WO2012023587A1 - シャトルコック用人工羽根、シャトルコック、およびシャトルコック用人工羽根の製造方法 - Google Patents

シャトルコック用人工羽根、シャトルコック、およびシャトルコック用人工羽根の製造方法 Download PDF

Info

Publication number
WO2012023587A1
WO2012023587A1 PCT/JP2011/068701 JP2011068701W WO2012023587A1 WO 2012023587 A1 WO2012023587 A1 WO 2012023587A1 JP 2011068701 W JP2011068701 W JP 2011068701W WO 2012023587 A1 WO2012023587 A1 WO 2012023587A1
Authority
WO
WIPO (PCT)
Prior art keywords
wing
molded product
feather
shuttlecock
artificial
Prior art date
Application number
PCT/JP2011/068701
Other languages
English (en)
French (fr)
Inventor
亘 米山
謙介 田中
聖也 宮▲崎▼
Original Assignee
ヨネックス株式会社
Priority date (The priority date is an assumption and is not a legal conclusion. Google has not performed a legal analysis and makes no representation as to the accuracy of the date listed.)
Filing date
Publication date
Application filed by ヨネックス株式会社 filed Critical ヨネックス株式会社
Priority to EP11818228.6A priority Critical patent/EP2606943B1/en
Priority to JP2012529614A priority patent/JP5866285B2/ja
Priority to US13/817,823 priority patent/US8992355B2/en
Priority to CN201180040381.0A priority patent/CN103068448B/zh
Priority to KR1020137006574A priority patent/KR101455948B1/ko
Publication of WO2012023587A1 publication Critical patent/WO2012023587A1/ja

Links

Images

Classifications

    • AHUMAN NECESSITIES
    • A63SPORTS; GAMES; AMUSEMENTS
    • A63BAPPARATUS FOR PHYSICAL TRAINING, GYMNASTICS, SWIMMING, CLIMBING, OR FENCING; BALL GAMES; TRAINING EQUIPMENT
    • A63B67/00Sporting games or accessories therefor, not provided for in groups A63B1/00 - A63B65/00
    • A63B67/18Badminton or similar games with feathered missiles
    • AHUMAN NECESSITIES
    • A41WEARING APPAREL
    • A41GARTIFICIAL FLOWERS; WIGS; MASKS; FEATHERS
    • A41G11/00Artificial feathers
    • AHUMAN NECESSITIES
    • A63SPORTS; GAMES; AMUSEMENTS
    • A63BAPPARATUS FOR PHYSICAL TRAINING, GYMNASTICS, SWIMMING, CLIMBING, OR FENCING; BALL GAMES; TRAINING EQUIPMENT
    • A63B67/00Sporting games or accessories therefor, not provided for in groups A63B1/00 - A63B65/00
    • A63B67/18Badminton or similar games with feathered missiles
    • A63B67/183Feathered missiles
    • A63B67/187Shuttlecocks
    • BPERFORMING OPERATIONS; TRANSPORTING
    • B29WORKING OF PLASTICS; WORKING OF SUBSTANCES IN A PLASTIC STATE IN GENERAL
    • B29CSHAPING OR JOINING OF PLASTICS; SHAPING OF MATERIAL IN A PLASTIC STATE, NOT OTHERWISE PROVIDED FOR; AFTER-TREATMENT OF THE SHAPED PRODUCTS, e.g. REPAIRING
    • B29C45/00Injection moulding, i.e. forcing the required volume of moulding material through a nozzle into a closed mould; Apparatus therefor
    • B29C45/16Making multilayered or multicoloured articles
    • B29C45/1676Making multilayered or multicoloured articles using a soft material and a rigid material, e.g. making articles with a sealing part
    • AHUMAN NECESSITIES
    • A63SPORTS; GAMES; AMUSEMENTS
    • A63BAPPARATUS FOR PHYSICAL TRAINING, GYMNASTICS, SWIMMING, CLIMBING, OR FENCING; BALL GAMES; TRAINING EQUIPMENT
    • A63B2102/00Application of clubs, bats, rackets or the like to the sporting activity ; particular sports involving the use of balls and clubs, bats, rackets, or the like
    • A63B2102/04Badminton
    • AHUMAN NECESSITIES
    • A63SPORTS; GAMES; AMUSEMENTS
    • A63BAPPARATUS FOR PHYSICAL TRAINING, GYMNASTICS, SWIMMING, CLIMBING, OR FENCING; BALL GAMES; TRAINING EQUIPMENT
    • A63B2209/00Characteristics of used materials

