WO2012023524A1 - 励磁突入電流抑制装置 - Google Patents

励磁突入電流抑制装置 Download PDF

Info

Publication number
WO2012023524A1
WO2012023524A1 PCT/JP2011/068474 JP2011068474W WO2012023524A1 WO 2012023524 A1 WO2012023524 A1 WO 2012023524A1 JP 2011068474 W JP2011068474 W JP 2011068474W WO 2012023524 A1 WO2012023524 A1 WO 2012023524A1
Authority
WO
WIPO (PCT)
Prior art keywords
phase
voltage
transformer
magnetic flux
circuit breaker
Prior art date
Application number
PCT/JP2011/068474
Other languages
English (en)
French (fr)
Inventor
圭 川崎
腰塚 正
志郎 丸山
齋藤 実
徳幸 長山
Original Assignee
株式会社 東芝
Priority date (The priority date is an assumption and is not a legal conclusion. Google has not performed a legal analysis and makes no representation as to the accuracy of the date listed.)
Filing date
Publication date
Application filed by 株式会社 東芝 filed Critical 株式会社 東芝
Priority to BR112013003956A priority Critical patent/BR112013003956A2/pt
Priority to EP11818166.8A priority patent/EP2608239A1/en
Priority to AU2011291801A priority patent/AU2011291801B2/en
Priority to CN201180026815.1A priority patent/CN102918619B/zh
Publication of WO2012023524A1 publication Critical patent/WO2012023524A1/ja
Priority to US13/769,066 priority patent/US20130155553A1/en

Links

Images

Classifications

    • HELECTRICITY
    • H02GENERATION; CONVERSION OR DISTRIBUTION OF ELECTRIC POWER
    • H02HEMERGENCY PROTECTIVE CIRCUIT ARRANGEMENTS
    • H02H9/00Emergency protective circuit arrangements for limiting excess current or voltage without disconnection
    • H02H9/001Emergency protective circuit arrangements for limiting excess current or voltage without disconnection limiting speed of change of electric quantities, e.g. soft switching on or off
    • H02H9/002Emergency protective circuit arrangements for limiting excess current or voltage without disconnection limiting speed of change of electric quantities, e.g. soft switching on or off limiting inrush current on switching on of inductive loads subjected to remanence, e.g. transformers
    • HELECTRICITY
    • H01ELECTRIC ELEMENTS
    • H01FMAGNETS; INDUCTANCES; TRANSFORMERS; SELECTION OF MATERIALS FOR THEIR MAGNETIC PROPERTIES
    • H01F27/00Details of transformers or inductances, in general
    • H01F27/42Circuits specially adapted for the purpose of modifying, or compensating for, electric characteristics of transformers, reactors, or choke coils
    • HELECTRICITY
    • H01ELECTRIC ELEMENTS
    • H01HELECTRIC SWITCHES; RELAYS; SELECTORS; EMERGENCY PROTECTIVE DEVICES
    • H01H9/00Details of switching devices, not covered by groups H01H1/00 - H01H7/00
    • H01H9/54Circuit arrangements not adapted to a particular application of the switching device and for which no provision exists elsewhere
    • H01H9/56Circuit arrangements not adapted to a particular application of the switching device and for which no provision exists elsewhere for ensuring operation of the switch at a predetermined point in the ac cycle
    • H01H9/563Circuit arrangements not adapted to a particular application of the switching device and for which no provision exists elsewhere for ensuring operation of the switch at a predetermined point in the ac cycle for multipolar switches, e.g. different timing for different phases, selecting phase with first zero-crossing

