JPH07138012A - Device for casting silicon - Google Patents

Device for casting silicon

Info

Publication number
JPH07138012A
JPH07138012A JP31114693A JP31114693A JPH07138012A JP H07138012 A JPH07138012 A JP H07138012A JP 31114693 A JP31114693 A JP 31114693A JP 31114693 A JP31114693 A JP 31114693A JP H07138012 A JPH07138012 A JP H07138012A
Authority
JP
Japan
Prior art keywords
ingot
casting
heat
silicon
container
Prior art date
Legal status (The legal status is an assumption and is not a legal conclusion. Google has not performed a legal analysis and makes no representation as to the accuracy of the status listed.)
Pending
Application number
JP31114693A
Other languages
Japanese (ja)
Inventor
Ritsuo Kawamura
律夫 川村
Satoshi Maezono
聡 前薗
Hideyuki Mizumoto
秀幸 水本
Current Assignee (The listed assignees may be inaccurate. Google has not performed a legal analysis and makes no representation or warranty as to the accuracy of the list.)
Nippon Steel Corp
Original Assignee
Sumitomo Sitix Corp
Priority date (The priority date is an assumption and is not a legal conclusion. Google has not performed a legal analysis and makes no representation as to the accuracy of the date listed.)
Filing date
Publication date
Application filed by Sumitomo Sitix Corp filed Critical Sumitomo Sitix Corp
Priority to JP31114693A priority Critical patent/JPH07138012A/en
Publication of JPH07138012A publication Critical patent/JPH07138012A/en
Pending legal-status Critical Current

Links

Classifications

    • CCHEMISTRY; METALLURGY
    • C23COATING METALLIC MATERIAL; COATING MATERIAL WITH METALLIC MATERIAL; CHEMICAL SURFACE TREATMENT; DIFFUSION TREATMENT OF METALLIC MATERIAL; COATING BY VACUUM EVAPORATION, BY SPUTTERING, BY ION IMPLANTATION OR BY CHEMICAL VAPOUR DEPOSITION, IN GENERAL; INHIBITING CORROSION OF METALLIC MATERIAL OR INCRUSTATION IN GENERAL
    • C23CCOATING METALLIC MATERIAL; COATING MATERIAL WITH METALLIC MATERIAL; SURFACE TREATMENT OF METALLIC MATERIAL BY DIFFUSION INTO THE SURFACE, BY CHEMICAL CONVERSION OR SUBSTITUTION; COATING BY VACUUM EVAPORATION, BY SPUTTERING, BY ION IMPLANTATION OR BY CHEMICAL VAPOUR DEPOSITION, IN GENERAL
    • C23C14/00Coating by vacuum evaporation, by sputtering or by ion implantation of the coating forming material
    • C23C14/22Coating by vacuum evaporation, by sputtering or by ion implantation of the coating forming material characterised by the process of coating
    • C23C14/24Vacuum evaporation
    • CCHEMISTRY; METALLURGY
    • C23COATING METALLIC MATERIAL; COATING MATERIAL WITH METALLIC MATERIAL; CHEMICAL SURFACE TREATMENT; DIFFUSION TREATMENT OF METALLIC MATERIAL; COATING BY VACUUM EVAPORATION, BY SPUTTERING, BY ION IMPLANTATION OR BY CHEMICAL VAPOUR DEPOSITION, IN GENERAL; INHIBITING CORROSION OF METALLIC MATERIAL OR INCRUSTATION IN GENERAL
    • C23CCOATING METALLIC MATERIAL; COATING MATERIAL WITH METALLIC MATERIAL; SURFACE TREATMENT OF METALLIC MATERIAL BY DIFFUSION INTO THE SURFACE, BY CHEMICAL CONVERSION OR SUBSTITUTION; COATING BY VACUUM EVAPORATION, BY SPUTTERING, BY ION IMPLANTATION OR BY CHEMICAL VAPOUR DEPOSITION, IN GENERAL
    • C23C14/00Coating by vacuum evaporation, by sputtering or by ion implantation of the coating forming material
    • C23C14/22Coating by vacuum evaporation, by sputtering or by ion implantation of the coating forming material characterised by the process of coating
    • C23C14/24Vacuum evaporation
    • C23C14/243Crucibles for source material

Abstract

PURPOSE:To continuously and efficiently cast silicon improved in the quality and prevented in the generation of cracks by disposing a prescribed casting section, a heat-insulating container, and an ingot-lowering means for inserting a support bar into the heat-insulating container and subsequently lowering the ingot. CONSTITUTION:A bottom-less crusible 22 whose axially directional part is divided into plural pieces in the circumferential direction is disposed, and silicon is melted in the crucible 22 by an electromagnetic induction method in a state not contacting with the inner wall of the crucible. The obtained silicon molten liquid 11 is supplied in a casting section 20, downward lowered and simultaneously solidified. The obtained bar-like ingot 10 is lowered, guided into a cylindrical heat-insulating container 30 and subsequently subjected to heat insulation. The support bar 41 of an ingot-lowering means 40 is inserted into the lower part of a container 30. The ingot 10 is supported with a support bed 42 from the lower direction, and the support bar 41 is simultaneously pulled down in the lower direction to continuously produce the ingot 10.

Description

【発明の詳細な説明】Detailed Description of the Invention

【0001】[0001]

【産業上の利用分野】本発明は、太陽電池等に使用され
るシリコンの多結晶凝固鋳塊を製造するシリコン鋳造装
置に関し、特に、電磁溶解を用いてその多結晶凝固鋳塊
を連続的に製造する連続鋳造装置に関する。
BACKGROUND OF THE INVENTION 1. Field of the Invention The present invention relates to a silicon casting apparatus for producing a polycrystalline solidified ingot of silicon used in a solar cell or the like, and in particular, the polycrystalline solidified ingot is continuously produced by electromagnetic melting. The present invention relates to a continuous casting device for manufacturing.

