direction moving unit 25 has a motor and an encoder (not shown), and moves the stage 7 up and down along the Z direction and can detect the amount of movement. The Z-direction moving unit 25 moves the stage 7 toward the probe card so that the electrode on the device on the wafer W and the probe needle come into contact with each other. The stage 7 is disposed on the Z-direction moving unit 25 by a motor (not shown) so as to be rotatable in the θ direction shown in the drawing.
<下部撮像ユニット>
 また、本体1の内部には、下部撮像ユニット35が配置されている。ここで、下部撮像ユニット35は、プローブカードに形成されたプローブ針を撮像する。下部撮像ユニット35は、ステージ7に固定されており、ステージ7とともにX方向、Y方向及びZ方向に移動する。
<Lower imaging unit>
A lower imaging unit 35 is disposed inside the main body 1. Here, the lower imaging unit 35 images the probe needle formed on the probe card. The lower imaging unit 35 is fixed to the stage 7 and moves in the X direction, the Y direction, and the Z direction together with the stage 7.
<アライメントユニット>
 また、本体1の内部において、ステージ7の上方には、アライメントユニット41が配置されている。アライメントユニット41は、図示しない駆動部によって、図2中、Y方向に移動可能に構成されている。アライメントユニット41は、ステージ7や下部撮像ユニット35と対向する水平面に沿う下面を有している。
<Alignment unit>
An alignment unit 41 is disposed above the stage 7 in the main body 1. The alignment unit 41 is configured to be movable in the Y direction in FIG. 2 by a drive unit (not shown). The alignment unit 41 has a lower surface along a horizontal plane facing the stage 7 and the lower imaging unit 35.
<上部撮像ユニット>
 アライメントユニット41には、上部撮像ユニット43が設けられている。上部撮像ユニット43は、ステージ7上に載置されたウエハWに形成されたデバイスの電極を撮像する。
<Upper imaging unit>
The alignment unit 41 is provided with an upper imaging unit 43. The upper imaging unit 43 images the device electrodes formed on the wafer W placed on the stage 7.
<ガス噴射装置>
 アライメントユニット41には、ステージ7に載置されたウエハWの上面へ向けてガスを噴射するガス噴射装置45が設けられている。ガス噴射装置45は、ウエハWの上面に例えば乾燥空気などのガスを噴射する。ガス噴射装置45は、バキュームチャック機構60によって、ウエハWをステージ7に吸着保持させる際に、吸着を容易にする吸着補助手段である。そして、バキュームチャック機構60を有するステージ7及びガス噴射装置45は、本発明における基板保持装置として、協働してウエハWの保持面7aへの吸着保持を行う。ガス噴射装置45の詳細な構成については後述する。
<Gas injection device>
The alignment unit 41 is provided with a gas injection device 45 that injects gas toward the upper surface of the wafer W placed on the stage 7. The gas injection device 45 injects a gas such as dry air onto the upper surface of the wafer W. The gas injection device 45 is an adsorption assisting unit that facilitates adsorption when the wafer W is adsorbed and held on the stage 7 by the vacuum chuck mechanism 60. Then, the stage 7 having the vacuum chuck mechanism 60 and the gas injection device 45 cooperate to hold the wafer W on the holding surface 7a as a substrate holding device in the present invention. The detailed configuration of the gas injection device 45 will be described later.
<バキュームチャック機構>
 次に、ステージ7におけるバキュームチャック機構60について、図3~図6を参照しながら説明する。図3は、ステージ7の上面である保持面7aの平面図である。図4は、図3のIV-IV線矢視におけるステージ7の上部の断面図である。図5は、図4中の破線で囲むA部の拡大図である。バキュームチャック機構60は、ステージ7の保持面7aに設けられた吸引溝7bと、吸引溝7bに接続する吸気路63と、吸気路63の他端側に接続する真空ポンプ70と、を備えている。
<Vacuum chuck mechanism>
Next, the vacuum chuck mechanism 60 in the stage 7 will be described with reference to FIGS. FIG. 3 is a plan view of the holding surface 7 a that is the upper surface of the stage 7. 4 is a cross-sectional view of the upper portion of the stage 7 as viewed in the direction of arrows IV-IV in FIG. FIG. 5 is an enlarged view of a portion A surrounded by a broken line in FIG. The vacuum chuck mechanism 60 includes a suction groove 7 b provided on the holding surface 7 a of the stage 7, an intake passage 63 connected to the suction groove 7 b, and a vacuum pump 70 connected to the other end side of the intake passage 63. Yes.
 ステージ7の保持面7aには、ウエハWを吸着するための微細な吸引溝7bが設けられている。図3及び図4では、吸引溝7bを線で表しているが、図5に拡大して示すように、吸引溝7bは、ステージ7の保持面7aに形成された凹部である。吸引溝7bは、吸気路63を介して真空ポンプ70に接続されており、保持面7aにウエハWを保持した状態で、ウエハWによってシールされ、溝内が減圧に維持される。 The holding surface 7a of the stage 7 is provided with a fine suction groove 7b for adsorbing the wafer W. 3 and 4, the suction groove 7 b is represented by a line, but as shown in an enlarged view in FIG. 5, the suction groove 7 b is a recess formed in the holding surface 7 a of the stage 7. The suction groove 7b is connected to the vacuum pump 70 via the intake passage 63, and is sealed by the wafer W while the wafer W is held on the holding surface 7a, and the inside of the groove is maintained at a reduced pressure.
 吸引溝7bは、複数の吸引領域61に区分されている。図3に示す例では、吸引溝7bは、独立して減圧に保持され得る9つの吸引領域61A,61B,61C、61D,61E,61F,61G,61H,61Iに区分されている。吸引領域61Iは、中央領域であり、平面視円形をなす保持面7aの中央部分に設けられている。吸引領域61A,61B,61C、61D,61E,61F,61G,61Hは、周辺領域であり、平面視円形をなす保持面7aにおいて、吸引領域61Iの周囲に設けられている。吸引領域61Iは、円形のウエハWの中央部分を吸着する。吸引領域61A,61B,61C、61D,61E,61F,61G,61Hは、円形のウエハWの周縁部分を吸着する。 The suction groove 7 b is divided into a plurality of suction regions 61. In the example shown in FIG. 3, the suction groove 7b is divided into nine suction regions 61A, 61B, 61C, 61D, 61E, 61F, 61G, 61H, and 61I that can be independently maintained at a reduced pressure. The suction region 61I is a central region, and is provided in the central portion of the holding surface 7a that is circular in plan view. The suction areas 61A, 61B, 61C, 61D, 61E, 61F, 61G, and 61H are peripheral areas, and are provided around the suction area 61I on the holding surface 7a that is circular in plan view. The suction region 61I sucks the central portion of the circular wafer W. The suction regions 61A, 61B, 61C, 61D, 61E, 61F, 61G, and 61H adsorb the peripheral portion of the circular wafer W.
 各吸引領域61A~61Iにおいて、吸引溝7bは所定のパターンで形成されている。各吸引領域61A~61Iの内部では、吸引溝7bは連通している。一方、異なる吸引領域間では、吸引溝7bは非連通状態となっている。 In each of the suction areas 61A to 61I, the suction groove 7b is formed in a predetermined pattern. Inside each suction area 61A to 61I, the suction groove 7b communicates. On the other hand, the suction groove 7b is in a non-communication state between different suction regions.
 図6は、バキュームチャック機構60における吸引領域61A~61Iと、真空ポンプ70との接続状態を示している。各吸引領域61A~61Iの吸引溝7bは、それぞれ、吸気路63の一部分をなす配管63A~63Iを介して真空ポンプ70に接続されている。各配管63A~63Iの途中には切替バルブ65A~65Iが設けられている。切替バルブ65A~65Iは、吸引領域61A~61Iが真空ポンプ70によって吸引可能な状態と、吸引領域61A~61Iが排気管67A~67Iを介して外気71に開放された状態とを切り替える。以上の構成によって、各吸引領域61A~61Iでは、独立してウエハWを部分的に吸引できるようになっている。例えば、吸引領域61Aと吸引領域61Bは、ウエハWに対して、それぞれ別々に吸着状態と非吸着状態をとることができる。このように、各吸引領域61A~61Iの吸着状態と非吸着状態を独立して制御可能にすることによって、後述するように、反りの強いウエハWに対しても、ウエハ全面の吸着保持を確実に行うことができる。また、各吸引領域61A~61Iの吸着状態と非吸着状態を独立して制御可能にすることによって、反りの強いウエハWにおいて、万一、吸着が不十分な部位が発生しても、他の部位で確実に吸着保持できる。従って、プローブ検査途中でのウエハWの位置ずれを防止できる。 FIG. 6 shows a connection state between the suction areas 61A to 61I and the vacuum pump 70 in the vacuum chuck mechanism 60. The suction grooves 7b of the suction regions 61A to 61I are connected to the vacuum pump 70 via pipes 63A to 63I that form part of the intake passage 63, respectively. Switching valves 65A to 65I are provided in the middle of the pipes 63A to 63I. The switching valves 65A to 65I switch between a state where the suction regions 61A to 61I can be sucked by the vacuum pump 70 and a state where the suction regions 61A to 61I are opened to the outside air 71 via the exhaust pipes 67A to 67I. With the above configuration, the wafer W can be partially sucked independently in each of the suction regions 61A to 61I. For example, the suction area 61 </ b> A and the suction area 61 </ b> B can take a suction state and a non-suction state on the wafer W, respectively. In this way, by making it possible to independently control the suction state and the non-suction state of each of the suction regions 61A to 61I, as will be described later, the suction and holding of the entire wafer surface can be ensured even for a wafer W having a strong warp. Can be done. In addition, by making it possible to independently control the suction state and the non-suction state of each of the suction regions 61A to 61I, even if a portion with insufficient suction is generated in the wafer W having a strong warp, It can be reliably adsorbed and held at the site. Accordingly, it is possible to prevent the positional deviation of the wafer W during the probe inspection.
 また、吸気路63には、真空計73が設けられている。真空計73によって、吸気路63の圧力を計測することによって、吸引領域61A~61Iのいずれかにおいて、外気が進入するリークが発生しているか否かを検出することができる。なお、真空計73は、各吸引領域61A~61Iに対して一括に設ける以外に、個別に設けてもよいし、複数の組み合わせ毎に設けてもよい。 Further, a vacuum gauge 73 is provided in the intake passage 63. By measuring the pressure in the intake passage 63 with the vacuum gauge 73, it is possible to detect whether or not a leak into which outside air enters is generated in any of the suction regions 61A to 61I. Note that the vacuum gauge 73 may be provided individually for each of the suction areas 61A to 61I, or may be provided for each of a plurality of combinations.
 本実施の形態では、保持面7aを9つの吸引領域61A~61Iに区分したが、吸引領域の数は、9つに限定されるものではない。例えば、保持面7aの中央部分と周辺部分に区分せず、保持面7aを、周方向に並ぶ複数の扇形の吸引領域61に区分してもよい。ただし、ウエハWの吸着を容易にする観点からは、吸引領域61を、保持面7aの中央部分と周辺部分に区分することが好ましい。また、後述するウエハWの部分的な吸着を順次繰り返す方法での保持を容易にする観点から、周辺部分は、好ましくは、少なくとも4以上、より好ましくは4~12、さらに好ましくは4~8の吸引領域61に区分することがよい。 In the present embodiment, the holding surface 7a is divided into nine suction areas 61A to 61I, but the number of suction areas is not limited to nine. For example, the holding surface 7a may be divided into a plurality of fan-shaped suction regions 61 arranged in the circumferential direction without being divided into the central portion and the peripheral portion of the holding surface 7a. However, from the viewpoint of facilitating the suction of the wafer W, the suction region 61 is preferably divided into a central portion and a peripheral portion of the holding surface 7a. Further, from the viewpoint of facilitating the holding by the method of sequentially repeating partial adsorption of the wafer W described later, the peripheral portion is preferably at least 4 or more, more preferably 4 to 12, more preferably 4 to 8. It is preferable to divide into the suction area 61.
 また、吸引領域61A~61Iを複数のグループに分割することもできる。例えば、吸引領域61A,61Bで一グループ、吸引領域61C,61Dで一グループ、吸引領域61E,61Fで一グループ、吸引領域61G,61Hで一グループというようにグループ分けし、グループ毎に吸引状態と非吸引状態とを切替可能に構成してもよい。 Also, the suction areas 61A to 61I can be divided into a plurality of groups. For example, the suction areas 61A and 61B are grouped as one group, the suction areas 61C and 61D as one group, the suction areas 61E and 61F as one group, and the suction areas 61G and 61H as one group. You may comprise so that switching to a non-attraction | suction state is possible.
<ガス噴射装置>
 次に、図7を参照しながら、ガス噴射装置45の詳細な構成について説明する。図7は、ガス噴射装置45とステージ7に保持されたウエハWとの位置関係を示す説明図である。本実施の形態において、ガス噴射装置45は、ウエハWの上面に向かって部分的にガスを噴射する複数のノズル81(例えば3つ)と、各ノズル81を支持するノズルプレート83と、各ノズル81に接続されてノズル81へガスを供給する配管85と、該配管85の他端側に接続されたガス源87と、を備えている。配管85の途中には、流量制御のためのマスフローコントローラ(MFC)89と開閉バルブ91が設けられている。ガスとしては、例えば乾燥空気、窒素ガス、希ガスなどを挙げることができる。各ノズル81は、配管85が分岐した分岐管85A~85Cを介してガス源87へ接続されている。各分岐管85A~85Cには、それぞれ開閉バルブ93A~93Cが設けられている。
<Gas injection device>
Next, a detailed configuration of the gas injection device 45 will be described with reference to FIG. FIG. 7 is an explanatory diagram showing the positional relationship between the gas injection device 45 and the wafer W held on the stage 7. In the present embodiment, the gas injection device 45 includes a plurality of nozzles 81 (for example, three) that partially inject gas toward the upper surface of the wafer W, a nozzle plate 83 that supports each nozzle 81, and each nozzle. A pipe 85 connected to 81 for supplying gas to the nozzle 81 and a gas source 87 connected to the other end of the pipe 85 are provided. In the middle of the pipe 85, a mass flow controller (MFC) 89 and a switching valve 91 for flow rate control are provided. Examples of the gas include dry air, nitrogen gas, and rare gas. Each nozzle 81 is connected to a gas source 87 via branch pipes 85A to 85C in which a pipe 85 is branched. The branch pipes 85A to 85C are provided with opening / closing valves 93A to 93C, respectively.
 また、ガス噴射装置45から噴射するガスとして、加熱ガスを用いることも可能である。この場合、加熱ガスの温度は、ステージ7の保持面7aの温度と同程度の温度とすることが好ましい。例えば、加熱ガスの温度は、ステージ7の保持面7aの温度に対し±10℃の範囲内に設定することが好ましく、±5℃の範囲内に設定することがより好ましい。例えばステージ7の保持面7aの温度が120℃である場合、加熱ガスの温度は110℃~130℃の範囲内とすることが好ましく、115℃~125℃の範囲内とすることがより好ましい。また、例えばステージ7の保持面7aの温度が150℃である場合、加熱ガスの温度は140℃~160℃の範囲内とすることが好ましく、145℃~155℃の範囲内とすることがより好ましい。 It is also possible to use a heated gas as the gas injected from the gas injection device 45. In this case, it is preferable that the temperature of the heated gas is approximately the same as the temperature of the holding surface 7 a of the stage 7. For example, the temperature of the heated gas is preferably set within a range of ± 10 ° C., more preferably within a range of ± 5 ° C. with respect to the temperature of the holding surface 7 a of the stage 7. For example, when the temperature of the holding surface 7a of the stage 7 is 120 ° C, the temperature of the heated gas is preferably in the range of 110 ° C to 130 ° C, and more preferably in the range of 115 ° C to 125 ° C. For example, when the temperature of the holding surface 7a of the stage 7 is 150 ° C., the temperature of the heated gas is preferably in the range of 140 ° C. to 160 ° C., more preferably in the range of 145 ° C. to 155 ° C. preferable.