Definitions

  • Embodiments of the present invention relate to a magnetizing inrush current suppressing device that suppresses magnetizing inrush current generated when a circuit breaker is turned on.
  • connection transformers are used, for example, when power is supplied to a single-phase electric furnace or a single-phase AC electric vehicle.
  • the control method for the three-phase transformer used in the power system is directly applied to the transformer that converts the three-phase AC voltage to the single-phase AC voltage. I can't do it.
  • the magnetic flux of the transformer core cannot be calculated as it is even if the phase voltage or the line voltage on the three-phase AC side is measured.
  • An object of an embodiment of the present invention is to suppress a magnetizing inrush current of a circuit breaker that opens and closes a connection between a three-phase AC power system including a power source and a transformer that converts a three-phase AC voltage into a single-phase AC voltage. It is an object of the present invention to provide a magnetizing inrush current suppressing device capable of controlling the charging phase.
  • An inrush current suppression device includes an inrush excitation of a circuit breaker that opens and closes a connection between a three-phase AC power system including a power source and a wood bridge connection or a modified wood bridge connection transformer.
  • An inrush current suppression device for suppressing current wherein the transformer side three-phase AC voltage measuring means for measuring the three-phase AC voltage on the transformer side of the circuit breaker, and the transformer-side three-phase AC voltage measuring means Based on the three-phase AC voltage measured by the circuit breaker, the residual magnetic flux calculating means for calculating the residual magnetic flux between the three wires of the transformer after the transformer is interrupted by the circuit breaker, and the three on the power supply side of the circuit breaker A steady-state calculation of a steady magnetic flux between the three wires of the transformer based on the three-phase AC voltage measured by the power-source-side three-phase AC voltage measuring means and the power-supply-side three-phase AC voltage measuring means.
  • Magnetic flux calculation means A phase determining means for determining a phase in which the stationary magnetic flux between the three wires calculated by the stationary magnetic flux calculating means and the residual magnetic flux between the three wires calculated by the residual magnetic flux calculating means are in the same polarity between the three wires; And a closing means for closing the circuit breaker at the phase determined by the phase determining means.
  • FIG. 1 is a configuration diagram showing a configuration of a power system to which the magnetizing inrush current suppressing device according to the first embodiment of the present invention is applied.
  • FIG. 2 is a configuration diagram showing the configuration of the modified Woodbridge connection transformer according to the first embodiment.
  • FIG. 3 is a configuration diagram illustrating a configuration of the wood bridge connection transformer according to the first embodiment.
  • FIG. 4 is a vector diagram showing the primary line voltage of the modified Woodbridge connection transformer according to the first embodiment as a vector.
  • FIG. 5 is a vector diagram showing the secondary voltage of the modified Woodbridge connection transformer 3 according to the first embodiment as a vector.
  • FIG. 6 is a waveform diagram showing each voltage waveform of the line voltage calculated by the steady magnetic flux calculation unit according to the first embodiment.
  • FIG. 1 is a configuration diagram showing a configuration of a power system to which the magnetizing inrush current suppressing device according to the first embodiment of the present invention is applied.
  • FIG. 2 is a configuration diagram showing the configuration of the modified Woodbridge connection transformer according
  • FIG. 7 is a waveform diagram showing a magnetic flux waveform for explaining a closing target phase range by the magnetizing inrush current suppressing device according to the first embodiment.
  • FIG. 8 is a waveform diagram showing the primary line voltage before and after the breaking of the modified Woodbridge connection transformer by the breaker according to the first embodiment.
  • FIG. 9 is a waveform diagram showing primary line-to-line magnetic flux before and after breaking of the modified Woodbridge connection transformer by the breaker according to the first embodiment.
  • FIG. 10 is a waveform diagram showing the primary line voltage before and after turning on the power bus of the modified Woodbridge connection transformer by the circuit breaker according to the first embodiment.
  • FIG. 11 is a waveform diagram showing the primary line-to-line magnetic flux before and after being applied to the power bus of the modified Woodbridge connection transformer by the circuit breaker according to the first embodiment.
  • FIG. 12 is a waveform diagram showing the primary side phase current before and after the power supply bus of the modified Woodbridge connection transformer by the circuit breaker according to the first embodiment.
  • FIG. 13 is a wave form diagram which shows the voltage between primary lines before and behind the injection
  • FIG. 14 is a waveform diagram showing the primary line-to-line magnetic flux before and after being applied to the power bus of the modified Woodbridge connection transformer using a conventional circuit breaker.
  • FIG. 15 is a waveform diagram showing primary-side phase currents before and after being applied to the power bus of a modified Woodbridge connection transformer using a conventional circuit breaker.
  • FIG. 16 is a block diagram which shows the structure of the electric power grid
  • FIG. 17 is a block diagram which shows the structure of the electric power system system to which the magnetizing inrush current suppression apparatus which concerns on the 3rd Embodiment of this invention was applied.
  • FIG. 18 is a waveform diagram showing voltage waveforms of two sets of secondary voltages measured by the transformer voltage measurement unit according to the third embodiment.
  • FIG. 16 is a block diagram which shows the structure of the electric power grid
  • FIG. 17 is a block diagram which shows the structure of the electric power system system to which the magnetizing inrush current suppression apparatus which concerns on the
  • FIG. 19 is a waveform diagram showing a voltage waveform of the primary-side line voltage after conversion by the transformer voltage conversion unit according to the third embodiment.
  • FIG. 20 is a waveform diagram showing a voltage waveform of the primary-side line voltage according to the third embodiment.
  • FIG. 21 is a block diagram which shows the structure of the electric power system system to which the magnetizing inrush current suppression apparatus which concerns on the 4th Embodiment of this invention was applied.
  • FIG. 22 is a block diagram which shows the structure of the electric power grid
  • FIG. 23 is a waveform diagram showing voltage waveforms of line voltages before conversion by the power supply voltage conversion unit according to the fifth embodiment.
  • FIG. 24 is a waveform diagram showing the voltage waveform of the secondary voltage of the modified Woodbridge connection transformer after conversion by the power supply voltage conversion unit according to the fifth embodiment.
  • FIG. 25 is a waveform diagram showing a voltage waveform of the secondary voltage of the modified Woodbridge connection transformer according to the fifth embodiment.
  • FIG. 26 is a waveform diagram showing the voltage waveform of the secondary voltage of the modified Woodbridge connection transformer converted by the power supply voltage conversion unit according to the fifth embodiment.
  • FIG. 27 is a waveform diagram showing a magnetic flux waveform for explaining a closing target phase range by the magnetizing inrush current suppressing device according to the fifth embodiment.
  • FIG. 28 is a waveform diagram showing a secondary voltage from the interruption to the closing of the modified Woodbridge connection transformer by the circuit breaker according to the fifth embodiment.
  • FIG. 29 is a waveform diagram showing a secondary magnetic flux from breaking to closing of the modified Woodbridge connection transformer by the breaker according to the fifth embodiment.
  • FIG. 30 is a waveform diagram showing a magnetizing inrush current from the interruption to the application of the modified Woodbridge connection transformer by the circuit breaker according to the fifth embodiment.
  • FIG. 31 is a block diagram which shows the structure of the electric power grid
  • FIG. 1 is a configuration diagram showing a configuration of a power system to which the magnetizing inrush current suppressing device 6 according to the first embodiment of the present invention is applied.
  • symbol is attached
  • the power system includes a power supply bus (power system bus) 1, a circuit breaker 2, a modified Woodbridge connection transformer 3, and a power supply voltage detector for three phases provided on the power supply bus 1.
  • the power source bus 1 is a power system bus provided with a three-phase AC power source composed of a U phase, a V phase, and a W phase.
  • the deformed wood bridge connection transformer 3 is connected to the power supply bus 1 via the circuit breaker 2.
  • the modified wood bridge connection transformer 3 is installed in an effective grounding system or a non-effective grounding system.
  • the modified wood bridge connection transformer 3 converts the three-phase AC voltage supplied from the power bus 1 into two sets of single-phase AC voltages.
  • the three-phase AC side is the primary side
  • the single-phase AC side is the secondary side.
  • the modified wood bridge connection transformer 3 may be a wood bridge connection transformer having the same transformation principle. Therefore, in the following (including the following embodiments), the modified woodbridge connection transformer 3 is replaced with a woodbridge connection transformer unless otherwise specified.
  • the circuit breaker 2 is provided between the power supply bus 1 and the modified Woodbridge connection transformer 3.
  • the circuit breaker 2 is a three-phase collective operation type circuit breaker in which all the three-phase main contacts of the U phase, the V phase, and the W phase are collectively operated.
  • the modified wood bridge connection transformer 3 is turned on by the power bus 1.
  • the circuit breaker 2 is opened, the modified wood bridge connection transformer 3 is disconnected from the power supply bus 1.
  • the three power supply voltage detectors 4U, 4V, and 4W are measuring devices for measuring the phase voltages (ground voltages) of the U-phase, V-phase, and W-phase of the power supply bus 1, respectively.
  • the power supply voltage detectors 4U, 4V, 4W are, for example, instrument transformers (VT, Voltage Transformer).
  • the power supply voltage detectors 4U, 4V, 4W output the detected value as a detection signal to the magnetizing inrush current suppressing device 6.
  • the three transformer primary voltage detectors 5U, 5V, 5W measure the terminal voltages of the respective primary terminals (U phase, V phase, W phase) of the modified Woodbridge connection transformer 3. This is a measuring instrument.
  • the transformer primary voltage detectors 5U, 5V, 5W are, for example, instrument transformers.
  • the transformer primary voltage detectors 5U, 5V, 5W output the detected values as detection signals to the magnetizing inrush current suppression device 6.
  • the magnetizing inrush current suppression device 6 is connected to the main contact of the circuit breaker 2 based on the detection signals received from the power supply voltage detectors 4U, 4V, 4W and the transformer primary voltage detectors 5U, 5V, 5W. Output the input command. Thereby, the circuit breaker 2 is turned on.
  • FIG. 2 is a configuration diagram showing the configuration of the modified Woodbridge connection transformer 3 according to the present embodiment.
  • the deformed wood bridge connection transformer 3 includes a main seat transformer (M seat transformer) 302 and a T seat transformer 301.
  • the main transformer 302 has two windings with the same number of turns on the secondary side.
  • the T-seat transformer 301 is connected to a single-turn transformer having windings with a turns ratio of 1: 0.366: 0.366 on the secondary side.
  • the modified wood bridge connection transformer 3 is connected so that the secondary side is back-to-back with two delta-connected windings.
  • FIG. 3 is a configuration diagram showing the configuration of the wood bridge connection transformer 3 according to the present embodiment.
  • the Woodbridge connection transformer 3 includes a main seat transformer (M seat transformer) 302 and a T seat transformer 301.
  • the main transformer 302 has two windings with the same number of turns on the secondary side.
  • the T-seat transformer 301 has windings with a turns ratio of 1: 0.366: 0.366 on the secondary side.
  • the woodbridge connection transformer 3 is connected so that the secondary side is back-to-back with two delta-connected windings.
  • the winding of the T-seat transformer 301 of the wood bridge connection is a separate single-turn transformer.
  • FIG. 4 is a vector diagram showing the primary side line voltages Vuv, Vvw, and Vwu of the modified Woodbridge connection transformer 3 according to the present embodiment as vectors.
  • FIG. 5 is a vector diagram showing the secondary voltages Vt and Vm of the modified Woodbridge connection transformer 3 according to the present embodiment as vectors.
  • the voltage Vvw between the VW phases on the primary side has the same phase as the voltage (secondary voltage of the M seat transformer 302) Vm applied between the secondary terminals ca of the main transformer 302.
  • the primary-side U-phase voltage (voltage between the neutral point N (ground) and the U-phase terminal) Vun is a voltage applied between the secondary terminals bd of the T-seat transformer 301 (T
  • the secondary voltage of the voltage transformer 301 is in phase with Vt. Accordingly, the phase of the secondary voltage Vt of the T-seat transformer 301 advances by 90 degrees relative to the secondary voltage Vm of the main-seat transformer 302.
  • FIG. 6 is a waveform diagram showing voltage waveforms of the line voltages Vuv, Vvw, Vwu calculated by the steady magnetic flux calculation unit 602 according to the present embodiment.
  • FIG. 7 is a waveform diagram showing a magnetic flux waveform for explaining the closing target phase range Tc by the magnetizing inrush current suppressing device 6 according to the present embodiment.
  • the magnetizing inrush current suppression device 6 includes a power supply voltage measuring unit 601, a steady magnetic flux calculating unit 602, a transformer voltage measuring unit 603, a residual magnetic flux calculating unit 604, a phase detecting unit 605, and a closing command output unit 606. I have.
  • the power supply voltage measuring unit 601 measures each phase voltage of the power supply bus 1 based on the detection signals detected by the power supply voltage detectors 4U, 4V, 4W.
  • the power supply voltage measurement unit 601 outputs the measured phase voltages to the steady magnetic flux calculation unit 602.
  • the steady magnetic flux calculation unit 602 calculates the line voltages Vuv, Vvw, Vwu between the UV phase, the VW phase, and the WU phase based on the phase voltages measured by the power supply voltage measurement unit 601.
  • the steady magnetic flux calculation unit 602 integrates the calculated line voltages Vuv, Vvw, Vwu, respectively.
  • the steady magnetic flux calculation unit 602 sets the integrated value as a steady state magnetic flux (steady magnetic flux) ⁇ Tuv, ⁇ Tvw, ⁇ Twu.
  • the steady magnetic flux calculation unit 602 calculates steady magnetic fluxes ⁇ Tuv, ⁇ Tvw, ⁇ Twu until the breaker 2 is turned on.
  • the steady magnetic flux calculation unit 602 outputs the calculated steady magnetic fluxes ⁇ Tuv, ⁇ Tvw, ⁇ Twu to the phase detection unit 605.
  • the transformer voltage measuring unit 603 measures the primary voltage of each phase of the modified Woodbridge connection transformer 3 based on the detection signals detected by the transformer primary voltage detectors 5U, 5V, 5W.
  • the transformer voltage measurement unit 603 outputs the measured phase voltages to the residual magnetic flux calculation unit 604.
  • the residual magnetic flux calculation unit 604 is based on each phase voltage measured by the transformer voltage measurement unit 603, and each line between the UV phase, the VW phase, and the WU phase immediately after the breaker 2 disconnects the deformed Woodbridge connection transformer 3. The inter-voltages Vuv, Vvw, Vwu are calculated.
  • the residual magnetic flux calculation unit 604 integrates the calculated line voltages Vuv, Vvw, Vwu.
  • the residual magnetic flux calculation unit 604 sets the integrated value as the residual magnetic flux (primary line magnetic flux) ⁇ Zuv, ⁇ Zvw, ⁇ Zwu of the iron core of the modified Woodbridge connection transformer 3.
  • the residual magnetic flux calculation unit 604 outputs the calculated residual magnetic fluxes ⁇ Zuv, ⁇ Zvw, ⁇ Zwu to the phase detection unit 605.
  • the phase detection unit 605 includes the steady magnetic fluxes ⁇ Tuv, ⁇ Tvw, ⁇ Twu calculated by the steady magnetic flux calculation unit 602 and the residual magnetic fluxes ⁇ Zuv, ⁇ Zvw calculated by the residual magnetic flux calculation unit 604 for each line.
  • ⁇ Zwu are detected in phase sections Tuv, Tvw, Twu in which the polarities coincide with each other.
  • the phase detection unit 605 identifies a section Tc in which the detected sections Tuv, Tvw, and Twu of the phase for each line overlap in all three sections.
  • the identified section Tc is a closing target phase range in which the circuit breaker 2 is turned on.
  • the phase detection unit 605 outputs the detected input target phase range (section) Tc to the input command output unit 606.
  • the closing command output unit 606 outputs a closing command to the operation mechanism that drives the main contact of the circuit breaker 2 within the closing target phase range Tc detected by the phase detection unit 605. Thereby, the circuit breaker 2 is turned on.
  • FIG. 8 and 9 show an example of the state before and after the breaking TP of the modified Woodbridge connection transformer 3 by the breaker 2.
  • FIG. 8 is a waveform diagram showing primary line voltages Vuv, Vvw, Vwu.
  • FIG. 9 is a waveform diagram showing primary interline magnetic fluxes ⁇ uv, ⁇ vw, and ⁇ wu.
  • FIG. 10 to 12 show an example of the state before and after the closing CL to the power bus 1 of the modified Woodbridge connection transformer 3 by the circuit breaker 2.
  • FIG. 10 is a waveform diagram showing primary line voltages Vuv, Vvw, Vwu.
  • FIG. 11 is a waveform diagram showing primary interline magnetic fluxes ⁇ uv, ⁇ vw, and ⁇ wu.
  • FIG. 12 is a waveform diagram showing primary side phase currents (excitation currents) Iu, Iv, Iw.
  • FIGS. 13 to 15 show an example of the state before and after the closing CL to the power bus 1 of the modified Woodbridge connection transformer 3 by the conventional closing method of the circuit breaker 2.
  • FIG. 13 is a waveform diagram showing primary line voltages Vuv, Vvw, Vwu.
  • FIG. 14 is a waveform diagram showing primary interline magnetic fluxes ⁇ uv, ⁇ vw, and ⁇ wu.
  • FIG. 15 is a waveform diagram showing primary side phase currents (excitation inrush currents) Iu, Iv, Iw.
  • the conditions in FIGS. 13 to 15 are the same as the conditions shown in FIGS. 8 to 12 except for the closing phase of the circuit breaker 2.
  • the magnetizing inrush currents Iu, Iv, Iw reach a maximum of about 1200 amperes.
  • the excitation inrush current suppression device 6 is a phase section in which the polarities of the steady magnetic flux ⁇ Tuv, ⁇ Tvw, ⁇ Twu and the residual magnetic flux ⁇ Zuv, ⁇ Zvw, ⁇ Zwu are the same in all three phases.
  • the modified Woodbridge connection transformer 3 is inserted by the circuit breaker 2. By controlling the making phase in this way and putting the modified Woodbridge connection transformer 3 into the power supply bus 1, the magnetizing inrush current can be suppressed.
  • a DC voltage may remain at the neutral point.
  • the phase voltage is integrated, the residual magnetic flux of the winding cannot be accurately calculated.
  • the line voltage is not affected by the DC voltage.
  • the magnetizing inrush current suppressing device 6 the residual magnetic flux can be accurately calculated by obtaining the magnetic flux by integrating the line voltage.
  • the configuration of the magnetizing inrush current suppressing device 6 according to this modification is such that, in the first embodiment, the detection of the closing target phase range Tc is performed instead of the steady magnetic fluxes ⁇ Tuv, ⁇ Tvw, ⁇ Twu calculated by the steady magnetic flux calculator 602. In this configuration, the phase voltage or the line voltage measured by the power supply voltage measuring unit 601 is used.
  • each phase voltage or line voltage measured by the power supply voltage measuring unit 601 and the residual magnetic fluxes ⁇ Zuv, ⁇ Zvw, ⁇ Zwu between the lines calculated by the residual magnetic flux calculating unit 604 have respective polarities.
  • a phase interval that coincides with each other is detected as the input target phase range Tc.
  • the phase difference between the line voltage and the steady magnetic flux between the lines is 90 degrees. Therefore, if the determined input target phase range Tc is delayed by 90 degrees, it matches the input target range of the first embodiment.
  • the phase voltage is 30 degrees behind the line voltage. Therefore, if the steady magnetic flux between the lines is compared with the phase voltage, the phase difference between the phase voltage and the steady magnetic flux between the lines is 60 degrees, and if the previously determined input target phase range Tc is delayed by 60 degrees, the first is obtained. This coincides with the input target range Tc of the embodiment.
  • the closing command output unit 606 outputs a closing command to the circuit breaker 2 within the detected closing target phase range Tc.
  • this phase difference may be set in advance in the magnetizing inrush current suppressing device 6 as a correction value.
  • the magnetizing inrush current suppression device 6 can perform simpler control.
  • the magnetizing inrush current suppression device 6 has less control processing (calculation processing, etc.) than the case of the first embodiment. For this reason, it is possible to perform charging while suppressing the magnetizing inrush current more quickly.
  • the phase detection unit 605 detects the largest residual magnetic flux between the residual magnetic fluxes ⁇ Zuv, ⁇ Zvw, and ⁇ Zwu calculated by the residual magnetic flux calculation unit 604. A voltage zero point at which the detected voltage between the lines transitions from the same polarity to the opposite polarity as the residual magnetic flux between the lines (the largest residual magnetic flux) is detected.
  • the phase detection unit 605 outputs the detected voltage zero point to the input command output unit 606.
  • the closing command output unit 606 outputs a closing command to the circuit breaker 2 with the voltage zero point detected by the phase detector 605 as a closing phase target.
  • the voltage zero point detected by the phase detection unit 605 is substantially equal to the phase interval in which the polarities of the steady magnetic flux ⁇ Tuv, ⁇ Tvw, ⁇ Twu and the residual magnetic flux ⁇ Zuv, ⁇ Zvw, ⁇ Zwu are the same in all three phases. Become the center. Therefore, the same effect as the first embodiment can be obtained.