【0002】[0002]

【従来の技術】太陽電池等の素材として使用されるシリ
コンの多結晶凝固鋳塊の製造方法として、電磁溶解によ
る連続鋳造方法が、例えば特開平2−30698号公報
により提案されている。電磁溶解によるシリコンの連続
鋳造方法は、誘導コイルと、その中に設置された導電性
の無底るつぼとを使用する。無底るつぼは、軸方向の少
なくとも一部が周方向に複数分割されている。無底るつ
ぼ内に装入された原料シリコンは、誘導コイルによる電
磁誘導により、るつぼ内壁に非接触の状態で溶解する。
そして、無底るつぼ内に原料シリコンを供給しながら、
無底るつぼ内の融液を下方へ徐々に引き下げて凝固させ
ることにより、シリコンの多結晶凝固鋳塊が連続的に製
造される。
2. Description of the Related Art As a method for producing a polycrystalline solidified ingot of silicon used as a material for a solar cell or the like, a continuous casting method by electromagnetic melting has been proposed, for example, in Japanese Patent Laid-Open No. 2-30698. The continuous casting method of silicon by electromagnetic melting uses an induction coil and a conductive bottomless crucible installed therein. At least a part of the bottomless crucible in the axial direction is divided into a plurality in the circumferential direction. The raw material silicon charged in the bottomless crucible is melted in a non-contact state with the inner wall of the crucible by electromagnetic induction by the induction coil.
Then, while supplying the raw material silicon into the bottomless crucible,
A polycrystalline solidified ingot of silicon is continuously produced by gradually lowering and solidifying the melt in the bottomless crucible.

【0003】このような電磁誘導によるシリコンの連続
鋳造方法においては、無底るつぼに原料シリコンを供給
し続けている限り、鋳造が続行され、このことが鋳造能
率の大幅向上に寄与しているわけであるが、製造設備等
による制約から極端に長い鋳塊を製造することは不可能
である。そのため、連続的に製造される鋳塊を一定の長
さずつ採取して別の場所へ運び出すことが必要になり、
その具体的方法として、例えば特開平2−51493号
公報には、鋳造部の下方で鋳塊を外周側から支持しつつ
下方へ降下させてチャンバーの下方へ搬出し、チャンバ
ーの下方に設けたカッターでその鋳塊を一定長に切断す
るものが開示されている。
In such a continuous casting method of silicon by electromagnetic induction, as long as the raw material silicon is continuously supplied to the bottomless crucible, the casting is continued, which contributes to a significant improvement in casting efficiency. However, it is impossible to manufacture an extremely long ingot due to restrictions of manufacturing equipment and the like. Therefore, it becomes necessary to collect ingots that are continuously manufactured by a certain length and carry them to another place.
As a specific method thereof, for example, in Japanese Patent Laid-Open No. 2-51493, a cutter provided below the chamber is supported while supporting the ingot below the casting part, lowering it downward, and carrying it out below the chamber. Discloses that the ingot is cut into a certain length.

【0004】[0004]

【発明が解決しようとする課題】特開平2−51493
号公報に開示された方法によると、鋳造中に鋳塊を切断
して別の場所へ運び出すことができるので、鋳造を停止
する必要がない。従って、鋳造能率を低下させる懸念が
ない。しかし、鋳片を切断するため、切断部の上下で鋳
塊の外周面を強固に保持しなければならない。
[Patent Document 1] Japanese Patent Application Laid-Open No. 2-51493
According to the method disclosed in the publication, the ingot can be cut and carried to another place during casting, so that it is not necessary to stop the casting. Therefore, there is no concern that the casting efficiency will be reduced. However, in order to cut the ingot, the outer peripheral surface of the ingot must be firmly held above and below the cut portion.

【0005】本発明者らの実験によると、鋳塊の外周面
を保持することに起因して大きな機械的応力が鋳塊に作
用することが判明した。すなわち、鋳塊の外周面、すな
わち鋳塊肌は、滑らかでなく大きな凹凸があり、そのよ
うな鋳塊肌を強制的に保持した場合、装置センターに対
して鋳塊がずれ、鋳塊に無理な力が加わることが主因
で、鋳塊に大きな機械的応力が加わるのである。そし
て、この大きな機械的応力により、鋳塊が割れるとか引
き下げ不能になるといった操業上重大な問題が発生して
いた。
According to experiments conducted by the present inventors, it has been found that a large mechanical stress acts on the ingot due to holding the outer peripheral surface of the ingot. That is, the outer peripheral surface of the ingot, that is, the ingot surface is not smooth and has large unevenness, and when such an ingot surface is forcibly held, the ingot is displaced with respect to the device center, and the ingot is impossible. A large mechanical stress is applied to the ingot mainly due to the application of such a force. Then, due to this large mechanical stress, a serious operational problem such as cracking of the ingot or inability to pull it down occurred.

【0006】また、鋳造部−フロア間の中間位置にカッ
ターを設けるため、鋳造部からカッターまでの距離が制
限され、カッターのところでは鋳塊が充分に冷却されて
いない。このような状態でカッターによる切断を行う
と、水等の潤滑剤により切断部が急冷され、鋳塊に中心
軸方向の大きな温度勾配が生じる。その結果、鋳塊割れ
や結晶品質の悪化を招いていた。
Further, since the cutter is provided at an intermediate position between the casting part and the floor, the distance from the casting part to the cutter is limited, and the ingot is not sufficiently cooled at the cutter. When cutting with a cutter in such a state, the cutting portion is rapidly cooled by a lubricant such as water, and a large temperature gradient in the central axis direction is generated in the ingot. As a result, ingot cracking and deterioration of crystal quality were caused.