Definitions

  • This invention relates to artificial feathers for badminton shuttlecocks. Specifically, the present invention relates to a technique for improving a thin-film wing portion in an artificial feather. The present invention also relates to a shuttlecock using artificial feathers and a method for manufacturing artificial feathers.
  • shuttlecocks for badminton those using waterfowl feathers (natural shuttlecocks) and those using artificial feathers made of nylon resin (artificial shuttlecocks). is there.
  • a natural shuttlecock uses about 16 natural feathers such as geese and ducks, and the end of each feather shaft is planted on a hemispherical base (base) made of cork covered with leather. This is the structure.
  • wing currently used for the natural shuttlecock has the small specific gravity, and it is the characteristics that it is very lightweight. For example, the specific gravity is about 0.4 for the wing shaft and about 0.15 for the wing valve.
  • Natural feathers have high rigidity, and natural shuttlecocks provide unique flight performance and a comfortable feel at impact.
  • the feathers that are the raw material of the natural shuttlecock are collected from the above-mentioned natural waterfowl, and are not limited to the feathers of any part of the waterfowl, and there are predetermined parts suitable for the shuttlecock. Only a few feathers can be collected from shuttlecocks for shuttlecocks. That is, the production amount of the blades for the natural shuttlecock is limited. In recent years, due to the epidemic of bird flu, edible geese, the main source of feathers, have been disposed of in large quantities, and natural shuttlecocks will become more difficult to procure raw materials in the future. Expected to be expensive.
  • an artificial shuttlecock is well known that has resin blades that are integrally formed in an annular shape.
  • This artificial shuttlecock like a natural shuttlecock, moves independently one by one. Therefore, it is difficult to obtain the same flight performance as a natural shuttlecock. Therefore, as described in Patent Documents 1 to 3 below, artificial feathers simulating feathers have been proposed.
  • each part in the natural feather is associated with each part in the artificial feather, and the feather valve of the natural feather and the part corresponding to the feather shaft are referred to as a feather part and a feather shaft part, respectively.
  • the part corresponding to the part called the wing and the stalk that protrudes from the wing valve is used to avoid confusion with the wing (splash).
  • the wing and the wing shaft are integrally formed of an artificial material, and at least one of the wing and the wing shaft is made hollow to reduce the weight. ing.
  • the artificial feather described in Patent Document 2 has a wing portion made of a thin plate of fiber-dispersed resin sandwiched between two fiber-reinforced resin-like thin rods that become the wing shaft portion, and the wing shaft portion base portion has two fine wings. A foam is inserted between the bars.
  • a protruding portion that protrudes in the extending direction of the wing shaft portion is formed at one end of the wing portion, and the protruding portion is embedded in the wing shaft portion.
  • Shuttlecock artificial feathers must have various performances such as a hit feeling and flight characteristics similar to natural feathers.
  • the wings occupy most of the total surface area of one artificial feather, it is most important to approximate the properties of the wings to natural feathers.
  • the feathers of natural feathers used in natural shuttlecocks are a collection of relatively hard hairs (feathers) that grow one by one from the feather shaft. Due to this structure, natural feathers are thin. Although it is lightweight, it has impact resistance that absorbs impact when it is hit, and the feather valve has moderate rigidity (shape maintenance) that does not easily deform even when the wind is cut at high speed.
  • the material of the wing is mentioned to some extent, but there is no description or suggestion about the details, and it is doubtful whether the same characteristics as natural feathers can be obtained.
  • the artificial feathers described in each of the above patent documents have various problems, not limited to problems related to the material of the wings.
  • the artificial feather described in Patent Document 1 forms a hollow portion so as to cut through a thin wing portion or a thin wing shaft portion.
  • an extremely thin pin is inserted and removed on the mold in order to form the hollow portion. Therefore, it is difficult to mold with high accuracy, and there is a concern about deformation of the pin by inserting and removing the pin.
  • the strength in the surface direction of the wing part is lowered, and sufficient shape maintaining property cannot be obtained. Therefore, with an artificial shuttlecock using this artificial feather, it is difficult to obtain the flight performance and feel at impact of a natural shuttlecock.
  • the wing shaft is made hollow, even if the wing shaft material itself is rigid, the strength of the wing shaft itself is insufficient, and the wing shaft may be bent or bent by a strong hitting ball. .
  • the artificial feather described in Patent Document 2 has a structure in which the wing portion is sandwiched and bonded by two thin rods serving as the wing shaft portions, so that sufficient adhesive strength is provided between the thin rod and the wing portion. There is a possibility that the wing part and the wing shaft part may be decomposed when the ball is hit. Furthermore, since the wing shaft portion has a structure in which thin rods are bonded together, the strength at the bonding surface, that is, the side surface of the wing shaft portion is insufficient, and sufficient rigidity cannot be obtained. Since it cannot be manufactured by integral molding, productivity is low and there are doubts about the effect of low price.
  • the present invention has been made in view of various problems in the conventional artificial feather for shuttlecocks as described above, and its purpose is lightweight, particularly excellent in shape maintenance of the wing, and durability and production. Another object of the present invention is to provide an artificial feather for a shuttlecock excellent in performance, a shuttlecock using the artificial feather, and a method for manufacturing the artificial feather. Other purposes will be clarified in the following description.
  • the present invention was made in view of the above-described problems in artificial feathers for shuttlecocks, and the main invention is artificial feathers for shuttlecocks, A thin-film wing part corresponding to a feather valve, imitating natural feathers, and a rod-like wing shaft part corresponding to the wing shaft and extending continuously from the upper tip toward the lower end
  • the wing part is made of a thermoplastic resin having open cells therein, and is relatively low specific gravity and low elasticity with respect to the wing shaft part
  • the wing shaft portion is made of a thermoplastic resin, and a region that is fixed to the wing portion from the tip to the lower end of the wing portion serves as a wing support portion, and the wing shaft portion corresponds to the wing pattern of the natural feather.
  • a region protruding from the lower end of the support portion to the lower end of the wing portion is fixed to the wing portion at the wing support portion as a wing handle portion.
  • This is an artificial feather for a shuttlecock characterized by that
  • the artificial feather for a shuttlecock according to the present invention is lightweight and excellent in shape maintainability, and the shuttlecock using the artificial feather can be expected to have the same flight performance and feel at impact as a natural shuttle. In addition, it is possible to provide an inexpensive shuttlecock that does not depend on the production amount of the natural material and is excellent in productivity. Other effects of the present invention will be clarified in the following description.
  • FIG. 5 is a view showing a cross section of a wing shaft portion having a structure different from that of the wing shaft portion in the first to fourth artificial feathers.
  • wing which concerns on each said Example collectively is shown.
  • the present inventors first listed the flight performance and feel at impact similar to those of natural feathers as important characteristics required for the artificial feather used in the above-described artificial shuttlecock. And the material and structure of the wings that occupy most of the artificial feathers will greatly affect the performance of the artificial shuttlecock, and in addition to being lightweight, the wing parts are easy to cut even at high speeds. It was concluded that the most important condition is excellent shape retention and impact resistance without deformation.
  • the present invention has been created in view of these important conditions. And this invention may be equipped with the following characteristics other than the characteristic with which the Example corresponding to the said main invention is provided.
  • the thermoplastic resin constituting the wing part is any one of a polyamide elastomer, an ionomer resin, a polyester elastomer, a polyolefin elastomer, a polystyrene elastomer, and a vinyl chloride elastomer.
  • a thin-film reinforcing material is laminated on the front or back surface of the wing.
  • the reinforcing material is one of water-based polyurethane, water-based polyester, water-based polyolefin, nylon emulsion, and acrylic emulsion.
  • the wing part is impregnated with a reinforcing material.
  • the reinforcing material is one of water-based polyurethane, water-based polyester, water-based polyolefin, nylon emulsion, and acrylic emulsion.
  • a shuttlecock using artificial feathers having any of the above characteristics is also an embodiment of the present invention.
  • the present invention also extends to a method for manufacturing an artificial feather for a shuttlecock.
  • An example of the manufacturing method is a thermoplastic resin that imitates natural feathers and has open cells inside corresponding to the feather valves.
  • a shuttlecock comprising a thin-film wing portion made of a rod and a wing shaft portion made of a rod-shaped thermoplastic resin extending continuously from the upper end toward the lower end corresponding to the wing shaft.
  • a secondary molded product When molding the portion to be the wing portion, it is molded using a pellet-like resin in which a thermoplastic base resin constituting the wing portion and an organic compound dissolved by a predetermined solvent are mixed, and the secondary The method includes immersing a molded product in the solvent to dissolve the organic compound, thereby forming the portion to be the wing into an open cell body.
  • the secondary molded product may be changed to be molded by performing two-color molding while holding the primary molded product in the mold.
  • a method for manufacturing an artificial feather for a shuttlecock in which the wing shaft portion includes a core portion serving as a core and an outer shell portion extending in a cross-sectional shape covering the side surface of the core portion, is also within the scope of the present invention.
  • the embodiment corresponding to the invention of the manufacturing method is Molding a first molded product as a primary molded product by injection molding using a first mold, or a molded product that becomes the wing portion and the core portion, or a molded product that becomes the outer shell portion; , Using the second mold, the primary molded product is to be embedded, and the outer shell portion is insert-molded, or the wing portion and the core portion are simultaneously insert-molded.
  • the secondary molded product in which the core portion is fixed to the side surface of the outer shell portion and the portion that becomes the wing shaft portion is fixed to the wing portion;
  • a pellet-shaped resin in which a thermoplastic base resin that constitutes the wing portion and an organic compound that is dissolved by a predetermined solvent is mixed.
  • molding the secondary molded product in the solvent to dissolve the organic compound, thereby forming a part of the simultaneous molded product of the wing part and the core part into an open cell body. It is characterized by including.
  • the secondary molded product may be molded by performing two-color molding while holding the primary molded product in the mold.
  • FIG. 1 is a perspective view when the shuttlecock 1 is viewed from below with the base portion 2 as the bottom
  • FIG. 2 is a perspective view when viewed from above.
  • a plurality (for example, 16 pieces) of artificial feathers 10 simulating natural feathers are planted in an annular shape along the circumference of the flat upper surface of the hemispherical base portion 2 so that the diameter increases upward.
  • the skirt portion 4 is configured by being fixed to each other by a string-like member (for example, cotton thread) 3.
  • FIG. 3 is a diagram showing a basic structure of the artificial feather 10 according to the embodiment of the present invention.
  • the artificial feather 10 according to the embodiment of the present invention can be mass-produced, and all of the artificial feather 10 including the wing portion 12 is formed of a resin molded product so that it can flexibly cope with various shapes.
  • the basic structure is such that a rod-shaped wing shaft portion 20 is fixed to a wing portion 12 made of a thin-film resin by fusing, for example, by bonding or injection molding.
  • the shape of the wing portion 12 can be approximated to the shape of a feather valve, and excellent flight performance can be expected. Specifically, even if the schematic shape is a thin film, the thickness can be a delicate shape slightly different at each part.
  • the wing shaft part 20 extends downward from the upper end of the wing part 12. It will be.
  • the upper end 21 of the wing shaft portion 20 is defined as the “tip” and the lower end 22 is defined as the “end”, and the surface of the wing portion 12 or the wing shaft portion 20 facing the outside of the shuttlecock 1 is The surface facing inward of the shuttlecock 1 is referred to as “back surface” 14.
  • the direction perpendicular to the extending direction of the wing shaft portion 20 is defined as the left-right direction in the plane of the wing portion 12.
  • wing shaft portion 20 a region fixed to the wing portion 12 is a wing support portion 23, and a region protruding below the wing portion 12 is a wing handle portion 24. Therefore, in the artificial feather 10 in the shuttlecock 1 illustrated in FIGS. 1 and 2, the wing shaft portion 20 is fixed so as to protrude from the front surface 13 of the wing portion 12, and the front surface of the wing portion 12. On the surface 13 side, the region of the wing portion 12 is divided into left and right with the wing shaft portion 20 as a boundary.
  • the position of the tip 21 of the wing shaft part 20 substantially coincides with the position of the upper end of the wing part 12, but the tip 21 of the wing shaft part 20 is at the upper end of the wing part 12.
  • the wing shaft portion 20 may protrude from the back surface 14 of the wing portion 12. Similar to the structure of the feathers in natural feathers, the structure may be such that the wing part 12 is divided into two parts as individual parts with the wing shaft part 20 as a boundary. In any case, one surface of the thin-film wing portion 12 is referred to as a front surface 13, and the other surface is referred to as a back surface 14, and the wing shaft portion 20 is formed to cut the wing portion 12 vertically. .
  • blade part 12 or the wing shaft part 20 is given concretely.
  • the material forming the shuttlecock artificial feather has a low specific gravity, a shape maintaining property that can quickly return to the original shape from the deformed state at the time of hitting, and an adhesive property with other materials. Performance is required. Of course, a material that can be expected to have high productivity is also required.
  • the artificial feather according to the first embodiment of the present invention is characterized by a microscopic structure inside the wing part while adopting the basic structure described above in order to ensure productivity and freedom of shape. To achieve weight reduction and shape maintenance.
  • the artificial feather 10 according to the first embodiment will be described with reference to FIG.
  • both the wing part 12 and the wing shaft part 20 are made of thermoplastic resin, thereby improving productivity, freedom of shape, and fixing strength of both. Increased to ensure durability.
  • the wing part 12 is configured by a thermoplastic resin in which countless fine bubbles are formed innumerably to reduce the weight, and further, the impact at the time of hitting can be reliably absorbed.
  • the bubble is an open cell.
  • the internal structure of the wing part 12 is not a closed cell body, but an open cell body is used.
  • the wing part 12 is formed of closed cell bodies in which adjacent bubbles are isolated from each other, the wing part 12 locally This is because the applied impact is absorbed by compressing only the bubbles in the local area, and the impact when the wing 12 is struck may not be absorbed reliably.
  • the open cell body adjacent bubbles are connected to each other, and when the local bubbles are compressed at the time of hitting, the air in the bubbles escapes to the adjacent bubbles, so that the bubbles are rapidly compressed. Strong shock can be absorbed reliably.
  • an open cell body made of a thermoplastic resin is used for the wing portion 12.
  • a resin such as a polyamide elastomer or a polyester elastomer (hereinafter, a lightweight flexible resin) having a small specific gravity and high flexibility can be considered.
  • a material which comprises the wing part 20 compared with lightweight flexible resin, such as polyamide (nylon), the thing which reinforced this (glass fiber reinforced polyamide), or PBT, ABS, PC, for example.
  • a hard resin having high rigidity hereinafter, hard resin
  • FIG. 4 shows a manufacturing procedure of the artificial feather 10 according to the first embodiment of the present invention.
  • a pellet made of a polyamide elastomer which is a resin (base resin) constituting the wing part 12, and an organic compound dissolved by a predetermined solvent is prepared (s1).
  • the polyamide elastomer is not dissolved by this predetermined solvent.
  • a bubble generator As an organic compound (hereinafter referred to as a bubble generator) that dissolves in a predetermined solvent, for example, water-soluble, that is, a polyhydric alcohol (such as a sugar alcohol) using water as a solvent can be used. Then, the polyamide elastomer, the bubble generator, and glycerin are weighed so as to be a predetermined part by weight, and these are kneaded. Then, the kneaded product is cut to produce pellets.
  • a predetermined solvent for example, water-soluble, that is, a polyhydric alcohol (such as a sugar alcohol) using water as a solvent
  • a polyamide elastomer, the bubble generator, and glycerin are weighed so as to be a predetermined part by weight, and these are kneaded. Then, the kneaded product is cut to produce pellets.
  • the wing 12 is made of a “muku” material having a dense internal structure in which a polyamide elastomer and a bubble generator are intricately mixed. Therefore, an extraction process for immersing the secondary molded product in a predetermined solvent is performed to dissolve only the bubble-generating body (s4). Thereby, open bubbles are formed inside the wing part 12. Finally, the artificial feather 10 is completed by drying the secondary molded product after the extraction process (s5).
  • the wing shaft portion 20 is first molded as a primary molded product, and in the molding step (s3) of the secondary molded product, the wing shaft portion 20 is molded. You may make it fix the wing
  • the wing part 12 made of an open cell body may be first completed, and the wing shaft part 20 and the individually molded wing shaft part 20 may be fixed by a method such as welding or adhesion.
  • Table 1 shows the specific gravity before and after the extraction process in each sample.
  • FIG. 5 shows a micrograph of the sample A3. This photograph corresponds to an enlarged view of the cross section taken along the line xx in FIG. As shown in this photograph, inside the wing part 12, large bubbles are arranged in a honeycomb shape, and adjacent bubbles communicate with each other through fine holes. That is, it was confirmed that the inside of the wing part 12 had an open cell structure.
  • the manufacturing conditions of the wing part 12, that is, the type of the base resin constituting the wing part 12, the type of the bubble generating body, and the ratio thereof may be appropriately set in consideration of the specific gravity and the elastic modulus. .
  • the artificial feather 10 according to the first embodiment described above is composed of the wing part 12 made of a continuous foam of a lightweight soft material and the wing shaft part 20 made of a hard material.
  • the wing shaft part 20 that originally requires rigidity and rigidity is made of the same lightweight soft material as the wing part 12, the rigidity of the artificial feather 10 itself is lowered and it becomes difficult to maintain the shape. . Therefore, in the following, an example in which further weight reduction can be expected while maintaining rigidity by devising the structure of the wing shaft portion 20 will be described.
  • the artificial feather according to the second embodiment of the present invention is characterized in that the wing shaft portion 20 adopts a structure that can achieve both weight reduction and high rigidity.
  • the structure of the wing shaft 20 in the second embodiment will be described below.
  • FIG. 6 shows the structure of the wing shaft portion 20 in the artificial feather of the second embodiment of the present invention.
  • FIGS. 6A to 6C are a perspective view when the back surface 26 of the wing shaft portion 20 is viewed from the end 22 side, a front view on the end 22 side, and a front view on the tip 21 side, respectively.
  • the wing shaft portion 20 generally has a composite structure including an outer shell portion 40 disposed on the surface layer and a core portion 30 disposed within the outer shell portion 40.
  • the core portion 30 and the outer shell portion 40 each have a continuous and integral structure extending from the distal end 21 to the distal end 22, and both (30, 40) are fixed to each other. As shown in FIG.
  • the wing shaft portion 20 shown here includes a core portion 30 having a substantially rectangular cross section, and an outer shell portion 40 having a substantially U-shaped cross section that opens to the back surface 26. It consists of and. That is, the cross-sectional shape of the outer shell portion 40 is a shape that covers the left and right side surfaces 31 and the front surface 32 of the core portion 30, and the left and right side surfaces 27 and the front surface 25 of the wing shaft portion 20 are the outer shell portion 40. The back surface 33 of the core portion 30 is exposed on the back surface 26 of the wing shaft portion 20.
  • the core part 30 is made of the light and soft material described above, and is a material having a small specific gravity and a relatively low elastic modulus (soft) relative to the outer shell part 40.
  • the outer shell portion 40 has a cross-sectional shape covering the surface of the core portion 30, and is made of a hard material (hard material) having a relatively large specific gravity with respect to the core portion 30.
  • the core portion 30 and the outer shell portion 40 are fixed and integrated with each other by two-color molding or the like.
  • blade support part 23 and the wing pattern part 24 are formed so that it may become one continuous bar shape. In the figure, the core part 30 and the outer shell part 40 are shown by different hatching.
  • the tip 21 is covered with the outer shell 40, but the core 30 is exposed at the tip 21, and the outer shell 40 extends over the entire length from the tip 21 to the end 22.
  • a structure having a substantially U-shaped cross section may be used.
  • the core portion 30 for example, the same thermoplastic resin as that used for the wing portion 12 such as polyamide elastomer or polyester elastomer, and these resins are used.
  • An open cell can be used.
  • the same resin as that used for the wing shaft portion 20 of the artificial feather 10 of the first embodiment that is, polyamide (nylon) or the one reinforced with glass fiber (glass fiber) Reinforced polyamide) or various resins such as PBT, ABS, and PC can be used.
  • the wing shaft part 20 having the structure shown in FIG. 6 was prepared as a sample using various resins.
  • the size was the size when actually used for the shuttlecock 1.
  • An insert molding method or a two-color molding method can be employed as a method for producing the wing shaft portion 20. That is, the core portion 30 is injection-molded using a lightweight soft material, and the outer shell portion 40 made of a hard material is formed by insert molding with the molded product as an embedding object, or the molded product to be the core portion 30 is molded as a mold
  • the outer shell portion 40 may be molded by two-color molding without taking it out of the container.
  • the core part 30, the outer shell part 40, and the whole weight in the produced wing shaft part 20 were measured, and rigidity was evaluated.
  • the rigidity is evaluated with a load of 0.3 N vertically downward in a state where the end portion 22 is fixed while the wing shaft portion 20 is kept horizontal so that the back surface 26 faces the ground. This was done by concentrating F on the tip 21. Then, the displacement amount ⁇ h from the horizontal state at the tip 21 when in the loaded state was used as an index value of rigidity.
  • Table 2 below shows the resin used for the core portion 30 and the outer shell portion 40, the weight, specific gravity, and elastic modulus of each portion, and the total weight and stiffness index values of the entire wing shaft portion 20.
  • samples B4 and B5 are samples (invention products) using a lightweight soft material for the core 30 and a hard material for the outer shell portion 40