  • the zero point of the line voltage having the largest residual magnetic flux is set, but the phase voltage of the phase corresponding to the line (for example, U phase in the case of U-V) is the residual magnetic flux between the lines.
  • the phase voltage of the phase corresponding to the line for example, U phase in the case of U-V
  • a zero voltage point that transitions from the same polarity to the opposite polarity may be detected.
  • phase difference between the phase voltage and the line voltage is 30 degrees. Therefore, even if the line voltage that is originally desired to be compared is replaced with the phase voltage, if the phase difference is about 30 degrees, the effect of suppressing the excitation inrush current can be obtained.
  • FIG. 16 is a block diagram which shows the structure of the electric power grid
  • the excitation inrush current suppression device 6A is different from the excitation inrush current suppression device 6 according to the first embodiment shown in FIG. 1 in that a phase detection unit 605A is provided instead of the phase detection unit 605, and a measurement information holding unit 607, opening In this configuration, a phase control unit 608 and an opening command output unit 609 are added.
  • Other configurations are the same as those of the magnetizing inrush current suppressing device 6 according to the first embodiment.
  • the measurement information holding unit 607 determines the voltage cutoff phase of the primary voltage measured by the transformer voltage measuring unit 603 and the residual magnetic flux when the circuit breaker 2 is interrupted a plurality of times.
  • the magnetic flux signal calculated by the calculation unit 604 is measured.
  • the measurement information holding unit 607 holds, as measurement information, information on the characteristics of the residual magnetic flux, such as the relationship between the cutoff phase and the residual magnetic flux, based on the measured voltage cutoff phase and magnetic flux signal.
  • the opening phase control unit 608 receives the measurement information held in the measurement information holding unit 607 and each phase voltage of the power supply bus 1 measured by the power supply voltage measurement unit 601.
  • the opening phase control unit 608 estimates residual magnetic fluxes ⁇ Zuv, ⁇ Zvw, ⁇ Zwu between the lines from the measurement information.
  • the opening phase control unit 608 controls the opening phase of the main contact of the circuit breaker 2 based on the estimated residual magnetic fluxes ⁇ Zuv, ⁇ Zvw, ⁇ Zwu and the phase voltages so that the breaking phase is always the same.
  • the opening phase control unit 608 outputs the controlled opening phase to the opening command output unit 609.
  • the opening command output unit 609 outputs an opening command to the operation mechanism that drives the main contact of the circuit breaker 2 based on the opening phase received from the opening phase control unit 608. Thereby, the circuit breaker 2 is opened.
  • the measurement information held in the measurement information holding unit 607 and the steady magnetic fluxes ⁇ Tuv, ⁇ Tvw, ⁇ Twu calculated by the steady magnetic flux calculation unit 602 are input to the phase detection unit 605A.
  • the phase detection unit 605A estimates residual magnetic fluxes ⁇ Zuv, ⁇ Zvw, and ⁇ Zwu from the measurement information held in the measurement information holding unit 607.
  • the phase detection unit 605A identifies the closing target phase range Tc in which the breaker 2 is to be turned on, based on the residual magnetic fluxes ⁇ Zuv, ⁇ Zvw, ⁇ Zwu and the steady magnetic fluxes ⁇ Tuv, ⁇ Tvw, ⁇ Twu.
  • the method for identifying the input target phase range Tc is the same as in the first embodiment.
  • the opening phase control unit 608 performs phase control so that the cutoff phase is always the same. Therefore, if the information held in the measurement information holding unit 607 is not changed (the measurement information is not updated), the phase detection unit 605A may always have the same input target phase range Tc.
  • the magnetizing inrush current suppression device 6 ⁇ / b> A controls the breaker 2 so that the breaker phase is always the same, thereby breaking the breaker 2. That is, the magnetizing inrush current suppressing device 6A can always set the residual magnetic fluxes ⁇ Zuv, ⁇ Zvw, and ⁇ Zwu to the same value. Therefore, the exciting inrush current suppressing device 6A can always make the closing phase for suppressing the exciting inrush current even when the breaker 2 is turned on to excite the deformed woodbridge connection transformer 3. .
  • the magnetizing inrush current suppressing device 6A is based on the measurement information held in the measurement information holding unit 607. Can always be obtained information on the residual magnetic fluxes ⁇ Zuv, ⁇ Zvw, ⁇ Zwu of the deformed wood bridge connection transformer 3 after being interrupted. Therefore, the transformer primary voltage detectors 5U, 5V, and 5W can be connected only during measurement by the measurement information holding unit 607 and can be removed in a normal operation state. Of course, the transformer primary voltage detectors 5U, 5V, 5W may be permanently installed.
  • FIG. 17 is a block diagram which shows the structure of the electric power system system to which the magnetizing inrush current suppression apparatus 6B which concerns on the 3rd Embodiment of this invention was applied.
  • the power grid system according to the present embodiment is the same as the power grid system according to the first embodiment shown in FIG. 1 except that the transformer secondary voltage detectors 5T, 5T, 5M is provided.
  • the magnetizing inrush current suppressing device 6B is the same as the magnetizing inrush current suppressing device 6 according to the first embodiment shown in FIG. 1, except that the transformer voltage measuring unit 603 is replaced with the transformer voltage measuring unit 603B and the residual magnetic flux calculating unit 604 is left. Instead of the magnetic flux calculation unit 604B, a transformer voltage conversion unit 610 is added. About another structure, it is the same as that of 1st Embodiment.
  • the transformer voltage measuring unit 603B measures the two sets of secondary voltages Vt and Vm of the modified Woodbridge connection transformer 3 based on the detection signals detected by the transformer secondary voltage detectors 5T and 5M.
  • the secondary voltage Vm is the secondary voltage (voltage between terminals ca) of the main transformer 302.
  • the secondary voltage Vt is a secondary voltage (voltage between terminals bd) of the T-seat transformer 301.
  • the transformer voltage measurement unit 603B outputs the measured two sets of secondary voltages Vt and Vm to the transformer voltage conversion unit 610.
  • the transformer voltage conversion unit 610 converts the two sets of single-phase AC voltages Vt and Vm measured by the transformer voltage measurement unit 603B into primary side line voltages VDuv, VDvw, and VDwu according to the following equations.
  • the primary side line voltage VDuv is a line voltage between UV phases after conversion.
  • Primary side line voltage VDvw is a line voltage between VW phases after conversion.
  • Primary side line voltage VDwu is a line voltage between WU phases after conversion.
  • the transformer voltage conversion unit 610 outputs the converted primary side line voltages VDuv, VDvw, VDwu to the residual magnetic flux calculation unit 604B.
  • VDuv ( ⁇ 3 / 2) Vt ⁇ (1/2) Vm Equation (1)
  • VDvw Vm Formula (2)
  • VDwu ⁇ ( ⁇ 3 / 2) Vt ⁇ (1/2) Vm Equation (3) Note that ⁇ 3 / 2 may be replaced with 0.866.
  • FIG. 18 is a waveform diagram showing voltage waveforms of two sets of secondary voltages Vt and Vm measured by the transformer voltage measuring unit 603B.
  • FIG. 19 is a waveform diagram showing voltage waveforms of the primary side line voltages VDuv, VDvw, VDwu after conversion by the transformer voltage conversion unit 610.
  • FIG. 20 is a waveform diagram showing voltage waveforms of primary side line voltages Vuv, Vvw, Vwu.
  • the transformer voltage conversion unit 610 converts the two sets of secondary voltages Vt and Vm shown in FIG. 18 into primary side line voltages VDuv, VDvw, and VDwu shown in FIG. Thereby, the transformer voltage conversion part 610 can calculate
  • the residual magnetic flux calculation unit 604B integrates each of the line voltages VDuv, VDvw, VDwu converted by the transformer voltage conversion unit 610 immediately after the circuit breaker 2 cuts off the modified Woodbridge connection transformer 3.
  • the residual magnetic flux calculation unit 604B sets the integrated value as the residual magnetic flux (primary line magnetic flux) ⁇ Zuv, ⁇ Zvw, ⁇ Zwu of the iron core of the modified Woodbridge connection transformer 3.
  • the residual magnetic flux calculation unit 604B outputs the calculated residual magnetic fluxes ⁇ Zuv, ⁇ Zvw, ⁇ Zwu to the phase detection unit 605.
  • the phase detector 605 is based on the steady magnetic fluxes ⁇ Tuv, ⁇ Tvw, ⁇ Twu calculated by the steady magnetic flux calculator 602 and the residual magnetic fluxes ⁇ Zuv, ⁇ Zvw, ⁇ Zwu calculated by the residual magnetic flux calculator 604B.
  • the input target phase range Tc is identified.
  • the secondary voltages Vt and Vm of the modified Woodbridge connection transformer 3 are provided. Can be converted into primary side line voltages VDuv, VDvw, VDwu to obtain the same effects as those of the first embodiment.
  • FIG. 21 is a configuration diagram showing a configuration of a power system to which the magnetizing inrush current suppressing device 6C according to the fourth embodiment of the present invention is applied.
  • the magnetizing inrush current suppressing device 6C includes a phase detecting unit 605A according to the second embodiment instead of the phase detecting unit 605 in the exciting inrush current suppressing device 6B according to the third embodiment shown in FIG.
  • An information holding unit 607C, an opening phase control unit 608C, and an opening command output unit 609 according to the second embodiment are added.
  • Other configurations are the same as those of the magnetizing inrush current suppressing device 6B according to the third embodiment.
  • the measurement information holding unit 607C Before the operation of the magnetizing inrush current suppressing device 6C, the measurement information holding unit 607C has the line voltages VDuv, VDvw, VDwu converted by the transformer voltage converting unit 610 and the residual when the circuit breaker 2 is interrupted a plurality of times.
  • the magnetic flux signal calculated by the magnetic flux calculation unit 604B is measured.
  • the measurement information holding unit 607C holds, as measurement information, information on the characteristics of the residual magnetic flux, such as the relationship between the cutoff phase and the residual magnetic flux, based on the measured voltage cutoff phase and magnetic flux signal.
  • the open phase control unit 608C receives the measurement information held in the measurement information holding unit 607C and the phase voltage of the power supply bus 1 measured by the power supply voltage measurement unit 601.
  • the opening phase control unit 608C estimates the residual magnetic fluxes ⁇ Zuv, ⁇ Zvw, ⁇ Zwu between the primary lines of the modified Woodbridge connection transformer 3 from the measurement information.
  • the opening phase control unit 608C controls the opening phase of the main contact of the circuit breaker 2 so that the breaking phase is always the same based on the estimated residual magnetic fluxes ⁇ Zuv, ⁇ Zvw, ⁇ Zwu and the phase voltages.
  • the opening phase control unit 608C outputs the controlled opening phase to the opening command output unit 609.
  • the opening command output unit 609 outputs a opening command to the operation mechanism that drives the main contact of the circuit breaker 2 based on the opening phase received from the opening phase control unit 608C. Thereby, the circuit breaker 2 is opened.
  • the phase detection unit 605A is based on the measurement information held in the measurement information holding unit 607C and the steady magnetic fluxes ⁇ Tuv, ⁇ Tvw, ⁇ Twu calculated by the steady magnetic flux calculation unit 602.
  • the input target phase range Tc in which 2 is input is identified.
  • FIG. 22 is a block diagram which shows the structure of the electric power system system to which the magnetizing inrush current suppression apparatus 6D which concerns on the 5th Embodiment of this invention was applied.
  • the magnetizing inrush current suppressing device 6D is provided with a power supply voltage converting unit 611 instead of the transformer voltage converting unit 610, and the steady magnetic flux calculating unit 602 is provided.
  • the steady magnetic flux calculation unit 602D the residual magnetic flux calculation unit 604B is replaced with the residual magnetic flux calculation unit 604D, and the phase detection unit 605 is replaced with the phase detection unit 605D.
  • Other configurations are the same as those in the third embodiment.
  • FIG. 26 is a waveform diagram showing voltage waveforms of the secondary voltages VDm and VDt of the modified Woodbridge connection transformer 3 converted by the power supply voltage conversion unit 611 according to the present embodiment.
  • FIG. 27 is a waveform diagram showing a magnetic flux waveform for explaining the closing target phase range Tc by the magnetizing inrush current suppressing device 6D according to the present embodiment.
  • the configuration of the magnetizing inrush current suppressing device 6D will be described with reference to FIGS.
  • the residual magnetic flux calculation unit 604D integrates the two sets of secondary voltages Vt and Vm measured by the transformer voltage measurement unit 603B immediately after the circuit breaker 2 cuts off the deformed Woodbridge connection transformer 3.
  • the residual magnetic flux calculation unit 604D sets the integrated values as residual magnetic fluxes (secondary magnetic fluxes) ⁇ Zm and ⁇ Zt of the iron core of the modified Woodbridge connection transformer 3.
  • a residual magnetic flux ⁇ Zm is a secondary residual magnetic flux of the main transformer 302.
  • the residual magnetic flux ⁇ Zt is a secondary side residual magnetic flux of the T-seat transformer 301.
  • the residual magnetic flux calculation unit 604D outputs the calculated residual magnetic fluxes ⁇ Zm and ⁇ Zt to the phase detection unit 605D.
  • FIG. 23 is a waveform diagram showing voltage waveforms of the line voltages Vuv, Vvw, and Vwu before conversion by the power supply voltage conversion unit 611.
  • FIG. 24 is a waveform diagram showing voltage waveforms of the secondary voltages VDm and VDt of the modified Woodbridge connection transformer 3 after conversion by the power supply voltage conversion unit 611.
  • FIG. 25 is a waveform diagram showing voltage waveforms of the secondary voltages Vm and Vt of the modified Woodbridge connection transformer 3.
  • the power supply voltage conversion unit 611 calculates each line voltage Vuv, Vvw, Vwu based on each phase voltage measured by the power supply voltage measurement unit 601.
  • the power supply voltage conversion unit 611 converts the calculated line voltages Vuv, Vvw, and Vwu into two secondary voltages VDm and VDt of the modified Woodbridge connection transformer 3 shown in FIG.
  • VDm Vvw Formula (4)
  • VDt (Vuv ⁇ Vwu) / ⁇ 3 (5) Note that 1 / ⁇ 3 may be replaced with 0.577.
  • the secondary voltage VDm is the secondary voltage of the main transformer 302 after conversion.
  • the secondary voltage VDt is the secondary voltage of the T-seat transformer 301 after conversion.
  • the power supply voltage conversion unit 611 can calculate the same voltage waveform as the secondary voltages Vm and Vt shown in FIG.
  • the power supply voltage converter 611 outputs the converted two secondary voltages VDm and VDt of the modified Woodbridge connection transformer 3 to the steady magnetic flux calculator 602D.
  • the steady magnetic flux calculation unit 602D integrates the two secondary voltages VDm and VDt converted by the power supply voltage conversion unit 611, respectively.
  • the steady magnetic flux calculating unit 602D sets the integrated values as steady-state magnetic fluxes (steady magnetic fluxes) ⁇ Tm and ⁇ Tt.
  • the steady magnetic flux calculation unit 602D calculates steady magnetic fluxes ⁇ Tm and ⁇ Tt until the breaker 2 is turned on.
  • the steady magnetic flux calculation unit 602D outputs the calculated steady magnetic flux ⁇ Tm, ⁇ Tt to the phase detection unit 605D.
  • the phase detection unit 605D is configured such that the polarities of the steady magnetic fluxes ⁇ Tm and ⁇ Tt calculated by the steady magnetic flux calculation unit 602D and the residual magnetic fluxes ⁇ Zm and ⁇ Zt calculated by the residual magnetic flux calculation unit 604D are secondary.
  • the sections Tm and Tt having the same phase are detected for each of the terminals.
  • the phase detection unit 605D identifies a section Tc where the detected sections Tm and Tt overlap in two sections.
  • the identified section Tc is a closing target phase range in which the circuit breaker 2 is turned on.
  • the phase detection unit 605D outputs the detected input target phase range (section) Tc to the input command output unit 606.
  • the closing command output unit 606 outputs a closing command to the operation mechanism that drives the main contact of the circuit breaker 2 within the closing target phase range Tc detected by the phase detection unit 605D. Thereby, the circuit breaker 2 is turned on.
  • FIG. 28 to FIG. 30 show an example of the state from the breaking TP to the closing CL of the modified Woodbridge connection transformer 3 by the breaker 2.
  • FIG. 28 is a waveform diagram showing secondary voltages Vm and Vt.
  • FIG. 29 is a waveform diagram showing secondary magnetic fluxes (steady magnetic fluxes ⁇ Tm and ⁇ Tt and residual magnetic fluxes ⁇ Zm and ⁇ Zt).
  • FIG. 30 is a waveform diagram showing the magnetizing inrush currents Iu, Iv, and Iw.
  • the steady magnetic fluxes ⁇ Tm and ⁇ Tt of the secondary magnetic flux of the modified Woodbridge connection transformer 3 can be obtained from the line voltages Vuv, Vvw and Vwu of the power supply bus 1. Therefore, by measuring the secondary voltage of the modified Woodbridge connection transformer 3 and obtaining the residual magnetic fluxes ⁇ Zm and ⁇ Zt, the closing target phase range Tc for closing the circuit breaker 2 can be identified.
  • FIG. 31 is a configuration diagram showing a configuration of a power system to which the magnetizing inrush current suppressing device 6E according to the sixth embodiment of the present invention is applied.
  • An excitation inrush current suppressing device 6E is the same as the excitation inrush current suppressing device 6D according to the fifth embodiment shown in FIG. In this configuration, a phase control unit 608E and an opening command output unit 609 according to the second embodiment are added. Other configurations are the same as those of the fifth embodiment.
  • the measurement information holding unit 607E determines the voltage cutoff phases of the secondary voltages Vm and Vt measured by the transformer voltage measuring unit 603B when the circuit breaker 2 is interrupted a plurality of times. Then, the magnetic flux signal calculated by the residual magnetic flux calculation unit 604D is measured. The measurement information holding unit 607E holds, as measurement information, information on the residual magnetic flux characteristics such as the relationship between the cutoff phase and the residual magnetic flux based on the measured voltage cutoff phase and magnetic flux signal.
  • the opening phase control unit 608E receives the measurement information held in the measurement information holding unit 607E and each phase voltage of the power supply bus 1 measured by the power supply voltage measurement unit 601.
  • the opening phase control unit 608E estimates residual magnetic fluxes ⁇ Zm and ⁇ Zt of the secondary winding of the modified Woodbridge connection transformer 3 from the measurement information.
  • the opening phase control unit 608E controls the opening phase of the main contact of the circuit breaker 2 so that the interruption phase is always the same based on the estimated residual magnetic fluxes ⁇ Zm and ⁇ Zt and the phase voltages.
  • the opening phase control unit 608E outputs the controlled opening phase to the opening command output unit 609.
  • the opening command output unit 609 outputs a opening command to the operation mechanism that drives the main contact of the circuit breaker 2 based on the opening phase received from the opening phase control unit 608E. Thereby, the circuit breaker 2 is opened.
  • the phase detection unit 605E receives the measurement information held in the measurement information holding unit 607E and the steady magnetic fluxes ⁇ Tm and ⁇ Tt of the secondary magnetic flux of the modified Woodbridge connection transformer 3 calculated by the steady magnetic flux calculation unit 602D. .
  • the phase detector 605E estimates the residual magnetic fluxes ⁇ Zm and ⁇ Zt from the measurement information held in the measurement information holding unit 607E.
  • the phase detector 605E identifies the closing target phase range Tc in which the breaker 2 is to be turned on, based on the residual magnetic fluxes ⁇ Zm and ⁇ Zt and the steady magnetic fluxes ⁇ Tm and ⁇ Tt.
  • the method for identifying the input target phase range Tc is the same as in the fifth embodiment.
  • the opening phase control unit 608E performs phase control so that the cutoff phase is always the same. Therefore, the phase detection unit 605E may always have the same input target phase range Tc unless the information held in the measurement information holding unit 607E is changed (if the measurement information is not updated).
  • each phase voltage of the power supply bus 1 is measured by the power supply voltage detectors 4U, 4V, 4W, but each line voltage of the power supply bus 1 may be measured. Thereby, the arithmetic processing which converts a phase voltage into a line voltage can be omitted.
  • various parameters in phase control in the excitation inrush current suppressing device 6 and the like may be corrected to improve accuracy.
  • the circuit breaker 2 when the circuit breaker 2 is turned on, there is a variation in closing time due to a preceding discharge called a pre-arc generated between the main contacts and a variation in operation of the operation mechanism.
  • the characteristics of the throwing variation due to the pre-arc and the variation when the circuit breaker is thrown are acquired in advance, and correction is performed based on this characteristic when performing phase control. By performing such correction, the inrush current can be more reliably suppressed even if these variations occur.
  • the magnetic flux when calculating the steady magnetic flux and the residual magnetic flux, is obtained after converting the voltage, such as phase voltage to line voltage or line voltage to various winding voltages. After obtaining the magnetic flux, the magnetic flux may be converted. For example, when obtaining the magnetic flux between each line from each phase voltage, the magnetic flux between each line may be obtained after obtaining the magnetic flux of each phase first. Also, in other calculations, if the results are the same, the order of calculations and the place where the calculations are performed (regardless of the inside or outside of the magnetizing inrush current suppression device, the computer, various detectors, etc.) can be changed as appropriate. can do.
  • the circuit breaker 2 is a three-phase collective operation type circuit breaker, but each phase operation type circuit breaker operated for each phase may be used. If it is each phase operation type