【0007】更に、この方法による連続鋳造では、不純
物濃度に問題のあることも判った。すなわち、この方法
では、図3に示すように、鋳造長さ5mまでは変換効率
に変化はないが、それ以上の長さにおいては変換効率の
低下が認められ、鋳造長さ10mでは5m以下に比して
変換効率が約5%低下する。この原因は、原料シリコン
中の不純物が偏析によって融液中に吐き出され、鋳造を
続けるに従って融液中の不純物濃度が上昇するためと考
えられる。
Further, it has been found that there is a problem with the impurity concentration in continuous casting by this method. That is, in this method, as shown in FIG. 3, there is no change in the conversion efficiency up to a casting length of 5 m, but a decrease in the conversion efficiency is observed at a casting length of more than 5 m, and at a casting length of 10 m, it becomes 5 m or less. In comparison, the conversion efficiency is reduced by about 5%. It is considered that this is because impurities in the raw material silicon are discharged into the melt due to segregation, and the impurity concentration in the melt increases as the casting is continued.

【0008】本発明の目的は、これらの問題を全て解決
できるシリコン鋳造装置を提供することにある。また、
本発明の他の目的は、鋳造能率を実質的に低下させるこ
となく、これらの問題を全て解決できるシリコン鋳造装
置を提供することにある。
An object of the present invention is to provide a silicon casting apparatus capable of solving all of these problems. Also,
Another object of the present invention is to provide a silicon casting apparatus capable of solving all of these problems without substantially lowering the casting efficiency.

【0009】[0009]

【課題を解決するための手段】本発明のシリコン鋳造装
置は、誘導コイル内に、軸方向の少なくとも一部が周方
向に複数分割された導電性の無底るつぼを設置し、該無
底るつぼ内でシリコンをるつぼ内壁に対して非接触の状
態で電磁誘導により溶解し、下方へ下降する融液を凝固
させて棒状の鋳塊となす鋳造部と、該鋳造部の下方にセ
ットされ、鋳造部から下方へ降下する鋳塊が導入されて
これを保温する筒状の保温容器と、該保温容器のセット
位置下方に設置され、保温容器の内部に下方から支持棒
を挿入し、その上端の支持ヘッドで鋳塊を下方から支持
しながら支持棒を下方へ引き抜いて鋳塊を降下させる鋳
塊降下手段とを具備する。
In the silicon casting apparatus of the present invention, a conductive bottomless crucible having at least a part in the axial direction divided into a plurality of parts in the circumferential direction is installed in the induction coil, and the bottomless crucible. Inside of the crucible, the silicon is melted by electromagnetic induction in a state of non-contact with the inner wall of the crucible, and the casting part is set below the casting part, which is set below the casting part by solidifying the melt that descends downward to solidify the melt. The tubular incubator that introduces the ingot that descends downward from the part and keeps it warm, and is installed below the set position of the insulative container, inserts the support rod from below into the insulative container, and Ingot lowering means for lowering the ingot by pulling down the support rod while supporting the ingot from below with the support head.

【0010】望ましくは、前記保温容器が複数装備さ
れ、それぞれが鋳造部に着脱可能な移動式であると共
に、前記支持棒の支持ヘッドが支持棒本体から分離可能
であり、更に、その支持ヘッドを保持する保持機構が保
温容器の下部に設けられた請求項2に記載の構成を採用
する。
Preferably, a plurality of the heat-retaining containers are provided, each of which is movable so as to be attachable to and detachable from a casting part, and the supporting head of the supporting rod can be separated from the supporting rod main body. The structure according to claim 2 is adopted in which the holding mechanism for holding is provided in the lower portion of the heat insulating container.

【0011】[0011]

【作用】本発明のシリコン鋳造装置においては、鋳造部
で連続製造される鋳塊を支持棒で下方から支持しながら
降下させて、保温容器内に引き込む。その引き込みが完
了する際に原料シリコンの供給を停止し、製造された鋳
塊を保温容器内に完全に収容して冷却する。
In the silicon casting apparatus of the present invention, the ingot continuously produced in the casting section is lowered while being supported from below by the support rod and drawn into the heat retaining container. When the drawing is completed, the supply of the raw material silicon is stopped, and the manufactured ingot is completely housed in the heat insulation container and cooled.

【0012】製造された鋳塊を下方から支持するので、
鋳塊に作用する機械的応力が減少する。その鋳塊を保温
容器内で充分な時間をかけて冷却でき、しかも、切断に
伴う潤滑剤の使用がないので、鋳片の中心軸方向の温度
勾配が非常に小さくなる。保温容器に収容され得る長さ
で鋳塊を停止するので、融液中の不純物濃度の上昇が抑
えられる。
Since the manufactured ingot is supported from below,
The mechanical stress acting on the ingot is reduced. The ingot can be cooled in the heat-retaining container for a sufficient time, and since no lubricant is used for cutting, the temperature gradient in the central axis direction of the slab becomes extremely small. Since the ingot is stopped at a length that can be accommodated in the heat insulation container, the increase of the impurity concentration in the melt can be suppressed.

