WO2012023329A1 - Display device - Google Patents
Display device Download PDFInfo
- Publication number
- WO2012023329A1 WO2012023329A1 PCT/JP2011/062531 JP2011062531W WO2012023329A1 WO 2012023329 A1 WO2012023329 A1 WO 2012023329A1 JP 2011062531 W JP2011062531 W JP 2011062531W WO 2012023329 A1 WO2012023329 A1 WO 2012023329A1
- Authority
- WO
- WIPO (PCT)
- Prior art keywords
- voltage
- circuit
- display device
- scanning signal
- signal line
- Prior art date
Links
Images
Classifications
-
- G—PHYSICS
- G09—EDUCATION; CRYPTOGRAPHY; DISPLAY; ADVERTISING; SEALS
- G09G—ARRANGEMENTS OR CIRCUITS FOR CONTROL OF INDICATING DEVICES USING STATIC MEANS TO PRESENT VARIABLE INFORMATION
- G09G3/00—Control arrangements or circuits, of interest only in connection with visual indicators other than cathode-ray tubes
- G09G3/20—Control arrangements or circuits, of interest only in connection with visual indicators other than cathode-ray tubes for presentation of an assembly of a number of characters, e.g. a page, by composing the assembly by combination of individual elements arranged in a matrix no fixed position being assigned to or needed to be assigned to the individual characters or partial characters
- G09G3/34—Control arrangements or circuits, of interest only in connection with visual indicators other than cathode-ray tubes for presentation of an assembly of a number of characters, e.g. a page, by composing the assembly by combination of individual elements arranged in a matrix no fixed position being assigned to or needed to be assigned to the individual characters or partial characters by control of light from an independent source
- G09G3/36—Control arrangements or circuits, of interest only in connection with visual indicators other than cathode-ray tubes for presentation of an assembly of a number of characters, e.g. a page, by composing the assembly by combination of individual elements arranged in a matrix no fixed position being assigned to or needed to be assigned to the individual characters or partial characters by control of light from an independent source using liquid crystals
- G09G3/3611—Control of matrices with row and column drivers
- G09G3/3648—Control of matrices with row and column drivers using an active matrix
- G09G3/3659—Control of matrices with row and column drivers using an active matrix the addressing of the pixel involving the control of two or more scan electrodes or two or more data electrodes, e.g. pixel voltage dependant on signal of two data electrodes
-
- G—PHYSICS
- G02—OPTICS
- G02F—OPTICAL DEVICES OR ARRANGEMENTS FOR THE CONTROL OF LIGHT BY MODIFICATION OF THE OPTICAL PROPERTIES OF THE MEDIA OF THE ELEMENTS INVOLVED THEREIN; NON-LINEAR OPTICS; FREQUENCY-CHANGING OF LIGHT; OPTICAL LOGIC ELEMENTS; OPTICAL ANALOGUE/DIGITAL CONVERTERS
- G02F1/00—Devices or arrangements for the control of the intensity, colour, phase, polarisation or direction of light arriving from an independent light source, e.g. switching, gating or modulating; Non-linear optics
- G02F1/01—Devices or arrangements for the control of the intensity, colour, phase, polarisation or direction of light arriving from an independent light source, e.g. switching, gating or modulating; Non-linear optics for the control of the intensity, phase, polarisation or colour
- G02F1/13—Devices or arrangements for the control of the intensity, colour, phase, polarisation or direction of light arriving from an independent light source, e.g. switching, gating or modulating; Non-linear optics for the control of the intensity, phase, polarisation or colour based on liquid crystals, e.g. single liquid crystal display cells
- G02F1/133—Constructional arrangements; Operation of liquid crystal cells; Circuit arrangements
- G02F1/1333—Constructional arrangements; Manufacturing methods
- G02F1/1345—Conductors connecting electrodes to cell terminals
- G02F1/13454—Drivers integrated on the active matrix substrate
-
- G—PHYSICS
- G02—OPTICS
- G02F—OPTICAL DEVICES OR ARRANGEMENTS FOR THE CONTROL OF LIGHT BY MODIFICATION OF THE OPTICAL PROPERTIES OF THE MEDIA OF THE ELEMENTS INVOLVED THEREIN; NON-LINEAR OPTICS; FREQUENCY-CHANGING OF LIGHT; OPTICAL LOGIC ELEMENTS; OPTICAL ANALOGUE/DIGITAL CONVERTERS
- G02F2201/00—Constructional arrangements not provided for in groups G02F1/00 - G02F7/00
- G02F2201/56—Substrates having a particular shape, e.g. non-rectangular
-
- G—PHYSICS
- G09—EDUCATION; CRYPTOGRAPHY; DISPLAY; ADVERTISING; SEALS
- G09G—ARRANGEMENTS OR CIRCUITS FOR CONTROL OF INDICATING DEVICES USING STATIC MEANS TO PRESENT VARIABLE INFORMATION
- G09G2300/00—Aspects of the constitution of display devices
- G09G2300/08—Active matrix structure, i.e. with use of active elements, inclusive of non-linear two terminal elements, in the pixels together with light emitting or modulating elements
- G09G2300/0809—Several active elements per pixel in active matrix panels
- G09G2300/0842—Several active elements per pixel in active matrix panels forming a memory circuit, e.g. a dynamic memory with one capacitor
Definitions
- the present invention relates to a display device, and more particularly, to a display device composed of a non-rectangular substrate.
- FIG. 26 is a plan view showing a schematic configuration of a conventional general liquid crystal display device.
- 27 is a cross-sectional view taken along the line CC of FIG.
- this liquid crystal display device is commonly used to apply a voltage between an array substrate 7a, which is a glass substrate on which TFTs and pixel electrodes are formed in a matrix, and the pixel electrodes.
- An IC Integrated
- An IC 80 including various functional circuits for driving a counter substrate 7b which is a glass substrate on which electrodes are formed, and an array substrate 7a and the counter substrate 7b are bonded together via liquid crystal.
- Circuit: integrated circuit 80 integrated circuit 80.
- the IC 80 is mounted on the array substrate 7a by a COG (Chip On Glass) method.
- COG Chip On Glass
- a terminal portion 89 including a plurality of terminals for inputting / outputting various electric signals is formed on the array substrate 7a.
- the liquid crystal panel is provided with a rectangular active area (effective display area) 90.
- a scanning signal line (gate bus line), a video signal line (source bus line), and a pixel circuit unit Etc. are formed within the active area 90.
- the shape of the whole glass substrate 7 is a rectangle.
- a region indicated by reference numeral A1 indicates a region where the array substrate 7a and the counter substrate 7b are opposed to each other in the region where the array substrate 7a is formed.
- a region indicated by reference numeral A2 indicates a region where the array substrate 7a and the counter substrate 7b are not opposed to each other in the region where the array substrate 7a is formed.
- the area indicated by reference numeral A1 is referred to as “two-glass area”, and the area indicated by reference numeral A2 is referred to as “single-glass area”.
- the two-glass region includes an active area (effective display region) 90 and a panel frame region 91 that is a region around the active area 90.
- the single glass region is a region other than the double glass region (active area 90 and panel frame region 91), and is configured by a terminal portion region or a terminal portion region and a COG mounting region.
- FIG. 28 is a block diagram showing a functional configuration of the IC 80 in the liquid crystal display device.
- the IC 80 includes an input interface circuit 81 that receives various electric signals sent from the outside via a terminal unit 89, a display voltage generation circuit 82 that generates two or more voltages to be applied to the pixel electrodes, and various timing signals.
- a video signal line drive circuit (source driver) 86 for driving lines and a memory circuit (frame memory or the like) 87 for holding image data are included.
- Various signals generated by these circuits in the IC 80 are given to the two glass regions, and the liquid crystal panel is driven.
- liquid crystal display device in which a part of the circuit in the IC 80 is monolithically formed in the panel frame region 91 of the two glass region.
- a liquid crystal display device in which the scanning signal line driving circuit 85 and the video signal line driving circuit 86 are formed in the panel frame region 91 as shown in FIG. 29 is widely known.
- FIG. 30 is a block diagram schematically showing a configuration in the active area 90 in the conventional general liquid crystal display device as described above.
- the active area 90 includes a plurality (n) of scanning signal lines GL1 to GLn, a plurality (m) of video signal lines SL1 to SLm, and scanning signal lines GL1 to GLn.
- a pixel circuit portion 900 provided corresponding to each intersection with the video signal lines SL1 to SLm and an auxiliary capacitance wiring CS for providing an auxiliary capacitance between the pixel electrodes in each pixel circuit portion 900 are formed. Yes.
- the pixel circuit unit 900 is formed in a matrix in the active area 90.
- Each pixel circuit unit 900 includes one pixel electrode and corresponds to one pixel.
- FIG. 31 is a circuit diagram showing a configuration of the pixel circuit unit 900 in the liquid crystal display device.
- Each pixel circuit unit 900 includes a TFT 901 having a gate electrode connected to the scanning signal line GL passing through the corresponding intersection and a source electrode connected to the video signal line SL passing through the intersection, and a drain electrode of the TFT 901.
- a capacitor 904 and an auxiliary capacitor 905 formed by the pixel electrode 902 and the auxiliary capacitor line CS are included.
- the liquid crystal capacitor 904 and the auxiliary capacitor 905 form a pixel capacitor CP.
- the TFT 901 when the gate electrode of each TFT 901 receives an on-level scanning signal from the scanning signal line GL, the TFT 901 is turned on, and a voltage based on the video signal on the video signal line SL is passed through the TFT 901 to the pixel. The capacitor CP is charged. Thereafter, an off-level scanning signal is received from the scanning signal line GL, the TFT 901 is turned off, and the voltage charged in the pixel capacitor CP based on the video signal is held. The voltage held in the pixel capacitor CP is reflected in the display state of the pixel.
- FIG. 32 is a signal waveform diagram for describing a driving method of the liquid crystal display device.
- the scanning signal lines GL1 to GLn are sequentially supplied with on-level scanning signals row by row. Accordingly, the TFTs 901 in the pixel circuit unit 900 included in each row are sequentially turned on one row at a time.
- Video signals corresponding to the display image are given to the video signal lines SL1 to SLm. As shown in FIG. 32, the video signal starts changing toward the target potential corresponding to the display image at the rising edge of the scanning signal.
- FIG. 32 shows an example of waveforms of the video signal SL1 for the first column and the video signal SL2 for the second column when the target potentials in the first column and the second column are the same throughout the period shown in FIG. Is shown.
- FIG. 33 is a plan view showing an example of a schematic configuration of a liquid crystal display device provided with such a display system. As shown in FIG. 33, in this liquid crystal display device, the glass substrate 8 is octagonal and the active area 90a is circular.
- FIG. 34 is a block diagram schematically showing a configuration in the active area 90a in the liquid crystal display device. Unlike a liquid crystal display device having a rectangular active area 90 (see FIG. 30), the number of pixel circuit portions 900 increases in the row direction and the column direction from the end to the center.
- one pixel circuit unit 900 is provided in the first and fifth columns, and three pixel circuit units 900 are provided in the second and fourth columns.
- five pixel circuit units 900 are provided. Focusing on each row, one pixel circuit unit 900 is provided in the first row and the fifth row, and three pixel circuit units 900 are provided in the second row and the fourth row.
- Five pixel circuit portions 900 are provided.
- the number of scanning signal lines and the number of video signal lines are five, but in general, there are more scanning signal lines and video signal lines than five. Is provided.
- there is a liquid crystal display device having a rectangular active area even when the glass substrate has a non-rectangular shape such as an octagon.
- the configuration of the pixel circuit unit 900 is as shown in FIG. That is, also in the liquid crystal display device having the circular active area 90a, in each pixel circuit unit 900, when the gate electrode of each TFT 901 receives an on-level scanning signal from the scanning signal line GL, the TFT 901 is turned on. A voltage based on the video signal on the video signal line SL is charged to the pixel capacitor CP through the TFT 901. Thereafter, an off-level scanning signal is received from the scanning signal line GL, the TFT 901 is turned off, and the voltage charged in the pixel capacitor CP based on the video signal is held.
- the voltage held in the pixel capacitor CP is reflected in the display state of the pixel.
- monochrome binary display is performed.
- the video signal line driving circuit 86 outputs a voltage for displaying the pixel in a white display state or a voltage for setting the pixel display state in a black display. Applied to the signal line SL.
- Japanese Laid-Open Patent Publication No. 2008-216894 discloses a configuration including two scanning signal line driving circuits and two video signal line driving circuits for a liquid crystal display device having a circular or polygonal display region.
- Japanese Laid-Open Patent Publication No. 2008-292959 and Japanese Special Publication No. 2005-528644 relate to a display device that includes a non-rectangular substrate and has a non-rectangular display area. A configuration with high density is disclosed.
- 2006-276361 relates to a liquid crystal display device which is formed of a non-rectangular substrate and has an elliptical or circular display area, and a scanning signal line, a video signal line and a driver LSI are arranged at the outer edge of the display area
- positioned in is disclosed.
- Japanese Patent Publication No. 2008-502023, Japanese Unexamined Patent Publication No. 2009-122636, etc. also disclose inventions related to display devices composed of non-rectangular substrates.
- Japanese Unexamined Patent Publication No. 2008-216894 Japanese Unexamined Patent Application Publication No. 2008-292995 Japanese Special Table 2005-528644 Japanese Unexamined Patent Publication No. 2006-276361 Japanese Special Table 2008-502023 Japanese Unexamined Patent Publication No. 2009-122636
- the size of the single glass region must be increased as compared with the case where the rectangular glass substrate is adopted. There is. This will be described below.
- an octagonal glass substrate as described above is to be adopted as a non-rectangular glass substrate, an octagonal glass substrate 8 is produced by cutting four corners of a rectangular glass substrate 7 of a predetermined size (see FIG. 35).
- the size of the single glass region is constant, the non-rectangular glass substrate 8 is more single glass than the rectangular glass substrate 7. The size of the IC that can be mounted in the area is reduced.
- the IC 80b mounted on the non-rectangular glass substrate 8 may not include all the circuits formed in the IC 80a when the rectangular glass substrate 7 is employed.
- the shape of the IC in order to include all these circuits in the IC 80b, for example, the shape of the IC must be changed as shown in FIG. 37. Therefore, the size of the single glass region (the vertical size in FIG. 36) is increased. There is a need to. That is, the size of the single glass region when the non-rectangular glass substrate 8 is employed (L2 in FIG. 33) is the size of the single glass region when the rectangular glass substrate 7 is employed (L1 in FIG. 26). ).
- an object of the present invention is to suppress the enlargement of a single glass region associated with the use of a non-rectangular substrate in a display device.
- a first aspect of the present invention includes a two-glass region composed of an effective display region and a panel frame region that is a peripheral region of the effective display region, and a single-glass region that is an area outside the two-glass region.
- a display device that includes a non-rectangular substrate and displays an image by changing a display state of pixels, A plurality of data signal lines; A plurality of scanning signal lines intersecting with the plurality of data signal lines; A data signal line driving circuit for applying a data signal corresponding to an image to be displayed to the plurality of data signal lines; A scanning signal line driving circuit for applying a scanning signal to the plurality of scanning signal lines; A plurality of pixel circuit portions each provided so as to correspond to an intersection of one of the plurality of data signal lines and one of the plurality of scanning signal lines; Each pixel circuit section A switch that is switched on / off based on a scanning signal applied to a scanning signal line passing through a corresponding intersection; A storage unit that takes in binary data based on the potential of a data signal applied to
- a part of a panel driving circuit including a plurality of functional circuits for operating the pixel circuit portion is formed in the panel frame region.
- the scanning signal line driving circuit and the data signal line driving circuit are formed in the panel frame region as a part of the panel driving circuit.
- a timing signal generation circuit for generating a timing signal for controlling the operation timing of the scanning signal line drive circuit and the data signal line drive circuit is further formed in the panel frame region. It is characterized by that.
- an input interface circuit for receiving an electric signal sent from the outside via a terminal portion provided in the one glass region is formed in the panel frame region.
- a sixth aspect of the present invention is the fourth aspect of the present invention, As a part of the panel drive circuit, a display voltage generation circuit for generating the first voltage and the second voltage, and the first voltage or the second voltage of two electrodes included in the display element unit A counter voltage generation circuit for generating a voltage to be applied to an electrode arranged so as to face the electrode to which is applied is formed in the panel frame region.
- a display voltage generation circuit for generating the first voltage and the second voltage, and the first voltage or the second voltage of two electrodes included in the display element unit
- a counter voltage generation circuit for generating a voltage to be applied to an electrode arranged so as to face the electrode to which is applied is formed in the panel frame region.
- All the functional circuits constituting the panel driving circuit are formed in the panel frame region.
- the second aspect of the present invention it further comprises an external substrate provided with at least a part of a circuit excluding the functional circuit formed in the panel frame region among the plurality of functional circuits constituting the panel driving circuit.
- the substrate has an octagonal shape.
- the pixel circuit unit is provided with a storage unit capable of storing (holding) binary data (1-bit data). It is done.
- the binary data is stored in the storage unit based on the potential of the data signal when the switch is on.
- either the first voltage or the second voltage is selected by the voltage selection unit according to the value (logical value) of the binary data stored in the storage unit, and the voltage selected by the voltage selection unit is the pixel. It is reflected in the display state. In this way, the display state of the pixel is determined based on the data held in the storage unit in each pixel circuit unit.
- a part of the panel drive circuit is formed in the panel frame region instead of in the single glass region IC. For this reason, it is possible to further reduce the size of the IC to be mounted on the single glass region. Thereby, in a display apparatus, expansion of the single glass area
- substrate is suppressed effectively.
- a part of the panel driving circuit and a storage unit are formed in the two-glass region (effective display region and panel frame region), the panel frame region and the outside are connected. Therefore, the number of terminals required for this can be reduced. Therefore, by adopting a non-rectangular substrate, a display device configured with a non-rectangular substrate can be realized without enlarging a single glass region even if there are restrictions on the shape and size of the terminal portion. Is possible.
- the same effect as in the second aspect of the present invention is obtained.
- the scanning signal lines are driven by a scanning signal line driving circuit in the panel frame region, and the data signal lines are driven by a data signal line driving circuit in the panel frame region. For this reason, it is possible to reduce the number of wirings between the IC and the panel frame region as compared with the configuration in which the scanning signal line driving circuit and the data signal line driving circuit are provided in the IC.
- the size of the IC can be further reduced as compared with the third aspect of the present invention, and one sheet compared with the conventional display device configured with a rectangular substrate.
- a display device formed of a non-rectangular substrate can be realized without enlarging the glass region.
- the size of the IC can be further reduced as compared with the fourth aspect of the present invention, compared with the conventional display device configured with a rectangular substrate.
- a display device composed of a non-rectangular substrate can be realized without enlarging the single glass region.
- the size of the IC can be further reduced as compared with the fourth aspect of the present invention. It is possible to realize a display device configured with a non-rectangular substrate without enlarging a single glass region as compared with the conventional display device configured.
- the size of the IC can be made smaller than that of the third aspect of the present invention, and it is configured by a rectangular substrate. Therefore, it is possible to realize a display device constituted by a non-rectangular substrate without enlarging the single glass region as compared with the conventional display device.
- a display device constituted by a non-rectangular substrate in which the single glass region is significantly reduced. can be realized.
- the size of the IC can be made smaller than that of the second aspect of the present invention, or it is not necessary to include the IC, and therefore, it is configured by a rectangular substrate.
- a display device constituted by a non-rectangular substrate can be realized without enlarging a single glass region as compared with a conventional display device.
- the same effect as that of the first aspect of the present invention can be obtained in the display device constituted by the octagonal substrate.
- FIG. 3 is a circuit diagram illustrating a detailed configuration of a pixel circuit unit in the first embodiment. It is a signal waveform diagram for demonstrating the drive method in the said 1st Embodiment.
- FIG. 6 is a signal waveform diagram for describing an operation when attention is paid to one pixel circuit unit in the first embodiment.
- FIG. 9 is a diagram illustrating an internal state of the pixel circuit unit in a period T1 in FIG. 8 in the first embodiment.
- FIG. 9 is a diagram showing an internal state of the pixel circuit unit in periods T2 and T4 in FIG. 8 in the first embodiment.
- FIG. 9 is a diagram illustrating an internal state of the pixel circuit unit in a period T3 in FIG. 8 in the first embodiment.
