WO2012023165A1 - Electromagnetic casting device for silicon - Google Patents

Electromagnetic casting device for silicon Download PDF

Info

Publication number
WO2012023165A1
WO2012023165A1 PCT/JP2010/006744 JP2010006744W WO2012023165A1 WO 2012023165 A1 WO2012023165 A1 WO 2012023165A1 JP 2010006744 W JP2010006744 W JP 2010006744W WO 2012023165 A1 WO2012023165 A1 WO 2012023165A1
Authority
WO
WIPO (PCT)
Prior art keywords
silicon
outer frame
retaining device
heat retaining
induction coil
Prior art date
Application number
PCT/JP2010/006744
Other languages
French (fr)
Japanese (ja)
Inventor
大輔 海老
浩 小屋
泰夫 竹村
Original Assignee
株式会社Sumco
Sumcoソーラー株式会社
Priority date (The priority date is an assumption and is not a legal conclusion. Google has not performed a legal analysis and makes no representation as to the accuracy of the date listed.)
Filing date
Publication date
Application filed by 株式会社Sumco, Sumcoソーラー株式会社 filed Critical 株式会社Sumco
Publication of WO2012023165A1 publication Critical patent/WO2012023165A1/en

Links

Images

Classifications

    • CCHEMISTRY; METALLURGY
    • C01INORGANIC CHEMISTRY
    • C01BNON-METALLIC ELEMENTS; COMPOUNDS THEREOF; METALLOIDS OR COMPOUNDS THEREOF NOT COVERED BY SUBCLASS C01C
    • C01B33/00Silicon; Compounds thereof
    • C01B33/02Silicon
    • C01B33/021Preparation
    • CCHEMISTRY; METALLURGY
    • C30CRYSTAL GROWTH
    • C30BSINGLE-CRYSTAL GROWTH; UNIDIRECTIONAL SOLIDIFICATION OF EUTECTIC MATERIAL OR UNIDIRECTIONAL DEMIXING OF EUTECTOID MATERIAL; REFINING BY ZONE-MELTING OF MATERIAL; PRODUCTION OF A HOMOGENEOUS POLYCRYSTALLINE MATERIAL WITH DEFINED STRUCTURE; SINGLE CRYSTALS OR HOMOGENEOUS POLYCRYSTALLINE MATERIAL WITH DEFINED STRUCTURE; AFTER-TREATMENT OF SINGLE CRYSTALS OR A HOMOGENEOUS POLYCRYSTALLINE MATERIAL WITH DEFINED STRUCTURE; APPARATUS THEREFOR
    • C30B11/00Single-crystal growth by normal freezing or freezing under temperature gradient, e.g. Bridgman-Stockbarger method
    • C30B11/001Continuous growth
    • CCHEMISTRY; METALLURGY
    • C30CRYSTAL GROWTH
    • C30BSINGLE-CRYSTAL GROWTH; UNIDIRECTIONAL SOLIDIFICATION OF EUTECTIC MATERIAL OR UNIDIRECTIONAL DEMIXING OF EUTECTOID MATERIAL; REFINING BY ZONE-MELTING OF MATERIAL; PRODUCTION OF A HOMOGENEOUS POLYCRYSTALLINE MATERIAL WITH DEFINED STRUCTURE; SINGLE CRYSTALS OR HOMOGENEOUS POLYCRYSTALLINE MATERIAL WITH DEFINED STRUCTURE; AFTER-TREATMENT OF SINGLE CRYSTALS OR A HOMOGENEOUS POLYCRYSTALLINE MATERIAL WITH DEFINED STRUCTURE; APPARATUS THEREFOR
    • C30B29/00Single crystals or homogeneous polycrystalline material with defined structure characterised by the material or by their shape
    • C30B29/02Elements
    • C30B29/06Silicon