  • samples B1 to B3 are comparative examples for the invention products.
  • the core 30 and the outer shell 40 are molded from the same resin.
  • Resins a and d are both polyamide elastomers and have the same resin composition but different physical structures.
  • the resin “a” is a dense material having a dense inside
  • “d” is a material made of bubbles such as open cells and closed cells.
  • a material made of open cells is used.
  • the resin constituting the core portion 30 may be foamed using an organic foaming agent such as a hydrocarbon gas in the same manner as known foamed polystyrene or urethane sponge.
  • the resins b and c are hard materials and polyamide materials for polyamide elastomer.
  • both are resins mainly composed of polyamide 12 (nylon 12), but resin b is polyamide 12 reinforced with glass, and resin c is polyamide 12 that is not reinforced with glass.
  • the core part 30 and the outer shell part 40 each have a relatively low specific gravity (high specific gravity) and a soft (hard) appropriate resin.
  • the wing shaft part 20 was light and highly rigid.
  • the core part 30 and the outer shell part 40 are both made of a relatively soft resin a, the displacement amount ⁇ h that is an index value of rigidity is large, and the rigidity is insufficient.
  • the displacement amount ⁇ h is about 60% of the sample B1.
  • Sample B2 has core 30 and outer shell 40 made of the hardest resin b, and has a displacement amount ⁇ h of 20% or less of sample B1, and has obtained a rigidity more than 5 times that of sample B1. ing. However, since the specific gravity of the harder resin is relatively higher, the total weight of the most rigid sample B2 is increased by nearly 30% with respect to the sample B1.
  • the displacement amount ⁇ h is only 30% of the sample 1 with a weight increase of 15% or less with respect to the sample B1. %. That is, the rigidity which is three times higher than that of the sample B1 was obtained. About 60% of rigidity is obtained even for the hardest sample B2, and it can be said that it has sufficient rigidity. And about sample B5, after achieving weight reduction rather than sample B1, rigidity was equivalent to sample B4, and almost ideal performance was able to be obtained as the wing shaft part 20.
  • the artificial feather including the wing shaft portion 20 having a structure in which the periphery of the core portion 30 made of a lightweight soft material having a low specific gravity is covered with a hard shell portion 40 made of a hard material is a contradictory characteristic of light weight and high rigidity. Can be achieved at a high level. Further, at least the left and right side surfaces 27 of the wing shaft portion 20 are covered with the hard outer shell portion 40, and more than half of the surface area of the soft core portion 30 is in contact with the outer shell portion 40. Therefore, high rigidity can be expressed in two directions, the front and back direction and the left and right direction.
  • the soft core portion 30 is filled inside the hard outer shell portion 40, it is possible to absorb an impact when hitting the surface of the hard wing shaft portion 20 at the time of hitting. In other words, the repulsive force is increased, so that it is possible to obtain a feel at impact similar to natural feathers in which the feel of hitting from the comfort and the deflection upon hitting quickly return to its original shape.
  • the cross-sectional area of the wing shaft part 20 can be further increased while maintaining the weight reduction. Increasing the cross-sectional area can further improve the rigidity and increase the fixing area between the wing portion 12 and the wing support portion 23. Thereby, the joint strength between the wing shaft portion 20 and the wing portion 12 can be further strengthened, and damage during hitting can be prevented. Furthermore, the “thick” wing shaft portion 20 can give the player a sense of security that it is visually “not easily broken”. That is, it is also possible to expect a psychological effect that a comfortable shot feeling due to low elasticity in the resin of the core 30 can be enhanced to obtain a shot feeling very close to that of a natural shuttlecock.
  • the wing shaft part 20 composed of the core part 30 and the outer shell part 40 is fixed to the separately produced wing part 12 by a method such as welding or adhesion. What should be done.
  • the core 30 is molded in the molding process of the secondary molded product, and finally the secondary molded product composed of the wings 12 and the core 30 is further finally formed.
  • the outer shell 40 is injection-molded so that the core 30 is covered, and the molded product (tertiary molded product) in FIG. What is necessary is just to give an extraction process and a drying process.
  • the wing portion 12 is further injection-molded to the wing shaft portion 20 by insert molding or two-color molding.
  • the shaft portion 20 may be fixed to the wing portion 12.
  • the artificial feather according to the third embodiment of the present invention achieves the rigidity and weight reduction of the entire artificial feather by making the structure of the feather shaft section 20 the same as the feather shaft section 20 in the second embodiment,
  • the device has been devised to obtain a flight performance close to that of a natural shuttlecock by approximating its shape to natural feathers.
  • a natural feather is a group of feather branches, which are individual hairs that grow from the wing shaft, and the portion corresponding to the wing portion 12 is an inner and outer feather valve (inner valve, The outer valve is divided. Therefore, a shuttlecock using artificial feathers that approximates the natural feather configuration as much as possible should approximate the flight performance of the natural shuttlecock. Therefore, the second embodiment of the present invention is an artificial feather that is most similar to the structure of a natural feather.
  • FIGS. 8A to 8D show a plan view on the front side, a plan view on the back side, a side view, and a front view on the tip 21 side of the artificial feather 10a according to the second embodiment.
  • the artificial feather 10a in the third embodiment is an artificial feather 10a having a structure more similar to a natural feather with the wings 12 fixed to the side of the outer shell 40. ing. That is, in the wing support portion 23, the back surface 26 of the wing shaft portion 20 is exposed to the back surface 14 of the wing portion 12, and the wing portion 12 is divided into left and right portions with the wing shaft portion 20 as a boundary.
  • the core part 30 of the wing shaft part 20 is made of the same kind of lightweight soft material as that of the wing part 12, and the internal structure is also a continuous foam like the wing part 12. As a result, the weight of the entire artificial feather 10b has been further reduced.
  • the outer shell portion is fixed to a molded product having a total of three molding portions of the core portion 30 and the wing portion 12 divided into two with the core portion 30 as a boundary.
  • the core part 30 and the wing part 12 divided into two parts for example, if molding is performed by providing an injection molding gate at each of the three molding parts, each part is independent and simultaneously molded. can do.
  • substantially each of the three molding parts is individually injection-molded, which increases the time and cost for manufacturing. Further, in the molded product, a trace of the gate remains depending on each injection molding site, and it becomes difficult to approximate the natural feather, particularly the surface shape. Therefore, a method for accurately manufacturing the artificial feather 10a of the third embodiment without increasing time and cost will be described below. Here, an example of manufacturing by insert molding is shown.
  • FIG. 9 is a schematic view of a mold (51a, 52a) used in the method for manufacturing the artificial feather 10a according to the third embodiment.
  • Each cross section aa of the artificial feather 10a shown in FIG. The cross-sectional shapes of the two molds (the first mold 51a and the second mold 52a) corresponding to the sections bb, cc, and dd are shown in FIGS. 9B1 to 9B4, respectively. ), And (C1) to (C4).
  • the mold shape of the first mold 51a is a shape for molding the wing part 12 and the core part 30 at the same time
  • the second mold 52a is molded by the first mold.
  • a mold shape is formed for molding the outer shell portion 40 that covers the front surface 32 and the side surface 31 of the core portion 30 while accommodating the molded product.
  • FIGS. 10A to 10D show a manufacturing procedure of the artificial feather 10a according to the third embodiment, and the bb cross section of the artificial feather 10a sequentially formed by two molds (51a, 52a). The shape of (refer FIG. 7) is shown according to the order of a manufacturing process.
  • FIG. 11A is a plan view of a primary molded product 50b molded by the first mold 51b
  • FIG. 11B is an enlarged view of the circle 100 in FIG. 11A. .
  • the core portion 30 and the wing portion 12 are simultaneously molded, and then the outer shell portion 40 is molded on the surface layer of the core portion 30 by insert molding. Then, first, the wing portion 12 and the core portion 30 are integrally formed using the first mold 51a (FIGS. 10A and 10B). At this time, the integrally molded product (primary molded product) 50a is molded using a pellet including the resin that forms the wing portion 12 and the core portion 30 and the above-described bubble generating body. As shown in FIG. 11A, the primary molded product 50a has a shape in which the wing 12 and the core 30 are divided by a groove 34 extending in the vertical direction. Further, as shown in FIG.
  • the mold 51 a for molding the wing portion 12 and the core portion 30 is connected to the wing portion 12 and the core portion 30 only at the lower end portion of the wing support portion 23.
  • the lower end of the wing support portion 23 is provided with a temporary fixing portion 35 that connects the core portion 30 and the wing portion 12. Yes.
  • the groove 34 continues from the lower end of the wing support part 23 to the tip of the wing part 12, and the groove 34 is also filled with the resin constituting the outer shell part 40.
  • the core portion 30 and the wing portion 12 made of a light and soft material are integrally fixed to the outer shell portion 40 made of a hard material.
  • the resulting molded product (secondary molded product) 53a is completed.
  • the above manufacturing method may be two-color molding instead of insert molding.
  • the secondary molded product 53a taken out from the second mold 52a is immersed in a predetermined solvent, and the core part 30 and the wing part What is necessary is just to make the resin which comprises the part 12 into an open-cell body.
  • the core part 30 of the wing shaft part 20 in addition to the wing part 12, the core part 30 of the wing shaft part 20 also becomes an open cell body, and the weight of the entire artificial feather 10a can be further reduced. .
  • the wing portion 12 but also the wing shaft portion 20 can be expected to obtain a shot feeling very close to natural feathers.
  • the surface of the core part 30 is covered with the outer shell part 40 using a hard material, it has sufficient rigidity and the shape of the artificial feather 10a quickly returns to the current state upon hitting. Therefore, in the artificial shuttlecock using the artificial feather 10a, the flight performance very close to that of the natural shuttlecock is obtained due to the synergistic effect with the shape of the feather that is very similar to the natural feather divided by the wing shaft portion 20. Can be expected.
  • the wing part 12 is divided into right and left with the wing shaft part 20 as a boundary. And the method for manufacturing the artificial feather 10a of this structure with high precision was shown previously. However, in the above-described manufacturing method, the temporary fixing portion 35 does not surely elute, and a part or all of the temporary fixing portion 35 made of a lightweight soft material may remain in a portion that should originally become the outer shell portion 40. There is not a little sex.
  • FIG. 12 illustrates the artificial feather 10b with the temporary fixing portion 35 remaining.
  • FIG. 12A is a plan view of the entire artificial feather 10b as viewed from the back side
  • FIG. 12B is an enlarged view of the circle 101 in FIG. (C) is a cross-sectional view taken along arrow ee in (B).
  • the core portion 30 is not covered with the outer shell portion 40, so that the strength is insufficient, and this portion is obtained when the shuttlecock is struck.
  • the wing shaft 20 may be broken.
  • the artificial feather 10b in which a part of the outer shell portion 40 is missing is naturally treated as a defective product.
  • FIG. 13 is a schematic diagram showing a method for manufacturing the artificial feather 10c according to a modification of the third embodiment.
  • FIG. 13A is a view of the artificial feather 10c in a state where a part 37 of the temporary fixing portion 35 remains, as viewed from the back side
  • FIG. 13B is an enlarged view inside the circle 102 in FIG. is there.
  • (C) is a cross-sectional view of a mold 51c for molding a primary molded product of the artificial feather 10c of the modified example, and is a ff cross section of the artificial feather 10c shown in FIGS. 13 (A) and 13 (B). It corresponds to.
  • (D) is a cross-sectional view taken along the line gg in (C).
  • the temporary fixing portion 35 has a mold shape that protrudes downward from the lower surface of the wing portion 12. That is, primary molding is performed so that the bottom surface of the groove 34 does not protrude toward the front surface (12, 25) side in the formation portion of the temporary fixing portion 35, and the temporary fixing portion 35 protrudes toward the back side of the bottom surface of the groove 34.
  • the product is being molded. Therefore, as shown in (D), for example, even if the temporary fixing portion 35 is not completely eluted and a part (uneluting portion) 37 remains, the outer shell portion 40 has the original core portion 30. Because it completely covers the sides, there is no shortage of strength.
  • the non-eluting portion 37 of the temporary fixing portion 35 may be left as it is because there is no problem in strength unless the flight performance of the artificial feather 10c is extremely deteriorated. If high flight performance is required or it is determined that the aesthetic appearance of the product is impaired, the protruding non-eluting portion 37 may be scraped off or separated in the subsequent manufacturing process.
  • the artificial feather 10a according to the third embodiment had a structure more similar to natural feathers. And in order to shape
  • FIG. 14 shows the basic structure of an artificial feather 10d according to the fourth embodiment of the present invention.
  • FIGS. 14A to 14D respectively show a plan view on the front surface side, a plan view on the back surface side, a side view, and a front view from the tip 21 side.
  • the core portion 30 and the outer shell portion 40 of the wing shaft portion 20 are indicated by different hatchings.
  • the artificial feather 10d according to the fourth embodiment has a structure in which the wing shaft part 20 having the structure shown in FIG. 6 is fixed to the front surface 13 of one thin-film wing part 12.
  • the external shape is substantially the same as the artificial feather 10 in the first and second embodiments as shown in FIG.
  • the front surface 25 and the side surface 27 of the wing shaft portion 20 become the surface of the outer shell portion 40, and in the wing support portion 23, the back surface 26 of the wing shaft portion 20 and the front surface 13 of the wing portion contact each other. Both are fixed in the state.
  • the wing part 12 is required to be lightweight and shock-absorbing, so it is desirable to mold it simultaneously with the core part 30.
  • the outer shell portion 40 has a structure that covers the core portion 30 other than the back surface 26 of the wing shaft portion 20, and the back surface 33 of the core portion 30 is exposed. Therefore, in the wing support portion 23, the wing portion 12 and the core portion 30 are simultaneously molded so that the core portion 30 protrudes from the front surface 13 of the wing portion 12.
  • wing 10d which concerns on a 4th Example by insert molding is illustrated.
  • FIG. 15 is a schematic view of a mold (51d, 52d) used in the method for manufacturing the artificial feather 10d according to the fourth embodiment.
  • Each cross section hh of the artificial feather 10d shown in FIG. The cross-sectional shapes of the two molds (first mold 51d and second mold 52d) corresponding to the sections ii and jj are respectively shown in FIGS. C1) to (C3).
  • the mold shape of the first mold 51d is a shape for molding the wing part 12 and the core part 30 at the same time
  • the second mold 52d is molded by the first mold.
  • a mold shape is formed for molding the outer shell portion 40 that covers the front surface 32 and the side surface 31 of the core portion 30 while accommodating the molded product as an embedding target.
  • FIGS. 16A to 16D are diagrams showing a manufacturing procedure of the artificial feather 10d according to the third embodiment, and the above-mentioned i ⁇ of the artificial feather 10d sequentially formed by the molds (51d, 52d).
  • the shape of i cross section (refer FIG. 15) is shown according to the order of a manufacturing process. In the manufacturing method shown here, first, the core portion 30 and the wing portion 12 are simultaneously molded, and then the outer shell portion 40 is molded on the surface layer of the core portion 30 by insert molding.
  • the first mold 51d is used to integrally form the wing 12 and the core 30 to obtain a primary molded product (A) (B).
  • the primary molded product is molded using the pellet containing the above-described bubble generating body.
  • the resin to be the outer shell portion 40 is injected into the mold 52d.
  • the second mold 52d covers the side surface 31 and the front surface 32 of the core 30 while housing the primary molded product 50d, and in the state where the primary molded product 50d is mounted, the U-shaped cross section is formed.
  • the mold shape has.
  • the outer shell portion 40 is formed on the front surface 32 and the side surface 31 of the core portion 30 by injection molding using the second mold 52d, and the core portion 30 and the wing portion 12 made of a lightweight soft material are hard.
  • the secondary molded product 53d is completed by being integrally fixed to the outer shell portion 40 made of a material (D). And in order to make the wing
  • the wing 12 and the core 30 are primary molded products.
  • the outer shell 40 is first molded as a primary molded product, and the wings 12 and the core 30 are formed. You may make it shape
  • the artificial feather 10d of the fourth embodiment has a simple structure compared to the artificial feather 10a of the third embodiment, and the temporary fixing portion 35 is surely eluted even under molding conditions. Since it is not necessary, it is not necessary to define the molding conditions as strictly as the artificial feather 10a of the third embodiment, and a high yield can be expected. Therefore, the fourth embodiment may be more advantageous than the third embodiment in terms of manufacturing cost.
  • the artificial feather 10a of the third embodiment has no resin constituting the wing portion 12 in the region of the wing support portion 23 when compared with the artificial feather 10d of the fourth embodiment.
  • the amount of resin that is fixed to the back surface 26 of the support portion 23 can be saved.
  • the amount of resin that can be saved by one artificial feather 10a is very small, and the cost reduction of one artificial feather 10a may be slight.
  • the shuttlecock 1 has a configuration in which about 16 blades are attached to the base portion 2, so even if the cost of one artificial feather 10 a is slightly reduced, The entire shuttlecock 1 can be expected to reduce costs to some extent.
  • the third and fourth artificial feathers (10a, 10d) is to be used is appropriately determined in consideration of the flight performance required for the product, the cost for raw materials, the cost for manufacturing, and the like. do it.
  • FIGS. 17A to 17D show a plan view of the artificial feather 10e on the front surface 13 side, a plan view of the back surface 14 side, a side view, and a front view of the tip 21 side.
  • the artificial feather 10 e has an external shape in which a rod-shaped wing shaft part 20 e is laminated on the front surface 13 of the wing part 12.
  • the wing portion 24 may be formed only of the resin constituting the outer shell portion 40 as in the artificial feather 10f shown in FIGS. 18A to 18D are a plan view on the front surface 13 side, a plan view on the back surface 14 side, and a side view of the artificial feather 10f, respectively, and FIGS. 19A and 19B.
  • FIG. 18 is a sectional view taken along the line kk and a sectional view taken along the line LL in FIG. 18A, respectively.
  • the wing handle portion 24 does not have the core portion 30 and is integrally formed with the resin constituting the outer shell portion 40.
  • the handle 24 is formed.
  • the cross-sectional structure of the wing shaft portion 20 is not limited to the example shown in FIG. 6.
  • the cross-sectional shape of the outer shell portion 40 is changed to the core portion 30 like the wing shaft portion 20 g shown in FIG. It is good also as "H" which consists of the edge
  • the front surface 32 and the back surface 33 of the core portion 30 are exposed on the front surface 25 and the back surface 26, respectively, but the wing shaft portion 20c is rotated by 90 ° around the axis.
  • the cross-sectional shape of the outer shell portion 40 may be an “I” type.
  • the outer shell portion 40 has a hollow thin tubular shape, and the hollow portion is filled with the core portion 30, that is, the left and right side surfaces 31 of the core portion 30 Further, a cross-sectional shape of a “mouth shape” that covers all of the surface 32 and the back surface 33 with the outer shell portion 40, that is, a hollow rectangular tube shape may be employed.
  • the wing part 12 and the wing shaft part (20g, 20h) may be arranged on the side surface 27 of the wing shaft part (20g, 20h) as in the first example, or the second example. As described above, the back surface 26 of the wing shaft portion (20g, 20h) and the front surface 13 of the wing portion 12 may be fixed in contact with each other.
  • the cross-sectional shape of the core 30 is not limited to a rectangle.
  • the cross-sectional shape may be a circle (C), a semicircle (D), or a triangle (E) like the wing shafts (20i to 20k) shown in FIGS. .
  • the cross section is a circle, there is no clear distinction between the side surface 31, the front surface 32, and the back surface 33 on the surface of the core portion 30, and the entire circumference is the side surface 31.
  • the cross section is a semicircle (D) or a triangle (E)
  • the side 31 is substantially the portion other than the back surface 33 of the core portion 30.
  • the artificial feather according to the embodiment of the present invention has a wing shaft portion (20, 20g to 20k) having a relatively low specific gravity and a side surface of the core portion 30 made of a soft material. It is characterized in that it has a structure covered with the portion 40.
  • FIG. 21 shows a plan view of a mold 51c corresponding to the multi-sheet molding.
  • a mold 53 corresponding to a large number of artificial feathers (10a, 10d) is arranged in a radial pattern, and a resin injection port 54 is provided at the center of the mold, so that a plurality of primary molded products or secondary molded products are provided. Molded products can be molded together.
  • the material of the wing is not limited to the polyamide elastomer described above, and any thermoplastic resin having open cells inside can be expected to have the same performance as the polyamide elastomer.
  • any thermoplastic resin having open cells inside can be expected to have the same performance as the polyamide elastomer.
  • ionomer resins polyester elastomers, polyolefin elastomers Polystyrene elastomers, vinyl chloride elastomers, etc. may be employed as the wing material.
  • the wing portion 12 is required to have sufficient strength to withstand heavy hitting at the time of hitting the ball as well as the wing portion 12.
  • a thin-film reinforcing material may be laminated on the front surface 13 or the back surface 14 by a method such as adhesion or welding.
  • the reinforcing material various materials are conceivable, but it is desirable that the force for cutting (cutting strength) and the elongation rate (cutting elongation) of the material until cutting are larger.
  • Table 3 shows the cutting strength and cutting elongation when various reinforcing materials are laminated on the wing portion 12.
  • Table 3 shows various resins as reinforcing materials. It is assumed that the concentration of each resin with respect to the solvent is adjusted so that the weight increase due to the lamination of the reinforcing material on the initial wing portion 12 is 0.005 g. And as shown in Table 3, it turned out that aqueous polyurethane is excellent in cutting strength (N) and cutting elongation (%). In addition, since the water-based polyurethane does not use an organic solvent, it can be expected to reduce the environmental load when manufacturing the artificial feathers (10, 10a to 10d).
  • the wing part 12 may be impregnated with the reinforcing material.
  • Table 4 shows the cutting strength and the cutting elongation when the wing 12 is impregnated with aqueous polyurethane.
  • the cutting strength and cutting elongation equivalent to those obtained when laminating aqueous polyurethane on the wing part 12 are obtained.
  • the reinforcing material is not limited to water-based polyurethane, but water-based polyester, water-based polyolefin, nylon emulsion, and acrylic emulsion can also be applied.
  • the present invention can be applied to a badminton shuttlecock.