- FIG. 9 is a diagram illustrating an internal state of the pixel circuit unit at the end of a period T5 in FIG. 8 in the first embodiment.
- FIG. 9 is a diagram illustrating an internal state of the pixel circuit unit in periods T6 and T8 in FIG.
- FIG. 9 is a diagram illustrating an internal state of the pixel circuit unit in periods T7 and T9 in FIG. 8 in the first embodiment. It is a figure for demonstrating the effect in the said 1st Embodiment. It is a top view which shows schematic structure of the liquid crystal display device in the 1st modification of the said 1st Embodiment.
- FIG. 10 is a block diagram showing a functional configuration of an IC in a first modification of the first embodiment. It is a top view which shows schematic structure of the liquid crystal display device in the 2nd modification of the said 1st Embodiment.
- FIG. 2 is a plan view showing a schematic configuration of the liquid crystal display device according to the first embodiment of the present invention.
- 3 is a cross-sectional view taken along line BB in FIG.
- a common electrode for applying a voltage is formed between the array substrate 5a, which is a glass substrate on which TFTs, pixel electrodes, and the like are formed, and the pixel electrodes.
- the counter substrate 5b which is a glass substrate, and the IC 20 including various functional circuits for driving a liquid crystal panel manufactured by bonding the array substrate 5a and the counter substrate 5b through liquid crystal. Yes.
- the IC 20 is mounted on a single glass region on the array substrate 5a by the COG method. Further, on the array substrate 5a, a terminal portion 30 composed of a plurality of terminals for inputting / outputting various electric signals is formed. In the present embodiment, the entire shape of the glass substrate 5 is an octagon.
- the liquid crystal panel is provided with a substantially circular active area (effective display area) 10 within which scanning signal lines (first scanning signal line and second scanning signal line), data A signal line, a pixel circuit portion, and the like are formed.
- FIG. 4 is a block diagram schematically showing a configuration in the active area 10 in the present embodiment.
- the active area 10 includes first scanning signal lines GL1 to GL5, second scanning signal lines GLB1 to GLB5, data signal lines DL1 to DL5, and a high-level DC power supply potential VDD.
- a wiring and a plurality of pixel circuit portions 100 are formed. The plurality of pixel circuit units 100 are arranged so that an image having the shape of the active area 10 (circular in this embodiment) is displayed.
- the number of pixel circuit units 100 increases from the end to the center in both the row direction and the column direction. ing. Specifically, focusing on each column, one pixel circuit unit 100 is provided in the first and fifth columns, and three pixel circuit units 100 are provided in the second and fourth columns. Five pixel circuit units 100 are provided in the third column. Focusing on each row, one pixel circuit unit 100 is provided in the first and fifth rows, three pixel circuit units 100 are provided in the second and fourth rows, and the third row has Five pixel circuit units 100 are provided. Each pixel circuit unit 100 has a built-in memory circuit capable of holding 1-bit data, as will be described later. In FIG. 4, for convenience of explanation, the number of first scanning signal lines, the number of second scanning signal lines, and the number of data signal lines are five, but the number is not limited.
- FIG. 5 is a block diagram showing a functional configuration of the IC 20 in the present embodiment.
- the IC 20 has an input interface circuit 21 that receives various electric signals sent from the outside via the terminal unit 30, and a display that generates voltages (white display voltage VLA and black display voltage VLB) to be applied to the pixel electrodes.
- a voltage generation circuit 22 a timing generator (timing signal generation circuit) 23 for generating various timing signals, a counter voltage generation circuit 24 for generating a voltage (counter voltage) to be applied to the common electrode, and a scanning signal line ( A scanning signal line driving circuit 25 for driving the first scanning signal line and the second scanning signal line) and a data signal line driving circuit 26 for driving the data signal line are included.
- a scanning signal line driving circuit 25 for driving the first scanning signal line and the second scanning signal line
- a data signal line driving circuit 26 for driving the data signal line are included.
- the IC 20 in this embodiment is not provided with a memory circuit for holding image data.
- a panel drive circuit for operating the pixel circuit unit 100 with the display voltage generation circuit 22, the timing generator 23, the counter voltage generation circuit 24, the scanning signal line drive circuit 25, and the data signal line drive circuit 26. Is realized.
- Various signals generated by the panel drive circuit in the IC 20 are given to the active area 10 via the panel frame region 11, and the liquid crystal panel is driven.
- FIG. 1 is a diagram for explaining a schematic configuration of a pixel circuit unit 100 in the present embodiment.
- a plurality of pixel circuit units 100 are arranged in the active area 10 provided in the two-glass region of the octagonal glass substrate 5.
- Each pixel circuit unit 100 corresponds to one pixel, and includes a switch 110, a memory circuit 120, a liquid crystal driving voltage application circuit 130, and a display element unit 140, as shown in the lower part of FIG.
- the display element unit 140 includes a liquid crystal, a pixel electrode that sandwiches the liquid crystal, and a common electrode.
- a memory unit is realized by the memory circuit 120
- a voltage selection unit is realized by the liquid crystal driving voltage application circuit 130.
- the on / off state of the switch 110 is controlled based on scanning signals applied to the first scanning signal line GL and the second scanning signal line GLB.
- binary data (1-bit data) is supplied to the memory circuit 120 based on the potential of the data signal applied to the data signal line DL when the switch 110 is on.
- the memory circuit 120 holds the binary data received when the switch 110 is on until the switch 110 is turned on again.
- the binary data held in the memory circuit 120 is given to the liquid crystal drive voltage application circuit 130.
- the liquid crystal drive voltage application circuit 130 applies a display voltage (either the white display voltage VLA or the black display voltage VLB) to the liquid crystal based on the binary data value (logical value) given from the memory circuit 120. To do.
- the scanning signal applied to the first scanning signal line GL is also referred to as “first scanning signal”, and the scanning signal applied to the second scanning signal line GLB is referred to as “second scanning signal”.
- FIG. 6 is a circuit diagram showing a detailed configuration of the pixel circuit unit 100 in the present embodiment.
- the switch 110 is a CMOS switch including a p-channel transistor 111 and an n-channel transistor 112.
- the switch 110 is also referred to as “first switch SW1”.
- the first switch SW1 is configured to be turned on when the first scanning signal GL is at a high level and the second scanning signal GLB is at a low level. That is, in the present embodiment, from the viewpoint of turning on the first switch SW1, the high level is the on level for the first scanning signal GL, and the low level is the on level for the second scanning signal GLB. It is.
- the first switch SW1 is also configured so that the data signal line DL and the node 191 are electrically connected when in the on state. As described above, when the first scanning signal GL is at a high level and the second scanning signal GLB is at a low level, the first switch SW1 is turned on, and the potential of the data signal DL is applied to the node 191.
- a configuration in which the first switch SW1 is realized only by an n-channel transistor or a configuration in which the first switch SW1 is realized only by a p-channel transistor may be employed. In this case, only one scanning signal line is provided for each row, and the on / off state of the first switch SW1 is controlled by one scanning signal applied to the scanning signal line.
- the memory circuit 120 includes a CMOS switch SW2 including an n-channel transistor 121 and a p-channel transistor 122, a CMOS inverter INV1 including a p-channel transistor 123 and an n-channel transistor 124, a p-channel transistor 125, and an n-channel transistor 125.
- a CMOS inverter INV2 including a channel type transistor 126 is included.
- the CMOS switch SW2 is also referred to as “second switch SW2”
- the CMOS inverter INV1 is also referred to as “first inverter INV1”
- the CMOS inverter INV2 is also referred to as “second inverter INV2.” .
- the second switch SW2 is configured to be turned on when the second scanning signal GLB is at a high level and the first scanning signal GL is at a low level.
- the second switch SW2 is also configured so that the node 191 and the node 193 are electrically connected when in the ON state.
- the input terminal is connected to the node 191 and the output terminal is connected to the node 192.
- the second inverter INV2 the input terminal is connected to the node 192 and the output terminal is connected to the node 193.
- the memory circuit 120 holds a value (logical value) based on the potential applied to the node 191 when the first switch SW1 is in the on state until the first switch SW1 is next in the on state. To work.
- the liquid crystal drive voltage application circuit 130 includes a CMOS switch SW3 including a p-channel transistor 131 and an n-channel transistor 132, and a CMOS switch SW4 including a p-channel transistor 133 and an n-channel transistor 134. .
- the CMOS switch SW3 is also referred to as “third switch SW3”, and the CMOS switch SW4 is also referred to as “fourth switch SW4”.
- the third switch SW3 is configured to be turned on when the potential of the node 191 is at a high level and the potential of the node 192 is at a low level.
- the third switch SW3 is also configured so that the white display voltage VLA is applied to the pixel electrode 142 when in the on state.
- the fourth switch SW4 is configured to be turned on when the potential of the node 191 is low and the potential of the node 192 is high.
- the fourth switch SW4 is also configured so that the black display voltage VLB is applied to the pixel electrode 142 when in the on state.
- the display element unit 140 includes a liquid crystal 141, a pixel electrode 142, and a common electrode 143. A voltage is applied to the liquid crystal based on the voltage applied to the pixel electrode 142 and the voltage applied to the common electrode 143, and the liquid crystal applied voltage is reflected in the display state of the pixel.
- the period during which the first scanning signal is set to the high level and the period during which the second scanning signal is set to the low level are the same.
- the scanning signal line corresponding to each row is selected.
- the first switch SW1 in the pixel circuit unit 100 included in each row is sequentially turned on row by row.
- the data signals DL1 to DL5 the potential changes between a predetermined high level potential and a predetermined low level potential according to the display image.
- the data signals DL1 to DL5 are output at the target potential (predetermined high level) at the rising edge of the scanning signal corresponding to the certain row. Or a predetermined low level potential).
- the pixel circuit unit 100 included in each column binary data is held in the memory circuit 120 based on the potential of the data signal at the time when the first scanning signal falls and the second scanning signal rises. Then, a voltage is applied to the liquid crystal based on the value (logical value) of the binary data.
- FIG. 7 shows an example of a waveform when the pixels in the first row are displayed in white and the pixels in the second and third rows are displayed in black during the period shown in FIG.
- the scanning signal lines are sequentially selected row by row, but are not necessarily selected sequentially, and the pixel circuit unit 100 corresponding to the selected scanning signal line is not necessarily used. If the data signal to be written (stored) in (the memory circuit 120) is supplied to the data signal line, the scanning signal lines may be selected in any order.
- FIG. 9 shows an internal state of the pixel circuit unit 100 in the period T1 of FIG.
- FIG. 10 shows an internal state of the pixel circuit unit 100 in the periods T2 and T4 of FIG.
- FIG. 11 shows an internal state of the pixel circuit unit 100 in the period T3 in FIG.
- FIG. 12 shows the internal state of the pixel circuit unit 100 at the end of the period T5 in FIG.
- FIG. 13 shows an internal state of the pixel circuit unit 100 in the periods T6 and T8 of FIG.
- FIG. 14 shows an internal state of the pixel circuit unit 100 in the periods T7 and T9 in FIG.
- the first switch SW1 is turned on and the second switch SW2 is turned off. Since the data signal DL is at a low level during this period, the potential of the node 191 is also at a low level. As a result, the potential of the node 192 becomes high level, and further, the potential of the node 193 becomes low level. In this way, binary data based on the data signal DL is stored in the memory circuit 120. Further, based on the potentials of the nodes 191 and 192, the third switch SW3 is turned off and the fourth switch SW4 is turned on.
- the black display voltage VLB is applied to the pixel electrode 142.
- the black display voltage VLB is at a low level.
- the potential OUT of the pixel electrode 142 is at a low level.
- the counter voltage VCOM is at a high level.
- the display state of the pixels is black.
- the first switch SW1 is turned off and the second switch SW2 is turned on.
- the node 192 is connected to the output terminal of the first inverter INV1
- the potential of the node 192 is reliably maintained at a high level during this period.
- the node 193 is connected to the output terminal of the second inverter INV2
- the potential of the node 193 is reliably maintained at a low level during this period. In this way, the potential of the node 193 is reliably maintained at a low level, and the second switch SW2 is turned on, so that the potential of the node 191 is also maintained at a low level.
- the third switch SW3 is turned off and the fourth switch SW4 is turned on.
- the black display voltage VLB is applied to the pixel electrode 142.
- the potential OUT of the pixel electrode 142 is at a low level.
- the counter voltage VCOM is at a high level.
- the display state of the pixels is black. Note that in the period T4, the pixel display state is black display by the same operation as in the period T2.
- the potentials of the nodes 191 and 193 are maintained at a low level and the potential of the node 192 is maintained at a high level by the same operation as in the period T2. For this reason, as in the periods T1 and T2, the third switch SW3 is turned off and the fourth switch SW4 is turned on. As a result, the black display voltage VLB is applied to the pixel electrode 142. Incidentally, during this period, the black display voltage VLB is at a high level. Accordingly, the potential OUT of the pixel electrode 142 is at a high level. During this period, the counter voltage VCOM is at a low level. Thus, in the period T3, the pixel display state is black.
- the first switch SW1 is turned on and the second switch SW2 is turned off.
- the data signal DL changes from the low level to the high level.
- the potential of the node 191 also changes from the low level to the high level.
- the potential of the node 192 becomes low level, and the potential of the node 193 becomes high level. In this way, the value (logical value) of the binary data stored in the memory circuit 120 is rewritten based on the data signal DL.
- the third switch SW3 changes from the off state to the on state
- the fourth switch SW4 changes from the on state to the off state.
- the white display voltage VLA is applied to the pixel electrode 142.
- the white display voltage VLA is at a low level.
- the potential OUT of the pixel electrode 142 is at a low level.
- the counter voltage VCOM is at a low level.
- the display state of the pixels is white display.
- the first switch SW1 is turned off and the second switch SW2 is turned on.
- the potential of the node 192 is reliably maintained at a low level, and the potential of the node 193 is reliably maintained at a high level. Since the potential of the node 193 is reliably maintained at a high level and the second switch SW2 is turned on, the potential of the node 191 is also maintained at a high level.
- the third switch SW3 is turned on and the fourth switch SW4 is turned off. As a result, the white display voltage VLA is applied to the pixel electrode 142.
- the white display voltage VLA is at a low level
- the potential OUT of the pixel electrode 142 is at a low level.
- the counter voltage VCOM is at a low level.
- the display state of the pixels is white display. Note that also in the period T8, the display state of the pixels is white by the same operation as in the period T6.
- the potentials of the nodes 191 and 193 are maintained at a high level and the potential of the node 192 is maintained at a low level by the same operation as in the period T6.
- the third switch SW3 is turned on and the fourth switch SW4 is turned off.
- the white display voltage VLA is applied to the pixel electrode 142.
- the white display voltage VLA is at a high level.
- the potential OUT of the pixel electrode 142 is at a high level.
- the counter voltage VCOM is at a high level.
- the display state of the pixels is white display. Note that in the period T9 as well, the display state of the pixels is white by the same operation as in the period T7.
- each pixel circuit unit 100 binary data is stored in the memory circuit 120 based on the potential of the data signal when the first switch SW1 is in the ON state.
- a display voltage (either the white display voltage VLA or the black display voltage VLB) to be applied to the pixel electrode 142 is selected based on the binary data stored in the memory circuit 120. Is done. Then, based on the display voltage applied to the pixel electrode 142 and the voltage (counter voltage) applied to the common electrode 143, the display state of the pixel is white display or black display.
- the pixel circuit unit 100 is provided with the memory circuit 120 that can hold binary data (1 bit data). Yes.
- the binary data is held in the memory circuit 120 based on the potential of the data signal DL when the first switch SW1 is in the ON state.
- either the white display voltage VLA or the black display voltage VLB is applied to the pixel electrode 142 in accordance with the value (logical value) of the binary data held in the memory circuit 120.
- the display state of the pixel is determined based on the data held in the memory circuit 120 in each pixel circuit unit 100.
- the size of the single glass region in this embodiment is larger than the size of the single glass region (L2 in FIG. 33) when an octagonal glass substrate is conventionally employed. It becomes small and becomes the same size as the size of one glass region (L1 in FIG. 26) when a rectangular glass substrate is adopted.
- the panel drive circuit for operating the pixel circuit unit 100 is all formed in the IC 20 in the single glass region (see FIGS. 2 and 5). It is not limited.
- the scanning signal line drive circuit 25 and the data signal line drive circuit 26 of the panel drive circuit may be formed monolithically in the panel frame region 11 on the array substrate instead of in the IC 20 ( First modification).
- the IC 20 mounted on the single glass region on the array substrate does not include the scanning signal line driving circuit 25 and the data signal line driving circuit 26 as shown in FIG.
- a voltage generation circuit 22, a timing generator 23, and a counter voltage generation circuit 24 are included.
- the size of the IC 20 can be further reduced as compared with the first embodiment, and the enlargement of the single glass region accompanying the adoption of the octagonal substrate is effectively suppressed. .
- the number of wirings between the IC 20 and the panel frame region 11 can be reduced as compared with the configuration in which the scanning signal line driving circuit 25 and the data signal line driving circuit 26 are provided in the IC 20. Further, since the memory circuit 120 is formed in the active area 10 and the scanning signal line driving circuit 25 and the data signal line driving circuit 26 are formed in the panel frame region 11, the panel frame region 11 is connected to the outside. It is possible to reduce the number of terminals required for the operation. For this reason, a liquid crystal display device composed of a non-rectangular glass substrate can be used without enlarging a single glass area even if the shape and size of the terminal portion are limited by adopting a non-rectangular glass substrate. It can be realized.
- a display voltage generating circuit 22, a timing generator 23, and a counter voltage generating circuit 24 are provided on a panel frame on the array substrate.
- the region 11 may be formed monolithically (second modification).
- the timing generator 23 is formed in the panel frame region 11, or in addition to the scanning signal line driving circuit 25 and the data signal line driving circuit 26.
- the input interface circuit 21 and the timing generator 23, in addition to the scanning signal line driving circuit 25 and the data signal line driving circuit 26, Can be configured to be formed in the panel frame region 11. With the configuration as described above, the size of the IC 20 can be further reduced.
- the panel drive circuit formed in the panel frame region 11 is typically formed along the outer edge of the active area 10, as shown in FIGS. Thereby, the empty area in the panel frame area 11 is used without waste, and the single glass area can be effectively reduced.
- the overall shape of the glass substrate 5 constituting the liquid crystal display device is an octagon (see FIG. 2), but the present invention is not limited to this. If the shape of the entire glass substrate 5 is non-rectangular, the present invention can be applied.
- the present invention can also be applied to a liquid crystal display device or the like. Thereby, in the liquid crystal display device comprised not only in an octagon but a non-rectangular board
- the shape of the active area 10 which is a region where an image is displayed, is circular (see FIG. 2), but the present invention is not limited to this. If the overall shape of the glass substrate 5 constituting the liquid crystal display device is a non-rectangular shape such as an octagon, the present invention can be applied to a liquid crystal display device in which the active area 10a has a rectangular shape as shown in FIG. Can be applied.
- FIG. 22 is a plan view showing a schematic configuration of a liquid crystal display device according to the second embodiment of the present invention.
- the input interface circuit 21, the display voltage generation circuit 22, the timing generator 23, the counter voltage generation circuit 24, the scanning signal line drive circuit 25, and the data signal line drive circuit. 26 is formed monolithically not in the IC 20 but in the panel frame region 11 on the array substrate. That is, all the circuits in the IC 20 shown in FIG. 5 are provided in the panel frame region 11 on the array substrate. For this reason, in this embodiment, the IC 20 is not provided in the single glass region on the array substrate.
- Other configurations (the configuration in the active area 10, the configuration of the pixel circuit unit 100, etc.) and the driving method are the same as those in the first embodiment, and a description thereof will be omitted.
- the liquid crystal display device configured with the octagonal glass substrate 5 an IC that has been conventionally mounted on a single glass region on the array substrate becomes unnecessary. For this reason, compared with the conventional structure, it becomes possible to make the size of one glass area
- the overall shape of the glass substrate 5 is not limited to an octagon.
- FIG. 23 is a plan view showing a schematic configuration of a liquid crystal display device according to a first modification of the second embodiment.
- the scanning signal line drive circuit 25 and the data signal line drive circuit 26 are provided in the panel frame region 11, and the display voltage generation circuit 22, the timing generator 23, and the counter voltage generation circuit 24 are provided outside.
- the display voltage generation circuit 22, the timing generator 23, and the counter voltage generation circuit 24 are formed on the flexible circuit board 6 attached in the vicinity of a single glass region.