 ガス噴射装置45から噴射するガスとして、加熱ガスを用いることによって、ウエハWをその上面側からも加熱することが可能になる。その結果、ステージ7の保持面7aに載置されたウエハWの下面と上面の温度差を極力小さくすることができるので、ウエハWの加熱時の反りの発生を抑制できる。特に、ウエハWが異なる樹脂を積層した構造である場合、材質による熱膨張率の違いによって反りが発生しやすくなるため、加熱ガスを用いることが反りの抑制に効果的である。また、加熱ガスによって、ウエハWを上面側からも加熱できるため、ウエハWの材質に熱可塑性樹脂が用いられている場合は、その柔軟性が増し、ステージ7の保持面7aへの吸着が容易になる。 By using the heating gas as the gas injected from the gas injection device 45, the wafer W can be heated from the upper surface side. As a result, since the temperature difference between the lower surface and the upper surface of the wafer W placed on the holding surface 7a of the stage 7 can be minimized, the occurrence of warpage during heating of the wafer W can be suppressed. In particular, when the wafer W has a structure in which different resins are laminated, warpage is likely to occur due to a difference in coefficient of thermal expansion depending on the material. Therefore, using heated gas is effective in suppressing warpage. Further, since the wafer W can be heated from the upper surface side by the heating gas, when a thermoplastic resin is used as the material of the wafer W, the flexibility is increased and the adsorption to the holding surface 7a of the stage 7 is easy. become.
 本実施の形態において、ノズルプレート83は、アライメントユニット41に支持されているため、3つのノズル81は、図1中のY方向に移動可能になっている。一方、ステージ7は、X方向移動ユニット21、Y方向移動ユニット23及びZ方向移動ユニット25によって、図1中のX-Y-Z方向に移動可能になっている。従って、各ノズル81から、ステージ7に保持されたウエハWの目標の部位へ向けて、独立してガスを噴射することができる。本実施の形態では、ステージ7の保持面7aにおいて区分された9つの吸引領域61A~61Iに向けて、別々のタイミングでガスを噴射できるように構成されている。例えば、図3では、9つの吸引領域61A~61Iに対し、ガス噴射位置61A,61B,61C、61D,61E,61F,61G,61H,61Iを投影して仮想線で示している。従って、ステージ7に保持されたウエハWに対して、吸引領域61A~61Iに対応する9箇所の位置には、別々にガスが噴射される。 In the present embodiment, since the nozzle plate 83 is supported by the alignment unit 41, the three nozzles 81 are movable in the Y direction in FIG. On the other hand, the stage 7 is movable in the XYZ directions in FIG. 1 by an X direction moving unit 21, a Y direction moving unit 23, and a Z direction moving unit 25. Therefore, gas can be independently injected from each nozzle 81 toward the target portion of the wafer W held on the stage 7. In the present embodiment, the gas can be injected at different timings toward the nine suction regions 61A to 61I divided on the holding surface 7a of the stage 7. For example, in FIG. 3, with respect to nine suction regions 61A ~ 61I, virtual projects the gas injection position 61A 1, 61B 1, 61C 1 , 61D 1, 61E 1, 61F 1, 61G 1, 61H 1, 61I 1 Shown with lines. Accordingly, gas is separately injected to nine positions corresponding to the suction regions 61A to 61I with respect to the wafer W held on the stage 7.
 なお、ノズル81は、3つに限らず、例えば1つ又は2つでもよいし、4つ以上でもよく、各吸引領域61A~61Iに個別に対応させて9つのノズル81を設けてもよい。 Note that the number of nozzles 81 is not limited to three, and may be one or two, for example, four or more, and nine nozzles 81 may be provided individually corresponding to each of the suction regions 61A to 61I.
 また、ガス噴射装置45をアライメントユニット41と独立して設けることもできる。例えば、図8は、ノズルプレート83を独立した支持部によって支持する場合の構成例を示している。ガス噴射装置45Aは、ウエハWの上面に向かって部分的にガスを噴射する複数のノズル81(例えば3つ)と、各ノズル81を支持するノズルプレート83と、各ノズル81に接続されてノズル81へガスを供給する配管85と、該配管85の他端側に接続されたガス源87と、ノズルプレート83を支持するノズルアーム95と、ノズルアーム95を支持する支柱97を備えている。ノズルアーム95は、図示しない駆動部によって、X-Y-Z方向に伸縮、旋回及び上下変位可能に構成されている。ノズルアーム95をステージ7の保持面7aに保持されたウエハWの真上に移動させることによって、ウエハWの所定の部位に対してガスを噴射することができる。 Also, the gas injection device 45 can be provided independently of the alignment unit 41. For example, FIG. 8 shows a configuration example when the nozzle plate 83 is supported by an independent support portion. The gas injection device 45A includes a plurality of nozzles 81 (for example, three) that partially inject gas toward the upper surface of the wafer W, a nozzle plate 83 that supports the nozzles 81, and nozzles that are connected to the nozzles 81. A pipe 85 that supplies gas to 81, a gas source 87 connected to the other end of the pipe 85, a nozzle arm 95 that supports the nozzle plate 83, and a support column 97 that supports the nozzle arm 95 are provided. The nozzle arm 95 is configured to be able to expand, contract, swivel, and move up and down in the XYZ directions by a drive unit (not shown). By moving the nozzle arm 95 directly above the wafer W held on the holding surface 7 a of the stage 7, gas can be injected to a predetermined part of the wafer W.
<制御部>
 制御部50は、プローブ装置100の各構成部の動作を制御する。制御部50は、典型的にはコンピュータである。図9は、制御部50のハードウェア構成の一例を示している。制御部50は、主制御部201と、キーボード、マウス等の入力装置202と、プリンタ等の出力装置203と、表示装置204と、記憶装置205と、外部インターフェース206と、これらを互いに接続するバス207とを備えている。主制御部201は、CPU(中央処理装置)211、RAM(ランダムアクセスメモリ)212およびROM(リードオンリメモリ)213を有している。記憶装置205は、情報を記憶できるものであれば、その形態は問わないが、例えばハードディスク装置または光ディスク装置である。また、記憶装置205は、コンピュータ読み取り可能な記録媒体215に対して情報を記録し、また記録媒体215より情報を読み取るようになっている。記録媒体215は、情報を記憶できるものであれば、その形態は問わないが、例えばハードディスク、光ディスク、フラッシュメモリなどである。記録媒体215は、本実施の形態のプローブ装置100において行われるプローブ方法のレシピを記録した記録媒体であってもよい。
<Control unit>
The control unit 50 controls the operation of each component of the probe device 100. The control unit 50 is typically a computer. FIG. 9 shows an example of the hardware configuration of the control unit 50. The control unit 50 includes a main control unit 201, an input device 202 such as a keyboard and a mouse, an output device 203 such as a printer, a display device 204, a storage device 205, an external interface 206, and a bus that connects these components to each other. 207. The main control unit 201 includes a CPU (central processing unit) 211, a RAM (random access memory) 212, and a ROM (read only memory) 213. The storage device 205 may be of any form as long as it can store information. For example, the storage device 205 is a hard disk device or an optical disk device. The storage device 205 records information on a computer-readable recording medium 215 and reads information from the recording medium 215. The recording medium 215 may be in any form as long as it can store information, and is, for example, a hard disk, an optical disk, or a flash memory. The recording medium 215 may be a recording medium that records a recipe for the probe method performed in the probe apparatus 100 of the present embodiment.
 制御部50は、本実施の形態のプローブ装置100において、複数のウエハWに対し、ウエハW上に形成されたデバイスに対する検査を実行できるように制御する。具体的には、制御部50は、プローブ装置100において、各構成部(例えば、モータ23bなどの駆動装置、エンコーダ23cなどの位置検出装置、下部撮像ユニット35、上部撮像ユニット43、ガス噴射装置45、バキュームチャック機構60等)を制御する。これらは、CPU211が、RAM212を作業領域として用いて、ROM213または記憶装置205に格納されたソフトウエア(プログラム)を実行することによって実現される。 The control unit 50 controls the probe apparatus 100 according to the present embodiment so that a plurality of wafers W can be inspected with respect to devices formed on the wafers W. Specifically, in the probe device 100, the control unit 50 includes each component (for example, a driving device such as a motor 23b, a position detection device such as an encoder 23c, a lower imaging unit 35, an upper imaging unit 43, and a gas injection device 45). , Vacuum chuck mechanism 60 and the like). These are realized by the CPU 211 executing software (program) stored in the ROM 213 or the storage device 205 using the RAM 212 as a work area.
 以上の構成のプローブ装置100では、ステージ7を水平方向(X方向,Y方向,θ方向)及び垂直方向(Z方向)に移動させることによって、プローブカードとステージ7上に保持されたウエハWとの相対位置を調整し、デバイスの電極とプローブ針とを当接させる。テストヘッド5は、プローブカードの各プローブ針を介してデバイスに検査電流を流す。プローブカードは、デバイスの電気的特性を示す電気信号をテストヘッド5に伝送する。テストヘッド5は、伝送された電気信号を測定データとして記憶し、検査対象のデバイスの電気的な欠陥の有無を判定する。 In the probe apparatus 100 having the above configuration, the stage 7 is moved in the horizontal direction (X direction, Y direction, θ direction) and the vertical direction (Z direction), whereby the probe card and the wafer W held on the stage 7 are The relative position of the device is adjusted, and the electrode of the device and the probe needle are brought into contact with each other. The test head 5 passes an inspection current to the device via each probe needle of the probe card. The probe card transmits an electrical signal indicating the electrical characteristics of the device to the test head 5. The test head 5 stores the transmitted electrical signal as measurement data, and determines the presence or absence of an electrical defect in the device to be inspected.
[ウエハの保持方法]
 次に、本発明の実施の形態に係るウエハWの保持方法について説明する。まず、図10を参照して、ステージ7の保持面7aの吸引領域61A~61Iと、そこに吸着されるウエハWの部位との関係について説明する。ここでは、ステージ7の吸引領域61Aに吸着されるウエハWの一部分を部位Pとする。同様に、ウエハWにおいて、それぞれ、吸引領域61Bに吸着される部分を部位P、吸引領域61Cに吸着される部分を部位P、吸引領域61Dに吸着される部分を部位P、吸引領域61Eに吸着される部分を部位P、吸引領域61Fに吸着される部分を部位P、吸引領域61Gに吸着される部分を部位P、吸引領域61Hに吸着される部分を部位P、吸引領域61Iに吸着される部分を部位Pとする。
[Wafer holding method]
Next, a method for holding the wafer W according to the embodiment of the present invention will be described. First, with reference to FIG. 10, the relationship between the suction areas 61A to 61I of the holding surface 7a of the stage 7 and the portion of the wafer W attracted thereto will be described. Here, the site P A part of the wafer W is attracted to the suction region 61A of the stage 7. Similarly, in the wafer W, a part adsorbed to the suction area 61B is a part P B , a part adsorbed to the suction area 61C is a part P C , and a part adsorbed to the suction area 61D is a part P D. The part adsorbed to 61E is the part P E , the part adsorbed to the suction area 61F is the part P F , the part adsorbed to the suction area 61G is the part P G , the part adsorbed to the suction area 61H is the part P H , a moiety adsorbed to the suction region 61I and site P I.
[第1の手順]
 図11は、本発明の実施の形態に係るウエハWの保持方法の手順の一例を説明するフロー図である。本手順は、ステップS1~ステップS10の処理を含んでいる。まず、準備段階として、図示しない搬送装置によって、ウエハWをステージ7の保持面7aに載置する。
[First procedure]
FIG. 11 is a flowchart for explaining an example of the procedure of the wafer W holding method according to the embodiment of the present invention. This procedure includes steps S1 to S10. First, as a preparation stage, the wafer W is placed on the holding surface 7a of the stage 7 by a transfer device (not shown).
(ステップS1)
 ステップS1では、ウエハWの中央部である部位Pを吸引領域61Iに吸着させる。まず、ガス噴射装置45のいずれか1つのノズル81をウエハWの部位Pの直上まで移動させる。次にノズル81からウエハWの部位Pに向けてガスを噴射しながら、真空ポンプ70を作動させる。このとき、切替バルブ65Iを切り替えることによって、吸引領域61I内の吸引溝7bを負圧にするが、吸引領域61A~61H内の吸引溝7bは大気開放状態のままにする。ウエハWの中央部である部位Pは、上方から噴射されるガス圧に補助されながら、裏面側が負圧になるため、下方の吸引領域61Iに吸着される。
(Step S1)
In step S1, adsorbing portion P I is a central portion of the wafer W to the suction region 61I. First, move the one of the nozzles 81 of the gas injection device 45 to just above the site P I of the wafer W. Then toward the nozzle 81 at the site P I of the wafer W while ejecting a gas, to actuate the vacuum pump 70. At this time, by switching the switching valve 65I, the suction groove 7b in the suction region 61I is set to a negative pressure, but the suction grooves 7b in the suction regions 61A to 61H are left in the atmosphere open state. Site P I is a central portion of the wafer W, while being assisted by the gas pressure ejected from above, since the back surface side becomes a negative pressure, is adsorbed under the suction region 61I.
(ステップS2)
 次に、ステップS2では、ウエハWの部位Pに隣接する周縁部の部位Pをステージ7の吸引領域61Aに吸着させる。まず、ガス噴射装置45のいずれか1つのノズル81をウエハWの部位Pの直上まで移動させる。次にノズル81からウエハWの部位Pに向けてガスを噴射しながら、切替バルブ65Aを切り替えることによって、吸引領域61A内の吸引溝7bを負圧にする。このとき、吸引領域61B~61H内の吸引溝7bは大気開放状態のままにする。なお、吸引領域61I内の吸引溝7bは、ステップS1と同様に負圧のまま維持される。ウエハWの周縁部の部位Pは、上方から噴射されるガス圧に補助されながら、裏面側が負圧になるため、下方の吸引領域61Aに吸着される。
(Step S2)
Next, in step S2, adsorbing portion P A of the peripheral portion adjacent to the site P I of the wafer W to the suction region 61A of the stage 7. First, move the one of the nozzles 81 of the gas injection device 45 to just above the site P A of the wafer W. Then while spraying gas towards the nozzle 81 to the site P A of the wafer W, by switching the switching valve 65A, the suction groove 7b in the suction region 61A to a negative pressure. At this time, the suction grooves 7b in the suction regions 61B to 61H are left in the atmosphere open state. Note that the suction groove 7b in the suction region 61I is maintained at a negative pressure as in step S1. Site P A of the peripheral portion of the wafer W, while being assisted by the gas pressure ejected from above, since the back surface side becomes a negative pressure, is adsorbed under the suction region 61A.
(ステップS3)
 次に、ステップS3では、ウエハWの部位Pに隣接する周縁部の部位Pをステージ7の吸引領域61Bに吸着させる。具体的手順は、ノズル81をウエハWの部位Pの直上まで移動させてガスを噴射するとともに、切替バルブ65Bを切り替えて吸引領域61B内の吸引溝7bを負圧にする点以外は、ステップS2と同様である。
(Step S3)
Next, in step S3, adsorbing sites P B of the peripheral portion adjacent to the site P A of the wafer W to the suction region 61B of the stage 7. A specific procedure is a step except that the nozzle 81 is moved to a position just above the portion P B of the wafer W to inject gas, and the switching valve 65B is switched to set the suction groove 7b in the suction region 61B to a negative pressure. It is the same as S2.
(ステップS4~ステップS9)