Landscapes

  • Engineering & Computer Science (AREA)
  • Power Engineering (AREA)
  • Driving Mechanisms And Operating Circuits Of Arc-Extinguishing High-Tension Switches (AREA)
  • Protection Of Transformers (AREA)
  • Emergency Protection Circuit Devices (AREA)
  • Keying Circuit Devices (AREA)

Abstract

 電源母線(1)と変形ウッドブリッジ結線変圧器(3)との接続を開閉する三相一括操作型の遮断器(2)の励磁突入電流を抑制する励磁突入電流抑制装置(6)であって、電源母線(1)の三相交流電圧を計測して、変形ウッドブリッジ結線変圧器(3)の定常磁束を演算し、変形ウッドブリッジ結線変圧器(3)側の三相交流電圧を計測して、遮断後の変形ウッドブリッジ結線変圧器(3)の残留磁束を演算し、定常磁束と残留磁束とが全ての線間において極性が一致した場合に、遮断器(2)を投入する。

Description

励磁突入電流抑制装置
 本発明の実施形態は、遮断器を投入する際に生じる励磁突入電流を抑制する励磁突入電流抑制装置に関する。
 一般に、変圧器鉄心に残留磁束がある状態で電源投入により無負荷励磁を行うと、大きな励磁突入電流が流れることが知られている。この励磁突入電流の大きさは変圧器の定格負荷電流の数倍になる。このように大きな励磁突入電流が流れると、系統電圧が変動し、その電圧変動が大きい場合、需要者に影響を与えることがある。
 このため、励磁突入電流を抑制する方法として、投入抵抗と接点とが直列に接続された抵抗体付き遮断器を用いることが知られている。抵抗体付き遮断器は、遮断器主接点と並列に接続する。この抵抗体付き遮断器は、遮断器主接点に先行して投入する。これにより、励磁突入電流が抑制される。
 また、他の抑制方法として、直接接地系の三相変圧器を3台の単相型遮断器で投入する際、任意の1相分の遮断器を先行投入し、その後に残りの2相分の遮断器を投入させるようにして励磁突入電流を抑制する方法が知られている。
 さらに、非有効接地系の三相変圧器を三相一括操作型遮断器で投入する際の励磁突入電流を抑制する方法として、変圧器が遮断された時の鉄心に残留する磁束の値を計測し、変圧器投入時の励磁突入電流を遮断器の投入位相を制御することで抑制することが知られている。
 一方、三相交流電圧を単相交流電圧に変換する方法として、スコット結線、ウッドブリッジ結線変圧器、又は変形ウッドブリッジ結線等が知られている。これらの結線の変圧器は、例えば、単相電気炉又は単相交流電気車などに給電する場合に用いられる。
 しかしながら、上述のような励磁突入電流を抑制する方法では、以下のような問題がある。
 抵抗体付き遮断器による励磁突入電流抑制方法では、通常の遮断器に対して抵抗体付き遮断器を付加する必要があるため、遮断器全体としてみた場合、大型化してしまう。
 また、いずれの励磁突入電流を抑制する方法も、上述のような三相交流電圧を単相交流電圧に変換する変圧器を投入することは想定されていない。
 例えば、残留磁束を計測し、遮断器の投入位相を制御する方法では、電力系統に用いられる三相変圧器に対する制御方法を、三相交流電圧を単相交流電圧に変換する変圧器にそのまま適用することはできない。これらの結線の変圧器の場合は、三相交流側の相電圧又は線間電圧を計測しても、変圧器鉄心の磁束をそのまま算出することができないからである。
特開2002-75145号公報 特開2008-160100号公報
John H.Brunke、外1名,"Elimination of Transformer Inrush Currents by Controlled Switching -Part I: Theoretical Considerations", IEEE TRANSACTIONS ON POWER DELIVERY, IEEE,2001年4月,Vol.16,No.2,p.276-280
 本発明の実施形態の目的は、電源を備えた三相交流の電力系統と三相交流電圧を単相交流電圧に変換する変圧器との接続を開閉する遮断器の励磁突入電流を抑制するための投入位相の制御をすることのできる励磁突入電流抑制装置を提供することにある。
 本発明の実施形態の観点に従った励磁突入電流抑制装置は、電源を備えた三相交流の電力系統とウッドブリッジ結線又は変形ウッドブリッジ結線の変圧器との接続を開閉する遮断器の励磁突入電流を抑制する励磁突入電流抑制装置であって、前記遮断器の前記変圧器側の三相交流電圧を計測する変圧器側三相交流電圧計測手段と、前記変圧器側三相交流電圧計測手段により計測された三相交流電圧に基づいて、前記遮断器による前記変圧器の遮断後の前記変圧器の三線間の残留磁束を演算する残留磁束演算手段と、前記遮断器の前記電源側の三相交流電圧を計測する電源側三相交流電圧計測手段と、前記電源側三相交流電圧計測手段により計測された三相交流電圧に基づいて、前記変圧器の三線間の定常磁束を演算する定常磁束演算手段と、前記定常磁束演算手段により演算された前記三線間の定常磁束と前記残留磁束演算手段により演算された前記三線間の残留磁束とが三線間のそれぞれで極性が一致する位相を判断する位相判断手段と、前記位相判断手段により判断された位相で、前記遮断器を投入する投入手段とを備えている。
図1は、本発明の第1の実施形態に係る励磁突入電流抑制装置の適用された電力系統システムの構成を示す構成図である。 図2は、第1の実施形態に係る変形ウッドブリッジ結線変圧器の構成を示す構成図である。 図3は、第1の実施形態に係るウッドブリッジ結線変圧器の構成を示す構成図である。 図4は、第1の実施形態に係る変形ウッドブリッジ結線変圧器の1次側線間電圧をベクトルで示すベクトル図である。 図5は、第1の実施形態に係る変形ウッドブリッジ結線変圧器3の2次電圧をベクトルで示すベクトル図である。 図6は、第1の実施形態に係る定常磁束算出部により演算される線間電圧の各電圧波形を示す波形図である。 図7は、第1の実施形態に係る励磁突入電流抑制装置による投入目標位相範囲を説明するための磁束波形を示す波形図である。 図8は、第1の実施形態に係る遮断器による変形ウッドブリッジ結線変圧器の遮断前後の1次線間電圧を示す波形図である。 図9は、第1の実施形態に係る遮断器による変形ウッドブリッジ結線変圧器の遮断前後の1次線間磁束を示す波形図である。 図10は、第1の実施形態に係る遮断器による変形ウッドブリッジ結線変圧器の電源母線への投入前後の1次線間電圧を示す波形図である。 図11は、第1の実施形態に係る遮断器による変形ウッドブリッジ結線変圧器の電源母線への投入前後の1次線間磁束を示す波形図である。 図12は、第1の実施形態に係る遮断器による変形ウッドブリッジ結線変圧器の電源母線への投入前後の1次側相電流を示す波形図である。 図13は、従来の遮断器による変形ウッドブリッジ結線変圧器の電源母線への投入前後の1次線間電圧を示す波形図である。 図14は、従来の遮断器による変形ウッドブリッジ結線変圧器の電源母線への投入前後の1次線間磁束を示す波形図である。 図15は、従来の遮断器による変形ウッドブリッジ結線変圧器の電源母線への投入前後の1次側相電流を示す波形図である。 図16は、本発明の第2の実施形態に係る励磁突入電流抑制装置の適用された電力系統システムの構成を示す構成図である。 図17は、本発明の第3の実施形態に係る励磁突入電流抑制装置の適用された電力系統システムの構成を示す構成図である。 図18は、第3の実施形態に係る変圧器電圧計測部により計測された2組の2次電圧の電圧波形を示す波形図である。 図19は、第3の実施形態に係る変圧器電圧変換部による変換後の1次側線間電圧の電圧波形を示す波形図である。 図20は、第3の実施形態に係る1次側線間電圧の電圧波形を示す波形図である。 図21は、本発明の第4の実施形態に係る励磁突入電流抑制装置の適用された電力系統システムの構成を示す構成図である。 図22は、本発明の第5の実施形態に係る励磁突入電流抑制装置の適用された電力系統システムの構成を示す構成図である。 図23は、第5の実施形態に係る電源電圧変換部による変換前の各線間電圧の電圧波形を示す波形図である。 図24は、第5の実施形態に係る電源電圧変換部による変換後の変形ウッドブリッジ結線変圧器の2次電圧の電圧波形を示す波形図である。 図25は、第5の実施形態に係る変形ウッドブリッジ結線変圧器の2次電圧の電圧波形を示す波形図である。 図26は、第5の実施形態に係る電源電圧変換部により変換される変形ウッドブリッジ結線変圧器の2次電圧の電圧波形を示す波形図である。 図27は、第5の実施形態に係る励磁突入電流抑制装置による投入目標位相範囲を説明するための磁束波形を示す波形図である。 図28は、第5の実施形態に係る遮断器による変形ウッドブリッジ結線変圧器の遮断から投入までの2次電圧を示す波形図である。 図29は、第5の実施形態に係る遮断器による変形ウッドブリッジ結線変圧器の遮断から投入までの2次磁束を示す波形図である。 図30は、第5の実施形態に係る遮断器による変形ウッドブリッジ結線変圧器の遮断から投入までの励磁突入電流を示す波形図である。 図31は、本発明の第6の実施形態に係る励磁突入電流抑制装置の適用された電力系統システムの構成を示す構成図である。
 以下図面を参照して、本発明の実施形態を説明する。
(第1の実施形態)
 図1は、本発明の第1の実施形態に係る励磁突入電流抑制装置6の適用された電力系統システムの構成を示す構成図である。なお、以降の図における同一部分には同一符号を付してその詳しい説明を省略し、異なる部分について主に述べる。以降の実施形態も同様にして重複する説明を省略する。
 本実施形態に係る電力系統システムは、電源母線(電力系統の母線)1と、遮断器2と、変形ウッドブリッジ結線変圧器3と、電源母線1に設けられた三相分の電源電圧検出器4U,4V,4Wと、変形ウッドブリッジ結線変圧器3の1次側に設けられた三相分の変圧器1次電圧検出器5U,5V,5Wと、励磁突入電流抑制装置6とを備えている。
 電源母線1は、U相、V相、及びW相からなる三相交流の電源を備えた電力系統の母線である。
 変形ウッドブリッジ結線変圧器3は、遮断器2を介して、電源母線1に接続されている。変形ウッドブリッジ結線変圧器3は、有効接地系又は非有効接地系に設置されている。変形ウッドブリッジ結線変圧器3は、電源母線1から供給される三相交流電圧を2組の単相交流電圧に変換する。変形ウッドブリッジ結線変圧器3は、三相交流側を1次側とし、単相交流側を2次側とする。なお、変形ウッドブリッジ結線変圧器3は、変成原理の同じウッドブリッジ結線変圧器を用いてもよい。従って、以下(以降の実施形態も含む)においても、変形ウッドブリッジ結線変圧器3は、特に区別しない限り、ウッドブリッジ結線変圧器に置き換えられるものとする。
 遮断器2は、電源母線1と変形ウッドブリッジ結線変圧器3との間に設けられている。遮断器2は、U相、V相、及びW相の三相の全ての主接点が一括操作される三相一括操作型の遮断器である。遮断器2が投入されることにより、変形ウッドブリッジ結線変圧器3は、電源母線1による電源投入がされる。遮断器2が開放されることにより、変形ウッドブリッジ結線変圧器3は、電源母線1から遮断される。
 3つの電源電圧検出器4U,4V,4Wは、それぞれ電源母線1のU相、V相、W相のそれぞれの相電圧(対地電圧)を計測するための計測用機器である。電源電圧検出器4U,4V,4Wは、例えば、計器用変圧器(VT, Voltage Transformer)である。電源電圧検出器4U,4V,4Wは、検出値を検出信号として、励磁突入電流抑制装置6に出力する。
 3つの変圧器1次電圧検出器5U,5V,5Wは、それぞれ変形ウッドブリッジ結線変圧器3の1次側の各端子(U相、V相、W相)のそれぞれの端子電圧を計測するための計測用機器である。変圧器1次電圧検出器5U,5V,5Wは、例えば、計器用変圧器である。変圧器1次電圧検出器5U,5V,5Wは、検出値を検出信号として、励磁突入電流抑制装置6に出力する。
 励磁突入電流抑制装置6は、電源電圧検出器4U,4V,4W及び変圧器1次電圧検出器5U,5V,5Wのそれぞれから受信した検出信号に基づいて、遮断器2の主接点に対して投入指令を出力する。これにより、遮断器2は投入される。
 図2は、本実施形態に係る変形ウッドブリッジ結線変圧器3の構成を示す構成図である。
 変形ウッドブリッジ結線変圧器3は、主座変圧器(M座変圧器)302とT座変圧器301とを備えている。
 主座変圧器302は、2次側に等しい巻数の巻線2個を持つ。T座変圧器301は、2次側で1:0.366:0.366の巻数比となる巻線を持つ単巻変圧器と接続される。変形ウッドブリッジ結線変圧器3は、2次側が2つのデルタ結線された巻線で背中合わせになるように接続されている。
 ここで、変圧器3がウッドブリッジ結線である場合について説明する。
 図3は、本実施形態に係るウッドブリッジ結線変圧器3の構成を示す構成図である。
 ウッドブリッジ結線変圧器3は、主座変圧器(M座変圧器)302とT座変圧器301とを備えている。
 主座変圧器302は、2次側に等しい巻数の巻線2個を持つ。T座変圧器301は、2次側に1:0.366:0.366の巻数比となる巻線を持つ。ウッドブリッジ結線変圧器3は、2次側が2つのデルタ結線された巻線で背中合わせになるように接続されている。
 即ち、変形ウッドブリッジ結線は、ウッドブリッジ結線のT座変圧器301の巻線を、別の単巻変圧器としたものである。
 図4は、本実施形態に係る変形ウッドブリッジ結線変圧器3の1次側線間電圧Vuv,Vvw,Vwuをベクトルで示すベクトル図である。図5は、本実施形態に係る変形ウッドブリッジ結線変圧器3の2次電圧Vt,Vmをベクトルで示すベクトル図ある。
 1次側のVW相間の電圧Vvwは、主座変圧器302の2次端子c-a間に印加される電圧(M座変圧器302の2次電圧)Vmと同位相になる。また、1次側のU相電圧(中性点N(対地)とU相端子との間の電圧)Vunは、T座変圧器301の2次端子b-d間に印加される電圧(T座変圧器301の2次電圧)Vtと同位相になる。よって、T座変圧器301の2次電圧Vtは、主座変圧器302の2次電圧Vmよりも90度位相が進む。
 図6は、本実施形態に係る定常磁束算出部602により演算される線間電圧Vuv,Vvw,Vwuの各電圧波形を示す波形図である。図7は、本実施形態に係る励磁突入電流抑制装置6による投入目標位相範囲Tcを説明するための磁束波形を示す波形図である。
 図1、図6及び図7を参照して、励磁突入電流抑制装置6の構成について説明する。