- the timing signal for controlling the operation of the scanning signal line drive circuit 25 and the data signal line drive circuit 26 the display voltage to be applied to the pixel electrode 142, and the counter voltage to be applied to the common electrode are externally connected to the terminal.
- FIG. 24 is a plan view showing a schematic configuration of a liquid crystal display device according to a second modification of the second embodiment.
- a display voltage generation circuit 22, a timing generator 23, a counter voltage generation circuit 24, a scanning signal line drive circuit 25, and a data signal line drive circuit 26 are provided in the panel frame region 11, and the display voltage generation circuit 22 is provided.
- a signal for controlling the operation of the timing generator 23 and the counter voltage generation circuit 24 is given to the panel frame region 11 from the outside via the terminal portion 30.
- the IC 20 since the IC 20 is not provided in the single glass region, it is possible to realize a liquid crystal display device including a non-rectangular glass substrate in which the single glass region is significantly reduced. Become.
- a panel drive circuit as much as possible in an area (area indicated by reference numeral 40 in FIG. 25) between the (virtual) minimum rectangular area including the entire active area 10 and the outer edge of the active area 10,
- the empty area in the panel frame area 11 is used without waste, and the single glass area can be effectively reduced.
- liquid crystal display device has been described as an example, but the present invention is not limited to this.
- the present invention can also be applied to other display devices such as organic EL (Electro Luminescence).
Landscapes
- Engineering & Computer Science (AREA)
- Chemical & Material Sciences (AREA)
- Crystallography & Structural Chemistry (AREA)
- Physics & Mathematics (AREA)
- Computer Hardware Design (AREA)
- General Physics & Mathematics (AREA)
- Theoretical Computer Science (AREA)
- Control Of Indicators Other Than Cathode Ray Tubes (AREA)
- Liquid Crystal Display Device Control (AREA)
Abstract
Provided is a display device wherein expansion of a frame region due to use of a non-rectangular substrate is suppressed. A display device is configured of a non-rectangular glass substrate (5), and each of the pixel circuit units (100) in the display device is configured of: a switch (110) which performs switching between the on-state and the off-state on the basis of scanning signals applied to scanning signal lines (a first scanning signal line (GL), and a second scanning signal line (GLB)) that pass corresponding cross points; a memory circuit (120), which fetches and stores binary data based on the potentials of data signals applied to a data signal line (DL) when the switch (110) is turned on; a liquid crystal drive voltage applying circuit (130), which selects a voltage for display, corresponding to the value of the binary data stored in the memory circuit (120); and a display element unit (140) for making the voltage selected by the liquid crystal drive voltage applying circuit (130) reflected in the display state of the pixel.
Description
本発明は、表示装置に関し、詳しくは、非矩形の基板で構成された表示装置に関する。
The present invention relates to a display device, and more particularly, to a display device composed of a non-rectangular substrate.
図26は、従来の一般的な液晶表示装置の概略構成を示す平面図である。図27は、図26のC-C線断面図である。図26および図27に示すように、この液晶表示装置は、TFTや画素電極などがマトリクス状に形成されたガラス基板であるアレイ基板7aと、画素電極との間に電圧を印加するための共通電極が形成されたガラス基板である対向基板7bと、アレイ基板7aと対向基板7bとが液晶を介して貼り合わせられることによって作製される液晶パネルを駆動させるための各種機能回路を含むIC(Integrated Circuit:集積回路)80とによって構成されている。IC80は、COG(Chip On Glass)方式でアレイ基板7a上に実装されている。また、アレイ基板7a上には、各種電気信号の入出力を行うための複数の端子からなる端子部89が形成されている。液晶パネルには矩形のアクティブエリア(有効表示領域)90が設けられており、そのアクティブエリア90内には、走査信号線(ゲートバスライン),映像信号線(ソースバスライン),および画素回路部などが形成されている。なお、ガラス基板7全体の形状は矩形となっている。
FIG. 26 is a plan view showing a schematic configuration of a conventional general liquid crystal display device. 27 is a cross-sectional view taken along the line CC of FIG. As shown in FIGS. 26 and 27, this liquid crystal display device is commonly used to apply a voltage between an array substrate 7a, which is a glass substrate on which TFTs and pixel electrodes are formed in a matrix, and the pixel electrodes. An IC (Integrated) including various functional circuits for driving a counter substrate 7b which is a glass substrate on which electrodes are formed, and an array substrate 7a and the counter substrate 7b are bonded together via liquid crystal. Circuit: integrated circuit) 80. The IC 80 is mounted on the array substrate 7a by a COG (Chip On Glass) method. Further, on the array substrate 7a, a terminal portion 89 including a plurality of terminals for inputting / outputting various electric signals is formed. The liquid crystal panel is provided with a rectangular active area (effective display area) 90. Within the active area 90, a scanning signal line (gate bus line), a video signal line (source bus line), and a pixel circuit unit Etc. are formed. In addition, the shape of the whole glass substrate 7 is a rectangle.
図26および図27において、符号A1で示す領域は、アレイ基板7aが形成されている領域のうちアレイ基板7aと対向基板7bとが対向している領域を示している。また、符号A2で示す領域は、アレイ基板7aが形成されている領域のうちアレイ基板7aと対向基板7bとが対向していない領域を示している。なお、便宜上、以下においては、符号A1で示す領域のことを「2枚ガラス領域」といい、符号A2で示す領域のことを「1枚ガラス領域」という。2枚ガラス領域は、アクティブエリア(有効表示領域)90およびアクティブエリア90の周辺の領域であるパネル額縁領域91により構成される。1枚ガラス領域は、2枚ガラス領域(アクティブエリア90およびパネル額縁領域91)以外の領域であり、端子部領域、または、端子部領域およびCOG実装領域にて構成される。
26 and 27, a region indicated by reference numeral A1 indicates a region where the array substrate 7a and the counter substrate 7b are opposed to each other in the region where the array substrate 7a is formed. A region indicated by reference numeral A2 indicates a region where the array substrate 7a and the counter substrate 7b are not opposed to each other in the region where the array substrate 7a is formed. For the sake of convenience, in the following, the area indicated by reference numeral A1 is referred to as “two-glass area”, and the area indicated by reference numeral A2 is referred to as “single-glass area”. The two-glass region includes an active area (effective display region) 90 and a panel frame region 91 that is a region around the active area 90. The single glass region is a region other than the double glass region (active area 90 and panel frame region 91), and is configured by a terminal portion region or a terminal portion region and a COG mounting region.
図28は、上記液晶表示装置におけるIC80の機能構成を示すブロック図である。このIC80には、外部から送られる各種電気信号を端子部89を介して受け取る入力インタフェース回路81と、画素電極に与えるための2以上の電圧を生成する表示電圧生成回路82と、タイミング用の各種信号を生成するタイミングジェネレータ83と、共通電極に与えるための電圧(対向電圧)を生成する対向電圧生成回路84と、走査信号線を駆動する走査信号線駆動回路(ゲートドライバ)85と、映像信号線を駆動する映像信号線駆動回路(ソースドライバ)86と、画像データを保持するためのメモリ回路(フレームメモリ等)87とが含まれている。IC80内のこれらの回路で生成された各種信号が2枚ガラス領域に与えられ、液晶パネルが駆動される。
FIG. 28 is a block diagram showing a functional configuration of the IC 80 in the liquid crystal display device. The IC 80 includes an input interface circuit 81 that receives various electric signals sent from the outside via a terminal unit 89, a display voltage generation circuit 82 that generates two or more voltages to be applied to the pixel electrodes, and various timing signals. A timing generator 83 for generating a signal, a counter voltage generating circuit 84 for generating a voltage (counter voltage) to be applied to the common electrode, a scanning signal line driving circuit (gate driver) 85 for driving the scanning signal lines, and a video signal A video signal line drive circuit (source driver) 86 for driving lines and a memory circuit (frame memory or the like) 87 for holding image data are included. Various signals generated by these circuits in the IC 80 are given to the two glass regions, and the liquid crystal panel is driven.
また、上記IC80内の一部の回路が2枚ガラス領域のパネル額縁領域91にモノリシックに形成されている液晶表示装置も知られている。例えば、走査信号線駆動回路85および映像信号線駆動回路86が図29に示すようにパネル額縁領域91に形成された液晶表示装置は広く知られている。
Also known is a liquid crystal display device in which a part of the circuit in the IC 80 is monolithically formed in the panel frame region 91 of the two glass region. For example, a liquid crystal display device in which the scanning signal line driving circuit 85 and the video signal line driving circuit 86 are formed in the panel frame region 91 as shown in FIG. 29 is widely known.
図30は、上述のような従来の一般的な液晶表示装置におけるアクティブエリア90内の構成を模式的に示すブロック図である。図30に示すように、アクティブエリア90には、複数本(n本)の走査信号線GL1~GLnと、複数本(m本)の映像信号線SL1~SLmと、走査信号線GL1~GLnと映像信号線SL1~SLmとの各交差点に対応して設けられた画素回路部900と、各画素回路部900において画素電極との間に補助容量を設けるための補助容量配線CSとが形成されている。このように、アクティブエリア90には、画素回路部900がマトリクス状に形成されている。なお、各画素回路部900は、1つの画素電極を含み、1つの画素に対応している。
FIG. 30 is a block diagram schematically showing a configuration in the active area 90 in the conventional general liquid crystal display device as described above. As shown in FIG. 30, the active area 90 includes a plurality (n) of scanning signal lines GL1 to GLn, a plurality (m) of video signal lines SL1 to SLm, and scanning signal lines GL1 to GLn. A pixel circuit portion 900 provided corresponding to each intersection with the video signal lines SL1 to SLm and an auxiliary capacitance wiring CS for providing an auxiliary capacitance between the pixel electrodes in each pixel circuit portion 900 are formed. Yes. As described above, the pixel circuit unit 900 is formed in a matrix in the active area 90. Each pixel circuit unit 900 includes one pixel electrode and corresponds to one pixel.
図31は、上記液晶表示装置における画素回路部900の構成を示す回路図である。各画素回路部900には、対応する交差点を通過する走査信号線GLにゲート電極が接続されるとともに当該交差点を通過する映像信号線SLにソース電極が接続されたTFT901と、そのTFT901のドレイン電極に接続された画素電極902と、アクティブエリア90内の全ての画素回路部900に共通的に設けられた共通電極903および補助容量配線CSと、画素電極902と共通電極903とによって形成される液晶容量904と、画素電極902と補助容量配線CSとによって形成される補助容量905とが含まれている。また、液晶容量904と補助容量905とによって画素容量CPが形成されている。このような構成において、各TFT901のゲート電極が走査信号線GLからオンレベルの走査信号を受けたときに当該TFT901がオン状態となり、映像信号線SL上の映像信号に基づいた電圧がTFT901を通して画素容量CPに充電される。その後、走査信号線GLからオフレベルの走査信号を受け、当該TFT901がオフ状態となり、映像信号に基づき画素容量CPに充電された電圧が保持される。そして、画素容量CPに保持された電圧が画素の表示状態に反映される。
FIG. 31 is a circuit diagram showing a configuration of the pixel circuit unit 900 in the liquid crystal display device. Each pixel circuit unit 900 includes a TFT 901 having a gate electrode connected to the scanning signal line GL passing through the corresponding intersection and a source electrode connected to the video signal line SL passing through the intersection, and a drain electrode of the TFT 901. A liquid crystal formed by the pixel electrode 902 connected to the common electrode 903, the common electrode 903 and the auxiliary capacitance wiring CS provided in common to all the pixel circuit portions 900 in the active area 90, and the pixel electrode 902 and the common electrode 903. A capacitor 904 and an auxiliary capacitor 905 formed by the pixel electrode 902 and the auxiliary capacitor line CS are included. In addition, the liquid crystal capacitor 904 and the auxiliary capacitor 905 form a pixel capacitor CP. In such a configuration, when the gate electrode of each TFT 901 receives an on-level scanning signal from the scanning signal line GL, the TFT 901 is turned on, and a voltage based on the video signal on the video signal line SL is passed through the TFT 901 to the pixel. The capacitor CP is charged. Thereafter, an off-level scanning signal is received from the scanning signal line GL, the TFT 901 is turned off, and the voltage charged in the pixel capacitor CP based on the video signal is held. The voltage held in the pixel capacitor CP is reflected in the display state of the pixel.
図32は、上記液晶表示装置の駆動方法について説明するための信号波形図である。なお、説明の便宜上、信号線と当該信号線に与えられる信号とには同一の参照符号を付している(以下も同様)。走査信号線GL1~GLnには、1行ずつ順次にオンレベルの走査信号が与えられる。これにより、1行ずつ順次に、各行に含まれる画素回路部900内のTFT901がオン状態となる。映像信号線SL1~SLmには、表示画像に応じた映像信号が与えられる。映像信号は、図32に示すように、走査信号の立ち上がり時点に、表示画像に応じた目標電位に向けて変化を開始する。そして、走査信号が立ち下がる時点の映像信号の電位に基づいて、液晶に電圧が印加される。なお、図32には、1列目と2列目の目標電位が図32に示す期間を通じて同じである場合の1列目用の映像信号SL1および2列目用の映像信号SL2の波形の一例を示している。
FIG. 32 is a signal waveform diagram for describing a driving method of the liquid crystal display device. For convenience of explanation, the same reference numerals are assigned to signal lines and signals applied to the signal lines (the same applies to the following). The scanning signal lines GL1 to GLn are sequentially supplied with on-level scanning signals row by row. Accordingly, the TFTs 901 in the pixel circuit unit 900 included in each row are sequentially turned on one row at a time. Video signals corresponding to the display image are given to the video signal lines SL1 to SLm. As shown in FIG. 32, the video signal starts changing toward the target potential corresponding to the display image at the rising edge of the scanning signal. Then, a voltage is applied to the liquid crystal based on the potential of the video signal when the scanning signal falls. FIG. 32 shows an example of waveforms of the video signal SL1 for the first column and the video signal SL2 for the second column when the target potentials in the first column and the second column are the same throughout the period shown in FIG. Is shown.
ところで、近年、液晶表示装置に関し、アプリケーションの1つとして時計用途の表示システムの開発が行われている。図33は、このような表示システムを備えた液晶表示装置の概略構成の一例を示す平面図である。図33に示すように、この液晶表示装置においては、ガラス基板8は八角形となっていて、アクティブエリア90aは円形となっている。図34は、この液晶表示装置におけるアクティブエリア90a内の構成を模式的に示すブロック図である。矩形のアクティブエリア90を有する液晶表示装置とは異なり(図30参照)、行方向についても列方向についても、端部から中央部にいくに従い画素回路部900の個数が多くなっている。具体的には、各列に着目すると、1列目および5列目には1個の画素回路部900が設けられ、2列目および4列目には3個の画素回路部900が設けられ、3列目には5個の画素回路部900が設けられている。各行に着目すると、1行目および5行目には1個の画素回路部900が設けられ、2行目および4行目には3個の画素回路部900が設けられ、3行目には5個の画素回路部900が設けられている。なお、図34では、説明の便宜上、走査信号線の本数および映像信号線の本数を5本にしているが、一般的には、5本よりも多くの本数の走査信号線および映像信号線が設けられている。また、ガラス基板の形状が八角形などの非矩形であっても、矩形のアクティブエリアを有する液晶表示装置もある。
By the way, in recent years, a display system for a clock application has been developed as one of applications regarding a liquid crystal display device. FIG. 33 is a plan view showing an example of a schematic configuration of a liquid crystal display device provided with such a display system. As shown in FIG. 33, in this liquid crystal display device, the glass substrate 8 is octagonal and the active area 90a is circular. FIG. 34 is a block diagram schematically showing a configuration in the active area 90a in the liquid crystal display device. Unlike a liquid crystal display device having a rectangular active area 90 (see FIG. 30), the number of pixel circuit portions 900 increases in the row direction and the column direction from the end to the center. Specifically, focusing on each column, one pixel circuit unit 900 is provided in the first and fifth columns, and three pixel circuit units 900 are provided in the second and fourth columns. In the third column, five pixel circuit units 900 are provided. Focusing on each row, one pixel circuit unit 900 is provided in the first row and the fifth row, and three pixel circuit units 900 are provided in the second row and the fourth row. Five pixel circuit portions 900 are provided. In FIG. 34, for convenience of explanation, the number of scanning signal lines and the number of video signal lines are five, but in general, there are more scanning signal lines and video signal lines than five. Is provided. In addition, there is a liquid crystal display device having a rectangular active area even when the glass substrate has a non-rectangular shape such as an octagon.
上述のような円形のアクティブエリア90aを有する液晶表示装置においても、画素回路部900の構成は図31に示したような構成となっている。すなわち、円形のアクティブエリア90aを有する液晶表示装置においても、各画素回路部900では、各TFT901のゲート電極が走査信号線GLからオンレベルの走査信号を受けたときに当該TFT901がオン状態となり、映像信号線SL上の映像信号に基づいた電圧がTFT901を通して画素容量CPに充電される。その後、走査信号線GLからオフレベルの走査信号を受け、当該TFT901がオフ状態となり、映像信号に基づき画素容量CPに充電された電圧が保持される。そして、画素容量CPに保持された電圧が画素の表示状態に反映される。なお、時計用途の表示システムを備えた液晶表示装置においては、典型的には、白黒2値表示が行われる。この場合、映像信号線駆動回路86は、各走査信号がオンレベルにされる毎に、画素の表示状態を白色表示にするための電圧または画素の表示状態を黒色表示にするための電圧を映像信号線SLに印加する。
Also in the liquid crystal display device having the circular active area 90a as described above, the configuration of the pixel circuit unit 900 is as shown in FIG. That is, also in the liquid crystal display device having the circular active area 90a, in each pixel circuit unit 900, when the gate electrode of each TFT 901 receives an on-level scanning signal from the scanning signal line GL, the TFT 901 is turned on. A voltage based on the video signal on the video signal line SL is charged to the pixel capacitor CP through the TFT 901. Thereafter, an off-level scanning signal is received from the scanning signal line GL, the TFT 901 is turned off, and the voltage charged in the pixel capacitor CP based on the video signal is held. The voltage held in the pixel capacitor CP is reflected in the display state of the pixel. Note that, in a liquid crystal display device provided with a display system for clock applications, typically, monochrome binary display is performed. In this case, every time each scanning signal is turned on, the video signal line driving circuit 86 outputs a voltage for displaying the pixel in a white display state or a voltage for setting the pixel display state in a black display. Applied to the signal line SL.
なお、本件発明に関連して、以下の先行技術文献が知られている。日本の特開2008-216894号公報には、円形または多角形の表示領域を有する液晶表示装置に関し、走査信号線駆動回路および映像信号線駆動回路をそれぞれ2つずつ備えた構成が開示されている。日本の特開2008-292995号公報および日本の特表2005-528644号公報には、非矩形の基板で構成され非矩形の表示領域を有する表示装置に関し、表示部の外周に沿って駆動回路を高密度に配置した構成が開示されている。日本の特開2006-276361号公報には、非矩形の基板で構成され楕円形または円形の表示領域を有する液晶表示装置に関し、走査信号線および映像信号線とドライバLSIとが表示領域の外縁部に配設された配線によって接続された構成が開示されている。その他、日本の特表2008-502023号公報,日本の特開2009-122636号公報などにも非矩形の基板で構成された表示装置に関する発明が開示されている。
The following prior art documents are known in relation to the present invention. Japanese Laid-Open Patent Publication No. 2008-216894 discloses a configuration including two scanning signal line driving circuits and two video signal line driving circuits for a liquid crystal display device having a circular or polygonal display region. . Japanese Laid-Open Patent Publication No. 2008-292959 and Japanese Special Publication No. 2005-528644 relate to a display device that includes a non-rectangular substrate and has a non-rectangular display area. A configuration with high density is disclosed. Japanese Laid-Open Patent Publication No. 2006-276361 relates to a liquid crystal display device which is formed of a non-rectangular substrate and has an elliptical or circular display area, and a scanning signal line, a video signal line and a driver LSI are arranged at the outer edge of the display area The structure connected by the wiring arrange | positioned in is disclosed. In addition, Japanese Patent Publication No. 2008-502023, Japanese Unexamined Patent Publication No. 2009-122636, etc. also disclose inventions related to display devices composed of non-rectangular substrates.
