WO2012023462A1 - ミキシング装置 - Google Patents
ミキシング装置 Download PDFInfo
- Publication number
- WO2012023462A1 WO2012023462A1 PCT/JP2011/068183 JP2011068183W WO2012023462A1 WO 2012023462 A1 WO2012023462 A1 WO 2012023462A1 JP 2011068183 W JP2011068183 W JP 2011068183W WO 2012023462 A1 WO2012023462 A1 WO 2012023462A1
- Authority
- WO
- WIPO (PCT)
- Prior art keywords
- control
- pressure
- pressurizer
- value
- circuit
- Prior art date
Links
Images
Classifications
-
- G—PHYSICS
- G21—NUCLEAR PHYSICS; NUCLEAR ENGINEERING
- G21C—NUCLEAR REACTORS
- G21C15/00—Cooling arrangements within the pressure vessel containing the core; Selection of specific coolants
-
- G—PHYSICS
- G21—NUCLEAR PHYSICS; NUCLEAR ENGINEERING
- G21C—NUCLEAR REACTORS
- G21C1/00—Reactor types
- G21C1/04—Thermal reactors ; Epithermal reactors
- G21C1/06—Heterogeneous reactors, i.e. in which fuel and moderator are separated
- G21C1/08—Heterogeneous reactors, i.e. in which fuel and moderator are separated moderator being highly pressurised, e.g. boiling water reactor, integral super-heat reactor, pressurised water reactor
- G21C1/09—Pressure regulating arrangements, i.e. pressurisers
-
- G—PHYSICS
- G21—NUCLEAR PHYSICS; NUCLEAR ENGINEERING
- G21D—NUCLEAR POWER PLANT
- G21D1/00—Details of nuclear power plant
-
- G—PHYSICS
- G21—NUCLEAR PHYSICS; NUCLEAR ENGINEERING
- G21D—NUCLEAR POWER PLANT
- G21D3/00—Control of nuclear power plant
- G21D3/08—Regulation of any parameters in the plant
-
- G—PHYSICS
- G21—NUCLEAR PHYSICS; NUCLEAR ENGINEERING
- G21C—NUCLEAR REACTORS
- G21C17/00—Monitoring; Testing ; Maintaining
- G21C17/02—Devices or arrangements for monitoring coolant or moderator
-
- Y—GENERAL TAGGING OF NEW TECHNOLOGICAL DEVELOPMENTS; GENERAL TAGGING OF CROSS-SECTIONAL TECHNOLOGIES SPANNING OVER SEVERAL SECTIONS OF THE IPC; TECHNICAL SUBJECTS COVERED BY FORMER USPC CROSS-REFERENCE ART COLLECTIONS [XRACs] AND DIGESTS
- Y02—TECHNOLOGIES OR APPLICATIONS FOR MITIGATION OR ADAPTATION AGAINST CLIMATE CHANGE
- Y02E—REDUCTION OF GREENHOUSE GAS [GHG] EMISSIONS, RELATED TO ENERGY GENERATION, TRANSMISSION OR DISTRIBUTION
- Y02E30/00—Energy generation of nuclear origin
-
- Y—GENERAL TAGGING OF NEW TECHNOLOGICAL DEVELOPMENTS; GENERAL TAGGING OF CROSS-SECTIONAL TECHNOLOGIES SPANNING OVER SEVERAL SECTIONS OF THE IPC; TECHNICAL SUBJECTS COVERED BY FORMER USPC CROSS-REFERENCE ART COLLECTIONS [XRACs] AND DIGESTS
- Y02—TECHNOLOGIES OR APPLICATIONS FOR MITIGATION OR ADAPTATION AGAINST CLIMATE CHANGE
- Y02E—REDUCTION OF GREENHOUSE GAS [GHG] EMISSIONS, RELATED TO ENERGY GENERATION, TRANSMISSION OR DISTRIBUTION
- Y02E30/00—Energy generation of nuclear origin
- Y02E30/30—Nuclear fission reactors
Definitions
- the present invention relates to a mixing device that circulates a coolant in a pressurizer while maintaining an internal pressure of a pressurizer provided in a nuclear facility at a preset target pressure.
- an automatic mixing water control apparatus for reactor replenishment water that includes an automatic mixing control and monitoring apparatus, a boron concentration measuring means, and a pressurizing heater (for example, Patent Document 1).
- the reactor make-up water automatic mixing control device automatically turns on the pressurizer heater when the supply of make-up water to the reactor is completed. Then, after the pressurizer heater is turned on, when the reactor replenishment water automatic mixing control device determines that the boron concentration is uniform by the boron concentration measuring means, the mixing automatic control and monitoring device turns off the pressurizer heater so that mixing is performed. finish.
- the mixing apparatus in order to lower the internal pressure of the pressurizer to the target pressure, spray water is sprayed from a spray valve provided in the pressurizer to cool the coolant.
- the internal pressure of a pressurizer can be maintained at a target pressure by adjusting the spraying amount of spray water. That is, in the mixing apparatus, after the pressurizer heater is turned on, the internal pressure of the pressurizer rises to the operating pressure at which the spray valve is activated, thereby opening the spray valve.
- the spray valve is opened after the pressurizer heater is turned on.
- the internal pressure of the pressurizer rises transiently due to the rise in the temperature of the coolant due to the heating of the pressurizer heater after the pressurizer heater is turned on until the spray valve is opened. Therefore, in the conventional mixing apparatus, it is difficult to maintain the internal pressure of the pressurizer appropriately at the target pressure immediately after the pressurizer heater is turned on.
- an object of the present invention is to provide a mixing device that can stably maintain the internal pressure of the pressurizer at the target pressure when the coolant in the pressurizer is heated.
- the mixing device of the present invention is provided in a pressurizer in a mixing device that circulates coolant in the pressurizer while maintaining the internal pressure of the pressurizer provided in the nuclear facility at a preset target pressure.
- Heating means for heating the coolant to increase the internal pressure of the pressurizer cooling means provided in the pressurizer for cooling the coolant and reducing the internal pressure of the pressurizer, and pressure in the pressurizer
- Pressure detecting means for detecting, and pressure control means for feedback-controlling the cooling means so as to achieve a target pressure based on the detected input value detected by the pressure detecting means, the pressure control means being based on the heating means
- a bias setting means for setting a bias to the working side of the unit, the cooling unit may be operated on the basis of the control output value after bias setting.
- the cooling means can operate faster than in the prior art.
- the pressure control means can stably control the internal pressure of the pressurizer during the heating of the coolant in the pressurizer, and can suitably maintain the internal pressure of the pressurizer at the target pressure.
- the cooling means operates when the input control output value is equal to or higher than the preset operation setting value, and the bias setting means is preset to the control output value. It is preferable that the bias is set by adding the bias setting value, and the bias setting value is set so that the control output value after the bias setting is equal to or higher than the operation setting value.
- the cooling means can be operated immediately when the coolant is heated by the heating means. Thereby, since a coolant can be cooled immediately, the raise of the internal pressure of a pressurizer can be suppressed. Therefore, the pressure control means can stably control the internal pressure of the pressurizer during the heating of the coolant in the pressurizer, and can suitably maintain the internal pressure of the pressurizer at the target pressure.
- the bias setting value can be changed.
- the bias setting value can be changed as appropriate in accordance with this change, so that the cooling means can be operated immediately.
- the heating means automatically heats the coolant simultaneously with the bias setting by the bias setting means.
- the heating means can be automatically operated simultaneously with the bias setting, the manual operation by the operator can be omitted.
- the feedback control unit performs PID control
- the pressure control unit further includes a differential control block unit that blocks differential control in the PID control when the coolant is heated by the heating unit.
- the differential effect with respect to the increase in the internal pressure of the pressurizer can be eliminated when the coolant is heated.
- the expansion of the pressure change in the pressurizer at the time of heating of a coolant can be suppressed, and it becomes possible to perform stable control.
- FIG. 1 is a schematic configuration diagram schematically showing a nuclear facility equipped with a mixing apparatus according to the present invention.
- FIG. 2 is an explanatory diagram relating to a circuit of the pressure control unit.
- FIG. 1 is a schematic configuration diagram schematically showing a nuclear facility equipped with a mixing apparatus according to the present invention.