【0013】望ましい構成を採用した場合は、鋳塊降下
手段に依存せずに、保温容器の内部に鋳塊を保持でき
る。そして、鋳塊が収容された保温容器を鋳造部の下方
から別の場所へ移動させ、別の場合で鋳塊を冷却する
間、鋳造部の下方に別の保温容器をセットすることによ
り、冷却の間も鋳造を行うことができる。
When a desirable structure is adopted, the ingot can be held inside the heat retaining container without depending on the ingot lowering means. Then, by moving the heat insulating container containing the ingot from the lower part of the casting part to another place, and cooling the ingot in another case, by setting another heat insulating container below the casting part, cooling is performed. Casting can also be performed during.

【0014】[0014]

【実施例】以下に本発明の実施例を図面に基づいて説明
する。図1は本発明を実施したシリコン鋳造の装置の一
例についてその構成を示す縦断面図である。
Embodiments of the present invention will be described below with reference to the drawings. FIG. 1 is a vertical cross-sectional view showing the structure of an example of a silicon casting apparatus according to the present invention.

【0015】本鋳造装置は、鋳塊10を連続製造する鋳
造部20と、その下方に例えば数mの間隔をあけて設置
された鋳塊降下手段40と、この間に水平方向に並列し
て配置された2本の鉛直な保温容器30,30とを具備
する。
The present casting apparatus includes a casting unit 20 for continuously producing the ingot 10, an ingot lowering unit 40 installed below the casting unit 20 with an interval of, for example, several meters, and a horizontal arrangement in parallel between them. The two vertical heat insulation containers 30 and 30 are provided.

【0016】鋳造部20は、誘導コイル21と、その内
側に設置された無底るつぼ22と、無底るつぼ22の下
方に設置した保温炉23とを有する。無底るつぼ22
は、銅製の水冷筒体で、上部を残して周方向に複数分割
されている。これらはチャンバー24内に設けられ、チ
ャンバー24外には原料投入機25が設けられている。
The casting part 20 has an induction coil 21, a bottomless crucible 22 installed inside the induction coil 21, and a heat insulation furnace 23 installed below the bottomless crucible 22. Bottomless crucible 22
Is a water-cooled tubular body made of copper, and is divided into a plurality of pieces in the circumferential direction except for the upper part. These are provided inside the chamber 24, and a raw material feeder 25 is provided outside the chamber 24.

【0017】鋳塊降下手段40は、鉛直な支持棒41を
有する。支持棒41の上端部は、鋳塊10を直接支持す
る支持ヘッド42であり、下方の支持棒本体43に対し
て着脱可能である。支持棒本体43は、枠体44により
軸方向に可動に支持され、下方の駆動機構46により軸
方向に昇降駆動される。
The ingot lowering means 40 has a vertical support rod 41. The upper end of the support rod 41 is a support head 42 that directly supports the ingot 10, and is attachable to and detachable from the lower support rod body 43. The support rod main body 43 is movably supported in the axial direction by a frame body 44, and is vertically moved by a lower drive mechanism 46.

【0018】保温容器30,30はいずれも保温機能を
有する円筒体である。各保温容器30は、水平なレール
32上に載置された台車33によって上部を支持され、
台車33の走行により鋳造部20の直下とその側方との
間を直線移動する。保温容器30の上端開口部は、シー
ル34によってチャンバー24内と気密に連通される一
方、上蓋35によって気密に閉止される。保温容器30
の下端部には、支持ヘッド42を外側からクランプして
これを保温容器30内に保持する保持機構36が設けら
れている。保温容器30の下端開口部は、シール37に
よって支持棒41の外周面との間がシールされる一方、
下蓋38によって気密に閉止される。
Each of the heat retaining containers 30, 30 is a cylindrical body having a heat retaining function. The upper portion of each heat insulation container 30 is supported by a cart 33 placed on a horizontal rail 32,
As the trolley 33 travels, it linearly moves between the area directly below the casting portion 20 and the side thereof. The upper end opening of the heat insulating container 30 is airtightly communicated with the inside of the chamber 24 by the seal 34, and is closed airtightly by the upper lid 35. Insulation container 30
A holding mechanism 36 for clamping the support head 42 from the outside and holding the support head 42 in the heat insulating container 30 is provided at the lower end of the. While the lower end opening of the heat insulating container 30 is sealed between the outer peripheral surface of the support rod 41 by the seal 37,
The lower lid 38 is airtightly closed.

【0019】鋳塊降下手段40の側方には、保温手段3
0,30の移動方向に所定の間隔をあけて、鋳塊取出手
段50が設置されている。鋳塊取出手段50は、ガイド
51に沿って昇降駆動される昇降ヘッド52を有する。
昇降ヘッド52は、保温容器30内に保持された支持ヘ
ッド42と連結され、支持ヘッド42上の鋳塊10の荷
重を支えながら、支持ヘッド42を降下させて、保温容
器30から鋳塊10を下方へ引き抜く。
On the side of the ingot lowering means 40, the heat insulating means 3 is provided.
The ingot extracting means 50 is installed at a predetermined interval in the moving direction of 0 and 30. The ingot extracting means 50 has an elevating head 52 that is vertically moved along a guide 51.
The elevating head 52 is connected to the support head 42 held in the heat retaining container 30, and lowers the support head 42 while supporting the load of the ingot 10 on the support head 42 to remove the ingot 10 from the heat retaining container 30. Pull it down.

【0020】次に、本鋳造装置を用いたシリコン鋳造方
法を説明する。
Next, a silicon casting method using this casting apparatus will be described.