 励磁突入電流抑制装置6は、電源電圧計測部601と、定常磁束算出部602と、変圧器電圧計測部603と、残留磁束算出部604と、位相検出部605と、投入指令出力部606とを備えている。
 電源電圧計測部601は、電源電圧検出器4U,4V,4Wにより検出された検出信号に基づいて、電源母線1の各相電圧を計測する。電源電圧計測部601は、計測した各相電圧を定常磁束算出部602に出力する。
 定常磁束算出部602は、電源電圧計測部601により計測された各相電圧に基づいて、UV相間、VW相間、及びWU相間の各線間電圧Vuv,Vvw,Vwuを演算する。定常磁束算出部602は、演算した各線間電圧Vuv,Vvw,Vwuをそれぞれ積分する。定常磁束算出部602は、この積分された値を、定常時の磁束(定常磁束)φTuv,φTvw,φTwuとする。定常磁束算出部602は、遮断器2が投入されるまで、定常磁束φTuv,φTvw,φTwuを演算する。定常磁束算出部602は、演算した定常磁束φTuv,φTvw,φTwuを位相検出部605に出力する。
 変圧器電圧計測部603は、変圧器1次電圧検出器5U,5V,5Wにより検出された検出信号に基づいて、変形ウッドブリッジ結線変圧器3の各相の1次電圧を計測する。変圧器電圧計測部603は、計測した各相電圧を残留磁束算出部604に出力する。
 残留磁束算出部604は、変圧器電圧計測部603により計測された各相電圧に基づいて、遮断器2による変形ウッドブリッジ結線変圧器3の遮断直後のUV相間、VW相間、及びWU相間の各線間電圧Vuv,Vvw,Vwuを演算する。残留磁束算出部604は、演算した各線間電圧Vuv,Vvw,Vwuをそれぞれ積分する。残留磁束算出部604は、この積分された値を、変形ウッドブリッジ結線変圧器3の鉄心の残留磁束(1次線間磁束)φZuv,φZvw,φZwuとする。残留磁束算出部604は、演算した残留磁束φZuv,φZvw,φZwuを位相検出部605に出力する。
 位相検出部605は、図7に示すように、線間毎に、定常磁束算出部602により演算された定常磁束φTuv,φTvw,φTwuと、残留磁束算出部604により演算された残留磁束φZuv,φZvw,φZwuとの極性がそれぞれ一致する位相の区間Tuv,Tvw,Twuを検出する。位相検出部605は、検出した線間毎の位相の区間Tuv,Tvw,Twuが3つの全ての区間で重なる区間Tcを同定する。同定した区間Tcは、遮断器2を投入する投入目標位相範囲である。位相検出部605は、検出した投入目標位相範囲(区間)Tcを投入指令出力部606に出力する。
 投入指令出力部606は、位相検出部605により検出された投入目標位相範囲Tc内で、遮断器2の主接点を駆動する操作機構に対して投入指令を出力する。これにより、遮断器2は、投入される。
 次に、図8~図12を参照して、励磁突入電流抑制装置6による励磁突入電流の抑制について説明する。
 図8及び図9は、遮断器2による変形ウッドブリッジ結線変圧器3の遮断TP前後の状態の一例を示している。図8は、1次線間電圧Vuv,Vvw,Vwuを示す波形図である。図9は、1次線間磁束φuv,φvw,φwuを示す波形図である。
 図10~図12は、遮断器2による変形ウッドブリッジ結線変圧器3の電源母線1への投入CL前後の状態の一例を示している。図10は、1次線間電圧Vuv,Vvw,Vwuを示す波形図である。図11は、1次線間磁束φuv,φvw,φwuを示す波形図である。図12は、1次側相電流(励磁突入電流)Iu,Iv,Iwを示す波形図である。
 変形ウッドブリッジ結線変圧器3の1次側に図8に示す三相電圧が印加されている場合、遮断器2の開放後は、図9に示す遮断後TPの残留磁束φuv,φvw,φwuがある。
 励磁突入電流抑制装置6により、図7に示す投入目標位相範囲Tcで、遮断器2を投入すると、図10に示す1次線間電圧Vuv,Vvw,Vwuに対して、図11に示す1次線間磁束φuv,φvw,φwuが現れる。この遮断器2の投入時に、図12に示す励磁突入電流Iu,Iv,Iwが発生する。この励磁突入電流Iu,Iv,Iwは、最大で約105アンペアとなっている。
 次に、比較のため、図13~図15を参照して、励磁突入電流抑制装置6によらない(投入目標位相範囲Tcで投入しない)遮断器2の励磁突入電流Iu,Iv,Iwの一例を示す。
 図13~図15は、従来の遮断器2の投入方法による変形ウッドブリッジ結線変圧器3の電源母線1への投入CL前後の状態の一例を示している。図13は、1次線間電圧Vuv,Vvw,Vwuを示す波形図である。図14は、1次線間磁束φuv,φvw,φwuを示す波形図である。図15は、1次側相電流(励磁突入電流)Iu,Iv,Iwを示す波形図である。図13~図15における条件は、遮断器2の投入位相以外は、図8~図12に示す条件と同じである。
 図15に示すように、励磁突入電流抑制装置6による位相制御を行わずに遮断器2を投入した場合、励磁突入電流Iu,Iv,Iwは、最大で約1200アンペア近くまで達している。
 本実施形態によれば、励磁突入電流抑制装置6により、定常磁束φTuv,φTvw,φTwuと、残留磁束φZuv,φZvw,φZwuとの極性が、三相の全ての相においてそれぞれ一致する位相区間で、遮断器2により変形ウッドブリッジ結線変圧器3を投入する。このように投入位相を制御して、変形ウッドブリッジ結線変圧器3を電源母線1に投入することにより、励磁突入電流を抑制することができる。
 ここで、非有効接地系の三相変圧器では、電流遮断位相に差があると、中性点に直流電圧が残留することがある。この場合、相電圧を積分しても、巻線の残留磁束を正確に算出することはできない。しかし、線間電圧には、直流電圧の影響が無い。励磁突入電流抑制装置6では、線間電圧を積分して磁束を求めることで、残留磁束を正確に算出することができる。
(第1の実施形態の第1の変形形態)
 本変形形態による励磁突入電流抑制装置6の構成は、第1の実施形態において、投入目標位相範囲Tcの検出を、定常磁束算出部602により算出された定常磁束φTuv,φTvw,φTwuの代わりに、電源電圧計測部601により計測された相電圧もしくは線間電圧を用いる構成である。
 励磁突入電流抑制装置6は、電源電圧計測部601により計測された各相電圧もしくは線間電圧と残留磁束算出部604により算出された各線間の残留磁束φZuv,φZvw,φZwuとの夫々の極性が全て一致する位相区間を投入目標位相範囲Tcとして検出する。
 ここで、線間電圧と線間の定常磁束の位相差は90度である。よって、決定した投入目標位相範囲Tcを90度遅らせれば第1の実施形態の投入目標範囲と一致する。
 また、相電圧は線間電圧よりも30度遅れている。よって、線間の定常磁束を相電圧で比較すれば、相電圧と線間の定常磁束との位相差は60度であり、先に決定した投入目標位相範囲Tcを60度遅らせれば第1の実施形態の投入目標範囲Tcと一致する。投入指令出力部606は、検出した投入目標位相範囲Tcで、遮断器2に投入指令を出力する。
 なお、この位相差を補正値として励磁突入電流抑制装置6に予め設定してもよい。
 本変形形態であれば、定常磁束算出部602による演算をする必要がない。このため、定常磁束算出部602を無くすことで、励磁突入電流抑制装置6は、より単純な制御をすることができる。
 また、励磁突入電流抑制装置6は、第1の実施形態の場合に比べて、制御処理(演算処理など)が少ない。このため、より早く励磁突入電流を抑制した投入をすることができる。
(第1の実施形態の第2の変形形態)
 本変形形態による励磁突入電流抑制装置6の構成は、以下のように、投入指令を出力する。
 位相検出部605は、残留磁束算出部604により演算された残留磁束φZuv,φZvw,φZwuのうち最も大きな残留磁束の線間を検出する。検出した線間の電圧が、この線間の残留磁束(最も大きな残留磁束)と同極性から逆極性に遷移する電圧零点を検出する。位相検出部605は、検出した電圧零点を投入指令出力部606に出力する。投入指令出力部606は、位相検出部605により検出された電圧零点を投入位相目標として、遮断器2に投入指令を出力する。
 本変形形態によれば、以下の作用効果を得ることができる。
 位相検出部605により検出された電圧零点は、結果として、定常磁束φTuv,φTvw,φTwuと、残留磁束φZuv,φZvw,φZwuとの極性が、三相の全ての相においてそれぞれ一致する位相区間のほぼ中心になる。従って、第1の実施形態と同様の作用効果を得ることができる。
 前述した投入方法では、残留磁束の最も大きな線間電圧の零点としたが、その線間に対応する相(例えば、U-V間であれば、U相)の相電圧が線間の残留磁束と同極性から逆極性に遷移する電圧零点を検出してもよい。
 相電圧と線間電圧の位相差は、30度である。従って、本来比較するのが望ましい線間電圧を相電圧に代えて比較しても、30度程度の位相差であれば、励磁突入電流の抑制効果を得ることができる。
(第2の実施形態)
 図16は、本発明の第2の実施形態に係る励磁突入電流抑制装置6Aの適用された電力系統システムの構成を示す構成図である。
 励磁突入電流抑制装置6Aは、図1に示す第1の実施形態に係る励磁突入電流抑制装置6において、位相検出部605の代わりに、位相検出部605Aを設け、計測情報保持部607、開極位相制御部608、及び開極指令出力部609を追加した構成である。その他の構成は、第1の実施形態に係る励磁突入電流抑制装置6と同様である。
 励磁突入電流抑制装置6Aの運用前に、計測情報保持部607は、遮断器2を複数回遮断したときにおける、変圧器電圧計測部603により計測された1次電圧の電圧遮断位相と、残留磁束算出部604により算出された磁束信号とを計測する。計測情報保持部607は、計測された電圧遮断位相及び磁束信号に基づいて、遮断位相と残留磁束との関係などの残留磁束の特性に関する情報を計測情報として保持する。
 開極位相制御部608には、計測情報保持部607に保持された計測情報及び電源電圧計測部601により計測された電源母線1の各相電圧が入力される。開極位相制御部608は、計測情報から各線間の残留磁束φZuv,φZvw,φZwuを推定する。開極位相制御部608は、推定した残留磁束φZuv,φZvw,φZwu及び各相電圧に基づいて、遮断位相が常に同じになるように、遮断器2の主接点の開極位相を制御する。開極位相制御部608は、制御した開極位相を開極指令出力部609に出力する。
 開極指令出力部609は、開極位相制御部608から受信した開極位相に基づいて、遮断器2の主接点を駆動する操作機構に対して開極指令を出力する。これにより、遮断器2は、開放される。
 位相検出部605Aには、計測情報保持部607に保持されている計測情報及び定常磁束算出部602により算出された定常磁束φTuv,φTvw,φTwuが入力される。位相検出部605Aは、計測情報保持部607に保持されている計測情報から、残留磁束φZuv,φZvw,φZwuを推定する。位相検出部605Aは、残留磁束φZuv,φZvw,φZwu及び定常磁束φTuv,φTvw,φTwuに基づいて、遮断器2を投入する投入目標位相範囲Tcを同定する。投入目標位相範囲Tcを同定する方法については、第1の実施形態と同様である。
 ここで、開極位相制御部608は、常に遮断位相が同じになるように、位相制御をしている。従って、位相検出部605Aは、計測情報保持部607に保持されている情報に変更がなければ(計測情報を更新していなければ)、常に投入目標位相範囲Tcは同じでよい。
 本実施形態によれば、以下の作用効果を得ることができる。
 電力系統に遮断器2及び変形ウッドブリッジ結線変圧器3などを一旦設置した後は、この電力系統の回路条件は、常に同じである。このため、遮断器2が遮断するときの位相を常に同じにしておけば、変形ウッドブリッジ結線変圧器3の残留磁束φZuv,φZvw,φZwuの値も常に同じになるはずである。
 励磁突入電流抑制装置6Aは、遮断器2で変形ウッドブリッジ結線変圧器3を遮断する際、遮断位相が常に同じになるように遮断器2の開極位相を制御して遮断する。即ち、励磁突入電流抑制装置6Aは、残留磁束φZuv,φZvw,φZwuを常に同じ値とすることができる。従って、励磁突入電流抑制装置6Aは、遮断器2を投入して変形ウッドブリッジ結線変圧器3を励磁させるときも、励磁突入電流の抑制をするための投入位相を常に同じ位相にすることができる。
 従って、変圧器1次電圧検出器5U,5V,5Wが常時接続されていない場合でも、励磁突入電流抑制装置6Aは、計測情報保持部607に保持されている計測情報に基づいて、遮断器2が遮断した後の変形ウッドブリッジ結線変圧器3の残留磁束φZuv,φZvw,φZwuの情報を常に得ることができる。従って、変圧器1次電圧検出器5U,5V,5Wは、計測情報保持部607による計測時のみ接続し、通常の運用状態では取り外すこともできる。もちろん、変圧器1次電圧検出器5U,5V,5Wは、恒久的に設置されていても良い。
(第3の実施形態)
 図17は、本発明の第3の実施形態に係る励磁突入電流抑制装置6Bの適用された電力系統システムの構成を示す構成図である。
 本実施形態に係る電力系統システムは、図1に示す第1の実施形態に係る電力系統システムにおいて、変圧器1次電圧検出器5U,5V,5Wの代わりに変圧器2次電圧検出器5T,5Mを設けた構成である。
 励磁突入電流抑制装置6Bは、図1に示す第1の実施形態に係る励磁突入電流抑制装置6において、変圧器電圧計測部603を変圧器電圧計測部603Bに代え、残留磁束算出部604を残留磁束算出部604Bに代え、変圧器電圧変換部610を追加した構成である。その他の構成については、第1の実施形態と同様である。
 変圧器電圧計測部603Bは、変圧器2次電圧検出器5T,5Mにより検出された検出信号に基づいて、変形ウッドブリッジ結線変圧器3の2組の2次電圧Vt,Vmを計測する。2次電圧Vmは、主座変圧器302の2次電圧(端子c-a間電圧)である。2次電圧Vtは、T座変圧器301の2次電圧(端子b-d間電圧)である。変圧器電圧計測部603Bは、計測した2組の2次電圧Vt,Vmを変圧器電圧変換部610に出力する。
 変圧器電圧変換部610は、変圧器電圧計測部603Bにより計測された2組の単相交流電圧Vt,Vmを、次式により、1次側線間電圧VDuv,VDvw,VDwuに変換する。1次側線間電圧VDuvは、変換後のUV相間の線間電圧である。1次側線間電圧VDvwは、変換後のVW相間の線間電圧である。1次側線間電圧VDwuは、変換後のWU相間の線間電圧である。変圧器電圧変換部610は、変換した1次側線間電圧VDuv,VDvw,VDwuを残留磁束算出部604Bに出力する。
 VDuv=(√3/2)Vt-(1/2)Vm   …式(1)
 VDvw=Vm                 …式(2)