- the mixing apparatus 40 according to the present invention is provided in a pressurizer 8 of a nuclear facility 1 having a nuclear reactor 5, and for example, a pressurized water reactor (PWR) is used as the nuclear reactor 5.
- PWR pressurized water reactor
- a nuclear facility 1 using this pressurized water reactor 5 includes a reactor cooling system 3 including the reactor 5 and a turbine system 4 that exchanges heat with the reactor cooling system 3.
- a reactor coolant flows, and in the turbine system 4, a secondary coolant flows.
- the reactor cooling system 3 has a reactor 5 and a steam generator 7 connected to the reactor 5 through a cold leg 6a and a hot leg 6b.
- a pressurizer 8 is interposed in the hot leg 6b
- a reactor coolant pump 9 is interposed in the cold leg 6a.
- the reactor 5, the cold leg 6 a, the hot leg 6 b, the steam generator 7, the pressurizer 8, and the reactor coolant pump 9 are accommodated in the reactor containment vessel 10.
- the reactor 5 is a pressurized water reactor as described above, and the inside thereof is filled with a reactor coolant.
- a large number of fuel assemblies 15 are accommodated, and a large number of control rods 16 for controlling the nuclear fission of the fuel assemblies 15 are provided in the fuel assemblies 15 so as to be removable. ing.
- the pressurizer 8 interposed in the hot leg 6b suppresses boiling of the reactor coolant by pressurizing the reactor coolant that has become high temperature. Further, the steam generator 7 heat-exchanges the reactor coolant that has become high temperature and high pressure with the secondary coolant, thereby evaporating the secondary coolant and generating steam, and also has high temperature and pressure. Reactor coolant is being cooled.
- Each reactor coolant pump 9 circulates the reactor coolant in the reactor cooling system 3 and sends the reactor coolant from each steam generator 7 to the reactor 5 via the cold leg 6a. The coolant is sent from the nuclear reactor 5 to each steam generator 7 through the hot leg 6b.
- the reactor 5 is cooled by the cooled reactor coolant flowing into the reactor 5. That is, the reactor coolant is circulated between the reactor 5 and the steam generator 7.
- the reactor coolant is light water in which boron used as a coolant and a neutron moderator is dissolved.
- the turbine system 4 connects a turbine 22 connected to each steam generator 7 through a steam pipe 21, a condenser 23 connected to the turbine 22, and the condenser 23 and each steam generator 7. And a water supply pump 24 interposed in the water supply pipe 26.
- a generator 25 is connected to the turbine 22.
- the condenser 23 has a cooling pipe 27 disposed therein, and one of the cooling pipes 27 is connected to a water intake pipe 28 for supplying cooling water (for example, seawater). A drain pipe 29 for draining the cooling water is connected to.
- the condenser 23 cools the steam flowing in from the turbine 22 by the cooling pipe 27, thereby returning the steam to a liquid.
- the secondary coolant that has become liquid is sent to each steam generator 7 via a water supply pipe 26 by a water supply pump 24.
- the secondary coolant sent to each steam generator 7 becomes steam again by exchanging heat with the reactor coolant in each steam generator 7.
- the nuclear facility 1 configured as described above is provided with a water injection facility (not shown), and the water injection facility is configured to be able to inject a reactor coolant in which boron is dissolved into the reactor cooling system 3. .
- the boron concentration of the reactor coolant flowing through the reactor cooling system 3 is different from the boron concentration of the reactor coolant injected into the reactor cooling system 3.
- the pressurizer 8 is provided with a mixing device 40 for making the boron concentration uniform.
- the mixing apparatus 40 will be described with reference to FIG.
- the mixing device 40 includes a rear heater 41, a spray valve 42, a pressure sensor (pressure detection means) 43, and a pressure control unit (pressure control means) 44, and an operator performs a mixing switch (see FIG. 2). By operating 45, the mixing device 40 is activated.
- the rear heater 41 functions as a heating means and is provided below the water surface of the reactor coolant accumulated in the pressurizer 8.
- the rear heater 41 raises the internal pressure of the pressurizer 8 by heating the reactor coolant accumulated in the pressurizer 8.
- the spray valve 42 functions as a cooling means, and is provided above the water surface of the reactor coolant accumulated in the pressurizer 8.
- the spray valve 42 sprays spray water inside the pressurizer 8 and cools the steam accumulated in the pressurizer 8, thereby lowering the internal pressure of the pressurizer 8. Further, the spray valve 42 operates so as to have an opening corresponding to the valve opening control value output from the pressure control unit 44.
- a supply flow path 48 for supplying spray water is connected to the spray valve 42. One end of the supply flow path 48 is connected to the spray valve 42 and the other end is connected to the cold leg 6a.
- the pressure sensor 43 is provided inside the pressurizer 8 and detects the internal pressure of the pressurizer 8.
- the pressure sensor 43 outputs the detected internal pressure of the pressurizer 8 as a detected pressure value (detected input value) toward the pressure control unit 44.
- the pressure control unit 44 Based on the detected pressure value input from the pressure sensor 43, the pressure control unit 44 outputs the valve opening control value toward the spray valve 42 so that the internal pressure of the pressurizer 8 becomes the target pressure.
- the opening degree of the spray valve 42 is controlled.
- the pressure control unit 44 performs different pressure control in the normal mode and the mixing mode. Note that the pressure control by the pressure control unit 44 is performed by switching a mode by operating a mixing switch 45 provided in an operating device (not shown) that operates the nuclear facility 1.
- the mixing switch 45 can be switched between an operating side (mixing mode side) that starts mixing (mixing) of the reactor coolant and a non-operating side (normal mode side) that ends mixing of the reactor coolant. It is configured.
- the pressure control unit 44 shifts from the normal mode pressure control to the mixing mode pressure control.
- the pressure control unit 44 shifts from mixing mode pressure control to normal mode pressure control.
- FIG. 2 is an explanatory diagram relating to a circuit of the pressure control unit.
- the pressure control unit 44 includes a PID control unit (feedback control unit) 51, a signal conversion unit 52, a bias setting unit 53, a signal block unit (differential control block unit) 54, and a mode switching unit 55. Yes.
- the PID control unit 51 performs PID control based on the detection signal input from the pressure sensor 43, and outputs the detection signal after PID control to the signal conversion unit 52 as a control signal.
- the PID control unit 51 includes a difference circuit 61, a proportional control circuit 62, an integration control circuit 63, a differentiation control circuit 64, and an addition circuit 65.
- the difference circuit 61 calculates the difference between the detected pressure value input from the pressure sensor 43 and a preset target pressure value.
- the proportional control circuit 62 proportionally operates the differential pressure value output from the differential circuit 61.
- the integration control circuit 63 integrates the differential pressure value output from the proportional control circuit 62.
- the differentiation control circuit 64 differentiates the differential pressure value output from the proportional control circuit 62.
- the adding circuit 65 adds the differential pressure value output from the proportional control circuit 62, the differential pressure value output from the integral control circuit 63, and the differential pressure value output from the differentiation control circuit 64.
- the PID control unit 51 obtains a differential pressure value that is a difference from the target pressure value by the differential circuit 61. Thereafter, the differential pressure value is proportionally controlled by the proportional control circuit 62.
- the proportionally controlled differential pressure value is input to the integration control circuit 63 and the differentiation control circuit 64, respectively.
- the differential pressure value input to the integration control circuit 63 is integrated and input to the addition circuit 65, and the differential pressure value input to the differentiation control circuit 64 is differentially controlled and input to the addition circuit 65.
- the adding circuit 65 adds the differential pressure value output from the proportional control circuit 62, the differential pressure value output from the integral control circuit 63, and the differential pressure value output from the differentiation control circuit 64, and performs control.
- the differential pressure value is output toward the signal converter 52.
- the signal converter 52 outputs a valve opening control value, which is an operation signal of the spray valve 42, toward the spray 42 valve based on the input control differential pressure value. Specifically, the signal converter 52 derives the valve opening control value corresponding to the input control differential pressure value based on the valve control graph G in which the control differential pressure value and the valve opening control value are associated with each other. is doing.