【0021】鋳造部20と鋳塊降下手段40との間に一
方の保温手段30を位置させ、その保温容器30を上方
の鋳造部20のチャンバー24と気密に連結する。鋳塊
降下手段40の支持棒41の先端部に支持ヘッド42を
取り付け、支持棒41を上昇させて、支持ヘッド42を
保温容器30内に挿入する。支持ヘッド42を保持機構
36によりクラップした後、支持ヘッド42を支持棒本
体43から切り離し、支持棒本体43を一旦降下させ
る。
One heat retaining means 30 is located between the casting section 20 and the ingot lowering means 40, and the heat retaining container 30 is hermetically connected to the chamber 24 of the upper casting section 20. The support head 42 is attached to the tip end portion of the support rod 41 of the ingot lowering means 40, the support rod 41 is raised, and the support head 42 is inserted into the heat retaining container 30. After the support head 42 is clapped by the holding mechanism 36, the support head 42 is separated from the support rod main body 43, and the support rod main body 43 is once lowered.

【0022】保温容器30の下端開口部を下蓋38によ
って閉止した後、チャンバー24内および保温容器30
内をアルゴンガスに置換する。このガスは、シリコン融
液に対し不活性なものであれば種類を問わない。置換法
は、真空置換、上方置換、下方置換のいずれでもよい。
After the lower end opening of the heat retaining container 30 is closed by the lower lid 38, the inside of the chamber 24 and the heat retaining container 30 are closed.
The inside is replaced with argon gas. The gas may be of any type as long as it is inert to the silicon melt. The substitution method may be vacuum substitution, upward substitution, or downward substitution.

【0023】アルゴン置換が完了した後、その圧力を1
気圧より若干大きくし、下蓋38を取り外す。チャンバ
ー24内および保温容器30内はアルゴン弱加圧状態の
ため、下蓋38を外しても大気が保温容器30内に侵入
することはない。
After the argon substitution is complete, the pressure is reduced to 1
The pressure is made slightly higher than the atmospheric pressure, and the lower lid 38 is removed. Since the inside of the chamber 24 and the inside of the heat retaining container 30 are in a weakly pressurized state of argon, the atmosphere does not enter the heat retaining container 30 even if the lower lid 38 is removed.

【0024】支持棒本体43を再び上昇させて保温容器
30内の支持ヘッド42と接続する。支持棒本体43を
更に上昇させて、これをチャンバー24内に下方から挿
入する。支持ヘッド42が無底るつぼ22内に挿入され
るまで上昇を続けて、無底るつぼ22の底を形成する。
保温容器30内に支持棒本体43が挿入されると、その
外周面と保温容器30の内周面との間がシール37によ
ってシールされるので、大気侵入がより確実に防止され
る。
The support rod body 43 is raised again and connected to the support head 42 in the heat insulation container 30. The support rod body 43 is further raised and inserted into the chamber 24 from below. Continue to raise until the support head 42 is inserted into the bottomless crucible 22 to form the bottom of the bottomless crucible 22.
When the support rod main body 43 is inserted into the heat retaining container 30, the outer peripheral surface of the support rod main body 43 and the inner peripheral surface of the heat retaining container 30 are sealed by the seal 37, so that the invasion of the atmosphere can be prevented more reliably.

【0025】原料投入機25により無底るつぼ22内に
原料シリコンを投入し、誘導コイル21に電力を供給し
て、無底るつぼ22内の支持ヘッド42上にシリコン融
液11を形成する。このとき、シリコン融液11は電磁
力により無底るつぼ22の内面に対して非接触の状態に
保持される。
Raw material silicon is put into the bottomless crucible 22 by the raw material feeder 25, and electric power is supplied to the induction coil 21 to form the silicon melt 11 on the support head 42 in the bottomless crucible 22. At this time, the silicon melt 11 is held in a non-contact state with the inner surface of the bottomless crucible 22 by the electromagnetic force.

【0026】原料投入機25により原料シリコンの投入
を続けながら、支持棒41を徐々に降下させる。これに
より、無底るつぼ22内に連続的に形成されるシリコン
融液11が、無底るつぼ22の下方に下降しながら順次
凝固して鋳塊10になる。このとき、シリコン融液11
が無底るつぼ22内の同じ高さに位置するように、支持
棒41の降下速度が制御される。かくして、鋳塊10が
連続的に製造される。
While the raw material charging machine 25 continues to charge the raw material silicon, the support rod 41 is gradually lowered. As a result, the silicon melt 11 continuously formed in the bottomless crucible 22 is gradually solidified while descending below the bottomless crucible 22 to become the ingot 10. At this time, the silicon melt 11
The descending speed of the support rod 41 is controlled so that the two are located at the same height in the bottomless crucible 22. Thus, the ingot 10 is continuously manufactured.

【0027】製造された鋳塊10は、保温炉23を通過
する。保温炉23は、鋳塊10の1300〜500℃に
おける温度勾配が35℃/cm以下、望ましくは30℃
/cm以下となるように、中心軸方向の温度勾配が制御
される。
The manufactured ingot 10 passes through the heat insulation furnace 23. The heat insulation furnace 23 has a temperature gradient of 35 ° C./cm or less at 1300 to 500 ° C. of the ingot 10, preferably 30 ° C.
The temperature gradient in the central axis direction is controlled so as to be not more than / cm.

【0028】鋳造が進むと、鋳塊10は保温容器30内
に侵入する。保温容器30は、鋳塊10の中心軸方向の
温度勾配を小さくするために、保温機能を有している
が、保温材のみによる保温でも、抵抗加熱等による発熱
を含む保温のいずれでもよい。
As the casting proceeds, the ingot 10 enters the heat retaining container 30. The heat-retaining container 30 has a heat-retaining function in order to reduce the temperature gradient in the central axis direction of the ingot 10. However, the heat-retaining container 30 may be either heat-retaining only with a heat-retaining material or heat-retaining including heat generation by resistance heating or the like.