 VDwu=-(√3/2)Vt-(1/2)Vm  …式(3)
 なお、√3/2は、0.866と置き換えてもよい。
 図18~図20を参照して、本実施形態に係る変圧器電圧変換部610による演算処理について説明する。
 図18は、変圧器電圧計測部603Bにより計測された2組の2次電圧Vt,Vmの電圧波形を示す波形図である。図19は、変圧器電圧変換部610による変換後の1次側線間電圧VDuv,VDvw,VDwuの電圧波形を示す波形図である。図20は、1次側線間電圧Vuv,Vvw,Vwuの電圧波形を示す波形図である。
 変圧器電圧変換部610は、図18に示す2組の2次電圧Vt,Vmを、図19に示す1次側線間電圧VDuv,VDvw,VDwuに変換する。これにより、変圧器電圧変換部610は、pu値(定格に対する割合)で換算して、図20に示す1次側線間電圧Vuv,Vvw,Vwuと同一の電圧波形を求めることができる。
 残留磁束算出部604Bは、遮断器2による変形ウッドブリッジ結線変圧器3の遮断直後に、変圧器電圧変換部610により変換された各線間電圧VDuv,VDvw,VDwuをそれぞれ積分する。残留磁束算出部604Bは、この積分された値を、変形ウッドブリッジ結線変圧器3の鉄心の残留磁束(1次線間磁束)φZuv,φZvw,φZwuとする。残留磁束算出部604Bは、演算した残留磁束φZuv,φZvw,φZwuを位相検出部605に出力する。
 位相検出部605は、第1の実施形態と同様に、定常磁束算出部602により演算された定常磁束φTuv,φTvw,φTwu及び残留磁束算出部604Bにより演算された残留磁束φZuv,φZvw,φZwuに基づいて、投入目標位相範囲Tcを同定する。
 本実施形態によれば、変形ウッドブリッジ結線変圧器3に変圧器2次電圧検出器5T,5Mしか設置されていない場合であっても、変形ウッドブリッジ結線変圧器3の2次電圧Vt,Vmから1次側線間電圧VDuv,VDvw,VDwuに変換することで、第1の実施形態と同様の作用効果を得ることができる。
(第4の実施形態)
 図21は、本発明の第4の実施形態に係る励磁突入電流抑制装置6Cの適用された電力系統システムの構成を示す構成図である。
 励磁突入電流抑制装置6Cは、図17に示す第3の実施形態に係る励磁突入電流抑制装置6Bにおいて、位相検出部605の代わりに、第2の実施形態に係る位相検出部605Aを設け、計測情報保持部607C、開極位相制御部608C、及び第2の実施形態に係る開極指令出力部609を追加した構成である。その他の構成は、第3の実施形態に係る励磁突入電流抑制装置6Bと同様である。
 励磁突入電流抑制装置6Cの運用前に、計測情報保持部607Cは、遮断器2を複数回遮断したときにおける、変圧器電圧変換部610により変換された各線間電圧VDuv,VDvw,VDwuと、残留磁束算出部604Bにより算出された磁束信号とを計測する。計測情報保持部607Cは、計測された電圧遮断位相及び磁束信号に基づいて、遮断位相と残留磁束との関係などの残留磁束の特性に関する情報を計測情報として保持する。
 開極位相制御部608Cには、計測情報保持部607Cに保持された計測情報及び電源電圧計測部601により計測された電源母線1の各相電圧が入力される。開極位相制御部608Cは、計測情報から変形ウッドブリッジ結線変圧器3の1次線間の残留磁束φZuv,φZvw,φZwuを推定する。開極位相制御部608Cは、推定した残留磁束φZuv,φZvw,φZwu及び各相電圧に基づいて、遮断位相が常に同じになるように、遮断器2の主接点の開極位相を制御する。開極位相制御部608Cは、制御した開極位相を開極指令出力部609に出力する。
 開極指令出力部609は、開極位相制御部608Cから受信した開極位相に基づいて、遮断器2の主接点を駆動する操作機構に対して開極指令を出力する。これにより、遮断器2は、開放される。
 位相検出部605Aは、計測情報保持部607Cに保持されている計測情報及び定常磁束算出部602により算出された定常磁束φTuv,φTvw,φTwuに基づいて、第2の実施形態と同様に、遮断器2を投入する投入目標位相範囲Tcを同定する。
 本実施形態によれば、第2の実施形態及び第3の実施形態のそれぞれによる作用効果と同様の作用効果を得ることができる。
(第5の実施形態)
 図22は、本発明の第5の実施形態に係る励磁突入電流抑制装置6Dの適用された電力系統システムの構成を示す構成図である。
 励磁突入電流抑制装置6Dは、図17に示す第3の実施形態に係る励磁突入電流抑制装置6Bにおいて、変圧器電圧変換部610の代わりに電源電圧変換部611を設け、定常磁束算出部602を定常磁束算出部602Dに代え、残留磁束算出部604Bを残留磁束算出部604Dに代え、位相検出部605を位相検出部605Dに代えた構成である。その他の構成については、第3の実施形態と同様である。
 図26は、本実施形態に係る電源電圧変換部611により変換される変形ウッドブリッジ結線変圧器3の2次電圧VDm,VDtの電圧波形を示す波形図である。図27は、本実施形態に係る励磁突入電流抑制装置6Dによる投入目標位相範囲Tcを説明するための磁束波形を示す波形図である。
 図22、図26及び図27を参照して、励磁突入電流抑制装置6Dの構成について説明する。
 残留磁束算出部604Dは、遮断器2による変形ウッドブリッジ結線変圧器3の遮断直後に、変圧器電圧計測部603Bにより計測された2組の2次電圧Vt,Vmをそれぞれ積分する。残留磁束算出部604Dは、この積分された値を、変形ウッドブリッジ結線変圧器3の鉄心の残留磁束(2次磁束)φZm,φZtとする。残留磁束φZmは、主座変圧器302の2次側残留磁束である。残留磁束φZtは、T座変圧器301の2次側残留磁束である。残留磁束算出部604Dは、演算した残留磁束φZm,φZtを位相検出部605Dに出力する。
 図23~図25を参照して、本実施形態に係る電源電圧変換部611による演算処理について説明する。
 図23は、電源電圧変換部611による変換前の各線間電圧Vuv,Vvw,Vwuの電圧波形を示す波形図である。図24は、電源電圧変換部611による変換後の変形ウッドブリッジ結線変圧器3の2次電圧VDm,VDtの電圧波形を示す波形図である。図25は、変形ウッドブリッジ結線変圧器3の2次電圧Vm,Vtの電圧波形を示す波形図である。
 電源電圧変換部611は、電源電圧計測部601により計測された各相電圧に基づいて、各線間電圧Vuv,Vvw,Vwuを演算する。電源電圧変換部611は、演算した各線間電圧Vuv,Vvw,Vwuを、次式により、図24に示す変形ウッドブリッジ結線変圧器3の2つの2次電圧VDm,VDtに変換する。
 VDm=Vvw                 …式(4)
 VDt=(Vuv-Vwu)/√3        …式(5)
 なお、1/√3は、0.577と置き換えてもよい。
 2次電圧VDmは、変換後の主座変圧器302の2次電圧である。2次電圧VDtは、変換後のT座変圧器301の2次電圧である。
 これにより、電源電圧変換部611は、pu値(定格に対する割合)で換算して、図25に示す2次電圧Vm,Vtと同一の電圧波形を求めることができる。電源電圧変換部611は、変換した変形ウッドブリッジ結線変圧器3の2つの2次電圧VDm,VDtを定常磁束算出部602Dに出力する。
 定常磁束算出部602Dは、電源電圧変換部611により変換された2つの2次電圧VDm,VDtをそれぞれ積分する。定常磁束算出部602Dは、この積分された値を、定常時の磁束(定常磁束)φTm,φTtとする。定常磁束算出部602Dは、遮断器2が投入されるまで、定常磁束φTm,φTtを演算する。定常磁束算出部602Dは、演算した定常磁束φTm,φTtを位相検出部605Dに出力する。
 位相検出部605Dは、図27に示すように、定常磁束算出部602Dにより演算された定常磁束φTm,φTtと、残留磁束算出部604Dにより演算された残留磁束φZm,φZtとの極性が2次側の端子間毎に、それぞれ一致する位相の区間Tm,Ttを検出する。位相検出部605Dは、検出した位相の区間Tm,Ttが2つの区間で重なる区間Tcを同定する。同定した区間Tcは、遮断器2を投入する投入目標位相範囲である。位相検出部605Dは、検出した投入目標位相範囲(区間)Tcを投入指令出力部606に出力する。
 投入指令出力部606は、位相検出部605Dにより検出された投入目標位相範囲Tc内で、遮断器2の主接点を駆動する操作機構に対して投入指令を出力する。これにより、遮断器2は、投入される。
 次に、図28~図30を参照して、励磁突入電流抑制装置6Dによる励磁突入電流の抑制について説明する。
 図28~図30は、遮断器2による変形ウッドブリッジ結線変圧器3の遮断TPから投入CLまでの状態の一例を示している。図28は、2次電圧Vm,Vtを示す波形図である。図29は、2次磁束(定常磁束φTm,φTt及び残留磁束φZm,φZt)を示す波形図である。図30は、励磁突入電流Iu,Iv,Iwを示す波形図である。
 変形ウッドブリッジ結線変圧器3の2次側に図28に示す2次電圧Vm,Vtが印加されている場合、遮断器2による遮断TP後は、図29に示す残留磁束φZm,φZtがある。
 励磁突入電流抑制装置6Dにより、遮断器2を投入すると、図30に示す励磁突入電流Iu,Iv,Iwに抑制される。
 本実施形態によれば、電源母線1の線間電圧Vuv,Vvw,Vwuから変形ウッドブリッジ結線変圧器3の2次磁束の定常磁束φTm,φTtを求めることができる。よって、変形ウッドブリッジ結線変圧器3の2次電圧を計測して、残留磁束φZm,φZtを求めることで、遮断器2を投入するための投入目標位相範囲Tcを同定することができる。
 従って、変形ウッドブリッジ結線変圧器3に変圧器2次電圧検出器5T,5Mしか設置されていない場合であっても、励磁突入電流Iu,Iv,Iwを抑制する位相制御をすることができる。
(第6の実施形態)
 図31は、本発明の第6の実施形態に係る励磁突入電流抑制装置6Eの適用された電力系統システムの構成を示す構成図である。
 励磁突入電流抑制装置6Eは、図22に示す第5の実施形態に係る励磁突入電流抑制装置6Dにおいて、位相検出部605Dの代わりに、位相検出部605Eを設け、計測情報保持部607E、開極位相制御部608E、及び第2の実施形態に係る開極指令出力部609を追加した構成である。その他の構成は、第5の実施形態と同様である。
 励磁突入電流抑制装置6Eの運用前に、計測情報保持部607Eは、遮断器2を複数回遮断したときにおける、変圧器電圧計測部603Bにより計測された2次電圧Vm,Vtの電圧遮断位相と、残留磁束算出部604Dにより算出された磁束信号とを計測する。計測情報保持部607Eは、計測された電圧遮断位相及び磁束信号に基づいて、遮断位相と残留磁束との関係などの残留磁束の特性に関する情報を計測情報として保持する。
 開極位相制御部608Eは、計測情報保持部607Eに保持された計測情報及び電源電圧計測部601により計測された電源母線1の各相電圧が入力される。開極位相制御部608Eは、計測情報から変形ウッドブリッジ結線変圧器3の2次巻線の残留磁束φZm,φZtを推定する。開極位相制御部608Eは、推定した残留磁束φZm,φZt及び各相電圧に基づいて、遮断位相が常に同じになるように、遮断器2の主接点の開極位相を制御する。開極位相制御部608Eは、制御した開極位相を開極指令出力部609に出力する。
 開極指令出力部609は、開極位相制御部608Eから受信した開極位相に基づいて、遮断器2の主接点を駆動する操作機構に対して開極指令を出力する。これにより、遮断器2は、開放される。
 位相検出部605Eには、計測情報保持部607Eに保持されている計測情報及び定常磁束算出部602Dにより算出された変形ウッドブリッジ結線変圧器3の2次磁束の定常磁束φTm,φTtが入力される。位相検出部605Eは、計測情報保持部607Eに保持されている計測情報から、残留磁束φZm,φZtを推定する。位相検出部605Eは、残留磁束φZm,φZt及び定常磁束φTm,φTtに基づいて、遮断器2を投入する投入目標位相範囲Tcを同定する。投入目標位相範囲Tcを同定する方法については、第5の実施形態と同様である。
 ここで、開極位相制御部608Eは、常に遮断位相が同じになるように、位相制御をしている。従って、位相検出部605Eは、計測情報保持部607Eに保持されている情報に変更がなければ(計測情報を更新していなければ)、常に投入目標位相範囲Tcは同じでよい。
 本実施形態によれば、第5の実施形態及び第2の実施形態のそれぞれによる作用効果と同様の作用効果を得ることができる。
 なお、各実施形態において、電源電圧検出器4U,4V,4Wにより、電源母線1の各相電圧を計測したが、電源母線1の各線間電圧を計測してもよい。これにより、相電圧を線間電圧に変換する演算処理を省略することができる。
 また、各実施形態において、励磁突入電流抑制装置6等での位相制御における各種パラメータは、より精度を高めるため等により補正をしてもよい。例えば、遮断器2の投入において、主接点間に発生するプレアークと呼ばれる先行放電や、操作機構の動作ばらつきなどに起因する投入時間のばらつきが存在する。このプレアークによる投入ばらつきや、遮断器投入時のばらつきは、あらかじめその特性を取得しておくことにより、位相制御を行う際にこの特性による補正をする。このような補正をすることで、これらのばらつきがあっても、励磁突入電流をより確実に抑制することができる。
 さらに、各実施形態において、定常磁束及び残留磁束を演算する場合に、相電圧から線間電圧、又は線間電圧から各種巻線電圧などのように、電圧を変換してから磁束を求めたが、磁束を求めた後に、磁束を変換してもよい。例えば、各相電圧から各線間の磁束を求める場合、先に各相の磁束を求めた後に、各線間の磁束を求めてもよい。また、その他の演算においても、結果が同じになるのであれば、演算の順序や演算をさせる場所(励磁突入電流抑制装置の内部や外部を問わず、コンピュータや各種検出器等)は、適宜変更することができる。
 また、各実施形態において、遮断器2は、三相一括操作型の遮断器としたが、相毎に操作する各相操作型の遮断器でもよい。各相操作型遮断器であれば、各相の遮断器を同時に投入することで、三相一括操作型遮断器と同様の作用効果を得ることができる。
 なお、本発明のいくつかの実施形態を説明したが、これらの実施形態は、例として提示したものであり、発明の範囲を限定することは意図していない。これら新規な実施形態は、その他の様々な形態で実施されることが可能であり、発明の要旨を逸脱しない範囲で、種々の省略、置き換え、変更を行うことができる。これら実施形態やその変形は、発明の範囲や要旨に含まれるとともに、特許請求の範囲に記載された発明とその均等の範囲に含まれる。