- the horizontal axis is the control differential pressure value
- the vertical axis is the valve opening control value. Looking at the valve control graph G, when the control differential pressure value is 0, the valve opening control value is 0, and the spray valve 42 is closed.
- valve opening control value becomes larger than 0, and the spray valve 42 has a predetermined opening.
- the valve opening control value reaches the upper limit value, and the spray valve 42 is fully opened.
- the bias setting unit 53 sets a bias on the operation side of the spray valve 42 with respect to the control differential pressure value input from the PID control unit 51 to the signal conversion unit 52. Specifically, the bias setting unit 53 adds a bias pressure value (bias set value) to the control differential pressure value. At this time, the bias pressure value is a value such that the control differential pressure value after the bias setting is larger than the operating differential pressure value. For this reason, when the bias pressure value is added to the control differential pressure value by the bias setting unit 53, the control differential pressure value after the bias setting becomes larger than the operation differential pressure value, and the spray valve 42 is opened. To do. Thereby, the pressure control unit 44 performs the bias setting and simultaneously cools the reactor coolant by the spray valve 42. The bias pressure value can be appropriately changed by the operator.
- the signal block unit 54 blocks the differential pressure value signal output from the differential control circuit 64 of the PID control unit 51.
- the signal block unit 54 is connected to a third NOT circuit 75 of the mode switching unit 55 to be described later.
- the signal block unit 54 blocks the differential pressure value signal output from the differentiation control circuit 64. do not do.
- the signal block unit 54 blocks the differential pressure value signal output from the differentiation control circuit 64.
- the mode switching unit 55 is switched between the normal mode and the mixing mode when the mixing switch 45 is switched.
- the mixing switch 45 includes a normal signal output unit 45a that outputs a normal mode signal, and a mixing signal output unit 45b that outputs a mixing mode signal.
- the mixing switch 45 When the mixing switch 45 is switched to the non-operating side, the normal signal is output from the normal signal output unit 45a, while the mixing mode output unit 45b does not output the mixing mode signal.
- the mixing switch 45 when the mixing switch 45 is switched to the operating side, it does not output a normal mode signal from the normal signal output unit 45a, but outputs a mixing mode signal from the mixing signal output unit 45b.
- the mode switching unit 55 includes a first NOT circuit 71 connected to the normal signal output unit 45a, an OR circuit 72 connected to the mixing signal output unit 45b, a second NOT circuit 74 to which a load sudden decrease signal is input, and a first NOT. And an AND circuit 73 connected to the circuit 71, the second NOT circuit 74, and the OR circuit 72.
- the OR circuit 72 is connected to the input side of the mixing signal output unit 45b and the output side of the AND circuit 73. Therefore, the OR circuit 72 outputs a signal toward the AND circuit 73 when a signal is input from the mixing signal output unit 45 b.
- the OR circuit 72 forms part of a latch circuit, and outputs a signal toward the AND circuit 73 when the signal output from the AND circuit 73 is input.
- the first NOT circuit 71 has a normal signal output unit 45a connected to the input side thereof. For this reason, when a signal is input from the normal signal output unit 45a, the first NOT circuit 71 does not output a signal to the AND circuit 73. On the other hand, if a signal is not input from the normal signal output unit 45a, the first NOT circuit 71 A signal is output toward the circuit 73.
- the second NOT circuit 74 receives a sudden load decrease signal, and the sudden load decrease signal is a signal that is output when the load applied to the turbine 22 suddenly decreases.
- the second NOT circuit 74 blocks the mixing mode when the load sudden decrease signal is output.
- the AND circuit 73 has an OR circuit 72, a first NOT circuit 71, and a second NOT circuit 74 connected to its input side. Therefore, the AND circuit 73 outputs a signal when a signal is input from the OR circuit 72, the first NOT circuit 71, and the second NOT circuit 74. On the other hand, the AND circuit 73 does not output a signal unless a signal is output from any one of the OR circuit 72, the first NOT circuit 71, and the second NOT circuit 74.
- the mode switching unit 55 is connected to the output side of the AND circuit 73 with the bias setting unit 53, the third NOT circuit 75, and the rear heater 41.
- the bias setting unit 53 sets a bias when a signal is input from the AND circuit 73, but does not set a bias when a signal is not input from the AND circuit 73.
- the back heater 41 automatically starts operating when a signal is input from the AND circuit 73, but does not automatically start when a signal is not input from the AND circuit 73.
- the third NOT circuit 75 does not output a release signal to the signal block unit 54 when a signal is input from the AND circuit 73, while it is directed to the signal block unit 54 when no signal is input from the AND circuit 73. To output a release signal.
- the pressure control unit 44 obtains the differential pressure value by the differential circuit 61, and thereafter, the differential pressure value is obtained from the proportional control circuit 62,
- the integral control circuit 63 and the differential control circuit 64 provide a proportional effect, an integral effect, and a differential effect.
- the differential pressure value after PID control is output from the addition circuit 65 to the signal converter 52 as a control differential pressure value.
- the signal converter 52 derives a valve opening control value from the input control differential pressure value and the valve control graph G, and outputs the valve opening control value to the spray valve 42.
- the spray valve 42 has an opening degree corresponding to the input valve opening degree control value. Accordingly, the pressure control unit 44 performs feedback control of the spray valve 42 based on the detection result of the pressure sensor 43.
- the mixing switch 45 when the mixing switch 45 is switched from the non-operating side to the operating side, and the load sudden decrease signal is not input to the second NOT circuit 74, the normal signal output unit 45a of the mixing switch 45 does not output a signal and outputs a mixing signal.
- the unit 45b outputs a signal
- the second NOT circuit 74 outputs a signal. Therefore, the AND circuit 73 receives a signal from the first NOT circuit 71, a signal from the OR circuit 72, and a signal from the second NOT circuit 74. Accordingly, since the AND circuit 73 outputs a signal, the bias setting unit 53 sets a bias with respect to the control differential pressure value, the back heater 41 starts operating, and the third NOT circuit 75 does not output a release signal. .
- the differential circuit 61 obtains the differential pressure value. After this, the differential pressure value is given a proportional effect and an integral effect by the proportional control circuit 62 and the integral control circuit 63. On the other hand, since the differential control circuit 64 is blocked by the signal block unit 54, the differential pressure value is not given a differential effect by the differential control circuit 64. Then, the differential pressure value after PI control is output from the adding circuit 65 as a control differential pressure value. The control differential pressure value output from the addition circuit 65 is added to the bias pressure value by the bias setting unit 53 and output to the signal conversion unit 52.
- the signal converter 52 derives a valve opening control value from the input control differential pressure value and the valve control graph G, and outputs the valve opening control value to the spray valve 42.
- the spray valve 42 operates almost simultaneously with the switching operation of the mixing switch 45 to the mixing mode.
- the pressure control unit 44 is switched to the mixing mode by the mixing switch 45, the rear heater 41 and the spray valve 42 operate almost simultaneously, and the spray valve 42 is feedback-controlled based on the detection result of the pressure sensor 43.
- the mixing switch 45 when the mixing switch 45 is switched from the non-operating side to the operating side and a load sudden decrease signal is input to the second NOT circuit 74, the second NOT circuit 74 does not output a signal to the AND circuit 73. Therefore, no signal is input from the second NOT circuit 74 to the AND circuit 73. Accordingly, since the AND circuit 73 does not output a signal, the pressure control unit 44 performs pressure control in the normal mode even when the mixing switch 45 is switched to the operating side.
- the pressure control unit 44 when the reactor coolant is heated by the after heater 41, a bias can be set with respect to the control differential pressure value. Therefore, the pressure control unit 44 quickly sets the spray valve 42 in the mixing mode. Can be operated. Thereby, since the pressure control part 44 can cool a reactor coolant quickly, it can suppress the transient raise of the internal pressure of the pressurizer 8 after the heating of the back heater 41. FIG. Therefore, the pressure control unit 44 can stably control the internal pressure of the pressurizer 8 when the coolant in the pressurizer 8 is heated, and suitably maintains the internal pressure of the pressurizer 8 at the target pressure. be able to.
- the bias set value can be changed as appropriate, even if the operation differential pressure value set according to the spray valve 42 to be used changes, the spray valve 42 can be operated immediately.