Definitions

  • the present invention relates to an electromagnetic casting apparatus for silicon capable of producing a silicon ingot by applying a continuous casting technique using electromagnetic induction. More particularly, the present invention relates to an electromagnetic casting apparatus for silicon that can efficiently produce polycrystalline silicon used as a substrate material for a solar cell without causing contamination by metal.
  • electromagnetic casting apparatus a continuous casting apparatus by electromagnetic induction (hereinafter referred to as “electromagnetic casting apparatus”) to which a bottomless cooling mold divided in the circumferential direction is attached is used, a dissolved substance (here, molten silicon), a mold, Can hardly be in contact with each other, so that an ingot (silicon ingot) free from impurity contamination can be produced. Since there is no contamination from the mold, there is an advantage that it is not necessary to use a high-purity material as the material of the mold, and since it can be continuously cast, the manufacturing cost can be greatly reduced. Therefore, the electromagnetic casting apparatus has been conventionally applied to the production of polycrystalline silicon used as a substrate material for solar cells.
  • FIG. 2 is a diagram schematically showing a configuration example of an electromagnetic casting apparatus suitable for the production of polycrystalline silicon.
  • the induction coil 12 for heating longitudinally long copper plate pieces that can be water-cooled are parallel to the winding axis direction of the induction coil 12 and mutually in the induction coil 12.
  • the space surrounded by the plate-like pieces constitutes a mold (that is, a bottomless cooling mold whose side walls are water-cooled) 11 arranged in an insulated state.
  • a water-cooled copper mold having a plate-like piece as a copper piece is usually used.
  • a support base 4 that can move downward is installed.
  • a heat retention device 13 for heating the solidified ingot (silicon ingot) 19 to prevent rapid cooling is installed below the induction coil 12 for heating.
  • the soaking tube 6 is attached.
  • the silicon ingot 19 is drawn downward by a drawing device (not shown).
  • a raw material charging machine 9 capable of charging the raw material into the mold 11 during melting is installed. Further, in this example, a heating element 10 for heating the raw material silicon is attached above the mold 11 as necessary. It is desirable to arrange a plasma torch as the heating element 10 and to perform ultra-high temperature heating with a plasma arc as necessary.
  • These devices are installed in the sealed container 1 so that the molten silicon 7 and the high-temperature silicon ingot 19 do not come into direct contact with the atmosphere.
  • the inside of the container 1 is replaced with an inert gas, It is comprised so that continuous casting can be performed in the pressurized state.
  • the mold 11 In the production of polycrystalline silicon, when the mold 11 is filled with a silicon raw material and a high-frequency induction current is passed through the heating induction coil 12, the raw material generates heat and melts.
  • the molten silicon 7 in the mold 11 repels the plate-like piece due to the induced current and does not contact the side wall of the mold 11.
  • the support 4 After the molten silicon 7 is sufficiently uniformed, if the support 4 is moved downward little by little, cooling starts by moving away from the induction coil 12, and unidirectional solidification toward the molten silicon 7 in the mold 11 occurs.
  • the silicon ingot 19 having a cross section having the same shape as the mold cross section is formed.
  • the polycrystalline silicon ingot 19 can be continuously produced by continuing the heat melting, drawing, and raw material supply.
  • the silicon ingot 19 is rapidly cooled as it moves downward from the heating induction coil 12, and due to the difference in shrinkage due to the temperature difference, excessive thermal stress is generated and the ingot 19 is cracked. Generation of cracks can be prevented by heating with the heat retaining device 13 installed under the induction coil 12 for use.
  • a heating means (electrothermal multistage heater) arranged so as to surround the ingot, a heat insulating material installed on the outside thereof, and a heating means and a heat insulating material are supported on the outer periphery of the heat insulating material.
  • a device to which an outer frame for fixing is attached is generally used.
  • stainless steel such as SUS304 is used for the outer frame of the heat retaining device because it requires high heat resistance and rigidity capable of withstanding thermal deformation.
  • Patent Document 1 includes a conductor such as graphite, Ta, and Mo, and an induction coil provided around the conductor, and the outer surface of the conductor is covered with a heat insulating material such as a graphite fiber molded body and alumina.
  • a heat retaining device is disclosed.
  • the present invention has been made in order to solve the above-mentioned problems, particularly in the case of a heat retaining device using an electrothermal multistage heater as a heating means.
  • This thermal insulation device is targeted for easy temperature control in the height direction, maintaining the internal temperature environment in a stable state, enabling stable operation, and easy replacement when heater replacement is required. This is because there are advantages such as being able to.
  • the object of the present invention is to perform stable operation by preventing the outer frame of the heat retaining device from being melted or deformed by heat, and to efficiently make polycrystalline silicon suitable as a substrate material for solar cells free from contamination by metal impurities.
  • An object of the present invention is to provide a silicon electromagnetic casting apparatus which can be manufactured well.
  • the present inventors have examined in detail the state of the outer frame attached to fix the heat retaining device.
  • FIGS. 3A and 3B are diagrams showing a schematic structure of the heat retaining device and its surroundings, and a rough melting point in the outer frame.
  • FIG. 3A is a perspective view of the whole, and FIG. It is.
  • the induction coil 12 for heating is attached to the outside of the mold 11, and a heat retaining device 13 for retaining the ingot 19 is installed below the mold 11.
  • the heat retaining device 13 includes a heating means 14 (electric heating type heater) and a heat insulating material 15, and an outer frame 16 is attached so as to cover the outside.
  • the outer frame 16 is made of four (surface) stainless steel plates, and is fastened with metal bolts 17 with an insulating material interposed between each two adjacent frames. The reason why the insulating material is interposed is to prevent welding of the fastening portion.
  • the outer frame 16 is provided with a heater electrode and a thermocouple for measuring the temperature in the heat retaining device 13, but is not shown here.
  • a heat insulation board 18 made of a heat insulating material is attached between the mold 11 and the heat insulation device 13.
  • the problems caused by melting of the outer frame of the heat retaining device and the fastening bolts of the frame are summarized as follows.
  • A It is necessary to replace the outer frame and the bolt which have been melted and deformed accordingly.
  • B The metal contained in the outer frame and the bolt is introduced into the atmosphere as a contaminant by melting damage, and the silicon ingot is exposed to a risk of metal contamination.
  • C As the outer frame is deformed, damage such as deformation or cracking occurs in the internal heat insulating material, so that it is necessary to replace the heat insulating material.
  • D The temperature environment in the heat retaining device changes due to damage to the heat insulating material, making it impossible to perform casting under the same conditions, making stable operation difficult.
  • the present inventors tried to change the material of the outer frame to ceramics in order to prevent melting of the outer frame of the heat retaining device. This is because ceramics is a non-conductive member, so that it does not generate heat, and a solution to the above problems can be expected.
  • a versatile alumina plate was selected as the ceramic, and this was attached to the upper part of the entire outer frame of the heat retaining device for electromagnetic casting. This is because, as described above, the melt damage of the upper part of the outer frame and the uppermost bolt is particularly large. As a result, it was confirmed that the outer frame and bolts could be prevented from being melted.
  • the present invention has been made on the basis of such knowledge, and the gist thereof is the following silicon electromagnetic casting apparatus. That is, a conductive bottomless cooling mold in which a part in the axial direction is divided into a plurality in the circumferential direction, an induction coil surrounding the mold, and a heat retaining device that is disposed below the mold and gradually cools solidified silicon.
  • a silicon electromagnetic casting apparatus for lowering and solidifying molten silicon by electromagnetic induction heating by the induction coil, and a non-conductive member is used as a constituent member of the outer frame of the heat retaining apparatus
  • An electromagnetic casting apparatus characterized by the above.
  • an embodiment may be adopted in which the nonconductive member is used only on the entire upper surface of the outer frame of the heat retaining device.
  • the specific dimensions of the “upper part of the outer frame” vary depending on the size of the mold, the current flowing in the induction coil, etc., but use a bottomless water-cooled copper mold with a cross-sectional dimension of about 350 mm ⁇ 500 mm. In the case of casting a silicon ingot, it is a portion from the lower end of the induction coil to 200 mm. It corresponds to a portion up to 60 mm from the upper end of the outer frame.
  • the non-conductive member may be used only on the surface of the outer frame of the heat retaining device located below the support portion of the induction coil.
  • the silicon electromagnetic casting apparatus of the present invention it is desirable to use a member made of alumina or silicon carbide as the non-conductive member.
  • the outer frame of the heat retaining device installed on the lower side of the heating induction coil is made of a non-conductive member. If this device is used, it is suitable as a solar cell substrate material that prevents melting of the outer frame of the heat retaining device due to heat, prevents contamination of the furnace and ingot by metal impurities, and maintains good conversion efficiency. Polycrystalline silicon can be produced. In addition, it is possible to prevent damage to the heat insulating material due to melting or deformation of the outer frame, suppress changes in the temperature environment in the heat retaining device, and perform stable operation. Furthermore, by reducing the replacement frequency of the outer frame and the heat insulating material, it is possible to contribute to improvement in operation efficiency and cost reduction.
  • FIG. 1 is a longitudinal sectional view showing a schematic configuration example of a heat retaining device having an outer frame in which a nonconductive member is used as a constituent member, which is installed in an electromagnetic casting apparatus of the present invention.
  • FIG. 2 is a diagram schematically illustrating a configuration example of an electromagnetic casting apparatus suitable for manufacturing polycrystalline silicon.
  • FIG. 3 is a view showing a schematic structure of the heat retaining device and its surroundings, and a rough melting point in the outer frame.
  • FIG. 3 (a) is a perspective view of the whole, and FIG. 3 (b) is an I of FIG. 3 (a). It is -I arrow sectional drawing.