 次に、ステップS4~ステップS9では、順次、吸引領域61C、61D、61E、61F、61G、61Hの順に、前のステップで吸着させたウエハWの部位に隣接する周縁部の部位をステージ7の吸引領域に吸着させていく。具体的手順は、ノズル81をウエハWの目的とする部位P~Pのいずれかの直上まで移動させて、順次、各部位に対してガスを噴射するとともに、切替バルブ65C~65Hのいずれかを順次切り替えて吸引領域61C~61H内の吸引溝7bを順次負圧にする点以外は、ステップS2、ステップS3と同様である。
(Steps S4 to S9)
Next, in steps S4 to S9, the peripheral portion of the stage 7 adjacent to the portion of the wafer W sucked in the previous step is sequentially arranged in the order of the suction regions 61C, 61D, 61E, 61F, 61G, 61H. Adsorb to the suction area. A specific procedure is to move the nozzle 81 to any one of the target portions P C to P H of the wafer W, sequentially inject gas to each portion, and select any of the switching valves 65C to 65H. These steps are the same as steps S2 and S3, except that the suction grooves 7b in the suction regions 61C to 61H are sequentially changed to a negative pressure by sequentially switching between them.
(ステップS10)
 以上のステップS1~S9により、正常な状態であれば、ウエハWをステージ7の保持面7aの全体で吸着保持することができる。しかし、ウエハWの反りが大きい場合などは、吸引領域61A~61Iのいずれかで吸引溝7b内に外気が進入してリークが発生し、保持が不完全になる場合がある。そこで、本手順では、ステップS10において、リークチェックを行う。具体的には、真空計73によって、吸気路63の圧力を計測する。そして、予め計測しておいた吸気路63の正常な吸着保持状態における圧力と、真空計73によって計測される吸気路63の圧力を比較することによって、吸引領域61A~61Iのいずれかにおいて、リークが発生しているか否かを検出することができる。ステップS10でリークが発生していることが判明した場合は、図11中に破線で示すように、再びステップS1に戻り、ステップS1~S9までの処理を行う。
(Step S10)
Through the above steps S1 to S9, the wafer W can be sucked and held by the entire holding surface 7a of the stage 7 in a normal state. However, when the warp of the wafer W is large, the outside air may enter the suction groove 7b in any of the suction regions 61A to 61I, causing a leak, and the holding may be incomplete. Therefore, in this procedure, a leak check is performed in step S10. Specifically, the pressure in the intake passage 63 is measured by the vacuum gauge 73. Then, by comparing the pressure in the normal suction holding state of the intake passage 63 that has been measured in advance with the pressure of the intake passage 63 that is measured by the vacuum gauge 73, the leakage in any of the suction regions 61A to 61I It is possible to detect whether or not an error has occurred. If it is determined in step S10 that a leak has occurred, the process returns to step S1 again as shown by the broken line in FIG. 11, and the processes from steps S1 to S9 are performed.
 なお、図11では、全ての吸引領域61A~61Iのリークチェックを一括で行う構成としたが、例えば真空計73を配管63A~63Iにおいて個別に配備することによって、吸引領域61A~61Iのリークチェックを個別に行うこともできる。この場合、上記ステップS1~S9毎にリークチェックを行うこともできる。また、吸引領域61A~61Iを複数のグループに分けて、グループ毎にリークチェックを行ってもよい。さらに、リークチェックのあとは、吸引領域61A~61Iの中でリークが検出された領域もしくはグループについてのみ、吸着処理を行うようにしてもよい。なお、ステップS10のリークチェックは任意であり、省略してもよい。 In FIG. 11, the leak check of all the suction areas 61A to 61I is performed at once. However, for example, by installing the vacuum gauge 73 individually in the pipes 63A to 63I, the leak check of the suction areas 61A to 61I is performed. Can also be performed individually. In this case, a leak check can be performed for each of the above steps S1 to S9. Further, the suction areas 61A to 61I may be divided into a plurality of groups, and a leak check may be performed for each group. Further, after the leak check, the suction process may be performed only on the region or group in which the leak is detected in the suction regions 61A to 61I. Note that the leak check in step S10 is optional and may be omitted.
 本手順では、ウエハWに対して局所的にガスを噴射しながら、細分化された吸引領域61A~61IにウエハWを部分的に吸着させる動作を繰り返すことによって、ステージ7の保持面7aにウエハW全体を容易に吸着保持させることができる。特に、ウエハWの周縁部では、吸着させた部位に隣接する周縁部の部位を、ガス圧を利用しながら吸引領域61A~61Hに順次吸着させていくため、たとえ反りの強いウエハWであっても、確実に保持面7aに吸着保持させることができる。従って、プローブ装置100において、信頼性の高いデバイス検査を行うことができる。 In this procedure, while the gas is locally jetted onto the wafer W, the operation of partially attracting the wafer W to the subdivided suction regions 61A to 61I is repeated, whereby the wafer is applied to the holding surface 7a of the stage 7. The entire W can be easily adsorbed and held. In particular, at the peripheral portion of the wafer W, the peripheral portion adjacent to the attracted portion is sequentially adsorbed to the suction regions 61A to 61H using the gas pressure. Also, it can be reliably held by suction on the holding surface 7a. Therefore, the probe apparatus 100 can perform highly reliable device inspection.
[第2の手順]
 図12は、本発明の実施の形態に係るウエハWの保持方法の手順の別の例を説明するフロー図である。本手順は、ステップS11~ステップS17の処理を含んでいる。まず、準備段階として、図示しない搬送装置によって、ウエハWをステージ7の保持面7aに載置する。
[Second procedure]
FIG. 12 is a flowchart for explaining another example of the procedure of the wafer W holding method according to the embodiment of the present invention. This procedure includes the processing of step S11 to step S17. First, as a preparation stage, the wafer W is placed on the holding surface 7a of the stage 7 by a transfer device (not shown).
(ステップS11)
 ステップS11では、ウエハWの中央部である部位Pを吸引領域61Iに吸着させる。ステップS11は、第1の手順のステップS1と同様に行うことができる。
(Step S11)
In step S11, adsorbing portion P I is a central portion of the wafer W to the suction region 61I. Step S11 can be performed similarly to step S1 of the first procedure.
(ステップS12)
 次に、ステップS12では、ウエハWの部位Pに隣接する周縁部の部位Pをステージ7の吸引領域61Aに吸着させる。まず、ガス噴射装置45のいずれか1つのノズル81をウエハWの部位Pの直上まで移動させる。次にノズル81からウエハWの部位Pに向けてガスを噴射しながら、切替バルブ65Aを切り替えることによって、吸引領域61A内の吸引溝7bを負圧にする。このとき、吸引領域61B~61H内の吸引溝7bは大気開放状態のままにする。なお、吸引領域61I内の吸引溝7bは、ステップS11と同様に負圧のまま維持される。ウエハWの周縁部の部位Pは、上方から噴射されるガス圧に補助されながら、裏面側が負圧になるため、下方の吸引領域61Aに吸着される。
(Step S12)
Next, in step S12, adsorbing portion P A of the peripheral portion adjacent to the site P I of the wafer W to the suction region 61A of the stage 7. First, move the one of the nozzles 81 of the gas injection device 45 to just above the site P A of the wafer W. Then while spraying gas towards the nozzle 81 to the site P A of the wafer W, by switching the switching valve 65A, the suction groove 7b in the suction region 61A to a negative pressure. At this time, the suction grooves 7b in the suction regions 61B to 61H are left in the atmosphere open state. Note that the suction groove 7b in the suction region 61I is maintained at a negative pressure as in step S11. Site P A of the peripheral portion of the wafer W, while being assisted by the gas pressure ejected from above, since the back surface side becomes a negative pressure, is adsorbed under the suction region 61A.
(ステップS13)
 次に、ステップS13では、ウエハWの部位Pに隣接する周縁部の2つの部位P及び部位Pをステージ7の吸引領域61B及び吸引領域61Hにそれぞれに吸着させる。具体的手順は、2つのノズル81をウエハWの部位P及び部位Pの直上まで移動させ、それぞれの部位に同時にガスを噴射するとともに、切替バルブ65B及び切替バルブ65Hを切り替えて吸引領域61B内及び吸引領域61H内の吸引溝7bをそれぞれ同時に負圧にする点以外は、ステップS12と同様である。
(Step S13)
Next, in step S13, it is adsorbed on each of two sites P B and site P H of the peripheral portion adjacent to the site P A of the wafer W to the suction region 61B and the suction region 61H of the stage 7. Specifically procedure, two nozzles 81 is moved to just above the site P B and site P H of the wafer W, as well as injecting the gas at the same time to each of the sites, the suction region 61B by switching the switching valve 65B and the switching valve 65H The process is the same as step S12 except that the suction grooves 7b in the inner and suction areas 61H are simultaneously brought to negative pressure.
(ステップS14)
 次に、ステップS14では、ウエハWの部位P及び部位Pに隣接する周縁部の2つの部位P及び部位Pをステージ7の吸引領域61C及び吸引領域61Gにそれぞれ吸着させる。具体的手順は、2つのノズル81をウエハWの部位P及び部位Pの直上まで移動させ、それぞれの部位に同時にガスを噴射するとともに、切替バルブ65C及び切替バルブ65Gを切り替えて、吸引領域61C内及び吸引領域61G内の吸引溝7bをそれぞれ同時に負圧にする点以外は、ステップS12と同様である。
(Step S14)
Next, in step S14, it is adsorbed respectively two sites P C and site P G of the peripheral portion adjacent to the site P B and site P H of the wafer W to the suction region 61C and the suction region 61G of the stage 7. Specifically procedure two nozzles 81 is moved to just above the site P C and site P G of the wafer W, as well as injecting the gas at the same time to each of the sites, by switching the switching valve 65C and the switching valve 65G, suction region The same as step S12 except that the suction grooves 7b in the 61C and the suction region 61G are simultaneously set to a negative pressure.
(ステップS15)
 次に、ステップS15では、ウエハWの部位P及び部位Pに隣接する周縁部の2つの部位P及び部位Pをステージ7の吸引領域61D及び吸引領域61Fにそれぞれ吸着させる。具体的手順は、2つのノズル81をウエハWの部位P及び部位Pの直上まで移動させ、それぞれの部位に同時にガスを噴射するとともに、切替バルブ65D及び切替バルブ65Fを切り替えて、吸引領域61D内及び吸引領域61F内の吸引溝7bをそれぞれ同時に負圧にする点以外は、ステップS12と同様である。
(Step S15)
Next, in step S15, it is adsorbed respectively two sites P D and site P F of the peripheral portion adjacent to the site P C and site P G of the wafer W to the suction region 61D and the suction region 61F of the stage 7. Specifically procedure two nozzles 81 is moved to just above the site P D and site P F of the wafer W, as well as injecting the gas at the same time to each of the sites, by switching the switching valve 65D and the switching valves 65F, suction region Similar to step S12, except that the suction grooves 7b in 61D and the suction region 61F are simultaneously made negative in pressure.
(ステップS16)
 次に、ステップS16では、ウエハWの部位P及び部位Pに隣接する周縁部の部位Pをステージ7の吸引領域61Eに吸着させる。具体的手順は、ノズル81をウエハWの部位Pの直上まで移動させてガスを噴射するとともに、切替バルブ65Eを切り替えて、吸引領域61E内の吸引溝7bを負圧にする点以外は、ステップS12と同様である。
(Step S16)
Next, in step S16, adsorbing portion P E of the peripheral portion adjacent to the site P D and site P F of the wafer W to the suction region 61E of the stage 7. Specifically procedure nozzle 81 is moved to just above the site P E of the wafer W while ejecting the gas, by switching the switching valve 65E, except that the suction grooves 7b in the suction region 61E to negative pressure, This is the same as step S12.
(ステップS17)
 以上のステップS11~S16により、正常な状態であれば、ウエハWをステージ7の保持面7aの全体で吸着保持することができる。しかし、ウエハWの反りが大きい場合などは、吸引領域61A~61Iのいずれかで吸引溝7b内に外気が進入してリークが発生し、保持が不完全になる場合がある。そこで、本手順では、ステップS17において、リークチェックを行う。リークチェックの方法は、第1の手順におけるステップS10と同様である。ステップS17でリークが発生していることが判明した場合は、図12中に破線で示すように、再びステップS11に戻り、ステップS11~S16までの処理を行う。
(Step S17)
By the above steps S11 to S16, the wafer W can be sucked and held by the entire holding surface 7a of the stage 7 in a normal state. However, when the warp of the wafer W is large, the outside air may enter the suction groove 7b in any of the suction regions 61A to 61I, causing a leak, and the holding may be incomplete. Therefore, in this procedure, a leak check is performed in step S17. The leak check method is the same as step S10 in the first procedure. If it is determined in step S17 that a leak has occurred, the process returns to step S11 again as shown by the broken line in FIG. 12, and the processes from steps S11 to S16 are performed.
 なお、図12では、全ての吸引領域61A~61Iのリークチェックを一括で行う構成としたが、例えば真空計73を配管63A~63Iにおいて個別に配備することによって、吸引領域61A~61Iのリークチェックを個別に行うこともできる。この場合、上記ステップS11~S16毎にリークチェックを行うこともできる。また、吸引領域61A~61Iを複数のグループに分けて、グループ毎にリークチェックを行ってもよい。さらに、リークチェックのあとは、吸引領域61A~61Iの中でリークが検出された領域もしくはグループについてのみ、吸着処理を行うようにしてもよい。なお、ステップS17のリークチェックは任意であり、省略してもよい。 In FIG. 12, the leak check of all the suction areas 61A to 61I is performed at once. However, for example, by installing the vacuum gauge 73 individually in the pipes 63A to 63I, the leak check of the suction areas 61A to 61I is performed. Can also be performed individually. In this case, a leak check can be performed for each of the above steps S11 to S16. Further, the suction areas 61A to 61I may be divided into a plurality of groups, and a leak check may be performed for each group. Further, after the leak check, the suction process may be performed only on the region or group in which the leak is detected in the suction regions 61A to 61I. Note that the leak check in step S17 is optional and may be omitted.
 本手順では、ウエハWの周縁部において、吸着させた部位に隣接する周縁部の部位を同時に2箇所ずつ吸着させていくため、第1の手順に係るウエハWの保持方法に比べて、短時間で吸着保持を完了させることができる。本手順における他の構成及び効果は、第1の手順と同様である。 In this procedure, the peripheral portion adjacent to the sucked portion is sucked at the same time in the peripheral portion of the wafer W two by two at a time. Therefore, compared with the wafer W holding method according to the first procedure, the time is shorter. Can complete adsorption holding. Other configurations and effects in this procedure are the same as those in the first procedure.
[第3の手順]
 図13は、本発明の実施の形態に係るウエハWの保持方法の手順のさらに別の例を説明するフロー図である。本手順は、ステップS21~ステップS25の処理を含んでいる。まず、準備段階として、図示しない搬送装置によって、ウエハWをステージ7の保持面7aに載置する。
[Third procedure]
FIG. 13 is a flowchart for explaining still another example of the procedure of the wafer W holding method according to the embodiment of the present invention. This procedure includes the processing of step S21 to step S25. First, as a preparation stage, the wafer W is placed on the holding surface 7a of the stage 7 by a transfer device (not shown).
(ステップS21)
 ステップS21では、ウエハWの中央部である部位Pを吸引領域61Iに吸着させる。このステップS21は、第1の手順のステップS1と同様に行うことができる。
(Step S21)
In step S21, adsorbing portion P I is a central portion of the wafer W to the suction region 61I. This step S21 can be performed similarly to step S1 of the first procedure.
(ステップS22)