- the rear heater 41 can be automatically operated simultaneously with the bias setting, the manual operation by the operator can be omitted.
- the differential effect on the increase in the internal pressure of the pressurizer 8 can be eliminated during the heating of the reactor coolant. Therefore, the expansion of the pressure change in the pressurizer 8 at the time of heating the reactor coolant can be suppressed, and stable control can be performed.
- the mixing device according to the present invention is useful in a nuclear facility having a pressurized water reactor, and is particularly suitable for uniformizing the boron concentration of the reactor coolant flowing through the reactor cooling system. Yes.
Landscapes
- Physics & Mathematics (AREA)
- Engineering & Computer Science (AREA)
- Plasma & Fusion (AREA)
- General Engineering & Computer Science (AREA)
- High Energy & Nuclear Physics (AREA)
- Monitoring And Testing Of Nuclear Reactors (AREA)
- Feedback Control In General (AREA)
Abstract
加圧器の内部圧力を上げる後備ヒータ41と、加圧器の内部圧力を下げるスプレイ弁と、加圧器内の圧力を検出する圧力センサと、圧力センサによって検出された検出圧力値に基づいて、目標圧力となるように、スプレイ弁をフィードバック制御する圧力制御部44と、を備え、圧力制御部44は、後備ヒータ41による冷却材の加熱時に、フィードバック制御を実行して制御差分圧力値を出力するPID制御部51と、制御差分圧力値に対し、スプレイ弁の作動側へバイアスを設定するバイアス設定部53と、を有し、スプレイ弁は、バイアス設定後の制御差分圧力値に基づいて作動する。
Description
本発明は、原子力施設に設けられた加圧器の内部圧力を、予め設定された目標圧力に維持しつつ、加圧器内の冷却材を循環させるミキシング装置に関するものである。
従来、このようなミキシング装置を制御するものとして、ミキシング自動制御監視装置と、ホウ素濃度測定手段と、加圧器ヒータと、を備えた原子炉補給水自動ミキシング制御装置が知られている(例えば、特許文献1参照)。この原子炉補給水自動ミキシング制御装置は、原子炉への補給水の供給が完了すると、自動で加圧器ヒータを投入する。そして、加圧器ヒータの投入後、原子炉補給水自動ミキシング制御装置は、ホウ素濃度測定手段によりホウ素濃度が均一であると判定すると、ミキシング自動制御監視装置が加圧器ヒータを切ることで、ミキシングが終了する。
ところで、加圧器ヒータを投入すると、加圧器内の冷却材が加熱されることにより、加圧器の内部圧力は上がる。このため、ミキシング装置では、加圧器の内部圧力を目標圧力に下げるべく、加圧器内に設けられたスプレイ弁からスプレイ水を散布して、冷却材を冷やしている。これにより、スプレイ水の散布量を調整することで、加圧器の内部圧力を目標圧力に維持することができる。つまり、ミキシング装置では、加圧器ヒータが投入された後、加圧器の内部圧力が、スプレイ弁が作動する作動圧力まで上昇することで、スプレイ弁が開弁する。しかしながら、このような従来のミキシング装置では、加圧器ヒータの投入後にスプレイ弁が開弁することとなる。このため、加圧器の内部圧力は、加圧器ヒータの投入後からスプレイ弁が開弁するまでの間、加圧器ヒータの加熱による冷却材の温度上昇により、過渡的に上昇する。よって、従来のミキシング装置では、加圧器ヒータの投入直後において、加圧器の内部圧力を目標圧力に好適に維持することが困難であった。
そこで、本発明は、加圧器内の冷却材の加熱時において、加圧器の内部圧力を目標圧力に安定的に維持することができるミキシング装置を提供することを課題とする。
本発明のミキシング装置は、原子力施設に設けられた加圧器の内部圧力を、予め設定された目標圧力に維持しつつ、加圧器内の冷却材を循環させるミキシング装置において、加圧器内に設けられ、冷却材を加熱して、加圧器の内部圧力を上げる加熱手段と、加圧器内に設けられ、冷却材を冷却して、加圧器の内部圧力を下げる冷却手段と、加圧器内の圧力を検出する圧力検出手段と、圧力検出手段によって検出された検出入力値に基づいて、目標圧力となるように、冷却手段をフィードバック制御する圧力制御手段と、を備え、圧力制御手段は、加熱手段による冷却材の加熱時に、検出された検出入力値に対し、フィードバック制御を実行して制御出力値として冷却手段へ向けて出力するフィードバック制御手段と、制御出力値に対し、冷却手段の作動側へバイアスを設定するバイアス設定手段と、を有し、冷却手段は、バイアス設定後の制御出力値に基づいて作動することを特徴とする。
この構成によれば、加熱手段による冷却材の加熱時に、冷却手段に入力される制御出力値に対して、冷却手段の作動側にバイアスを設定することができる。このため、加熱手段により冷却材が加熱されると、冷却手段は、従来に比して、早く作動することができる。これにより、冷却材を従来よりも早く冷やすことができるため、加熱手段による加熱後の加圧器の内部圧力の過渡的な上昇は、従来に比して小さくなる。よって、圧力制御手段は、加圧器内の冷却材の加熱時において、加圧器の内部圧力を安定的に制御することができ、加圧器の内部圧力を目標圧力に好適に維持することができる。
この場合、冷却手段は、入力される制御出力値が、予め設定された作動設定値以上となった場合に作動するようになっており、バイアス設定手段は、制御出力値に、予め設定されたバイアス設定値を加算することでバイアスを設定しており、バイアス設定後の制御出力値が、作動設定値以上となるようにバイアス設定値を設定することが、好ましい。
この構成によれば、加熱手段による冷却材の加熱時に、冷却手段を直ぐに作動させることができる。これにより、冷却材を直ぐに冷やすことができるため、加圧器の内部圧力の上昇を抑制することができる。よって、圧力制御手段は、加圧器内の冷却材の加熱時において、加圧器の内部圧力を安定的に制御することができ、加圧器の内部圧力を目標圧力に好適に維持することができる。
この場合、バイアス設定値は、変更可能であることが、好ましい。
この構成によれば、冷却手段に設定された作動設定値が変化しても、この変化に応じてバイアス設定値を適宜変更することができるため、冷却手段を直ぐに作動させることができる。
この場合、加熱手段は、バイアス設定手段によるバイアス設定と同時に、自動で冷却材を加熱することが、好ましい。
この構成によれば、バイアス設定と同時に、加熱手段を自動で作動させることができるため、オペレータによる手動操作の省略化を図ることができる。
この場合、フィードバック制御手段は、PID制御を実行しており、圧力制御手段は、加熱手段による冷却材の加熱時に、PID制御内の微分制御をブロックする微分制御ブロック手段をさらに備えることが、好ましい。
この構成によれば、冷却材の加熱時において、加圧器の内部圧力の上昇に対する微分効果を除去することができる。これにより、冷却材の加熱時における加圧器内の圧力変化の拡大を抑制することができ、安定的な制御を行うことが可能となる。
以下、添付した図面を参照して、本発明に係るミキシング装置について説明する。なお、以下の実施例によりこの発明が限定されるものではない。また、下記実施例における構成要素には、当業者が置換可能かつ容易なもの、或いは実質的に同一のものが含まれる。
図1は、本発明に係るミキシング装置を備えた原子力施設を模式的に表した概略構成図である。本発明に係るミキシング装置40は、原子炉5を有する原子力施設1の加圧器8に設けられており、原子炉5としては、例えば、加圧水型原子炉(PWR:Pressurized Water Reactor)が用いられている。この加圧水型の原子炉5を用いた原子力施設1は、原子炉5を含む原子炉冷却系3と、原子炉冷却系3と熱交換するタービン系4とで構成されており、原子炉冷却系3には、原子炉冷却材が流通し、タービン系4には、二次冷却材が流通している。
原子炉冷却系3は、原子炉5と、コールドレグ6aおよびホットレグ6bを介して原子炉5に接続された蒸気発生器7とを有している。また、ホットレグ6bには、加圧器8が介設され、コールドレグ6aには、原子炉冷却材ポンプ9が介設されている。そして、原子炉5、コールドレグ6a、ホットレグ6b、蒸気発生器7、加圧器8および原子炉冷却材ポンプ9は、原子炉格納容器10に収容されている。
原子炉5は、上記したように加圧水型原子炉であり、その内部は原子炉冷却材で満たされている。そして、原子炉5内には、多数の燃料集合体15が収容されると共に、燃料集合体15の核分裂を制御する多数の制御棒16が、各燃料集合体15に対し、抜差し可能に設けられている。