Landscapes

  • Engineering & Computer Science (AREA)
  • Health & Medical Sciences (AREA)
  • General Health & Medical Sciences (AREA)
  • Physical Education & Sports Medicine (AREA)
  • Manufacturing & Machinery (AREA)
  • Mechanical Engineering (AREA)
  • Textile Engineering (AREA)
  • Toys (AREA)

Abstract

 シャトルコック用人工羽根であって、天然羽毛を模して、羽弁に対応する薄膜状の羽部と、羽軸に対応して、上方の先端から下方の末端に向かって一体的に連続して延長する棒状の羽軸部とを備え、前記羽部は、連続気泡を内部に有する熱可塑性樹脂からなり、前記羽軸部に対して、相対的に低比重で低弾性であり、前記羽軸部は、熱可塑性樹脂からなり、前記先端から前記羽部の下端に亘って前記羽部と固着する領域を羽支持部とするとともに、前記天然羽毛の羽柄に対応して前記羽支持部の下端から前記末端に亘って前記羽部の下方に突出する領域を羽柄部として、前記羽支持部にて前記羽部に固着されている、ことを特徴とするシャトルコック用人工羽根である。

Description

シャトルコック用人工羽根、シャトルコック、およびシャトルコック用人工羽根の製造方法
 この発明は、バドミントンのシャトルコック用人工羽根に関する。具体的には、人工羽根における薄膜状の羽部の改良技術に関する。また、人工羽根を用いたシャトルコック、および人工羽根の製造方法にも関する。
 バドミントン用シャトルコックには、羽根(はね)に水鳥の羽毛を用いたもの(天然シャトルコック)と、ナイロン樹脂などにより人工的に製造された人工羽根を用いたもの(人工シャトルコック)とがある。
 周知のごとく、天然シャトルコックは、ガチョウやアヒルなどの天然羽毛を16本程度使用し、各羽毛の羽軸の末端を、皮で覆ったコルクなどからなる半球状の台(ベース部)に植設した構造である。そして、天然シャトルコックに使用されている羽根は、比重が小さく、極めて軽量であることが特徴である。例えば、比重は、羽軸の部分が0.4程度で、羽弁の部分が0.15程度である。また、天然羽毛は、剛性が高く、天然シャトルコックは、独特の飛行性能と心地よい打球感が得られる。
 しかしながら、天然シャトルコックの原材料となる羽毛は、上記の天然の水鳥から採取され、しかも、水鳥のどの部位の羽毛でもよい、というわけではなく、シャトルコック用に適した所定の部位があり、1羽の水鳥からシャトルコック用として採取できる羽毛は僅かである。すなわち、天然シャトルコック用の羽根の生産量には限りがある。また、近年では、鳥インフルエンザの流行により、羽毛の主要な調達源であった食用ガチョウが大量に処分される、という事態も発生し、天然シャトルコックは、今後、さらに、原料調達が難しく、より高価になることが予想される。
 一方、人工シャトルコックとして、環状に一体成形された樹脂製の羽根を備えたものがよく知られているが、この人工シャトルコックは、天然シャトルコックのように羽根が1本ずつ独立して動かないため、天然シャトルコックと同様の飛行性能を得ることが難しい。そこで、以下の特許文献1~3に記載されているように、羽毛を模した人工羽根が提案されている。
 ここで、鳥類学に基づいて、天然羽毛における各部位を人工羽根における各部位に対応付けし、天然羽毛の羽弁、および羽軸に相当する部位を、それぞれ羽部、および羽軸部と称することとし、羽軸の一部として羽弁から突出する羽根(うこん)や羽柄(うへい)と呼ばれる部位に相当する部位については、羽根(はね)との混同を避けるため羽柄部と称することとすると、特許文献1に記載の人工羽根は、羽部と羽軸部とが人工素材で一体成形され、羽部と羽軸部の少なくも一方を中空にすることで軽量化を図っている。また、特許文献2に記載の人工羽根は、繊維分散樹脂の薄板からなる羽部を羽軸部となる繊維強化樹脂性の2本の細棒で挟持し且つ羽軸部基部は2本の細棒の間に発泡体が間挿された構成となっている。特許文献3に記載の人工羽根では、羽部の一端に羽軸部の延長方向に突出する突出部が形成され、その突出部が羽軸部に埋設されている。
特開平8-98908号公報 特開昭59-69086号公報 特開2008-206970号公報
 シャトルコック用人工羽根は、天然羽毛に近似した打球感や飛行特性などの種々の性能を備えている必要がある。とくに、羽部は、1枚の人工羽根の総表面積のほとんどを占めるので、羽部の性質を天然羽毛に近似させることが最重要課題となる。
 具体的には、天然シャトルコックに使用される天然羽毛の羽弁は、羽軸から1本ずつ生えた比較的硬い毛(羽枝)の集合体であり、この構造により、天然羽毛は、薄く、軽量でありながら、打球に際しては衝撃を吸収する耐衝撃性があり、羽弁においては、高速で風を切っても容易に変形しない適度な剛性(形状維持性)を有している。
 したがって、人工羽根の羽部に上述した特性を発現させるためには、素材はもちろん、微視的な構造など、多種多様な条件を多角的に検討する必要がある。しかし、これらの条件を全て満足させることが極めて難しく、例えば、軽薄化と耐衝撃性とは、両立させることが難しい。そのため、従来の人工羽根では、主にシート状の樹脂を用いて軽量化に重点を置いたものであった。もちろん、天然羽毛に近い特性を得るために、人工羽根の製造コストが増加するのであれば、上述したような天然シャトルコックが高価である、という根本的な問題を解決することができない。すなわち、人工羽根には、シャトルコックの飛行性能の再現という課題に加え、製造の容易性という天然羽毛にはない課題も抱えている。
 そして、上記の各特許文献では、羽部の素材について、ある程度言及されているが、その詳細については何ら記載も示唆もなく、天然羽毛と同様の特性が得られるかどうか疑問である。また、上記各特許文献に記載の人工羽根は、羽部の素材に関わる問題に限らず種々の問題がある。例えば、上記特許文献1に記載の人工羽根は、薄い羽部や細い羽軸部を縦断するように中空部を形成している。しかし、一体成型品であるため、その中空部を形成するために、金型上で極めて細いピンを抜き差しすることになる。したがって、精度良く成型することが難しい、また、ピンを抜き差しすることでピンの変形が懸念される。また、より軽量にするためには、羽部の肉厚を薄くする必要があり、羽部の面方向の強度が低下し十分な形状維持性が得られない。したがって、この人工羽根を用いた人工シャトルコックでは、天然シャトルコックにおける飛行性能や打球感を得ることが難しい。当然のことながら、羽軸を中空にすれば、羽軸部の素材自体に剛性があっても羽軸自体の強度が不足し、強い打球によって、羽軸が折れたり曲がったりする可能性がある。
 特許文献2に記載の人工羽根は、また、羽軸部となる2本の細棒で羽部を挟持して接着した構造であるため、細棒と羽部との間に十分な接着強度が得られず、打球に際して羽部と羽軸部とが分解する可能性がある。さらに、羽軸部は、細棒を貼り合わせた構造なので、その貼り合わせ面、すなわち羽軸部の側面での強度が不足し、十分な剛性を得ることができない。一体成型で製造できないため、生産性が低く、低価格化という効果にも疑問がある。
 特許文献3に記載の人工羽根では、不織布などでできた薄い羽部の一部を、羽軸に沿った形状に突出させ、その突出させた部分(突出部)を羽軸部に埋設している。したがって、羽部は、素材自体の比重に依存するため、厚さを薄くすることで軽量化を図ることになる。したがって、軽量化と耐衝撃性能の両立が難しい。
 本発明は、上述したような、従来のシャトルコック用人工羽根における種々の問題に鑑みなされたもので、その目的は、軽量で、とくに羽部の形状維持性に優れ、また、耐久性や生産性にも優れたシャトルコック用人工羽根、その人工羽根を用いたシャトルコック、およびその人工羽根の製造方法を提供することにある。なお、他の目的については、以下の記載で明らかにする。
 本発明は、シャトルコック用の人工羽根における上述した課題に鑑みなされたもので、主たる発明は、シャトルコック用人工羽根であって、
 天然羽毛を模して、羽弁に対応する薄膜状の羽部と、羽軸に対応して、上方の先端から下方の末端に向かって一体的に連続して延長する棒状の羽軸部とを備え、
 前記羽部は、連続気泡を内部に有する熱可塑性樹脂からなり、前記羽軸部に対して、相対的に低比重で低弾性であり、
 前記羽軸部は、熱可塑性樹脂からなり、前記先端から前記羽部の下端に亘って前記羽部と固着する領域を羽支持部とするとともに、前記天然羽毛の羽柄に対応して前記羽支持部の下端から前記末端に亘って前記羽部の下方に突出する領域を羽柄部として、前記羽支持部にて前記羽部に固着されている、
 ことを特徴とするシャトルコック用人工羽根としている。
 本発明のシャトルコック用人工羽根は、軽量で、形状維持性にも優れ、その人工羽根を用いたシャトルコックは、天然シャトルと同様の飛行性能や打球感が期待できる。また、天然素材の生産量に依存することがなく、生産性にも優れ、安価なシャトルコックを提供することが可能となる。なお、本発明の他の効果については以下の記載で明らかにする。
本発明の実施例に係る人工羽根を用いた人工シャトルコックの斜視図であり、ベース部側(下方)から見たときの斜視図である。 上記人工シャトルコックを上方から見たときの斜視図である。 本発明の実施例に係る人工羽根の基本構造を示す斜視図である。 本発明の実施例に係る人工羽根を構成する羽部の製造方法を示す図である。 本発明の第1の実施例に係る人工羽根を構成する羽部断面の顕微鏡写真を示す図である。 上記第2の実施例に係る人工羽根を構成する羽軸部の構造図である。 上記羽軸部における剛性を評価するための方法を示す図である。 本発明の第3の実施例に係る人工羽根の構造を示す図である。 上記第3の実施例に係る人工羽根の製造方法の概略を示す図である。 上記第3の実施例に係る人工羽根の製造手順を示す図である。 上記第3の実施例に係る人工羽根の製造過程で成型される1次成型品の構造を示す図である。 上記第3の実施例に係る人工羽根における問題点を説明するための図である。 上記第3の実施例に係る人工羽根における問題点を解決するための製造方法の概略を示す図である。 本発明の第4の実施例に係る人工羽根の構造を示す図である。 上記第4の実施例に係る人工羽根の製造方法の概略を示す図である。 上記第4の実施例に係る人工羽根の製造手順を示す図である。 本発明のその他の実施例に係る人工羽根で、羽部の裏面と羽軸部の裏面とが同一面内にない人工羽根の外観形状を示す図である。 本発明のその他の実施例に係る人工羽根で、羽根軸部の羽柄部が外殻部を構成する樹脂のみで形成されている人工羽根の外観形状を示す図である。 図18に示した人工羽根の断面を示す図である。 上記第1~第4の人工羽根における羽軸部とは異なる構造の羽軸部の断面を示す図である。 上記各実施例に係る人工羽根を一括して成型する金型の構造図を示している。
===本発明の実施例の特徴===
 人工シャトルコックは、その用途が遊技程度のバドミントンであれば、そのシャトルコックを構成する人工羽根は、ある程度の軽量化と生産性や耐久性が達成されていればよい。すなわち、安価で壊れにくければよい。しかし、競技者の練習球としての用途、究極的には競技用の公式球との代替用途を目指すのであれば、とくに、人工羽根の総表面積のほとんどを占める羽部について、軽量化を達成した上で、形状維持性、耐衝撃性などの特性を天然羽毛に近似させる必要がある。例えば、バドミントンにおいて、天然シャトルコックならではの打球法として、「ヘアピンショット」がある。この打球法では、強い回転を掛けつつ、シャトルコックを浮遊させるように「持ち上げて」打球することで、独特の飛行軌道を描かせる。この飛行軌道を人工シャトルコックで再現させるためには、天然羽毛に極めて近似した特性を有する人工羽根が求められる。もちろん、天然羽毛の高価格化に鑑み、製造容易性も必要となる。
 そこで、本発明者らは、上述した人工シャトルコックに使用する人工羽根に求められる重要な特性として、まず、天然羽毛と同様の飛行性能と打球感を挙げた。そして、人工羽根の大部分を占有する羽部の素材や構造が人工シャトルコックの性能を大きく左右する、と考え、羽部は、軽量であることに加え、高速で風を切っても容易に変形しない形状維持性や耐衝撃性に優れていることが最も重要な条件である、と結論した。
 本発明は、これらの重要条件に鑑みて創作されたものである。そして、本発明は、上記主たる発明に対応する実施例が備える特徴の他に、以下の特徴を備えていてもよい。 
 前記羽部を構成する前記熱可塑性樹脂は、ポリアミドエラストマー、アイオノマー樹脂、ポリエステルエラストマー、ポリオレフィン系エラストマー、ポリスチレン系エラストマー、塩化ビニル系エラストマーのいずれかであること。
 前記羽部のおもて面または裏面に、薄膜状の補強材が積層されていること。そして、当該補強材が水性ポリウレタン、水性ポリエステル、水性ポリオレフィン、ナイロン系エマルジョン、アクリル系エマルジョンのいずれかであること。
 あるいは、前記羽部に補強材が含浸されていること。そして、当該補強材が水性ポリウレタン、水性ポリエステル、水性ポリオレフィン、ナイロン系エマルジョン、アクリル系エマルジョンのいずれかであること。
 なお、上記いずれかの特徴を有する人工羽根を用いたシャトルコックも本発明の実施例である。そして、本発明は、シャトルコック用人工羽根の製造方法にも及んでおり、当該製造方法の実施例は、天然羽毛を模して、羽弁に対応して連続気泡を内部に有する熱可塑性樹脂からなる薄膜状の羽部と、羽軸に対応して、上方の先端から下方の末端に向かって一体的に連続して延長する棒状の熱可塑性樹脂からなる羽軸部とを備えたシャトルコック用人工羽根の製造方法であって、
 第1の金型を用いて射出成型することで、前記羽部となる部分あるいは羽軸部となる部分を1次成型品として成型することと、
 第2の金型を用いて、前記1次成型品を埋め込み対象として前記羽軸部あるいは前記羽部をインサート成型することで、前記羽部となる部分に前記羽軸部となる部分が固着されてなる2次成型品を成型することと、
 前記羽部となる部分を成型する際に、前記羽部を構成する熱可塑性の基体樹脂と所定の溶剤によって溶解する有機化合物とを混合したペレット状の樹脂を用いて成型するとともに、前記2次成型品を前記溶剤に浸漬して前記有機化合物を溶解させることで、前記羽部となる部分を連続気泡体に成形することを含むことを特徴としている。あるいは、前記2次成型品を、前記1次成型品を前記金型に保持しつつ二色成型を行うことで成型するように変更してもよい。
 また、前記羽軸部が、芯となる芯部と、当該芯部の側面を覆う断面形状をなして延長する外殻部とからなるシャトルコック用人工羽根の製造方法も本発明の範囲であって、当該製造方法の発明に対応する実施例は、
 第1の金型を用いて射出成型することで、前記羽部となる部分と前記芯部なる部分との同時成型品あるいは前記外殻部となる成型品を1次成型品として成型することと、
 第2の金型を用いて、前記1次成型品を埋め込み対象として、前記外殻部となる部分をインサート成型することで、あるいは前記羽部となる部分と芯部となる部分を同時にインサート成型することで、前記外殻部の側面に前記芯部が固着されて羽軸部となる部分が前記羽部に固着されてなる2次成型品を成型することと、
 前記羽部となる部分と前記芯部となる部分とを同時に成型する際に、前記羽部を構成する熱可塑性の基体樹脂と所定の溶剤によって溶解する有機化合物とを混合したペレット状の樹脂を用いて成型するとともに、前記2次成型品を前記溶剤に浸漬して前記有機化合物を溶解させることで、前記羽部と前記芯部との同時成型品の部分を連続気泡体に成形することを含むことを特徴としている。また、前記2次成型品を、前記金型内に前記1次成型品を保持しつつ二色成型を行うことで成形してもよい。
==人工シャトルコックの構造===
 図1、図2は、本発明の実施例に係る人工羽根を備えた人工シャトルコック(以下、シャトルコック)1の外観図である。図1は、ベース部2を下方として、シャトルコック1を下方から見たときの斜視図であり、図2は、上方から見たときの斜視図である。天然羽毛を模した複数(例えば16枚)の人工羽根10は、上方に向かって径が大きくなるように半球状のベース部2の平坦な上面の円周に沿って円環状に植設されているとともに、紐状部材(例えば木綿の糸)3によって互いに固定されて、スカート部4を構成している。
===人工羽根の基本構造===
 図3は、本発明の実施例の人工羽根10の基本構造を示す図である。本発明の実施例に係る人工羽根10は、大量生産が可能で、様々な形状にも柔軟に対応できるように、羽部12も含めた人工羽根10の全てを樹脂の成型品で構成することを前提とし、薄膜状の樹脂からなる羽部12に、棒状の羽軸部20を接着あるいは射出成型などによって溶融させるなどして固着させた構造を基本としている。そして、人工羽根10を樹脂の成型品で構成することで、とくに、羽部12の形状を羽弁形状に近似させることができ、優れた飛行性能を得ることが期待できる。具体的には、概略形状が薄膜状であっても、その厚さが各部位で微妙に異なった微妙な形状とすることができる。
 ここで、シャトルコック1のベース部2に取り付けられた状態に基づいて、人工羽根10の上下左右方向や表裏関係を規定すると、羽軸部20は、羽部12の上端から下方に延長していることなる。そして、便宜的に、羽軸部20の上端21を「先端」、下端22を「末端」とし、羽部12や羽軸部20において、シャトルコック1の外方に面する面を「おもて面」13、シャトルコック1の内方に向かう面を「裏面」14と呼ぶことにする。さらに、羽部12の面内で、羽軸部20の延長方向に直交する方向を左右方向とする。また、羽軸部20において、羽部12に固着されている領域を羽支持部23とし、羽部12の下方に突出する領域を羽柄部24とする。したがって、図1、図2に例示したシャトルコック1における人工羽根10では、羽軸部20が、羽部12のおもて面13に突出するように固着されて、羽部12のおもて面13側では、羽部12の領域が羽軸部20を境界にして左右に分割されていることになる。