 次に、ステップS22では、ウエハWの部位Pに隣接する周縁部の部位Pと、部位Pに対して径方向の対称位置にある部位Pをステージ7の吸引領域61A及び吸引領域61Eにそれぞれ吸着させる。まず、ガス噴射装置45のいずれか1つのノズル81をウエハWの部位P及び部位Pの直上まで移動させる。次にノズル81からウエハWの部位P及び部位Pに向けて、それぞれ、ガスを噴射しながら、切替バルブ65A及び切替バルブ65E内を切り替えることによって、吸引領域61A内及び吸引領域61Eの吸引溝7bをそれぞれ同時に負圧にする。このとき、吸引領域61B~61D、61F~61H内の吸引溝7bは大気開放状態のままにする。なお、吸引領域61I内の吸引溝7bは、ステップS21と同様に負圧のまま維持される。ウエハWの周縁部の部位P及び部位Pは、上方から噴射されるガス圧に補助されながら、裏面側が負圧になるため、下方の吸引領域61A及び吸引領域61Eにそれぞれ吸着される。
(Step S22)
Next, in step S22, the suction region 61A and the suction region of the stage 7 the site P E in the region P A of the peripheral portion, radially symmetrical positions with respect to the site P A adjacent to the site P I of the wafer W Adsorb to 61E. First, move the one of the nozzles 81 of the gas injection device 45 to just above the site P A and site P E of the wafer W. Then toward the nozzle 81 at a portion P A and site P E of the wafer W, respectively, while spraying the gas, by switching the switching valve 65A and the switching valve in 65E, the suction in the suction region 61A and the suction region 61E The grooves 7b are simultaneously brought to negative pressure. At this time, the suction grooves 7b in the suction regions 61B to 61D and 61F to 61H are left in the atmosphere open state. Note that the suction groove 7b in the suction region 61I is maintained at a negative pressure as in step S21. Site P A and site P E of the peripheral portion of the wafer W, while being assisted by the gas pressure ejected from above, since the back surface side becomes a negative pressure, are adsorbed respectively below the suction region 61A and the suction region 61E.
(ステップS23)
 次に、ステップS23では、ウエハWの部位Pに隣接する周縁部の2つの部位P及び部位Pを、それぞれ、ステージ7の吸引領域61B及び吸引領域61Hに吸着させるとともに、ウエハWの部位Pに隣接する周縁部の2つの部位P及び部位Pを、それぞれ、吸引領域61D及び吸引領域61Fに吸着させる。具体的手順は、4つのノズル81をウエハWの部位PB、部位P、部位P、部位Pの直上まで移動させ、それぞれの部位に同時にガスを噴射するとともに、切替バルブ65B、65H、65D、65Fを切り替えて、吸引領域61B内、同61H内、同61D内、及び同61F内の吸引溝7bを、それぞれ同時に負圧にする点以外は、ステップS22と同様である。
(Step S23)
Next, in step S23, the two sites P B and site P H of the peripheral portion adjacent to the site P A of the wafer W, respectively, together with the adsorbed to the suction region 61B and the suction region 61H of the stage 7, the wafer W two sites P D and site P F of the peripheral portion adjacent to the site P E, respectively, adsorbed to the suction region 61D and the suction region 61F. Specifically procedure site P B of the four nozzles 81 the wafer W, part P H, site P D, is moved to just above the site P F, while injecting a gas at the same time to each of the sites, the switching valve 65B, 65H , 65D, and 65F are the same as step S22 except that the suction grooves 7b in the suction region 61B, 61H, 61D, and 61F are simultaneously made negative pressure.
(ステップS24)
 次に、ステップS24では、ウエハWの周縁部に残された2つの隣接部位P及び部位Pをステージ7の吸引領域61C及び吸引領域61Gにそれぞれ吸着させる。具体的手順は、2つのノズル81をウエハWの部位P及び部位Pの直上まで移動させ、それぞれの部位に同時にガスを噴射するとともに、切替バルブ65C及び切替バルブ65Gを切り替えて、吸引領域61C内及び吸引領域61G内の吸引溝7bをそれぞれ同時に負圧にする点以外は、ステップS22と同様である。
(Step S24)
Next, in step S24, it is adsorbed respectively two adjacent portions P C and site P G remaining on the rim portion of the wafer W to the suction region 61C and the suction region 61G of the stage 7. Specifically procedure two nozzles 81 is moved to just above the site P C and site P G of the wafer W, as well as injecting the gas at the same time to each of the sites, by switching the switching valve 65C and the switching valve 65G, suction region The same as step S22 except that the suction grooves 7b in 61C and the suction region 61G are simultaneously made negative in pressure.
(ステップS25)
 以上のステップS21~S24により、正常な状態であれば、ウエハWをステージ7の保持面7aの全体で吸着保持することができる。しかし、ウエハWの反りが大きい場合などは、吸引領域61A~61Iのいずれかで吸引溝7b内に外気が進入してリークが発生し、保持が不完全になる場合がある。そこで、本手順では、ステップS25において、リークチェックを行う。リークチェックの方法は、第1の手順におけるステップS10と同様である。ステップS25でリークが発生していることが判明した場合は、図13中に破線で示すように、再びステップS21に戻り、ステップS21~S24までの処理を行う。
(Step S25)
Through the above steps S21 to S24, the wafer W can be sucked and held by the entire holding surface 7a of the stage 7 in a normal state. However, when the warp of the wafer W is large, the outside air may enter the suction groove 7b in any of the suction regions 61A to 61I, causing a leak, and the holding may be incomplete. Therefore, in this procedure, a leak check is performed in step S25. The leak check method is the same as step S10 in the first procedure. If it is determined in step S25 that a leak has occurred, the process returns to step S21 again as shown by the broken line in FIG. 13, and the processes from steps S21 to S24 are performed.
 なお、図13では、全ての吸引領域61A~61Iのリークチェックを一括で行う構成としたが、例えば真空計73を配管63A~63Iにおいて個別に配備することによって、吸引領域61A~61Iのリークチェックを個別に行うこともできる。この場合、上記ステップS21~S24毎にリークチェックを行うこともできる。また、吸引領域61A~61Iを複数のグループに分けて、グループ毎にリークチェックを行ってもよい。さらに、リークチェックのあとは、吸引領域61A~61Iの中でリークが検出された領域もしくはグループについてのみ、吸着処理を行うようにしてもよい。なお、ステップS25のリークチェックは任意であり、省略してもよい。 In FIG. 13, the leak check of all the suction areas 61A to 61I is performed in a lump. However, for example, the leak check of the suction areas 61A to 61I is performed by arranging the vacuum gauge 73 individually in the pipes 63A to 63I. Can also be performed individually. In this case, a leak check can be performed for each of steps S21 to S24. Further, the suction areas 61A to 61I may be divided into a plurality of groups, and a leak check may be performed for each group. Further, after the leak check, the suction process may be performed only on the region or group in which the leak is detected in the suction regions 61A to 61I. Note that the leak check in step S25 is optional and may be omitted.
 本手順では、ウエハWの周縁部において、最初に2箇所の部位を同時に吸着させ、さらに吸着させた部位に隣接する周縁部の部位を最大で同時に4箇所ずつ吸着させるため、第1の手順に係るウエハWの保持方法に比べて、短時間で吸着保持を完了させることができる。本手順における他の構成及び効果は、第1の手順と同様である。 In this procedure, in the peripheral portion of the wafer W, two parts are first adsorbed at the same time, and the peripheral part adjacent to the adsorbed part is adsorbed at the same time at four places at the same time. Compared to the method for holding the wafer W, the suction holding can be completed in a short time. Other configurations and effects in this procedure are the same as those in the first procedure.
 以上のように、第1~第3の手順のウエハWの保持方法によれば、大きな反りが発生しやすいウエハWについても、確実に吸着保持できる。なお、図3では、ウエハWの周縁部を吸着させる8つの吸引領域61A~61Hまでの面積と形状が同じである場合を例に挙げたが、各吸引領域61の面積や形状は異なっていてもよい。各吸引領域61の面積や形状が異なる場合について、以下に変形例を挙げて説明する。 As described above, according to the method for holding the wafer W in the first to third procedures, even the wafer W that is likely to generate a large warp can be reliably sucked and held. In FIG. 3, the case where the area and shape of the eight suction regions 61A to 61H for adsorbing the peripheral portion of the wafer W are the same is taken as an example, but the area and shape of each suction region 61 are different. Also good. A case where the area and shape of each suction region 61 are different will be described below with a modification.
[変形例]
 図14~図16を参照しながら、本実施の形態のウエハWの保持方法の変形例について説明する。なお、図14~図16では、吸引溝7bは図示を省略し、ステージ7の保持面7aに形成された複数の吸引領域61の大まかな位置、形状及び面積を示している。以下の説明では、各吸引領域61へのウエハWの部分的な吸着順序のみを説明するが、上記第1~第3の手順と同様に、吸着動作時には、ガス噴射装置45のいずれか1つのノズル81からガスの噴射を行うものとする。また、変形例においても、リークチェックを行うことができる。
[Modification]
A modification of the method for holding the wafer W according to the present embodiment will be described with reference to FIGS. 14 to 16, the suction groove 7b is not shown, and the approximate positions, shapes, and areas of the plurality of suction regions 61 formed on the holding surface 7a of the stage 7 are shown. In the following description, only the partial suction order of the wafer W to each suction region 61 will be described. However, as in the first to third procedures, any one of the gas injection devices 45 is used during the suction operation. It is assumed that gas is ejected from the nozzle 81. Also in the modified example, a leak check can be performed.
<第1変形例>
 まず、図14に示す第1変形例では、ステージ7の保持面7aが、独立して減圧に保持され得る吸引溝7bによって7つの吸引領域61A,61B,61C、61D,61E,61F,61Gに区分されている。吸引領域61Gは、平面視円形をなす保持面7aの中央部分に設けられている中央領域である。吸引領域61A,61B,61C、61D,61E,61Fは、平面視円形をなす保持面7aにおいて、吸引領域61Gの周囲に設けられている周辺領域である。ここで、吸引領域61A~61Fには、異なる面積を有するものが含まれている。具体的には、吸引領域61A,61Bは同じ面積である。吸引領域61C,61Dも同じ面積であるが、吸引領域61A,61Bよりも大きな面積を有している。吸引領域61Eは、吸引領域61C,61Dよりもさらに大きな面積を有している。吸引領域61Fは、吸引領域61Eよりもさらに大きな面積を有している。つまり、吸引領域61A~61Fの面積の大小関係を示すと、吸引領域61A=吸引領域61B<吸引領域61C=吸引領域61D<吸引領域61E<吸引領域61Fのようになっている。
<First Modification>
First, in the first modification shown in FIG. 14, the holding surface 7a of the stage 7 is divided into seven suction regions 61A, 61B, 61C, 61D, 61E, 61F, and 61G by suction grooves 7b that can be independently held under reduced pressure. It is divided. The suction region 61G is a central region provided in the central portion of the holding surface 7a that is circular in plan view. The suction areas 61A, 61B, 61C, 61D, 61E, and 61F are peripheral areas provided around the suction area 61G on the holding surface 7a having a circular shape in plan view. Here, the suction regions 61A to 61F include those having different areas. Specifically, the suction areas 61A and 61B have the same area. The suction areas 61C and 61D have the same area, but have a larger area than the suction areas 61A and 61B. The suction area 61E has a larger area than the suction areas 61C and 61D. The suction region 61F has a larger area than the suction region 61E. In other words, the relationship between the areas of the suction areas 61A to 61F is as follows: suction area 61A = suction area 61B <suction area 61C = suction area 61D <suction area 61E <suction area 61F.
 そして、図14に示す第1変形例では、まず、ウエハWの中央部を吸引領域61Gに吸着させた後、吸引領域61A~61Fの面積が小さい領域から面積が大きな領域へ、順次、ウエハWの周縁部を部分的に吸着させていく。具体的には、ウエハWの周縁部の部位を吸引領域61Aに吸着させる。次に、吸引領域61Aに吸着させた部位に隣接するウエハWの周縁部の部位を、吸引領域61Bに吸着させる。次に、吸引領域61Bに吸着させた部位に隣接するウエハWの周縁部の部位を、吸引領域61Cに吸着させる。次に、吸引領域61Cに吸着させた部位に隣接するウエハWの周縁部の部位を、吸引領域61Dに吸着させる。次に、吸引領域61Dに吸着させた部位に隣接するウエハWの周縁部の部位を、吸引領域61Eに吸着させる。次に、吸引領域61Eに吸着させた部位に隣接するウエハWの周縁部の部位を、吸引領域61Fに吸着させる。このようにして、吸引領域61A~61Fの面積が小さい領域から面積が大きな領域へウエハWを吸着させていくことによって、ウエハWをステージ7の保持面7aの全体で吸着保持することができる。 In the first modified example shown in FIG. 14, first, the central portion of the wafer W is attracted to the suction area 61G, and then the wafer W is sequentially formed from the area where the suction areas 61A to 61F are small to the area where the area is large. The peripheral part of is partially adsorbed. Specifically, the peripheral portion of the wafer W is attracted to the suction region 61A. Next, the peripheral part of the wafer W adjacent to the part adsorbed to the suction area 61A is adsorbed to the suction area 61B. Next, the peripheral part of the wafer W adjacent to the part adsorbed to the suction area 61B is adsorbed to the suction area 61C. Next, the peripheral part of the wafer W adjacent to the part adsorbed to the suction area 61C is adsorbed to the suction area 61D. Next, the peripheral part of the wafer W adjacent to the part adsorbed to the suction area 61D is adsorbed to the suction area 61E. Next, the peripheral part of the wafer W adjacent to the part adsorbed to the suction area 61E is adsorbed to the suction area 61F. In this manner, the wafer W can be sucked and held by the entire holding surface 7a of the stage 7 by sucking the wafer W from the small area of the suction areas 61A to 61F to the large area.
<第2変形例>
 次に、図15に示す第2変形例では、ステージ7の保持面7aが、独立して減圧に保持され得る吸引溝7bによって6つの吸引領域61A,61B,61C、61D,61E,61Fに区分されている。吸引領域61Fは、平面視円形をなす保持面7aの中央部分に設けられている中央領域である。吸引領域61A,61B,61C、61D,61Eは、平面視円形をなす保持面7aにおいて、吸引領域61Fの周囲に設けられている周辺領域である。ここで、吸引領域61A~61Eには、異なる面積を有するものが含まれている。具体的には、吸引領域61Aは最も面積が小さい領域である。吸引領域61B,61Eは同じ面積であるが、吸引領域61Aよりも大きな面積を有している。吸引領域61C,61Dは同じ面積であるが、吸引領域61B,61Eよりもさらに大きな面積を有している。つまり、吸引領域61A~61Eの面積の大小関係を示すと、吸引領域61A<吸引領域61B=吸引領域61E<吸引領域61C=吸引領域61Dのようになっている。
<Second Modification>
Next, in the second modification shown in FIG. 15, the holding surface 7a of the stage 7 is divided into six suction regions 61A, 61B, 61C, 61D, 61E, and 61F by suction grooves 7b that can be independently held under reduced pressure. Has been. The suction region 61F is a central region provided in the central portion of the holding surface 7a that is circular in plan view. The suction areas 61A, 61B, 61C, 61D, and 61E are peripheral areas provided around the suction area 61F on the holding surface 7a that is circular in plan view. Here, the suction regions 61A to 61E include those having different areas. Specifically, the suction region 61A is a region having the smallest area. The suction areas 61B and 61E have the same area, but have a larger area than the suction area 61A. Although the suction areas 61C and 61D have the same area, they have a larger area than the suction areas 61B and 61E. That is, the relationship between the areas of the suction regions 61A to 61E is as follows: suction region 61A <suction region 61B = suction region 61E <suction region 61C = suction region 61D.