  • FIG. 4 is a diagram showing the results of the example, and the results of investigating the amount of metal contamination in the silicon ingot.
  • FIG. 5 is a diagram showing the influence of the use of the alumina member on the upper part of the outer frame of the heat retaining device on the lifetime.
  • An electromagnetic casting apparatus for silicon includes a conductive bottomless cooling mold in which a part of the axial direction is divided into a plurality of parts in the circumferential direction, an induction coil surrounding the mold, and a lower part of the mold. It is assumed that the electromagnetic casting apparatus has a heat retaining device for slowly cooling the silicon.
  • the premise of such an electromagnetic casting apparatus is that, when producing polycrystalline silicon used as a substrate material for a solar cell, casting is performed in a mold with almost no contact between the molten silicon and the mold. This is because it is possible to manufacture a silicon ingot that is free from metal contamination and can maintain good conversion efficiency. It is not necessary to use a high-purity material as the mold material, and since it can be continuously cast, the manufacturing cost can be significantly reduced.
  • a feature of the electromagnetic casting apparatus of the present invention is that a non-conductive member is used as a constituent member of the outer frame of the heat retaining device.
  • This heat retaining device is a device that gradually cools by applying moderate heat to prevent rapid cooling of the silicon ingot that has been solidified by lowering the molten silicon downward, and as described above, surrounds the ingot.
  • the heating means electric heating type multi-stage heater
  • a heat insulating material installed on the outside thereof, and an outer frame attached to the outer periphery of the heat insulating material.
  • the non-conductive member is used as a component of the outer frame because the outer frame itself is heated and melted when it is made of stainless steel as in the conventional case, and metal contaminants are generated due to it. This is to prevent contamination of the silicon ingot.
  • Heat generation of the outer frame itself is due to the fact that the material constituting the outer frame is conductive, and an induced current flows through the outer frame due to the magnetic force from the heating induction coil. By using a conductive member, it is possible to eliminate the generation of induced current in the outer frame.
  • the non-conductive member is a so-called insulator having a sufficiently low electric conductivity.
  • various ceramics can be used in consideration of application as a constituent member of the outer frame.
  • Ceramics is defined as a non-metallic inorganic solid material obtained through processes such as molding and firing.
  • glass that has conventionally been added to the category of ceramic products, Cement, brick, etc. are also included.
  • chemically synthesized high-purity oxides alumina, zirconia, etc.
  • non-oxides Also included are products called fine ceramics, which use special materials such as carbides and nitrides, and perform special molding and firing.
  • the outer frame is a member used to form the outer shell of the heat retaining device by placing the outer frame on the outer periphery of the heating means of the ingot and the heat insulating material installed on the outside thereof, supporting and fixing the heating means and the heat insulating material.
  • the necessary material function includes having a strength capable of holding a heating means, etc., having high heat resistance, and having a material and a shape that does not deform due to heat (or has high strength even if it is slightly deformed). is there.
  • the non-conductive member used as a constituent member of the outer frame of the heat retaining device is an alumina member or a silicon carbide member.
  • Alumina is a representative oxide-based ceramic, and has excellent heat resistance, thermal shock resistance, corrosion resistance, wear resistance, and electrical insulation, is hard, has high mechanical strength, and is relatively inexpensive. There are many excellent properties. Although there is a drawback of “brittleness” common to ceramics, by taking measures such as increasing the thickness, adding a reinforcing material, or changing to a shape that is difficult to break as necessary, It can be sufficiently applied as a constituent member of the outer frame of the heat retaining device.
  • Silicon carbide is a carbonized ceramic, and is characterized by excellent high-temperature strength, high hardness, and corrosion resistance, and is often used as a heat-resistant, corrosion-resistant, wear-resistant part or abrasive. Although it is expensive and difficult to use, it is functionally suitable as a component of the outer frame of the heat retaining device in the electromagnetic casting apparatus of the present invention, and as described later, it can also be applied to a part of the outer frame. Conceivable.
  • FIG. 1 is a longitudinal sectional view showing a schematic configuration example of a heat retention device having an outer frame in which a non-conductive member is used as a constituent member, which is installed in the electromagnetic casting apparatus of the present invention.
  • an induction coil 12 for heating is attached to the outside of the mold 11, and a heat retaining device 13 for retaining the ingot 19 is installed below the mold 11.
  • the heat retaining device 13 has a heating means 14 (electric heating heater) and a heat insulating material 15, and an outer frame 16 made of alumina is attached so as to cover the outside. As shown in FIG. 3, the external appearance of the heat retaining device 13 is usually rectangular according to the shape of the mold 11, and four alumina plates are attached.
  • the outer frame 16 is provided with a heater electrode and a thermocouple for measuring the temperature in the heat retaining device 13, but is not shown here.
  • the heater has three stages, and a plurality of heaters are arranged in each stage.
  • Each heater can be independently controlled in temperature, and is configured to control the temperature in the height direction in the heat retaining device 13 with high accuracy.
  • the non-conductive member is used only on the surface (B surface) located below the induction coil support portion of the outer frame of the heat retaining device. It is good as well. Thereby, the especially big melting loss which arises in the upper part of B surface can be prevented.
  • the electromagnetic casting apparatus of the present invention provided with a heat retaining device having an outer frame in which a non-conductive member is used as a constituent member, the outer frame of the heat retaining device is deformed by melting or heat, Furthermore, damage to the heat insulating material can be prevented, stable operation can be performed, and there can be efficiently produced polycrystalline silicon suitable as a substrate material for a solar cell that is free from contamination by metal impurities and can maintain good conversion efficiency. .
  • Example 1 1 has the configuration illustrated in FIG. 1 and uses an alumina member only on the upper part of the entire outer frame (the portion from the lower end of the induction coil to 200 mm), and the other is a heat insulating material having an outer frame made of stainless steel (SUS304).
  • a silicon ingot (length 4 m) was manufactured using the electromagnetic casting apparatus of the present invention (cross-sectional dimension of a water-cooled copper mold: 345 mm ⁇ 345 mm) in which the apparatus was installed, and the amount of metal contamination of the ingot was investigated.
  • As the alumina member an Al 2 O 3 98% (thickness 15 mm) member was used, and after necessary processing, it was continuously provided with a stainless steel member using a jig.
  • the amount of metal contamination is measured by collecting samples from the outer periphery and the center in the longitudinal direction of each ingot and dissolving them, and then ICP-MS (Inductively Coupled Plasma-Mass Spectroscopy; inductively coupled high-frequency plasma spectroscopy analysis) ) was used to analyze Fe, Cr and Ni, and the total amount thereof was obtained.
  • ICP-MS Inductively Coupled Plasma-Mass Spectroscopy; inductively coupled high-frequency plasma spectroscopy analysis
  • FIG. 4 is a diagram showing the investigation results of the amount of metal contamination in the silicon ingot.
  • the amount of metal contamination on the vertical axis is expressed as a ratio relative to the amount of contamination in the ingot A of the comparative example being 1.
  • the effect of improving metal contamination on the ingot by using the electromagnetic casting apparatus of the present invention is extremely remarkable, and the amount of contamination is reduced to several tenths or less on average.
  • the use of an alumina member at the upper part of the outer frame of the heat retaining device eliminates melting damage of the outer frame and bolts for fastening the outer frame, and suppresses the introduction of metal into the atmosphere. Conceivable.
  • Example 2 has the configuration illustrated in FIG. 1 and uses an alumina member only on the upper part of the entire outer frame (the portion from the lower end of the induction coil to 200 mm), and the other is a heat insulating material having an outer frame made of stainless steel (SUS304).
  • a silicon ingot (length 4 m) is manufactured using the electromagnetic casting apparatus of the present invention (cross-sectional dimension of a water-cooled copper mold: 345 mm ⁇ 345 mm) in which the apparatus is installed, and the lifetime of the silicon substrate cut out from the obtained ingot was measured.
  • As the alumina member Al 2 O 3 98% (thickness 15 mm) was used, and after necessary processing, it was continuously provided with a stainless steel member using a jig.
  • the same investigation was performed when an electromagnetic casting apparatus provided with a heat retaining device having an outer frame made of stainless steel (SUS304) was used.
  • the reason why the lifetime is measured is that the crystallinity of the silicon substrate can be electrically evaluated by the lifetime, and the conversion efficiency when a solar cell is configured using the silicon substrate can be evaluated to some extent. That the lifetime is long (improves) means that the conversion efficiency as a solar cell is high.
  • the lifetime was measured by the ⁇ -PCD method in which the reflection microwave was used to measure by optical propagation attenuation.
  • the lifetime measured here is a lifetime when a p-type semiconductor having a resistivity of 1 to 2 ⁇ ⁇ cm is used.
  • FIG. 5 is a diagram showing the influence of the use of an alumina member on the upper part of the outer frame of the heat retaining device on the lifetime.
  • the lifetime is the ratio of the lifetime of the silicon substrate cut out from the silicon ingot manufactured by the electromagnetic casting apparatus of the comparative example using stainless steel as the outer frame of the heat retaining device to the reference (1.0). Displayed.
  • the lifetime of the silicon ingot manufactured by the electromagnetic casting apparatus of the present invention using the alumina member on the entire upper surface of the outer frame is improved by 1.2 times compared to before implementation.
  • the electromagnetic casting apparatus of the present invention polycrystalline silicon suitable for a solar cell substrate material having high conversion efficiency can be produced.
  • the outer frame of the heat retaining device installed under the induction coil for heating is prevented from being melted by heat, thereby preventing contamination of the furnace and ingot with metal impurities.
  • polycrystalline silicon suitable as a substrate material for a solar cell that can maintain good conversion efficiency.