制御棒16により核分裂反応を制御しながら燃料集合体15を核分裂させると、この核分裂により熱エネルギーが発生する。発生した熱エネルギーは原子炉冷却材を加熱し、加熱された原子炉冷却材は、ホットレグ6bを介して蒸気発生器7へ送られる。一方、コールドレグ6aを介して各蒸気発生器7から送られてきた原子炉冷却材は、原子炉5内に流入して、原子炉5内を冷却する。
ホットレグ6bに介設された加圧器8は、高温となった原子炉冷却材を加圧することにより、原子炉冷却材の沸騰を抑制している。また、蒸気発生器7は、高温高圧となった原子炉冷却材を、二次冷却材と熱交換させることにより、二次冷却材を蒸発させて蒸気を発生させ、且つ、高温高圧となった原子炉冷却材を冷却している。各原子炉冷却材ポンプ9は、原子炉冷却系3において原子炉冷却材を循環させており、原子炉冷却材を各蒸気発生器7からコールドレグ6aを介して原子炉5へ送り込むと共に、原子炉冷却材を原子炉5からホットレグ6bを介して各蒸気発生器7へ送り込んでいる。
ここで、原子力施設1の原子炉冷却系3における一連の動作について説明する。原子炉5内の核分裂反応により発生した熱エネルギーにより、原子炉冷却材が加熱されると、加熱された原子炉冷却材は、各原子炉冷却材ポンプ9によりホットレグ6bを介して各蒸気発生器7に送られる。ホットレグ6bを通過する高温の原子炉冷却材は、加圧器8により加圧されることで沸騰が抑制され、高温高圧となった状態で、各蒸気発生器7に流入する。各蒸気発生器7に流入した高温高圧の原子炉冷却材は、二次冷却材と熱交換を行うことにより冷却され、冷却された原子炉冷却材は、各原子炉冷却材ポンプ9によりコールドレグ6aを介して原子炉5に送られる。そして、冷却された原子炉冷却材が原子炉5に流入することで、原子炉5が冷却される。つまり、原子炉冷却材は、原子炉5と蒸気発生器7との間を循環している。なお、原子炉冷却材は、冷却材および中性子減速材として用いられるホウ素が溶解した軽水である。
タービン系4は、蒸気管21を介して各蒸気発生器7に接続されたタービン22と、タービン22に接続された復水器23と、復水器23と各蒸気発生器7とを接続する給水管26に介設された給水ポンプ24と、を有している。そして、上記のタービン22には、発電機25が接続されている。
ここで、原子力施設1のタービン系4における一連の動作について説明する。蒸気管21を介して各蒸気発生器7から蒸気がタービン22に流入すると、タービン22は回転を行う。タービン22が回転すると、タービン22に接続された発電機25は、発電を行う。この後、タービン22から流出した蒸気は復水器23に流入する。復水器23は、その内部に冷却管27が配設されており、冷却管27の一方には冷却水(例えば、海水)を供給するための取水管28が接続され、冷却管27の他方には冷却水を排水するための排水管29が接続されている。そして、復水器23は、タービン22から流入した蒸気を冷却管27により冷却することで、蒸気を液体に戻している。液体となった二次冷却材は、給水ポンプ24により給水管26を介して各蒸気発生器7に送られる。各蒸気発生器7に送られた二次冷却材は、各蒸気発生器7において原子炉冷却材と熱交換を行うことにより再び蒸気となる。
上記のように構成された原子力施設1には、図示しない注水設備が設けられており、注水設備は、ホウ素が溶解した原子炉冷却材を、原子炉冷却系3に注水可能に構成されている。このとき、原子炉冷却系3に流通する原子炉冷却材のホウ素濃度と、原子炉冷却系3に注水された原子炉冷却材のホウ素濃度とは異なる。このため、加圧器8には、ホウ素濃度を均一化するためのミキシング装置40が設けられている。以下、図1を参照して、ミキシング装置40について説明する。
ミキシング装置40は、後備ヒータ41と、スプレイ弁42と、圧力センサ(圧力検出手段)43と、圧力制御部(圧力制御手段)44とを有しており、オペレータがミキシングスイッチ(図2参照)45を操作することで、ミキシング装置40が作動する。
後備ヒータ41は、加熱手段として機能しており、加圧器8の内部に溜まった原子炉冷却材の水面の下方側に設けられている。後備ヒータ41は、加圧器8内に溜まった原子炉冷却材を加熱することで、加圧器8の内部圧力を上昇させる。スプレイ弁42は、冷却手段として機能しており、加圧器8の内部に溜まった原子炉冷却材の水面の上方側に設けられている。スプレイ弁42は、スプレイ水を加圧器8の内部に散布し、加圧器8内に溜まった蒸気を冷却することで、加圧器8の内部圧力を下降させる。また、スプレイ弁42は、圧力制御部44から出力される弁開度制御値に対応する開度となるように作動する。このスプレイ弁42には、スプレイ水を供給する供給流路48が接続されており、供給流路48は、その一端がスプレイ弁42に接続され、その他端がコールドレグ6aに接続されている。
圧力センサ43は、加圧器8の内部に設けられており、加圧器8の内部圧力を検出している。そして、圧力センサ43は、検出した加圧器8の内部圧力を検出圧力値(検出入力値)として、圧力制御部44へ向けて出力している。圧力制御部44は、圧力センサ43から入力された検出圧力値に基づいて、加圧器8の内部圧力が目標圧力となるように、弁開度制御値をスプレイ弁42に向けて出力することで、スプレイ弁42の開度を制御している。この圧力制御部44は、通常モードと、ミキシングモードとで、異なった圧力制御を行っている。なお、圧力制御部44による圧力制御は、原子力施設1を操作する図示しない操作装置に設けられたミキシングスイッチ45を操作することにより、モード切換が行われる。
ミキシングスイッチ45は、原子炉冷却材のミキシング(混合)を開始する作動側(ミキシングモード側)と、原子炉冷却材のミキシングを終了する非作動側(通常モード側)との間で切換可能に構成されている。オペレータがミキシングスイッチ45を作動側に切り換えると、圧力制御部44による通常モードの圧力制御から、ミキシングモードの圧力制御へ移行する。一方で、オペレータがミキシングスイッチ45を非作動側に切り換えると、圧力制御部44によるミキシングモードの圧力制御から、通常モードの圧力制御へ移行する。なお、詳細は後述するが、ミキシングスイッチ45を作動側へ切り換えることにより、上記の後備ヒータ41が自動的に投入され、原子炉冷却材を加熱する。
ここで、図2を参照して、圧力制御部44の構成について、具体的に説明する。図2は、圧力制御部の回路に関する説明図である。圧力制御部44は、PID制御部(フィードバック制御手段)51と、信号変換部52と、バイアス設定部53と、信号ブロック部(微分制御ブロック手段)54と、モード切換部55とを有している。
PID制御部51は、圧力センサ43から入力された検出信号に基づいてPID制御を行い、PID制御後の検出信号を制御信号として信号変換部52へ向けて出力している。具体的に、PID制御部51は、差分回路61と、比例制御回路62と、積分制御回路63と、微分制御回路64と、加算回路65とを有している。差分回路61は、圧力センサ43から入力された検出圧力値と、予め設定された目標圧力値との差分を算出している。比例制御回路62は、差分回路61から出力された差分圧力値を比例動作させている。積分制御回路63は、比例制御回路62から出力された差分圧力値を積分動作させている。微分制御回路64は、比例制御回路62から出力された差分圧力値を微分動作させている。加算回路65は、比例制御回路62から出力された差分圧力値、積分制御回路63から出力された差分圧力値および微分制御回路64から出力された差分圧力値を足し合わせている。
従って、PID制御部51に検出圧力値が入力されると、PID制御部51は、差分回路61により目標圧力値との差分である差分圧力値が求められる。この後、差分圧力値は、比例制御回路62によって比例制御される。比例制御された差分圧力値は、積分制御回路63および微分制御回路64にそれぞれ入力される。積分制御回路63に入力された差分圧力値は積分制御されて加算回路65に入力され、微分制御回路64に入力された差分圧力値は微分制御されて加算回路65に入力される。そして、加算回路65は、比例制御回路62から出力された差分圧力値と、積分制御回路63から出力された差分圧力値と、微分制御回路64から出力された差分圧力値とを足し合わせ、制御差分圧力値として信号変換部52へ向けて出力する。
信号変換部52は、入力された制御差分圧力値に基づいて、スプレイ弁42の作動信号となる弁開度制御値を、スプレイ42弁へ向けて出力する。具体的に、信号変換部52は、制御差分圧力値と弁開度制御値とを対応付けた弁制御グラフGに基づいて、入力された制御差分圧力値に対応する弁開度制御値を導出している。弁制御グラフGは、その横軸が制御差分圧力値となっており、その縦軸が弁開度制御値となっている。弁制御グラフGを見るに、制御差分圧力値が0の場合、弁開度制御値は0となり、スプレイ弁42は閉弁する。また、制御差分圧力値が、予め設定された作動差分圧力値よりも大きくなった場合、弁開度制御値は0よりも大きくなり、スプレイ弁42は所定の開度となる。そして、制御差分圧力値がさらに大きくなった場合、弁開度制御値は上限値に達し、スプレイ弁42は全開となる。
バイアス設定部53は、PID制御部51から信号変換部52へ入力される制御差分圧力値に対し、スプレイ弁42の作動側にバイアスを設定している。具体的に、バイアス設定部53は、制御差分圧力値に、バイアス圧力値(バイアス設定値)を加算している。このとき、バイアス圧力値は、バイアス設定後の制御差分圧力値が作動差分圧力値よりも大きくなるような値となっている。このため、制御差分圧力値に対し、バイアス設定部53によりバイアス圧力値が加算されると、バイアス設定後の制御差分圧力値は、作動差分圧力値よりも大きくなり、スプレイ弁42は開弁動作する。これにより、圧力制御部44は、バイアス設定を行うと同時に、スプレイ弁42による原子炉冷却材の冷却を行う。なお、バイアス圧力値は、その値をオペレータによって適宜変更することができる。