Claims (14)

  1.  電源を備えた三相交流の電力系統とウッドブリッジ結線又は変形ウッドブリッジ結線の変圧器との接続を開閉する遮断器の励磁突入電流を抑制する励磁突入電流抑制装置であって、
     前記遮断器の前記変圧器側の三相交流電圧を計測する変圧器側三相交流電圧計測手段と、
     前記変圧器側三相交流電圧計測手段により計測された三相交流電圧に基づいて、前記遮断器による前記変圧器の遮断後の前記変圧器の三線間の残留磁束を演算する残留磁束演算手段と、
     前記遮断器の前記電源側の三相交流電圧を計測する電源側三相交流電圧計測手段と、
     前記電源側三相交流電圧計測手段により計測された三相交流電圧に基づいて、前記変圧器の三線間の定常磁束を演算する定常磁束演算手段と、
     前記定常磁束演算手段により演算された前記三線間の定常磁束と前記残留磁束演算手段により演算された前記三線間の残留磁束とが三線間のそれぞれで極性が一致する位相を判断する位相判断手段と、
     前記位相判断手段により判断された位相で、前記遮断器を投入する投入手段と
    を備えたことを特徴とする励磁突入電流抑制装置。
  2.  電源を備えた三相交流の電力系統とウッドブリッジ結線又は変形ウッドブリッジ結線の変圧器との接続を開閉する遮断器の励磁突入電流を抑制する励磁突入電流抑制装置であって、
     前記遮断器の前記変圧器側の三相交流電圧を計測する変圧器側三相交流電圧計測手段と、
     前記変圧器側三相交流電圧計測手段により計測された三相交流電圧に基づいて、前記遮断器による前記変圧器の遮断後の前記変圧器の三線間の残留磁束を演算する残留磁束演算手段と、
     前記残留磁束演算手段により演算された前記三線間の残留磁束のうち最も大きな残留磁束の線間を検出する線間検出手段と、
     前記遮断器の前記電源側の三相交流電圧を計測する電源側三相交流電圧計測手段と、
     前記線間検出手段により検出された線間において、前記電源側三相交流電圧計測手段により計測された三相交流電圧に基づく線間電圧が、前記残留磁束演算手段により演算された線間の残留磁束と同極性から逆極性に遷移する電圧零点の位相を判断する位相判断手段と、
     前記位相判断手段により判断された位相で、前記遮断器を投入する投入手段と
    を備えたことを特徴とする励磁突入電流抑制装置。
  3.  電源を備えた三相交流の電力系統とウッドブリッジ結線又は変形ウッドブリッジ結線の変圧器との接続を開閉する遮断器の励磁突入電流を抑制する励磁突入電流抑制装置であって、
     前記変圧器の単相交流電圧を計測する変圧器側単相交流電圧計測手段と、
     前記変圧器側単相交流電圧計測手段により計測された前記変圧器の単相交流電圧を、前記変圧器の三相交流電圧に変換する変圧器側電圧変換手段と、
     前記変圧器側電圧変換手段により変換された三相交流電圧に基づいて、前記遮断器による前記変圧器の遮断後の前記変圧器の三線間の残留磁束を演算する残留磁束演算手段と、
     前記遮断器の前記電源側の三相交流電圧を計測する電源側三相交流電圧計測手段と、
     前記電源側三相交流電圧計測手段により計測された三相交流電圧に基づいて、前記変圧器の三線間の定常磁束を演算する定常磁束演算手段と、
     前記定常磁束演算手段により演算された前記三線間の定常磁束と前記残留磁束演算手段により演算された前記三線間の残留磁束とが三線間のそれぞれで極性が一致する位相を判断する位相判断手段と、
     前記位相判断手段により判断された位相で、前記遮断器を投入する投入手段と
    を備えたことを特徴とする励磁突入電流抑制装置。
  4.  電源を備えた三相交流の電力系統とウッドブリッジ結線又は変形ウッドブリッジ結線の変圧器との接続を開閉する遮断器の励磁突入電流を抑制する励磁突入電流抑制装置であって、
     前記変圧器の単相交流電圧を計測する変圧器側単相交流電圧計測手段と、
     前記変圧器側単相交流電圧計測手段により計測された前記変圧器の単相交流電圧を、前記変圧器の三相交流電圧に変換する変圧器側電圧変換手段と、
     前記変圧器側電圧変換手段により変換された三相交流電圧に基づいて、前記遮断器による前記変圧器の遮断後の前記変圧器の三線間の残留磁束を演算する残留磁束演算手段と、
     前記残留磁束演算手段により演算された前記三線間の残留磁束のうち最も大きな残留磁束の線間を検出する線間検出手段と、
     前記遮断器の前記電源側の三相交流電圧を計測する電源側三相交流電圧計測手段と、
     前記線間検出手段により検出された線間において、前記変圧器側電圧変換手段により変換された三相交流電圧に基づく線間電圧が、前記残留磁束演算手段により演算された線間の残留磁束と同極性から逆極性に遷移する電圧零点の位相を判断する位相判断手段と、
     前記位相判断手段により判断された位相で、前記遮断器を投入する投入手段と
    を備えたことを特徴とする励磁突入電流抑制装置。
  5.  電源を備えた三相交流の電力系統とウッドブリッジ結線又は変形ウッドブリッジ結線の変圧器との接続を開閉する遮断器の励磁突入電流を抑制する励磁突入電流抑制装置であって、
     前記変圧器の単相交流電圧を計測する変圧器側単相交流電圧計測手段と、
     前記変圧器側単相交流電圧計測手段により計測された単相交流電圧に基づいて、前記遮断器による前記変圧器の遮断後の前記変圧器の単相交流側巻線の残留磁束を演算する残留磁束演算手段と、
     前記遮断器の前記電源側の三相交流電圧を計測する電源側三相交流電圧計測手段と、
     前記電源側三相交流電圧計測手段により計測された三相交流電圧を、前記変圧器の単相交流電圧に変換する電源側電圧変換手段と、
     前記電源側電圧変換手段により変換された単相交流電圧に基づいて、前記変圧器の単相交流側巻線の定常磁束を演算する定常磁束演算手段と、
     前記定常磁束演算手段により演算された前記単相交流側巻線の定常磁束と前記残留磁束演算手段により演算された前記単相交流側巻線の残留磁束とが一致する位相を判断する位相判断手段と、
     前記位相判断手段により判断された位相で、前記遮断器を投入する投入手段と
    を備えたことを特徴とする励磁突入電流抑制装置。
  6.  前記遮断器を少なくとも1回開放操作したときの前記変圧器の残留磁束及び前記遮断器の遮断位相を計測した情報を保持する計測情報保持手段と、
     前記計測情報保持手段に保持された情報に基づいて、同一の遮断位相で前記遮断器を開放するための開放手段とを備え、
     前記投入手段は、前記開放手段による前記遮断位相に基づいて、前記遮断器を投入すること
    を特徴とする請求項1から請求項5のいずれか1項に記載の励磁突入電流抑制装置。
  7.  前記遮断器は、三相の接点を一括操作する三相一括型であること
    を特徴とする請求項1から請求項6のいずれか1項に記載の励磁突入電流抑制装置。
  8.  前記遮断器は、
     相毎に接点を操作する各相操作型であり、
     三相の接点を同時に投入及び開放すること
    を特徴とする請求項1から請求項6のいずれか1項に記載の励磁突入電流抑制装置。
  9.  電源を備えた三相交流の電力系統とウッドブリッジ結線又は変形ウッドブリッジ結線の変圧器との接続を開閉する遮断器の励磁突入電流を抑制する励磁突入電流抑制方法であって、
     前記遮断器の前記変圧器側の三相交流電圧を計測し、
     計測した前記変圧器側の三相交流電圧に基づいて、前記遮断器による前記変圧器の遮断後の前記変圧器の三線間の残留磁束を演算し、
     前記遮断器の前記電源側の三相交流電圧を計測し、
     計測した前記電源側の三相交流電圧に基づいて、前記変圧器の三線間の定常磁束を演算し、
     演算した前記三線間の定常磁束と演算した前記三線間の残留磁束とが三線間のそれぞれで極性が一致する位相を判断し、
     判断した位相で、前記遮断器を投入すること
    を含むことを特徴とする励磁突入電流抑制方法。
  10.  電源を備えた三相交流の電力系統とウッドブリッジ結線又は変形ウッドブリッジ結線の変圧器との接続を開閉する遮断器の励磁突入電流を抑制する励磁突入電流抑制方法であって、
     前記遮断器の前記変圧器側の三相交流電圧を計測し、
     計測した前記変圧器側の三相交流電圧に基づいて、前記遮断器による前記変圧器の遮断後の前記変圧器の三線間の残留磁束を演算し、
     演算した前記三線間の残留磁束のうち最も大きな残留磁束の線間を検出し、
     前記遮断器の前記電源側の三相交流電圧を計測し、
     検出した最も大きな残留磁束の前記線間において、計測した前記電源側の三相交流電圧に基づく線間電圧が、演算した前記線間の残留磁束と同極性から逆極性に遷移する電圧零点の位相を判断し、
     判断した位相で、前記遮断器を投入すること
    を含むことを特徴とする励磁突入電流抑制方法。
  11.  電源を備えた三相交流の電力系統とウッドブリッジ結線又は変形ウッドブリッジ結線の変圧器との接続を開閉する遮断器の励磁突入電流を抑制する励磁突入電流抑制方法であって、
     前記変圧器の単相交流電圧を計測し、
     計測した前記変圧器の単相交流電圧を、前記変圧器の三相交流電圧に変換し、
     変換した前記変圧器の三相交流電圧に基づいて、前記遮断器による前記変圧器の遮断後の前記変圧器の三線間の残留磁束を演算し、
     前記遮断器の前記電源側の三相交流電圧を計測し、
     計測した前記電源側の三相交流電圧に基づいて、前記変圧器の三線間の定常磁束を演算し、
     演算した前記三線間の定常磁束と演算した前記三線間の残留磁束とが三線間のそれぞれで極性が一致する位相を判断し、
     判断した位相で、前記遮断器を投入すること
    を含むことを特徴とする励磁突入電流抑制方法。
  12.  電源を備えた三相交流の電力系統とウッドブリッジ結線又は変形ウッドブリッジ結線の変圧器との接続を開閉する遮断器の励磁突入電流を抑制する励磁突入電流抑制方法であって、
     前記変圧器の単相交流電圧を計測し、
     計測した前記変圧器の単相交流電圧を、前記変圧器の三相交流電圧に変換し、
     変換した前記変圧器の三相交流電圧に基づいて、前記遮断器による前記変圧器の遮断後の前記変圧器の三線間の残留磁束を演算し、
     演算した前記三線間の残留磁束のうち最も大きな残留磁束の線間を検出し、
     前記遮断器の前記電源側の三相交流電圧を計測し、
     検出した最も大きな残留磁束の前記線間において、計測した前記電源側の三相交流電圧に基づく線間電圧が、演算した前記線間の残留磁束と同極性から逆極性に遷移する電圧零点の位相を判断し、
     判断した位相で、前記遮断器を投入すること
    を含むことを特徴とする励磁突入電流抑制方法。
  13.  電源を備えた三相交流の電力系統とウッドブリッジ結線又は変形ウッドブリッジ結線の変圧器との接続を開閉する遮断器の励磁突入電流を抑制する励磁突入電流抑制方法であって、
     前記変圧器の単相交流電圧を計測し、
     計測した単相交流電圧に基づいて、前記遮断器による前記変圧器の遮断後の前記変圧器の単相交流側巻線の残留磁束を演算し、
     前記遮断器の前記電源側の三相交流電圧を計測し、
     計測した前記電源側の三相交流電圧を、前記変圧器の単相交流電圧に変換し、
     変換した前記変圧器の単相交流電圧に基づいて、前記変圧器の単相交流側巻線の定常磁束を演算し、
     演算した前記単相交流側巻線の定常磁束と演算した前記単相交流側巻線の残留磁束とが一致する位相を判断し、
     判断した位相で、前記遮断器を投入すること
    を含むことを特徴とする励磁突入電流抑制方法。
  14.  前記遮断器を少なくとも1回開放操作したときの前記変圧器の残留磁束及び前記遮断器の遮断位相を計測した情報を保持し、
     保持した情報に基づいて、同一の遮断位相で前記遮断器を開放し、
     前記遮断位相に基づいて、前記遮断器を投入すること
    を含むことを特徴とする請求項9から請求項13のいずれか1項に記載の励磁突入電流抑制方法。
PCT/JP2011/068474 2010-08-20 2011-08-12 励磁突入電流抑制装置 WO2012023524A1 (ja)