 なお、図3に示した例では、羽軸部20の先端21の位置が、羽部12の上端の位置にほぼ一致しているが、羽軸部20の先端21が羽部12の上端に対して下方にあってもよい。羽部12の裏面14に羽軸部20が突出していてもよい。天然羽毛における羽弁の構造と同様に、羽部12が羽軸部20を境界にして個別の部位として二つに分割されているような構造であってもよい。いずれにしても、薄膜状の羽部12の一方の面をおもて面13、他方の面を裏面14と称することとし、羽軸部20が羽部12を縦断するように形成されている。以下では、羽部12や羽軸部20の構造に応じた実施例を具体的に挙げる。
===第1の実施例===
 上述したように、シャトルコック用人工羽根の羽部を形成する素材には、低比重、打球時の変形状態から速やかに当初の形状に復帰できる形状維持性、他の素材との固着性などの性能が求められている。もちろん、高い生産性が期待できる素材であることも必要となる。そして、本発明の第1の実施例に係る人工羽根は、生産性や形状の自由度を確保するために、上記基本的な構造を採用しつつ、羽部内部における微視的な構造に特徴を有して、軽量化、形状維持性を達成している。以下、第1の実施例に係る人工羽根10を図3に基づいて説明する。
 第1の実施例に係る人工羽根は、上記基本的な構造において、羽部12と羽軸部20をともに熱可塑性樹脂で構成することで生産性、形状の自由度、および双方の固着強度を高めて耐久性を確保している。その上で、無数の微細な気泡が内部に無数に形成された熱可塑性樹脂によって羽部12を構成して軽量化を図り、さらに、打球時の衝撃を確実に吸収することができるように、その気泡を連続気泡としている。
 ところで、羽部12の内部構造を独立気泡体とせず、連続気泡体としたのは、隣接する気泡同士が孤立している独立気泡体で羽部12を構成すると、羽部12に局所的に加わる衝撃を、その局所にある気泡のみを圧縮させることで吸収させることになり、羽部12を強打したときの衝撃を確実に吸収できない可能性があるからである。一方、連続気泡体は、隣接する気泡同士が繋がっており、打球時に局所にある気泡が圧縮された際、その気泡中の空気が隣接する気泡に逃げるため、急激に気泡が圧縮されるような強い衝撃も確実に吸収できる。
===人工羽根の製造方法===
 上述したように、第1の実施例の人工羽根10では、羽部12に熱可塑性樹脂からなる連続気泡体を用いている。連続気泡体を構成する具体的な樹脂素材としては、比重が小さく、柔軟性に富んだポリアミドエラストマーやポリエステルエラストマーなどの樹脂(以下、軽量柔軟樹脂)が考えられる。なお、羽軸部20を構成する素材としては、例えば、ポリアミド(ナイロン)や、これをガラス繊維で強化したもの(ガラス繊維強化ポリアミド)、あるいはPBT、ABS,PCなど、軽量柔軟樹脂と比較して高い剛性を有する硬い樹脂(以下、硬質樹脂)を用いることができる。
 ここで、軽量柔軟樹脂として、ポリアミドエラストマーを挙げ、そのポリアミドエラストマーの連続気泡体からなる羽部12を備えた人工羽根10の製造方法を具体的に説明する。図4に本発明の第1の実施例に係る人工羽根10の、製造手順を示した。ここに示した手順では、まず、羽部12を構成する樹脂(基体樹脂)であるポリアミドエラストマーと、所定の溶剤によって溶解する有機化合物とからなるペレットを作製する(s1)。なお、ポリアミドエラストマーは、この所定の溶剤によって溶解しないものとする。所定の溶剤によって溶解する有機化合物(以下、気泡生成体)としては、例えば、水溶性、すなわち水を溶剤とした多価アルコール(糖アルコール類など)を用いることができる。そして、ポリアミドエラストマーと気泡生成体とグリセリンとが所定の重量部となるように秤量し、これらを混練する。そして、その混練物を裁断してペレットを作製する。
 次に、上記ペレットを用いて射出成型し(s2)、羽部12となる1次成型品を成型する。さらにインサート成型や二色成型によって、羽軸部20となる部位を射出成型することで、羽部12に羽軸部20を溶融固着させて、人工羽根10の形状を有する2次成型品を完成させる。しかし、この時点では、羽部12は、ポリアミドエラストマーと気泡生成体とが複雑に混ざり合った稠密な内部構造を有する「ムク」素材で構成されている。そこで、2次成型品を所定の溶剤中に浸漬する抽出処理を行い、気泡生成体のみを溶解させる(s4)。それによって、羽部12の内部に連続気泡が形成される。最後に、抽出処理後の2次成型品を乾燥することで人工羽根10を完成させる(s5)。
 なお、1次成型品として羽部12を成型するのに代えて、最初に羽軸部20を1次成型品として成型し、2次成型品の成型工程(s3)で、その羽軸部20に羽部12を固着させるようにしてもよい。もちろん、連続気泡体からなる羽部12をまず完成させ、その羽軸部20と個別に成型した羽軸部20とを溶着や接着などの方法によって固着させてもよい。
===人工羽根の特性===
 ここで、図4に示した製造方法に基づいて、連続気泡体からなる羽部12のみをサンプルとして成型した。ここでは、ポリアミドエラストマーと糖アルコールの重量割合を調整することで、比重が異なる種々のサンプルを作製した。
 表1に、各サンプルにおける抽出処理前後の比重を示した。
Figure JPOXMLDOC01-appb-T000001
 表1に示したように、ポリアミドエラストマーと糖アルコールの重量割合を調整することで、比重を自由に制御できることが確認できた。なお、ポリアミドエラストマーの弾性率は、糖アルコールの重量割合に反比例し、ムク素材の130MPaに対し、表1におけるサンプルA3では、10MPaであった。また、図5に当該サンプルA3の顕微鏡写真を示した。この写真は、図3におけるx-x矢視断面の拡大図に相当する。この写真に示されているように、羽部12の内部には、大きな気泡が蜂の巣状に配置されているとともに、隣接する気泡同士が微細な孔で連通している。すなわち、羽部12の内部が連続気泡体の構造になっていることが確認できた。なお、羽部12の製造条件、すなわち羽部12を構成する基体樹脂の種類や気泡生成体の種類、およびそれらの割合などは、比重と弾性率などを勘案しながら、適宜に設定すればよい。
===羽軸部の構造について===
 上述した第1の実施例に係る人工羽根10は、軽量軟質素材の連続発泡体からなる羽部12と、硬質素材からなる羽軸部20とで構成されていた。しかし、人工羽根10を天然羽毛により近似させるためには、人工羽根10全体の重量をさらに軽くすることが必要であり、結論として、羽軸部20をより軽くすることが要求される。しかし、本来、堅さや剛性が必要とされる羽軸部20を羽部12と同じ軽量軟質素材で構成してしまえば、人工羽根10自体の剛性が低下し、形状を維持することが難しくなる。そこで、以下では、羽軸部20の構造を工夫することで、剛性を維持した上で、更なる軽量化が期待できる実施例を挙げる。
===第2の実施例===
 本発明の第2の実施例に係る人工羽根は、羽軸部20に軽量化と高剛性化を両立できる構造を採用している点に特徴を有している。以下に、第2の実施例における羽軸部20の構造について説明する。
<羽軸部の構造>
 図6に本発明の第2の実施例の人工羽根における羽軸部20の構造を示した。図6(A)~(C)は、それぞれ、羽軸部20の裏面26を末端22側から見たときの斜視図、末端22側の正面図、先端21側の正面図である。羽軸部20は、概略的には、表層に配置される外殻部40と、外殻部40内に配置されている芯部30とからなる複合構造である。そして、芯部30と外殻部40は、それぞれ、先端21から末端22に掛けて連続した一体的な構造であり、双方(30,40)は互いに固着している。ここに示した羽軸部20は、図6(B)に示したように、略矩形断面を有する芯部30と、裏面26に開口する略U(コの)字断面を有する外殻部40とから構成されている。すなわち、外殻部40の断面形状が、芯部30の左右側面31とおもて面32とを覆う形状となっており、羽軸部20の左右側面27とおもて面25が外殻部40で覆われ、羽軸部20の裏面26に芯部30の裏面33が露出している。
 芯部30は、上述した軽量軟質素材でできており、比重が小さく、かつ外殻部40に対して相対的に弾性率が小さい(柔らかい)素材である。外殻部40は、芯部30の表面を覆う断面形状を有し、芯部30に対して相対的に比重が大きく硬い素材(硬質素材)でできている。芯部30と外殻部40は、二色成型などによって、相互に固着して、一体化されている。そして、羽支持部23と羽柄部24とが連続する1本の棒状となるように形成されている。図中では、芯部30と外殻部40を異なるハッチングで示した。なお、ここでは、先端21が外殻部40で覆われている例を示したが、先端21にて芯部30が露出して、外殻部40が先端21から末端22の全長に亘って略コの字型断面を有する構造であってもよい。
 上述した構造の羽軸部20を構成する素材としては、芯部30であれば、例えば、ポリアミドエラストマーやポリエステルエラストマーなど、羽部12に用いたものと同様の熱可塑性樹脂、およびこれらの樹脂からなる連続気泡体を使用することができる。外殻部40であれば、第1の実施例の人工羽根10の羽軸部20に用いたものと同様の樹脂、すなわち、ポリアミド(ナイロン)や、これをガラス繊維で強化したもの(ガラス繊維強化ポリアミド)、あるいはPBT、ABS,PCなどの各種樹脂を用いることができる。
<羽軸部の物性>
 ここで、種々の樹脂を用いて、図6に示した構造の羽軸部20をサンプルとして作製した。サイズは、実際にシャトルコック1に使用する際のサイズとした。羽軸部20の作製方法としては、インサート成型法や二色成型法を採用することができる。すなわち、軽量軟質素材を用いて芯部30を射出成型し、その成型品を埋め込み対象として、硬質素材からなる外殻部40をインサート成型によって形成したり、芯部30となる成型品を金型から取り出さずに二色成型によって外殻部40を成型したりすればよい。そして、作製した羽軸部20における芯部30、外殻部40、および全体の重量を測定し、剛性を評価した。剛性の評価は、図7に示したように、裏面26が対地面となるように羽軸部20を水平に維持しつつ、その末端22を固定した状態で、鉛直下方に0.3Nの荷重Fを先端21に集中して掛けることで行った。そして、荷重状態にあるときの先端21における水平状態からの変位量Δhを剛性の指標値とした。
 以下の表2に、芯部30および外殻部40に用いた樹脂と、各部の重量、比重、弾性率、および羽軸部20全体としての総重量と剛性の指標値とを示した。
Figure JPOXMLDOC01-appb-T000002
 表2において、サンプルB4とB5が、芯部30に軽量軟質素材を用い、外殻部40に硬質素材を用いたサンプル(発明品)であり、サンプルB1~B3が、発明品に対する比較例であり、芯部30と外殻部40を同じ樹脂で成型したものである。なお、樹脂aとdは、ともに、ポリアミドエラストマーであり、樹脂の組成自体は同じものであるが、その物理的な構造が異なっている。樹脂aは、内部が稠密なムク素材であり、dは連続気泡体や独立気泡体などの気泡体からなる素材である。ここでは、連続気泡体からなる素材を用いている。連続気泡体とするには、第1の実施例における羽部12と同様にして成形すればよい。独立気泡体とするには、周知の発泡スチロールやウレタンスポンジなどと同様にして、芯部30を構成する樹脂を炭化水素ガスなどの有機系発泡剤を用いて発泡させればよい。
 また、樹脂bとcは、ポリアミドエラストマーに対して硬質な素材であり、ムク素材である。本実施例では、ともにポリアミド12(ナイロン12)を主体にした樹脂であるが、樹脂bは、ガラス強化されたポリアミド12であり、樹脂cは、ガラス強化されていないポリアミド12である。
 表2に示したように、発明品に係るサンプルB4とB5では、芯部30と外殻部40とが、それぞれ、相対的に低比重(高比重)で、かつ柔らかい(硬い)適宜な樹脂で成型されており、軽量かつ高剛性の羽軸部20とすることができた。例えば、比較例となるサンプルB1は、芯部30と外殻部40が、双方とも相対的に柔らかい樹脂aでできており、剛性の指標値である変位量Δhが大きく、剛性が不足していることがわかる。また、樹脂a~dのうち、比較的硬い樹脂として分類される樹脂cのみで成型したサンプルB3では、変位量ΔhがサンプルB1の60%程度となった。また、サンプルB2は、芯部30と外殻部40が最も硬い樹脂bでできており、サンプルB1の20%以下の変位量Δhであり、サンプルB1に対して5倍以上の剛性を獲得している。しかし、相対的には、硬い樹脂ほど比重が高いため、最も高剛性のサンプルB2では、その総重量が、サンプルB1に対して30%近く増加している。
 一方、発明品に係る、サンプルB4、B5のうち、芯部30にムク素材を用いたサンプルB4では、サンプルB1に対して15%以下の重量増のみで、変位量Δhは、サンプル1の30%程度に抑えることができた。すなわち、サンプルB1に対して3倍以上高い剛性が得られた。最も硬いサンプルB2に対しても約60%の剛性を得ており、十分な剛性を有している、と言える。そして、サンプルB5については、サンプルB1よりも軽量化を達成した上で、剛性がサンプルB4と同等であり、羽軸部20としては、ほぼ理想的な性能を得ることができた。
 以上より、低比重で柔らかい軽量軟質素材からなる芯部30の周囲を硬質素材でできた外殻部40で覆う構造の羽軸部20を備えた人工羽根は、軽量と高剛性の背反する特性を高次元で両立させることが可能となる。また、羽軸部20の少なくとも左右側面27が硬い外殻部40で覆われており、柔らかい芯部30の表面積の半分以上が外殻部40に接触している。したがって、表裏方向と左右方向の2方向に高い剛性を発現させることができる。その一方で、硬い外殻部40の内側には、柔らかい芯部30が充填されているので、打球時に、硬い羽軸部20の表面を強打したときの衝撃を吸収できる。言い換えれば、反発力が増し、心地より打球感や、打球時の撓みが速やかに原形に復帰する天然羽毛に似た打球感が得られる。
 また、芯部30を、気泡体とすれば、軽量化を維持したまま、羽軸部20の断面積をさらに大きくすることができる。断面積を大きくすることは、剛性をより向上させることができるとともに、羽部12と羽支持部23との固着面積を増やすことができる。それによって、羽軸部20と羽部12との接合強度をより強固にして、打球中の破損を防止することができる。さらに、「太い」羽軸部20は、視覚的に「折れにくい」という安心感をプレーヤーに与えることができる。すなわち、芯部30の樹脂における低弾性による心地よい打球感を増強させて、天然シャトルコックに極めて近似した打球感が得られる、という心理的効果も期待できる。
 なお、第2の実施例に係る人工羽根は、上記の芯部30と外殻部40とから構成される羽軸部20を、別途作製した羽部12に、溶着や接着などの方法によって固着させたものとすればよい。あるいは、図4に示した製造方法において、2次成型品の成型工程で芯部30を成型し、羽部12と芯部30とから構成される2次成型品に対し、さらに、最終的に図4に示した外観形状の人工羽根10となるように、外殻部40によって芯部30が覆われた形状となるように射出成型し、その成型品(3次成型品)に図4における抽出工程と乾燥工程とを施せばよい。もちろん、芯部30と外殻部40を射出成型などによって相互に固着させた後、さらに、インサート成型や二色成型によって、羽軸部20に対して羽部12を射出成型することで、羽軸部20を羽部12に固着させてもよい。
===第3の実施例===
 本発明の第3の実施例に係る人工羽根は、羽軸部20の構造を上記第2の実施例における羽軸部20と同様にして、人工羽根全体の剛性と軽量化を達成するとともに、形状をより天然羽毛に近似させて、天然シャトルコックに近い飛行性能を得るための工夫がなされたものである。天然の羽毛は、周知のごとく、羽部12に相当する部位は、羽軸から生えている個別の毛である羽枝の集合であり、羽軸を境界にして内外の羽弁(内弁、外弁)に分割されている。したがって、この天然羽毛の構成に少しでも近似した人工羽根を用いたシャトルコックの方が、天然シャトルコックの飛行性能により近似するはずである。そこで、本発明の第2の実施例は、天然羽毛の構造に最も近似した人工羽根としている。
<人工羽根の構造>
 図8(A)~(D)に第2の実施例に係る人工羽根10aのおもて面側の平面図、裏面側の平面図、側面図、および先端21側の正面図を示した。第3の実施例における人工羽根10aは、図8(D)示したように、外殻部40の側方に羽部12が固着されて、より天然羽毛に近似した構造の人工羽根10aとなっている。すなわち、羽支持部23にて、羽軸部20の裏面26が羽部12の裏面14に露出し、羽軸部20を境界にして羽部12が左右に二分割されている。また、羽軸部20の芯部30は、羽部12と同じ種類の軽量軟質素材でできており、内部構造も羽部12と同様に連続発泡体としている。それによって、人工羽根10b全体の重量をさらに軽くすることに成功している。
<製造方法>
 第3の実施例に係る人工羽根10aは、芯部30と、その芯部30を境界にして2分割される羽部12の合計三つの成型部位がある成型品に外殻部を固着させた構造であり、芯部30と2分割された羽部12については、例えば、三つの成型部位のそれぞれに射出成型のゲートを設けるなどして成型すれば、各部位が独立した状態で、同時成型することができる。
 しかし、この方法では、実質的に三つの成型部位のそれぞれを個別に射出成型することであり、製造に係る時間やコストが嵩む。また、成型品には、それぞれの射出成型部位に応じてゲートの跡が残ることになり、天然羽毛の、特に表面形状に近似させることが難しくなる。そこで、第3の実施例の人工羽根10aを、時間やコストを増加させることなく、精度よく製造するための方法を以下に示す。なお、ここでは、インサート成型によって製造する例を示す。
 図9は、第3の実施例に係る人工羽根10aの製造方法に用いる金型(51a,52a)の概略図であり、図9(A)に示した人工羽根10aにおける各断面a-a、b-b、c-c、d-dの各断面に対応する二つの金型(第1の金型51a、および第2の金型52a)の断面形状をそれぞれ図9(B1)~(B4)、および(C1)~(C4)に示した。図示したように、第1の金型51aの型形状は、羽部12と芯部30を同時成型するための形状をなし、第2の金型52aは、第1の金型によって成型された成型品を収納しつつ、芯部30のおもて面32と側面31とを覆う外殻部40を成型するための型形状をなしている。
 図10と図11に、第3の実施例の人工羽根10aの製造方法の概略を示した。図10(A)~(D)は、第3の実施例に係る人工羽根10aの製造手順であり、二つの金型(51a,52a)によって順次成型される人工羽根10aの上記b-b断面(図7参照)の形状を製造工程の順に従って示したものである。図11(A)は、第1の金型51bによって成型される1次成型品50bの平面図であり、図11(B)は、図11(A)における、円100内の拡大図である。