ところが、液晶表示装置を構成するガラス基板に非矩形のガラス基板が採用された場合、矩形のガラス基板が採用されている場合と比較して1枚ガラス領域のサイズを大きくせざるを得ないことがある。これについて、以下に説明する。例えば非矩形のガラス基板として上述のような八角形のガラス基板を採用しようとする場合、所定サイズの矩形のガラス基板7の四隅を切断することによって八角形のガラス基板8が作製される(図35参照)。この場合、図36に示すように、1枚ガラス領域のサイズ(図36において縦方向のサイズ)を一定とすると、矩形のガラス基板7よりも非矩形のガラス基板8の方が、1枚ガラス領域に実装可能なICのサイズが小さくなる。このため、非矩形のガラス基板8に実装するIC80b内に、矩形のガラス基板7が採用されていたときにIC80a内に形成されていた全ての回路を含めることができないことがある。この場合、それら全ての回路をIC80b内に含めるためには、例えば図37に示すようにICの形状を変えなければならないので、1枚ガラス領域のサイズ(図36において縦方向のサイズ)を大きくする必要がある。すなわち、非矩形のガラス基板8が採用されたときの1枚ガラス領域のサイズ(図33のL2)は、矩形のガラス基板7が採用されたときの1枚ガラス領域のサイズ(図26のL1)よりも大きくなる。
However, when a non-rectangular glass substrate is adopted as the glass substrate constituting the liquid crystal display device, the size of the single glass region must be increased as compared with the case where the rectangular glass substrate is adopted. There is. This will be described below. For example, when an octagonal glass substrate as described above is to be adopted as a non-rectangular glass substrate, an octagonal glass substrate 8 is produced by cutting four corners of a rectangular glass substrate 7 of a predetermined size (see FIG. 35). In this case, as shown in FIG. 36, if the size of the single glass region (the vertical size in FIG. 36) is constant, the non-rectangular glass substrate 8 is more single glass than the rectangular glass substrate 7. The size of the IC that can be mounted in the area is reduced. For this reason, the IC 80b mounted on the non-rectangular glass substrate 8 may not include all the circuits formed in the IC 80a when the rectangular glass substrate 7 is employed. In this case, in order to include all these circuits in the IC 80b, for example, the shape of the IC must be changed as shown in FIG. 37. Therefore, the size of the single glass region (the vertical size in FIG. 36) is increased. There is a need to. That is, the size of the single glass region when the non-rectangular glass substrate 8 is employed (L2 in FIG. 33) is the size of the single glass region when the rectangular glass substrate 7 is employed (L1 in FIG. 26). ).
そこで、本発明は、表示装置において、非矩形の基板を採用することに伴う1枚ガラス領域の拡大を抑制することを目的とする。
Therefore, an object of the present invention is to suppress the enlargement of a single glass region associated with the use of a non-rectangular substrate in a display device.
本発明の第1の局面は、有効表示領域と該有効表示領域の周辺領域であるパネル額縁領域とからなる2枚ガラス領域と、該2枚ガラス領域外の領域である1枚ガラス領域とを有する非矩形の基板によって構成され、画素の表示状態を変化させることによって画像を表示する表示装置であって、
複数のデータ信号線と、
前記複数のデータ信号線と交差する複数の走査信号線と、
表示すべき画像に応じたデータ信号を前記複数のデータ信号線に印加するデータ信号線駆動回路と、
前記複数の走査信号線に走査信号を印加する走査信号線駆動回路と、
それぞれが前記複数のデータ信号線のいずれかと前記複数の走査信号線のいずれかとの交差点に対応するように設けられた複数の画素回路部と
を備え、
各画素回路部は、
対応する交差点を通過する走査信号線に印加されている走査信号に基づいてオン/オフ状態の切り替えが行われるスイッチと、
対応する交差点を通過するデータ信号線に印加されているデータ信号の電位に基づく2値データを前記スイッチがオン状態の時に取り込み、前記2値データを記憶する記憶部と、
前記記憶部に記憶されている2値データの値に応じて第1電圧または第2電圧のいずれかを選択する電圧選択部と、
前記電圧選択部によって選択された電圧を画素の表示状態に反映させるための表示素子部と
を含むことを特徴とする。 A first aspect of the present invention includes a two-glass region composed of an effective display region and a panel frame region that is a peripheral region of the effective display region, and a single-glass region that is an area outside the two-glass region. A display device that includes a non-rectangular substrate and displays an image by changing a display state of pixels,
A plurality of data signal lines;
A plurality of scanning signal lines intersecting with the plurality of data signal lines;
A data signal line driving circuit for applying a data signal corresponding to an image to be displayed to the plurality of data signal lines;
A scanning signal line driving circuit for applying a scanning signal to the plurality of scanning signal lines;
A plurality of pixel circuit portions each provided so as to correspond to an intersection of one of the plurality of data signal lines and one of the plurality of scanning signal lines;
Each pixel circuit section
A switch that is switched on / off based on a scanning signal applied to a scanning signal line passing through a corresponding intersection;
A storage unit that takes in binary data based on the potential of a data signal applied to a data signal line passing through a corresponding intersection when the switch is on, and stores the binary data;
A voltage selection unit that selects either the first voltage or the second voltage according to the value of the binary data stored in the storage unit;
And a display element unit for reflecting the voltage selected by the voltage selection unit in the display state of the pixel.
複数のデータ信号線と、
前記複数のデータ信号線と交差する複数の走査信号線と、
表示すべき画像に応じたデータ信号を前記複数のデータ信号線に印加するデータ信号線駆動回路と、
前記複数の走査信号線に走査信号を印加する走査信号線駆動回路と、
それぞれが前記複数のデータ信号線のいずれかと前記複数の走査信号線のいずれかとの交差点に対応するように設けられた複数の画素回路部と
を備え、
各画素回路部は、
対応する交差点を通過する走査信号線に印加されている走査信号に基づいてオン/オフ状態の切り替えが行われるスイッチと、
対応する交差点を通過するデータ信号線に印加されているデータ信号の電位に基づく2値データを前記スイッチがオン状態の時に取り込み、前記2値データを記憶する記憶部と、
前記記憶部に記憶されている2値データの値に応じて第1電圧または第2電圧のいずれかを選択する電圧選択部と、
前記電圧選択部によって選択された電圧を画素の表示状態に反映させるための表示素子部と
を含むことを特徴とする。 A first aspect of the present invention includes a two-glass region composed of an effective display region and a panel frame region that is a peripheral region of the effective display region, and a single-glass region that is an area outside the two-glass region. A display device that includes a non-rectangular substrate and displays an image by changing a display state of pixels,
A plurality of data signal lines;
A plurality of scanning signal lines intersecting with the plurality of data signal lines;
A data signal line driving circuit for applying a data signal corresponding to an image to be displayed to the plurality of data signal lines;
A scanning signal line driving circuit for applying a scanning signal to the plurality of scanning signal lines;
A plurality of pixel circuit portions each provided so as to correspond to an intersection of one of the plurality of data signal lines and one of the plurality of scanning signal lines;
Each pixel circuit section
A switch that is switched on / off based on a scanning signal applied to a scanning signal line passing through a corresponding intersection;
A storage unit that takes in binary data based on the potential of a data signal applied to a data signal line passing through a corresponding intersection when the switch is on, and stores the binary data;
A voltage selection unit that selects either the first voltage or the second voltage according to the value of the binary data stored in the storage unit;
And a display element unit for reflecting the voltage selected by the voltage selection unit in the display state of the pixel.
本発明の第2の局面は、本発明の第1の局面において、
前記画素回路部を動作させるための複数の機能回路からなるパネル駆動回路の一部が前記パネル額縁領域内に形成されていることを特徴とする。 According to a second aspect of the present invention, in the first aspect of the present invention,
A part of a panel driving circuit including a plurality of functional circuits for operating the pixel circuit portion is formed in the panel frame region.
前記画素回路部を動作させるための複数の機能回路からなるパネル駆動回路の一部が前記パネル額縁領域内に形成されていることを特徴とする。 According to a second aspect of the present invention, in the first aspect of the present invention,
A part of a panel driving circuit including a plurality of functional circuits for operating the pixel circuit portion is formed in the panel frame region.
本発明の第3の局面は、本発明の第2の局面において、
前記パネル駆動回路の一部として前記走査信号線駆動回路と前記データ信号線駆動回路とが前記パネル額縁領域内に形成されていることを特徴とする。 According to a third aspect of the present invention, in the second aspect of the present invention,
The scanning signal line driving circuit and the data signal line driving circuit are formed in the panel frame region as a part of the panel driving circuit.
前記パネル駆動回路の一部として前記走査信号線駆動回路と前記データ信号線駆動回路とが前記パネル額縁領域内に形成されていることを特徴とする。 According to a third aspect of the present invention, in the second aspect of the present invention,
The scanning signal line driving circuit and the data signal line driving circuit are formed in the panel frame region as a part of the panel driving circuit.
本発明の第4の局面は、本発明の第3の局面において、
前記パネル駆動回路の一部として、更に、前記走査信号線駆動回路および前記データ信号線駆動回路の動作タイミングを制御するタイミング信号を生成するタイミング信号生成回路が前記パネル額縁領域内に形成されていることを特徴とする。 According to a fourth aspect of the present invention, in the third aspect of the present invention,
As a part of the panel drive circuit, a timing signal generation circuit for generating a timing signal for controlling the operation timing of the scanning signal line drive circuit and the data signal line drive circuit is further formed in the panel frame region. It is characterized by that.
前記パネル駆動回路の一部として、更に、前記走査信号線駆動回路および前記データ信号線駆動回路の動作タイミングを制御するタイミング信号を生成するタイミング信号生成回路が前記パネル額縁領域内に形成されていることを特徴とする。 According to a fourth aspect of the present invention, in the third aspect of the present invention,
As a part of the panel drive circuit, a timing signal generation circuit for generating a timing signal for controlling the operation timing of the scanning signal line drive circuit and the data signal line drive circuit is further formed in the panel frame region. It is characterized by that.
本発明の第5の局面は、本発明の第4の局面において、
前記パネル駆動回路の一部として、更に、外部から送られる電気信号を前記1枚ガラス領域に設けられている端子部を介して受け取る入力インタフェース回路が前記パネル額縁領域内に形成されていることを特徴とする。 According to a fifth aspect of the present invention, in the fourth aspect of the present invention,
As a part of the panel drive circuit, an input interface circuit for receiving an electric signal sent from the outside via a terminal portion provided in the one glass region is formed in the panel frame region. Features.
前記パネル駆動回路の一部として、更に、外部から送られる電気信号を前記1枚ガラス領域に設けられている端子部を介して受け取る入力インタフェース回路が前記パネル額縁領域内に形成されていることを特徴とする。 According to a fifth aspect of the present invention, in the fourth aspect of the present invention,
As a part of the panel drive circuit, an input interface circuit for receiving an electric signal sent from the outside via a terminal portion provided in the one glass region is formed in the panel frame region. Features.
本発明の第6の局面は、本発明の第4の局面において、
前記パネル駆動回路の一部として、更に、前記第1電圧および前記第2電圧を生成する表示電圧生成回路と、前記表示素子部に含まれる2つの電極のうち前記第1電圧または前記第2電圧が印加される電極と対向するように配置されている電極に印加するための電圧を生成する対向電圧生成回路とが前記パネル額縁領域内に形成されていることを特徴とする。 A sixth aspect of the present invention is the fourth aspect of the present invention,
As a part of the panel drive circuit, a display voltage generation circuit for generating the first voltage and the second voltage, and the first voltage or the second voltage of two electrodes included in the display element unit A counter voltage generation circuit for generating a voltage to be applied to an electrode arranged so as to face the electrode to which is applied is formed in the panel frame region.
前記パネル駆動回路の一部として、更に、前記第1電圧および前記第2電圧を生成する表示電圧生成回路と、前記表示素子部に含まれる2つの電極のうち前記第1電圧または前記第2電圧が印加される電極と対向するように配置されている電極に印加するための電圧を生成する対向電圧生成回路とが前記パネル額縁領域内に形成されていることを特徴とする。 A sixth aspect of the present invention is the fourth aspect of the present invention,
As a part of the panel drive circuit, a display voltage generation circuit for generating the first voltage and the second voltage, and the first voltage or the second voltage of two electrodes included in the display element unit A counter voltage generation circuit for generating a voltage to be applied to an electrode arranged so as to face the electrode to which is applied is formed in the panel frame region.
本発明の第7の局面は、本発明の第3の局面において、
前記パネル駆動回路の一部として、更に、前記第1電圧および前記第2電圧を生成する表示電圧生成回路と、前記表示素子部に含まれる2つの電極のうち前記第1電圧または前記第2電圧が印加される電極と対向するように配置されている電極に印加するための電圧を生成する対向電圧生成回路とが前記パネル額縁領域内に形成されていることを特徴とする。 According to a seventh aspect of the present invention, in the third aspect of the present invention,
As a part of the panel drive circuit, a display voltage generation circuit for generating the first voltage and the second voltage, and the first voltage or the second voltage of two electrodes included in the display element unit A counter voltage generation circuit for generating a voltage to be applied to an electrode arranged so as to face the electrode to which is applied is formed in the panel frame region.
前記パネル駆動回路の一部として、更に、前記第1電圧および前記第2電圧を生成する表示電圧生成回路と、前記表示素子部に含まれる2つの電極のうち前記第1電圧または前記第2電圧が印加される電極と対向するように配置されている電極に印加するための電圧を生成する対向電圧生成回路とが前記パネル額縁領域内に形成されていることを特徴とする。 According to a seventh aspect of the present invention, in the third aspect of the present invention,
As a part of the panel drive circuit, a display voltage generation circuit for generating the first voltage and the second voltage, and the first voltage or the second voltage of two electrodes included in the display element unit A counter voltage generation circuit for generating a voltage to be applied to an electrode arranged so as to face the electrode to which is applied is formed in the panel frame region.
本発明の第8の局面は、本発明の第2の局面において、
前記パネル駆動回路を構成する全ての機能回路が前記パネル額縁領域内に形成されていることを特徴とする。 According to an eighth aspect of the present invention, in the second aspect of the present invention,
All the functional circuits constituting the panel driving circuit are formed in the panel frame region.
前記パネル駆動回路を構成する全ての機能回路が前記パネル額縁領域内に形成されていることを特徴とする。 According to an eighth aspect of the present invention, in the second aspect of the present invention,
All the functional circuits constituting the panel driving circuit are formed in the panel frame region.
本発明の第9の局面は、本発明の第2の局面において、
前記パネル駆動回路を構成する前記複数の機能回路のうち前記パネル額縁領域内に形成されている機能回路を除く回路の少なくとも一部が設けられた外部基板を更に備えることを特徴とする。 According to a ninth aspect of the present invention, in the second aspect of the present invention,
It further comprises an external substrate provided with at least a part of a circuit excluding the functional circuit formed in the panel frame region among the plurality of functional circuits constituting the panel driving circuit.
前記パネル駆動回路を構成する前記複数の機能回路のうち前記パネル額縁領域内に形成されている機能回路を除く回路の少なくとも一部が設けられた外部基板を更に備えることを特徴とする。 According to a ninth aspect of the present invention, in the second aspect of the present invention,
It further comprises an external substrate provided with at least a part of a circuit excluding the functional circuit formed in the panel frame region among the plurality of functional circuits constituting the panel driving circuit.
本発明の第10の局面は、本発明の第1の局面において、
前記基板の形状が八角形であることを特徴とする。 According to a tenth aspect of the present invention, in the first aspect of the present invention,
The substrate has an octagonal shape.
前記基板の形状が八角形であることを特徴とする。 According to a tenth aspect of the present invention, in the first aspect of the present invention,
The substrate has an octagonal shape.
本発明の第1の局面によれば、非矩形の基板で構成された表示装置において、画素回路部には2値データ(1ビットのデータ)を記憶(保持)することができる記憶部が設けられる。各画素回路部では、スイッチがオン状態になっている時のデータ信号の電位に基づき、上記2値データが記憶部に記憶される。そして、記憶部に記憶されている2値データの値(論理値)に応じて第1電圧または第2電圧のいずれかが電圧選択部によって選択され、その電圧選択部によって選択された電圧が画素の表示状態に反映される。このように、各画素回路部内の記憶部に保持されているデータに基づいて画素の表示状態が決定される。このため、従来の構成において画像データを保持するために1枚ガラス領域のIC(集積回路)内に設けられていたメモリ回路(フレームメモリ)が不要となる。ところで、表示装置を構成する基板に非矩形の基板が採用された場合、従来1枚ガラス領域のIC内に設けられていた全ての回路をIC内に含めることができないことがある。この点、本発明の第1の局面によれば、上述したようにIC内のメモリ回路が不要となるので、従来の構成と比較して1枚ガラス領域に実装すべきICのサイズを小さくすることが可能となる。これにより、表示装置において、非矩形の基板を採用することに伴う1枚ガラス領域の拡大が抑制される。
According to the first aspect of the present invention, in the display device configured with a non-rectangular substrate, the pixel circuit unit is provided with a storage unit capable of storing (holding) binary data (1-bit data). It is done. In each pixel circuit unit, the binary data is stored in the storage unit based on the potential of the data signal when the switch is on. Then, either the first voltage or the second voltage is selected by the voltage selection unit according to the value (logical value) of the binary data stored in the storage unit, and the voltage selected by the voltage selection unit is the pixel. It is reflected in the display state. In this way, the display state of the pixel is determined based on the data held in the storage unit in each pixel circuit unit. This eliminates the need for a memory circuit (frame memory) provided in an IC (integrated circuit) in a single glass area in order to hold image data in the conventional configuration. By the way, when a non-rectangular substrate is adopted as a substrate constituting the display device, there are cases where all the circuits that are conventionally provided in an IC in a single glass region cannot be included in the IC. In this regard, according to the first aspect of the present invention, the memory circuit in the IC is not necessary as described above, so that the size of the IC to be mounted on the single glass region is reduced as compared with the conventional configuration. It becomes possible. Thereby, in a display apparatus, the expansion of the single glass area | region accompanying employ | adopting a non-rectangular board | substrate is suppressed.
本発明の第2の局面によれば、非矩形の基板で構成された表示装置において、パネル駆動回路の一部が1枚ガラス領域のIC内ではなくパネル額縁領域内に形成されている。このため、1枚ガラス領域に実装すべきICのサイズをより小さくすることが可能となる。これにより、表示装置において、非矩形の基板を採用することに伴う1枚ガラス領域の拡大が効果的に抑制される。また、パネル駆動回路の一部や(フレームメモリの代わりとなる)記憶部が2枚ガラス領域(有効表示領域およびパネル額縁領域)に形成されていることから、パネル額縁領域と外部とを接続するために必要な端子数を少なくすることが可能となる。このため、非矩形の基板を採用することによって端子部の形状やサイズに制約が生じていても、1枚ガラス領域を拡大させることなく、非矩形の基板で構成された表示装置を実現することが可能となる。
According to the second aspect of the present invention, in the display device configured with a non-rectangular substrate, a part of the panel drive circuit is formed in the panel frame region instead of in the single glass region IC. For this reason, it is possible to further reduce the size of the IC to be mounted on the single glass region. Thereby, in a display apparatus, expansion of the single glass area | region accompanying employ | adopting a non-rectangular board | substrate is suppressed effectively. Further, since a part of the panel driving circuit and a storage unit (in place of the frame memory) are formed in the two-glass region (effective display region and panel frame region), the panel frame region and the outside are connected. Therefore, the number of terminals required for this can be reduced. Therefore, by adopting a non-rectangular substrate, a display device configured with a non-rectangular substrate can be realized without enlarging a single glass region even if there are restrictions on the shape and size of the terminal portion. Is possible.
本発明の第3の局面によれば、走査信号線駆動回路およびデータ信号線駆動回路がパネル額縁領域内に形成された表示装置において、本発明の第2の局面と同様の効果が得られる。また、走査信号線はパネル額縁領域内の走査信号線駆動回路によって駆動され、データ信号線はパネル額縁領域内のデータ信号線駆動回路によって駆動される。このため、IC内に走査信号線駆動回路およびデータ信号線駆動回路が設けられている構成と比較して、IC-パネル額縁領域間の配線数を少なくすることが可能となる。
According to the third aspect of the present invention, in the display device in which the scanning signal line driving circuit and the data signal line driving circuit are formed in the panel frame region, the same effect as in the second aspect of the present invention is obtained. The scanning signal lines are driven by a scanning signal line driving circuit in the panel frame region, and the data signal lines are driven by a data signal line driving circuit in the panel frame region. For this reason, it is possible to reduce the number of wirings between the IC and the panel frame region as compared with the configuration in which the scanning signal line driving circuit and the data signal line driving circuit are provided in the IC.