Abstract

Provided is an electromagnetic casting device for silicon which has a non-bottom cooling mold, a heating induction coil, and a heat retention device, which is disposed below the mold and gradually cools silicon concreted, and lowers the silicon melted by electromagnetic induction heating by the induction coil to concrete the silicon. The electromagnetic casting device uses a nonconductive member as a component of an outer frame (16) of the heat retention device (13). The nonconductive member is capable of being used only for a specific surface of the outer frame on which a dissolved loss is particularly significantly caused or only for an upper portion of the entire surface of the outer frame. As the nonconductive member, alumina or silicon carbide is desirable. It is possible to manufacture preferable polycrystalline silicon as a substrate material for a solar cell while preventing the dissolved loss due to heat of the outer frame of the heat retention device provided below the heating induction coil and preventing contamination of the inside of a furnace and an ingot due to metal impurities.

Description

シリコンの電磁鋳造装置Silicon electromagnetic casting equipment
 本発明は、電磁誘導による連続鋳造技術を適用してシリコンインゴットを製造することができるシリコンの電磁鋳造装置に関する。より詳しくは、本発明は、太陽電池の基板材として用いられる多結晶シリコンを、金属による汚染を生じさせずに、効率よく製造することができるシリコンの電磁鋳造装置に関する。 The present invention relates to an electromagnetic casting apparatus for silicon capable of producing a silicon ingot by applying a continuous casting technique using electromagnetic induction. More particularly, the present invention relates to an electromagnetic casting apparatus for silicon that can efficiently produce polycrystalline silicon used as a substrate material for a solar cell without causing contamination by metal.
 周方向に分割された無底の冷却モールドが取り付けられた電磁誘導による連続鋳造装置(以下、「電磁鋳造装置」という)を使用すれば、溶解された物質(ここでは、溶融シリコン)とモールドとはほとんど接触しないので、不純物汚染のない鋳塊(シリコンインゴット)を製造することができる。モールドからの汚染がないので、モールドの材質として高純度材料を使用する必要がないという利点もあり、また、連続して鋳造することができるので、製造コストの大幅な低下が可能である。したがって、電磁鋳造装置は、従来から太陽電池の基板材として用いられる多結晶シリコンの製造に適用されてきた。 If a continuous casting apparatus by electromagnetic induction (hereinafter referred to as “electromagnetic casting apparatus”) to which a bottomless cooling mold divided in the circumferential direction is attached is used, a dissolved substance (here, molten silicon), a mold, Can hardly be in contact with each other, so that an ingot (silicon ingot) free from impurity contamination can be produced. Since there is no contamination from the mold, there is an advantage that it is not necessary to use a high-purity material as the material of the mold, and since it can be continuously cast, the manufacturing cost can be greatly reduced. Therefore, the electromagnetic casting apparatus has been conventionally applied to the production of polycrystalline silicon used as a substrate material for solar cells.
 図2は、多結晶シリコンの製造に好適な電磁鋳造装置の構成例を模式的に示す図である。同図に示すように、加熱用誘導コイル12の内側に、内部を水冷できる縦方向に長い銅製の板状片が、誘導コイル12の巻き軸方向と平行に、かつ誘導コイル12内では相互に絶縁された状態で配列されており、この板状片によって囲まれた空間がモールド(すなわち、側壁部が水冷されている無底の冷却モールド)11を構成する。モールド11には、通常、板状片を銅片とした水冷銅モールドが用いられる。 FIG. 2 is a diagram schematically showing a configuration example of an electromagnetic casting apparatus suitable for the production of polycrystalline silicon. As shown in the figure, on the inside of the induction coil 12 for heating, longitudinally long copper plate pieces that can be water-cooled are parallel to the winding axis direction of the induction coil 12 and mutually in the induction coil 12. The space surrounded by the plate-like pieces constitutes a mold (that is, a bottomless cooling mold whose side walls are water-cooled) 11 arranged in an insulated state. As the mold 11, a water-cooled copper mold having a plate-like piece as a copper piece is usually used.
 加熱用誘導コイル12の下端位置(すなわち、モールド11の底部に相当する位置)には下方に移動できる支持台4が設置されている。また、加熱用誘導コイル12の下側には、凝固した鋳塊(シリコンインゴット)19を加熱して、急激な冷却を防ぐための保温装置13が設置されており、保温装置13の下側には、均熱筒6が取り付けられている。シリコンインゴット19は引抜き装置(図示せず)により下方に引き抜かれる。 At the lower end position of the induction coil 12 for heating (that is, the position corresponding to the bottom of the mold 11), a support base 4 that can move downward is installed. A heat retention device 13 for heating the solidified ingot (silicon ingot) 19 to prevent rapid cooling is installed below the induction coil 12 for heating. The soaking tube 6 is attached. The silicon ingot 19 is drawn downward by a drawing device (not shown).
 冷却モールド11の上方には、溶解中に原料をモールド11内に投入できる原料投入機9が設置されている。さらに、この例では、モールド11の上方に、必要に応じて原料シリコンを加熱するための発熱体10が取り付けられている。発熱体10としてプラズマトーチを配置し、必要に応じてプラズマアークによる超高温加熱を行うのが望ましい。 Above the cooling mold 11, a raw material charging machine 9 capable of charging the raw material into the mold 11 during melting is installed. Further, in this example, a heating element 10 for heating the raw material silicon is attached above the mold 11 as necessary. It is desirable to arrange a plasma torch as the heating element 10 and to perform ultra-high temperature heating with a plasma arc as necessary.
 これらの諸装置は、溶融シリコン7および高温のシリコンインゴット19が大気と直接触れることがないように、密閉容器1内に設置され、通常は、容器1内を不活性ガスで置換して、若干の加圧状態で連続鋳造が行えるように構成されている。 These devices are installed in the sealed container 1 so that the molten silicon 7 and the high-temperature silicon ingot 19 do not come into direct contact with the atmosphere. Usually, the inside of the container 1 is replaced with an inert gas, It is comprised so that continuous casting can be performed in the pressurized state.
 多結晶シリコンの製造に際しては、モールド11にシリコン原料を充填し、加熱用誘導コイル12に高周波誘導電流を通じると、原料は発熱し、溶解する。モールド11内の溶融シリコン7は、誘導電流により板状片と反発し、モールド11の側壁とは接触しない。溶融シリコン7が十分均一化した後、支持台4を少しずつ下方に移動させていけば、誘導コイル12から離れることにより冷却が始まり、モールド11内の溶融シリコン7に向けての一方向性凝固が進行してモールド断面と同じ形状の断面を有するシリコンインゴット19が形成される。 In the production of polycrystalline silicon, when the mold 11 is filled with a silicon raw material and a high-frequency induction current is passed through the heating induction coil 12, the raw material generates heat and melts. The molten silicon 7 in the mold 11 repels the plate-like piece due to the induced current and does not contact the side wall of the mold 11. After the molten silicon 7 is sufficiently uniformed, if the support 4 is moved downward little by little, cooling starts by moving away from the induction coil 12, and unidirectional solidification toward the molten silicon 7 in the mold 11 occurs. As a result, the silicon ingot 19 having a cross section having the same shape as the mold cross section is formed.
 支持台4の下方への移動分に対応して溶融シリコン7の量が減少するので、その分の原料シリコンを原料投入機9から供給し、溶融シリコン7の上面が常に同じ高さレベルを保つようにして、加熱溶解、引き抜き、原料供給を継続していくことにより、多結晶シリコンインゴット19を連続して製造することができる。 Since the amount of the molten silicon 7 decreases corresponding to the downward movement of the support base 4, the corresponding amount of raw silicon is supplied from the raw material feeder 9, and the upper surface of the molten silicon 7 always maintains the same height level. In this way, the polycrystalline silicon ingot 19 can be continuously produced by continuing the heat melting, drawing, and raw material supply.
 シリコンインゴット19は加熱用誘導コイル12から下方へ離れるにしたがい急速に冷却され、温度差による収縮の相違から、過大な熱応力が発生してインゴット19に割れが生じるが、シリコンインゴット19を前記加熱用誘導コイル12の下側に設置されている保温装置13により加熱することによって割れの発生を防止することができる。 The silicon ingot 19 is rapidly cooled as it moves downward from the heating induction coil 12, and due to the difference in shrinkage due to the temperature difference, excessive thermal stress is generated and the ingot 19 is cracked. Generation of cracks can be prevented by heating with the heat retaining device 13 installed under the induction coil 12 for use.
 保温装置としては、インゴットを包囲するように配置された加熱手段(電熱式の多段ヒーター)と、その外側に設置された断熱材、ならびに、断熱材の外周に、加熱手段および断熱材を支持し固定するための外枠が取り付けられた装置が一般に使用されている。保温装置の外枠には、高耐熱性および熱変形に耐えられる剛性が必要とされることから、従来、SUS304等のステンレス鋼が用いられている。 As a heat retaining device, a heating means (electrothermal multistage heater) arranged so as to surround the ingot, a heat insulating material installed on the outside thereof, and a heating means and a heat insulating material are supported on the outer periphery of the heat insulating material. A device to which an outer frame for fixing is attached is generally used. Conventionally, stainless steel such as SUS304 is used for the outer frame of the heat retaining device because it requires high heat resistance and rigidity capable of withstanding thermal deformation.
 加熱手段としては、誘導加熱式のヒーターが用いられた保温装置も適用されている。例えば、特許文献1には、黒鉛、Ta、Mo等の導電体と、その外側に周設した誘導コイルとからなり、導電体の外面が黒鉛繊維成形体、アルミナ等の断熱材で覆われた保温装置が開示されている。 As a heating means, a heat retaining device using an induction heating type heater is also applied. For example, Patent Document 1 includes a conductor such as graphite, Ta, and Mo, and an induction coil provided around the conductor, and the outer surface of the conductor is covered with a heat insulating material such as a graphite fiber molded body and alumina. A heat retaining device is disclosed.
 ところで、加熱手段として、電熱式のヒーターが用いられた保温装置においては、加熱用誘導コイルからの磁力により、外枠にも誘導電流が発生し、外枠自体が発熱して溶損し、あるいは変形する。保温装置の外枠が溶損すると、雰囲気中に金属汚染物質が導入されることとなりシリコンインゴットが汚染される。金属不純物は、光によって発生するキャリアの再結合のトラップ(捕獲)準位となってキャリアを消滅させ、変換効率(入射した光のエネルギーに対し、電気エネルギーに変換して取り出すことができるエネルギーの割合)を低下させるので、太陽電池の基板材として用いられる多結晶シリコンの製造においては特に厳重に管理されている。 By the way, in a heat retaining device using an electrothermal heater as a heating means, an induced current is also generated in the outer frame due to the magnetic force from the heating induction coil, and the outer frame itself generates heat and is melted or deformed. To do. When the outer frame of the heat retaining device is melted, metal contaminants are introduced into the atmosphere and the silicon ingot is contaminated. The metal impurity becomes a trap (capture) level of the recombination of carriers generated by light, annihilates the carrier, and the conversion efficiency (the energy that can be extracted by converting the incident light energy into electric energy) In the production of polycrystalline silicon used as a substrate material for solar cells, it is particularly strictly controlled.
 また、外枠が熱で変形すると、内部の断熱材も変形して割れ等の損傷が生じ、内部の温度環境が変化して安定した操業が行えず、シリコンインゴットに結晶欠陥やクラック等が誘発されるという問題もある。 In addition, when the outer frame is deformed by heat, the internal heat insulating material is also deformed and damage such as cracks occurs, the internal temperature environment changes, and stable operation cannot be performed, and crystal defects and cracks are induced in the silicon ingot. There is also the problem of being.
 一方、加熱手段として、誘導加熱式のヒーターが用いられた保温装置では、ヒーターの外側に誘導コイルが周設されているのでヒーターの交換が容易ではない。また、高さ方向における温度制御が難しいという問題がある。 On the other hand, in a heat retaining device using an induction heating type heater as a heating means, since an induction coil is provided around the heater, it is not easy to replace the heater. There is also a problem that temperature control in the height direction is difficult.