信号ブロック部54は、PID制御部51の微分制御回路64から出力された差分圧力値の信号をブロックしている。信号ブロック部54は、後述するモード切換部55の第3NOT回路75が接続されており、第3NOT回路75から解除信号が入力されたら、微分制御回路64から出力された差分圧力値の信号をブロックしない。一方で、信号ブロック部54は、第3NOT回路75から解除信号が入力されなければ、微分制御回路64から出力された差分圧力値の信号をブロックする。
モード切換部55は、ミキシングスイッチ45が切換操作されることにより、通常モードとミキシングモードとの間でモード切換される。ミキシングスイッチ45は、通常モードの信号を出力する通常信号出力部45aと、ミキシングモードの信号を出力するミキシング信号出力部45bとを有している。そして、ミキシングスイッチ45は、非作動側に切り換えられている場合、通常信号出力部45aから通常モードの信号を出力する一方で、ミキシング信号出力部45bからミキシングモードの信号を出力しない。一方で、ミキシングスイッチ45は、作動側に切り換えられている場合、通常信号出力部45aから通常モードの信号を出力しない一方で、ミキシング信号出力部45bからミキシングモードの信号を出力する。
モード切換部55は、通常信号出力部45aに接続された第1NOT回路71と、ミキシング信号出力部45bに接続されたOR回路72と、負荷急減信号が入力される第2NOT回路74と、第1NOT回路71、第2NOT回路74およびOR回路72に接続されたAND回路73と、を有している。
OR回路72は、その入力側に、ミキシング信号出力部45bと、上記のAND回路73の出力側とが接続されている。このため、OR回路72は、ミキシング信号出力部45bから信号が入力されると、AND回路73へ向けて信号を出力する。また、OR回路72は、ラッチ回路の一部を構成しており、AND回路73から出力された信号が入力されることで、AND回路73へ向けて信号を出力する。
第1NOT回路71は、その入力側に、通常信号出力部45aが接続されている。このため、第1NOT回路71は、通常信号出力部45aから信号が入力されると、AND回路73ヘ向けて信号を出力せず、一方で、通常信号出力部45aから信号が入力されないと、AND回路73ヘ向けて信号を出力する。
第2NOT回路74は、負荷急減信号が入力され、負荷急減信号は、タービン22に加わる負荷が急減したときに出力される信号である。第2NOT回路74は、負荷急減信号が出力された場合、ミキシングモードをブロックする。
AND回路73は、その入力側に、OR回路72、第1NOT回路71および第2NOT回路74が接続されている。このため、AND回路73は、OR回路72、第1NOT回路71および第2NOT回路74から信号が入力されると信号を出力する。一方で、AND回路73は、OR回路72、第1NOT回路71および第2NOT回路74のうち、いずれか1つの回路から信号が出力されなければ、信号を出力しない。
また、モード切換部55は、AND回路73の出力側に、バイアス設定部53と、第3NOT回路75と、後備ヒータ41とが接続されている。このため、バイアス設定部53は、AND回路73から信号が入力されると、バイアスを設定する一方で、AND回路73から信号が入力されないと、バイアスを設定しない。また、後備ヒータ41は、AND回路73から信号が入力されると、自動的に作動開始する一方で、AND回路73から信号が入力されないと、自動的に作動開始しない。さらに、第3NOT回路75は、AND回路73から信号が入力されると、信号ブロック部54へ向けて解除信号を出力しない一方で、AND回路73から信号が入力されないと、信号ブロック部54へ向けて解除信号を出力する。
続いて、ミキシングスイッチ45が切換操作されることにより、圧力制御部44による通常モードの圧力制御から、圧力制御部44によるミキシングモードの圧力制御へ切り換えられる一連の動作について説明する。ミキシングスイッチ45が非作動側へ切り換えられた場合、ミキシングスイッチ45の通常信号出力部45aは信号を出力し、ミキシング信号出力部45bは信号を出力しない。このため、AND回路73には、第1NOT回路71から信号が入力されず、OR回路72から信号が入力されない。これにより、AND回路73は信号を出力しないため、バイアス設定部53は、制御差分圧力値に対しバイアスを設定せず、後備ヒータ41は、作動開始せず、第3NOT回路75は、解除信号を出力する。
よって、圧力制御部44は、通常モードの場合、圧力センサ43から検出圧力値が入力されると、差分回路61により差分圧力値が求められ、この後、差分圧力値は、比例制御回路62、積分制御回路63および微分制御回路64によって、比例効果、積分効果および微分効果が与えられる。そして、PID制御後の差分圧力値は、制御差分圧力値として加算回路65から信号変換部52へ向けて出力される。信号変換部52は、入力された制御差分圧力値と弁制御グラフGとから弁開度制御値を導出し、スプレイ弁42へ向けて弁開度制御値を出力する。そして、スプレイ弁42は、入力された弁開度制御値に応じた開度とする。これにより、圧力制御部44は、圧力センサ43の検出結果に基づいて、スプレイ弁42をフィードバック制御している。
一方、ミキシングスイッチ45が非作動側から作動側へ切り換えられ、且つ、第2NOT回路74へ負荷急減信号が入力されない場合、ミキシングスイッチ45の通常信号出力部45aは信号を出力せず、ミキシング信号出力部45bは信号を出力し、第2NOT回路74は信号を出力する。このため、AND回路73には、第1NOT回路71から信号が入力され、OR回路72から信号が入力され、第2NOT回路74から信号が入力される。これにより、AND回路73は信号を出力するため、バイアス設定部53は、制御差分圧力値に対しバイアスを設定し、後備ヒータ41は、作動開始し、第3NOT回路75は、解除信号を出力しない。
よって、圧力制御部44は、ミキシングモードの場合、圧力センサ43から検出圧力値が入力されると、差分回路61により差分圧力値が求められる。この後、差分圧力値には、比例制御回路62および積分制御回路63による比例効果および積分効果が与えられる。一方で、微分制御回路64は、信号ブロック部54によりブロックされるため、差分圧力値には、微分制御回路64による微分効果が与えられない。そして、PI制御後の差分圧力値は、制御差分圧力値として加算回路65から出力される。加算回路65から出力された制御差分圧力値は、バイアス設定部53により、バイアス圧力値が加算され、信号変換部52へ向けて出力される。信号変換部52は、入力された制御差分圧力値と弁制御グラフGとから弁開度制御値を導出し、スプレイ弁42へ向けて弁開度制御値を出力する。このとき、バイアス設定後の制御差分圧力値は、作動差分圧力値よりも大きくなっているため、スプレイ弁42は、ミキシングスイッチ45のミキシングモードへの切換操作とほぼ同時に作動する。これにより、圧力制御部44は、ミキシングスイッチ45によりミキシングモードへ切り換えられると、後備ヒータ41およびスプレイ弁42がほぼ同時に作動し、圧力センサ43の検出結果に基づいて、スプレイ弁42がフィードバック制御される。
なお、ミキシングスイッチ45が非作動側から作動側へ切り換えられ、第2NOT回路74へ負荷急減信号が入力された場合、第2NOT回路74は、AND回路73へ信号を出力しない。このため、AND回路73には、第2NOT回路74から信号が入力されない。これにより、AND回路73は信号を出力しないため、ミキシングスイッチ45が作動側へ切り換えられても、圧力制御部44は、通常モードの圧力制御を行う。
以上の構成によれば、後備ヒータ41による原子炉冷却材の加熱時に、制御差分圧力値に対してバイアスを設定することができるため、圧力制御部44は、ミキシングモードにおいて、スプレイ弁42を迅速に作動させることができる。これにより、圧力制御部44は、原子炉冷却材を早く冷やすことができるため、後備ヒータ41の加熱後の加圧器8の内部圧力の過渡的な上昇を抑制することができる。よって、圧力制御部44は、加圧器8内の冷却材の加熱時において、加圧器8の内部圧力を安定的に制御することができ、加圧器8の内部圧力を目標圧力に好適に維持することができる。
また、バイアス設定値は適宜変更することができるため、使用するスプレイ弁42に応じて設定された作動差分圧力値が変化しても、スプレイ弁42を直ぐに作動させることができる。
また、バイアス設定と同時に、後備ヒータ41を自動で作動させることができるため、オペレータによる手動操作の省略化を図ることができる。
また、原子炉冷却材の加熱時において、加圧器8の内部圧力の上昇に対する微分効果を除去することができる。これにより、原子炉冷却材の加熱時における加圧器8内の圧力変化の拡大を抑制することができ、安定的な制御を行うことが可能となる。
以上のように、本発明に係るミキシング装置は、加圧水型原子炉を有する原子力施設において有用であり、特に、原子炉冷却系に流通する原子炉冷却材のホウ素濃度を均一化する場合に適している。
1 原子力施設
3 原子炉冷却系
4 タービン系
5 原子炉
6a コールドレグ
6b ホットレグ
7 蒸気発生器
8 加圧器
9 原子炉冷却材ポンプ
15 燃料集合体
16 制御棒
21 蒸気管
22 タービン
23 復水器
24 給水ポンプ
25 発電機
26 給水管
27 冷却管
28 取水管
29 排水管