本発明の第4の局面によれば、本発明の第3の局面と比較してICのサイズをより小さくすることができ、矩形の基板で構成された従来の表示装置と比較して1枚ガラス領域を拡大させることなく、非矩形の基板で構成された表示装置を実現することが可能となる。
According to the fourth aspect of the present invention, the size of the IC can be further reduced as compared with the third aspect of the present invention, and one sheet compared with the conventional display device configured with a rectangular substrate. A display device formed of a non-rectangular substrate can be realized without enlarging the glass region.
本発明の第5の局面によれば、更に、本発明の第4の局面と比較してICのサイズをより小さくすることができ、矩形の基板で構成された従来の表示装置と比較して1枚ガラス領域を拡大させることなく、非矩形の基板で構成された表示装置を実現することが可能となる。
According to the fifth aspect of the present invention, the size of the IC can be further reduced as compared with the fourth aspect of the present invention, compared with the conventional display device configured with a rectangular substrate. A display device composed of a non-rectangular substrate can be realized without enlarging the single glass region.
本発明の第6の局面によれば、本発明の第5の局面と同様に、更に、本発明の第4の局面と比較してICのサイズをより小さくすることができ、矩形の基板で構成された従来の表示装置と比較して1枚ガラス領域を拡大させることなく、非矩形の基板で構成された表示装置を実現することが可能となる。
According to the sixth aspect of the present invention, similarly to the fifth aspect of the present invention, the size of the IC can be further reduced as compared with the fourth aspect of the present invention. It is possible to realize a display device configured with a non-rectangular substrate without enlarging a single glass region as compared with the conventional display device configured.
本発明の第7の局面によれば、本発明の第4の局面と同様に、本発明の第3の局面と比較してICのサイズをより小さくすることができ、矩形の基板で構成された従来の表示装置と比較して1枚ガラス領域を拡大させることなく、非矩形の基板で構成された表示装置を実現することが可能となる。
According to the seventh aspect of the present invention, similarly to the fourth aspect of the present invention, the size of the IC can be made smaller than that of the third aspect of the present invention, and it is configured by a rectangular substrate. Therefore, it is possible to realize a display device constituted by a non-rectangular substrate without enlarging the single glass region as compared with the conventional display device.
本発明の第8の局面によれば、1枚ガラス領域にパネル駆動回路用のICを備える必要はないので、1枚ガラス領域が顕著に縮小化された非矩形の基板で構成された表示装置を実現することが可能となる。
According to the eighth aspect of the present invention, since it is not necessary to provide an IC for a panel driving circuit in a single glass region, a display device constituted by a non-rectangular substrate in which the single glass region is significantly reduced. Can be realized.
本発明の第9の局面によれば、本発明の第2の局面と比較してICのサイズをより小さくすることができる、または、ICを備える必要はないので、矩形の基板で構成された従来の表示装置と比較して1枚ガラス領域を拡大させることなく、非矩形の基板で構成された表示装置を実現することが可能となる。
According to the ninth aspect of the present invention, the size of the IC can be made smaller than that of the second aspect of the present invention, or it is not necessary to include the IC, and therefore, it is configured by a rectangular substrate. A display device constituted by a non-rectangular substrate can be realized without enlarging a single glass region as compared with a conventional display device.
本発明の第10の局面によれば、八角形の基板で構成された表示装置において、本発明の第1の局面と同様の効果が得られる。
According to the tenth aspect of the present invention, the same effect as that of the first aspect of the present invention can be obtained in the display device constituted by the octagonal substrate.
以下、添付図面を参照しつつ、本発明の実施形態について説明する。
Hereinafter, embodiments of the present invention will be described with reference to the accompanying drawings.
<1.第1の実施形態>
<1.1 概略構成>
図2は、本発明の第1の実施形態に係る液晶表示装置の概略構成を示す平面図である。図3は、図2のB-B線断面図である。図2および図3に示すように、この液晶表示装置は、TFTや画素電極などが形成されたガラス基板であるアレイ基板5aと、画素電極との間に電圧を印加するための共通電極が形成されたガラス基板である対向基板5bと、アレイ基板5aと対向基板5bとが液晶を介して貼り合わせられることによって作製される液晶パネルを駆動させるための各種機能回路を含むIC20とによって構成されている。IC20は、COG方式でアレイ基板5a上の1枚ガラス領域に実装されている。また、アレイ基板5a上には、各種電気信号の入出力を行うための複数の端子からなる端子部30が形成されている。本実施形態においては、ガラス基板5全体の形状は八角形となっている。なお、液晶パネルにはほぼ円形のアクティブエリア(有効表示領域)10が設けられており、そのアクティブエリア10内には、走査信号線(第1の走査号線および第2の走査信号線),データ信号線,および画素回路部などが形成されている。 <1. First Embodiment>
<1.1 Schematic configuration>
FIG. 2 is a plan view showing a schematic configuration of the liquid crystal display device according to the first embodiment of the present invention. 3 is a cross-sectional view taken along line BB in FIG. As shown in FIGS. 2 and 3, in this liquid crystal display device, a common electrode for applying a voltage is formed between thearray substrate 5a, which is a glass substrate on which TFTs, pixel electrodes, and the like are formed, and the pixel electrodes. The counter substrate 5b, which is a glass substrate, and the IC 20 including various functional circuits for driving a liquid crystal panel manufactured by bonding the array substrate 5a and the counter substrate 5b through liquid crystal. Yes. The IC 20 is mounted on a single glass region on the array substrate 5a by the COG method. Further, on the array substrate 5a, a terminal portion 30 composed of a plurality of terminals for inputting / outputting various electric signals is formed. In the present embodiment, the entire shape of the glass substrate 5 is an octagon. The liquid crystal panel is provided with a substantially circular active area (effective display area) 10 within which scanning signal lines (first scanning signal line and second scanning signal line), data A signal line, a pixel circuit portion, and the like are formed.
<1.1 概略構成>
図2は、本発明の第1の実施形態に係る液晶表示装置の概略構成を示す平面図である。図3は、図2のB-B線断面図である。図2および図3に示すように、この液晶表示装置は、TFTや画素電極などが形成されたガラス基板であるアレイ基板5aと、画素電極との間に電圧を印加するための共通電極が形成されたガラス基板である対向基板5bと、アレイ基板5aと対向基板5bとが液晶を介して貼り合わせられることによって作製される液晶パネルを駆動させるための各種機能回路を含むIC20とによって構成されている。IC20は、COG方式でアレイ基板5a上の1枚ガラス領域に実装されている。また、アレイ基板5a上には、各種電気信号の入出力を行うための複数の端子からなる端子部30が形成されている。本実施形態においては、ガラス基板5全体の形状は八角形となっている。なお、液晶パネルにはほぼ円形のアクティブエリア(有効表示領域)10が設けられており、そのアクティブエリア10内には、走査信号線(第1の走査号線および第2の走査信号線),データ信号線,および画素回路部などが形成されている。 <1. First Embodiment>
<1.1 Schematic configuration>
FIG. 2 is a plan view showing a schematic configuration of the liquid crystal display device according to the first embodiment of the present invention. 3 is a cross-sectional view taken along line BB in FIG. As shown in FIGS. 2 and 3, in this liquid crystal display device, a common electrode for applying a voltage is formed between the
図4は、本実施形態におけるアクティブエリア10内の構成を模式的に示すブロック図である。図4に示すように、アクティブエリア10には、第1の走査信号線GL1~GL5と、第2の走査信号線GLB1~GLB5と、データ信号線DL1~DL5と、ハイレベルの直流電源電位VDD用の配線と、ローレベルの直流電源電位VSS用の配線と、第1電圧としての白色表示用電圧VLAを伝達するための配線と、第2電圧としての黒色表示用電圧VLBを伝達するための配線と、複数個の画素回路部100とが形成されている。複数個の画素回路部100については、アクティブエリア10の形状(本実施形態では円形)の画像が表示されるようにそれぞれが配置されている。
FIG. 4 is a block diagram schematically showing a configuration in the active area 10 in the present embodiment. As shown in FIG. 4, the active area 10 includes first scanning signal lines GL1 to GL5, second scanning signal lines GLB1 to GLB5, data signal lines DL1 to DL5, and a high-level DC power supply potential VDD. Wiring for transmitting the low-level DC power supply potential VSS, wiring for transmitting the white display voltage VLA as the first voltage, and transmitting the black display voltage VLB as the second voltage. A wiring and a plurality of pixel circuit portions 100 are formed. The plurality of pixel circuit units 100 are arranged so that an image having the shape of the active area 10 (circular in this embodiment) is displayed.
本実施形態においては、アクティブエリア10の形状が円形であるため、図4に示すように、行方向についても列方向についても、端部から中央部にいくに従い画素回路部100の個数が多くなっている。具体的には、各列に着目すると、1列目および5列目には1個の画素回路部100が設けられ、2列目および4列目には3個の画素回路部100が設けられ、3列目には5個の画素回路部100が設けられている。各行に着目すると、1行目および5行目には1個の画素回路部100が設けられ、2行目および4行目には3個の画素回路部100が設けられ、3行目には5個の画素回路部100が設けられている。各画素回路部100には、後述するように、1ビットのデータを保持することができるメモリ回路が内蔵されている。なお、図4では、説明の便宜上、第1の走査信号線の本数,第2の走査信号線の本数,およびデータ信号線の本数を5本にしているが、それらの本数については限定されない。
In the present embodiment, since the shape of the active area 10 is circular, as shown in FIG. 4, the number of pixel circuit units 100 increases from the end to the center in both the row direction and the column direction. ing. Specifically, focusing on each column, one pixel circuit unit 100 is provided in the first and fifth columns, and three pixel circuit units 100 are provided in the second and fourth columns. Five pixel circuit units 100 are provided in the third column. Focusing on each row, one pixel circuit unit 100 is provided in the first and fifth rows, three pixel circuit units 100 are provided in the second and fourth rows, and the third row has Five pixel circuit units 100 are provided. Each pixel circuit unit 100 has a built-in memory circuit capable of holding 1-bit data, as will be described later. In FIG. 4, for convenience of explanation, the number of first scanning signal lines, the number of second scanning signal lines, and the number of data signal lines are five, but the number is not limited.
図5は、本実施形態におけるIC20の機能構成を示すブロック図である。このIC20には、外部から送られる各種電気信号を端子部30を介して受け取る入力インタフェース回路21と、画素電極に与えるための電圧(白色表示用電圧VLAおよび黒色表示用電圧VLB)を生成する表示電圧生成回路22と、タイミング用の各種信号を生成するタイミングジェネレータ(タイミング信号生成回路)23と、共通電極に与えるための電圧(対向電圧)を生成する対向電圧生成回路24と、走査信号線(第1の走査信号線および第2の走査信号線)を駆動する走査信号線駆動回路25と、データ信号線を駆動するデータ信号線駆動回路26とが含まれている。図28に示した従来の液晶表示装置におけるIC80とは異なり、本実施形態におけるIC20には画像データを保持するためのメモリ回路が設けられていない。本実施形態においては、表示電圧生成回路22,タイミングジェネレータ23,対向電圧生成回路24,走査信号線駆動回路25,およびデータ信号線駆動回路26によって、画素回路部100を動作させるためのパネル駆動回路が実現されている。IC20内のパネル駆動回路で生成された各種信号がパネル額縁領域11経由でアクティブエリア10に与えられ、液晶パネルが駆動される。
FIG. 5 is a block diagram showing a functional configuration of the IC 20 in the present embodiment. The IC 20 has an input interface circuit 21 that receives various electric signals sent from the outside via the terminal unit 30, and a display that generates voltages (white display voltage VLA and black display voltage VLB) to be applied to the pixel electrodes. A voltage generation circuit 22, a timing generator (timing signal generation circuit) 23 for generating various timing signals, a counter voltage generation circuit 24 for generating a voltage (counter voltage) to be applied to the common electrode, and a scanning signal line ( A scanning signal line driving circuit 25 for driving the first scanning signal line and the second scanning signal line) and a data signal line driving circuit 26 for driving the data signal line are included. Unlike the IC 80 in the conventional liquid crystal display device shown in FIG. 28, the IC 20 in this embodiment is not provided with a memory circuit for holding image data. In the present embodiment, a panel drive circuit for operating the pixel circuit unit 100 with the display voltage generation circuit 22, the timing generator 23, the counter voltage generation circuit 24, the scanning signal line drive circuit 25, and the data signal line drive circuit 26. Is realized. Various signals generated by the panel drive circuit in the IC 20 are given to the active area 10 via the panel frame region 11, and the liquid crystal panel is driven.
<1.2 画素回路部の構成>
図1は、本実施形態における画素回路部100の概略構成を説明するための図である。図1の上方に示すように、八角形のガラス基板5の2枚ガラス領域に設けられたアクティブエリア10には複数の画素回路部100が配置されている。各画素回路部100は、1つの画素に対応し、図1の下方に示すように、スイッチ110とメモリ回路120と液晶駆動電圧印加回路130と表示素子部140とを含んでいる。表示素子部140は、液晶と、液晶を挟持する画素電極および共通電極とからなる。本実施形態においては、メモリ回路120によって記憶部が実現され、液晶駆動電圧印加回路130によって電圧選択部が実現されている。 <1.2 Configuration of Pixel Circuit Unit>
FIG. 1 is a diagram for explaining a schematic configuration of apixel circuit unit 100 in the present embodiment. As shown in the upper part of FIG. 1, a plurality of pixel circuit units 100 are arranged in the active area 10 provided in the two-glass region of the octagonal glass substrate 5. Each pixel circuit unit 100 corresponds to one pixel, and includes a switch 110, a memory circuit 120, a liquid crystal driving voltage application circuit 130, and a display element unit 140, as shown in the lower part of FIG. The display element unit 140 includes a liquid crystal, a pixel electrode that sandwiches the liquid crystal, and a common electrode. In the present embodiment, a memory unit is realized by the memory circuit 120, and a voltage selection unit is realized by the liquid crystal driving voltage application circuit 130.
図1は、本実施形態における画素回路部100の概略構成を説明するための図である。図1の上方に示すように、八角形のガラス基板5の2枚ガラス領域に設けられたアクティブエリア10には複数の画素回路部100が配置されている。各画素回路部100は、1つの画素に対応し、図1の下方に示すように、スイッチ110とメモリ回路120と液晶駆動電圧印加回路130と表示素子部140とを含んでいる。表示素子部140は、液晶と、液晶を挟持する画素電極および共通電極とからなる。本実施形態においては、メモリ回路120によって記憶部が実現され、液晶駆動電圧印加回路130によって電圧選択部が実現されている。 <1.2 Configuration of Pixel Circuit Unit>
FIG. 1 is a diagram for explaining a schematic configuration of a
スイッチ110のオン/オフ状態は、第1の走査信号線GLおよび第2の走査信号線GLBに印加される走査信号に基づいて制御される。また、スイッチ110がオン状態の時にデータ信号線DLに印加されているデータ信号の電位に基づいて、2値データ(1ビットのデータ)がメモリ回路120に与えられる。メモリ回路120は、スイッチ110がオン状態の時に受け取った2値データを、スイッチ110が再度オン状態となるまで保持する。また、メモリ回路120に保持されている2値データは、液晶駆動電圧印加回路130に与えられる。液晶駆動電圧印加回路130は、メモリ回路120から与えられる2値データの値(論理値)に基づいて、表示用電圧(白色表示用電圧VLAまたは黒色表示用電圧VLBのいずれか)を液晶に印加する。なお、以下においては、本実施形態に係る液晶表示装置がノーマリーホワイト方式を採用しているものと仮定して説明する。また、第1の走査信号線GLに印加される走査信号のことを「第1の走査信号」ともいい、第2の走査信号線GLBに印加される走査信号のことを「第2の走査信号」ともいう。
The on / off state of the switch 110 is controlled based on scanning signals applied to the first scanning signal line GL and the second scanning signal line GLB. In addition, binary data (1-bit data) is supplied to the memory circuit 120 based on the potential of the data signal applied to the data signal line DL when the switch 110 is on. The memory circuit 120 holds the binary data received when the switch 110 is on until the switch 110 is turned on again. The binary data held in the memory circuit 120 is given to the liquid crystal drive voltage application circuit 130. The liquid crystal drive voltage application circuit 130 applies a display voltage (either the white display voltage VLA or the black display voltage VLB) to the liquid crystal based on the binary data value (logical value) given from the memory circuit 120. To do. In the following description, it is assumed that the liquid crystal display device according to the present embodiment employs a normally white system. The scanning signal applied to the first scanning signal line GL is also referred to as “first scanning signal”, and the scanning signal applied to the second scanning signal line GLB is referred to as “second scanning signal”. "
図6は、本実施形態における画素回路部100の詳細な構成を示す回路図である。スイッチ110は、pチャネル型トランジスタ111とnチャネル型トランジスタ112とからなるCMOSスイッチである。なお、以下においては、このスイッチ110のことを「第1スイッチSW1」ともいう。第1スイッチSW1は、第1の走査信号GLがハイレベル、かつ、第2の走査信号GLBがローレベルとなっている時にオン状態となるように構成されている。すなわち、本実施形態においては、第1スイッチSW1をオン状態にするという観点では、第1の走査信号GLについてはハイレベルがオンレベルであり、第2の走査信号GLBについてはローレベルがオンレベルである。第1スイッチSW1は、また、オン状態の時にデータ信号線DLと節点191とが電気的に接続されるように構成されている。以上より、第1の走査信号GLがハイレベル、かつ、第2の走査信号GLBがローレベルとなると、第1スイッチSW1はオン状態となり、データ信号DLの電位が節点191に与えられる。なお、第1スイッチSW1をnチャネル型トランジスタのみによって実現する構成や第1スイッチSW1をpチャネル型トランジスタのみによって実現する構成を採用することもできる。この場合、各行につき1本だけ走査信号線が設けられる構成となり、第1スイッチSW1のオン/オフ状態は当該走査信号線に印加される1つの走査信号によって制御される。
FIG. 6 is a circuit diagram showing a detailed configuration of the pixel circuit unit 100 in the present embodiment. The switch 110 is a CMOS switch including a p-channel transistor 111 and an n-channel transistor 112. Hereinafter, the switch 110 is also referred to as “first switch SW1”. The first switch SW1 is configured to be turned on when the first scanning signal GL is at a high level and the second scanning signal GLB is at a low level. That is, in the present embodiment, from the viewpoint of turning on the first switch SW1, the high level is the on level for the first scanning signal GL, and the low level is the on level for the second scanning signal GLB. It is. The first switch SW1 is also configured so that the data signal line DL and the node 191 are electrically connected when in the on state. As described above, when the first scanning signal GL is at a high level and the second scanning signal GLB is at a low level, the first switch SW1 is turned on, and the potential of the data signal DL is applied to the node 191. A configuration in which the first switch SW1 is realized only by an n-channel transistor or a configuration in which the first switch SW1 is realized only by a p-channel transistor may be employed. In this case, only one scanning signal line is provided for each row, and the on / off state of the first switch SW1 is controlled by one scanning signal applied to the scanning signal line.