【0029】保温容器30内に鋳塊10が挿入され得る
最大長さの近くまで鋳造が進むと、原料投入機25から
の原料投入を停止し、誘導コイル21の出力を低下させ
て、無底るつぼ22内のシリコン融液11を凝固させ
る。凝固が完了した後、微速で鋳塊10を降下させる。
これは、鋳塊温度の急激な変化が鋳塊割れの原因となる
ためである。このときも、保温炉23には前記と同様の
温度勾配が付与されている。
When the casting proceeds to the vicinity of the maximum length at which the ingot 10 can be inserted into the heat insulation container 30, the raw material charging from the raw material charging machine 25 is stopped, the output of the induction coil 21 is reduced, and the bottomless bottom is reached. The silicon melt 11 in the crucible 22 is solidified. After the solidification is completed, the ingot 10 is slowly moved down.
This is because a rapid change in ingot temperature causes ingot cracking. Also at this time, the temperature gradient similar to the above is given to the heat retention furnace 23.

【0030】鋳塊10が保温容器30内に完全に挿入さ
れると、支持ヘッド42を保持機構36によりクランプ
して、鋳塊10を保温容器30内に保持する。支持ヘッ
ド42を支持棒本体43から分離し、支持棒本体43の
みを下方に降下させて保温容器30から抜き出す。保温
容器30の下端開口部を下蓋38によって閉止する。
When the ingot 10 is completely inserted into the heat retaining container 30, the support head 42 is clamped by the holding mechanism 36 to retain the ingot 10 in the heat retaining container 30. The support head 42 is separated from the support rod main body 43, and only the support rod main body 43 is lowered to be pulled out from the heat retaining container 30. The lower end opening of the heat insulating container 30 is closed by the lower lid 38.

【0031】内部に鋳塊10を保持した保温容器30を
鋳造部20から分離して、鋳造部20の直下から鋳塊取
出手段50の直上まで側方へ移動させる。鋳造部20の
直下には、内部が空の別の保温容器30を移動させて、
前記と同様にアルゴン置換を行い、鋳造を再開する。
The heat insulation container 30 holding the ingot 10 inside is separated from the casting part 20 and moved laterally from just below the casting part 20 to just above the ingot removing means 50. Immediately below the casting part 20, another warm container 30 having an empty inside is moved,
Argon replacement is performed in the same manner as above, and casting is restarted.

【0032】鋳塊取出手段50の直上に保温容器30が
移動すると同時に、その保温容器30の上端開口部を上
蓋35によって閉止し、内部の鋳塊10を冷却ガスの循
環等により充分な時間をかけて冷却する。鋳塊10が取
出可能な温度まで冷却されると、下蓋38を取り外し、
昇降ヘッド52を上昇させて、これを支持ヘッド42と
連結する。保持機構36によるクランプを解除して、昇
降ヘッド52を降下させることにより、鋳塊10が保温
容器30の下方に抜き出される。
At the same time that the heat-retaining container 30 moves to just above the ingot extracting means 50, the upper end opening of the heat-retaining container 30 is closed by the upper lid 35, so that the ingot 10 inside has sufficient time for circulation of cooling gas. Cool over. When the ingot 10 is cooled to a temperature at which it can be taken out, the lower lid 38 is removed,
The elevating head 52 is raised and connected to the supporting head 42. By releasing the clamp by the holding mechanism 36 and lowering the elevating head 52, the ingot 10 is extracted below the heat retaining container 30.

【0033】以上の操作を繰り返し、横断面が210m
m角、長さが2000mmの鋳塊を20本連続的に製造
した。その結果、機械的な障害は何ら発生せず、製造さ
れた鋳塊から作製されたセルの光電変換効率は、すべて
の鋳塊で等しく、均一な結晶品質が得られた。
The above operation was repeated to obtain a cross section of 210 m.
Twenty ingots each having a square of m and a length of 2000 mm were continuously manufactured. As a result, no mechanical obstacles occurred, and the photoelectric conversion efficiency of the cells produced from the produced ingots was the same in all the ingots, and uniform crystal quality was obtained.

【0034】鋳造能率については、鋳造を中断するが、
鋳塊の製造と、製造された鋳塊の冷却を同時並行して行
うため、鋳造を続けながら鋳塊を切断する場合と比べて
大きな差は認められなかった。
Regarding the casting efficiency, although casting is suspended,
Since the production of the ingot and the cooling of the produced ingot are performed in parallel at the same time, no significant difference was observed as compared with the case of cutting the ingot while continuing the casting.

【0035】保温容器30の本数は適宜増やすことがで
きる。また、その複数の保温容器30を循環使用するた
めの容器移動手段についても、上記実施例に限らず種々
のものを採用することができる。
The number of the heat retaining containers 30 can be appropriately increased. Further, the container moving means for circulating and using the plurality of heat retaining containers 30 is not limited to the above-mentioned embodiment, and various ones can be adopted.

【0036】図2は本発明の他の実施例を示す平面図で
ある。
FIG. 2 is a plan view showing another embodiment of the present invention.

【0037】本実施例は、3本の保温容器30A,30
B,30Cを装備している。これらは、鉛直軸39の回
りに対称的に配置され、その回りを回転して、鋳造部2
0の直下に順番に移動するレボルバー構造になってい
る。この構造によれば、保温容器に冷却中の鋳塊が残っ
ている状態で鋳造が終了しても、即座に鋳造を再開でき
る。
In this embodiment, three heat insulation containers 30A, 30 are used.
Equipped with B and 30C. These are arranged symmetrically around the vertical axis 39 and rotate around them to make the casting part 2
It has a revolver structure that moves directly below 0. According to this structure, even if the casting is completed while the ingot being cooled remains in the heat retaining container, the casting can be immediately restarted.