40 ミキシング装置
41 後備ヒータ
42 スプレイ弁
43 圧力センサ
44 圧力制御部
45 ミキシングスイッチ
48 供給流路
51 PID制御部
52 信号変換部
53 バイアス設定部
54 信号ブロック部
55 モード切換部
3 原子炉冷却系
4 タービン系
5 原子炉
6a コールドレグ
6b ホットレグ
7 蒸気発生器
8 加圧器
9 原子炉冷却材ポンプ
15 燃料集合体
16 制御棒
21 蒸気管
22 タービン
23 復水器
24 給水ポンプ
25 発電機
26 給水管
27 冷却管
28 取水管
29 排水管
40 ミキシング装置
41 後備ヒータ
42 スプレイ弁
43 圧力センサ
44 圧力制御部
45 ミキシングスイッチ
48 供給流路
51 PID制御部
52 信号変換部
53 バイアス設定部
54 信号ブロック部
55 モード切換部
Claims (5)
- 原子力施設に設けられた加圧器の内部圧力を、予め設定された目標圧力に維持しつつ、前記加圧器内の冷却材を循環させるミキシング装置において、
前記加圧器内に設けられ、前記冷却材を加熱して、前記加圧器の内部圧力を上げる加熱手段と、
前記加圧器内に設けられ、前記冷却材を冷却して、前記加圧器の内部圧力を下げる冷却手段と、
前記加圧器内の圧力を検出する圧力検出手段と、
前記圧力検出手段によって検出された検出入力値に基づいて、前記目標圧力となるように、前記冷却手段をフィードバック制御する圧力制御手段と、を備え、
前記圧力制御手段は、
前記加熱手段による前記冷却材の加熱時に、検出された前記検出入力値に対し、フィードバック制御を実行して制御出力値として前記冷却手段へ向けて出力するフィードバック制御手段と、
前記制御出力値に対し、前記冷却手段の作動側へバイアスを設定するバイアス設定手段と、を有し、
前記冷却手段は、バイアス設定後の前記制御出力値に基づいて作動することを特徴とするミキシング装置。 - 前記冷却手段は、入力される前記制御出力値が、予め設定された作動設定値以上となった場合に作動するようになっており、
前記バイアス設定手段は、前記制御出力値に、予め設定されたバイアス設定値を加算することでバイアスを設定しており、バイアス設定後の前記制御出力値が、前記作動設定値以上となるように前記バイアス設定値を設定することを特徴とする請求項1に記載のミキシング装置。 - 前記バイアス設定値は、変更可能であることを特徴とする請求項2に記載のミキシング装置。
- 前記加熱手段は、前記バイアス設定手段によるバイアス設定と同時に、自動で冷却材を加熱することを特徴とする請求項1ないし3のいずれか1項に記載のミキシング装置。
- 前記フィードバック制御手段は、PID制御を実行しており、
前記圧力制御手段は、
前記加熱手段による前記冷却材の加熱時に、前記PID制御内の微分制御をブロックする微分制御ブロック手段をさらに備えたことを特徴とする請求項1ないし4のいずれか1項に記載のミキシング装置。
Priority Applications (2)
Application Number | Priority Date | Filing Date | Title |
---|---|---|---|
US13/817,706 US20130148771A1 (en) | 2010-08-20 | 2011-08-09 | Mixing system |
EP11818104.9A EP2608216A4 (en) | 2010-08-20 | 2011-08-09 | MIXER SYSTEM |
Applications Claiming Priority (2)
Application Number | Priority Date | Filing Date | Title |
---|---|---|---|
JP2010-185588 | 2010-08-20 | ||
JP2010185588A JP5606216B2 (ja) | 2010-08-20 | 2010-08-20 | ミキシング装置 |
Publications (1)
Publication Number | Publication Date |
---|---|
WO2012023462A1 true WO2012023462A1 (ja) | 2012-02-23 |
Family
ID=45605117
Family Applications (1)
Application Number | Title | Priority Date | Filing Date |
---|---|---|---|
PCT/JP2011/068183 WO2012023462A1 (ja) | 2010-08-20 | 2011-08-09 | ミキシング装置 |
Country Status (4)
Country | Link |
---|---|
US (1) | US20130148771A1 (ja) |
EP (1) | EP2608216A4 (ja) |
JP (1) | JP5606216B2 (ja) |
WO (1) | WO2012023462A1 (ja) |
Families Citing this family (2)
Publication number | Priority date | Publication date | Assignee | Title |
---|---|---|---|---|
US20170263342A1 (en) * | 2016-03-10 | 2017-09-14 | Westinghouse Electric Company Llc | Real-time reactor coolant system boron concentration monitor utilizing an ultrasonic spectroscpopy system |
KR102512542B1 (ko) * | 2021-04-30 | 2023-03-21 | 한국전력기술 주식회사 | 증기발생기 고수위 방지를 위한 보조살수 제어시스템 |
Citations (6)
Publication number | Priority date | Publication date | Assignee | Title |
---|---|---|---|---|
JPS56149999U (ja) * | 1980-04-10 | 1981-11-11 | ||
JPS5885194A (ja) * | 1981-11-04 | 1983-05-21 | ウエスチングハウス エレクトリック コ−ポレ−ション | 原子炉動力装置における冷却材の圧力超過抑制方法 |
JPS6078395A (ja) * | 1983-10-04 | 1985-05-04 | 三菱電機株式会社 | 原子炉補給水自動ミキシング制御細置 |
JPH01160398U (ja) * | 1988-04-26 | 1989-11-07 | ||
JPH02240600A (ja) * | 1989-03-14 | 1990-09-25 | Mitsubishi Heavy Ind Ltd | 加圧器気相消滅制御装置 |
JPH04104597U (ja) * | 1991-02-20 | 1992-09-09 | 三菱重工業株式会社 | 加圧器水位制御装置 |
Family Cites Families (17)
Publication number | Priority date | Publication date | Assignee | Title |
---|---|---|---|---|
BE568438A (ja) * | 1957-06-12 | |||
US3247069A (en) * | 1960-07-13 | 1966-04-19 | Combustion Eng | Control of nuclear power plant |
US3170844A (en) * | 1960-09-19 | 1965-02-23 | Nicoll David | Control rod drive mechanism |
DE2104356B2 (de) * | 1971-01-30 | 1976-02-12 | Siemens AG, 1000 Berlin und 8000 München | Verfahren und einrichtung zur thermischen entgasung des primaerkuehlmittels von kernreaktoren |
US4977529A (en) * | 1973-02-23 | 1990-12-11 | Westinghouse Electric Corp. | Training simulator for a nuclear power plant |
US3919720A (en) * | 1973-02-23 | 1975-11-11 | Westinghouse Electric Corp | Nuclear power plant training simulator modeling organization and method |
US3920513A (en) * | 1973-04-18 | 1975-11-18 | Westinghouse Electric Corp | Protection system for a nuclear reactor |
US3979255A (en) * | 1973-09-04 | 1976-09-07 | Combustion Engineering, Inc. | Method for operating a system with a variable excursion margin setpoint |