メモリ回路120は、nチャネル型トランジスタ121とpチャネル型トランジスタ122とからなるCMOSスイッチSW2と、pチャネル型トランジスタ123とnチャネル型トランジスタ124とからなるCMOSインバータINV1と、pチャネル型トランジスタ125とnチャネル型トランジスタ126とからなるCMOSインバータINV2とによって構成されている。なお、以下においては、CMOSスイッチSW2のことを「第2スイッチSW2」ともいい、CMOSインバータINV1のことを「第1インバータINV1」ともいい、CMOSインバータINV2のことを「第2インバータINV2」ともいう。第2スイッチSW2は、第2の走査信号GLBがハイレベル、かつ、第1の走査信号GLがローレベルとなっている時にオン状態となるように構成されている。第2スイッチSW2は、また、オン状態の時に節点191と節点193とが電気的に接続されるように構成されている。第1インバータINV1については、入力端子は節点191に接続され、出力端子は節点192に接続されている。第2インバータINV2については、入力端子は節点192に接続され、出力端子は節点193に接続されている。以上より、メモリ回路120は、第1スイッチSW1がオン状態になっている時に節点191に与えられた電位に基づく値(論理値)を次に第1スイッチSW1がオン状態になるまで保持するように機能する。
The memory circuit 120 includes a CMOS switch SW2 including an n-channel transistor 121 and a p-channel transistor 122, a CMOS inverter INV1 including a p-channel transistor 123 and an n-channel transistor 124, a p-channel transistor 125, and an n-channel transistor 125. A CMOS inverter INV2 including a channel type transistor 126 is included. In the following, the CMOS switch SW2 is also referred to as “second switch SW2,” the CMOS inverter INV1 is also referred to as “first inverter INV1,” and the CMOS inverter INV2 is also referred to as “second inverter INV2.” . The second switch SW2 is configured to be turned on when the second scanning signal GLB is at a high level and the first scanning signal GL is at a low level. The second switch SW2 is also configured so that the node 191 and the node 193 are electrically connected when in the ON state. As for the first inverter INV1, the input terminal is connected to the node 191 and the output terminal is connected to the node 192. As for the second inverter INV2, the input terminal is connected to the node 192 and the output terminal is connected to the node 193. As described above, the memory circuit 120 holds a value (logical value) based on the potential applied to the node 191 when the first switch SW1 is in the on state until the first switch SW1 is next in the on state. To work.
液晶駆動電圧印加回路130は、pチャネル型トランジスタ131とnチャネル型トランジスタ132とからなるCMOSスイッチSW3と、pチャネル型トランジスタ133とnチャネル型トランジスタ134とからなるCMOSスイッチSW4とによって構成されている。なお、以下においては、CMOSスイッチSW3のことを「第3スイッチSW3」ともいい、CMOSスイッチSW4のことを「第4スイッチSW4」ともいう。第3スイッチSW3は、節点191の電位がハイレベル、かつ、節点192の電位がローレベルとなっている時にオン状態となるように構成されている。第3スイッチSW3は、また、オン状態の時に白色表示用電圧VLAが画素電極142に与えられるように構成されている。第4スイッチSW4は、節点191の電位がローレベル、かつ、節点192の電位がハイレベルとなっている時にオン状態となるように構成されている。第4スイッチSW4は、また、オン状態の時に黒色表示用電圧VLBが画素電極142に与えられるように構成されている。
The liquid crystal drive voltage application circuit 130 includes a CMOS switch SW3 including a p-channel transistor 131 and an n-channel transistor 132, and a CMOS switch SW4 including a p-channel transistor 133 and an n-channel transistor 134. . In the following, the CMOS switch SW3 is also referred to as “third switch SW3”, and the CMOS switch SW4 is also referred to as “fourth switch SW4”. The third switch SW3 is configured to be turned on when the potential of the node 191 is at a high level and the potential of the node 192 is at a low level. The third switch SW3 is also configured so that the white display voltage VLA is applied to the pixel electrode 142 when in the on state. The fourth switch SW4 is configured to be turned on when the potential of the node 191 is low and the potential of the node 192 is high. The fourth switch SW4 is also configured so that the black display voltage VLB is applied to the pixel electrode 142 when in the on state.
表示素子部140は、液晶141と画素電極142と共通電極143とによって構成されている。画素電極142に印加されている電圧と共通電極143に印加されている電圧とに基づいて液晶に電圧が印加され、液晶印加電圧が画素の表示状態に反映される。
The display element unit 140 includes a liquid crystal 141, a pixel electrode 142, and a common electrode 143. A voltage is applied to the liquid crystal based on the voltage applied to the pixel electrode 142 and the voltage applied to the common electrode 143, and the liquid crystal applied voltage is reflected in the display state of the pixel.
<1.3 駆動方法>
次に、図7を参照しつつ、本実施形態における駆動方法について説明する。なお、図7には、1~3行目に対応する第1および第2の走査信号GL1~GL3,GLB1~GLB3の波形、および1~3列目に対応するデータ信号DL1~DL3の波形のみを示している。第1の走査信号GL1~GL5については、1行ずつ順次に所定期間だけハイレベルとされ、第2の走査信号GLB1~GLB5については、1行ずつ順次に所定期間だけローレベルとされる。なお、各行に関し、第1の走査信号と第2の走査信号とは逆相の関係となっている。すなわち、第1の走査信号がハイレベルにされる期間と第2の走査信号がローレベルにされる期間とは同じになっている。本実施形態においては、各行について第1の走査信号がハイレベルかつ第2の走査信号がローレベルとなっている時に、当該各行に対応する走査信号線が選択されていることになる。以上のように走査信号線が駆動されることにより、1行ずつ順次に、各行に含まれる画素回路部100内の第1スイッチSW1がオン状態となる。データ信号DL1~DL5については、所定のハイレベルの電位と所定のローレベルの電位との間で、表示画像に応じて電位が変化する。或る行の画素の表示状態を前の行の画素の表示状態と異ならせる場合、データ信号DL1~DL5は、当該或る行に対応する走査信号の立ち上がり時点に、目標電位(所定のハイレベルの電位または所定のローレベルの電位)に向けて変化を開始する。そして、各列に含まれる画素回路部100において、第1の走査信号が立ち下がり、かつ、第2の走査信号が立ち上がる時点のデータ信号の電位に基づいて、メモリ回路120に2値データが保持され、その2値データの値(論理値)に基づいて液晶に電圧が印加される。なお、図7には、図7に示す期間を通じて1行目の画素については白色表示として2行目および3行目の画素については黒色表示とする場合の波形の一例を示している。また、本実施形態においては、走査信号線が1行ずつ順次に選択される構成となっているが、必ずしも順次に選択される必要はなく、選択される走査信号線に対応した画素回路部100(内のメモリ回路120)に書き込む(記憶させる)べきデータ信号がデータ信号線に供給されるのであれば、走査信号線が順不同で選択される構成であっても良い。 <1.3 Driving method>
Next, a driving method in the present embodiment will be described with reference to FIG. In FIG. 7, only the waveforms of the first and second scanning signals GL1 to GL3 and GLB1 to GLB3 corresponding to the first to third rows and the waveforms of the data signals DL1 to DL3 corresponding to the first to third columns are shown. Is shown. The first scanning signals GL1 to GL5 are sequentially set to a high level for each predetermined period, and the second scanning signals GLB1 to GLB5 are sequentially set to a low level for each predetermined period. For each row, the first scanning signal and the second scanning signal are in an opposite phase relationship. That is, the period during which the first scanning signal is set to the high level and the period during which the second scanning signal is set to the low level are the same. In the present embodiment, when the first scanning signal is high level and the second scanning signal is low level for each row, the scanning signal line corresponding to each row is selected. By driving the scanning signal line as described above, the first switch SW1 in thepixel circuit unit 100 included in each row is sequentially turned on row by row. Regarding the data signals DL1 to DL5, the potential changes between a predetermined high level potential and a predetermined low level potential according to the display image. When the display state of the pixels in a certain row is different from the display state of the pixels in the previous row, the data signals DL1 to DL5 are output at the target potential (predetermined high level) at the rising edge of the scanning signal corresponding to the certain row. Or a predetermined low level potential). In the pixel circuit unit 100 included in each column, binary data is held in the memory circuit 120 based on the potential of the data signal at the time when the first scanning signal falls and the second scanning signal rises. Then, a voltage is applied to the liquid crystal based on the value (logical value) of the binary data. FIG. 7 shows an example of a waveform when the pixels in the first row are displayed in white and the pixels in the second and third rows are displayed in black during the period shown in FIG. In this embodiment, the scanning signal lines are sequentially selected row by row, but are not necessarily selected sequentially, and the pixel circuit unit 100 corresponding to the selected scanning signal line is not necessarily used. If the data signal to be written (stored) in (the memory circuit 120) is supplied to the data signal line, the scanning signal lines may be selected in any order.
次に、図7を参照しつつ、本実施形態における駆動方法について説明する。なお、図7には、1~3行目に対応する第1および第2の走査信号GL1~GL3,GLB1~GLB3の波形、および1~3列目に対応するデータ信号DL1~DL3の波形のみを示している。第1の走査信号GL1~GL5については、1行ずつ順次に所定期間だけハイレベルとされ、第2の走査信号GLB1~GLB5については、1行ずつ順次に所定期間だけローレベルとされる。なお、各行に関し、第1の走査信号と第2の走査信号とは逆相の関係となっている。すなわち、第1の走査信号がハイレベルにされる期間と第2の走査信号がローレベルにされる期間とは同じになっている。本実施形態においては、各行について第1の走査信号がハイレベルかつ第2の走査信号がローレベルとなっている時に、当該各行に対応する走査信号線が選択されていることになる。以上のように走査信号線が駆動されることにより、1行ずつ順次に、各行に含まれる画素回路部100内の第1スイッチSW1がオン状態となる。データ信号DL1~DL5については、所定のハイレベルの電位と所定のローレベルの電位との間で、表示画像に応じて電位が変化する。或る行の画素の表示状態を前の行の画素の表示状態と異ならせる場合、データ信号DL1~DL5は、当該或る行に対応する走査信号の立ち上がり時点に、目標電位(所定のハイレベルの電位または所定のローレベルの電位)に向けて変化を開始する。そして、各列に含まれる画素回路部100において、第1の走査信号が立ち下がり、かつ、第2の走査信号が立ち上がる時点のデータ信号の電位に基づいて、メモリ回路120に2値データが保持され、その2値データの値(論理値)に基づいて液晶に電圧が印加される。なお、図7には、図7に示す期間を通じて1行目の画素については白色表示として2行目および3行目の画素については黒色表示とする場合の波形の一例を示している。また、本実施形態においては、走査信号線が1行ずつ順次に選択される構成となっているが、必ずしも順次に選択される必要はなく、選択される走査信号線に対応した画素回路部100(内のメモリ回路120)に書き込む(記憶させる)べきデータ信号がデータ信号線に供給されるのであれば、走査信号線が順不同で選択される構成であっても良い。 <1.3 Driving method>
Next, a driving method in the present embodiment will be described with reference to FIG. In FIG. 7, only the waveforms of the first and second scanning signals GL1 to GL3 and GLB1 to GLB3 corresponding to the first to third rows and the waveforms of the data signals DL1 to DL3 corresponding to the first to third columns are shown. Is shown. The first scanning signals GL1 to GL5 are sequentially set to a high level for each predetermined period, and the second scanning signals GLB1 to GLB5 are sequentially set to a low level for each predetermined period. For each row, the first scanning signal and the second scanning signal are in an opposite phase relationship. That is, the period during which the first scanning signal is set to the high level and the period during which the second scanning signal is set to the low level are the same. In the present embodiment, when the first scanning signal is high level and the second scanning signal is low level for each row, the scanning signal line corresponding to each row is selected. By driving the scanning signal line as described above, the first switch SW1 in the
次に、図8から図14を参照しつつ、画素回路部100の動作の一例について説明する。なお、ここでは、或る画素回路部100に着目したとき、第1の走査信号GL,第2の走査信号GLB,データ信号DL,白色表示用電圧VLA,黒色表示用電圧VLB,および対向電圧VCOMが図8に示すように変化するものと仮定する。図9は、図8の期間T1における画素回路部100の内部状態を示している。図10は、図8の期間T2,T4における画素回路部100の内部状態を示している。図11は、図8の期間T3における画素回路部100の内部状態を示している。図12は、図8の期間T5の終了時点における画素回路部100の内部状態を示している。図13は、図8の期間T6,T8における画素回路部100の内部状態を示している。図14は、図8の期間T7,T9における画素回路部100の内部状態を示している。
Next, an example of the operation of the pixel circuit unit 100 will be described with reference to FIGS. Here, when attention is paid to a certain pixel circuit unit 100, the first scanning signal GL, the second scanning signal GLB, the data signal DL, the white display voltage VLA, the black display voltage VLB, and the counter voltage VCOM. Is changed as shown in FIG. FIG. 9 shows an internal state of the pixel circuit unit 100 in the period T1 of FIG. FIG. 10 shows an internal state of the pixel circuit unit 100 in the periods T2 and T4 of FIG. FIG. 11 shows an internal state of the pixel circuit unit 100 in the period T3 in FIG. FIG. 12 shows the internal state of the pixel circuit unit 100 at the end of the period T5 in FIG. FIG. 13 shows an internal state of the pixel circuit unit 100 in the periods T6 and T8 of FIG. FIG. 14 shows an internal state of the pixel circuit unit 100 in the periods T7 and T9 in FIG.
期間T1には、第1の走査信号GLがハイレベル、かつ、第2の走査信号GLBがローレベルとなるので、第1スイッチSW1はオン状態となり、第2スイッチSW2はオフ状態となる。この期間、データ信号DLはローレベルとなっているので、節点191の電位もローレベルとなる。これにより、節点192の電位はハイレベルとなり、さらに、節点193の電位はローレベルとなる。このようにして、データ信号DLに基づく2値データがメモリ回路120に格納される。また、節点191および節点192の電位に基づき、第3スイッチSW3はオフ状態となり、第4スイッチSW4はオン状態となる。その結果、画素電極142には、黒色表示用電圧VLBが印加される。ところで、この期間、黒色表示用電圧VLBはローレベルとなっている。従って、画素電極142の電位OUTはローレベルとなる。また、この期間、対向電圧VCOMはハイレベルとなっている。以上より、期間T1には、画素の表示状態は黒色表示となる。
In the period T1, since the first scanning signal GL is at a high level and the second scanning signal GLB is at a low level, the first switch SW1 is turned on and the second switch SW2 is turned off. Since the data signal DL is at a low level during this period, the potential of the node 191 is also at a low level. As a result, the potential of the node 192 becomes high level, and further, the potential of the node 193 becomes low level. In this way, binary data based on the data signal DL is stored in the memory circuit 120. Further, based on the potentials of the nodes 191 and 192, the third switch SW3 is turned off and the fourth switch SW4 is turned on. As a result, the black display voltage VLB is applied to the pixel electrode 142. Incidentally, during this period, the black display voltage VLB is at a low level. Accordingly, the potential OUT of the pixel electrode 142 is at a low level. During this period, the counter voltage VCOM is at a high level. As described above, in the period T1, the display state of the pixels is black.
期間T2には、第1の走査信号GLがローレベル、かつ、第2の走査信号GLBがハイレベルとなるので、第1スイッチSW1はオフ状態となり、第2スイッチSW2はオン状態となる。ところで、節点192は第1インバータINV1の出力端子に接続されているので、この期間、節点192の電位は確実にハイレベルで維持される。同様に、節点193は第2インバータINV2の出力端子に接続されているので、この期間、節点193の電位は確実にローレベルで維持される。このように節点193の電位が確実にローレベルで維持され、かつ、第2スイッチSW2がオン状態となることから、節点191の電位もローレベルで維持される。また、期間T1と同様、第3スイッチSW3はオフ状態となり、第4スイッチSW4はオン状態となる。その結果、画素電極142には、黒色表示用電圧VLBが印加される。この期間、黒色表示用電圧VLBはローレベルとなっているので、画素電極142の電位OUTはローレベルとなる。また、この期間、対向電圧VCOMはハイレベルとなっている。以上より、期間T2には、画素の表示状態は黒色表示となる。なお、期間T4においても、期間T2と同様の動作により、画素の表示状態は黒色表示となる。
In the period T2, since the first scanning signal GL is at a low level and the second scanning signal GLB is at a high level, the first switch SW1 is turned off and the second switch SW2 is turned on. Incidentally, since the node 192 is connected to the output terminal of the first inverter INV1, the potential of the node 192 is reliably maintained at a high level during this period. Similarly, since the node 193 is connected to the output terminal of the second inverter INV2, the potential of the node 193 is reliably maintained at a low level during this period. In this way, the potential of the node 193 is reliably maintained at a low level, and the second switch SW2 is turned on, so that the potential of the node 191 is also maintained at a low level. Similarly to the period T1, the third switch SW3 is turned off and the fourth switch SW4 is turned on. As a result, the black display voltage VLB is applied to the pixel electrode 142. During this period, since the black display voltage VLB is at a low level, the potential OUT of the pixel electrode 142 is at a low level. During this period, the counter voltage VCOM is at a high level. As described above, in the period T2, the display state of the pixels is black. Note that in the period T4, the pixel display state is black display by the same operation as in the period T2.
期間T3には、期間T2と同様の動作により、節点191,193の電位はローレベルで維持され、節点192の電位はハイレベルで維持される。このため、期間T1,T2と同様、第3スイッチSW3はオフ状態となり、第4スイッチSW4はオン状態となる。その結果、画素電極142には、黒色表示用電圧VLBが印加される。ところで、この期間、黒色表示用電圧VLBはハイレベルとなっている。従って、画素電極142の電位OUTはハイレベルとなる。また、この期間、対向電圧VCOMはローレベルとなっている。以上より、期間T3には、画素の表示状態は黒色表示となる。
In the period T3, the potentials of the nodes 191 and 193 are maintained at a low level and the potential of the node 192 is maintained at a high level by the same operation as in the period T2. For this reason, as in the periods T1 and T2, the third switch SW3 is turned off and the fourth switch SW4 is turned on. As a result, the black display voltage VLB is applied to the pixel electrode 142. Incidentally, during this period, the black display voltage VLB is at a high level. Accordingly, the potential OUT of the pixel electrode 142 is at a high level. During this period, the counter voltage VCOM is at a low level. Thus, in the period T3, the pixel display state is black.
期間T5には、第1の走査信号GLがハイレベル、かつ、第2の走査信号GLBがローレベルとなるので、第1スイッチSW1はオン状態となり、第2スイッチSW2はオフ状態となる。この期間中に、データ信号DLはローレベルからハイレベルへと変化している。このため、節点191の電位もローレベルからハイレベルへと変化する。これにより、節点192の電位はローレベルとなり、さらに、節点193の電位はハイレベルとなる。このようにして、メモリ回路120に格納されていた2値データの値(論理値)がデータ信号DLに基づき書き換えられる。この期間には、また、節点191および節点192の電位に基づき、第3スイッチSW3はオフ状態からオン状態へと変化し、第4スイッチSW4はオン状態からオフ状態へと変化する。その結果、画素電極142には、白色表示用電圧VLAが印加される。ところで、この期間、白色表示用電圧VLAはローレベルとなっている。従って、画素電極142の電位OUTはローレベルとなる。また、この期間、対向電圧VCOMはローレベルとなっている。以上より、期間T5には、画素の表示状態は白色表示となる。
In the period T5, since the first scanning signal GL is at a high level and the second scanning signal GLB is at a low level, the first switch SW1 is turned on and the second switch SW2 is turned off. During this period, the data signal DL changes from the low level to the high level. For this reason, the potential of the node 191 also changes from the low level to the high level. As a result, the potential of the node 192 becomes low level, and the potential of the node 193 becomes high level. In this way, the value (logical value) of the binary data stored in the memory circuit 120 is rewritten based on the data signal DL. During this period, based on the potentials of the nodes 191 and 192, the third switch SW3 changes from the off state to the on state, and the fourth switch SW4 changes from the on state to the off state. As a result, the white display voltage VLA is applied to the pixel electrode 142. Incidentally, during this period, the white display voltage VLA is at a low level. Accordingly, the potential OUT of the pixel electrode 142 is at a low level. During this period, the counter voltage VCOM is at a low level. Thus, in the period T5, the display state of the pixels is white display.
期間T6には、第1の走査信号GLがローレベル、かつ、第2の走査信号GLBがハイレベルとなるので、第1スイッチSW1はオフ状態となり、第2スイッチSW2はオン状態となる。この期間、節点192の電位は確実にローレベルで維持され、節点193の電位は確実にハイレベルで維持される。節点193の電位が確実にハイレベルで維持され、かつ、第2スイッチSW2がオン状態となることから、節点191の電位もハイレベルで維持される。また、期間T5と同様、第3スイッチSW3はオン状態となり、第4スイッチSW4はオフ状態となる。その結果、画素電極142には、白色表示用電圧VLAが印加される。この期間、白色表示用電圧VLAはローレベルとなっているので、画素電極142の電位OUTはローレベルとなる。また、この期間、対向電圧VCOMはローレベルとなっている。以上より、期間T6には、画素の表示状態は白色表示となる。なお、期間T8においても、期間T6と同様の動作により、画素の表示状態は白色表示となる。
In the period T6, since the first scanning signal GL is at a low level and the second scanning signal GLB is at a high level, the first switch SW1 is turned off and the second switch SW2 is turned on. During this period, the potential of the node 192 is reliably maintained at a low level, and the potential of the node 193 is reliably maintained at a high level. Since the potential of the node 193 is reliably maintained at a high level and the second switch SW2 is turned on, the potential of the node 191 is also maintained at a high level. Similarly to the period T5, the third switch SW3 is turned on and the fourth switch SW4 is turned off. As a result, the white display voltage VLA is applied to the pixel electrode 142. During this period, since the white display voltage VLA is at a low level, the potential OUT of the pixel electrode 142 is at a low level. During this period, the counter voltage VCOM is at a low level. As described above, in the period T6, the display state of the pixels is white display. Note that also in the period T8, the display state of the pixels is white by the same operation as in the period T6.