 ここに示した製造方法では、芯部30と羽部12を同時に成型した上で、インサート成型によって芯部30の表層に外殻部40を成型する。そして、まず、第1の金型51aを用いて、羽部12と芯部30とを一体成形する図10(A)(B)。このとき、羽部12と芯部30を構成する樹脂と上述した気泡生成体とを含んだペレットを用いてこの一体成型品(1次成型品)50aを成型する。そして、1次成型品50aは、図11(A)に示したように、羽部12と芯部30とが上下方向に延長する溝34によって分割された形状となっている。また、図9(B3)に示したように、羽部12と芯部30を成型するための金型51aを、羽支持部23の下端部でのみ羽部12と芯部30とを連結させる断面形状とすることで、図11(B)に拡大して示したように、羽支持部23の下端に、芯部30と羽部12と連結する仮止め部35を備えた形状となっている。
 つぎに、図10(C)(D)に示した手順により、図11に示した形状の1次成型品を第2の金型52aに装着した状態で外殻部40となる樹脂をその金型52a内に射出する。このとき、仮止め部35が射出成型時の熱で溶解し、射出圧力によって金型52a外に溶出する。それによって、溝34が羽支持部23の下端から羽部12の先端に連続し、その溝34にも外殻部40を構成する樹脂が充填され、結果的に、図8に示したように、外殻部40の側面に羽部12が固着した人工羽根10aの形状に成型され、軽量軟質素材による芯部30および羽部12が、硬質素材による外殻部40と一体的に固着してなる成型品(2次成型品)53aが完成する。もちろん、上記の製造方法は、インサート成型に代えて、二色成型とすることもできる。
 最後に、羽部12と芯部30を上述した連続気泡体にするために、第2の金型52aから取り出した2次成型品53aを、所定の溶剤に浸漬して、芯部30および羽部12を構成する樹脂を連続気泡体にすればよい。このように、第3の実施例に係る人工羽根10aでは、羽部12に加え、羽軸部20の芯部30も連続気泡体となり、人工羽根10a全体の重量をさらに軽量にすることができる。また、羽部12のみならず、羽軸部20に対して打球した際にも天然羽毛に極めて近い打球感を得ることが期待できる。もちろん、芯部30の表面は硬質素材を用いた外殻部40で覆われているため、十分な剛性を備えて、打球に際しては人工羽根10aの形状が素早く現状に復帰する。したがって、羽部12が羽軸部20によって分割されている天然羽毛に極めて近似したし形状との相乗効果により、この人工羽根10aを用いた人工シャトルコックでは、天然シャトルコックに極めて近似した飛行性能が得られることが期待できる。
===第3の実施例の変更例===
 第3の実施例に係る人工羽根10aは、羽部12が羽軸部20を境界にして左右に分割されている。そして、この構造の人工羽根10aを精度よく製造するための方法を先に示した。しかしながら、上述した製造方法では、仮止め部35が確実に溶出せず、本来外殻部40となるべき部位に、軽量軟質素材からなる仮止め部35の一部、あるいは全部が残ってしまう可能性が少なからずある。
 図12に、仮止め部35が残った状態の人工羽根10bを例示した。図12(A)は、その人工羽根10b全体を裏面から見たときの平面図であり、(B)は、(A)における円101内の拡大図である。(C)は、(B)におけるe-e矢視断面図である。当該図12に示したように、仮止め部35が残存する部位36では、芯部30が外殻部40で覆われていないため、強度が不足し、シャトルコックを強打したときに、この部位36で羽軸部20が折れる可能性がある。このように、外殻部40の一部が欠損している人工羽根10bは当然のことながら、不良品として処理される。そのため、歩留まりの低下に伴う製造コストの増加が懸念される。そこで、第3の実施例の変更例として、例え、仮止め部35が完全に溶出しなくても、羽軸部20の強度を十分に維持することができる製造方法を挙げる。
 図13は、第3の実施例の変更例に係る人工羽根10cの製造方法を示す概略図である。図13(A)は、仮止め部35の一部37が残った状態の人工羽根10cを裏面から見たときの図であり、(B)は、(A)における円102内の拡大図である。(C)は、当該変更例の人工羽根10cの1次成型品を成型するための金型51cの断面図であり、図13(A)(B)に示した人工羽根10cにおけるf-f断面に対応している。(D)は、(C)におけるg-g矢視断面である。
 当該変更例では、図13(C)に示したように、仮止め部35が羽部12の下面より下方に突出形成されるような金型形状としている。すなわち、仮止め部35の形成部位において溝34の底面がおもて面(12,25)側に突出せず、仮止め部35が溝34の底面の裏側方向に突出するように1次成型品を成型している。そのため、(D)に示したように、例え、仮止め部35が完全に溶出せず、その一部(未溶出部位)37が残ったとしても、外殻部40は、本来の芯部30の側面を完全に覆うため、強度が不足することがない。なお、この仮止め部35の未溶出部位37については、人工羽根10cの飛行性能を極度に悪化させるものでなければ、強度的には問題がないので、そのままにしておいてもよいし、極めて高い飛行性能が要求されたり、製品としての美観が損なわれると判断されたりすれば、その後の製造工程において、この突出した未溶出部位37を削り落としたり、切り離したりすればよい。
===第4の実施例===
 上記第3の実施例に係る人工羽根10aは、より天然羽毛に近似した構造を備えていた。そして、その構造を精度よく成型するために1次成型品に設けた仮止め部35を2次成型品の成型時に溶出させる、という特殊な製造方法を採用していた。また、仮止め部35を形成するために、金型の形状も複雑であり、金型に掛かるコストが若干増加する可能性もある。したがって、形状を天然羽毛に酷似させず、ある程度簡略化して製造歩留まりを向上させることも考えられる。そこで、本発明の第4の実施例として、製造歩留まりを考慮した構造を備えた人工羽根を挙げる。
<羽部との固着構造>
 図14に、本発明の第4の実施例に係る人工羽根10dの基本構造を示した。図14(A)~(D)は、それぞれ、おもて面側の平面図、裏面側の平面図、側面図、先端21側からの正面図を示している。なお、当該図14においても、羽軸部20の芯部30と外殻部40を異なるハッチングで示している。図示したように、第4の実施例に係る人工羽根10dは、1枚の薄膜状の羽部12のおもて面13に、図6に示した構造の羽軸部20が固着された構造であり、外観形状は、実質的に、図3に示したような第1および第2の実施例における人工羽根10と同じになる。すなわち、羽軸部20のおもて面25と側面27が外殻部40の表面となり、羽支持部23では、羽軸部20の裏面26と羽部のおもて面13とが接触した状態で双方が固着している。
<製造方法>
 第1および第2の実施例に係る人工羽根の製造方法は、羽軸部20と羽部12とを個別に成型した後、溶着、接着などの方法によって双方(20,12)を固着させることとしていた。あるいは、羽部12、芯部30、および外殻部40をそれぞれ個別の射出成型工程によって成形することとしていた。
 しかし、羽部12と羽軸部20をより強固に固着させるとともに、羽部12の形状や羽部と羽軸部20との相対位置関係を柔軟に設定できるようにするためには、羽部12と芯部30、あるいは羽部12と外殻部40を同じ素材を用いて同時成型する方が望ましい。現実的には、羽部12には、軽量化と衝撃吸収性が求められるので、芯部30と同時成型することが望ましい。
 第4の実施例の人工羽根10dでは、外殻部40が羽軸部20の裏面26以外にて芯部30を覆う構造であり、芯部30の裏面33が露出している。したがって、羽支持部23において、芯部30が羽部12のおもて面13に突出するように羽部12と芯部30とを同時成型することになる。以下では、インサート成型によって第4の実施例に係る人工羽根10dを製造する方法を例示する。
 図15は、第4の実施例に係る人工羽根10dの製造方法に用いる金型(51d,52d)の概略図であり、図15(A)に示した人工羽根10dにおける各断面h-h、i-i、j-jの各断面に対応する二つの金型(第1の金型51d、および第2の金型52d)の断面形状をそれぞれ図15(B1)~(B3)、および(C1)~(C3)に示した。図示したように、第1の金型51dの型形状は、羽部12と芯部30を同時成型するための形状をなし、第2の金型52dは、第1の金型によって成型された成型品を埋め込み対象として収納しつつ、芯部30のおもて面32と側面31とを覆う外殻部40を成型するための型形状をなしている。
 図16(A)~(D)は、第3の実施例に係る人工羽根10dの製造手順を示す図であり、上記金型(51d,52d)によって順次成型される人工羽根10dの上記i-i断面(図15参照)の形状を製造工程の順に従って示したものである。ここに示した製造方法では、まず、芯部30と羽部12を同時に成型したのち、インサート成型によって芯部30の表層に外殻部40を成型する。
 そして、まず、第1の金型51dを用いて、羽部12と芯部30とを一体成形し、1次成型品を得る(A)(B)。なお、この第4の実施例においても、上述した気泡生成体を含んだペレットを用いて1次成型品を成型する。次に、この1次成型品50dを第2の金型52dに装着した状態で(C)、外殻部40となる樹脂をその金型52d内に射出する。第2の金型52dは、1次成型品50dを収納しつつ、芯部30の側面31とおもて面32を覆い、1次成型品50dが装着された状態では、コの字型断面を有する型形状となる。そして、第2の金型52dを用いた射出成型により、芯部30のおもて面32と側面31に外殻部40が成型され、軽量軟質素材による芯部30および羽部12が、硬質素材による外殻部40と一体的に固着して2次成型品53dが完成する(D)。そして、羽部12と芯部30を連続気泡体とするために、第2の金型52dから取り出した2次成型品53dを、所定の溶剤に浸漬して、芯部30および羽部12を構成する樹脂を連続気泡体にすればよい。
 なお、上述した製造方法では、羽部12と芯部30を1次成型品としていたが、もちろん、外殻部40を1次成型品として、最初に成型し、羽部12と芯部30をその外殻部40に固着させるように成型するようにしてもよい。
 ところで、第4の実施例の人工羽根10dは、その構造が第3の実施例の人工羽根10aと比較すると、その形状が単純であり、成型条件についても、仮止め部35を確実に溶出させる必要がないので、第3の実施例の人工羽根10aほど厳密に成型条件を規定する必要がなく、高い歩留まりが期待できる。したがって、製造コストという点では、第4の実施例の方が第3の実施例よりも有利かもしれない。
 しかし、その一方で、第3の実施例の人工羽根10aは、第4の実施例の人工羽根10dと比較した場合、羽支持部23の領域に羽部12を構成する樹脂が無いため、羽支持部23の裏面26に固着する分の樹脂を節約することができる。確かに、1本の人工羽根10aでは、節約できる樹脂の量は微少であり、1枚の人工羽根10aにおけるコストダウンは僅かであるかもしれない。しかし、図1、2に示したように、シャトルコック1は、ベース部2に16枚程度の羽根を取り付けた構成であるので、1枚の人工羽根10aのコストダウンが僅かであっても、シャトルコック1全体では、ある程度のコストダウンが期待できる。
 したがって、第3あるいは第4の実施例のどちらの人工羽根(10a,10d)を採用するのかは、製品に求められる飛行性能、原材料に掛かるコスト、製造に掛かるコストなどを勘案して適宜に決定すればよい。言い換えれば、本発明によれば、練習用と公式球への代替、あるいはシャトルコックを使用する人のバドミントンの技量差など、目的や用途に応じて飛行性能や価格が異なるシャトルコックを提供することができる。
===その他の実施例===
<羽部の裏面と羽軸部の裏面>
 上記第1~第4の実施例に係る人工羽根10a~10dでは、羽部12の裏面14と羽軸部20の裏面26が同一面内にあったが、図17に示した人工羽根10eのように、同一面内になくてもよい。図17(A)~(D)は、人工羽根10eのおもて面13側の平面図、裏面14側の平面図、側面図、および先端21側の正面図を示しており、この図17に例示した人工羽根10eは、羽部12の裏面14と羽軸部20eにおける羽柄部24の裏面26とに段差がある。すなわち、当該人工羽根10eは、棒状の羽軸部20eが羽部12のおもて面13に積層された外観形状を有している。
<羽柄部の構造>
 上記第1~第4の実施例に係る人工羽根10a~10dにおける羽軸部20や、図17に示した人工羽根10eにおける羽軸部20eでは、羽柄部24にも芯部30と外殻部40が形成されていたが、図18、図19に示した人工羽根10fのように、羽柄部24が外殻部40を構成する樹脂のみで形成されていてもよい。なお、図18(A)~(D)は、それぞれ、人工羽根10fのおもて面13側の平面図、裏面14側の平面図、および側面図であり、図19(A)(B)は、それぞれ、図18(A)におけるk-k矢視断面図、およびL-L矢視断面図である。これらの図18、図19に示したように、人工羽根10fの羽軸部20fでは、羽柄部24に芯部30がなく、外殻部40を構成する樹脂で一体的に形成された羽柄部24となっている。
<羽軸部の断面構造>
 羽軸部20の断面構造としては、図6に示した例に限らず、例えば、図20(A)に示した羽軸部20gのように、外殻部40の断面形状を、芯部30の左右側面31に接触する辺41と、芯部30の断面中央付近を左右に横断して上記左右側面31に接する辺41同士を連結する辺42とからなる「H」としてもよい。なお、この例では、おもて面25と裏面26に、それぞれ芯部30のおもて面32と裏面33が露出した構造であるが、羽軸部20cを軸周りに90°回転させて、外殻部40の断面形状を「I」型とすることもできる。
 あるいは、(B)に示した羽軸部20hのように、外殻部40を中空細管状とし、その中空部に芯部30を充填させた形状、すなわち、芯部30の左右側面31とおもて面32と裏面33の全てを外殻部40で覆う「口型」の断面形状、すなわち中空角筒状としてもよい。なお、羽部12と羽軸部(20g,20h)は、第1の実施例と同様に、羽軸部(20g,20h)の側面27に配置されていてもよいし、第2の実施例のように、羽軸部(20g,20h)の裏面26と羽部12のおもて面13とが接触した状態で固着されていてもよい。
 もちろん、芯部30の断面形状は矩形に限るものではない。例えば、図20(C)~(E)に示した羽軸部(20i~20k)のように、断面形状が円(C)や半円(D)、あるいは三角形(E)であってもよい。なお、断面が円の場合では、芯部30の表面に、側面31、おもて面32、裏面33の明確な区別はなく、全周が側面31となる。また、断面が半円(D)や三角形(E)では、実質的に、芯部30の裏面33以外が側面31となる。いずれにしても、本発明の実施例における人工羽根は、その羽軸部(20,20g~20k)が、相対的に低比重で柔らかい素材からなる芯部30の側面を硬い素材からなる外殻部40で覆った構造を有している点に特徴がある。
<製造方法>
 上記第3および第4の実施例において、人工羽根(10a,10d)の製造方法として、人工羽根(10a,10d)を一枚ずつ成型する例を示した。もちろん、複数の人工羽根(10a,10d)を一括して成型することも可能である。図21に多数枚成型に対応した金型51cの平面図を示した。多数枚の人工羽根(10a,10d)に対応する型53が射状に配置されており、型の中央部に樹脂の注入口54を設けることで、複数枚の1次成型品、あるいは2次成型品を一括して成型することができる。
<羽部の素材>
 羽部の素材は、上述したポリアミドエラストマーに限らず、連続気泡を内部に有する熱可塑性樹脂であれば、ポリアミドエラストマーと同等の性能が期待できることから、例えば、アイオノマー樹脂、ポリエステルエラストマー、ポリオレフィン系エラストマー、ポリスチレン系エラストマー、塩化ビニル系エラストマーなどを羽部の素材として採用してもよい。
<羽部の補強>
 羽部12には、軽量化とともに打球時の強打にも耐えて、十分な強度も要求されることから、上記各実施例や変形例における人工羽根(10,10a~10f)において、羽部12のおもて面13あるいは裏面14に薄膜状の補強材を接着や溶着などの方法によって積層してもよい。
 補強材としては、種々の材料が考えられるが、切断させるための力(切断強力)や、切断されるまでの素材の伸長率(切断伸度)がより大きい方が望ましい。
 以下の表3に、羽部12に各種補強材を積層したときの切断強力や切断伸度を示した。
Figure JPOXMLDOC01-appb-T000003
 表3には、補強材として、各種樹脂が示されている。各樹脂は、当初の羽部12に対して補強材を積層したことによる重量増が0.005gとなるように、溶剤に対する濃度が調整されているものとする。そして、表3に示したように、水性ポリウレタンが切断強力(N)や切断伸度(%)に優れていることが分かった。また、水性ポリウレタンは、有機溶剤を用いないため、人工羽根(10,10a~10d)の製造に際し、環境負荷を軽減させることも期待できる。なお、補強材としては、水性ポリウレタンに限らず、当該水性ポリウレタンに類似した物性を有する、水性ポリエステル、水性ポリオレフィン、ナイロン系エマルジョン、アクリル系エマルジョンも適用できると推測される。
 また、補強材を当初の羽部12に対して積層するのではなく、連続気泡体であることから、補強材を羽部12に含浸させてもよい。
 以下の表4に、羽部12に水性ポリウレタンを含浸させたときの切断強力や切断伸度を示した。
Figure JPOXMLDOC01-appb-T000004
 羽部12に水性ポリウレタンを積層させた場合と同等の切断強力や切断伸度が得られていることが分かる。そして、この場合も、補強材として、水性ポリウレタンに限らず、水性ポリエステル、水性ポリオレフィン、ナイロン系エマルジョン、アクリル系エマルジョンも適用できると推測される。
 本発明は、バドミントンのシャトルコックに適用することができる。
1 人工シャトルコック、2 ベース部、3 紐状部材、10,10a~10f 人工羽根、12 羽部、20,20c~20k 羽軸部、30 芯部、31 芯部側面、34 溝、35 仮止め部、40 外殻部、50a,50b 1次成型品、51a,51b 第1の金型、51c 金型、52a 第2の金型