特開平2-30698号公報JP-A-2-30698
 本発明は、上述した問題のうち、特に、加熱手段として電熱式の多段ヒーターが用いられた保温装置における問題を解決するためになされたものである。この保温装置を対象とするのは、高さ方向における温度制御が容易で、内部の温度環境を安定した状態に維持し、操業を安定して行えるとともに、ヒーターの取替えが必要なときには容易に交換できる等の利点があるからである。 The present invention has been made in order to solve the above-mentioned problems, particularly in the case of a heat retaining device using an electrothermal multistage heater as a heating means. This thermal insulation device is targeted for easy temperature control in the height direction, maintaining the internal temperature environment in a stable state, enabling stable operation, and easy replacement when heater replacement is required. This is because there are advantages such as being able to.
 本発明の目的は、保温装置の外枠の溶損や熱による変形を防止することにより安定した操業を行って、金属不純物による汚染のない、太陽電池の基板材として好適な多結晶シリコンを効率よく製造することができるシリコンの電磁鋳造装置を提供することを目的としている。 The object of the present invention is to perform stable operation by preventing the outer frame of the heat retaining device from being melted or deformed by heat, and to efficiently make polycrystalline silicon suitable as a substrate material for solar cells free from contamination by metal impurities. An object of the present invention is to provide a silicon electromagnetic casting apparatus which can be manufactured well.
 本発明者らは、上記の課題を解決するために、保温装置を固定するために取り付けられている外枠の溶損の状態を詳細に検討した。 In order to solve the above problems, the present inventors have examined in detail the state of the outer frame attached to fix the heat retaining device.
 図3は、保温装置およびその周辺の概略構造と外枠における大略の溶損箇所を示す図で、(a)は全体の斜視図、(b)は(a)のI-I矢視断面図である。 FIGS. 3A and 3B are diagrams showing a schematic structure of the heat retaining device and its surroundings, and a rough melting point in the outer frame. FIG. 3A is a perspective view of the whole, and FIG. It is.
 図3に示すように、モールド11の外側に加熱用誘導コイル12が取り付けられ、モールド11の下方にインゴット19を保温するための保温装置13が設置されている。保温装置13は、加熱手段14(電熱式のヒーター)および断熱材15を有し、その外側を覆うように外枠16が取り付けられている。この外枠16は、4枚(面)のステンレス鋼製の板からなり、互いに隣接する2枚毎にそれぞれ絶縁材を挟んで金属製のボルト17で締結されている。絶縁材を介在させるのは、締結部の溶着を防ぐためである。なお、外枠16には、ヒーターの電極や、保温装置13内の温度を測定するための熱電対が取り付けられているが、ここでは図示していない。 As shown in FIG. 3, the induction coil 12 for heating is attached to the outside of the mold 11, and a heat retaining device 13 for retaining the ingot 19 is installed below the mold 11. The heat retaining device 13 includes a heating means 14 (electric heating type heater) and a heat insulating material 15, and an outer frame 16 is attached so as to cover the outside. The outer frame 16 is made of four (surface) stainless steel plates, and is fastened with metal bolts 17 with an insulating material interposed between each two adjacent frames. The reason why the insulating material is interposed is to prevent welding of the fastening portion. The outer frame 16 is provided with a heater electrode and a thermocouple for measuring the temperature in the heat retaining device 13, but is not shown here.
 モールド11と保温装置13の間のすき間には断熱材からなる保温ボード18が取り付けられている。 A heat insulation board 18 made of a heat insulating material is attached between the mold 11 and the heat insulation device 13.
 このような構造を有する保温装置において、外枠16を構成する4枚の板材のうち、誘導コイル12の支持部(図3(a)中に符号aを付した部分)の直下に位置する面(この面を、以下「B面」ともいう)の上方部(図3(a)中に破線で斜線を付した部位)で、特に溶損が大きい。また、4枚のステンレス鋼製の板をそれぞれ締結する金属製のボルト17のうち、最上段のボルト17(図3(a)中に丸印を付したボルト)の溶損が特に大きい。これは、誘導コイル12からの磁力により外枠16自体にも誘導電流が発生し、また、最上段の締結用ボルト17に集中して電流が流れるためである。 In the heat retaining device having such a structure, of the four plate members constituting the outer frame 16, a surface located immediately below the support portion of the induction coil 12 (the portion denoted by reference sign “a” in FIG. 3A). In the upper part (this surface is also referred to as “B surface” hereinafter) (parts hatched with a broken line in FIG. 3A), the melting damage is particularly large. Of the metal bolts 17 that respectively fasten the four stainless steel plates, the uppermost bolt 17 (the bolt marked with a circle in FIG. 3A) is particularly damaged. This is because an induced current is also generated in the outer frame 16 itself due to the magnetic force from the induction coil 12, and the current flows concentrated on the uppermost fastening bolt 17.
 保温装置の外枠や枠の締結用ボルトの溶損により引き起こされる問題点をまとめると以下のとおりである。
(a)溶損やそれに伴う変形が発生した外枠およびボルトの交換が必要になる。
(b)溶損により、外枠やボルトに含まれる金属が汚染物質として雰囲気中に導入され、シリコンインゴットが金属汚染の危機にさらされる。
(c)外枠の変形に伴って内部の断熱材に変形や割れ等の損傷が発生するので、断熱材の交換が必要になる。
(d)断熱材の損傷により保温装置内の温度環境が変化して、同一条件での鋳造ができなくなり、安定した操業が困難となる。
The problems caused by melting of the outer frame of the heat retaining device and the fastening bolts of the frame are summarized as follows.
(A) It is necessary to replace the outer frame and the bolt which have been melted and deformed accordingly.
(B) The metal contained in the outer frame and the bolt is introduced into the atmosphere as a contaminant by melting damage, and the silicon ingot is exposed to a risk of metal contamination.
(C) As the outer frame is deformed, damage such as deformation or cracking occurs in the internal heat insulating material, so that it is necessary to replace the heat insulating material.
(D) The temperature environment in the heat retaining device changes due to damage to the heat insulating material, making it impossible to perform casting under the same conditions, making stable operation difficult.
 これらの問題点のうち、(b)に起因してシリコンインゴットに金属汚染が生じると、この多結晶シリコンを基板材として構成した太陽電池の変換効率が低下するので、特に厳重な管理が必要である。この問題は、カーボン製の外枠を使用することにより回避することが可能であるが、外枠の材質をカーボンに替えても、ステンレス鋼の場合と同様に誘導電流により発熱して、カーボンの損耗が激しく、外枠の寿命が短くなると推測される。また、シリコンインゴットのカーボン濃度が上昇するという問題が発生する。 Among these problems, if metal contamination occurs in the silicon ingot due to (b), the conversion efficiency of a solar cell composed of this polycrystalline silicon as a substrate material is reduced, so that particularly strict management is required. is there. This problem can be avoided by using a carbon outer frame, but even if the material of the outer frame is changed to carbon, heat is generated by the induced current as in the case of stainless steel, and the carbon It is presumed that the wear of the outer frame is severe and the life of the outer frame is shortened. In addition, the carbon concentration of the silicon ingot increases.
 そこで、本発明者らは、保温装置の外枠の溶損を防止するために、外枠の材質をセラミックスに変更することを試みた。セラミックスは非導電性部材であるから、それ自体が発熱することはなく、上記問題点の解決が期待できるからである。 Therefore, the present inventors tried to change the material of the outer frame to ceramics in order to prevent melting of the outer frame of the heat retaining device. This is because ceramics is a non-conductive member, so that it does not generate heat, and a solution to the above problems can be expected.
 セラミックスとして汎用性のあるアルミナ質の板材を選択し、これを、保温装置の外枠全面の上部に取り付けて電磁鋳造を行った。前述のように、外枠の上部や、最上段のボルトの溶損が特に大きいからである。その結果、外枠やボルトの溶損が防止できることが確認できた。 汎 用 A versatile alumina plate was selected as the ceramic, and this was attached to the upper part of the entire outer frame of the heat retaining device for electromagnetic casting. This is because, as described above, the melt damage of the upper part of the outer frame and the uppermost bolt is particularly large. As a result, it was confirmed that the outer frame and bolts could be prevented from being melted.
 本発明はこのような知見に基づいてなされたもので、下記のシリコンの電磁鋳造装置を要旨とする。
 すなわち、軸方向の一部が周方向で複数に分割された導電性の無底冷却モールドと、このモールドを取り囲む誘導コイルと、前記モールドの下方に配置され、凝固したシリコンを徐冷する保温装置を有し、前記誘導コイルによる電磁誘導加熱により溶融したシリコンを下方に引き下げ凝固させるシリコンの電磁鋳造装置であって、前記保温装置の外枠の構成部材として非導電性部材が使用されていることを特徴とする電磁鋳造装置である。
The present invention has been made on the basis of such knowledge, and the gist thereof is the following silicon electromagnetic casting apparatus.
That is, a conductive bottomless cooling mold in which a part in the axial direction is divided into a plurality in the circumferential direction, an induction coil surrounding the mold, and a heat retaining device that is disposed below the mold and gradually cools solidified silicon. A silicon electromagnetic casting apparatus for lowering and solidifying molten silicon by electromagnetic induction heating by the induction coil, and a non-conductive member is used as a constituent member of the outer frame of the heat retaining apparatus An electromagnetic casting apparatus characterized by the above.
 本発明のシリコンの電磁鋳造装置においては、前記非導電性部材が、保温装置の外枠全面の上部のみに使用されていることとする実施の形態を採用してもよい。 In the silicon electromagnetic casting apparatus of the present invention, an embodiment may be adopted in which the nonconductive member is used only on the entire upper surface of the outer frame of the heat retaining device.
 前記の「外枠の上部」の具体的な寸法は、モールドの大きさ、誘導コイルに流れる電流の大きさ等により異なるが、断面の寸法が350mm×500mm程度の無底の水冷銅モールドを使用してシリコンインゴットを鋳造する場合であれば、誘導コイルの下端から200mmまでの部分である。外枠の上端からは60mmまでの部分に相当する。 The specific dimensions of the “upper part of the outer frame” vary depending on the size of the mold, the current flowing in the induction coil, etc., but use a bottomless water-cooled copper mold with a cross-sectional dimension of about 350 mm × 500 mm. In the case of casting a silicon ingot, it is a portion from the lower end of the induction coil to 200 mm. It corresponds to a portion up to 60 mm from the upper end of the outer frame.
 本発明のシリコンの電磁鋳造装置においては、前記非導電性部材が、保温装置の外枠の、前記誘導コイルの支持部の下方に位置する面のみに使用されていることとしてもよい。 In the silicon electromagnetic casting apparatus of the present invention, the non-conductive member may be used only on the surface of the outer frame of the heat retaining device located below the support portion of the induction coil.
 また、本発明のシリコンの電磁鋳造装置においては、前記非導電性部材としてアルミナ製または炭化珪素製の部材を使用することが望ましい。 In the silicon electromagnetic casting apparatus of the present invention, it is desirable to use a member made of alumina or silicon carbide as the non-conductive member.
 本発明のシリコンの電磁鋳造装置は、加熱用誘導コイルの下側に設置されている保温装置の外枠が非導電性部材で構成されている。この装置を使用すれば、保温装置の外枠の熱による溶損を防止して、金属不純物による炉内およびインゴットの汚染を防止し、変換効率を良好に維持できる太陽電池の基板材として好適な多結晶シリコンを製造することができる。また、外枠の溶損や変形に起因する断熱材の損傷を防止して、保温装置内の温度環境の変化を抑え、安定した操業が行える。
 さらに、外枠や断熱材の交換頻度を減少させることにより、操業効率の向上およびコスト低減に寄与できる。
In the silicon electromagnetic casting apparatus of the present invention, the outer frame of the heat retaining device installed on the lower side of the heating induction coil is made of a non-conductive member. If this device is used, it is suitable as a solar cell substrate material that prevents melting of the outer frame of the heat retaining device due to heat, prevents contamination of the furnace and ingot by metal impurities, and maintains good conversion efficiency. Polycrystalline silicon can be produced. In addition, it is possible to prevent damage to the heat insulating material due to melting or deformation of the outer frame, suppress changes in the temperature environment in the heat retaining device, and perform stable operation.