期間T7には、期間T6と同様の動作により、節点191,193の電位はハイレベルで維持され、節点192の電位はローレベルで維持される。このため、期間T5,T6と同様、第3スイッチSW3はオン状態となり、第4スイッチSW4はオフ状態となる。その結果、画素電極142には、白色表示用電圧VLAが印加される。ところで、この期間、白色表示用電圧VLAはハイレベルとなっている。従って、画素電極142の電位OUTはハイレベルとなる。また、この期間、対向電圧VCOMはハイレベルとなっている。以上より、期間T7には、画素の表示状態は白色表示となる。なお、期間T9においても、期間T7と同様の動作により、画素の表示状態は白色表示となる。
In the period T7, the potentials of the nodes 191 and 193 are maintained at a high level and the potential of the node 192 is maintained at a low level by the same operation as in the period T6. For this reason, like the periods T5 and T6, the third switch SW3 is turned on and the fourth switch SW4 is turned off. As a result, the white display voltage VLA is applied to the pixel electrode 142. Incidentally, during this period, the white display voltage VLA is at a high level. Accordingly, the potential OUT of the pixel electrode 142 is at a high level. During this period, the counter voltage VCOM is at a high level. As described above, in the period T7, the display state of the pixels is white display. Note that in the period T9 as well, the display state of the pixels is white by the same operation as in the period T7.
以上のようにして、各画素回路部100において、第1スイッチSW1がオン状態になっている時のデータ信号の電位に基づいて、メモリ回路120に2値データが格納される。液晶駆動電圧印加回路130では、メモリ回路120に格納された2値データに基づき、画素電極142に印加されるべき表示用電圧(白色表示用電圧VLAまたは黒色表示用電圧VLBのいずれか)が選択される。そして、画素電極142に印加された表示用電圧と共通電極143に印加されている電圧(対向電圧)とに基づいて、画素の表示状態は白色表示または黒色表示となる。
As described above, in each pixel circuit unit 100, binary data is stored in the memory circuit 120 based on the potential of the data signal when the first switch SW1 is in the ON state. In the liquid crystal drive voltage application circuit 130, a display voltage (either the white display voltage VLA or the black display voltage VLB) to be applied to the pixel electrode 142 is selected based on the binary data stored in the memory circuit 120. Is done. Then, based on the display voltage applied to the pixel electrode 142 and the voltage (counter voltage) applied to the common electrode 143, the display state of the pixel is white display or black display.
<1.4 効果>
本実施形態によれば、八角形のガラス基板5で構成された液晶表示装置において、画素回路部100には2値データ(1ビットのデータ)を保持することができるメモリ回路120が設けられている。各画素回路部100では、第1スイッチSW1がオン状態になっている時のデータ信号DLの電位に基づき、上記2値データがメモリ回路120に保持される。そして、メモリ回路120に保持されている2値データの値(論理値)に応じて、白色表示用電圧VLAまたは黒色表示用電圧VLBのいずれかが画素電極142に印加される。このように、各画素回路部100内のメモリ回路120に保持されているデータに基づいて画素の表示状態が決定される。このため、従来の構成(図28参照)において画像データを保持するためにIC80内に設けられていたメモリ回路(フレームメモリ)87が不要となる。従って、図15に示すように、従来の構成と比較して、1枚ガラス領域に実装すべきICのサイズを小さくすることが可能となる。これにより、八角形の基板を採用することに伴う1枚ガラス領域の拡大が抑制される。具体的には、本実施形態における1枚ガラス領域のサイズ(図2のL3)は、従来において八角形のガラス基板が採用されたときの1枚ガラス領域のサイズ(図33のL2)よりも小さくなり、矩形のガラス基板が採用されたときの1枚ガラス領域のサイズ(図26のL1)と同程度になる。 <1.4 Effect>
According to the present embodiment, in the liquid crystal display device configured with theoctagonal glass substrate 5, the pixel circuit unit 100 is provided with the memory circuit 120 that can hold binary data (1 bit data). Yes. In each pixel circuit unit 100, the binary data is held in the memory circuit 120 based on the potential of the data signal DL when the first switch SW1 is in the ON state. Then, either the white display voltage VLA or the black display voltage VLB is applied to the pixel electrode 142 in accordance with the value (logical value) of the binary data held in the memory circuit 120. As described above, the display state of the pixel is determined based on the data held in the memory circuit 120 in each pixel circuit unit 100. Therefore, the memory circuit (frame memory) 87 provided in the IC 80 for holding the image data in the conventional configuration (see FIG. 28) becomes unnecessary. Therefore, as shown in FIG. 15, it is possible to reduce the size of an IC to be mounted on a single glass region as compared with the conventional configuration. Thereby, expansion of the single glass area | region accompanying employ | adopting an octagonal board | substrate is suppressed. Specifically, the size of the single glass region in this embodiment (L3 in FIG. 2) is larger than the size of the single glass region (L2 in FIG. 33) when an octagonal glass substrate is conventionally employed. It becomes small and becomes the same size as the size of one glass region (L1 in FIG. 26) when a rectangular glass substrate is adopted.
本実施形態によれば、八角形のガラス基板5で構成された液晶表示装置において、画素回路部100には2値データ(1ビットのデータ)を保持することができるメモリ回路120が設けられている。各画素回路部100では、第1スイッチSW1がオン状態になっている時のデータ信号DLの電位に基づき、上記2値データがメモリ回路120に保持される。そして、メモリ回路120に保持されている2値データの値(論理値)に応じて、白色表示用電圧VLAまたは黒色表示用電圧VLBのいずれかが画素電極142に印加される。このように、各画素回路部100内のメモリ回路120に保持されているデータに基づいて画素の表示状態が決定される。このため、従来の構成(図28参照)において画像データを保持するためにIC80内に設けられていたメモリ回路(フレームメモリ)87が不要となる。従って、図15に示すように、従来の構成と比較して、1枚ガラス領域に実装すべきICのサイズを小さくすることが可能となる。これにより、八角形の基板を採用することに伴う1枚ガラス領域の拡大が抑制される。具体的には、本実施形態における1枚ガラス領域のサイズ(図2のL3)は、従来において八角形のガラス基板が採用されたときの1枚ガラス領域のサイズ(図33のL2)よりも小さくなり、矩形のガラス基板が採用されたときの1枚ガラス領域のサイズ(図26のL1)と同程度になる。 <1.4 Effect>
According to the present embodiment, in the liquid crystal display device configured with the
<1.5 変形例>
<1.5.1 2枚ガラス領域内の構成について>
上記第1の実施形態においては、画素回路部100を動作させるためのパネル駆動回路は全て1枚ガラス領域のIC20内に形成されていたが(図2および図5参照)、本発明はこれに限定されない。 <1.5 Modification>
<About the configuration in 1.5.1 two-glass area>
In the first embodiment, the panel drive circuit for operating thepixel circuit unit 100 is all formed in the IC 20 in the single glass region (see FIGS. 2 and 5). It is not limited.
<1.5.1 2枚ガラス領域内の構成について>
上記第1の実施形態においては、画素回路部100を動作させるためのパネル駆動回路は全て1枚ガラス領域のIC20内に形成されていたが(図2および図5参照)、本発明はこれに限定されない。 <1.5 Modification>
<About the configuration in 1.5.1 two-glass area>
In the first embodiment, the panel drive circuit for operating the
例えば図16に示すように、パネル駆動回路のうちの走査信号線駆動回路25およびデータ信号線駆動回路26がIC20内ではなくアレイ基板上のパネル額縁領域11にモノリシックに形成されていても良い(第1の変形例)。この場合、アレイ基板上の1枚ガラス領域に実装されているIC20には、図17に示すように、走査信号線駆動回路25およびデータ信号線駆動回路26は含まれず、入力インタフェース回路21,表示電圧生成回路22,タイミングジェネレータ23,および対向電圧生成回路24が含まれる。このような構成により、上記第1の実施形態と比較してIC20のサイズを更に小さくすることができ、八角形の基板を採用することに伴う1枚ガラス領域の拡大が効果的に抑制される。また、IC20内に走査信号線駆動回路25およびデータ信号線駆動回路26が設けられている構成と比較して、IC20-パネル額縁領域11間の配線数を少なくすることが可能となる。さらに、メモリ回路120がアクティブエリア10に形成され、走査信号線駆動回路25およびデータ信号線駆動回路26がパネル額縁領域11に形成されていることから、パネル額縁領域11と外部とを接続するために必要な端子数を少なくすることが可能となる。このため、非矩形のガラス基板を採用することによって端子部の形状やサイズに制約が生じていても、1枚ガラス領域を拡大させることなく、非矩形のガラス基板で構成された液晶表示装置を実現することが可能となる。
For example, as shown in FIG. 16, the scanning signal line drive circuit 25 and the data signal line drive circuit 26 of the panel drive circuit may be formed monolithically in the panel frame region 11 on the array substrate instead of in the IC 20 ( First modification). In this case, the IC 20 mounted on the single glass region on the array substrate does not include the scanning signal line driving circuit 25 and the data signal line driving circuit 26 as shown in FIG. A voltage generation circuit 22, a timing generator 23, and a counter voltage generation circuit 24 are included. With such a configuration, the size of the IC 20 can be further reduced as compared with the first embodiment, and the enlargement of the single glass region accompanying the adoption of the octagonal substrate is effectively suppressed. . Further, the number of wirings between the IC 20 and the panel frame region 11 can be reduced as compared with the configuration in which the scanning signal line driving circuit 25 and the data signal line driving circuit 26 are provided in the IC 20. Further, since the memory circuit 120 is formed in the active area 10 and the scanning signal line driving circuit 25 and the data signal line driving circuit 26 are formed in the panel frame region 11, the panel frame region 11 is connected to the outside. It is possible to reduce the number of terminals required for the operation. For this reason, a liquid crystal display device composed of a non-rectangular glass substrate can be used without enlarging a single glass area even if the shape and size of the terminal portion are limited by adopting a non-rectangular glass substrate. It can be realized.
また、例えば図18に示すように、走査信号線駆動回路25およびデータ信号線駆動回路26に加えて、表示電圧生成回路22とタイミングジェネレータ23と対向電圧生成回路24とがアレイ基板上のパネル額縁領域11にモノリシックに形成されていても良い(第2の変形例)。なお、例えば、走査信号線駆動回路25およびデータ信号線駆動回路26に加えてタイミングジェネレータ23がパネル額縁領域11に形成された構成や、走査信号線駆動回路25およびデータ信号線駆動回路26に加えて表示電圧生成回路22と対向電圧生成回路24とがパネル額縁領域11に形成された構成や、走査信号線駆動回路25およびデータ信号線駆動回路26に加えて入力インタフェース回路21とタイミングジェネレータ23とがパネル額縁領域11に形成された構成などにすることもできる。以上のような構成により、IC20のサイズを更に小さくすることが可能となる。
Further, for example, as shown in FIG. 18, in addition to the scanning signal line driving circuit 25 and the data signal line driving circuit 26, a display voltage generating circuit 22, a timing generator 23, and a counter voltage generating circuit 24 are provided on a panel frame on the array substrate. The region 11 may be formed monolithically (second modification). For example, in addition to the scanning signal line driving circuit 25 and the data signal line driving circuit 26, the timing generator 23 is formed in the panel frame region 11, or in addition to the scanning signal line driving circuit 25 and the data signal line driving circuit 26. In addition to the configuration in which the display voltage generation circuit 22 and the counter voltage generation circuit 24 are formed in the panel frame region 11, the input interface circuit 21 and the timing generator 23, in addition to the scanning signal line driving circuit 25 and the data signal line driving circuit 26, Can be configured to be formed in the panel frame region 11. With the configuration as described above, the size of the IC 20 can be further reduced.
なお、パネル額縁領域11に形成されるパネル駆動回路については、図16や図18に示すように、典型的にはアクティブエリア10の外縁に沿って形成される。これにより、パネル額縁領域11内の空き領域が無駄なく用いられ、効果的に1枚ガラス領域の縮小化を図ることができる。
Note that the panel drive circuit formed in the panel frame region 11 is typically formed along the outer edge of the active area 10, as shown in FIGS. Thereby, the empty area in the panel frame area 11 is used without waste, and the single glass area can be effectively reduced.
<1.5.2 ガラス基板の形状について>
上記第1の実施形態においては、液晶表示装置を構成するガラス基板5全体の形状は八角形であったが(図2参照)、本発明はこれに限定されない。ガラス基板5全体の形状が非矩形であれば、本発明を適用することができる。例えば、図19に示すように一端側(図19の上方側)のみ切断された形状のガラス基板5pで構成された液晶表示装置,図20に示すように六角形のガラス基板5qで構成された液晶表示装置などにおいても、本発明を適用することができる。これにより、八角形に限らず非矩形の基板で構成された液晶表示装置において、1枚ガラス領域の拡大が抑制される。 <About the shape of 1.5.2 glass substrate>
In the first embodiment, the overall shape of theglass substrate 5 constituting the liquid crystal display device is an octagon (see FIG. 2), but the present invention is not limited to this. If the shape of the entire glass substrate 5 is non-rectangular, the present invention can be applied. For example, as shown in FIG. 19, a liquid crystal display device constituted by a glass substrate 5p having a shape cut only at one end side (upper side in FIG. 19), and a hexagonal glass substrate 5q as shown in FIG. The present invention can also be applied to a liquid crystal display device or the like. Thereby, in the liquid crystal display device comprised not only in an octagon but a non-rectangular board | substrate, expansion of the single glass area | region is suppressed.
上記第1の実施形態においては、液晶表示装置を構成するガラス基板5全体の形状は八角形であったが(図2参照)、本発明はこれに限定されない。ガラス基板5全体の形状が非矩形であれば、本発明を適用することができる。例えば、図19に示すように一端側(図19の上方側)のみ切断された形状のガラス基板5pで構成された液晶表示装置,図20に示すように六角形のガラス基板5qで構成された液晶表示装置などにおいても、本発明を適用することができる。これにより、八角形に限らず非矩形の基板で構成された液晶表示装置において、1枚ガラス領域の拡大が抑制される。 <About the shape of 1.5.2 glass substrate>
In the first embodiment, the overall shape of the
<1.5.3 アクティブエリアの形状について>
上記第1の実施形態においては、画像が表示される領域であるアクティブエリア10の形状は円形であったが(図2参照)、本発明はこれに限定されない。液晶表示装置を構成するガラス基板5全体の形状が八角形などの非矩形であれば、例えば図21に示すようにアクティブエリア10aの形状が矩形になっている液晶表示装置においても、本発明を適用することができる。 <About the shape of the 1.5.3 active area>
In the first embodiment, the shape of theactive area 10, which is a region where an image is displayed, is circular (see FIG. 2), but the present invention is not limited to this. If the overall shape of the glass substrate 5 constituting the liquid crystal display device is a non-rectangular shape such as an octagon, the present invention can be applied to a liquid crystal display device in which the active area 10a has a rectangular shape as shown in FIG. Can be applied.
上記第1の実施形態においては、画像が表示される領域であるアクティブエリア10の形状は円形であったが(図2参照)、本発明はこれに限定されない。液晶表示装置を構成するガラス基板5全体の形状が八角形などの非矩形であれば、例えば図21に示すようにアクティブエリア10aの形状が矩形になっている液晶表示装置においても、本発明を適用することができる。 <About the shape of the 1.5.3 active area>
In the first embodiment, the shape of the
<2.第2の実施形態>
<2.1 構成>
図22は、本発明の第2の実施形態に係る液晶表示装置の概略構成を示す平面図である。本実施形態においては、上記第1の実施形態とは異なり、入力インタフェース回路21,表示電圧生成回路22,タイミングジェネレータ23,対向電圧生成回路24,走査信号線駆動回路25,およびデータ信号線駆動回路26がIC20内ではなくアレイ基板上のパネル額縁領域11にモノリシックに形成されている。すなわち、図5に示したIC20内の全ての回路がアレイ基板上のパネル額縁領域11に設けられている。このため、本実施形態においては、アレイ基板上の1枚ガラス領域にIC20が設けられていない。それ以外の構成(アクティブエリア10内の構成,画素回路部100の構成など)や駆動方法については、上記第1の実施形態と同様であるので、説明を省略する。 <2. Second Embodiment>
<2.1 Configuration>
FIG. 22 is a plan view showing a schematic configuration of a liquid crystal display device according to the second embodiment of the present invention. In the present embodiment, unlike the first embodiment, theinput interface circuit 21, the display voltage generation circuit 22, the timing generator 23, the counter voltage generation circuit 24, the scanning signal line drive circuit 25, and the data signal line drive circuit. 26 is formed monolithically not in the IC 20 but in the panel frame region 11 on the array substrate. That is, all the circuits in the IC 20 shown in FIG. 5 are provided in the panel frame region 11 on the array substrate. For this reason, in this embodiment, the IC 20 is not provided in the single glass region on the array substrate. Other configurations (the configuration in the active area 10, the configuration of the pixel circuit unit 100, etc.) and the driving method are the same as those in the first embodiment, and a description thereof will be omitted.
<2.1 構成>
図22は、本発明の第2の実施形態に係る液晶表示装置の概略構成を示す平面図である。本実施形態においては、上記第1の実施形態とは異なり、入力インタフェース回路21,表示電圧生成回路22,タイミングジェネレータ23,対向電圧生成回路24,走査信号線駆動回路25,およびデータ信号線駆動回路26がIC20内ではなくアレイ基板上のパネル額縁領域11にモノリシックに形成されている。すなわち、図5に示したIC20内の全ての回路がアレイ基板上のパネル額縁領域11に設けられている。このため、本実施形態においては、アレイ基板上の1枚ガラス領域にIC20が設けられていない。それ以外の構成(アクティブエリア10内の構成,画素回路部100の構成など)や駆動方法については、上記第1の実施形態と同様であるので、説明を省略する。 <2. Second Embodiment>
<2.1 Configuration>
FIG. 22 is a plan view showing a schematic configuration of a liquid crystal display device according to the second embodiment of the present invention. In the present embodiment, unlike the first embodiment, the
<2.2 効果>
本実施形態によれば、八角形のガラス基板5で構成された液晶表示装置において、従来アレイ基板上の1枚ガラス領域に実装されていたICが不要となる。このため、従来の構成と比較して、1枚ガラス領域のサイズを顕著に小さくすることが可能となる。すなわち、1枚ガラス領域が顕著に縮小化された非矩形のガラス基板で構成された液晶表示装置を実現することが可能となる。なお、上記第1の実施形態と同様、ガラス基板5全体の形状は八角形には限定されない。 <2.2 Effect>
According to this embodiment, in the liquid crystal display device configured with theoctagonal glass substrate 5, an IC that has been conventionally mounted on a single glass region on the array substrate becomes unnecessary. For this reason, compared with the conventional structure, it becomes possible to make the size of one glass area | region remarkably small. That is, it is possible to realize a liquid crystal display device including a non-rectangular glass substrate in which a single glass region is significantly reduced. As in the first embodiment, the overall shape of the glass substrate 5 is not limited to an octagon.