Claims (11)

  1.  シャトルコック用人工羽根であって、
     天然羽毛を模して、羽弁に対応する薄膜状の羽部と、羽軸に対応して、上方の先端から下方の末端に向かって一体的に連続して延長する棒状の羽軸部とを備え、
     前記羽部は、連続気泡を内部に有する熱可塑性樹脂からなり、前記羽軸部に対して、相対的に低比重で低弾性であり、
     前記羽軸部は、熱可塑性樹脂からなり、前記先端から前記羽部の下端に亘って前記羽部と固着する領域を羽支持部とするとともに、前記天然羽毛の羽柄に対応して前記羽支持部の下端から前記末端に亘って前記羽部の下方に突出する領域を羽柄部として、前記羽支持部にて前記羽部に固着されている、
     ことを特徴とするシャトルコック用人工羽根。
  2.  請求項1において、前記羽部を構成する前記熱可塑性樹脂は、ポリアミドエラストマー、アイオノマー樹脂、ポリエステルエラストマー、ポリオレフィン系エラストマー、ポリスチレン系エラストマー、塩化ビニル系エラストマーのいずれかであることを特徴とするシャトルコック用人工羽根。
  3.  請求項1において、前記羽部のおもて面または裏面に、薄膜状の補強材が積層されていることを特徴とするシャトルコック用人工羽根。
  4.  請求項3において、前記補強材は水性ポリウレタン、水性ポリエステル、水性ポリオレフィン、ナイロン系エマルジョン、アクリル系エマルジョンのいずれかであることを特徴とするシャトルコック用人工羽根。
  5.  請求項1において、前記羽部に補強材が含浸されていることを特徴とするシャトルコック用人工羽根。
  6.  請求項5において、前記補強材は水性ポリウレタン、水性ポリエステル、水性ポリオレフィン、ナイロン系エマルジョン、アクリル系エマルジョンのいずれかであることを特徴とするシャトルコック用人工羽根。
  7.  請求項1~6のいずれかに記載の人工羽根を備えたことを特徴とするシャトルコック。
  8.  天然羽毛を模して、羽弁に対応して連続気泡を内部に有する熱可塑性樹脂からなる薄膜状の羽部と、羽軸に対応して、上方の先端から下方の末端に向かって一体的に連続して延長する棒状の熱可塑性樹脂からなる羽軸部とを備えたシャトルコック用人工羽根の製造方法であって、
     第1の金型を用いて射出成型することで、前記羽部となる部分あるいは羽軸部となる部分を1次成型品として成型することと、
     第2の金型を用いて、前記1次成型品を埋め込み対象として前記羽軸部あるいは前記羽部をインサート成型することで、前記羽部となる部分に前記羽軸部となる部分が固着されてなる2次成型品を成型することと、
     前記羽部となる部分を成型する際に、前記羽部を構成する熱可塑性の基体樹脂と所定の溶剤によって溶解する有機化合物とを混合したペレット状の樹脂を用いて成型するとともに、前記2次成型品を前記溶剤に浸漬して前記有機化合物を溶解させることで、前記羽部となる部分を連続気泡体に成形することと、
     を含むことを特徴とするシャトルコック用人工羽根の製造方法。
  9.  天然羽毛を模して、羽弁に対応して連続気泡を内部に有する熱可塑性樹脂からなる薄膜状の羽部と、羽軸に対応して、上方の先端から下方の末端に向かって一体的に連続して延長する棒状の熱可塑性樹脂からなる羽軸部とを備えたシャトルコック用人工羽根の製造方法であって、
     金型を用いて射出成型することで、前記羽部となる部分あるいは羽軸部となる部分を1次成型品として成型することと、
     前記1次成型品を前記金型に保持しつつ二色成型を行い、前記羽部となる部分に前記羽軸部となる部分が固着されてなる2次成型品を成型することと、
     前記羽部となる部分を成型する際に、前記羽部を構成する熱可塑性の基体樹脂と所定の溶剤によって溶解する有機化合物とを混合したペレット状の樹脂を用いて成型するとともに、前記2次成型品を前記溶剤に浸漬して前記有機化合物を溶解させることで、前記羽部となる部分を連続気泡体に成形することと、
     を含むことを特徴とするシャトルコック用人工羽根の製造方法。
  10.  天然羽毛を模して、羽弁に対応して連続気泡を内部に有する熱可塑性樹脂からなる薄膜状の羽部と、羽軸に対応して、上方の先端から下方の末端に向かって一体的に連続して延長する棒状の熱可塑性樹脂からなる羽軸部とを備えるとともに、当該羽軸部が、芯となる芯部と、当該芯部の側面を覆う断面形状をなして延長する外殻部とからなるシャトルコック用人工羽根の製造方法であって、
     第1の金型を用いて射出成型することで、前記羽部となる部分と前記芯部なる部分との同時成型品あるいは前記外殻部となる成型品を1次成型品として成型することと、
     第2の金型を用いて、前記1次成型品を埋め込み対象として、前記外殻部となる部分をインサート成型することで、あるいは前記羽部となる部分と芯部となる部分を同時にインサート成型することで、前記外殻部の側面に前記芯部が固着されて羽軸部となる部分が前記羽部に固着されてなる2次成型品を成型することと、
     前記羽部となる部分と前記芯部となる部分とを同時に成型する際に、前記羽部を構成する熱可塑性の基体樹脂と所定の溶剤によって溶解する有機化合物とを混合したペレット状の樹脂を用いて成型するとともに、前記2次成型品を前記溶剤に浸漬して前記有機化合物を溶解させることで、前記羽部と前記芯部との同時成型品の部分を連続気泡体に成形することと、
     を含むことを特徴とするシャトルコック用人工羽根の製造方法。
  11.  天然羽毛を模して、羽弁に対応して連続気泡を内部に有する熱可塑性樹脂からなる薄膜状の羽部と、羽軸に対応して、上方の先端から下方の末端に向かって一体的に連続して延長する棒状の熱可塑性樹脂からなる羽軸部とを備えるとともに、当該羽軸部が、芯となる芯部と、当該芯部の側面を覆う断面形状をなして延長する外殻部とからなるシャトルコック用人工羽根の製造方法であって、
     金型を用いて射出成型することで、前記羽部となる部分と前記芯部なる部分との同時成型品あるいは前記外殻部となる成型品を1次成型品として成型することと、
     前記金型内に前記1次成型品を保持しつつ二色成型を行い、前記外殻部となる部分を成型することで、あるいは前記羽部となる部分と芯部となる部分を同時成型することで、前記外殻部の側面に前記芯部が固着されて羽軸部となる部分が前記羽部に固着されてなる2次成型品を成型することと、
     前記羽部となる部分と前記芯部となる部分とを同時に成型する際に、前記羽部を構成する熱可塑性の基体樹脂と所定の溶剤によって溶解する有機化合物とを混合したペレット状の樹脂を用いて成型するとともに、前記2次成型品を前記溶剤に浸漬して前記有機化合物を溶解させることで、前記羽部と前記芯部との同時成型品の部分を連続気泡体に成形することと、
     を含むことを特徴とするシャトルコック用人工羽根の製造方法。
PCT/JP2011/068701 2010-08-20 2011-08-18 シャトルコック用人工羽根、シャトルコック、およびシャトルコック用人工羽根の製造方法 WO2012023587A1 (ja)