【0038】すなわち、鋳造が終了し、鋳造部20直下
の保温容器30Aに鋳塊10が挿入されたときに、保温
容器30B内の鋳塊10の冷却が終了していなくても、
保温容器30A,30B,30Cを回転させ、保温容器
30Cを鋳造部20の直下に移動させれば、鋳造作業を
再開できるのである。
That is, when casting is completed and the ingot 10 is inserted into the heat retaining container 30A immediately below the casting portion 20, even if the ingot 10 in the heat retaining container 30B is not completely cooled,
If the heat retaining containers 30A, 30B, 30C are rotated and the heat retaining container 30C is moved directly below the casting part 20, the casting operation can be restarted.

【0039】従って、ロスタイムが完全になくなり、鋳
造能率が更に向上する。
Therefore, the loss time is completely eliminated, and the casting efficiency is further improved.

【0040】[0040]

【発明の効果】以上の説明から明らかなように、本発明
のシリコン鋳造装置は、電磁溶解により連続的に製造さ
れる鋳塊を下方から支え、更に、その鋳塊を保温容器に
引き込むと共に、保温容器に収容し得る長さで鋳塊を停
止することにより、鋳塊の割れを防ぎ、且つ、その品質
を高めることができる。
As is apparent from the above description, the silicon casting apparatus of the present invention supports the ingot continuously manufactured by electromagnetic melting from below and further pulls the ingot into the heat insulation container, By stopping the ingot at a length that can be accommodated in the heat retaining container, cracking of the ingot can be prevented and its quality can be improved.

【0041】請求項2に記載の望ましい構成を採用した
場合は、鋳造を停止することによる鋳造能率の低下を可
及的に抑えることができる。
When the desirable configuration according to the second aspect is adopted, it is possible to suppress the reduction of the casting efficiency due to stopping the casting as much as possible.

【図面の簡単な説明】[Brief description of drawings]

【図1】本発明を実施したシリコン鋳造装置の一例につ
いてその構成を示す側面図である。
FIG. 1 is a side view showing the configuration of an example of a silicon casting apparatus embodying the present invention.

【図2】本発明の他の実施例を示す平面図である。FIG. 2 is a plan view showing another embodiment of the present invention.

【図3】鋳造長さが品質に与える影響を示す図表であ
る。
FIG. 3 is a chart showing the influence of casting length on quality.

【符号の説明】[Explanation of symbols]

10 鋳塊 11 シリコン融液 20 鋳造部 21 誘導コイル 22 無底るつぼ 23 保温炉 25 原料投入機 30 保温容器 33 台車 36 保持機構 40 鋳塊降下手段 41 支持棒 42 支持ヘッド 50 鋳塊取出手段 DESCRIPTION OF SYMBOLS 10 Ingot 11 Silicon melt 20 Casting part 21 Induction coil 22 Bottomless crucible 23 Insulating furnace 25 Raw material charging machine 30 Insulating container 33 Cart 36 Holding mechanism 40 Ingot lowering means 41 Support rod 42 Supporting head 50 Ingot removing means

Claims (2)

【特許請求の範囲】[Claims] 【請求項1】 誘導コイル内に、軸方向の少なくとも一
部が周方向に複数分割された導電性の無底るつぼを設置
し、該無底るつぼ内でシリコンをるつぼ内壁に対して非
接触の状態で電磁誘導により溶解し、下方へ下降する融
液を凝固させて棒状の鋳塊となす鋳造部と、 該鋳造部の下方にセットされ、鋳造部から下方へ降下す
る鋳塊が導入されてこれを保温する筒状の保温容器と、 該保温容器のセット位置下方に設置され、保温容器の内
部に下方から支持棒を挿入し、その上端の支持ヘッドで
鋳塊を下方から支持しながら支持棒を下方へ引き抜いて
鋳塊を降下させる鋳塊降下手段とを具備することを特徴
とするシリコン鋳造装置。
1. An induction coil is provided with a conductive bottomless crucible having at least a part in the axial direction divided into a plurality in the circumferential direction, and silicon is placed in the bottomless crucible without contacting the inner wall of the crucible. In the state, it is melted by electromagnetic induction, and the casting part that solidifies the melt that descends downward to form a rod-shaped ingot, and the casting part that is set below the casting part and that descends downward from the casting part is introduced. A cylindrical heat-retaining container that keeps it warm, and a support rod that is installed below the set position of the heat-retaining container, inserts a support rod into the heat-retaining container from below, and supports the ingot while supporting it from below with the support head at the upper end. An ingot lowering means for pulling a rod downward to lower an ingot, the silicon casting apparatus.
【請求項2】 前記保温容器が複数装備され、それぞれ
が鋳造部に着脱可能な移動式であると共に、前記支持棒
の支持ヘッドが支持棒本体から分離可能であり、更に、
その支持ヘッドを保持する保持機構が保温容器の下部に
設けられていることを特徴とする請求項1に記載のシリ
コン鋳造装置。
2. A plurality of the heat insulating containers are provided, each of which is movable so as to be attachable to and detachable from a casting part, and a supporting head of the supporting rod is separable from a supporting rod main body.
The silicon casting apparatus according to claim 1, wherein a holding mechanism for holding the support head is provided in a lower portion of the heat insulating container.
JP31114693A 1993-11-16 1993-11-16 Device for casting silicon Pending JPH07138012A (en)