 そして、図15に示す第2変形例では、まず、ウエハWの中央部を吸引領域61Fに吸着させた後、吸引領域61A~61Eの面積が小さい領域から面積が大きな領域へ、順次、ウエハWの周縁部を部分的に吸着させていく。具体的には、ウエハWの周縁部の部位を吸引領域61Aに吸着させる。次に、吸引領域61Aに吸着させた部位に隣接するウエハWの周縁部の部位を、それぞれ、吸引領域61B,61Eに吸着させる。次に、吸引領域61B,61Eに吸着させた部位に隣接するウエハWの周縁部の部位を、それぞれ吸引領域61C,61Dに吸着させる。このようにして、吸引領域61A~61Eの面積が小さい領域から面積が大きな領域へウエハWを吸着させていくことによって、ウエハWをステージ7の保持面7aの全体で吸着保持することができる。 In the second modified example shown in FIG. 15, first, the central portion of the wafer W is attracted to the suction area 61F, and then the wafer W is sequentially formed from the area where the suction areas 61A to 61E are small to the area where the area is large. The peripheral part of is partially adsorbed. Specifically, the peripheral portion of the wafer W is attracted to the suction region 61A. Next, the peripheral part of the wafer W adjacent to the part adsorbed to the suction area 61A is adsorbed to the suction areas 61B and 61E, respectively. Next, the peripheral part of the wafer W adjacent to the part attracted to the suction regions 61B and 61E is attracted to the suction areas 61C and 61D, respectively. In this way, the wafer W can be sucked and held by the entire holding surface 7a of the stage 7 by sucking the wafer W from the small area of the suction areas 61A to 61E to the large area.
<第3変形例>
 次に、図16に示す第3変形例では、ステージ7の保持面7aが、独立して減圧に保持され得る吸引溝7bによって9つの吸引領域61A,61B,61C、61D,61E,61F,61G,61H,61Iに区分されている。吸引領域61Iは、平面視円形をなす保持面7aの中央部分に設けられている中央領域である。吸引領域61A,61B,61C、61D,61E,61F,61G,61Hは、平面視円形をなす保持面7aにおいて、吸引領域61Iの周囲に設けられている周辺領域である。ここで、吸引領域61A~61Hには、異なる面積を有するものが含まれている。具体的には、吸引領域61A,61Bは、同じ面積であり、ステージ7の保持面7aの周辺領域において、径方向の内側に区画された最も面積が小さい領域である。吸引領域61C,61Dは同じ面積であるが、吸引領域61A,61Bよりも大きな面積を有している。また、吸引領域61C,61Dはステージ7の保持面7aの周辺領域において、吸引領域61A,61Bよりも径方向の外側に区画された領域である。吸引領域61E,61Hは同じ面積であるが、吸引領域61C,61Dよりもさらに大きな面積を有している。吸引領域61F,61Gは同じ面積であるが、吸引領域61E,61Hよりもさらに大きな面積を有している。つまり、吸引領域61A~61Hの面積の大小関係を示すと、吸引領域61A=吸引領域61B<吸引領域61C=吸引領域61D<吸引領域61E=吸引領域61H<吸引領域61F=吸引領域61Gのようになっている。
<Third Modification>
Next, in the third modified example shown in FIG. 16, the holding surface 7a of the stage 7 is divided into nine suction regions 61A, 61B, 61C, 61D, 61E, 61F, 61G by suction grooves 7b that can be independently held under reduced pressure. , 61H, 61I. The suction region 61I is a central region provided in the central portion of the holding surface 7a that is circular in plan view. The suction regions 61A, 61B, 61C, 61D, 61E, 61F, 61G, and 61H are peripheral regions provided around the suction region 61I on the holding surface 7a that is circular in plan view. Here, the suction regions 61A to 61H include those having different areas. Specifically, the suction regions 61A and 61B have the same area, and are the regions with the smallest area partitioned inside in the radial direction in the peripheral region of the holding surface 7a of the stage 7. The suction areas 61C and 61D have the same area, but have a larger area than the suction areas 61A and 61B. Further, the suction areas 61C and 61D are areas that are partitioned in the peripheral area of the holding surface 7a of the stage 7 on the outer side in the radial direction from the suction areas 61A and 61B. The suction areas 61E and 61H have the same area, but have a larger area than the suction areas 61C and 61D. Although the suction areas 61F and 61G have the same area, they have a larger area than the suction areas 61E and 61H. That is, the size relationship of the suction areas 61A to 61H is as follows: suction area 61A = suction area 61B <suction area 61C = suction area 61D <suction area 61E = suction area 61H <suction area 61F = suction area 61G. It has become.
 そして、図16に示す第3変形例では、まず、ウエハWの中央部を吸引領域61Iに吸着させた後、吸引領域61A~61Hの面積が小さい領域から面積が大きな領域へ、順次、ウエハWの周縁部を部分的に吸着させていく。具体的には、ウエハWの周縁部の部位を吸引領域61A,61Bに吸着させる。次に、吸引領域61A,61Bに吸着させた部位に隣接するウエハWの周縁部の部位を、それぞれ、吸引領域61C,61Dに吸着させる。次に、吸引領域61C,61Dに吸着させた部位に隣接するウエハWの周縁部の部位を、それぞれ吸引領域61E,61Hに吸着させる。次に、吸引領域61E,61Hに吸着させた部位に隣接するウエハWの周縁部の部位を、それぞれ吸引領域61G,61Fに吸着させる。このようにして、吸引領域61A~61Hの面積が小さい領域から面積が大きな領域へウエハWを吸着させていくことによって、ウエハWをステージ7の保持面7aの全体で吸着保持することができる。 In the third modified example shown in FIG. 16, first, the central portion of the wafer W is attracted to the suction area 61I, and then the wafer W is sequentially formed from the area where the suction areas 61A to 61H are small to the area where the area is large. The peripheral part of is partially adsorbed. Specifically, the peripheral portion of the wafer W is attracted to the suction regions 61A and 61B. Next, the peripheral part of the wafer W adjacent to the part adsorbed to the suction regions 61A and 61B is adsorbed to the suction areas 61C and 61D, respectively. Next, the peripheral portions of the wafer W adjacent to the portions adsorbed to the suction regions 61C and 61D are adsorbed to the suction regions 61E and 61H, respectively. Next, the peripheral portions of the wafer W adjacent to the portions adsorbed to the suction regions 61E and 61H are adsorbed to the suction regions 61G and 61F, respectively. In this manner, the wafer W can be sucked and held by the entire holding surface 7a of the stage 7 by sucking the wafer W from the small area of the suction areas 61A to 61H to the large area.
 以上のように、第1~第3変形例では、ウエハWの周縁部を吸着させる複数の吸引領域61が、異なる面積を有する2つ以上の吸引領域61を有している。そして、面積が小さい吸引領域61から面積が大きな吸引領域61へ、順次、ウエハWの周縁部を部分的に吸着させていくことができる。これによって、ウエハWの反りが大きく、最初は小さい部位しか吸着できない場合でも、隣接する部位を順次吸着させていくことによって吸着面積を増やし、ウエハWの反りを徐々に緩和させることができる。その結果、短時間でウエハWの全面をステージ7の保持面7aの全体で吸着保持することができる。 As described above, in the first to third modifications, the plurality of suction regions 61 for sucking the peripheral edge portion of the wafer W have two or more suction regions 61 having different areas. Then, the peripheral portion of the wafer W can be partially adsorbed sequentially from the suction area 61 having a small area to the suction area 61 having a large area. As a result, even when the warpage of the wafer W is large and only a small portion can be adsorbed at first, the adsorbing area can be increased by sequentially adsorbing adjacent portions, and the warpage of the wafer W can be gradually eased. As a result, the entire surface of the wafer W can be sucked and held by the entire holding surface 7a of the stage 7 in a short time.
 また、吸引領域61の面積、形状を変えることによって、吸引領域61の数(つまり、ステージ7の保持面7aの分割数)を少なくすることができるため、装置構成を簡素化できる、という利点もある。 Further, by changing the area and shape of the suction region 61, the number of suction regions 61 (that is, the number of divisions of the holding surface 7a of the stage 7) can be reduced, so that the apparatus configuration can be simplified. is there.
[第2の実施の形態]
 次に、図17~図19を参照して、本発明の第2の実施の形態のプローブ装置について説明する。図17は、本発明の第2の実施の形態に係るプローブ装置100Aの内部構造の概略を示す斜視図である。プローブ装置100Aは、押圧手段として、ウエハWの吸着部位の上面に当接してステージ7の保持面7aへ押し付ける押圧装置101を備えている。図17のプローブ装置100Aにおいて、第1の実施の形態のプローブ装置100と同じ構成には同一の符号を付して説明を省略する。
[Second Embodiment]
Next, a probe device according to a second embodiment of the present invention will be described with reference to FIGS. FIG. 17 is a perspective view showing an outline of the internal structure of the probe apparatus 100A according to the second embodiment of the present invention. The probe device 100 </ b> A includes a pressing device 101 that presses against the holding surface 7 a of the stage 7 as a pressing unit in contact with the upper surface of the adsorption portion of the wafer W. In the probe device 100A of FIG. 17, the same components as those of the probe device 100 of the first embodiment are denoted by the same reference numerals, and description thereof is omitted.
 本実施の形態において、複数の押圧装置101が、アライメントユニット41の側部に設けられている。図18及び図19は、一つの押圧装置の説明図である。図18及び図19に示すように、押圧装置101は、押圧部材としての押圧ピン103と、押圧ピン103を上下に変位させる駆動部105と、を備えている。押圧ピン103の先端は、金属よりも熱伝導率が低い材質、例えばセラミックス、合成樹脂、ゴムなどで形成することが好ましく、フッ素ゴムなどの耐熱性と弾性とを併有する材質がより好ましい。 In the present embodiment, a plurality of pressing devices 101 are provided on the side portion of the alignment unit 41. 18 and 19 are explanatory views of one pressing device. As shown in FIGS. 18 and 19, the pressing device 101 includes a pressing pin 103 as a pressing member and a drive unit 105 that displaces the pressing pin 103 up and down. The tip of the pressing pin 103 is preferably formed of a material having a lower thermal conductivity than metal, such as ceramics, synthetic resin, or rubber, and more preferably a material having both heat resistance and elasticity such as fluororubber.
 図示は省略するが、駆動部105は、例えばエアシリンダなどのアクチュエータと、バネなどの付勢部材とを有している。図18に示すように、通常は、付勢部材の付勢力によって、押圧ピン103の先端がアライメントユニット41の下端よりも上方の退避位置に保持されている。アクチュエータを作動させると、押圧ピン103は、図19に示すように、付勢部材の付勢力に抗してアライメントユニット41の下端から所定のストロークで下方に進出し、その先端が、ウエハWの吸着部位の上面に当接することによってウエハWを部分的に押圧する。 Although illustration is omitted, the drive unit 105 includes an actuator such as an air cylinder and a biasing member such as a spring. As shown in FIG. 18, the tip end of the pressing pin 103 is normally held at the retracted position above the lower end of the alignment unit 41 by the urging force of the urging member. When the actuator is actuated, the pressing pin 103 advances downward from the lower end of the alignment unit 41 with a predetermined stroke against the urging force of the urging member, as shown in FIG. The wafer W is partially pressed by contacting the upper surface of the suction site.
 このように、押圧ピン103は、第1の実施の形態におけるガス噴射装置45から噴射されるガスと同様に作用する。つまり、押圧ピン103は、ウエハWの上面を部分的に下方のステージ7の保持面7aへ押し付ける。その結果、第2の実施の形態のプローブ装置100Aにおいて、第1の実施の形態のプローブ装置100と同様の手順で、ウエハWの吸着保持を行うことが可能になる。 Thus, the pressing pin 103 acts in the same manner as the gas injected from the gas injection device 45 in the first embodiment. That is, the pressing pin 103 partially presses the upper surface of the wafer W against the holding surface 7 a of the lower stage 7. As a result, in the probe apparatus 100A of the second embodiment, the wafer W can be sucked and held in the same procedure as that of the probe apparatus 100 of the first embodiment.
 押圧装置101の数は2つに限定されるものではなく、1つでもよいし、3つ以上でもよいが、複数であることが好ましい。本実施の形態では、図17に示すように、アライメントユニット41の側部に、2つの押圧装置101を配置し、ウエハWの吸着部位を押圧できるようにした。これによって、ウエハWの吸着保持を行う際のステージ7のXY方向への移動距離が短くなり、装置全体のフットプリントを抑制できる。また、本実施の形態では、押圧装置101をアライメントユニット41に装着することで、別途の支持機構を設ける必要がなく、装置構成を簡素にすることができる。なお、押圧装置101は、アライメントユニット41に装着する代わりに、独立した支持部材によって支持する構成としてもよい。 The number of pressing devices 101 is not limited to two, but may be one or three or more, but a plurality is preferable. In the present embodiment, as shown in FIG. 17, two pressing devices 101 are arranged on the side portion of the alignment unit 41 so that the suction portion of the wafer W can be pressed. As a result, the moving distance of the stage 7 in the X and Y directions when holding the wafer W by suction is shortened, and the footprint of the entire apparatus can be suppressed. Moreover, in this Embodiment, by attaching the pressing apparatus 101 to the alignment unit 41, it is not necessary to provide a separate support mechanism, and the apparatus configuration can be simplified. The pressing device 101 may be supported by an independent support member instead of being attached to the alignment unit 41.
 次に、図20を参照して、プローブ装置100Aにおけるステージ7の保持面7aに形成された複数の吸引領域について説明する。プローブ装置100Aでは、ステージ7の保持面7aが独立して減圧に保持され得る吸引溝7bによって12の吸引領域61に分割されている。図20では、説明を簡略にするため、ステージ7の保持面7aに区分して設けられた12の吸引領域61を、ウエハWを吸着させる順番に1~12番の番号で示している。 Next, a plurality of suction regions formed on the holding surface 7a of the stage 7 in the probe apparatus 100A will be described with reference to FIG. In the probe device 100A, the holding surface 7a of the stage 7 is divided into twelve suction regions 61 by suction grooves 7b that can be independently held under reduced pressure. In FIG. 20, for simplification of explanation, twelve suction regions 61 provided separately on the holding surface 7a of the stage 7 are indicated by numbers 1 to 12 in the order in which the wafers W are attracted.
 図20において、1番及び2番で示す吸引領域61は、中央領域であり、平面視円形をなす保持面7aの中央部分に設けられている。また、1番及び2番で示す吸引領域61は、ステージ7の保持面7aの中心側から径外方向に、異なる面積で形成されている。このように、中央領域は、保持面7aの径方向に分割された複数の領域を有していてもよい。 In FIG. 20, the suction area 61 indicated by No. 1 and No. 2 is a central area, and is provided at the central portion of the holding surface 7a having a circular shape in plan view. Further, the suction areas 61 indicated by Nos. 1 and 2 are formed with different areas from the center side of the holding surface 7 a of the stage 7 in the radially outward direction. Thus, the central area may have a plurality of areas divided in the radial direction of the holding surface 7a.
 一方、3番から12番で示す吸引領域61は、周辺領域であり、平面視円形をなす保持面7aにおいて、1番及び2番で示す中央領域の周囲に設けられている。また、3番、4番、5番で示す吸引領域61は、ステージ7の保持面7aの中心側から径外方向に、異なる面積で形成されている。このように、周辺領域は、保持面7aの径方向に分割された複数の領域を有していてもよい。 On the other hand, the suction area 61 indicated by Nos. 3 to 12 is a peripheral area, and is provided around the central area indicated by Nos. 1 and 2 in the holding surface 7a having a circular shape in plan view. The suction regions 61 indicated by Nos. 3, 4, and 5 are formed with different areas from the center side of the holding surface 7a of the stage 7 in the radially outward direction. Thus, the peripheral region may have a plurality of regions divided in the radial direction of the holding surface 7a.