Furthermore, by reducing the replacement frequency of the outer frame and the heat insulating material, it is possible to contribute to improvement in operation efficiency and cost reduction.
図1は、本発明の電磁鋳造装置に設置されている、非導電性部材が構成部材として使用された外枠を有する保温装置の概略構成例を示す縦断面図である。FIG. 1 is a longitudinal sectional view showing a schematic configuration example of a heat retaining device having an outer frame in which a nonconductive member is used as a constituent member, which is installed in an electromagnetic casting apparatus of the present invention. 図2は、多結晶シリコンの製造に好適な電磁鋳造装置の構成例を模式的に示す図である。FIG. 2 is a diagram schematically illustrating a configuration example of an electromagnetic casting apparatus suitable for manufacturing polycrystalline silicon. 図3は、保温装置およびその周辺の概略構造と外枠における大略の溶損箇所を示す図で、図3(a)は全体の斜視図、図3(b)は図3(a)のI-I矢視断面図である。FIG. 3 is a view showing a schematic structure of the heat retaining device and its surroundings, and a rough melting point in the outer frame. FIG. 3 (a) is a perspective view of the whole, and FIG. 3 (b) is an I of FIG. 3 (a). It is -I arrow sectional drawing. 図4は、実施例の結果で、シリコンインゴットにおける金属汚染量の調査結果を示す図である。FIG. 4 is a diagram showing the results of the example, and the results of investigating the amount of metal contamination in the silicon ingot. 図5は、保温装置の外枠の上部でのアルミナ製部材の使用がライフタイムに及ぼす影響を示す図である。FIG. 5 is a diagram showing the influence of the use of the alumina member on the upper part of the outer frame of the heat retaining device on the lifetime.
 本発明のシリコンの電磁鋳造装置は、軸方向の一部が周方向で複数に分割された導電性の無底冷却モールドと、このモールドを取り囲む誘導コイルと、前記モールドの下方に配置され、凝固したシリコンを徐冷する保温装置を有する電磁鋳造装置であることを前提としている。 An electromagnetic casting apparatus for silicon according to the present invention includes a conductive bottomless cooling mold in which a part of the axial direction is divided into a plurality of parts in the circumferential direction, an induction coil surrounding the mold, and a lower part of the mold. It is assumed that the electromagnetic casting apparatus has a heat retaining device for slowly cooling the silicon.
 このような電磁鋳造装置を前提とするのは、太陽電池の基板材として用いられる多結晶シリコンを製造するに際し、モールド内で、溶融シリコンとモールドとをほとんど接触させずに鋳造を行い、モールドからの金属汚染がなく、変換効率を良好に維持できるシリコンインゴットを製造することができるからである。モールドの材質として高純度材料を使用する必要がなく、また、連続して鋳造することができるので、製造コストの大幅な低下も可能である。 The premise of such an electromagnetic casting apparatus is that, when producing polycrystalline silicon used as a substrate material for a solar cell, casting is performed in a mold with almost no contact between the molten silicon and the mold. This is because it is possible to manufacture a silicon ingot that is free from metal contamination and can maintain good conversion efficiency. It is not necessary to use a high-purity material as the mold material, and since it can be continuously cast, the manufacturing cost can be significantly reduced.
 本発明の電磁鋳造装置の特徴は、前記保温装置の外枠の構成部材として非導電性部材が使用されていることにある。
 この保温装置は、溶融シリコンを下方に引き下げて凝固させたシリコンインゴットの急激な冷却を防ぐために、適度な熱を加えて徐冷する装置であって、前述のように、インゴットを包囲するように配置された加熱手段(電熱式の多段ヒーター)と、その外側に設置された断熱材、ならびに、断熱材の外周に取り付けられた外枠とで構成されている。
A feature of the electromagnetic casting apparatus of the present invention is that a non-conductive member is used as a constituent member of the outer frame of the heat retaining device.
This heat retaining device is a device that gradually cools by applying moderate heat to prevent rapid cooling of the silicon ingot that has been solidified by lowering the molten silicon downward, and as described above, surrounds the ingot. The heating means (electric heating type multi-stage heater) arranged, a heat insulating material installed on the outside thereof, and an outer frame attached to the outer periphery of the heat insulating material.
 この外枠の構成部材として非導電性部材を使用するのは、従来のようにステンレス鋼製の外枠とした場合の、外枠自体の発熱、溶損と、それに起因する金属汚染物質の発生およびシリコンインゴットの汚染を防ぐためである。外枠自体の発熱は、外枠を構成する材質が導電性であって、加熱用誘導コイルからの磁力により外枠にも誘導電流が流れることによるものであるが、外枠の構成部材を非導電性部材とすることにより、外枠における誘導電流の発生をなくすことができる。 The non-conductive member is used as a component of the outer frame because the outer frame itself is heated and melted when it is made of stainless steel as in the conventional case, and metal contaminants are generated due to it. This is to prevent contamination of the silicon ingot. Heat generation of the outer frame itself is due to the fact that the material constituting the outer frame is conductive, and an induced current flows through the outer frame due to the magnetic force from the heating induction coil. By using a conductive member, it is possible to eliminate the generation of induced current in the outer frame.
 非導電性部材とは、電気伝導率が十分に小さい、いわゆる絶縁物をいう。非導電性部材としては、外枠の構成部材としての適用を考えると、各種のセラミックスがあげられる。 The non-conductive member is a so-called insulator having a sufficiently low electric conductivity. As the non-conductive member, various ceramics can be used in consideration of application as a constituent member of the outer frame.
 セラミックスとは、成形、焼成などの工程を経て得られる非金属無機質の固体材料と定義されており、各種耐火物や工業用陶磁器などの他、従来は窯業製品の範疇に加えられてきたガラス、セメント、煉瓦等も含まれる。さらに、原料として珪酸を主成分とする天然の酸化物系の鉱物を用いる従来のセラミック製品の他に、化学的に合成された高純度の酸化物(アルミナ、ジルコニアなど)や非酸化物系(炭化物、窒化物など)の原料を使用し、特殊な成形加工や焼成を行うファインセラミックスと称される製品も含まれる。 Ceramics is defined as a non-metallic inorganic solid material obtained through processes such as molding and firing. In addition to various refractories and industrial ceramics, glass that has conventionally been added to the category of ceramic products, Cement, brick, etc. are also included. In addition to conventional ceramic products that use natural oxide-based minerals based on silicic acid as the raw material, chemically synthesized high-purity oxides (alumina, zirconia, etc.) and non-oxides ( Also included are products called fine ceramics, which use special materials such as carbides and nitrides, and perform special molding and firing.
 非導電性部材として何を選択するかについては、特に限定しない。外枠は、インゴットの加熱手段とその外側に設置された断熱材の外周に配置して、加熱手段および断熱材を支持、固定し、保温装置の外殻を形成するために使用される部材であり、それに必要な材質機能を備えるものであればいずれも適用可能である。前記必要な材質機能とは、加熱手段等を保持できる強度を有すること、高耐熱性であること、熱により変形しない(もしくは、多少変形しても強度が高い)材質および形状を有することなどである。 There is no particular limitation on what is selected as the non-conductive member. The outer frame is a member used to form the outer shell of the heat retaining device by placing the outer frame on the outer periphery of the heating means of the ingot and the heat insulating material installed on the outside thereof, supporting and fixing the heating means and the heat insulating material. Yes, any one having a material function necessary for it can be applied. The necessary material function includes having a strength capable of holding a heating means, etc., having high heat resistance, and having a material and a shape that does not deform due to heat (or has high strength even if it is slightly deformed). is there.
 本発明の電磁鋳造装置において、保温装置の外枠の構成部材として使用される非導電性部材をアルミナ製部材または炭化珪素製部材とすることが望ましい。 In the electromagnetic casting apparatus of the present invention, it is desirable that the non-conductive member used as a constituent member of the outer frame of the heat retaining device is an alumina member or a silicon carbide member.
 アルミナ(Al)は代表的な酸化物系のセラミックスであり、耐熱性、耐熱衝撃性、耐食性、耐摩耗性、電気絶縁性に優れ、硬く、機械的強度が高く、比較的安価であるなど、多くの優れた性質を備えている。セラミックスに共通する“脆い”という欠点があるが、必要に応じて、厚みを増したり、補強材を加えたり、割れにくい形状に変更するなどの対策を講じることにより、本発明の電磁鋳造装置における保温装置の外枠の構成部材として十分適用が可能である。 Alumina (Al 2 O 3 ) is a representative oxide-based ceramic, and has excellent heat resistance, thermal shock resistance, corrosion resistance, wear resistance, and electrical insulation, is hard, has high mechanical strength, and is relatively inexpensive. There are many excellent properties. Although there is a drawback of “brittleness” common to ceramics, by taking measures such as increasing the thickness, adding a reinforcing material, or changing to a shape that is difficult to break as necessary, It can be sufficiently applied as a constituent member of the outer frame of the heat retaining device.
 なお、最近では、アルミナの靱性改善を目的として、Al-TiC系、Al-ZrO系など、複合材料系の研究開発がなされているが、ここでいう「アルミナ製部材」は、アルミナ(Al)に限定されず、Alを主要成分とする複合材料も含むものとする。 Recently, for the purpose of improving the toughness of alumina, research and development of composite materials such as Al 2 O 3 —TiC and Al 2 O 3 —ZrO 2 has been conducted. “Is not limited to alumina (Al 2 O 3 ), but also includes composite materials containing Al 2 O 3 as a main component.
 炭化珪素(SiC)は、炭化系のセラミックスであり、優れた高温強度、高い硬度、耐食性が特徴であり、耐熱、耐食、耐摩耗部品や研磨剤として利用される場合が多い。高価なので利用しにくいが、機能的には、本発明の電磁鋳造装置における保温装置の外枠の構成部材として適しており、後述するように、外枠の一部への適用という利用の仕方も考えられる。 Silicon carbide (SiC) is a carbonized ceramic, and is characterized by excellent high-temperature strength, high hardness, and corrosion resistance, and is often used as a heat-resistant, corrosion-resistant, wear-resistant part or abrasive. Although it is expensive and difficult to use, it is functionally suitable as a component of the outer frame of the heat retaining device in the electromagnetic casting apparatus of the present invention, and as described later, it can also be applied to a part of the outer frame. Conceivable.
 図1は、本発明の電磁鋳造装置に設置されている、非導電性部材が構成部材として使用された外枠を有する保温装置の概略構成例を示す縦断面図である。図1に示すように、モールド11の外側に加熱用誘導コイル12が取り付けられ、モールド11の下方にインゴット19を保温するための保温装置13が設置されている。 FIG. 1 is a longitudinal sectional view showing a schematic configuration example of a heat retention device having an outer frame in which a non-conductive member is used as a constituent member, which is installed in the electromagnetic casting apparatus of the present invention. As shown in FIG. 1, an induction coil 12 for heating is attached to the outside of the mold 11, and a heat retaining device 13 for retaining the ingot 19 is installed below the mold 11.
 保温装置13は、加熱手段14(電熱式のヒーター)および断熱材15を有し、その外側を覆うようにアルミナ製の外枠16が取り付けられている。保温装置13の外観は、前記図3に示したように、通常、モールド11の形状に合わせて方形であり、4枚のアルミナ製の板材が取り付けられている。なお、外枠16には、ヒーターの電極や、保温装置13内の温度を測定するための熱電対が取り付けられているが、ここでは図示していない。 The heat retaining device 13 has a heating means 14 (electric heating heater) and a heat insulating material 15, and an outer frame 16 made of alumina is attached so as to cover the outside. As shown in FIG. 3, the external appearance of the heat retaining device 13 is usually rectangular according to the shape of the mold 11, and four alumina plates are attached. The outer frame 16 is provided with a heater electrode and a thermocouple for measuring the temperature in the heat retaining device 13, but is not shown here.