Priority Applications (1)

Application Number Priority Date Filing Date Title
JP31114693A JPH07138012A (en) 1993-11-16 1993-11-16 Device for casting silicon

Applications Claiming Priority (1)

Application Number Priority Date Filing Date Title
JP31114693A JPH07138012A (en) 1993-11-16 1993-11-16 Device for casting silicon

Publications (1)

Publication Number Publication Date
JPH07138012A true JPH07138012A (en) 1995-05-30

Family

ID=18013670

Family Applications (1)

Application Number Title Priority Date Filing Date
JP31114693A Pending JPH07138012A (en) 1993-11-16 1993-11-16 Device for casting silicon

Country Status (1)

Country Link
JP (1) JPH07138012A (en)

Cited By (6)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
WO2009047879A1 (en) * 2007-10-09 2009-04-16 Panasonic Corporation Film forming method and film forming apparatus
WO2012023165A1 (en) * 2010-08-16 2012-02-23 株式会社Sumco Electromagnetic casting device for silicon
JP2012512126A (en) * 2008-12-15 2012-05-31 ピラー エルティーディー. Process for producing polycrystalline silicon ingot by induction method and equipment for carrying out the process
US20120240635A1 (en) * 2009-12-14 2012-09-27 Kcc Corporation Apparatus and method for extracting a silicon ingot
CN109930196A (en) * 2018-12-18 2019-06-25 沈阳真空技术研究所有限公司 The vacuum oriented consolidation furnace of bottom filling and its application method
CN110158147A (en) * 2019-06-21 2019-08-23 合智熔炼装备(上海)有限公司 A kind of monocrystalline orientation hot investment casting furnace automatic heat preserving cover board arrangement

Cited By (11)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
WO2009047879A1 (en) * 2007-10-09 2009-04-16 Panasonic Corporation Film forming method and film forming apparatus
JP2012512126A (en) * 2008-12-15 2012-05-31 ピラー エルティーディー. Process for producing polycrystalline silicon ingot by induction method and equipment for carrying out the process
US20120240635A1 (en) * 2009-12-14 2012-09-27 Kcc Corporation Apparatus and method for extracting a silicon ingot
CN102770952A (en) * 2009-12-14 2012-11-07 株式会社Kcc Apparatus and method for extracting a silicon ingot
JP2013512180A (en) * 2009-12-14 2013-04-11 ケーシーシー コーポレーション Silicon ingot drawing apparatus and method
US9017478B2 (en) * 2009-12-14 2015-04-28 Kcc Corporation Apparatus and method for extracting a silicon ingot made by an electromagnetic continuous casting method
CN102770952B (en) * 2009-12-14 2016-06-22 株式会社Kcc The extraction element of silicon ingot and method
WO2012023165A1 (en) * 2010-08-16 2012-02-23 株式会社Sumco Electromagnetic casting device for silicon
CN109930196A (en) * 2018-12-18 2019-06-25 沈阳真空技术研究所有限公司 The vacuum oriented consolidation furnace of bottom filling and its application method
CN110158147A (en) * 2019-06-21 2019-08-23 合智熔炼装备(上海)有限公司 A kind of monocrystalline orientation hot investment casting furnace automatic heat preserving cover board arrangement
CN110158147B (en) * 2019-06-21 2023-10-03 合智熔炼装备(上海)有限公司 Automatic heat preservation cover plate device of single crystal directional precision casting furnace

Similar Documents

Publication Publication Date Title
EP0349904B1 (en) Apparatus for casting silicon
CN102380588B (en) Intermediate-frequency induction and directional solidification ingot casting process and equipment utilizing same
JPS63192543A (en) Melting and continuous casting device for metal, operating method of said device and usage of said device
US20110104036A1 (en) Method and apparatus for purifying metallurgical grade silicon by directional solidification and for obtaining silicon ingots for photovoltaic use
US9162281B2 (en) Continuous casting method and continuous casting device for titanium ingots and titanium alloy ingots
JP3646570B2 (en) Silicon continuous casting method
JP2660225B2 (en) Silicon casting equipment
JP2657240B2 (en) Silicon casting equipment
JPH07138012A (en) Device for casting silicon
US9410266B2 (en) Process for producing multicrystalline silicon ingots by the induction method, and apparatus for carrying out the same
JP2630417B2 (en) Silicon casting equipment
KR20120061837A (en) Apparatus for producing multicrystalline silicon ingots
US3921698A (en) Method for the production of metallic ingots
US3713476A (en) Installation for making ingots and method therefor
US20130255315A1 (en) Electromagnetic casting method and apparatus for polycrystalline silicon
JP4672203B2 (en) Method for producing ingot for gold bonding wire
JP2005059015A (en) Device for melting and casting metal
JP5453549B2 (en) Silicon ingot drawing apparatus and method
CN115301909B (en) Suspension smelting equipment with ingot pulling-down function and ingot pulling-down method
US4061180A (en) Installation for electroslag melting of heavy-weight metal ingots
JP3911711B2 (en) Cold Crucible Vacuum Induction Melting Apparatus and Melting and Ingot Extraction Method
EP0096298A1 (en) Process for producing polycrystalline silicon bars suitable for subsequent zone refining
JPH0741372B2 (en) Continuous casting furnace
CN116274915A (en) Ingot casting device and method for smelting bottom drop-down crystallization by utilizing water-cooled crucible
CN117865161A (en) Silicon core production equipment and production method thereof

Legal Events

Date Code Title Description
A02 Decision of refusal

Effective date: 20040203

Free format text: JAPANESE INTERMEDIATE CODE: A02