Priority Applications (5)

Application Number Priority Date Filing Date Title
EP11818228.6A EP2606943B1 (en) 2010-08-20 2011-08-18 Artificial feathers for shuttlecocks, shuttlecock and method for producing artificial shuttlecock feathers
JP2012529614A JP5866285B2 (ja) 2010-08-20 2011-08-18 シャトルコック用人工羽根、シャトルコック、およびシャトルコック用人工羽根の製造方法
US13/817,823 US8992355B2 (en) 2010-08-20 2011-08-18 Artificial feather for shuttlecock, shuttlecock, and method of manufacturing artificial feather for shuttlecock
CN201180040381.0A CN103068448B (zh) 2010-08-20 2011-08-18 羽毛球用人造羽毛、羽毛球及羽毛球用人造羽毛的制造方法
KR1020137006574A KR101455948B1 (ko) 2010-08-20 2011-08-18 셔틀콕용 인공깃털, 셔틀콕 및 셔틀콕용 인공깃털의 제조방법

Applications Claiming Priority (2)

Application Number Priority Date Filing Date Title
JP2010-185217 2010-08-20
JP2010185217 2010-08-20

Publications (1)

Publication Number Publication Date
WO2012023587A1 true WO2012023587A1 (ja) 2012-02-23

Family

ID=45605240

Family Applications (1)

Application Number Title Priority Date Filing Date
PCT/JP2011/068701 WO2012023587A1 (ja) 2010-08-20 2011-08-18 シャトルコック用人工羽根、シャトルコック、およびシャトルコック用人工羽根の製造方法

Country Status (6)

Country Link
US (1) US8992355B2 (ja)
EP (1) EP2606943B1 (ja)
JP (1) JP5866285B2 (ja)
KR (1) KR101455948B1 (ja)
CN (1) CN103068448B (ja)
WO (1) WO2012023587A1 (ja)

Cited By (5)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
CN103316460A (zh) * 2013-07-10 2013-09-25 林启良 羽毛球毛片自动排料、植毛方法及设备
WO2014013197A2 (fr) * 2012-07-20 2014-01-23 Decathlon Volant de badminton
CN108525256A (zh) * 2018-01-17 2018-09-14 安徽三才体育用品有限公司 一种三段式羽毛球植毛件
JP2023078077A (ja) * 2021-11-25 2023-06-06 ビクター ラケッツ インダストリアル コーポレイション 人工シャトルコックの製造方法及び金型
JP7465934B1 (ja) 2022-10-11 2024-04-11 美津濃株式会社 シャトルコック

Families Citing this family (8)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
JP2015029845A (ja) * 2013-08-06 2015-02-16 ヨネックス株式会社 シャトルコック、及び、シャトルコック用人工羽根
KR200484745Y1 (ko) * 2015-02-09 2017-10-19 이기용 베이스와 날개 이중구조 셔틀콕
JP6756517B2 (ja) * 2016-05-09 2020-09-16 ヨネックス株式会社 シャトルコック用人工羽根、及び、シャトルコック
JP6748995B2 (ja) * 2016-05-09 2020-09-02 ヨネックス株式会社 シャトルコック用人工羽根、及び、シャトルコック
CN105854261A (zh) * 2016-06-20 2016-08-17 重庆医药高等专科学校 一种新型羽毛球
JP2022059762A (ja) * 2020-10-02 2022-04-14 住友ゴム工業株式会社 シャトルコック用人工羽根およびバトミントン用シャトルコック
TWI750995B (zh) * 2021-01-13 2021-12-21 勝利體育事業股份有限公司 人造羽毛球與毛片及其製備方法
CN112657149B (zh) * 2021-01-27 2021-09-10 无为县宏喜体育用品有限公司 一种羽毛球生产用插毛机校毛装置

Citations (8)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
JPS5325466U (ja) * 1976-08-11 1978-03-03
JPS5340335A (en) * 1976-09-21 1978-04-12 Nippon Carbon Co Ltd Shuttle cock for badmington
JPS54103978U (ja) * 1977-12-29 1979-07-21
JPS57177782A (en) * 1981-04-15 1982-11-01 Eruringu Rasumutsusen Jiyon Artificial feather for shuttle codk
JPS5969086A (ja) 1982-10-14 1984-04-19 ヤマハ株式会社 シヤトルコツク用羽根
JPH0898908A (ja) 1994-09-30 1996-04-16 Fumiaki Ono 人工素材製シャトルコック
JP2005278784A (ja) * 2004-03-29 2005-10-13 Mizuno Technics Kk シャトルコック
JP2008206970A (ja) 2007-02-02 2008-09-11 Mizuno Corp バドミントン用シャトルコック、シャトルコック用人工羽根およびそれらの製造方法

Family Cites Families (13)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
GB949110A (en) * 1962-12-11 1964-02-12 Peter Gordon Sidney Shuttlecock
GB1386697A (en) * 1972-04-29 1975-03-12 Dunlop Ltd Shuttlecocks
JPS5325466A (en) 1976-08-20 1978-03-09 Casio Comput Co Ltd Small electronic apparatus provided with sound producing func tions
JPS54103978A (en) 1978-01-31 1979-08-15 Nippon Telegr & Teleph Corp <Ntt> Servo system
ZA802606B (en) * 1979-05-10 1981-08-26 Dunlop Ltd Shuttlecocks
JPS57117782A (en) * 1981-01-12 1982-07-22 Kokusai Electric Co Ltd Circular electric furnace
CN1012666B (zh) * 1985-12-21 1991-05-29 卡本鲍尔公司 一种用于羽毛球的人造羽毛和制造这种羽毛的方法
JPS6321078A (ja) * 1986-07-14 1988-01-28 森本 猛 シヤトル・コツクの強化方法
CN200954364Y (zh) * 2006-08-27 2007-10-03 丁有星 人造羽毛
WO2008093649A1 (ja) * 2007-02-02 2008-08-07 Mizuno Corporation バドミントン用シャトルコック、シャトルコック用人工羽根およびそれらの製造方法
CN101977659B (zh) * 2007-11-30 2012-07-04 尤尼克斯株式会社 羽毛球
CN101491730A (zh) * 2008-01-24 2009-07-29 张文广 用于羽毛球的人造羽毛及由其制成的羽毛球
KR20110056501A (ko) * 2008-09-09 2011-05-30 미즈노 가부시키가이샤 배드민턴용 셔틀콕

Patent Citations (8)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
JPS5325466U (ja) * 1976-08-11 1978-03-03
JPS5340335A (en) * 1976-09-21 1978-04-12 Nippon Carbon Co Ltd Shuttle cock for badmington
JPS54103978U (ja) * 1977-12-29 1979-07-21
JPS57177782A (en) * 1981-04-15 1982-11-01 Eruringu Rasumutsusen Jiyon Artificial feather for shuttle codk
JPS5969086A (ja) 1982-10-14 1984-04-19 ヤマハ株式会社 シヤトルコツク用羽根
JPH0898908A (ja) 1994-09-30 1996-04-16 Fumiaki Ono 人工素材製シャトルコック
JP2005278784A (ja) * 2004-03-29 2005-10-13 Mizuno Technics Kk シャトルコック
JP2008206970A (ja) 2007-02-02 2008-09-11 Mizuno Corp バドミントン用シャトルコック、シャトルコック用人工羽根およびそれらの製造方法

Non-Patent Citations (1)

* Cited by examiner, † Cited by third party
Title
See also references of EP2606943A4

Cited By (8)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
WO2014013197A2 (fr) * 2012-07-20 2014-01-23 Decathlon Volant de badminton
GB2519687B (en) * 2012-07-20 2016-03-23 Decathlon Sa A Badminton shuttlecock
CN103316460A (zh) * 2013-07-10 2013-09-25 林启良 羽毛球毛片自动排料、植毛方法及设备
CN108525256A (zh) * 2018-01-17 2018-09-14 安徽三才体育用品有限公司 一种三段式羽毛球植毛件
CN108525256B (zh) * 2018-01-17 2023-08-18 安徽三才体育用品有限公司 一种三段式羽毛球植毛件
JP2023078077A (ja) * 2021-11-25 2023-06-06 ビクター ラケッツ インダストリアル コーポレイション 人工シャトルコックの製造方法及び金型
JP7462008B2 (ja) 2021-11-25 2024-04-04 ビクター ラケッツ インダストリアル コーポレイション 人工シャトルコックの製造方法及び金型
JP7465934B1 (ja) 2022-10-11 2024-04-11 美津濃株式会社 シャトルコック

Also Published As

Publication number Publication date
EP2606943A1 (en) 2013-06-26
EP2606943A4 (en) 2014-07-30
JP5866285B2 (ja) 2016-02-17
US8992355B2 (en) 2015-03-31
JPWO2012023587A1 (ja) 2013-10-28
KR20130091762A (ko) 2013-08-19
CN103068448A (zh) 2013-04-24
KR101455948B1 (ko) 2014-10-28
US20130225339A1 (en) 2013-08-29
EP2606943B1 (en) 2015-10-14
CN103068448B (zh) 2015-10-14

Similar Documents

Publication Publication Date Title
JP5866285B2 (ja) シャトルコック用人工羽根、シャトルコック、およびシャトルコック用人工羽根の製造方法
JP5624821B2 (ja) シャトルコック用人工羽根、シャトルコック、およびシャトルコック用人工羽根の製造方法
US9101800B2 (en) Molded game ball
JP5569983B2 (ja) 封入されチューニングされた構造を有するゴルフクラブフェース
JP5941633B2 (ja) シャトルコック用人工羽根、シャトルコック及びシャトルコック用人工羽根の製造方法
JP5802490B2 (ja) シャトルコック用人工羽根、シャトルコック
CN200945348Y (zh) 高科技羽球
CN213375038U (zh) 一种室外球拍
CN103282086A (zh) 在握把下方的固定杆身位置形成高尔夫挥杆的动态重心部的高尔夫球杆
CN202173751U (zh) 新型羽毛球
WO2009065302A1 (fr) Vessie pour ballon de sport et ballon de sport doté de la vessie
CN201205432Y (zh) 免充气组合式体育用球
JP7049414B2 (ja) 人工シャトルコック
CN103121254A (zh) 一种复合棒球棒的制作方法
KR20070121416A (ko) 셔틀콕
CN204767269U (zh) 一种塑料羽毛球
CN202809033U (zh) 一种高弹性人造草丝纤维
CN204655942U (zh) 一种采用轻质弹性材料制成的羽毛球
KR100981888B1 (ko) 골프공
CN201239497Y (zh) 中空式球拍
CN203183605U (zh) 一种海洋球
CN205516334U (zh) 多趣味毽球
CN202983112U (zh) 羽毛球专用仿真羽毛和羽毛球
KR200470363Y1 (ko) 유희용 셔틀콕
CN201384828Y (zh) 一种水晶弹跳球密封装置

Legal Events

Date Code Title Description
WWE Wipo information: entry into national phase

Ref document number: 201180040381.0

Country of ref document: CN

121 Ep: the epo has been informed by wipo that ep was designated in this application

Ref document number: 11818228

Country of ref document: EP

Kind code of ref document: A1

ENP Entry into the national phase

Ref document number: 2012529614

Country of ref document: JP

Kind code of ref document: A

NENP Non-entry into the national phase

Ref country code: DE

WWE Wipo information: entry into national phase

Ref document number: 2011818228

Country of ref document: EP

ENP Entry into the national phase

Ref document number: 20137006574

Country of ref document: KR

Kind code of ref document: A

WWE Wipo information: entry into national phase

Ref document number: 13817823

Country of ref document: US