 本実施の形態のプローブ装置100Aにおける他の構成及び効果は、第1の実施の形態と同様である。 Other configurations and effects of the probe device 100A of the present embodiment are the same as those of the first embodiment.
 次に、プローブ装置100AにおけるウエハWの保持方法について説明する。本手順では、まず、ステージ7の保持面7aの中央領域である、1番の領域と、そのやや外側の2番の領域に、ウエハWの中央部を順次吸着させる。次に、ステージ7の保持面7aの周辺領域である3番の領域、4番の領域、5番の領域に、順次、ウエハWの周縁部を、中心側から径外方向にむけて吸着させる。次に、6番の領域、7番の領域、8番の領域、9番の領域、10番の領域、11番の領域、12番の領域の順に、周方向にウエハWの周縁部を吸着させていく。このようにして、隣接する領域にウエハWを部分的に吸着させる動作を繰り返すことによって、ステージ7の保持面7aにウエハWの全体を容易に吸着保持させることができる。従って、反りのあるウエハWについても、その全体をステージ7の保持面7aに確実に吸着させることができる。 Next, a method for holding the wafer W in the probe apparatus 100A will be described. In this procedure, first, the central portion of the wafer W is sequentially attracted to the first region, which is the central region of the holding surface 7a of the stage 7, and the second region slightly outside thereof. Next, the peripheral edge of the wafer W is sequentially attracted to the third region, the fourth region, and the fifth region, which are peripheral regions of the holding surface 7a of the stage 7, toward the radially outward direction from the center side. . Next, the peripheral portion of the wafer W is sucked in the circumferential direction in the order of No. 6 region, No. 7 region, No. 8 region, No. 9 region, No. 10 region, No. 11 region and No. 12 region. I will let you. In this way, by repeating the operation of partially adsorbing the wafer W to the adjacent region, the entire wafer W can be easily adsorbed and held on the holding surface 7a of the stage 7. Therefore, even the warped wafer W can be reliably attracted to the holding surface 7a of the stage 7 as a whole.
 次に、図21~図33を参照しながら、プローブ装置100AにおけるウエハWの保持方法のより具体的な手順について説明する。図21~図33では、アライメントユニット41の側部の2箇所に設けられた押圧装置101の押圧ピン103と、ステージ7の保持面7aとの位置関係を示している。説明の便宜上、2つの押圧装置101は、符号101A,101Bで区別して示している。ステージ7の保持面7aにおける1~12の番号は、図20と同じ意味である。また、ウエハW自体は図示を省略している。なお、アライメントユニット41は、図中、Y方向に往復移動可能であり、ステージ7は、図中、XY方向に移動可能である。 Next, a more specific procedure of the wafer W holding method in the probe apparatus 100A will be described with reference to FIGS. 21 to 33 show the positional relationship between the pressing pins 103 of the pressing device 101 provided at two positions on the side of the alignment unit 41 and the holding surface 7 a of the stage 7. For convenience of explanation, the two pressing devices 101 are shown as being distinguished by reference numerals 101A and 101B. The numbers 1 to 12 on the holding surface 7a of the stage 7 have the same meaning as in FIG. The wafer W itself is not shown. The alignment unit 41 can reciprocate in the Y direction in the figure, and the stage 7 can move in the XY direction in the figure.
 図21では、ステージ7をウエハWの受け渡し位置まで移動させる。そして、ローダー部3がウエハW(不図示)をステージ7の保持面7aに搬送する。 In FIG. 21, the stage 7 is moved to the wafer W delivery position. Then, the loader unit 3 transports the wafer W (not shown) to the holding surface 7a of the stage 7.
 次に、図22に示すように、押圧装置101Aの押圧ピン103が1番の領域の直上に位置するまでアライメントユニット41をY方向に移動させる。そして、1番の領域の吸引をONにして、片側の押圧装置101Aの押圧ピン103を進出させ、ウエハWの中央部を押圧し、1番の領域に吸着させる。図22では、押圧ピン103による押圧位置を黒点で示している(図23~図33において同様である)。その後、リークチェックによって吸着を確認した上で、押圧ピン103を退避させる。 Next, as shown in FIG. 22, the alignment unit 41 is moved in the Y direction until the pressing pin 103 of the pressing device 101A is positioned immediately above the first region. Then, the suction of the first area is turned ON, the pressing pin 103 of the pressing device 101A on one side is advanced, the central portion of the wafer W is pressed, and the first area is attracted. In FIG. 22, the pressing position by the pressing pin 103 is indicated by a black dot (the same applies to FIGS. 23 to 33). Then, after confirming the suction by a leak check, the pressing pin 103 is retracted.
 次に、図23に示すように、押圧装置101Aの押圧ピン103が2番の領域の直上に位置するまでステージ7を移動させる。そして、2番の領域の吸引をONにして、押圧装置101Aの押圧ピン103を進出させてウエハWの中央部の径方向やや外側を押圧し、2番の領域に吸着させる。リークチェックによって吸着を確認した後、押圧ピン103を退避させる。 Next, as shown in FIG. 23, the stage 7 is moved until the pressing pin 103 of the pressing device 101A is positioned immediately above the second region. Then, the suction of the second area is turned ON, the pressing pin 103 of the pressing device 101A is advanced, and the radial direction of the central part of the wafer W is pressed slightly toward the outer side to be attracted to the second area. After confirming the suction by the leak check, the pressing pin 103 is retracted.
 なお、1番の領域と2番の領域の吸着においては、ウエハWの中央部の1箇所を押圧装置101Aの押圧ピン103で押圧した状態を維持しながら、1番の領域、2番の領域の順に吸着させてもよい。 In the adsorption of the No. 1 area and No. 2 area, the first area and the No. 2 area are maintained while maintaining a state where one central portion of the wafer W is pressed by the pressing pin 103 of the pressing device 101A. You may make it adsorb | suck in order.
 次に、図24に示すように、押圧装置101Aの押圧ピン103が3番の領域の直上に位置するまでステージ7を移動させる。そして、3番の領域の吸引をONにして、押圧ピン103を進出させ、ウエハWを部分的に押圧し、3番の領域に吸着させる。リークチェックによって吸着を確認した後、押圧ピン103を退避させる。 Next, as shown in FIG. 24, the stage 7 is moved until the pressing pin 103 of the pressing device 101A is located immediately above the third region. Then, the suction of the third area is turned on, the pressing pin 103 is advanced, the wafer W is partially pressed, and is attracted to the third area. After confirming the suction by the leak check, the pressing pin 103 is retracted.
 次に、図25に示すように、押圧装置101Aの押圧ピン103が4番の領域の直上に位置するまでステージ7を移動させる。そして、4番の領域の吸引をONにして、押圧ピン103を進出させ、ウエハWを部分的に押圧し、4番の領域に吸着させる。リークチェックによって吸着を確認した後、押圧ピン103を退避させる。 Next, as shown in FIG. 25, the stage 7 is moved until the pressing pin 103 of the pressing device 101A is positioned immediately above the fourth region. Then, the suction of the No. 4 area is turned ON, the pressing pin 103 is advanced, the wafer W is partially pressed, and is attracted to the No. 4 area. After confirming the suction by the leak check, the pressing pin 103 is retracted.
 次に、図26に示すように、押圧装置101Aの押圧ピン103が5番の領域の直上に位置するまでステージ7を移動させる。そして、5番の領域の吸引をONにして、押圧ピン103を進出させ、ウエハWを部分的に押圧し、5番の領域に吸着させる。リークチェックによって吸着を確認した後、押圧ピン103を退避させる。 Next, as shown in FIG. 26, the stage 7 is moved until the pressing pin 103 of the pressing device 101A is located immediately above the fifth area. Then, the suction of the No. 5 area is turned ON, the pressing pin 103 is advanced, the wafer W is partially pressed, and is attracted to the No. 5 area. After confirming the suction by the leak check, the pressing pin 103 is retracted.
 なお、3番の領域から5番の領域までの吸着においては、いずれかの領域に対応するウエハW上の1箇所を押圧装置101Aの押圧ピン103で押圧した状態を維持しながら、3番の領域、4番の領域、5番の領域の順に吸着させてもよい。 In the suction from the No. 3 area to the No. 5 area, while maintaining the state where one place on the wafer W corresponding to any area is pressed by the pressing pin 103 of the pressing device 101A, the No. 3 area is maintained. You may make it adsorb | suck in order of area | region, 4th area | region, and 5th area | region.
 次に、図27に示すように、押圧装置101Aの押圧ピン103が6番の領域の直上に位置するまでステージ7を移動させる。そして、6番の領域の吸引をONにして、押圧ピン103を進出させてウエハWを部分的に押圧し、6番の領域に吸着させる。リークチェックによって吸着を確認した後、押圧ピン103を退避させる。 Next, as shown in FIG. 27, the stage 7 is moved until the pressing pin 103 of the pressing device 101A is located immediately above the sixth area. Then, the suction of the No. 6 area is turned ON, the pressing pin 103 is advanced, the wafer W is partially pressed, and is attracted to the No. 6 area. After confirming the suction by the leak check, the pressing pin 103 is retracted.
 以下、同様にして、7番の領域(図28参照)、8番の領域(図29参照)の順に、押圧装置101Aの押圧ピン103による押圧と退避を繰り返しながら、ウエハWを部分的に吸着させていく。 Similarly, the wafer W is partially sucked in the order of the seventh area (see FIG. 28) and the eighth area (see FIG. 29) while repeatedly pressing and retracting with the pressing pins 103 of the pressing device 101A. I will let you.
 次に、図30に示すように、押圧装置101Aに替えて、押圧装置101Bの押圧ピン103が9番の領域の直上に位置するまでステージ7を移動させる。そして、9番の領域の吸引をONにして、押圧ピン103を進出させてウエハWを部分的に押圧し、9番の領域に吸着させる。リークチェックによって吸着を確認した後、押圧ピン103を退避させる。このように、途中で押圧装置101Aから押圧装置101Bへ切り替えることによって、ステージ7の可動範囲を大きくすることなく、ウエハWの吸着処理を実施できる。従って、ステージ7をXY方向に移動させるX方向移動ユニット21及びY方向移動ユニット23を含めた装置のフットプリントを拡大させることなく、確実にウエハWを吸着保持させることができる。 Next, as shown in FIG. 30, instead of the pressing device 101A, the stage 7 is moved until the pressing pin 103 of the pressing device 101B is located immediately above the ninth area. Then, the suction of the No. 9 area is turned on, the pressing pin 103 is advanced, the wafer W is partially pressed, and is attracted to the No. 9 area. After confirming the suction by the leak check, the pressing pin 103 is retracted. In this way, by switching from the pressing device 101 </ b> A to the pressing device 101 </ b> B in the middle, the wafer W suction processing can be performed without increasing the movable range of the stage 7. Therefore, the wafer W can be reliably sucked and held without increasing the footprint of the apparatus including the X-direction moving unit 21 and the Y-direction moving unit 23 that move the stage 7 in the XY direction.
 以下、同様にして、10番の領域(図31参照)、11番の領域(図32参照)、12番の領域(図33参照)の順に、押圧装置101Bの押圧ピン103による押圧と退避を繰り返しながら、ウエハWを部分的に吸着させていく。 Hereinafter, similarly, pressing and retraction by the pressing pin 103 of the pressing device 101B are performed in the order of the 10th area (see FIG. 31), the 11th area (see FIG. 32), and the 12th area (see FIG. 33). While repeating, the wafer W is partially adsorbed.
 このようにして、1番の領域~12番の領域へウエハWを順番に吸着させていくことによって、ウエハWをステージ7の保持面7aの全体で確実に吸着保持することができる。なお、本手順は、アライメントユニット41に2つの押圧装置101を設ける代わりに、第1の実施の形態と同様のガス噴射装置45のノズル81を2箇所に設け、押圧ピン103による押圧と退避を繰り返す代わりに、ガスの噴射と停止を繰り返すことによっても同様に実施できる。 In this way, by sequentially adsorbing the wafers W to the first region to the twelfth region, the wafers W can be reliably adsorbed and held by the entire holding surface 7a of the stage 7. In this procedure, instead of providing the two pressing devices 101 in the alignment unit 41, nozzles 81 of the gas injection device 45 similar to those in the first embodiment are provided in two places, and pressing and retraction by the pressing pins 103 are performed. Instead of repeating, it can be similarly performed by repeating the injection and stop of gas.
 以上、本発明の実施の形態を例示の目的で詳細に説明したが、本発明は上記実施の形態に制約されることはなく、種々の変形が可能である。例えば、上記実施の形態では、ウエハW上に形成されたデバイスの検査を行うプローブ装置を例に挙げて説明したが、本発明の基板保持方法及び基板保持装置は、基板を真空吸着して保持するステージを備えた処理装置の全てに適用可能である。 As described above, the embodiments of the present invention have been described in detail for the purpose of illustration, but the present invention is not limited to the above-described embodiments, and various modifications are possible. For example, in the above-described embodiment, the probe apparatus that inspects the device formed on the wafer W has been described as an example. However, the substrate holding method and the substrate holding apparatus of the present invention hold the substrate by vacuum suction. The present invention can be applied to all processing apparatuses having a stage to perform.
 また、上記第1~第3の手順では、まず最初に、ウエハWの中央部の部位Pを吸着させる構成としたが、例えば、保持面7aの中央部分の吸引領域61Iを設けない場合のように、吸引領域61の区分の仕方によっては、この限りではない。 Further, in the first to third steps, first, a configuration of adsorbing the site P I of the central portion of the wafer W, for example, the case without the suction region 61I of the central portion of the holding surface 7a Thus, this is not the case depending on how the suction region 61 is divided.
 また、上記第3の手順では、ウエハWの周縁部の部位の2箇所を吸着させた後で、隣接する2箇所ないし4箇所を同時に吸着させていく構成とした。しかし、ウエハWの周縁部の部位の2箇所を吸着させた後で、これらに隣接する部位のうち片方ずつ(つまり、同時に2箇所ずつ)を、例えば時計回り、もしくは反時計回りに、順次、吸着させていくようにしてもよい。 Further, in the third procedure, after adsorbing two portions of the peripheral portion of the wafer W, the adjoining two to four portions are adsorbed simultaneously. However, after adsorbing two of the peripheral portions of the wafer W, one of the adjacent portions (that is, two at the same time) is sequentially, for example, clockwise or counterclockwise, You may make it adsorb | suck.
 さらに、上記第3の手順では、ウエハWの中央部の部位Pを吸着させた後で、ウエハWの周縁部の2箇所の部位を同時に吸着させたが、区分される吸引領域61の数が多い場合などは、部位Pの次に、ウエハWの周縁部の3箇所以上の部位を同時に吸着させてもよい。 Further, in the third procedure, after the portion P I at the center of the wafer W is adsorbed, the two portions on the peripheral portion of the wafer W are adsorbed simultaneously. etc. If large, the next site P I, the sites of three or more of the periphery of the wafer W may be simultaneously adsorbed.
 また、基板としては、半導体ウエハや樹脂基板に限らず、例えば、液晶表示装置に用いるガラス基板に代表されるフラットパネルディスプレイ用基板や、多数のIC(半導体集積回路)チップを実装した樹脂基板、ガラス基板などの実装検査用基板でもよい。 In addition, the substrate is not limited to a semiconductor wafer or a resin substrate, for example, a flat panel display substrate typified by a glass substrate used in a liquid crystal display device, a resin substrate on which a number of IC (semiconductor integrated circuit) chips are mounted, A substrate for mounting inspection such as a glass substrate may be used.
 本国際出願は、2015年4月4日に出願された日本国特許出願2015-077278号、及び、2015年11月25日に出願された日本国特許出願2015-229657号に基づく優先権を主張するものであり、当該出願の全内容をここに援用する。
 