Priority Applications (5)

Application Number Priority Date Filing Date Title
BR112013003956A BR112013003956A2 (pt) 2010-08-20 2011-08-12 aparelho e processo de eliminação de corrente invasiva magnetizante
EP11818166.8A EP2608239A1 (en) 2010-08-20 2011-08-12 Magnetizing inrush current suppression device
AU2011291801A AU2011291801B2 (en) 2010-08-20 2011-08-12 Magnetizing inrush current suppression apparatus
CN201180026815.1A CN102918619B (zh) 2010-08-20 2011-08-12 励磁涌流抑制装置
US13/769,066 US20130155553A1 (en) 2010-08-20 2013-02-15 Magnetizing inrush current suppression apparatus

Applications Claiming Priority (2)

Application Number Priority Date Filing Date Title
JP2010185492A JP5487051B2 (ja) 2010-08-20 2010-08-20 励磁突入電流抑制装置
JP2010-185492 2010-08-20

Related Child Applications (1)

Application Number Title Priority Date Filing Date
US13/769,066 Continuation US20130155553A1 (en) 2010-08-20 2013-02-15 Magnetizing inrush current suppression apparatus

Publications (1)

Publication Number Publication Date
WO2012023524A1 true WO2012023524A1 (ja) 2012-02-23

Family

ID=45605178

Family Applications (1)

Application Number Title Priority Date Filing Date
PCT/JP2011/068474 WO2012023524A1 (ja) 2010-08-20 2011-08-12 励磁突入電流抑制装置

Country Status (7)

Country Link
US (1) US20130155553A1 (ja)
EP (1) EP2608239A1 (ja)
JP (1) JP5487051B2 (ja)
CN (1) CN102918619B (ja)
AU (1) AU2011291801B2 (ja)
BR (1) BR112013003956A2 (ja)
WO (1) WO2012023524A1 (ja)

Cited By (2)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
CN104364867A (zh) * 2012-06-11 2015-02-18 株式会社东芝 励磁涌流抑制装置
CN104868455A (zh) * 2015-06-01 2015-08-26 安徽禄讯电子科技有限公司 母线残压保持装置

Families Citing this family (14)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
US9008982B2 (en) * 2012-03-09 2015-04-14 Schweitzer Engineering Laboratories, Inc. Systems and methods for determining residual flux in a power transformer
CN102623982B (zh) * 2012-03-29 2014-07-02 浙江大学 一种三相多绕组变压器耦合型固态限流器
JP6099896B2 (ja) * 2012-07-19 2017-03-22 株式会社東芝 励磁突入電流抑制装置及びその抑制方法
WO2015085407A1 (en) * 2013-12-13 2015-06-18 Hydro-Quebec Controlled switching system and method for tap changer power transformers
CN104332977B (zh) * 2014-10-15 2017-11-03 南京南瑞集团公司 磁通约束型三相故障电流限制器
EP3396687A1 (en) * 2017-04-28 2018-10-31 ABB Schweiz AG Energizing method of a transformer, and transformer connection assembly
CN107919243B (zh) * 2017-06-15 2019-09-20 国网浙江省电力公司湖州供电公司 一种隔离开关电气闭锁回路的改进结构及控制方法
US10802054B2 (en) 2017-09-22 2020-10-13 Schweitzer Engineering Laboratories, Inc. High-fidelity voltage measurement using a capacitance-coupled voltage transformer
US11038342B2 (en) 2017-09-22 2021-06-15 Schweitzer Engineering Laboratories, Inc. Traveling wave identification using distortions for electric power system protection
WO2019060841A1 (en) 2017-09-22 2019-03-28 Schweitzer Engineering Laboratories, Inc. HIGH RELIABILITY VOLTAGE MEASUREMENT USING A RESISTIVE DIVIDER IN A CAPACITIVE COUPLING VOLTAGE TRANSFORMER
US10811185B2 (en) 2018-09-13 2020-10-20 Analog Devices Global Unlimited Company Saturation prevention of current transformer
US11187727B2 (en) 2019-04-29 2021-11-30 Schweitzer Engineering Laboratories, Inc. Capacitance-coupled voltage transformer monitoring
CN110718911A (zh) * 2019-11-08 2020-01-21 云南电网有限责任公司电力科学研究院 基于伍德桥接线变压器的单相转三相供电系统
CN113325345B (zh) * 2021-06-02 2024-04-09 云南电网有限责任公司电力科学研究院 一种对变压器铁芯剩磁进行测试的装置及方法

Citations (5)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
JPH03132436A (ja) * 1989-10-19 1991-06-05 Meidensha Corp 異種電源混触検出方法およびその装置
JP2002075145A (ja) 2000-09-04 2002-03-15 Hitachi Ltd 励磁突入電流抑制装置付きガス遮断器
WO2008065757A1 (fr) * 2006-11-29 2008-06-05 Kabushiki Kaisha Toshiba Appareil et procédé permettant de compresser un courant d'appel d'excitation d'un transformateur
JP2010004686A (ja) * 2008-06-20 2010-01-07 Toshiba Corp 変圧器の励磁突入電流抑制装置及びその制御方法
JP2011154974A (ja) * 2010-01-28 2011-08-11 Toshiba Corp 励磁突入電流抑制装置

Family Cites Families (1)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
JPH04197023A (ja) * 1990-11-28 1992-07-16 Hitachi Ltd 比率差動継電器の励磁突入電流による誤動作防止回路

Patent Citations (6)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
JPH03132436A (ja) * 1989-10-19 1991-06-05 Meidensha Corp 異種電源混触検出方法およびその装置
JP2002075145A (ja) 2000-09-04 2002-03-15 Hitachi Ltd 励磁突入電流抑制装置付きガス遮断器
WO2008065757A1 (fr) * 2006-11-29 2008-06-05 Kabushiki Kaisha Toshiba Appareil et procédé permettant de compresser un courant d'appel d'excitation d'un transformateur
JP2008160100A (ja) 2006-11-29 2008-07-10 Toshiba Corp 変圧器の励磁突入電流抑制装置および方法
JP2010004686A (ja) * 2008-06-20 2010-01-07 Toshiba Corp 変圧器の励磁突入電流抑制装置及びその制御方法
JP2011154974A (ja) * 2010-01-28 2011-08-11 Toshiba Corp 励磁突入電流抑制装置

Non-Patent Citations (1)

* Cited by examiner, † Cited by third party
Title
JOHN H. BRUNKE: "Elimination of Transformer Inrush Currents by Controlled Switching - Part I: Theoretical Considerations", IEEE TRANSACTIONS ON POWER DELIVERY, IEEE, vol. 16, no. 2, April 2001 (2001-04-01), pages 276 - 280, XP011050028

Cited By (3)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
CN104364867A (zh) * 2012-06-11 2015-02-18 株式会社东芝 励磁涌流抑制装置
US9490627B2 (en) 2012-06-11 2016-11-08 Kabushiki Kaisha Toshiba Magnetizing inrush current suppressing device
CN104868455A (zh) * 2015-06-01 2015-08-26 安徽禄讯电子科技有限公司 母线残压保持装置

Also Published As

Publication number Publication date
BR112013003956A2 (pt) 2016-07-12
AU2011291801A1 (en) 2013-04-04
US20130155553A1 (en) 2013-06-20
AU2011291801B2 (en) 2015-04-02
CN102918619B (zh) 2016-05-11
JP5487051B2 (ja) 2014-05-07
EP2608239A1 (en) 2013-06-26
JP2012043712A (ja) 2012-03-01
CN102918619A (zh) 2013-02-06

Similar Documents

Publication Publication Date Title
JP5487051B2 (ja) 励磁突入電流抑制装置
JP5459666B2 (ja) 励磁突入電流抑制装置
JP5472920B2 (ja) 励磁突入電流抑制装置
JP5148435B2 (ja) 変圧器の励磁突入電流抑制装置及びその制御方法
JP5713848B2 (ja) 励磁突入電流抑制装置
JP6054163B2 (ja) 励磁突入電流抑制システム
JP6099896B2 (ja) 励磁突入電流抑制装置及びその抑制方法
JP5444162B2 (ja) 励磁突入電流抑制装置
JP5740240B2 (ja) 励磁突入電流抑制装置
US9704664B2 (en) Magnetizing inrush current suppression device
JP5762870B2 (ja) 励磁突入電流抑制装置
WO2012039373A1 (ja) 突入電流抑制装置
JP5976444B2 (ja) 励磁突入電流抑制方法
US9490627B2 (en) Magnetizing inrush current suppressing device

Legal Events

Date Code Title Description
WWE Wipo information: entry into national phase

Ref document number: 201180026815.1

Country of ref document: CN

121 Ep: the epo has been informed by wipo that ep was designated in this application

Ref document number: 11818166

Country of ref document: EP

Kind code of ref document: A1

REEP Request for entry into the european phase

Ref document number: 2011818166

Country of ref document: EP

WWE Wipo information: entry into national phase

Ref document number: 2011818166

Country of ref document: EP

NENP Non-entry into the national phase

Ref country code: DE

ENP Entry into the national phase

Ref document number: 2011291801

Country of ref document: AU

Date of ref document: 20110812

Kind code of ref document: A

REG Reference to national code

Ref country code: BR

Ref legal event code: B01A

Ref document number: 112013003956

Country of ref document: BR

ENP Entry into the national phase

Ref document number: 112013003956

Country of ref document: BR

Kind code of ref document: A2

Effective date: 20130220