本実施形態によれば、八角形のガラス基板5で構成された液晶表示装置において、従来アレイ基板上の1枚ガラス領域に実装されていたICが不要となる。このため、従来の構成と比較して、1枚ガラス領域のサイズを顕著に小さくすることが可能となる。すなわち、1枚ガラス領域が顕著に縮小化された非矩形のガラス基板で構成された液晶表示装置を実現することが可能となる。なお、上記第1の実施形態と同様、ガラス基板5全体の形状は八角形には限定されない。 <2.2 Effect>
According to this embodiment, in the liquid crystal display device configured with the
<2.3 変形例>
図23は、上記第2の実施形態の第1の変形例における液晶表示装置の概略構成を示す平面図である。本変形例においては、走査信号線駆動回路25およびデータ信号線駆動回路26はパネル額縁領域11に設けられ、表示電圧生成回路22,タイミングジェネレータ23,および対向電圧生成回路24は外部に設けられている。例えば、表示電圧生成回路22,タイミングジェネレータ23,および対向電圧生成回路24は、1枚ガラス領域近傍に取り付けられるフレキシブル回路基板6上に形成される。以上より、走査信号線駆動回路25やデータ信号線駆動回路26の動作を制御するためのタイミング信号,画素電極142に与えるための表示用電圧,および共通電極に与えるための対向電圧が外部から端子部30を介してパネル額縁領域11に与えられる。本変形例においても、1枚ガラス領域にはIC20が設けられていないので、1枚ガラス領域が顕著に縮小化された非矩形のガラス基板で構成された液晶表示装置を実現することが可能となる。 <2.3 Modification>
FIG. 23 is a plan view showing a schematic configuration of a liquid crystal display device according to a first modification of the second embodiment. In this modification, the scanning signalline drive circuit 25 and the data signal line drive circuit 26 are provided in the panel frame region 11, and the display voltage generation circuit 22, the timing generator 23, and the counter voltage generation circuit 24 are provided outside. Yes. For example, the display voltage generation circuit 22, the timing generator 23, and the counter voltage generation circuit 24 are formed on the flexible circuit board 6 attached in the vicinity of a single glass region. As described above, the timing signal for controlling the operation of the scanning signal line drive circuit 25 and the data signal line drive circuit 26, the display voltage to be applied to the pixel electrode 142, and the counter voltage to be applied to the common electrode are externally connected to the terminal. It is given to the panel frame region 11 via the part 30. Also in this modified example, since the IC 20 is not provided in the single glass region, it is possible to realize a liquid crystal display device including a non-rectangular glass substrate in which the single glass region is significantly reduced. Become.
図23は、上記第2の実施形態の第1の変形例における液晶表示装置の概略構成を示す平面図である。本変形例においては、走査信号線駆動回路25およびデータ信号線駆動回路26はパネル額縁領域11に設けられ、表示電圧生成回路22,タイミングジェネレータ23,および対向電圧生成回路24は外部に設けられている。例えば、表示電圧生成回路22,タイミングジェネレータ23,および対向電圧生成回路24は、1枚ガラス領域近傍に取り付けられるフレキシブル回路基板6上に形成される。以上より、走査信号線駆動回路25やデータ信号線駆動回路26の動作を制御するためのタイミング信号,画素電極142に与えるための表示用電圧,および共通電極に与えるための対向電圧が外部から端子部30を介してパネル額縁領域11に与えられる。本変形例においても、1枚ガラス領域にはIC20が設けられていないので、1枚ガラス領域が顕著に縮小化された非矩形のガラス基板で構成された液晶表示装置を実現することが可能となる。 <2.3 Modification>
FIG. 23 is a plan view showing a schematic configuration of a liquid crystal display device according to a first modification of the second embodiment. In this modification, the scanning signal
図24は、上記第2の実施形態の第2の変形例における液晶表示装置の概略構成を示す平面図である。本変形例においては、表示電圧生成回路22,タイミングジェネレータ23,対向電圧生成回路24,走査信号線駆動回路25,およびデータ信号線駆動回路26がパネル額縁領域11に設けられ、表示電圧生成回路22,タイミングジェネレータ23,および対向電圧生成回路24の動作を制御する信号が外部から端子部30を介してパネル額縁領域11に与えられる。本変形例においても、1枚ガラス領域にはIC20が設けられていないので、1枚ガラス領域が顕著に縮小化された非矩形のガラス基板で構成された液晶表示装置を実現することが可能となる。
FIG. 24 is a plan view showing a schematic configuration of a liquid crystal display device according to a second modification of the second embodiment. In this modification, a display voltage generation circuit 22, a timing generator 23, a counter voltage generation circuit 24, a scanning signal line drive circuit 25, and a data signal line drive circuit 26 are provided in the panel frame region 11, and the display voltage generation circuit 22 is provided. , A signal for controlling the operation of the timing generator 23 and the counter voltage generation circuit 24 is given to the panel frame region 11 from the outside via the terminal portion 30. Also in this modified example, since the IC 20 is not provided in the single glass region, it is possible to realize a liquid crystal display device including a non-rectangular glass substrate in which the single glass region is significantly reduced. Become.
<3.その他>
表示電圧生成回路22,タイミングジェネレータ23,対向電圧生成回路24,走査信号線駆動回路25,およびデータ信号線駆動回路26については、パネル額縁領域11のサイズ,1枚ガラス領域のサイズ,1枚ガラス領域に実装可能なICのサイズ,および1枚ガラス領域に配置可能な端子数などを考慮して、IC内,パネル額縁領域11内,および外部に適宜設ける構成とすることができる。 <3. Other>
For the displayvoltage generation circuit 22, timing generator 23, counter voltage generation circuit 24, scanning signal line drive circuit 25, and data signal line drive circuit 26, the size of the panel frame region 11, the size of the single glass region, and the single glass plate Considering the size of the IC that can be mounted in the area and the number of terminals that can be arranged in a single glass area, it can be appropriately provided in the IC, in the panel frame area 11, and outside.
表示電圧生成回路22,タイミングジェネレータ23,対向電圧生成回路24,走査信号線駆動回路25,およびデータ信号線駆動回路26については、パネル額縁領域11のサイズ,1枚ガラス領域のサイズ,1枚ガラス領域に実装可能なICのサイズ,および1枚ガラス領域に配置可能な端子数などを考慮して、IC内,パネル額縁領域11内,および外部に適宜設ける構成とすることができる。 <3. Other>
For the display
また、アクティブエリア10の全体を含む(仮想的な)最小の矩形領域とアクティブエリア10の外縁との間の領域(図25で符号40で示す領域)にできるだけパネル駆動回路を形成することによって、パネル額縁領域11内の空き領域が無駄なく用いられ、効果的に1枚ガラス領域の縮小化を図ることができる。
Further, by forming a panel drive circuit as much as possible in an area (area indicated by reference numeral 40 in FIG. 25) between the (virtual) minimum rectangular area including the entire active area 10 and the outer edge of the active area 10, The empty area in the panel frame area 11 is used without waste, and the single glass area can be effectively reduced.
さらに、上記各実施形態においては液晶表示装置を例に挙げて説明したが、本発明はこれに限定されない。有機EL(Electro Luminescence)等の他の表示装置にも本発明を適用することができる。
Further, in each of the above embodiments, the liquid crystal display device has been described as an example, but the present invention is not limited to this. The present invention can also be applied to other display devices such as organic EL (Electro Luminescence).
5…ガラス基板
10…アクティブエリア(有効表示領域)
11…パネル額縁領域
20…IC(集積回路)
21…入力インタフェース回路
22…表示電圧生成回路
23…タイミングジェネレータ
24…対向電圧生成回路
25…走査信号線駆動回路
26…データ信号線駆動回路
30…端子部
100…画素回路部
110…スイッチ
120…メモリ回路
130…液晶駆動電圧印加回路
140…表示素子部
141…液晶
142…画素電極
143…共通電極 5 ...Glass substrate 10 ... Active area (effective display area)
11 ...Panel frame area 20 ... IC (integrated circuit)
DESCRIPTION OFSYMBOLS 21 ... Input interface circuit 22 ... Display voltage generation circuit 23 ... Timing generator 24 ... Counter voltage generation circuit 25 ... Scanning signal line drive circuit 26 ... Data signal line drive circuit 30 ... Terminal part 100 ... Pixel circuit part 110 ... Switch 120 ... Memory Circuit 130 ... Liquid crystal drive voltage application circuit 140 ... Display element 141 ... Liquid crystal 142 ... Pixel electrode 143 ... Common electrode
10…アクティブエリア(有効表示領域)
11…パネル額縁領域
20…IC(集積回路)
21…入力インタフェース回路
22…表示電圧生成回路
23…タイミングジェネレータ
24…対向電圧生成回路
25…走査信号線駆動回路
26…データ信号線駆動回路
30…端子部
100…画素回路部
110…スイッチ
120…メモリ回路
130…液晶駆動電圧印加回路
140…表示素子部
141…液晶
142…画素電極
143…共通電極 5 ...
11 ...
DESCRIPTION OF
Claims (10)
- 有効表示領域と該有効表示領域の周辺領域であるパネル額縁領域とからなる2枚ガラス領域と、該2枚ガラス領域外の領域である1枚ガラス領域とを有する非矩形の基板によって構成され、画素の表示状態を変化させることによって画像を表示する表示装置であって、
複数のデータ信号線と、
前記複数のデータ信号線と交差する複数の走査信号線と、
表示すべき画像に応じたデータ信号を前記複数のデータ信号線に印加するデータ信号線駆動回路と、
前記複数の走査信号線に走査信号を印加する走査信号線駆動回路と、
それぞれが前記複数のデータ信号線のいずれかと前記複数の走査信号線のいずれかとの交差点に対応するように設けられた複数の画素回路部と
を備え、
各画素回路部は、
対応する交差点を通過する走査信号線に印加されている走査信号に基づいてオン/オフ状態の切り替えが行われるスイッチと、
対応する交差点を通過するデータ信号線に印加されているデータ信号の電位に基づく2値データを前記スイッチがオン状態の時に取り込み、前記2値データを記憶する記憶部と、
前記記憶部に記憶されている2値データの値に応じて第1電圧または第2電圧のいずれかを選択する電圧選択部と、
前記電圧選択部によって選択された電圧を画素の表示状態に反映させるための表示素子部と
を含むことを特徴とする、表示装置。 It is constituted by a non-rectangular substrate having a two-glass area composed of an effective display area and a panel frame area that is a peripheral area of the effective display area, and a single-glass area that is an area outside the two-glass area, A display device that displays an image by changing a display state of a pixel,
A plurality of data signal lines;
A plurality of scanning signal lines intersecting with the plurality of data signal lines;
A data signal line driving circuit for applying a data signal corresponding to an image to be displayed to the plurality of data signal lines;
A scanning signal line driving circuit for applying a scanning signal to the plurality of scanning signal lines;
A plurality of pixel circuit portions each provided so as to correspond to an intersection of one of the plurality of data signal lines and one of the plurality of scanning signal lines;
Each pixel circuit section
A switch that is switched on / off based on a scanning signal applied to a scanning signal line passing through a corresponding intersection;
A storage unit that takes in binary data based on the potential of a data signal applied to a data signal line passing through a corresponding intersection when the switch is on, and stores the binary data;
A voltage selection unit that selects either the first voltage or the second voltage according to the value of the binary data stored in the storage unit;
And a display element unit for reflecting the voltage selected by the voltage selection unit in the display state of the pixel. - 前記画素回路部を動作させるための複数の機能回路からなるパネル駆動回路の一部が前記パネル額縁領域内に形成されていることを特徴とする、請求項1に記載の表示装置。 2. The display device according to claim 1, wherein a part of a panel drive circuit including a plurality of functional circuits for operating the pixel circuit unit is formed in the panel frame region.
- 前記パネル駆動回路の一部として前記走査信号線駆動回路と前記データ信号線駆動回路とが前記パネル額縁領域内に形成されていることを特徴とする、請求項2に記載の表示装置。 3. The display device according to claim 2, wherein the scanning signal line driving circuit and the data signal line driving circuit are formed in the panel frame region as a part of the panel driving circuit.
- 前記パネル駆動回路の一部として、更に、前記走査信号線駆動回路および前記データ信号線駆動回路の動作タイミングを制御するタイミング信号を生成するタイミング信号生成回路が前記パネル額縁領域内に形成されていることを特徴とする、請求項3に記載の表示装置。 As a part of the panel drive circuit, a timing signal generation circuit for generating a timing signal for controlling the operation timing of the scanning signal line drive circuit and the data signal line drive circuit is further formed in the panel frame region. The display device according to claim 3, wherein:
- 前記パネル駆動回路の一部として、更に、外部から送られる電気信号を前記1枚ガラス領域に設けられている端子部を介して受け取る入力インタフェース回路が前記パネル額縁領域内に形成されていることを特徴とする、請求項4に記載の表示装置。 As a part of the panel drive circuit, an input interface circuit for receiving an electric signal sent from the outside via a terminal portion provided in the one glass region is formed in the panel frame region. The display device according to claim 4, wherein the display device is characterized.
- 前記パネル駆動回路の一部として、更に、前記第1電圧および前記第2電圧を生成する表示電圧生成回路と、前記表示素子部に含まれる2つの電極のうち前記第1電圧または前記第2電圧が印加される電極と対向するように配置されている電極に印加するための電圧を生成する対向電圧生成回路とが前記パネル額縁領域内に形成されていることを特徴とする、請求項4に記載の表示装置。 As a part of the panel drive circuit, a display voltage generation circuit for generating the first voltage and the second voltage, and the first voltage or the second voltage of two electrodes included in the display element unit The counter voltage generation circuit which generates the voltage for applying to the electrode arranged so that the electrode to which voltage is applied may be countered may be formed in the panel frame region. The display device described.
- 前記パネル駆動回路の一部として、更に、前記第1電圧および前記第2電圧を生成する表示電圧生成回路と、前記表示素子部に含まれる2つの電極のうち前記第1電圧または前記第2電圧が印加される電極と対向するように配置されている電極に印加するための電圧を生成する対向電圧生成回路とが前記パネル額縁領域内に形成されていることを特徴とする、請求項3に記載の表示装置。 As a part of the panel drive circuit, a display voltage generation circuit for generating the first voltage and the second voltage, and the first voltage or the second voltage of two electrodes included in the display element unit The counter voltage generation circuit which generates the voltage for applying to the electrode arranged so that the electrode to which voltage is applied may be countered may be formed in the panel frame field. The display device described.
- 前記パネル駆動回路を構成する全ての機能回路が前記パネル額縁領域内に形成されていることを特徴とする、請求項2に記載の表示装置。 3. The display device according to claim 2, wherein all the functional circuits constituting the panel drive circuit are formed in the panel frame region.
- 前記パネル駆動回路を構成する前記複数の機能回路のうち前記パネル額縁領域内に形成されている機能回路を除く回路の少なくとも一部が設けられた外部基板を更に備えることを特徴とする、請求項2に記載の表示装置。 The apparatus further comprises an external substrate provided with at least a part of a circuit excluding the functional circuit formed in the panel frame region among the plurality of functional circuits constituting the panel driving circuit. 2. The display device according to 2.
- 前記基板の形状が八角形であることを特徴とする、請求項1に記載の表示装置。 The display device according to claim 1, wherein the shape of the substrate is an octagon.
Applications Claiming Priority (2)
Application Number | Priority Date | Filing Date | Title |
---|---|---|---|
JP2010183637 | 2010-08-19 | ||
JP2010-183637 | 2010-08-19 |
Publications (1)
Publication Number | Publication Date |
---|---|
WO2012023329A1 true WO2012023329A1 (en) | 2012-02-23 |
Family
ID=45604992
Family Applications (1)
Application Number | Title | Priority Date | Filing Date |
---|---|---|---|
PCT/JP2011/062531 WO2012023329A1 (en) | 2010-08-19 | 2011-05-31 | Display device |
Country Status (1)
Country | Link |
---|---|
WO (1) | WO2012023329A1 (en) |
Cited By (2)
Publication number | Priority date | Publication date | Assignee | Title |
---|---|---|---|---|
CN104599655A (en) * | 2015-02-05 | 2015-05-06 | 深圳市华星光电技术有限公司 | Non-rectangular displayer and driving method thereof |
TWI782679B (en) * | 2021-08-27 | 2022-11-01 | 晶達光電股份有限公司 | Manufacturing method of special size liquid crystal panel and special size liquid crystal panel |
Citations (2)
Publication number | Priority date | Publication date | Assignee | Title |
---|---|---|---|---|
WO2009128280A1 (en) * | 2008-04-18 | 2009-10-22 | シャープ株式会社 | Display device and mobile terminal |
WO2009128283A1 (en) * | 2008-04-18 | 2009-10-22 | シャープ株式会社 | Display device and mobile terminal |
-
2011
- 2011-05-31 WO PCT/JP2011/062531 patent/WO2012023329A1/en active Application Filing
Patent Citations (2)
Publication number | Priority date | Publication date | Assignee | Title |
---|---|---|---|---|
WO2009128280A1 (en) * | 2008-04-18 | 2009-10-22 | シャープ株式会社 | Display device and mobile terminal |
WO2009128283A1 (en) * | 2008-04-18 | 2009-10-22 | シャープ株式会社 | Display device and mobile terminal |
Non-Patent Citations (4)
Title |
---|
"Tei Shohi Denryoku de Joji Hyoji ga Kano na Memory Ekisho 'Kuro' Hyoji no Tojo ga Arata na Fuka Kachi o Sozo suru", 2009, Retrieved from the Internet <URL:http://special.nikkeibp.co.jp/ts/article/OiaO/104229/pdf/vol2.pdf> [retrieved on 20110824] * |
NOBORU MATSUDA ET AL.: "Ultra-Low Power System- LCDs with Pixel-Memory Circuit", IDW'09 PROCEEDINGS OF THE 16TH INTERNATIONAL DISPLAY WORKSHOPS, 9 December 2009 (2009-12-09), pages 243 - 246 * |
SEIJIRO GYOTEN: "Memory Ekisho Display no Kosei to Tokucho", SHARP TECHNICAL JOURNAL, no. 100, 10 February 2010 (2010-02-10), pages 23 - 27 * |
YUKIO KOBAYASHI: "'FPD International 2009' ga Kaimaku - 'Green Device 2009' mo Doji Kaisai", MAIKOMI JOURNAL, 29 October 2009 (2009-10-29), Retrieved from the Internet <URL:http://journal.mycom.co.jp/articles/2009/10/29/fpd_international_2009/index.html> [retrieved on 20110824] * |
Cited By (3)
Publication number | Priority date | Publication date | Assignee | Title |
---|---|---|---|---|
CN104599655A (en) * | 2015-02-05 | 2015-05-06 | 深圳市华星光电技术有限公司 | Non-rectangular displayer and driving method thereof |
CN104599655B (en) * | 2015-02-05 | 2017-05-10 | 深圳市华星光电技术有限公司 | Non-rectangular displayer and driving method thereof |
TWI782679B (en) * | 2021-08-27 | 2022-11-01 | 晶達光電股份有限公司 | Manufacturing method of special size liquid crystal panel and special size liquid crystal panel |
Similar Documents
Publication | Publication Date | Title |
---|---|---|
KR102505897B1 (en) | OLED Display Panel | |
JP3629712B2 (en) | Electro-optical device and electronic apparatus | |
KR100462133B1 (en) | Display apparatus | |
US7948461B2 (en) | Image display device | |
WO2012023467A1 (en) | Display device | |
TWI391890B (en) | Display apparatus | |
JP2012088737A (en) | Display device | |
JP2006119404A (en) | Electro-optical device and electronic device | |
JP2012088736A (en) | Display device | |
JP4204204B2 (en) | Active matrix display device | |
JP2001242819A6 (en) | Electro-optical device and electronic apparatus | |
KR100497455B1 (en) | Active matrix type display device | |
KR100465472B1 (en) | Active metrix type display device | |
JP2007094262A (en) | Electro-optical apparatus and electronic equipment | |
JP2002372942A (en) | Line driving circuit, electrooptical device and display device | |
WO2012023329A1 (en) | Display device | |
KR100481108B1 (en) | Display apparatus and driving method thereof | |
JP2009086402A (en) | Active matrix circuit substrate and display device | |
KR102467881B1 (en) | OLED display Panel | |
JP4501920B2 (en) | Display device | |
JP4278314B2 (en) | Active matrix display device | |
KR100469193B1 (en) | Display device | |
JP4197852B2 (en) | Active matrix display device | |
JP3856027B2 (en) | Electro-optical device and electronic apparatus | |
JP4297628B2 (en) | Active matrix display device |
Legal Events
Date | Code | Title | Description |
---|---|---|---|
121 | Ep: the epo has been informed by wipo that ep was designated in this application |
Ref document number: 11817978 Country of ref document: EP Kind code of ref document: A1 |
|
NENP | Non-entry into the national phase |
Ref country code: DE |
|
122 | Ep: pct application non-entry in european phase |
Ref document number: 11817978 Country of ref document: EP Kind code of ref document: A1 |
|
NENP | Non-entry into the national phase |
Ref country code: JP |