 
This international application claims priority based on Japanese Patent Application No. 2015-077278 filed on April 4, 2015 and Japanese Patent Application No. 2015-229657 filed on November 25, 2015. The entire contents of the application are incorporated herein by reference.

Claims (24)

  1.  ステージに基板を吸着保持させる基板保持方法であって、
     前記ステージは、前記基板の下面を吸着して保持する基板保持面を有し、
     前記基板保持面は、前記基板を部分的に吸引可能な複数の領域に区分されており、
     前記複数の領域の少なくとも一つの領域において、前記基板の一部分を吸着させた後、前記基板の一部分を吸着させた領域に隣接する領域に、前記基板の別の部分を吸着させることを順次繰り返すことによって、前記基板の全体を前記ステージに吸着保持させるとともに、
     前記基板を部分的に吸着させるときに、押圧手段によって前記基板の吸着部位を前記基板保持面へ押し付けることを特徴とする基板保持方法。
    A substrate holding method for holding a substrate by suction on a stage,
    The stage has a substrate holding surface that sucks and holds the lower surface of the substrate,
    The substrate holding surface is divided into a plurality of regions capable of partially sucking the substrate,
    In at least one of the plurality of regions, after part of the substrate is adsorbed, another part of the substrate is adsorbed in a region adjacent to the region where the part of the substrate is adsorbed. By adsorbing and holding the entire substrate on the stage,
    A substrate holding method, wherein, when the substrate is partially sucked, a suction portion of the substrate is pressed against the substrate holding surface by a pressing means.
  2.  前記押圧手段が、前記吸着部位の上面に向けてガスを吹き付けるガス噴射装置である請求項1に記載の基板保持方法。 2. The substrate holding method according to claim 1, wherein the pressing means is a gas injection device that blows gas toward the upper surface of the adsorption site.
  3.  前記ガスが、加熱ガスである請求項2に記載の基板保持方法。 The substrate holding method according to claim 2, wherein the gas is a heated gas.
  4.  前記加熱ガスが、前記ステージの温度の±10℃の範囲内に保持されている請求項3に記載の基板保持方法。 4. The substrate holding method according to claim 3, wherein the heated gas is held within a range of ± 10 ° C. of the temperature of the stage.
  5.  前記押圧手段が、前記吸着部位の上面に当接して前記基板保持面へ押し付ける押圧部材を有する押圧装置である請求項1に記載の基板保持方法。 2. The substrate holding method according to claim 1, wherein the pressing means is a pressing device having a pressing member that abuts against an upper surface of the suction portion and presses the pressing portion against the substrate holding surface.
  6.  前記基板が円形をなすとともに、前記基板保持面が円形をなし、
     前記複数の領域は、前記基板の中央部分に対応する中央領域と、前記基板の周縁部に対応し、前記中央領域を囲む複数の周辺領域と、を含み、
     前記基板の中央部分を、前記中央領域に吸着させる工程、
     次に、前記周辺領域の一つに、前記基板の周縁部の一部分を吸着させる工程、
     次に、前記基板の周縁部の一部分を吸着させた前記周辺領域に隣接する、一つ又は二つの周辺領域に、前記基板の周縁部の別の部分を吸着させる工程、
     次に、前記基板の周縁部の別の部分を吸着させた周辺領域に隣接する周辺領域に、前記基板のさらに別の部分を吸着させる工程、を順次行う請求項1に記載の基板保持方法。
    The substrate is circular, and the substrate holding surface is circular,
    The plurality of regions include a central region corresponding to a central portion of the substrate, and a plurality of peripheral regions corresponding to a peripheral portion of the substrate and surrounding the central region,
    Adsorbing the central portion of the substrate to the central region;
    Next, a step of adsorbing a part of the peripheral edge of the substrate to one of the peripheral regions,
    Next, adsorbing another part of the peripheral edge of the substrate to one or two peripheral areas adjacent to the peripheral area where a part of the peripheral edge of the substrate is adsorbed;
    The substrate holding method according to claim 1, wherein the step of adsorbing another portion of the substrate to a peripheral region adjacent to a peripheral region adsorbing another portion of the peripheral portion of the substrate is sequentially performed.
  7.  前記基板が円形をなすとともに、前記基板保持面が円形をなし、
     前記複数の領域は、前記基板の中央部分に対応する中央領域と、前記基板の周縁部に対応し、前記中央領域を囲む複数の周辺領域と、を含み、
     前記基板の中央部分を、前記中央領域に吸着させる工程、
     次に、前記周辺領域の二つに、それぞれ、前記基板の周縁部を部分的に吸着させる工程、
     次に、前記基板の周縁部を部分的に吸着させた前記周辺領域に隣接する複数の周辺領域に、それぞれ、前記基板の周縁部の別の部分を吸着させる工程、
     次に、前記基板の周縁部の別の部分を吸着させた複数の周辺領域に隣接する複数の周辺領域に、それぞれ、前記基板のさらに別の部分を吸着させる工程、を順次行う請求項1に記載の基板保持方法。
    The substrate is circular, and the substrate holding surface is circular,
    The plurality of regions include a central region corresponding to a central portion of the substrate, and a plurality of peripheral regions corresponding to a peripheral portion of the substrate and surrounding the central region,
    Adsorbing the central portion of the substrate to the central region;
    Next, a step of partially adsorbing the peripheral portion of the substrate to each of the two peripheral regions,
    Next, a step of adsorbing another portion of the peripheral portion of the substrate to each of a plurality of peripheral regions adjacent to the peripheral region where the peripheral portion of the substrate is partially adsorbed,
    Next, the step of sequentially adsorbing another portion of the substrate to a plurality of peripheral regions adjacent to the plurality of peripheral regions adsorbing another portion of the peripheral portion of the substrate is sequentially performed. The substrate holding method as described.
  8.  前記複数の周辺領域は、異なる面積を有する2つ以上の周辺領域を含んでおり、
     前記周辺領域の中の面積が小さい領域から面積が大きな領域へ、順次、前記基板の周縁部を部分的に吸着させていく請求項6に記載の基板保持方法。
    The plurality of peripheral regions include two or more peripheral regions having different areas;
    The substrate holding method according to claim 6, wherein the peripheral portion of the substrate is partially adsorbed sequentially from a small area to a large area in the peripheral area.
  9.  前記複数の領域について、全体を一括して、又は、個別にもしくは2つ以上の領域を含む組み合わせ毎に、前記基板を吸着させた状態で外気の進入状態を検出するリーク検出を行う請求項1に記載の基板保持方法。 The leak detection for detecting an ingress state of outside air in a state where the substrate is adsorbed with respect to the plurality of regions collectively or individually or for each combination including two or more regions. The substrate holding method as described in 2.
  10.  基板に対して所定の処理を行う処理方法であって、
     請求項1に記載の基板保持方法によって、ステージに基板を吸着保持させる工程を含むことを特徴とする処理方法。
    A processing method for performing predetermined processing on a substrate,
    A processing method comprising the step of attracting and holding a substrate on a stage by the substrate holding method according to claim 1.
  11.  基板上に形成された複数のデバイスの電気的特性を検査するデバイスの検査方法である請求項10に記載の処理方法。 The processing method according to claim 10, which is a device inspection method for inspecting electrical characteristics of a plurality of devices formed on a substrate.
  12.  基板を吸着して保持するステージと、
     前記基板の一部分を前記基板保持面へ押し付ける押圧手段と、
    を備えた基板保持装置であって、
     前記ステージは、前記基板の下面を吸着して保持する基板保持面を有するとともに、該基板保持面は、前記基板を部分的に吸引可能な複数の領域に区分されており、
     前記押圧手段は、前記ステージの前記複数の領域に対応して、前記基板の一部分である吸着部位を押圧するものである基板保持装置。
    A stage that sucks and holds the substrate;
    Pressing means for pressing a portion of the substrate against the substrate holding surface;
    A substrate holding device comprising:
    The stage has a substrate holding surface that sucks and holds the lower surface of the substrate, and the substrate holding surface is divided into a plurality of regions capable of partially sucking the substrate,
    The substrate holding apparatus, wherein the pressing means presses an adsorption site that is a part of the substrate corresponding to the plurality of regions of the stage.
  13.  前記押圧手段が、前記吸着部位の上面に向けてガスを吹き付けるガス噴射装置である請求項12に記載の基板保持装置。 The substrate holding apparatus according to claim 12, wherein the pressing means is a gas injection device that blows gas toward the upper surface of the adsorption site.
  14.  前記ガス噴射装置は、前記ステージの前記複数の領域に対応して、全体に、又は、個別にもしくは2つ以上の領域を含む組み合わせ毎に、前記ガスを吹き付けるノズルを有している請求項13に記載の基板保持装置。 The gas injection device includes a nozzle that blows the gas, corresponding to the plurality of regions of the stage, entirely or individually or for each combination including two or more regions. A substrate holding apparatus according to the above.
  15.  前記ガスが、加熱ガスである請求項13に記載の基板保持装置。 The substrate holding apparatus according to claim 13, wherein the gas is a heated gas.
  16.  前記加熱ガスが、前記ステージの温度の±10℃の範囲内に保持されている請求項15に記載の基板保持装置。 The substrate holding apparatus according to claim 15, wherein the heated gas is held within a range of ± 10 ° C of the temperature of the stage.
  17.  前記押圧手段が、前記吸着部位の上面に当接して前記基板保持面へ押し付ける押圧部材を有する押圧装置である請求項12に記載の基板保持装置。 13. The substrate holding device according to claim 12, wherein the pressing means is a pressing device having a pressing member that comes into contact with the upper surface of the suction portion and presses against the substrate holding surface.
  18.  前記押圧部材の前記基板に当接する部分が、セラミックス、合成樹脂又はゴムによって形成されている請求項17に記載の基板保持装置。 The substrate holding device according to claim 17, wherein a portion of the pressing member that contacts the substrate is formed of ceramics, synthetic resin, or rubber.
  19.  さらに、前記複数の領域について、全体を一括して、又は、個別にもしくは複数の組み合わせ毎に、前記基板を吸着させた状態で外気の進入状態を検出するリーク検出部を有している請求項12に記載の基板保持装置。 Furthermore, it has a leak detection part which detects the approach state of external air in the state which adsorb | sucked the said board | substrate about the said several area | region collectively or individually or for every some combination. 13. The substrate holding device according to 12.
  20.  前記基板が円形をなすとともに、前記基板保持面が円形をなし、
     前記複数の領域は、前記基板の中央部分に対応する中央領域と、前記基板の周縁部に対応し、前記中央領域を囲む複数の周辺領域と、を含み、
     前記複数の周辺領域は、異なる面積を有する2つ以上の周辺領域を含んでいる請求項12に記載の基板保持装置。
    The substrate is circular, and the substrate holding surface is circular,
    The plurality of regions include a central region corresponding to a central portion of the substrate, and a plurality of peripheral regions corresponding to a peripheral portion of the substrate and surrounding the central region,
    The substrate holding apparatus according to claim 12, wherein the plurality of peripheral regions include two or more peripheral regions having different areas.
  21.  前記中央領域が、前記基板保持面の径方向に分割された複数の領域を有している請求項20に記載の基板保持装置。 21. The substrate holding apparatus according to claim 20, wherein the central region has a plurality of regions divided in a radial direction of the substrate holding surface.
  22.  前記周辺領域が、前記基板保持面の径方向に分割された複数の領域を有している請求項20に記載の基板保持装置。 21. The substrate holding apparatus according to claim 20, wherein the peripheral region has a plurality of regions divided in a radial direction of the substrate holding surface.
  23.  基板に対して所定の処理を行う処理装置であって、請求項12に記載の基板保持装置を備えていることを特徴とする処理装置。 A processing apparatus for performing predetermined processing on a substrate, comprising the substrate holding device according to claim 12.
  24.  基板上に形成された複数のデバイスの電気的特性を検査するプローブ装置である請求項23に記載の処理装置。
     