DE2418325A1 (de) * | 1974-04-16 | 1975-10-30 | Kraftwerk Union Ag | Druckwasserreaktor |
JPS5376295A (en) * | 1976-12-17 | 1978-07-06 | Toshiba Corp | Temperature controlling device of liquid metal |
US4584164A (en) * | 1982-06-03 | 1986-04-22 | Combustion Engineering, Inc. | Valve control for low temperature overpressure protection in a nuclear power plant |
US4664877A (en) * | 1984-12-24 | 1987-05-12 | Westinghouse Electric Corp. | Passive depressurization system |
US4707324A (en) * | 1984-12-27 | 1987-11-17 | Westinghouse Electric Corp. | Controlling the response of a pressurized water reactor to rapid fluctuations in load |
US5082620A (en) * | 1991-05-13 | 1992-01-21 | General Electric Company | BWR parallel flow recirculation system |
US5259008A (en) * | 1992-06-24 | 1993-11-02 | Westinghouse Electric Corp. | Staged depressurization system |
US6216728B1 (en) * | 1998-03-13 | 2001-04-17 | Ce Nuclear Power Llc | Tunable anticipatory output response valve control |
US6053192A (en) * | 1998-10-30 | 2000-04-25 | Ellzey; Steven J. | Low operating force pressure regulator |
-
2010
- 2010-08-20 JP JP2010185588A patent/JP5606216B2/ja active Active
-
2011
- 2011-08-09 EP EP11818104.9A patent/EP2608216A4/en not_active Withdrawn
- 2011-08-09 US US13/817,706 patent/US20130148771A1/en not_active Abandoned
- 2011-08-09 WO PCT/JP2011/068183 patent/WO2012023462A1/ja active Application Filing
Patent Citations (6)
Publication number | Priority date | Publication date | Assignee | Title |
---|---|---|---|---|
JPS56149999U (ja) * | 1980-04-10 | 1981-11-11 | ||
JPS5885194A (ja) * | 1981-11-04 | 1983-05-21 | ウエスチングハウス エレクトリック コ−ポレ−ション | 原子炉動力装置における冷却材の圧力超過抑制方法 |
JPS6078395A (ja) * | 1983-10-04 | 1985-05-04 | 三菱電機株式会社 | 原子炉補給水自動ミキシング制御細置 |
JPH01160398U (ja) * | 1988-04-26 | 1989-11-07 | ||
JPH02240600A (ja) * | 1989-03-14 | 1990-09-25 | Mitsubishi Heavy Ind Ltd | 加圧器気相消滅制御装置 |
JPH04104597U (ja) * | 1991-02-20 | 1992-09-09 | 三菱重工業株式会社 | 加圧器水位制御装置 |
Non-Patent Citations (1)
Title |
---|
See also references of EP2608216A4 * |
Also Published As
Publication number | Publication date |
---|---|
JP2012042398A (ja) | 2012-03-01 |
US20130148771A1 (en) | 2013-06-13 |
EP2608216A1 (en) | 2013-06-26 |
JP5606216B2 (ja) | 2014-10-15 |
EP2608216A4 (en) | 2016-10-26 |
Similar Documents
Publication | Publication Date | Title |
---|---|---|
US10163532B2 (en) | Feedwater temperature control methods and systems | |
US20110200155A1 (en) | Nuclear Reactor System and Nuclear Reactor Control Method | |
JPH11352284A (ja) | 炉心出力調整による原子炉システム圧力制御の方法 | |
US8781057B2 (en) | Control system and method for pressurized water reactor (PWR) and PWR systems including same | |
JP5675256B2 (ja) | 原子力施設の制御システム | |
JP5606216B2 (ja) | ミキシング装置 | |
JP2013148438A (ja) | 非常用冷却システムおよび原子炉施設 | |
JP5733929B2 (ja) | 給水装置 | |
WO2012049936A1 (ja) | 原子力施設の制御システム | |
JP5634163B2 (ja) | プラントの制御システム | |
KR101617161B1 (ko) | 증기압을 이용하는 안전계통을 가지는 원자로 및 그 동작 방법 | |
JP7026019B2 (ja) | 原子炉停止装置、原子力プラント及び原子炉停止方法 | |
WO2015186274A1 (ja) | 給水制御装置および給水装置 | |
JP2006220510A (ja) | 原子炉冷却水浄化系ダンプ水冷却装置 | |
JP7267093B2 (ja) | 原子力発電プラントの制御装置、原子力発電プラントおよび原子力発電プラントの制御方法 | |
JP2004150928A (ja) | 原子炉出力制御装置および原子炉出力制御方法 | |
JP6429501B2 (ja) | 給水制御装置および給水装置 | |
JP4521367B2 (ja) | 原子炉の出力制御方法及び原子炉プラント | |
Kai et al. | Study of Application of Automatic Cooldown/Heatup Technology on CPR1000 Nuclear Power Plant | |
JP2012013558A (ja) | 原子力発電所の隔離時冷却設備 | |
JP2013246150A (ja) | 原子力施設 | |
JP2024139441A (ja) | 給水制御方法および給水制御装置 | |
JP5754952B2 (ja) | 原子力発電プラントの1/2次系冷却水システム及び原子力発電プラント | |
JP2024102556A (ja) | 原子炉の異常緩和設備及び原子炉の異常緩和方法 | |
Mishra et al. | Cold Start-Up transient simulation of Advanced natural circulation based BWR in RELAP5/MOD 3.2 |
Legal Events
Date | Code | Title | Description |
---|---|---|---|
121 | Ep: the epo has been informed by wipo that ep was designated in this application |
Ref document number: 11818104 Country of ref document: EP Kind code of ref document: A1 |
|
WWE | Wipo information: entry into national phase |
Ref document number: 2011818104 Country of ref document: EP |
|
WWE | Wipo information: entry into national phase |
Ref document number: 13817706 Country of ref document: US |
|
NENP | Non-entry into the national phase |
Ref country code: DE |