 図1に示した例では、ヒーターは3段であり、各段において、複数のヒーターが配置されている。各ヒーターはそれぞれ独立して温度制御が可能であり、保温装置13内の高さ方向における温度を高精度で制御できるように構成されている。 In the example shown in FIG. 1, the heater has three stages, and a plurality of heaters are arranged in each stage. Each heater can be independently controlled in temperature, and is configured to control the temperature in the height direction in the heat retaining device 13 with high accuracy.
 本発明のシリコンの電磁鋳造装置においては、非導電性部材を保温装置の外枠全面の上部のみに使用する実施の形態を採用してもよい。 In the silicon electromagnetic casting apparatus of the present invention, an embodiment in which a non-conductive member is used only on the entire upper surface of the outer frame of the heat retaining device may be adopted.
 ステンレス鋼製の外枠を使用した場合、誘導コイル12の支持部の直下に位置する面(B面)の上部の溶損、および、ステンレス鋼製の板を締結する金属製のボルトのうちの最上段のボルトの溶損が特に大きいので、この部分での溶損を防止できれば、保温装置の外枠および締結用ボルトにおける溶損のほとんどを防止できるからである。 When a stainless steel outer frame is used, of the upper part of the surface (B surface) located directly below the support portion of the induction coil 12 and the metal bolts that fasten the stainless steel plate This is because the melting damage of the uppermost bolt is particularly large, and if the melting damage in this portion can be prevented, most of the melting damage in the outer frame of the heat retaining device and the fastening bolt can be prevented.
 この場合は、非導電性部材による代替範囲が外枠の一部に限られるので、高価な炭化珪素(SiC)の適用も十分考えられる。 In this case, since the range of replacement by the non-conductive member is limited to a part of the outer frame, the application of expensive silicon carbide (SiC) is sufficiently conceivable.
 また、本発明のシリコンの電磁鋳造装置においては、非導電性部材を、保温装置の外枠の、誘導コイル支持部の下方に位置する面(B面)のみに使用する実施の形態を採用することとしてもよい。これにより、B面の上方部に生じる特に大きい溶損を防止することができる。 In the silicon electromagnetic casting apparatus of the present invention, an embodiment in which the non-conductive member is used only on the surface (B surface) located below the induction coil support portion of the outer frame of the heat retaining device is employed. It is good as well. Thereby, the especially big melting loss which arises in the upper part of B surface can be prevented.
 以上説明したように、非導電性部材が構成部材として使用された外枠を有する保温装置を備えた本発明の電磁鋳造装置を使用すれば、保温装置の外枠の溶損や熱による変形、さらには断熱材の損傷を防止して、安定した操業を行い、金属不純物による汚染のない、変換効率を良好に維持できる太陽電池の基板材として好適な多結晶シリコンを効率よく製造することができる。 As described above, if the electromagnetic casting apparatus of the present invention provided with a heat retaining device having an outer frame in which a non-conductive member is used as a constituent member, the outer frame of the heat retaining device is deformed by melting or heat, Furthermore, damage to the heat insulating material can be prevented, stable operation can be performed, and there can be efficiently produced polycrystalline silicon suitable as a substrate material for a solar cell that is free from contamination by metal impurities and can maintain good conversion efficiency. .
 (実施例1)
 図1に例示した構成を有し、外枠全面の上部(誘導コイルの下端から200mmまでの部分)のみにアルミナ製部材を使用し、それ以外はステンレス鋼(SUS304)とした外枠を有する保温装置が設置された本発明の電磁鋳造装置(水冷銅モールドの断面寸法:345mm×345mm)を使用してシリコンインゴット(長さ4m)を製造し、インゴットの金属汚染量を調査した。アルミナ製部材としては、Al98%(厚さ15mm)の部材を使用し、必要な加工を施した後、治具によりステンレス鋼製の部材と連設した。
Example 1
1 has the configuration illustrated in FIG. 1 and uses an alumina member only on the upper part of the entire outer frame (the portion from the lower end of the induction coil to 200 mm), and the other is a heat insulating material having an outer frame made of stainless steel (SUS304). A silicon ingot (length 4 m) was manufactured using the electromagnetic casting apparatus of the present invention (cross-sectional dimension of a water-cooled copper mold: 345 mm × 345 mm) in which the apparatus was installed, and the amount of metal contamination of the ingot was investigated. As the alumina member, an Al 2 O 3 98% (thickness 15 mm) member was used, and after necessary processing, it was continuously provided with a stainless steel member using a jig.
 なお、比較のためにステンレス鋼(SUS304)製の外枠を有する保温装置が設置された電磁鋳造装置を使用した場合についても同様の調査を行った。調査したインゴット数はそれぞれ5本(比較例:A~E、本発明例:F~J)とし、それぞれのインゴットの長手方向5箇所の平均値をとることとした。 For comparison, the same investigation was performed when an electromagnetic casting apparatus provided with a heat retaining device having an outer frame made of stainless steel (SUS304) was used. The number of ingots investigated was 5 (comparative examples: A to E, examples of the invention: F to J), and the average value at 5 locations in the longitudinal direction of each ingot was taken.
 金属汚染量の測定は、それぞれのインゴットの長手方向5箇所における外周部と中心部からサンプルを採取して、すべて溶解した後、ICP-MS(Inductively  Coupled  Plasma-Mass Spectroscopy;誘導結合高周波プラズマ分光分析)を用いてFe、CrおよびNiの分析を行い、それらの合計量として求めた。 The amount of metal contamination is measured by collecting samples from the outer periphery and the center in the longitudinal direction of each ingot and dissolving them, and then ICP-MS (Inductively Coupled Plasma-Mass Spectroscopy; inductively coupled high-frequency plasma spectroscopy analysis) ) Was used to analyze Fe, Cr and Ni, and the total amount thereof was obtained.
 図4は、シリコンインゴットにおける金属汚染量の調査結果を示す図である。図4において、縦軸の金属汚染量は、比較例のインゴットAにおける汚染量を1として、それに対する比で表している。 FIG. 4 is a diagram showing the investigation results of the amount of metal contamination in the silicon ingot. In FIG. 4, the amount of metal contamination on the vertical axis is expressed as a ratio relative to the amount of contamination in the ingot A of the comparative example being 1.
 図4から明らかなように、本発明の電磁鋳造装置を使用することによるインゴットに対する金属汚染の改善効果は極めて顕著であり、汚染量は平均で数十分の一以下に低減した。これは、保温装置の外枠の上部にアルミナ製部材を使用することにより、外枠および外枠締結用のボルトの溶損がなくなり、雰囲気中への金属の導入が抑えられたことによるものと考えられる。 As is clear from FIG. 4, the effect of improving metal contamination on the ingot by using the electromagnetic casting apparatus of the present invention is extremely remarkable, and the amount of contamination is reduced to several tenths or less on average. This is because the use of an alumina member at the upper part of the outer frame of the heat retaining device eliminates melting damage of the outer frame and bolts for fastening the outer frame, and suppresses the introduction of metal into the atmosphere. Conceivable.
 (実施例2)
 図1に例示した構成を有し、外枠全面の上部(誘導コイルの下端から200mmまでの部分)のみにアルミナ製部材を使用し、それ以外はステンレス鋼(SUS304)とした外枠を有する保温装置が設置された本発明の電磁鋳造装置(水冷銅モールドの断面寸法:345mm×345mm)を使用してシリコンインゴット(長さ4m)を製造し、得られたインゴットから切り出したシリコン基板のライフタイムを測定した。アルミナ製部材としては、Al98%(厚さ15mm)を使用し、必要な加工を施した後、治具によりステンレス鋼製の部材と連設した。なお、比較のためにステンレス鋼(SUS304)製の外枠を有する保温装置が設置された電磁鋳造装置を使用した場合についても同様の調査を行った。
(Example 2)
1 has the configuration illustrated in FIG. 1 and uses an alumina member only on the upper part of the entire outer frame (the portion from the lower end of the induction coil to 200 mm), and the other is a heat insulating material having an outer frame made of stainless steel (SUS304). A silicon ingot (length 4 m) is manufactured using the electromagnetic casting apparatus of the present invention (cross-sectional dimension of a water-cooled copper mold: 345 mm × 345 mm) in which the apparatus is installed, and the lifetime of the silicon substrate cut out from the obtained ingot Was measured. As the alumina member, Al 2 O 3 98% (thickness 15 mm) was used, and after necessary processing, it was continuously provided with a stainless steel member using a jig. For comparison, the same investigation was performed when an electromagnetic casting apparatus provided with a heat retaining device having an outer frame made of stainless steel (SUS304) was used.
 ライフタイムを測定したのは、ライフタイムにより、シリコン基板の結晶性を電気的に評価し、当該シリコン基板を用いて太陽電池を構成したときの変換効率をある程度評価できるからである。ライフタイムが長い(向上する)ということは、太陽電池としての変換効率が高いことを意味する。ライフタイムの測定は、反射マイクロ波を用いて光導伝減衰により測定するμ-PCD法により行った。なお、ここで測定したライフタイムは、抵抗率が1~2Ω・cmのp型半導体としたときのライフタイムである。 The reason why the lifetime is measured is that the crystallinity of the silicon substrate can be electrically evaluated by the lifetime, and the conversion efficiency when a solar cell is configured using the silicon substrate can be evaluated to some extent. That the lifetime is long (improves) means that the conversion efficiency as a solar cell is high. The lifetime was measured by the μ-PCD method in which the reflection microwave was used to measure by optical propagation attenuation. The lifetime measured here is a lifetime when a p-type semiconductor having a resistivity of 1 to 2 Ω · cm is used.
 図5は、保温装置の外枠の上部でのアルミナ製部材の使用がライフタイムに及ぼす影響を示す図である。図5において、ライフタイムは、保温装置の外枠にステンレス鋼を使用した比較例の電磁鋳造装置により製造したシリコンインゴットから切り出したシリコン基板のライフタイムを基準(1.0)として、それに対する比率で表示した。 FIG. 5 is a diagram showing the influence of the use of an alumina member on the upper part of the outer frame of the heat retaining device on the lifetime. In FIG. 5, the lifetime is the ratio of the lifetime of the silicon substrate cut out from the silicon ingot manufactured by the electromagnetic casting apparatus of the comparative example using stainless steel as the outer frame of the heat retaining device to the reference (1.0). Displayed.
 図5から明らかなように、外枠全面の上部にアルミナ製部材を使用した本発明の電磁鋳造装置により製造したシリコンインゴットのライフタイムは、実施前に比べて、1.2倍に向上することが確認できた。すなわち、本発明の電磁鋳造装置によれば、変換効率が高い、太陽電池の基板材として好適な多結晶シリコンを製造することができる。 As can be seen from FIG. 5, the lifetime of the silicon ingot manufactured by the electromagnetic casting apparatus of the present invention using the alumina member on the entire upper surface of the outer frame is improved by 1.2 times compared to before implementation. Was confirmed. That is, according to the electromagnetic casting apparatus of the present invention, polycrystalline silicon suitable for a solar cell substrate material having high conversion efficiency can be produced.
 本発明のシリコンの電磁鋳造装置によれば、加熱用誘導コイルの下側に設置されている保温装置の外枠の熱による溶損を防止して、金属不純物による炉内およびインゴットの汚染を防止し、変換効率を良好に維持できる太陽電池の基板材として好適な多結晶シリコンを製造することができる。また、外枠の溶損や変形に起因する断熱材の損傷を防止して、保温装置内の温度環境の変化を抑え、安定した操業が行える。
 したがって、本発明は、太陽電池の製造分野において有効に利用することができ、自然エネルギー利用技術の進展に大きく寄与することができる。
According to the electromagnetic casting apparatus for silicon according to the present invention, the outer frame of the heat retaining device installed under the induction coil for heating is prevented from being melted by heat, thereby preventing contamination of the furnace and ingot with metal impurities. Thus, it is possible to produce polycrystalline silicon suitable as a substrate material for a solar cell that can maintain good conversion efficiency. In addition, it is possible to prevent damage to the heat insulating material due to melting or deformation of the outer frame, suppress changes in the temperature environment in the heat retaining device, and perform stable operation.
Therefore, the present invention can be effectively used in the manufacturing field of solar cells, and can greatly contribute to the progress of natural energy utilization technology.
1:密閉容器、 
4:支持台、 6:均熱筒、 
7:溶融シリコン、 
9:原料投入機、 10:発熱体、 11:モールド、 
12:加熱用誘導コイル、 13:保温装置、 14:加熱手段、 
15:断熱材、 16:外枠、 17:ボルト、 
18:保温ボード、 19:インゴット
 