    The processing apparatus according to claim 23, wherein the processing apparatus is a probe apparatus that inspects electrical characteristics of a plurality of devices formed on a substrate.
PCT/JP2016/053953 2015-04-04 2016-02-10 Substrate holding method, substrate holding device, processing method and processing device WO2016163147A1 (en)

Priority Applications (3)

Application Number Priority Date Filing Date Title
KR1020177031887A KR102044085B1 (en) 2015-04-04 2016-02-10 Board holding method, board holding device, processing method and processing apparatus
CN201680019629.8A CN107431039B (en) 2015-04-04 2016-02-10 Substrate holding method, substrate holding apparatus, processing method, and processing apparatus
EP16776316.8A EP3282475B1 (en) 2015-04-04 2016-02-10 Substrate holding method, substrate holding device, processing method and processing device

Applications Claiming Priority (4)

Application Number Priority Date Filing Date Title
JP2015077278 2015-04-04
JP2015-077278 2015-04-04
JP2015-229657 2015-11-25
JP2015229657A JP6568781B2 (en) 2015-04-04 2015-11-25 Substrate holding method, substrate holding apparatus, processing method and processing apparatus

Publications (1)

Publication Number Publication Date
WO2016163147A1 true WO2016163147A1 (en) 2016-10-13

Family

ID=57072626

Family Applications (1)

Application Number Title Priority Date Filing Date
PCT/JP2016/053953 WO2016163147A1 (en) 2015-04-04 2016-02-10 Substrate holding method, substrate holding device, processing method and processing device

Country Status (1)

Country Link
WO (1) WO2016163147A1 (en)

Citations (5)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
JP2000124298A (en) * 1998-10-20 2000-04-28 Tokyo Seimitsu Co Ltd Transfer/holding mechanism for wafer and method for sucking wafer
JP2010129706A (en) * 2008-11-27 2010-06-10 Hioki Ee Corp Suction apparatus and inspection apparatus
JP2012201437A (en) * 2011-03-24 2012-10-22 Tokyo Electron Ltd Base board carrying device and base board carrying method
JP2013232630A (en) * 2012-04-04 2013-11-14 Tokyo Electron Ltd Substrate holding device and substrate holding method
JP2014195016A (en) * 2013-03-29 2014-10-09 Sharp Corp Semiconductor inspection device

Patent Citations (5)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
JP2000124298A (en) * 1998-10-20 2000-04-28 Tokyo Seimitsu Co Ltd Transfer/holding mechanism for wafer and method for sucking wafer
JP2010129706A (en) * 2008-11-27 2010-06-10 Hioki Ee Corp Suction apparatus and inspection apparatus
JP2012201437A (en) * 2011-03-24 2012-10-22 Tokyo Electron Ltd Base board carrying device and base board carrying method
JP2013232630A (en) * 2012-04-04 2013-11-14 Tokyo Electron Ltd Substrate holding device and substrate holding method
JP2014195016A (en) * 2013-03-29 2014-10-09 Sharp Corp Semiconductor inspection device

Non-Patent Citations (1)

* Cited by examiner, † Cited by third party
Title
See also references of EP3282475A4 *

Similar Documents

Publication Publication Date Title
JP6568781B2 (en) Substrate holding method, substrate holding apparatus, processing method and processing apparatus
US5999268A (en) Apparatus for aligning a semiconductor wafer with an inspection contactor
KR101088566B1 (en) Test system and prober assembly for testing a large area substrate
US6739208B2 (en) Method of delivering target object to be processed, table mechanism of target object and probe apparatus
KR101335146B1 (en) Probe card detecting apparatus, wafer position alignment apparatus and wafer position alignment method
JPH0883825A (en) Probe equipment
KR20160079700A (en) Substrate holding assistant member and substrate transfer apparatus
KR20090091063A (en) Probe apparatus, probing method, and storage medium
US11346861B2 (en) Contact accuracy assurance method, contact accuracy assurance mechanism, and inspection apparatus
JP2009099936A (en) Probe apparatus
KR101386331B1 (en) Wafer transfer device
JP4922915B2 (en) Substrate processing apparatus and substrate alignment method
CN113508457A (en) Substrate holding device and substrate suction method
WO2016163147A1 (en) Substrate holding method, substrate holding device, processing method and processing device
JP2020161631A (en) Inspection apparatus
JPH09275115A (en) Equipment for positioning board
JPS635542A (en) Semiconductor wafer prober
KR20180070337A (en) Substrate inspection device and method of substrate inspection using the same
WO2009113183A1 (en) Multichip prober
KR100825861B1 (en) Probe bonding method
JP2528509Y2 (en) Wafer probing equipment
JPH10221058A (en) Apparatus for inspecting foreign matter of glass substrate
KR100283444B1 (en) Probe Device
JP2005332839A (en) Testing device
KR20100080025A (en) Apparatus and method for testing a wafer

Legal Events

Date Code Title Description
121 Ep: the epo has been informed by wipo that ep was designated in this application

Ref document number: 16776316

Country of ref document: EP

Kind code of ref document: A1

DPE1 Request for preliminary examination filed after expiration of 19th month from priority date (pct application filed from 20040101)
NENP Non-entry into the national phase

Ref country code: DE

ENP Entry into the national phase

Ref document number: 20177031887

Country of ref document: KR

Kind code of ref document: A