1: closed container,
4: support stand, 6: soaking tube,
7: Molten silicon,
9: Raw material charging machine, 10: Heating element, 11: Mold,
12: induction coil for heating, 13: heat retention device, 14: heating means,
15: heat insulating material, 16: outer frame, 17: bolt,
18: Thermal insulation board, 19: Ingot

Claims (4)

  1.  軸方向の一部が周方向で複数に分割された導電性の無底冷却モールドと、このモールドを取り囲む誘導コイルと、前記モールドの下方に配置され、凝固したシリコンを徐冷する保温装置を有し、前記誘導コイルによる電磁誘導加熱により溶融したシリコンを下方に引き下げ凝固させるシリコンの電磁鋳造装置であって、
     前記保温装置の外枠の構成部材として非導電性部材が使用されていることを特徴とするシリコンの電磁鋳造装置。
    A conductive bottomless cooling mold having a part in the axial direction divided into a plurality of parts in the circumferential direction, an induction coil surrounding the mold, and a heat retaining device that is disposed below the mold and gradually cools the solidified silicon. And a silicon electromagnetic casting apparatus for lowering and solidifying the molten silicon by electromagnetic induction heating by the induction coil,
    A silicon electromagnetic casting apparatus, wherein a non-conductive member is used as a constituent member of the outer frame of the heat retaining device.
  2.  前記非導電性部材が、保温装置の外枠全面の上部のみに使用されていることを特徴とする請求項1に記載のシリコンの電磁鋳造装置。 2. The silicon electromagnetic casting apparatus according to claim 1, wherein the non-conductive member is used only on the entire upper surface of the outer frame of the heat retaining device.
  3.  前記非導電性部材が、保温装置の外枠の、前記誘導コイルの支持部の下方に位置する面のみに使用されていることを特徴とする請求項1に記載のシリコンの電磁鋳造装置。 2. The silicon electromagnetic casting apparatus according to claim 1, wherein the non-conductive member is used only on a surface of the outer frame of the heat retaining device positioned below the support portion of the induction coil. 3.
  4.  前記非導電性部材が、アルミナ製または炭化珪素製の部材であることを特徴とする請求項1~3のいずれかに記載のシリコンの電磁鋳造装置。
     
    4. The silicon electromagnetic casting apparatus according to claim 1, wherein the non-conductive member is a member made of alumina or silicon carbide.
PCT/JP2010/006744 2010-08-16 2010-11-17 Electromagnetic casting device for silicon WO2012023165A1 (en)

Applications Claiming Priority (2)

Application Number Priority Date Filing Date Title
JP2010-181552 2010-08-16
JP2010181552A JP2012041209A (en) 2010-08-16 2010-08-16 Electromagnetic casting device for silicon

Publications (1)

Publication Number Publication Date
WO2012023165A1 true WO2012023165A1 (en) 2012-02-23

Family

ID=45604840

Family Applications (1)

Application Number Title Priority Date Filing Date
PCT/JP2010/006744 WO2012023165A1 (en) 2010-08-16 2010-11-17 Electromagnetic casting device for silicon

Country Status (3)

Country Link
JP (1) JP2012041209A (en)
TW (1) TW201209231A (en)
WO (1) WO2012023165A1 (en)

Citations (7)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
JPH0230698A (en) * 1988-04-15 1990-02-01 Osaka Titanium Co Ltd Casting device of silicon
JPH06285589A (en) * 1993-03-31 1994-10-11 Sumitomo Sitix Corp Method for casting silicon
JPH07138012A (en) * 1993-11-16 1995-05-30 Sumitomo Sitix Corp Device for casting silicon
JPH10101319A (en) * 1996-09-24 1998-04-21 Sumitomo Sitix Corp Silicon casting method
WO2006088037A1 (en) * 2005-02-17 2006-08-24 Sumco Solar Corporation Silicon casting device and production method for silicon substrate
JP2008174397A (en) * 2007-01-16 2008-07-31 Sumco Solar Corp Casting method for polycrystalline silicon
JP2009046339A (en) * 2007-08-17 2009-03-05 Sumco Solar Corp Silicon casting device

Patent Citations (7)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
JPH0230698A (en) * 1988-04-15 1990-02-01 Osaka Titanium Co Ltd Casting device of silicon
JPH06285589A (en) * 1993-03-31 1994-10-11 Sumitomo Sitix Corp Method for casting silicon
JPH07138012A (en) * 1993-11-16 1995-05-30 Sumitomo Sitix Corp Device for casting silicon
JPH10101319A (en) * 1996-09-24 1998-04-21 Sumitomo Sitix Corp Silicon casting method
WO2006088037A1 (en) * 2005-02-17 2006-08-24 Sumco Solar Corporation Silicon casting device and production method for silicon substrate
JP2008174397A (en) * 2007-01-16 2008-07-31 Sumco Solar Corp Casting method for polycrystalline silicon
JP2009046339A (en) * 2007-08-17 2009-03-05 Sumco Solar Corp Silicon casting device

Also Published As

Publication number Publication date
TW201209231A (en) 2012-03-01
JP2012041209A (en) 2012-03-01

Similar Documents

Publication Publication Date Title
JP5040521B2 (en) Silicon casting equipment
KR101063250B1 (en) Graphite Crucible for Silicon Electromagnetic Induction Melting
KR101641746B1 (en) Molten glass carrier facility element and glass production system
KR100564770B1 (en) apparatus for continuously casting an low electroconductive material by induction
CN102658362A (en) Water cooling copper crucible directional freezing method for superhigh-temperature Nb-Si alloy
WO2012020462A1 (en) Electromagnetic casting apparatus for silicon
JP5959084B2 (en) Controlled directional solidification of silicon.
KR20070095130A (en) A crucible for an electromagnetic continuous casting apparatus with high melting efficiency and product yield
CN106048355B (en) The preparation method of Nb Si based ultra-high temperature alloy pigs
JP4664967B2 (en) Silicon casting apparatus and silicon substrate manufacturing method
WO2012023165A1 (en) Electromagnetic casting device for silicon
CN109930023B (en) Manufacturing method of large-tonnage chromium-zirconium-copper alloy
JP2012101963A (en) Electromagnetic casting apparatus and method for silicon ingot
CN105246620B (en) Covering flux and method for silicon purifying
WO2012020463A1 (en) Electromagnetic casting apparatus for silicon
JP2012166979A (en) Electromagnetic casting method and electromagnetic casting apparatus of polycrystalline silicon
KR101457831B1 (en) Ring-shaped clean metal mold
KR20120031421A (en) Electromagnetic casting method for silicon ingot
CN217844710U (en) Novel crucible with electromagnetic penetration and magnetic suspension capabilities
JP2012041211A (en) Polycrystalline silicon wafer and method for casting the same
JP2013049586A (en) Continuous casting method of silicon ingot
KR20120021136A (en) Electromagnetic casting apparatus for silicon ingot
JP2012036067A (en) Electromagnetic casting device of silicon ingot
KR20120023488A (en) Apparatus and method for continuous casting of silicon ingot
WO2012020461A1 (en) Device and method for producing silicon ingot

Legal Events

Date Code Title Description
121 Ep: the epo has been informed by wipo that ep was designated in this application

Ref document number: 10856123

Country of ref document: EP

Kind code of ref document: A1

NENP Non-entry into the national phase

Ref country code: DE

122 Ep: pct application non-entry in european phase

Ref document number: 10856123

Country of ref document: EP

Kind code of ref document: A1